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 In the Jahresbericht der Deutschen Mathematiker-Vereinigung in 1898, Boltzmann 
cited the lack of suitable examples that might make Hertz’s book on mechanics more 
understandable, and then graciously proceeded to give an example of his own.  He 
replaced the motion of a completely-elastic ball in the interior of a hollow sphere in the 
Hertzian sense that knew of neither forces at a distance nor elastic forces in the usual 
sense, but only rigid constraints on the masses, with the motion of a system of two 
massless rods AB, BC that are coupled to each other by a link B and at whose free ends A, 
C, one finds mass-points, while the location of the link B is a point that has vanishingly-
small mass. 
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 In fact, one imagines that the motion of the rod has been simplified in such a way that 
the one end point A is fixed, and writes out the principle of vis viva and the law of areas, 
referred to a planar coordinate that has the point A for its origin and its plane is 
determined by A and the initial velocity of C.  One can then infer the conclusion from that 
combination of equations that the rectilinear path CC1 that the end point C of the pair of 
rods sweeps out for a vanishingly-small mass B will be converted into another likewise-
rectilinear path at the location where the rods define an elongated angle AB1C1 = π that 
makes the same angle with the line AB1C1 as the one that C returns to.  At the moment 
when the path of C changes its direction, the infinitely-small mass B will gain a vis viva 
whose carrier is otherwise C and which helps it to get over the “dead point” in the 
extended position at that moment by its infinitely-large velocity. 
 However, that is just the picture of the motion of an elastic ball of radius ρ that moves 
without the action of forces inside of a hollow sphere of inner radius AB + BC + ρ.  
Boltzmann let the rods AB, BC have equal length so that the center of the ball could go 
through that of the hollow sphere.  However, if one makes AB ≠ BC and one chooses the 
initial direction CC2 of C such that the angle ABC between the two rods is equal to zero at 
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that time, then the mass-point C will behave at the location C2 exactly as it does at the 
location where ∢ABC = π.  Namely, it bounces off at the same angle with respect to AC2 
that it approached it with, and the system will behave like a solid elastic ball of radius ρ 
that appears inside of that hollow sphere on a solid ball of radius AB – BC – ρ (BC – AB – 
ρ, resp.) that is concentric to it. 
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 That modification thus implies the picture of the elastic collision of two solid balls 
that Boltzmann required (loc. cit.).  If one would like to avoid the complications of the 
hollow sphere then one could let the two rods increase without bound while keeping the 
same difference in length.  One might also require the end point B of the link BC, which 
carries an infinitely-small mass, instead of remaining on a ball of radius AB, to remain on 
a rectilinear “guide” (say, a tube with a slit in it) PQR that is kept at a constant distance 
AQ from the fixed point A by an arm AQ ⊥  PQR such that it always remains tangent to 
the ball of radius AQ whose center is A.  If the end point C of the rod BC carries a finite 
mass and AQ > BC then one will again have the picture of the elastic collision of two 
solid balls.  The idea behind the latter arrangement goes back to Finsterwalder. 
 All of those pictures can be reduced to the representation of the collision of smooth 
balls.  They will break down when friction associated with the rotating motion of the 
balls changes the angle of reflection and the plane of reflection. 
 

_________ 
 
 

