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Differential equations are derived for a continuous distribution of moving dislocations that describe the 
total displacement field and the elastic strain.  These equations are based on the linear theory of elasticity 
and can be solved by the use of Green’s dyadics.  The Lagrange function for a moving dislocation is given 
such that the equation of motion for the propagation of plastic distortions can be obtained by an application 
of the principle of least action.  All relations for the dislocation dynamics take on a formal similarity to the 
known relations of the statics of dislocations under a four-dimensional formulation of the problem. 

 
 

1. Introduction  
 

 The properties of dislocations at rest have been examined very thoroughly up to now.  
Different procedures [1, 2, 3, 4] have been given in the linear, as well as in the nonlinear, 
approximation for the theory of elasticity for ascertaining the internal stress state that is 
generated by a dislocation.  By comparison, moving dislocations have not been examined 
much at all up to now, although they have great significance in various physical 
phenomena. 
 The first investigations of moving dislocations go back to FRENKEL and 
KONTOROVA [5, 6, 7, 8, 9], who could show with a one-dimensional dislocation model 
that the equation of motion could be brought into a form that was similar to that of a 
mass-point in the special theory of relativity.  As in special relativity, a limiting velocity 
appears in that theory – viz., the speed of propagation of sound waves – and the 
measurements in the direction of motion will experience a Lorentz contraction.  FRANK 
[10] also found the same behavior in the example of a moving straight screw dislocation 
in three dimensions.  A complication arises for a moving edge dislocation due to the fact 
that the strain tensor includes a compression part, as well as a shear part.  According to 
Eshelby [11], both parts experience a Lorentz contraction, in such a way that in one case 
the speed of sound for compression waves and in the other case, that of shear waves, 
takes on the role of limiting velocity.  On the basis of the analogy between elastic and 
electromagnetic fields, as well as between dislocation density and electrical current 
density, HOLLÄNDER [12, 13, 14] developed a theory of moving dislocations that was 
four-dimensionally covariant, like Maxwell’s theory.  For the case of an isotropic 
“vacuum” – i.e., for an elastic medium with vanishing Poisson transverse contraction 
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number (1) – the propagation of the strain that is generated by a moving distortion is 
given by just the speed of the shear wave.  For that reason, as with electromagnetic 
waves, it is possible calculate the stress tensor from a potential that is itself determined by 
an inhomogeneous wave equation.  The inhomogeneous part of that wave equation is the 
dislocation density tensor, which is a generalization of the dislocation density and 
velocity of the plastic distortion tensor.  The procedure that HOLLÄNDER developed is 
applicable to a real crystal only with restrictions, since it offers no prescription for how 
the dilatation of the strain state should be calculated.  It is therefore suitable to only a 
state of strain that is free of compression. 
 KOSEVICH [15, 16] also derived fundamental equations for moving dislocations.  In 
order to solve them, HOLLÄNDER introduced potential functions that are determined by 
a system of inhomogeneous wave equations.  That system is linked with additional 
auxiliary conditions that are imposed upon the potential functions.  The foregoing is 
problematic, since the plastic deformations are subject to additional (restricting) 
requirements. 
 MURA [17, 18] solved the problem of moving dislocations in a completely different 
way.  The elastic medium with dislocations is converted into a multiply-connected region 
in which the compatibility conditions are fulfilled everywhere by means of suitable cuts.  
The total displacements that are produced by dislocations can be expressed in terms of 
outer surface integrals of the plastic displacements over the separating surfaces by 
applying one of Green’s methods.  One can go from the expression that is obtained in that 
way to the case of continuously-distributed, moving dislocations most conveniently by 
passing to the limit. 
 Although no objections can be made against the procedure that MURA developed, in 
what follows, we would like to give a new path to solution that has the advantage that it 
is relatively simple and closely linked with the static treatment.  In addition, we would 
like to derive a four-dimensional formulation of the problem that deviates from the one 
that HOLLÄNDER gave at several places.  Our procedure allows one to ascertain the 
internal stress state that is produced by the moving dislocation by means of stress 
functions, and for that reason, it can also be employed in the nonlinear treatment. 
 
