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On Hertz’s mechanics(’)
By ProfessoBBrill in Tibingen.

Translated by D. H. Delphenich

When in the year 1894, right after the death of thecauthe bookDie Prinzipien der
Mechanikappeared by Heinrich Hertz, with a Foreword by H. voimtHeltz, physicists
and mathematicians were gripped with the same enthusiasnthe book, which
promised to be a brilliantly-written introduction tocampletely new representation of
mechanics that was envisioned and written in the spirimathematics. It was a
mechanics that was built upon only one axiom and explaimedontroversy regarding
the older concept of force in the spirit of the modehysics. However, many readers
soon put the book down again, since it was preciselyatiethat the new conceptual
structures that were contained in it were founded upon physiigihs, and were
therefore hard to approach for the mathematiciansctatthat was made even more acute
by the lack of examples.

Indeed, the difficulty that Helmholtz referred to mqrecisely in his Foreword still
exists to this day that: “One must call upon a great degfreseientific imagination in
order to explain even the simplest cases of physicaé$ in the sense of Hertz.” In the
meantime, however, the theory that Hertz might haniginally had in mind when he
presented the concept of “hidden mass” for the propagati@beofrical and magnetic
force effects through space has taken on more meaningeapéctability in a broader
context. In addition, many of the new concepts hdneady proved to be fruitful in other
domains. That probably justifies the attempt to draw upahtheory (albeit one that is
not free of contradictions) as an example for erplg Hertz’'s basic concept, and (as |
have already tried to do in a lecture in the Wintet898-99) proceed from that example
to the essence and concepts of the new mechanics widanirig the basis for the old.
However, the book itself, whose study is indeed coratg by the peculiar form of the
prose that often interrupts the train of thought, istmappealing for the rich, carefully-
structured content and language that was chosen, sght gain a few new friends from
the following discussion.

Hertz (n0.469) and Helmholtz (Foreword, pp. X, XX, etc.) used the teionse-at-a-
distanceand action-at-a-distanceor the force effects between mass points that have
differentcoordinates, and in particular for the force of attracbetween gravitating or

() The following is a transcription of an address thatahthor gave to the Plochinger Versammlung of
the Society on 14 May 1899.
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magnetic, electric, etc. masses. Hertz wished toirdite such forces at a distance by
introducing rigid (visible or hidden) constraints betwelea points. An example might
show how one can understand that.

M

s P

The apparatus that is drawn above, which is slightérexdt from one that Boltzmann
gave, allows the motion of a mass-pditwithout the action of external forces, to be
arranged such that it seems to move along the A@® under a prescribed law of
attraction (e.g., Newton’s) wit® as its center. The thin tul@ABQN a piece of which
BQONiis curved in a well-defined way, rotates about the @4d1. An inextensible string
that connects the material pof@twith P runs through the tube, such that whdd = x,
OA=4a, AB =b, andBQ has arc-length, the length of the string will be=x+a+b +s.
The tube is put into a rotational motion and left welit One must determine the
rectilinear motion ofP when one ignores friction and assumes that the apisara
massless.

Thevis vivaprinciple and the law of areas imply that:

(P+Q)(3—j+QrZa}:h, r* w=c,

in whichr is the distancC from the rotational axiswis the angular velocity, aridand
c are constants.
Upon differentiating:

ds)’ Q¢
P+ — | +——=h
P+ L]+
with respect to time, one will get:

Prgls-QC

a2~ 1 ds’
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or:
d’x_ Q¢ dr

P+Q— .
( Q)dt2 r3 dx

Now, if sayf (X) is the law of the force that seems to act upahen one must set:

Qo (9222,
r* dx P
SO
1
= :—kjf(a—s) ds,

r

in whichk, a are positive constants.is expressed in terms sfn that way.
If zis the abscissa of the poi@t so:

d& =dZ +dr?,

then a second quadrature will also gnvas a function o$, and with that the equation of
the curve along which the tulBQN is bent in order to realize the prescribed moti(x)
of P. The assumption th&i(x) = k / x* will yield a hyperelliptic integral for.
If one now imagines that the apparatus is invsileixcept for the masy then the
rigidity constraintthat the string exhibits will effect that apparéntce at a distance.
Certain curvilinear motions of a point that seemdsult from the influence of forces,
such as curves that roll on each other, can alseddzed. | shall not go into that here.
The motion of a sphere that collides with anosrere and rebounds elastically can
be represented by an apparatus that was descnb8sltzmann and the author in the
Jahresberichten der deutschen Mathematiker-Veggini for 1898 and 1899.