 Although Hertz always spoke only of “rigid constraints,” the examples of hidden 
masses and motions that he might have had in mind when he imagined a replacement for 
the forces-at-a-distance that occur in nature are however hardly rods or otherwise-discrete 
mass-systems, but rather matter that fills up space uniformly and can displace in its own 
right.  That is because it was in relation to just that notion that the introduction 
(Mechanik, pp. 31) referred to Helmholtz’s theory of hidden motions, which one will 
find to be developed in his treatises on monocyclic systems and the principle of least 
action [J. f. Math. 97 (100)], in which it is exemplified by fluids and gaseous bodies.  He 
further cited the representations to which Maxwell arrived [in his articles “Über 
physikalische Kraftlinien” and “A dynamical theory of the electromagnetic field,” Trans. 
Roy. Phil. Soc. London (1864), etc], in which one must think of a “hidden” fluid medium 
that is switched on between two masses that seem to act upon each other at a distance and 
which is “coupled” to the visible masses, in Hertz’s terminology, and whose vorticial or 
otherwise cyclic “adiabatic” motions are the carrier of a certain total kinetic energy that 
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ordinary mechanics cares to describe as the potential energy of the visible masses.  Hertz 
also referred to Lord Kelvin ’s vortex theory of atoms, etc. 
 One does not generally find representations of that sort developed in the text itself.  
Indeed, Hertz’s statements on the form of the permissible equations of motion that define 
the “rigid” constraints that enter in place of forces for him seem to contradict that 
assumption, since only either finite equations between the coordinates or homogeneous 
linear equations between the differentials of the coordinates of the system (129), along 
with a possible position of the system, are permissible, and according to pp. 43 in the 
introduction, that is the form in which all of the connections in nature must be clothed.  If 
one now assumes that there is a space-filling intermediate medium that is assumed to be 
incompressible, in any event, then the condition of incompressibility will not, as Hertz 
concluded, already be expressed as a finite equation between the coordinates, but rather 
the partial differential quotients of the coordinates x, y, z of a system point with respect to 
its initial values a, b, c will enter into, e.g., Lagrange’s incompressibility condition.  
However, if one, as Lagrange himself did, regards that condition as the expression of the 
purely-geometric fact that the volume of the tetrahedron that is defined by the points (a, 
b, c), (a + da, b, c), (a, b + db, c), (a, b, c + dc) does not change in time then, as one can 
easily show (Mitteil. d. math. naturw. Vereins in Württemberg 1900), that equation will 
also take the form of an equation between the coordinates of four (infinitely-close) 
system points.  It will express only the “rigid constraint between the smallest parts” 
(Intro., pp. 49). 
 Moreover, one can also make the transition from discrete to continuous mass-points 
that fill up a line in the system of rods that was considered above without getting close to 
Hertz’s conception of things when one goes from two rods to n of them, and ultimately 
to an inextensible chain for which one will again have a condition equation in the partial 
differential quotients (cf., e.g., Routh-Schepp, Dynamik, II, § 602). 
 Hertz might have also imagined that in the vicinity of two colliding elastic bodies a 
medium that is endowed with properties of the indicated kind would be capable of 
absorbing the vis viva that would be free at the moment of contact for a brief time in 
order to once more transmit it to the visible masses (no. 733).  He did not explain that any 
further, but rather referred expressly to “the individual consideration of that special 
relationship (for collisions) in the realm of general mechanics” (ibid.).  Nonetheless, one 
must agree with Boltzmann when he placed precisely that special relationship at the 
center of the discussion of Hertz’s mechanics by means of the example that he treated. 
 
 Addendum: Later on, a speech was brought to my attention that Boltzmann had 
presented at one of the general sessions of the Munich Congress of Scientists (see these 
Jahresbericht, pp. 71, et seq.) in “Über die Entwicklung der Methoden der theoretischen 
Physik zu unser Zeit.”  In it, Boltzmann took an entirely different position in regard to 
the interpretation of hidden masses in Hertz’s mechanics when he explained that: 
 

 “The structure of the formerly-useful medium [that is filled with fluid] 
and also Maxwell’s light ether do not need to be endowed with them [the 
hidden masses], since indeed forces are thought to act in all of those media 
of the kind that Hertz excluded expressly.” 
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 Only Helmholtz and Maxwell have derived the forces that appear in a vorticial 
incompressible fluid upon which no external forces act from the equations of 
hydrodynamics and the incompressibility condition.  I believe that it needs to be proved 
that the latter also have the form that Hertz allowed.  Now, Lagrange derived the system 
of hydrodynamical equations with the help of only d’Alembert ’s principle on the basis 
of that one equation.  However, Hertz also decreed the latter, since the formulation of it 
in no. 393 likewise implied the equation that Lagrange employed when one treated the 
coordinate increments δpρ , not as possible or virtual displacements, but as mutually-
independent displacements, from the procedure in Mécanique analytique, t. II, sect. IV, 
no. 11, when one adds the condition equations that exist between them, suitably provided 
with undetermined multipliers, to the left-hand side.  However, if one has put 
d’Alembert ’s principle into that form then that would complete the transition from a 
finite number of mass-points to an infinite number, in the sense of the remark in no. 6 of 
Hertz’s Mechanik, and from there to the fluid media, with the help of that condition 
equation, precisely as Lagrange did (Mécanique analytique, t. II, sect. IV, no. 17; sect. 
XI, no. 2, et seq.).  It is therefore not clear why Hertz’s hidden masses could not also be 
fluid masses. 
 
 Tübingen, 7 November 1899. 
 

__________ 
 

 
 