 

2. The total displacement field of a moving dislocation 
 

 The essential difference between the statics and dynamics of dislocations consists of 
the fact that in the case of moving dislocations, an inertial force of magnitude: 
 

− G
isρ ɺɺ  

 
will appear in every volume element, in which G

is  denotes the i th component of the total 

displacement field.  ρ is the instantaneous density of the elastic medium.  If no other 
volume forces are otherwise present then a volume element will be in equilibrium when 
one has (2): 

                                                
 (1) In this case, Hooke’s law will assume the simple form σij = 2 G εij , where G is the shear modulus. 
 (2) Indices that occur twice are summed over.  We restrict ourselves to Cartesian coordinate systems.  
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∂k σik − G
isρ ɺɺ = 0.    (2.1) 

 
The divergence of the stress tensor σ is referred to the instantaneous state of strain in that 
equation.  div σ and also the density ρ can be referred to the initial state in the vicinity of 
the linear theory of elasticity, to which we would like to confine ourselves in what 
follows. 
 The stress tensor σ can be expressed in terms of the elastic strain tensor ε by way of 
Hooke’s law: 

σik = Cijkl εkl ≡ Cijkl βkl .    (2.2) 
 
Cijkl is the Hooke tensor of elastic moduli, and it has the symmetry properties: 
 

Cijkl = Cjikl = Cijlk = Cklij .   (2.3) 
 
Due to one of these symmetry conditions, the asymmetric elastic distortion tensor β can 
be written formally in place of the elastic strain tensor ε in equation (2.2).  One has: 
 

εij = 1
2 (βij + βji).    (2.4) 

The equilibrium conditions then read: 
Cijkl ∂k βkl − G

isρ ɺɺ = 0 .    (2.5) 

 
According to KRÖNER [2], the plastic distortion β P and the elastic distortion β can be 
combined into the total distortion β G of a volume element: 
 

β G = β + β P.     (2.6) 
 
In this, one must observe that the total distortion can be derived from the total 
displacement field: 

G
ijβ  = G

i js∂ ,     (2.7) 

 
but that such a relation cannot be given for the plastic and elastic distortions individually.  
For that reason, it is also not possible to give an analytical expression for the elastic 
displacement field that is valid in all of space.  In order to arrive at a differential equation 
for the total displacement field, we add the expression G

iklm k lmC β∂  to both sides of (2.5).  

That will lead to the following system of partial differential equations: 
 

G G
iklm l k m iC s sρ∂ ∂ − ɺɺ  = G

iklm k lmC β∂  = G
iklm k lmC ε∂ ,  (2.8) 

 
which allows one to calculate the total displacements when the plastic distortion is given.  
Due to the symmetry of the Hooke tensor the plastic strain ε P can be written in place of 
the plastic distortion, which will show that the displacement field also depends upon only 
ε P in the dynamics of dislocations. 
 In an isotropic medium, in which the Hooke tensor is given by: 
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Cijkl = λ δij δkl + µ (δik δjl + δil δjk),    (2.9) 
  
with the Lamé constants λ and µ, (2.8) will assume the form of an inhomogeneous Lamé 
equation: 

( )G G G
i i l l is s sµ λ µ ρ∆ + + ∂ ∂ − ɺɺ = 2P P

i ll l liλ β µ ε∂ + ∂ .  (2.10) 

 
KOSEVICH [15] also found a similar relationship, but in which the inhomogeneous term 
depended upon only the dislocation density.  That difference comes about as a result of 
additional assumptions that KOSEVICH made about the temporal evolution of the plastic 
distortion. 
 A particular integral of (2.8) can be given by using the Green dyadic Gij (x, t): 

 

( , )G
is tx = − 1

( , ) ( , )
4

P
ij jklm k lmG t t C t d dtε τ

π
′ ′ ′ ′ ′ ′ ′− − ∂∫ x x x .  (2.11) 

 
The Green dyadic satisfies the partial differential equation: 
 

Dim (∂) Gmj (x, t) = − 4π δ (x) δ (t) δij   (2.12a) 

and the causality condition: 
Gij (x, t) = 0  when t < 0.   (2.12b) 

 
Dim is a tensorial differential operator with the components: 
 

Dim = Dmi = Ciklm ∂k ∂l − 
2

2im t
δ ρ ∂

∂
.   (2.12c) 

 
The Green dyadic Gij (x, t) is the i th component of the displacement at the location x at 

time t that is produced by the j th component of a temporal impulse of the force density 
with the strength – 4π at the location r′ = 0 at the time t′ = 0.  Representations of the 