Moreover, Hertz's dynamical explanation for foreés distance is not to be found in
rigidity constraints of the type that was consideadove, because the hidden motions
that he assumed are not the motions of rods or aliserete masses, but they have a
cyclic nature (n0.599 and return to themselves in such a way that atelof each
advancing mass-point, an equal one will enter imatety. One might do better to
imagine the top that Helmholtz referred to wherspeke of forces that would be evoked
by cyclic motion (J. f. Math100, pp. 154; also hi¥orles. Giber Dynamjkoub. by Krigar-
Menzel, pp. 321). However, the Introduction to tdasrMechanik(pp. 31) suggests that
one must take yet another step. In order to maédailowing attempt at an explanation
understandable, permit me to first recall somegsitat are known.

A system of gravitating masses that are distridbinespace in any way exerts a force
on a unit mass whose direction and magnitude avevikn If one follows the direction of
the force that issues from the point to a neighigppoint and then makes the same
construction there, and proceeds similarly then wié obtain a force-line whose
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behavior, namely, in the vicinity of the attracting saall be determined by potential
theory. One can think of the distribution of such foined, which run through all of
space, as being defined such that the measure of the intaitsieyforce at each location
will be determined by the density of the lines. Electroece-lines belong to electrical
masses in an analogous way, and magnetic ones belonggttetic masses. The latter,
which one can, as is known, make visible in the neidgidmmat of a magnetic pole by iron
filings, run through the magnetic masses and closes upmselves’). However,
magnetic force-lines also fill up the neighborhood (itke field) of moving electrical
masses, and in particular, the field of an electricenu that closed upon itself in the form
of a ring, as one call also show with iron filings. Farthore, the arrangement of these
force-lines that are generated by a current exhibits sengal difference from the ones
that are produced by magnetic masses. The latter canriteacted to a point, in the
sense o&nalysis situs However, for the former, the current (which ongmithink of as

a tube that closes on itself) acts like a point oda@msinuity for a function in the Gaussian
plane when one takes its integral along a line thalbses the point: It makes space
multiply-connected, and the potential becomes a multiecgafunction of position.

Now, the new idea is that this system of force-limegather their action along them,
can be produced by the motion of a hidden ntlagsfills all of spacewhich one must
imagine to be something that is intrinsic to the propagatfotine outer surface of the
mass (or a cavity in it).

The admissibility of that assumption might be shoitw the example of the
electromagnetic force-field that we would like to ades in what follows (but restricted
to a dielectric that is filled with the invisible matt#r‘empty” space).

Since the time of Faradaf)(one of most distinguished problems in mathematical
physics has been to replace the force-lines of thesfiefdgravitating, magnetic, etc.,
masses with identicaVector fields(®) of a different type that define perhaps the
displacements or velocities or stresses in a conimunass (such as elastic or fluid
bodies), whereby the potential energy of the forca @distance will go to the potential or
kinetic energy of the medium.

As far as it concerns vectors of the sort that inggime into question when they are
applied to the outer surface of alastic medium, one know that one can represent the
pressures (i.e., stresses) that act upon a surfacerglémt goes through an interior point
by the radii of an ellipsoid, namely, the elasticitlipsbid. Itsaxesat any point will
yield threedistinguished directions, so not a vector that would pgaiohedirection. By
contrast, displacements are vectors. In fdttThomson (Lord Kelvin) represented the
electric force-field in that way in his treatise “On a mechanicgresentation, etc.”
(1847,Papersl, pp. 76), whereas the magnetic one found a lessivguntterpretation.

Any small change of position — namely, a small cube theninterior of an elastic
body can be composed of:

1. A parallel displacement.
2. A rotation around an axis through the center.

() See the beautiful Tables in Herger, Leipzig, 1844.

