"Beweis des Jordanschen Satzes für den n-dimensional Raum," Math. Ann. 71 (1912), 314-319.

Proof of Jordan's theorem for an *n*-dimensional space

By

L. E. J. BROUWER in Amsterdam

Translated by D. H. Delphenich

The theorem to be proved reads as follows:

A Jordan manifold in n-dimensional space R_n – i.e., the one-to-one and continuous image of a closed (n-1)-dimensional manifold – determines two regions and is identical with the boundary of each of these regions.

We shall denote the Jordan manifold by J and (analogous to what was previously done in the plane ^{*}) divide the theorem into three parts:

- 1. The boundary of a region that is determined by J is identical with J.
- 2. J determines at most two regions.
- 3. J determines at least two regions.

As a result, the first part is included in the results of § 6 of my previous paper, while the third part can be deduced by a method that Lebesgue sketched out ^{**}). The stillremaining second part shall be disposed of in what follows.

We shall briefly call a finite set of closed, continuous curves a curve system.

Now, let J' be a Jordan surface in R_3 and let κ be a sphere described around one of its points such that one of part of J' is contained in its exterior and only two-sided sub-regions of J' are included in its interior.

Bull. des Sc. Math. (2), 31, yields a second proof of the invariance of the *n*-dimensional region.

For those readers whose interest pertains to three-dimensional spaces, I will carry out a very simple proof of the third part of Jordan's theorem that is only valid for n = 3.

Let j_1 and j_2 be two closed, continuous curves (in the sense of Schoenflies) in R_3 , so we can regard the entire gamut of j_1 (j_2 , resp.) as the single-valued and continuous image β_1 (β_2 , resp.) of a circle in an infinitude of ways. For a certain choice of β_1 and β_2 , the distance between two corresponding points of j_1 and j_2 possesses a maximum M; the lower limit of M that emerges upon varying β_1 and β_2 shall be called the parametric distance from j_1 to j_2 .

When we construct a finite sequence of closed, continuous curves in which j is the first one and an isolated point is the last element, in such a way that the maximum of the parametric distance between two successive elements possesses the value ε , then we will say that j is contracted with the degree of discontinuity ε

§ 1.

Let *E* be the infinite region that is determined by *J*, let *I* be a finite region that is determined by *J*, and let *P* be a point of *I*. We choose an arbitrary element *J'* from *J*, denote the point set that is defined by the remaining elements by *J''*, the periphery (Umfang) of *J'* by *j*, the representative simplex (cf., Math. Ann. **71**, pp. 100) of *J'* by *S* and the periphery of *S* by *s*, choose a positive sense of the indicatrix in *J'* and correspondingly (cf., *loc. cit.*, pp 108) in *j*, connect *P* and *J'' - j* inside of *I* by a path w', and connect J' - j and J'' - j inside of *E* by a path w_e .

We denote the set of those points of J' that possess a distance $\geq \sqrt{n} / 2^{\tau-1}$ from J" by J'_{τ} .

We decompose the R_n into homothetic, *n*-dimensional cubes q_0 with the edge length 1, each of the q_0 into 2^n homothetic sub-cubes q_1 with edge length 1/2, each of the q_1 into 2^n homothetic sub-cubes q_2 with edge length 1/4, etc.

We let μ_{τ} denote the point sets that are defined by the q_{τ} that contain at least one point of J'_{τ} in their interior or their periphery, and the set of the points that belong to μ_{τ} , $\mu_{\tau+1}$, $\mu_{\tau+2}$, ... by π_{τ} ; we choose τ to be sufficiently large that w' will *not* meet π_{τ} . We denote the region that is determined by $J + \pi$ and include P by I_{π} and the part of the boundary of I_{π} that is not included in J" by g.

We let E_{τ} denote those of the regions that J'' + g determine in which E is included and draw a path w'' in E_{τ} from E to g. The endpoint R of this path lies in a certain two-sided (n-1)-dimensional pseudo-manifold (cf., my previous paper, pp. 305) γ that belongs to the boundary of E_{τ} and has planar elements and a boundary that is contained in j^*). Thus, two (n-2)-dimensional element sides of γ that coincide in R_n will also be regarded

By a suitable inversion of R_3 , κ goes to a plane k and J' goes to a Jordan surface J. Let \mathfrak{G} be a two-sided region in J that is cut out by k, let γ be the boundary of \mathfrak{G} , let \mathfrak{S} be polygonal system that approximates γ to a distance ε_1 , and let S be a curve system that lies in k and possesses the parametric distance ε_2 from \mathfrak{S} . When we let ε_1 , along with ε_2 , converge to zero there exists a region G in k that will run through S a non-vanishing number of times c for a sufficiently small ε_1 .

In the contrary case, we can, in fact, contract the curve system *S* in *k* to a distance $\leq \varepsilon_3$ from γ with the degree of discontinuity ε_4 , and on the basis of that, contract the curve system \mathfrak{S} in *J* to a distance $\leq \varepsilon_5$ from γ with the degree of discontinuity ε_6 , where ε_3 , ε_4 , ε_5 , and ε_6 , along with ε_1 , converge to zero. However, this contradicts the definition of \mathfrak{S} .

