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Differential equations are derived for a continuous itstron of moving dislocations that describe the
total displacement field and the elastic strain. Tleegations are based on the linear theory of elasticity
and can be solved by the use of Green’s dyadics. Therigegfanction for a moving dislocation is given
such that the equation of motion for the propagationastia distortions can be obtained by an application
of the principle of least action. All relations fibre dislocation dynamics take on a formal similatdtyhe
known relations of the statics of dislocations undfaua-dimensional formulation of the problem.

1. Introduction

The properties of dislocations at rest have been examergdhoroughly up to now.
Different procedures]] 2, 3, 4] have been given in the linear, as well as in thelinear,
approximation for the theory of elasticity for ascertay the internal stress state that is
generated by a dislocation. By comparison, moving disioes have not been examined
much at all up to now, although they have great sigméeain various physical
phenomena.

The first investigations of moving dislocations go battk FRENKEL and
KONTOROVA [5, 6, 7, 8, 9], who could show with a one-dimensional dislocatiordeio
that the equation of motion could be brought into a ftnat was similar to that of a
mass-point in the special theory of relativity. As peaal relativity, a limiting velocity
appears in that theory — viz., the speed of propagatiomowidswaves — and the
measurements in the direction of motion will expece a Lorentz contraction. FRANK
[10] also found the same behavior in the example of a myosfraight screw dislocation
in three dimensions. A complication arises for a mgwedge dislocation due to the fact
that the strain tensor includes a compression parteddsaw a shear part. According to
Eshelby [L1], both parts experience a Lorentz contraction, in sualay that in one case
the speed of sound for compression waves and in the calser that of shear waves,
takes on the role of limiting velocity. On the basigled analogy between elastic and
electromagnetic fields, as well as between dislonatdensity and electrical current
density, HOLLANDER [L2, 13, 14] developed a theory of moving dislocations that was
four-dimensionally covariant, like Maxwell's theory. rFthe case of an isotropic
“vacuum” — i.e., for an elastic medium with vanishing 8on transverse contraction
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number {) — the propagation of the strain that is generated by dnmalistortion is
given by just the speed of the shear wave. For tledore as with electromagnetic
waves, it is possible calculate the stress tensor & @atential that is itself determined by
an inhomogeneous wave equation. The inhomogeneous paat @fdie equation is the
dislocation density tensor, which is a generalizationth&f dislocation density and
velocity of the plastic distortion tensor. The prdare that HOLLANDER developed is
applicable to a real crystal only with restrictionsicsi it offers no prescription for how
the dilatation of the strain state should be caledlatlt is therefore suitable to only a
state of strain that is free of compression.

KOSEVICH [15, 16] also derived fundamental equations for moving dislocatidn
order to solve them, HOLLANDER introduced potential fimas that are determined by
a system of inhomogeneous wave equations. That systdimkesl with additional
auxiliary conditions that are imposed upon the potentiattfions. The foregoing is
problematic, since the plastic deformations are subjectadditional (restricting)
requirements.

MURA [17, 18] solved the problem of moving dislocations in a completifiierent
way. The elastic medium with dislocations is core@rnto a multiply-connected region
in which the compatibility conditions are fulfilled eyarhere by means of suitable cuts.
The total displacements that are produced by dislocatiansdbe expressed in terms of
outer surface integrals of the plastic displacemewsr the separating surfaces by
applying one of Green’s methods. One can go from the esiprethat is obtained in that
way to the case of continuously-distributed, moving dations most conveniently by
passing to the limit.

Although no objections can be made against the procdaatrétJRA developed, in
what follows, we would like to give a new path to solntibat has the advantage that it
is relatively simple and closely linked with the statieatment. In addition, we would
like to derive a four-dimensional formulation of the prabléhat deviates from the one
that HOLLANDER gave at several places. Our procedumvallone to ascertain the
internal stress state that is produced by the moving cdiston by means of stress
functions, and for that reason, it can also be eyeulon the nonlinear treatment.