() Faraday's ground-breaking work appeared in German inaliswKlassiker-Bibliothek der exak.
Wiss; ibidem see also the relevant work of Maxwell, translated &érman by Boltzmann.

() As is known, a vector is a spatial magnitude thehidowed with a direction.
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The position of that rotational axis, along with thagmitude of the angle of rotation,
for each point that is present will, in turn, give a wvedteld that was used to advantage
by Thomson for the magnetic (electromagnetic, respceffield, which is an assumption
that bears upon the behavior of the calculationsiietbbundaries of conductors and non-
conductors, in particular. Although one might find it hao imagine that a medium
would not resist translation, but probably rotation, sushthe magnetic force would
experience under the assumption above, Lord Kelvin madefparent by an ingenious
apparatus that exists in a context where numerous yajititing tops have been placed.

Of course, a medium of that kind is no longer elagtithe usual sense of the word.
It has hidden cyclic motions, and for that reasonrdenoto distinguish it from the latter,
the discoverer called it a “jelly’ that was given theme of “ether.” In essence, that
“ether” comes down to the fluid that Maxwell consideradich will be discussed
shortly. In a more recent papdraperslil, pp. 436), Lord Kelvin returned to such
matters and showed that when one calculates the esmgd inside and outside of a
solenoid, on the one hand, for the elastic forcethen“jelly” and on the other, for the
rotational forces in the “ether” that the latterlkive the advantage.

He was associated with other researchers, such lBmBon and Heaviside. By
contrast, Sommerfeld and Reiff postulated that theneiag force would be assigned to a
displacement of the ether-particle, while gtectricone would be assigned taaation,
because it is best for one to perform the actual fdlons in such a way that the energy
of the electric current in conductors will be convertetb iheat by friction (which
opposes the rotation), which is a theory that Boltznfaatheven more misgivings about.

The experiments that were sketched out up to now, tédesginy gaps in the details,
all refer to the fact that the electromagnetic éofeld can be represented by a vector
field of fluid type. The fact that it must be incompressible wasvahater alia, by
Hertz's experiment on the propagation of the eleattawes, which refer to absolutely
transversal oscillations. Already in his 1858 treatisevortex motions (Ostwald’s
Klassiker), Helmholtz had emphasized the analogyehksts between a line vortex in a
fluid and an electric current, namely, the force thatvortex exerts on a particle in the
surrounding mass of water is analogous to the forceatlatrrent exerts on a magnetic
pole outside of it. Just as the latter moves perpendituldne (rectilinearly-envisioned)
conductor, so does a reaction on the water particlesinitdinity emanate from the outer
surface of the line vortex, which one imagines to bsad, as one does for the current,
and the one reaction is equal in magnitude and direaidmetother.

However, whereas Helmholtz did not pursue that twodsidealogy any further,
Maxwell arrived at a theory of the mutual dependency of eleatricmagnetic effects on
the grounds of closely-related arguments that have deealoped even further in a
series of works, and today that theory defines the undggatendation for the entire
study of electricity in the form of the “electromagnéteory of light.” Like Helmholtz,
Maxwell (1861, 63, “Physikalische Kratftlinien,” German aby Boltzmann, Ostwald’s
Klassiker) thought that the magneto-electric field vwafluid that was permeated by
vortices, but magnetic force lines were arranged arob@cekectric current, instead of



Brill - On Hertz’'s Mechanics. 6

line vortices, and the force itself prevailed along tbeex axis. Indeed, it is known that
the pressure at a point in a fluid is the same irdiadictions, but on a surface element
whose order of magnitude is that of a line vortex csesdion, the pressure in the
direction of the axis will be smaller than it is one that is perpendicular to it, such that
there will be a suction in that direction. If oneedmot follow Maxwell in assuming that
there are “particles of friction” between the vorsicand if one overlooks the
complication that arises for densely-packed rotatingogstwith the same direction, or if
one goes along with the hypotheses of the younger Bngligsicists (cf., e.g., Lodge,
Electricity) then one must once more represent the electric fyrd¢be displacement of
particles (von Helmholtz\Y/orlesungen Uber elektromagn. Lichtthepnmib. by Konig
and Runge, pp. 37).