Green dyadic for an isotropic medium are given in the literature [19, 20].  In the 
Appendix, it will be shown that the Green dyadic Gij can also be expressed by 
differentiating the fundamental integral of a sixth-order differential equation.  In an 
infinitely-extended medium, the particular integral (2.11) describes the total displacement 
that is produced by the plastic strains.  In a finite region, solutions of the homogeneous 
(2.8) must be added to (2.11) in order to fulfill the outer surface conditions. 
 If can be easily proved with the help of a partial integration that the expression that is 
derived for the total displacement field in an infinitely-extended region is identical with 
the one that MURA [17, 18] gave.  Our consideration has the advantage of greater 
simplicity and brevity. 
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3. The elastic strain of a moving dislocation 
 

 In many problems that involve internal stresses, one is only interested in the strains 
and stresses that are produced by the dislocations, but not in the total displacements.  The 
calculation of the strains from the total displacement represents a detour when one can 
give a determining equation for the strains themselves.  To that end, we partially-
differentiate equation (2.8) with respect to position coordinates.  That will yield the 
following differential equation for the total distortion: 
 

G
jm imD β  = P

jklm i k lmC β∂ ∂ .    (3.1) 

 
On the left-hand side of this, we replace the total distortion β G with the elastic distortion 
β and the plastic distortion β P using equation (2.6), and move all expressions in the 
plastic distortion to the right-hand side: 
 

Djm βim = ( )P P P
ij jklm i k lm l k imCρ β β β+ ∂ ∂ − ∂ ∂ɺɺ  = P

ij jklm inl k nmCρ β ε α+ ∂ɺɺ . (3.2) 

 
αij is the dislocation density tensor that KRÖNER [2] defined by: 
 

αij = − P
ikl k ljε β∂  = ikl k ljε β∂ .    (3.3) 

 
We can also give a particular integral for the elastic distortion in this case by means of 
the Green dyadic Gij : 
 

βij (r, t) = − 1
( , )

4
P

in nklm ipl k pm njC G t t d dtρ β ε α τ
π

 ′ ′ ′ ′ ′+ ∂ − − ∫ ɺɺ x x .  (3.4) 

 
In the special case of the isotropic medium, the differential equation for the elastic 
displacements will assume an especially simple form.  In order to do that, we introduce 
the representation of the Hooke tensor from (2.9) into (3.2).  The following differential 
equation will imply the elastic distortion: 
 

µ ∆βij + (λ + µ) ∂i ∂j βkk − ijρ βɺɺ  = P
ijρ βɺɺ  + µ [Hij – δij Hkk – εijk ∂m αkm] (3.5) 

 
when one employs the identities: 
 

∂j ∂k βik − ∂j ∂i βkk = εijk ∂j αkl ,   (3.6) 
 

εikl ∂l αkj − εikl ∂j αkl = Hij – δij Hkk .   (3.7) 
 
Hij is the (asymmetric) incompatibility tensor that KRÖNER [2] defined by: 
 

Hij = εikl ∂l αjk = − εikl εjmn ∂l ∂m P
nkβ  = − (J n k β P)ij .   (3.8) 
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If one decomposes the elastic distortion into a symmetric and an antisymmetric tensor by 
way of: 

βij = εij + ωij      (3.9) 
then equation (3.5) will split into: 
 

µ ∆εij + (λ + µ) ∂i ∂j εkk − ijρ εɺɺ  = P
ijρ εɺɺ  + µ (ηij – δij ηkk) (3.10) 

and 
µ ∆ωk  − kρ ωɺɺ = ( )1

2
P

k k mm m kmρ ω µ α α+ ∂ − ∂ɺɺ ,   (3.11) 

 
in which η is the symmetric part of H, and one has set: 
 

ω ij = ε ijk ω k and P
ijω = P

ijk kε ω .    (3.12) 

 
 We will get the following system of partial differential equations for the stresses σ if 
we replace ε with σ using Hooke’s law: 
 

∆σij + 
2 2

2 3 2 3i j kk ij kk kk ij

µ λ ρ λ ρσ σ σ σ δ
µ λ µ µ λ µ

 + ∂ ∂ − − ∆ − + +  
ɺɺ ɺɺ  

= 2 P
ijρ εɺɺ  + 2µ [ηij – δij ηkk].    (3.13a) 

 
The trace of the stress tensor is determined by the differential equation: 
 

∆σI − 
2 I

ρ σ
λ µ+

ɺɺ  = 
2 3

[ 2 ]
2

P
I I

µ λ ρ ε µη
µ λ

+ −
+

ɺɺ .   (3.13b) 

 
 In the static case, equations (3.13a) and (3.13b) go to the generalized Beltrami 
equations that KRÖNER [2] gave.  The differential equations for the stresses and strains 
in the dislocation-free state have been known for a long time [21, 22]. 
 