2. The total displacement field of a moving dislocation

The essential difference between the statics andrdics of dislocations consists of
the fact that in the case of moving dislocationsnantial force of magnitude:

:G

- P§

will appear in every volume element, in whisfi denotes thé" component of the total

displacement field. p is the instantaneous density of the elastic mediumno Ibther
volume forces are otherwise present then a volueraesit will be in equilibrium when
one has?:

() In this case, Hooke’s law will assume the simple farr 2G g;, whereG is the shear modulus.
() Indices that occur twice are summed over. We nesitirselves to Cartesian coordinate systems.
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Ok 0|'k—,OSG:0. (2.1)

The divergence of the stress tensas referred to the instantaneous state of strain in that
equation. divoand also the densify can be referred to the initial state in the viciruty
the linear theory of elasticity, to which we would like confine ourselves in what
follows.
The stress tensar can be expressed in terms of the elastic strain tenisp way of
Hooke’s law:
Ok = Cix & = Cij S - (2.2)

Ciw Is the Hooke tensor of elastic moduli, and it hassimemetry properties:
Cix = Cjiu = Gijik = Cuij - (2.3)

Due to one of these symmetry conditions, the asymmelaitic distortion tensgf can
be written formally in place of the elastic straamsore in equation (2.2). One has:

& =3B + B)- (2.4)
The equilibrium conditions then read:
Ciji Ok S —,OSG =0. (2.5)

According to KRONER 2], the plastic distortion3” and the elastic distortiofi can be
combined into the total distortigh® of a volume element:

BC=p+p". (2.6)

In this, one must observe that the total distortiom t® derived from the total
displacement field:

ﬂ”G =9 <©

i S (2.7)
but that such a relation cannot be given for the plastitelastic distortions individually.
For that reason, it is also not possible to give aalydéical expression for the elastic
displacement field that is valid in all of space.ohder to arrive at a differential equation
for the total displacement field, we add the expres€ignd, - to both sides of (2.5).

That will lead to the following system of partial éifeéntial equations:
Cim 90,8 ~PF = Cun0. B = Cyy 0,Em» (2.8)

which allows one to calculate the total displacemeititsn the plastic distortion is given.
Due to the symmetry of the Hooke tensor the plastiirse” can be written in place of
the plastic distortion, which will show that the glacement field also depends upon only
£" in the dynamics of dislocations.

In an isotropic medium, in which the Hooke tensoriveg by:
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Ci =A g+ UG+ A G, (2.9)

with the Lamé constantsandy, (2.8) will assume the form of an inhomogeneous Lamé
equation:

UDS® +(A+10)0,0, £ —p€= 10, B +2ud, & (2.10)

KOSEVICH [15] also found a similar relationship, but in which the imogeneous term
depended upon only the dislocation density. That differenoees about as a result of
additional assumptions that KOSEVICH made about the teshpwolution of the plastic
distortion.

A particular integral of (2.8) can be given by using thee@ dyadid@; (z, t):

1 I I I I I
§(5,9= =[Gy (=¥, t=1) Gy 0, &1, (x", V) dlr' . (2.11)

The Green dyadic satisfies the partial differerggation:

Dim (0) Gmj (x, ) = =470 () o (1) 4 (2.12a)
and the causality condition:
Gj(t)=0 when t < 0. (2.12b)

Dim Is a tensorial differential operator with the comptaee

62

Dim = Dmi = Cikim 0k 01 = J,,, Py

(2.12c)

The Green dyadiG; (r, t) is thei™ component of the displacement at the locatiat

time t that is produced by th& component of a temporal impulse of the force density
with the strength — #Aat the location’ = 0 at the timg’ = 0. Representations of the

Green dyadic for an isotropic medium are given in literature [L9, 20]. In the
Appendix, it will be shown that the Green dyadB; can also be expressed by
differentiating the fundamental integral of a sixth-ordkfferential equation. In an
infinitely-extended medium, the particular integral (2.dé&3¥cribes the total displacement
that is produced by the plastic strains. In a finiteamgsolutions of the homogeneous
(2.8) must be added to (2.11) in order to fulfill the osteface conditions.