Now, on the basis of those assumptions, one canieghdystem of six differential
equations (initially for the dielectric), by means of whigne can conclude the spatial
distribution of the magnetic force atgaven moment from the change that the electric
force at that location will experience at tiextmoment, and conversely, one can get the
spatial change in the electric field from the tempoteinge in the magnetic field) (

Maxwell's equations express a far-reaching duality betwedectric and magnetic
forces. One derives an expression for the (combinedrieleand magnetic) energy in a
spatial part of the dielectric from the,. Moreoueey also imply (as Helmholtz has also
derived fromhis ownassumption) the known laws of action at a distantlk mo further
assumptions, and in particular, the Biot-Savart lamttie action of a current element on
a magnetic pole, under which, an increase or decreasieeikinetic energy of the
medium will enter in place of the equally-large changeotential of the force-at-a-
distance.

Later on, Maxwell derived his equations from other foundat However, the
representation that was suggested first here is espeaatihwhile as an example of
Hertz’'s mechanics, because it illustrates the cyualition of the intervening medium by
means of vortices.

If none of the attempts to explain the electromagn&iice-at-a-distance in a
dynamical way by means of motion are also unimpeachatd@etheless, they
collectively give a picture of what Hertz meant when posed the problem in his
mechanics (no596) of “determining the motions of the visible masses isystem in
advance, despite the ignorance that prevails in regattletgositions of the hidden
masses,” and when he consigned the future of the pralera., pp. 49) to “reducing
the alleged effect of forces at a distance to procedse®tion in a medium that fills up
space and whose smallest parts are subject to rigichtreants [see below].”

Furthermore, in the foregoing, one must accept theonsathat Hertz gave for
endowing his hidden masses and motions with the follopingerties:

() One can find the details in the report that Planckemtes to the Vers. des D. Math. Ver. in
Dusseldorf in 1898.
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1. The motion of the hidden mass is cyclic, and indeeds¢leity of that cyclic
motion is considerably larger than the change in the acydordinates (viz., the
“parameters”), or more precisely, it is so large thet terms in the expression for the
energy of the cyclic system that include the rateleinge of the parameters can be
dropped in comparison to the ones that include cyclicciteds 649. The cyclic
coordinates themselves do not enter into the expressidthef@nergy at all.

2. The cyclic motion of the hidden masses is “adiaffahsofar as it deals with the
representation of conservative forces (i.e., ones ihasess a force function); i.e., “a
free-willed direct influence [of forces] on the cyctioordinates is excluded6(0, 562),
such as, e.g., the rotational speed of a gyroscopbdbkdieen turned on can no longer be
influenced directly afterwards. If follows from theoperty that was given (as one sees
perhaps by appealing to the second form of Lagrange’'seditial equations) that the
cyclic momentum will always keep the same value foadiabatic motion.

3. What ordinary mechanics calls potential energything but the kinetic energy
of hidden masse$05).

Helmholtz had already introduced the concepts of “cy@nd “hidden motion,” and
right from the beginning, he had not merely top-like, watimotions in mind, but also
ones of the type that one assumes in the theory ofiln@agas; hence, densely-packed
colliding elastic molecules that zip through space i@ty at a detailed level, and
which first suggest the earlier definition in their totalitFor that reason, the theory of
heat also yields examples of Hertz’'s mechanics K=lmholtz, J. f. Math97, pp. 111;
ibid., 100, pp. 147).

The focal point of Hertz's mechanics is the introdutidf hidden masses in place of
forces at a distance; the other innovations first flowt of that. The removal of the
concept of force from the elements then changesutioans; their reformulation implies
new conceptual structures. The problem of the first bedk prepare and introduce
them, which is entirely independent of the new theoryd @an be added as an
autonomous appendix to any other mechanics.

The fact that this view excludes everything strange frben liook shall now be
shown.