 

4. The Lagrangian function of a moving dislocation 
 
 In many cases, the differential equations for the stresses and strains cannot be solved 
in closed form, so one turns to approximation procedures.  Variational techniques are 
most useful for dynamical problems, for which the time integral of the Lagrangian 
function L – viz., the so-called action functional – must be extremized: 
 

δW = L dtδ ∫  = 0.     (4.1) 

 
In an elastic medium, L can be computed as the volume integral of the Lagrangian 
density L : 

L = dτ∫L ,     (4.2a) 
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in which L is defined by: 

L = 1 1
2 2

G G
i i ij ijs sρ σ ε− ⋅ɺ ɺ .    (4.2b) 

 
One can easily show that equation (2.1) is the Euler-Lagrange differential equation of the 
extremal problem that belongs to equations (4.1) and (4.2) for a given plastic distortion. 
One will come to another expression for the Lagrangian density by the use of the identity: 
 

G G
i is s⋅ɺ ɺ  = ( )G G G G

i i i is s s s
t

∂ ⋅ −
∂
ɺ ɺ ɺɺ ɺ .    (4.3) 

 
 If we can assume that the mass density ρ is constant (viz., the approximation of the 
linear theory of elasticity) and Gisɺ  are replaced with the stresses in the equilibrium 

condition then we will have: 
 

L = − 1 1
2 2

1
( )

2
G G G

j ij i ij ij i is d d s s d
t

σ τ σ ε τ ρ τ∂∂ − + ⋅
∂∫ ∫ ∫ ɺ .  (4.4) 

 
We can convert the first expression partially into an outer surface integral using Gauss’s 
theorem, when we perform the following conversion: 
 

( ) G
j ij isσ∂  = ( ) ( )G P

j ij i ij ij ijsσ σ ε ε∂ ⋅ − ⋅ + .   (4.5) 

 
The Lagrangian function is essentially composed of the energy of plastic deformation and 
an outer surface integral that describes the work done by external forces: 
 

L = 1 1
2 2

1

2
P G G G

ij ij ij i j i id s dF s s d
t

σ ε τ σ ρ τ∂− + ⋅
∂∫ ∫ ∫ ɺ .   (4.6) 

 
The last term plays no role, since the functions to be varied in the action functional will 
be fixed at the lower and upper limits under variation.  We get another expression for the 
Lagrangian function by appealing to (4.2b) and (4.6): 
 

L = − 1 1 1
2 2 2

1
( 2 )

2
G G P G G G
i i ij ij ij ij i j i is s d d s dF s s d

t
ρ τ ε ε σ τ σ ρ τ∂⋅ + + − + ⋅

∂∫ ∫ ∫ ∫ɺ ɺ ɺ . (4.7) 

 
(4.7) will go to an expression that COLONETTI [23] gave for a body with free outer 
surface (i.e., σij nj = 0 on the outer surface) and for static problems.  As we mentioned 
before, for fixed plastic strains, the differential equations for the total displacement (2.8) 
will be the Euler-Lagrange equations for the variational problem.  The total displacement 
field, the elastic strains, and the action functional are calculated for arbitrary plastic 
distortions.  Under that law, we can choose any solution that extremizes the action.  An 
equation of motion for the evolution of plastic distortion can be obtained by that double 
application of the action principle.  Even in the case of an infinitely-extended medium, in 
which the integrals (2.11) and (3.4) describe the total displacement field and the elastic 
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strains, the Euler-Lagrange equation of the extremal problem will lead to an integral 
equation for the plastic distortion that can be very hard to solve.  For that reason, one 
solves that variational problem with the Ritz procedure, in which the plastic distortion is 
developed into a series of suitably-chosen comparison functions. 
 
 

5. Four-dimensional formulation of the basic equations of dislocation dynamics 
 

5.1 – Fundamentals. 
 