If can be easily proved with the help of a partiagégration that the expression that is
derived for the total displacement field in an infinitelytended region is identical with
the one that MURA 17, 18] gave. Our consideration has the advantage of greater
simplicity and brevity.
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3. The elastic strain of a moving dislocation
In many problems that involve internal stresses, onalisioterested in the strains
and stresses that are produced by the dislocationspbint the total displacements. The
calculation of the strains from the total displacetmepresents a detour when one can
give a determining equation for the strains themselv&s. that end, we partially-

differentiate equation (2.8) with respect to position dowmtes. That will yield the
following differential equation for the total distonio

Djm ﬂl(li = CJkIm |a ﬂlm (31)
On the left-hand side of this, we replace the totdbdisn ,BG with the elastic distortion

[ and the plastic distortio" using equation (2.6), and move all expressions in the
plastic distortion to the right-hand side:

Djm ﬁm - pﬂu +CJkIm (a 0 ﬁm _a 0 ﬂ ) = pﬂu +CJkIm inl a 0' (32)
aj is the dislocation density tensor that KRONERdefined by:
aj=—&y aklgljp = & akﬁj . (3.3)

We can also give a particular integral for the etadistortion in this case by means of
the Green dyadiG; :

Bi (e, 1) =~ j | PBY +Copafig 04 | Gk =¥, t=t) dr’ dit. (3.4)

In the special case of the isotropic medium, the whffeal equation for the elastic
displacements will assume an especially simple formorder to do that, we introduce
the representation of the Hooke tensor from (2.9) (8t@). The following differential
equation will imply the elastic distortion:

HOB + A+ 1) 010 Bu—p By = pA7 + 1[Hi — & Ha— 8 Om Gkl (3.5)
when one employs the identities:
0; Ok Bk — 0; 0i B = &jk 0j O, (3.6)
&k 01 Qij — & 0j i = Hij — 9j Hi . (3.7)
Hj is the (asymmetric) incompatibility tensor that KRONERdefined by:

H" = &q O Ok = — &k §mn 0i Om ﬁnk =- (J n kﬁp)ij . (3.8)
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If one decomposes the elastic distortion into a sgtnmand an antisymmetric tensor by
way of:

Gi=&+a (3.9)
then equation (3.5) will split into:

UDE + (A + 1) 010 8- p& = pE] +u(7i—3dm  (3.10)
and

HAG —pd=paf +1(30,00,=0 @ ), (3.11)
in which 77 is the symmetric part ¢4, and one has set:
wj=ex w and =g, . (3.12)

i

We will get the following system of partial differestiequations for the stressgsf
we replaces with gusing Hooke’s law:

pay+ A5 54 Ls -2 {Aakk —ﬁdkk} 3
U

2u+3r T T o 3 ”
= 2p&" +2uln; - & . (3.139)

The trace of the stress tensor is determined by thereliffial equation:

.. 2u+31 . .
ra-—L g, = 2‘; —rlpE” -2un). (3.13b)

In the static case, equations (3.13a) and (3.18bYo the generalized Beltrami
equations that KRONERZ] gave. The differential equations for the stressed strains
in the dislocation-free state have been known fong time p1, 22].

4. The Lagrangian function of a moving dislocation

In many cases, the differential equations fordtnesses and strains cannot be solved
in closed form, so one turns to approximation pdoces. Variational techniques are
most useful for dynamical problems, for which themet integral of the Lagrangian
functionL — viz., the so-calledction functional- must be extremized:

W= 6 Ldt =0. (4.1)

In an elastic mediuml. can be computed as the volume integral of the dragjan
density£ :

L= jsdr, (4.23)
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in which £ is defined by:
L=3p88% —20 4. (4.2b)