Above all, the concept of &ee systemmust be imagined in such a way that
everywhere the old mechanics assumes potential ertbeghidden masses that produce
it in kinetic form must appear as a necessary comparfdhe free system. Thus, Hertz
required of a free system that the “connections” betwée points should be
“legitimate”; i.e., independent of timel19 122). Those “connections” will be given
(124 by a system of equations in the coordinates of thes+paints into which their first
differentials need to enter only linearly and homogengoudHowever, one cannot
express (e.g., the connection that is established betweegravitating mass-points by
perhaps Newton’s law) by equationstiodittype. For that reason, two such points do not
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define a “free system” in the sense of numiEzg 309 etc., by themselves, but only
when they are coupled by hidden masses (that are left umitetd).

Now, as far as thaxiomsof the new mechanics are concerned, Newton’s third
axiom, which demands the equality of action and reachieopmes unnecessary, in any
case. Indeed, Hertz did not by any means relinquish theepb of “force,” since he
always sought the connection with the usual representati mechanics. However,
force appeared to him only as the reciprocal influencevof‘toupled” (i.e., continually-
contacting) systems that pertained to just the locatioere the contact took place. Both
of them together define a free system, and if one droges/— the second one then its
effect on the motion of the (now not free) first azen be replaced with certain terms
with multipliers that appear in the equations of motiontfee latter, which will take on
the meaning of a force in the sense above in that Wag. converse will be likewise true
when one considers the motion of only the second omhe. fact that force and counter-
force must be equal when they are regarded in that waybeaeasily proved by
combining both systemd§8), so it is no longer an axiom.

The content of Newton’s second axiom, which stategtportionality of force and
acceleration, is a necessary consequence of the afaienssl formal definition of the
force as a multiplier459).

However, the axiom of inertia remains intact, andmadtely one more integral
principle or its equivalent will be necessary for Hertz chose Gauss’s principle of least
constraint, which he combined with the law of inerti@ ihisfundamental law309).

One must now give that fundamental law a conceptianishconcise, as well as easy
to understand. In order to do that, in addition to tiseeanentioned extension of the
concept of free system, one also needs a conveniemul@tion of the concept of
constraint To that end, Hertz introduced some new terminololygamely, he adapted
certain concepts that would be common to the individuats-points, such as path
element, velocity, acceleration, and the curvaturthefpath to a system of such things,
in which he referred to the mean values of the magnitud@slimections in question by
those words, as he did in numbé&i 265 275 In particular, thepath element dsf a
system of pointsy , mp, ..., M, is defined by:

d$ 0y m = > 'mdg,
and the expression for theirvature of the path, which is the reciprocal value of the

radius of principle curvature for the individual pointdisfined by a quantitg, which is
defined by the equatiori6):

cOm =>mO*+y*+ 27,

if X", y", ' are the second differential quotients of the rectamgudardinates of a point
with respect to the path-element of the system.
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If connections between the system-points exist —if.they are linked by condition
equations in the coordinates — then a free systemslhiett ito itself under the influence
of those connections and its initial velocities watlopt a certain natural path. The
principle of least constraint (in the absence ofmetkforces) then says that the curvature
c will have a smaller value for the natural path thanill for any other conceivable one
that is compatible with the conditions on the systemthat it is astraightest pathin
Hertz's terminology. The straightest path is usudiyt not always, the shortest one.
Namely, they will differ in the case @fon-holonomicsystems; i.e. a system for which
non-integrable differential equations will enter intee tcondition equations (nd.32
moreover, cf. Voss, Math. An@5, pp. 258, where such condition equations were treated
previously). A sphere that rolls on a surface sergearmaexample of a non-holonomic
system (Holder, “Uber die Prinzipien, etc.,” Gott. Na&896, pp. 150), which obviously
does not generally describe a shortest path when itfrofts one position to another.

From what was said, the idea behind Hertz's fundamdatalwill now become
understandable” “Any free system will remain in its etaf rest or a state of uniform
motion along a straightest path.”