 In this section, our goal is to write the basic equations of the dynamics of dislocations 
that we derived in sections 2 to 4 in four-dimensional form.  As in the special theory of 
relativity, the intrinsic connection between the various physical quantities will become 
visible when it had remained hidden in the three-dimensional formulation. 
 However, an essential difference between this and the special theory of relativity 
should be pointed out: In the theory of elasticity, just like in hydrodynamical problems, 
there is a special distinguished system of reference – namely, the one that is coupled with 
the matter.  Due to that existence of an absolute space, the relativity principle does not 
have to be fulfilled for that class of problems in which all inertial systems follow the 
natural way of things in the same way.  All displacements are initially defined in that 
absolute space.  For that reason, it is not permitted, for example, to derive the 
displacement field of a dislocation that moves rectilinearly with constant speed v from the 
corresponding statics problem by means of a Lorentz transformation with the velocity v.  
The theory of moving dislocations will be further complicated by the fact that several 
speeds of sound are possible in an elastic medium that might take on the role of the 
limiting speed in the Lorentz transformation. 
 The advantage of the four-dimensional notation, which rests upon the introduction of 
the new coordinate: 

x4 = i c t,     (5.1) 
 

in which c is a speed of sound, which we will establish more precisely below, consists of 
the fact that the asymmetry in the basic equation in the time coordinate is removed.  With 
that, we will arrive at (among other things) the fact that the four-dimensional basic 
equations of the dynamics of dislocations are formally the same as the three-dimensional 
equations of the statics of dislocations, such that the same process as in the statics of 
dislocations can possibly be employed to solve the dynamical problem. 
 

 
5.2 – The energy-impulse tensor. 

 
 The definition of the energy-impulse tensor is connected with the equilibrium 
conditions (2.1), which can be brought into the form: 
 

4( )G
ii c sκ ικσ ρ∂ + ∂ − ɺ = 0    (5.2) 
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with the use of (5.1) (3).  We shall now introduce a symmetric four-tensor σσσσ whose 
purely-spatial components σσσσικ are identical with the stress tensor.  If we define the space-
time components by: 

σσσσι 4 = − G
ii cρ sɺ ,    (5.3) 

then (5.2) will go to: 
∂k    σσσσik = 0.     (5.4) 

 
One gets the components σσσσ4ι from the symmetry that is required of σσσσ    .  The purely-
temporal component σσσσ44 will be fixed by the demand that the (four-) divergence of the 
four-tensor σσσσ should vanish: 

div σσσσ = ∂k    σσσσik = 0.    (5.5) 
 
In that way, one will first obtain a relation for 44ɺσσσσ  that can be integrated directly.  If the 

integration constant is established in such a way that σσσσ44 is proportional to the momentary 
mass density ρ (t) – i.e., such that one has: 
 

σσσσ44 = − ρ c2 (1 + G
ιιε ) = − c2 ρ (t),   (5.6) 

 
then the fourth component of (5.5) will express the conservation of mass. That will 
become especially clear when we represent it in integral form: 
 

( ) ( )Gs dF t d
tι ιρ ρ τ∂+

∂∫ ∫ɺ = 0,    (5.7) 

 
in which the first term describes the matter that flows out of the outer surface. 
 In analogy with the theory of relativity, one can formally associate the density ρ of 
the inertial mass with the energy density ρ c2.  Equation (5.7) will then be a conservation 
law for the energy that is equivalent to the rest mass, and the four-tensor σσσσ will have a 
meaning that is similar to that of the energy-impulse tensor in the theory of relativity. 
 
 

5.3 – The four-tensor of distortion 
 
 In order to define the four-tensor of distortion, we must observe that the displacement 
field is defined by only a vector in three-dimensional space, such that the total 
displacement field cannot possess a temporal component of the form 4

Gs .  The four-

tensor of total distortion, which we define in the usual way by the derivative of the total 
displacement field according to: 

G
ijββββ = G

i j∂ s ,     (5.8)  

 

                                                
 (3) In this section, we would like to denote all indices in the vector and tensor components that assume 
only the values 1, 2, 3 by Greek symbols; Latin symbols will assume the values 1, …, 4.  Four-tensors will 
differ from the corresponding three-dimensional quantities by a semi-bold reproduction of them. 
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and for that reason, it can be represented by the following matrix: 
 

ββββG = 
0

0

G

G

ικ

ικ

β
β

 
  
 