One can easily show that equation (2.1) is the Eulgrdrage differential equation of the
extremal problem that belongs to equations (4.1) and (dr2) §iven plastic distortion.
One will come to another expression for the Lagrandenmsity by the use of the identity:

0 = 2 0) - E. “3)

If we can assume that the mass dengity constant (viz., the approximation of the
linear theory of elasticity) and® are replaced with the stresses in the equilibrium
condition then we will have:

G 1 1 '
L=-1[0,0)5°dr-[q 5 dHE%IPiSGﬂSG d. (4.4)

We can convert the first expression partially intooater surface integral using Gauss’s
theorem, when we perform the following conversion:

(0,07)§° =0,(0; 3°) -0, g +4"). (4.5)

The Lagrangian function is essentially composed oétiergy of plastic deformation and
an outer surface integral that describes the work doexteynal forces:

10 .
L:%J.Uu’gijpdr_%.[aij $Gd|j:+§a'[pissﬂé3 ¢. (4.6)

The last term plays no role, since the functionbdovaried in the action functional will
be fixed at the lower and upper limits under variatione §¥t another expression for the
Lagrangian function by appealing to (4.2b) and (4.6):

1 G G 1 P 1 16 :
L:—Ej.ps B3 dr+—2'[(gij+2‘gj )G, d——z'[qj S qF+§aIpi§Q§ d. (4.7)

(4.7) will go to an expression that COLONETTJ] gave for a body with free outer
surface (i.e.gj nj = 0 on the outer surface) and for static problems.w@amentioned

before, for fixed plastic strains, the differentiguations for the total displacement (2.8)
will be the Euler-Lagrange equations for the variatigmnablem. The total displacement
field, the elastic strains, and the action functiorr& ealculated for arbitrary plastic
distortions. Under that law, we can choose any swlutiat extremizes the action. An
equation of motion for the evolution of plastic disimm can be obtained by that double
application of the action principle. Even in theeca$ an infinitely-extended medium, in
which the integrals (2.11) and (3.4) describe the total dispiant field and the elastic
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strains, the Euler-Lagrange equation of the extremabl@no will lead to an integral
equation for the plastic distortion that can be vemdha solve. For that reason, one
solves that variational problem with the Ritz procedurayhich the plastic distortion is
developed into a series of suitably-chosen comparisuetifuns.

5. Four-dimensional formulation of the basic equations of discation dynamics
5.1 —Fundamentals

In this section, our goal is to write the basic equatiof the dynamics of dislocations
that we derived in sections 2 to 4 in four-dimensional forks in the special theory of
relativity, the intrinsic connection between the variotggical quantities will become
visible when it had remained hidden in the three-dimensionalulation.

However, an essential difference between this andspleeial theory of relativity
should be pointed out: In the theory of elasticityf jise in hydrodynamical problems,
there is a special distinguished system of referen@mely, the one that is coupled with
the matter. Due to that existence of an absolute sgaeeelativity principle does not
have to be fulfilled for that class of problems in whill inertial systems follow the
natural way of things in the same way. All displacetsieare initially defined in that
absolute space. For that reason, it is not permitted,ekample, to derive the
displacement field of a dislocation that moves heearly with constant speadfrom the
corresponding statics problem by means of a Lorentsfoamation with the velocity.
The theory of moving dislocations will be further coropted by the fact that several
speeds of sound are possible in an elastic medium thait mnake on the role of the
limiting speed in the Lorentz transformation.

The advantage of the four-dimensional notation, whicts ngson the introduction of
the new coordinate:

Xg=icCHt, (5.1)

in whichc is a speed of sound, which we will establish more prigcimdow, consists of
the fact that the asymmetry in the basic equationdriithe coordinate is removed. With
that, we will arrive at (among other things) the fécat the four-dimensional basic
equations of the dynamics of dislocations are fornthlysame as the three-dimensional
equations of the statics of dislocations, such thatstme process as in the statics of
dislocations can possibly be employed to solve the dynaprichlem.