The law of theconservation of(kinetic) energy follows immediately from that
fundamental law for a free system. If one consi@defsonservative” systent02), in
particular — i.e., one that is composed of two coupledysiems (450), one of which
contains all visible masses, while the other contaihkidden masses (with adiabatic
cycles) — then the “parameters” (i.e., non-cyclic camtés) of théniddensubsystem of
the system (which vary slowly compared to its cyclicorclinates) are likewise
coordinates of the visible ones. Now, the energy efdistem (605) splits onto the
energy of the visible masses and the energy of theehiddasses. Indeed, as was
remarked above (pp. 7), the rates of change of the pereameill vanish in comparison
to those of the cyclic coordinates in the expressioriferenergy of the hidden system.
However, insofar as the parameters of the visibléegysre concerned, their velocities
do not, in turn, vanish from the total energy. In orderesolve that contradiction, one
might perhaps make the assumption that the hidden masse®ime under consideration
are very small compared to the visible masses.

It follows further from the fundamental law that tiv@e integral of the energig a
minimum for the natural motior868). If one defines it for a conservative system ttien
(= U) is the energy of the hidden masses ani that of the visible ones then that
condition can be written in the forr6Z6):

q,j(T—U)dt: 0,
in which the variationg, refers to all coordinates, namely, the visible o(&hich also

appear as parametersun, as well as the hidden ones. If one introdubesiomenta of
the hidden coordinates here in place of their vbés; which can be arranged by a well-
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known process (cf., sayacobi, Vorlesungen tber Dynamikd. by Clebsch, Lecture 9,
pp. 69), then the equation will take on the form:

3,[(T-U)dt=0,

in which one must now perform the variation ah# tyclic momenta were not varied at
all, because the motion is adiabatic, by assumgtea above, pp. 7). However, that is
just the assumption under which ordinary mechafwtsch does not know about hidden
masses) varies the integral, such that equatiowealoll now represenHamilton’s
principle (628 629).

The connection to ordinary mechanics is achieveld tlat, and the trivial examples,
such as perhaps a falling stone, that can be asittedirectly by Hertz's method, and
which will present the difficulty that one does ratow the type of coupling between
visible and invisible masses and the motion of ltteer, will lead back to Lagrange’s
equations. The aforementioned formal conversiothefvariation of the integral will
necessitate some preparations that fill up humenaosbers (such &93 555 493 292
68).

In conclusion, let us say a few words about ¢badition equationghat define the
connection between the system points. When Haemtzadded that they should contain
only the coordinates of a point and its first diffetials, he seemed to exclude continuous
masses from the treatment from the outset, andbpetmust think of the hidden masses
as being the matter that fills up space, whicHrsaaly due to their cyclic motion. In that
way, if one recalls the analogy with fluid vorticgeen one must admit the condition
equation that expressed incompressibility, or fig@lity constraint of the smallest part”
(Intro., pp. 49).Lagrange represented it with the help of the partial diietial quotients
of the coordinates, y, z of a point in the fluid with respect to their iait valuesa, b, c,
namely, by the equation:

dx¥.2 _, "
d(abo
However, one can give that equation the form:
X y z 1
x+%da y+ﬂ da z+a—z dal
1 oa da oa
———  0x dy 0z 1, (2)
daldbldc x+—db y+—db z#— db1l
ob ob ob
x+%dc y+6_y dc z+a—z dc 1
oc oc oc
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in which the expression on the left includes only the coatds of the four (infinitely-
close) points that the mass-particles will assumechwvhiill define the verticesa( b, ¢);
(a+da b, c); (a b+dbc), (a b, c+dc of a tetrahedron, as well as the three saigs
db, dc of that tetrahedron, such that equation will no longave the form that Hertz
admitted.

One can make the transition from equation (1) to theemseful condition for
incompressibility:

in the way that was indicated in, say, Kirchhofechanik Lect. 10, 8 5, (pp. 107).
That equation can also be just as well brought intddihe of condition equation in the
coordinates of neighboring points that is analogous to (2).

A continuation of Hertz’'s mechanics in the directimhintroducing a space-filling
mass instead of the discrete mass-points seems emiostible, and for the sake of
completeness, necessary, which is a step that even KMerself seemed to have had in
mind (cf., no.7)(Y).

Tubingen, 13 October 1899.

() As | saw later, the conception of “hidden masses” Wait presented here differs essentially from
the one that Boltzmann maintained in his speech to tiechkener Naturforscher-Versammlung in 1899. |
have expounded in detail upon the basis for allowing mpetsist in my opinion in a report to the
Deutschen Mathematiker-Vereinigung in 1899.