.    (5.9) 

 
We decompose the total distortion into an elastic and plastic part in a way that is 
completely analogous to what we do in the statics of dislocations: 
 

ββββ = ββββ + ββββP.     (5.10) 
 
As for the four-tensor of plastic distortion ββββP, we establish only that it should possess the 
components: 

ββββP = 
0

0 0

P
ικβ 

  
 

,    (5.11) 

 
which agrees with the prescription that KRÖNER [2] gave for calculating the plastic 
distortion P

ικββββ .  P
ικββββ  describes the κ th component of the relative plastic displacement of 

the bounding surfaces of a volume element whose surface normals point in the ι th 
direction and which are at a unit distance apart.  Both indices of P

ικββββ  then refer to the 

position space, such that 4
P
κββββ   must be identically zero.  That convention has the 

consequence that the purely-spatial components of the elastic strain tensor can be 
calculated from the elastic displacements, while the components ββββ4κ can be calculated 
from the total displacement field by: 

ββββ4κ = 4
Gsκ∂ .      (5.12) 

 
 The four-tensor εεεε of the elastic strains will be defined as the symmetric part of the 
distortion tensor ββββ.  One easily convinces oneself that on the basis of the aforementioned 
conventions, the purely-spatial components εεεεικ will coincide with the ordinary elastic 
strain tensor εεεεικ and the remaining components will be given by: 
 

εεεε4ι = εεεει 4 = − 
2

G
isi

c t

∂
∂

 = 4

1

2
G
is∂     (5.13) 

and 
εεεε44 = 0.      (5.14) 

 
The Lagrangian density for dynamical problem can be written in the very transparent 
form: 

L = − 1
2 εεεεij    εεεεij     (5.15) 

 
with the use of (5.3) and (5.13).  We can achieve a formal similarity between the 
dynamics of dislocations and the corresponding expressions in the dynamics of 
dislocations by means of the four-dimensional notation.  One can guarantee that the 
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Lagrangian density L is invariant under Lorentz transformations by means of equation 

(5.15). 
 The four-tensors of stress σσσσ and the strain εεεε will be coupled by the generalized Hooke 
law: 

σσσσik = Ciklm εεεεlm ,      (5.16) 
in which: 

2
4 4

2
44

, , , ,

2 ,

.

iklm

klm km l

lm lm

C i k l m

c

c

ικλµ ι κ λ µ
ρ δ δ
ρ δ

= = = = = 
= 
= − 

C

C

C

   (5.17) 

 
Ciklm has the same symmetry properties as Ciklm [cf., (2.3)]. 
 
 

5.4 – The four-tensors of dislocation density and incompatibility. 
 
 We define the following third-rank four-tensor to be the dislocation density αααα : 
 

ααααijk = − εεεεijlm P
l mkβ∂  = − (rot β P)ijk .    (5.18) 

 
εεεεijlm is the completely antisymmetric, four-dimensional unit tensor whose components 
will change sign under an exchange of two indices and will have non-zero components 
that are equal to ± 1; one has εεεε1234 = 1.  It follows directly from equation (5.18) that: 
 

∂i ααααijk = − ∂i σσσσjik = 0.     (5.19) 
 
 Since 4

P
lββββ  = 0, the components ααααij4 will vanish in general.  Since ααααijk is antisymmetric 

in its first two indices, moreover, αααα will have only eighteen non-zero components.  With 
the help of the properties of the four-dimensional εεεε-tensor, it can be shown that the nine 
components of αααα are identical with the ordinary dislocation density.  One has: 
 

αααα4ικ = ειµλ 
P

µ λκβ∂ .      (5.20) 

 
The remaining nine components are: 
 

ααααικl = εεεεικµ4 4
P
lµβ∂ = εικµ 

1 P
lic µβɺ ,    (5.21) 

 
and they essentially describe the temporal change in the plastic distortion tensor.  Along 
with the demand that one must have: 

div α = ι ικα∂ = 0,    (5.22) 

 
equation (5.19) will also include the following statement about the temporal change in the 
dislocation density: 
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t
ικα∂

∂
= − (rot )P

ικβɺ .    (5.23) 

 
 In the statics of dislocations, one will get the incompatibility tensor H when one lets 
the operator rot act upon the dislocation density α on the right and the left.  In a 
completely-analogous way, we next introduce the fourth-rank four-dimensional tensor: 
 