5.2 —The energy-impulse tensor

The definition of the energy-impulse tensor is categ with the equilibrium
conditions (2.1), which can be brought into the form:

d.0,+0,(-icps’)=0 (5.2)

KT IK
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with the use of (5.1)%. We shall now introduce a symmetric four-tensowhose
purely-spatial components, are identical with the stress tensor. If we defireegpace-
time components by:

0,4=—iCp$’, (5.3)
then (5.2) will go to:

Ok O = 0. (5.4)

One gets the components, from the symmetry that is required of. The purely-
temporal componentdss will be fixed by the demand that the (four-) divergencéhef
four-tensoro should vanish:

divo =0¢ oy = 0. (5.5)

In that way, one will first obtain a relation far,, that can be integrated directly. If the

integration constant is established in such a wayahas proportional to the momentary
mass density (t) —i.e., such that one has:

Ou=-pc(l+g’)=-cp(t), (5.6)

then the fourth component of (5.5) will express the cavasen of mass. That will
become especially clear when we represent it in iatégrm:

Jos%) dE +2-[ p(y ar=o0, 5.7)

in which the first term describes the matter thavfiaut of the outer surface.

In analogy with the theory of relativity, one camrhally associate the densipyof
the inertial mass with the energy dengitg”. Equation (5.7) will then be a conservation
law for the energy that is equivalent to the restanasd the four-tensar will have a
meaning that is similar to that of the energy-impuésesor in the theory of relativity.

5.3 —The four-tensor of distortion

In order to define the four-tensor of distortion, we naisserve that the displacement
field is defined by only a vector in three-dimensional spasiech that the total

displacement field cannot possess a temporal compariethie form s’>. The four-

tensor of total distortion, which we define in the usuay g the derivative of the total
displacement field according to:

;=0s’, (5.8)

[

() In this section, we would like to denote all indicethia vector and tensor components that assume
only the values 1, 2, 3 by Greek symbols; Latin symbdisassume the values 1, ..., 4. Four-tensors will
differ from the corresponding three-dimensional quantiiiea semi-bold reproduction of them.
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and for that reason, it can be represented by theviodpmatrix:

s_[Be|0
(51 oo

We decompose the total distortion into an elastic plagtic part in a way that is
completely analogous to what we do in the staticssiddations:

B=PB+p" (5.10)

As for the four-tensor of plastic distorti@ﬁ’, we establish only that it should possess the
components:
B |0
P 1K
= , 5.11
B { 51 (5.11)

which agrees with the prescription that KRONER {jave for calculating the plastic
distortion . B} describes thec™ component of the relative plastic displacement of

the bounding surfaces of a volume element whose surfageals point in thes ™
direction and which are at a unit distance apart. Balités of B} then refer to the

position space, such thgd; must be identically zero. That convention has the
consequence that the purely-spatial components of tlticelstrain tensor can be
calculated from the elastic displacements, while dbeponent{3,, can be calculated
from the total displacement field by:

Ba=9,s°. (5.12)

The four-tensok of the elastic strains will be defined as the symmaeiart of the
distortion tensof3. One easily convinces oneself that on the basiseoftorementioned
conventions, the purely-spatial componegiswill coincide with the ordinary elastic
strain tensog,, and the remaining components will be given by:

. %643‘3 (5.13)

and
eu=0. (5.14)

The Lagrangian density for dynamical problem camwbiten in the very transparent
form:
L=-38j & (5.15)

with the use of (5.3) and (5.13). We can achieviranal similarity between the
dynamics of dislocations and the corresponding esgions in the dynamics of
dislocations by means of the four-dimensional motat One can guarantee that the
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Lagrangian densit\C is invariant under Lorentz transformations by meansgofgon

(5.15).
The four-tensors of stressand the strais will be coupled by the generalized Hooke
law:

Oik = Cikim €m , (5.16)
in which:
Ciim = Coan [=hLk=K,A=l,u=m,
C4k|m = 210C2 5km 5I4’ (517)
C44Im = _pCZ 5Im'

Cikm has the same symmetry propertie€as [cf., (2.3)].

5.4 —The four-tensors of dislocation density and incompatibility.

We define the following third-rank four-tensor to be thdéodation densityx :
Qi == &im 0, B = — (10t B . (5.18)
&m IS the completely antisymmetric, four-dimensional usitsor whose components
will change sign under an exchange of two indiceswafichave non-zero components
that are equal té 1; one ha%io3a= 1. It follows directly from equation (5.18) that:

0i ik =— 0 g = 0. (5.19)

SinceB; =0, the components;j, will vanish in general. Sino is antisymmetric
in its first two indices, moreoveq will have only eighteen non-zero components. With

the help of the properties of the four-dimensiog&tnsor, it can be shown that the nine
components oft are identical with the ordinary dislocation densi@ne has:
a4//( = £//M aﬂ ﬁ/:; . (520)

The remaining nine components are:
P 1 .5
a//d = 8//(/14 64 ﬁm = g//(/j Eﬁ'ul y (521)

and they essentially describe the temporal changeeipltstic distortion tensor. Along
with the demand that one must have:
dva=9da,=0, (5.22)

equation (5.19) will also include the following statemdydw the temporal change in the
dislocation density:



Bross — On the theory of moving dislocations. 12

% = —(rot "), . (5.23)

In the statics of dislocations, one will get theoimpatibility tensoH when one lets

the operator rot act upon the dislocation dengitypn the right and the left. In a
completely-analogous way, we next introduce the folatikfour-dimensional tensor:

Hiji = &1 0, 0y = = &jmn Ekipgd,, 0, B s (5.24)

which is antisymmetric in the first and last two ingeérs. We define the four-

dimensional incompatibility densityy to be the second-rank tensor that arises by
contracting the second and fourth indicesladnd symmetrizing:

Ni = SyMHik = = &mnk 8ok, 0, Be = = (INK €7); . (5.25)

In that way, the product of the twstensors can also be represented by the determinant

():

5 4 4
eimnkequk: 5mj 5mp 5mq . (526)
nj 5np 5nq

We get the following representation for the componehtg:

19%) 10%,,
KR o N (6:278)
1 -~ P - P —
n/4=E(6K£,K _a, EKK), Naa = Nk« - (5.27b)

n denotes the ordinary incompatibility tensor thatsvintroduced in (3.8) and (3.12).
The purely-spatial incompatibility tensgrand the effect of inertial forces are united in
the four-dimensional incompatibility tensqr.

As a comparison with (3.10) [(2.10), resp.] witlosv, n,« essentially describes the
inhomogeneous part of the differential equationstfe stresses;, , while n,4 is the

inhomogeneous part far,, = —i pc Os® in an isotropic medium when we set cr =

5

It is easy to see from the representation (5 .124&) the relation:

%) Some further relationships for multiply-contractedducts of twag-tensors are:
p ply

&kl &= 2 (@m G — An 9w, i Enj = 3! Am, i Eja = 4!
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divink =0 (5.28)

is also true for the four-dimensional operabok. For that reason, we can fulfill the
generalized equilibrium conditions (5.3) in such a way tha represento as the
incompatibility of a second-rank symmetric tengar

o=Ink x, (5.29a)
or in components:

g = 0)x; = (0, 0 X4 +0, 0 Xg) +0, 0, X+ (0 O Yo ~TX) - (5.29D)
Since the incompatibility of the total strains vanisitege to (5.15), we will have:
Ink e=—Ink " =n. (5.30)

Precisely as in the statics of dislocatio8f fve will get a determining equation for the
stress functioro when we replace with the stresses using Hooke’s law and substitute
(5.29) for it:

Ink C™ (Ink X) =n, (5.31)

in which C* is the inverse Hooke tensory is not determined completely, but it is
possible to impose certain auxiliary conditions ongtness functiory. One might hope

that those auxiliary conditions can be chosen in suetay that we will get a simple
differential equation fox.