H ijkl = εεεεijkl n klm∂ αααα = − εεεεijmn εεεεklpq
P

n p qm∂ ∂ ββββ ,  (5.24) 

 
which is antisymmetric in the first and last two index-pairs.  We define the four-
dimensional incompatibility density ηηηη to be the second-rank tensor that arises by 
contracting the second and fourth indices of H and symmetrizing: 
 

ηηηηij = Sym H ikjk = − εεεεimnk εεεεjpqk
P

n p qm∂ ∂ ββββ  = − (Ink εεεεP)ij . (5.25) 

 
In that way, the product of the two εεεε-tensors can also be represented by the determinant 
(4): 

εεεεimnk εεεεjpqk = 
ij ip iq

mj mp mq

nj np nq

δ δ δ
δ δ δ
δ δ δ

.    (5.26) 

 
 We get the following representation for the components of ηηηη : 
 

ηηηηικ = ηικ + 
22

2 2 2 2

1 1
PP

c t c t
µµικ

ικ

εε δ
∂∂ −

∂ ∂
,    (5.27a) 

 

ηηηηι 4 = ( )1 P P

ic κ ικ ι κκε ε∂ − ∂ɺ ɺ ,  ηηηη44 = ηκκ .   (5.27b) 

 
 η denotes the ordinary incompatibility tensor that was introduced in (3.8) and (3.12).  
The purely-spatial incompatibility tensor η and the effect of inertial forces are united in 
the four-dimensional incompatibility tensor ηηηη . 
 As a comparison with (3.10) [(2.10), resp.] will show, ηηηηικ essentially describes the 
inhomogeneous part of the differential equations for the stresses σικ , while ηηηηι 4 is the 
inhomogeneous part for σι 4 = − i ρ c ⋅⋅⋅⋅ Gsι  in an isotropic medium when we set c = cT = 

1/2
µ
ρ

 
 
 

. 

 It is easy to see from the representation (5.25) that the relation: 

                                                
 (4) Some further relationships for multiply-contracted products of two εεεε-tensors are: 
 

εεεεijkl εεεεmnkl = 2 (δim δjn – δin δjm), εεεεijkl εεεεmjkl = 3! δim ,  εεεεijkl εεεεijkl  = 4! 
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div Ink  = 0     (5.28) 
 
is also true for the four-dimensional operator Ink .  For that reason, we can fulfill the 
generalized equilibrium conditions (5.3) in such a way that we represent σσσσ as the 
incompatibility of a second-rank symmetric tensor χχχχ : 
 

σσσσ = Ink  χχχχ    ,     (5.29a) 
or in components: 
 

σij = ( ) ( )ij j k ki i k kj i j kk ij l k kl kkχ χ χ χ δ χ χ− ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ −□ □ .  (5.29b) 

 
Since the incompatibility of the total strains vanishes, due to (5.15), we will have: 
 

Ink  εεεε = − Ink  εεεεP = ηηηη .     (5.30) 
 
Precisely as in the statics of dislocations [2], we will get a determining equation for the 
stress function σσσσ when we replace εεεε with the stresses using Hooke’s law and substitute 
(5.29) for it: 

Ink C−1 (Ink  χχχχ) = ηηηη,     (5.31) 
 
in which C−1 is the inverse Hooke tensor.  χχχχ is not determined completely, but it is 
possible to impose certain auxiliary conditions on the stress function χχχχ.  One might hope 
that those auxiliary conditions can be chosen in such a way that we will get a simple 
differential equation for χχχχ. 
 
 

5.5 – Comparison with the investigations of HOLLÄNDER [12, 13, 14]. 
 

 Up to now, only HOLLÄNDER had given a four-dimensional formulation for the 
basic equations of the dynamics of dislocations, and his formulation deviated from our 
own, to some extent.  Both representations coincide completely in the generalized 
equilibrium condition (5.3) and approximately in the definition of the four-dimensional 
stress tensor and strain tensor.  The latter differ only in the purely-temporal σσσσ44 and εεεε44 .  
For HOLLÄNDER,    σσσσ44  depends (erroneously) upon on the elastic dilatation.  
HOLLÄNDER did not define the dislocation density αααα′ in terms of the asymmetric 
distortion tensor, but the elastic strain tensor, using the equation: 
 

ijkα ′  = εijmn ∂m εnk .     (5.32) 