5.5— Comparison with the investigations of HOLLANDER 2, 13, 14].

Up to now, only HOLLANDER had given a four-dimensionalnfiotation for the
basic equations of the dynamics of dislocations, andonmulation deviated from our
own, to some extent. Both representations coincideptialy in the generalized
equilibrium condition (5.3) and approximately in the deiimtof the four-dimensional
stress tensor and strain tensor. The latter diffey mnthe purely-temporabs, andes, .

For HOLLANDER,0s4; depends (erroneously) upon on the elastic dilatation.
HOLLANDER did not define the dislocation density in terms of the asymmetric
distortion tensor, but the elastic strain tensomgisine equation:

!

O'i]-k = gijmn am tgnk . (532)

This has the consequence that the dislocation demsitglso have non-zero components
of the form aj,, for which HOLLANDER himself could not find the correct
interpretation. In order to calculate the stres$esntethod of the first-order asymmetric

stress function will be employe@][ which is based upon the idea that the equilibrium
conditions are fulfilled identically by the Ansatz:
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Gij = &kim Ok Pim; - (5.33)

In the case of an isotropic medium with vanishing Ramissumber, that will yield the
inhomogeneous wave equation fr

Oéy=— Hay., (5.34)
when ¢ satisfies the auxiliary condition:

Om ¢mik =0.

For a real medium with non-vanishing Poisson numbersolution process seem to
overlap with HOLLANDER'’s process, since it also allmme to determine the elastic
dilatation.

The author would like to thank Prof. E. KRONER, ClaatHor checking the
manuscript and for some critical remarks that allowedvarious still-open questions to
be clarified. | also owe my thanks to Herrn Prof. FEEGER for his interest in the
present paper.

Appendix
In this section, we would like to show that the Grelgadic that is defined by
equation (2.12) can be represented by the derivatives of & &gadton that is identical

to the fundamental integral of a six-dimensional lingatial differential equation. L&
be the determinant of the tensor differential operBothat is defined by (2.12c), and let

D, be a subdeterminant bf such that one has:

Dimn MD,,=D 4 . (A.1)
The Green dyadic can be represented as the derivativecaflar function:

Gij (xr, 1) = DijDU (x 1) (A.2)

Substituting (A.2) in (2.12a) will yield thdb (r, t) satisfies the following sixth-order
linear, inhomogeneous, partial differential equation:

DU (1) =—4773@) (). (A.3)

U (x, t) will be referred to as the fundamental integralie tinear differential equation
DU = 0. KnowingU (z, t) implies knowingG (x, t) and therefore, knowing the particular

integral of the inhomogeneous wave equation (2.8), as wdlhe latter can be
represented in the following way by means of the fundarhemegralU (x, t) :
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1 I I U 4 4
$°(6.) == 2 Cpon ] & (¥, X D}O,U(r ¥, t- 1) d7’dl: (A.4)

The differential equation foU (r, t) assumes an especially simple form for an isotropic

medium. With the help of the representation of Hootesor in equation (2.9), one will
have:

62
Y [ 9
D°= (’UA_'Oﬁj {—()l +2/4)0,0; +| (A + 2,L1)A—p¥}5u } (A.6)

and
9% |

x| (A.7)

2 2
D= (,uA—p%j {()l +21)A-p

D is then the product of differential operators, ofi@vhich describes the propagation of

longitudinal waves, while the other one descrildes pgropagation of transverse waves.
2

Since DijD, as well ad, includes the operatr{ryA—pa—zj , it will suffice to know the
ot
expression:
- 02
U(rt) = [ﬂA—pﬁjU(x,t), (A.8)

instead of the fundamental integtal(x, t) itself. One can derive the representation for
U(z,t):

-— 1 0<r <ct,
pcc(qg+q)
~ 1 ct
ty={ - -1 t t
e pzqq(q+cr)( r j Gisr=ab,
0 CL'[<I‘<00,

with:

1/2 1/2
p p
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