 
This has the consequence that the dislocation density will also have non-zero components 
of the form 4ijα ′ , for which HOLLÄNDER himself could not find the correct 

interpretation.  In order to calculate the stresses, the method of the first-order asymmetric 
stress function will be employed [2], which is based upon the idea that the equilibrium 
conditions are fulfilled identically by the Ansatz: 
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σσσσij = εiklm ∂k ϕlmj .    (5.33) 
 
In the case of an isotropic medium with vanishing Poisson number, that will yield the 
inhomogeneous wave equation for ϕ : 
 

ijkϕ□ = − ijkµ α ′ ,    (5.34) 

when ϕ satisfies the auxiliary condition: 
 

∂m ϕmik = 0. 
 
 For a real medium with non-vanishing Poisson number, our solution process seem to 
overlap with HOLLÄNDER’s process, since it also allow one to determine the elastic 
dilatation. 
 
 The author would like to thank Prof. E. KRÖNER, Clausthal, for checking the 
manuscript and for some critical remarks that allowed the various still-open questions to 
be clarified.  I also owe my thanks to Herrn Prof. A. SEEGER for his interest in the 
present paper. 
 
 

Appendix 
 

 In this section, we would like to show that the Green dyadic that is defined by 
equation (2.12) can be represented by the derivatives of a scalar function that is identical 
to the fundamental integral of a six-dimensional linear partial differential equation.  Let D 
be the determinant of the tensor differential operator Dij that is defined by (2.12c), and let 

ijD ∗  be a subdeterminant of D such that one has: 

 
Dim ⋅⋅⋅⋅ mjD ∗ = D δij .     (A.1) 

 
The Green dyadic can be represented as the derivative of a scalar function: 
 

Gij (x, t) = ijD ∗ U (x, t).     (A.2) 

 
Substituting (A.2) in (2.12a) will yield that U (x, t) satisfies the following sixth-order 

linear, inhomogeneous, partial differential equation: 
 

D U (x, t) = − 4π δ (x) δ (t).    (A.3) 

 
U (x, t) will be referred to as the fundamental integral of the linear differential equation 

DU = 0.  Knowing U (x, t) implies knowing G (x, t) and therefore, knowing the particular 

integral of the inhomogeneous wave equation (2.8), as well.  The latter can be 
represented in the following way by means of the fundamental integral U (x, t) : 
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( , )G
is tx  = − 

1
( , ){ ( , )}

4
P

jklm lm ij kC t D U t tε
π

∗′ ′ ′ ′∂ − −∫ x x x dτ′ dt′.  (A.4) 

 
The differential equation for U (x, t) assumes an especially simple form for an isotropic 

medium.  With the help of the representation of Hooke’s tensor in equation (2.9), one will 
have: 

Dij = (λ + µ) ∂i ∂j + 
2

2 ijt
µ ρ δ ∂∆ − ∂ 

,      (A.5) 

 

ijD ∗ = 
22 2

2 2
( 2 ) ( 2 )i j ijt t

µ ρ λ µ λ µ ρ δ
    ∂ ∂ ∆ − − + ∂ ∂ + + ∆ −    ∂ ∂     

,  (A.6) 

and 

D = 
22 2

2 2
( 2 )

t t
µ ρ λ µ ρ   ∂ ∂∆ − + ∆ −   ∂ ∂   

.     (A.7) 

 
D is then the product of differential operators, one of which describes the propagation of 
longitudinal waves, while the other one describes the propagation of transverse waves.  

Since ijD ∗ , as well as D, includes the operator 
2

2t
µ ρ ∂∆ − ∂ 

, it will suffice to know the 

expression: 

( , )U tɶ x  = 
2

2 ( , )U t
t

µ ρ ∂∆ − ∂ 
x ,   (A.8) 

 
instead of the fundamental integral U (x, t) itself.  One can derive the representation for 

( , )U tɶ x : 

( , )U tɶ x  = 

2

2

1
0 ,

( )

1
1 ,

( )

0 ,

T
L T L T

L
T L

L T L T

L

r c t
c c c c

c t
c t r c t

c c c c r

c t r

ρ

ρ

 − < < +

  − − < <  +  
 < < ∞



, 

with: 

cT = 
1/2

µ
ρ

 
 
 

,  cL = 
1/ 2

2λ µ
ρ

 +
 
 

. 
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