An altitude *l* that is erected at a point of *G* on *k* will run through *S*, as well as \mathfrak{S} , *c* times, such that the difference between the numbers of positive and negative crossings of *l* with an arbitrary sufficiently precise simplicial approximation to \mathfrak{G} is equal to $\pm c$. Thus, we can determine a sub-segment of *l* that does not enter $J - \mathfrak{G}$ and is bounded by endpoints Q_1 and Q_2 that do not lie in *J*, for which the difference between the numbers of positive and negative crossings *is not equal to zero* for an arbitrary, sufficiently precise, simplicial approximation to \mathfrak{G} . However, an arbitrary segment that connects Q_1 to Q_2 and an arbitrary, sufficiently precise, simplicial approximation to *J* must necessarily meet, such that Q_1 and Q_2 will be separated by *J*.

*) We understand the boundary of γ to mean the limit points of γ that are not contained in γ . Whether or not such limit points exist will still remain undecided in these paragraphs.

as identical for γ when and only when the two corresponding elements subtend an angle that belongs to E_{τ} .

We may assume that the point *R* does not belong to an (n - 2)-dimensional element of γ .

We choose a positive sense of the indicatrix in g, draw a path w'' in I_{τ} from P to R that does not meet w', and denote the segment that is defined by w' and w'' by w_{ir} .

The side of γ that belongs to E_{τ} shall be called its *left* side, while the other one shall be called its *right* side. In turn, the path w_{ir} in *I* connects the right side of *g* with J'' - j, while the path w''' possesses an end segment w_{il} that connects the left side of *g* of J' - j in *I*.

By means of two path segments v' and v'' that lie in an arbitrary vicinity of J'(J'', resp.) and do not meet j, we can extend the paths w_{ir} , w_{il} , and w_e to a γ only at a single crossing point, namely, the points of a polygon w that meets R.

§ 2.

We understand a *p*-dimensional *net* (*net fragment*, resp.) in R_n to mean the simplicial image of a *p*-dimensional pseudo-manifold (a *p*-dimensional fragment, resp.; cf., my previous paper, pp. 306).

We understand the *basic simplexes*, *basic points*, and *basic sides* of a net (net fragment, resp.) to mean the images of the basic simplexes, basic points, and basic sides of the corresponding pseudo-manifold (corresponding fragment, resp.).

If a polygon \mathfrak{P} in R_n is provided with a positive sense of traversal and a closed, twosided, (n-1)-dimensional net \mathfrak{N} is provided with a positive indicatrix in such a way that no corner point and no sub-segment of \mathfrak{P} lies in \mathfrak{N} and no side of \mathfrak{P} meets an (n-2)dimensional basic side of \mathfrak{N} then the numbers of positive and negative crossings of \mathfrak{P} with \mathfrak{N} are equal to each other. *)

For the case in which \mathfrak{N} is one-sided, one can only say that the absolute value of the crossings of \mathfrak{P} and \mathfrak{N} is even.

We now think of a closed, two-sided (n - 2)-dimensional net \Re in R_n that is provided with a positive indicatrix and a polygon \Re that is provided with a positive sense of traversal and does not meet \Re .

Let \mathfrak{G} be a two-sided, (n - 1)-dimensional net fragment that is provided with a positive indicatrix and which possesses \mathfrak{R} as its only boundary and possesses the positive

^{*)} Let *f* be the end point of the crossing polygon sides for a positive sense of traversal of \mathfrak{P} , and let *i* be a positive indicatrix of the crossed basic simplexes of \mathfrak{N} . In the event that *if* represents a positive indicatrix for the R_n , the cross is called positive. In order to realize the property stated in the text, one needs only to let \mathfrak{P} go to infinity in such a way that the paths of the points of \mathfrak{P} meet no (n - 3)-dimensional basic side, and especially such that the paths of the corner points of \mathfrak{P} meet no (n - 2)-dimensional basic sides of \mathfrak{N} .

4

indicatrix of \mathfrak{R} as the positive boundary indicatrix ^{**}), while no corner point and no subsegment of \mathfrak{P} lies in \mathfrak{C} and no side of \mathfrak{P} meets an (n-2)-dimensional basic side of \mathfrak{C} . If we then let p denote the number of positive crossings of \mathfrak{P} and \mathfrak{C} and let p' denote the number of negative crossings then for a given \mathfrak{P} and \mathfrak{R} the number c = p - p' is independent of the choice of \mathfrak{C} .

The number *c* thus represents a relationship between \mathfrak{P} and \mathfrak{R} . We call it the *degree* of \mathfrak{R} relative to \mathfrak{P} .

§ 3.

Those elements of γ that possess a distance $\geq 1/2^{\nu}$ from *j* define an (n - 1)-dimensional fragment that we denote by γ_{ν} and whose limit η_{ν} converges uniformly to *j* for ν increasing without bound.

Along with J, we take a fundamental sequence $z_1, z_2, ...$ of simplicial decompositions such that as v increases without bound the width of the basic simplex associated with z_v falls below any limit, as long as any z_{v+1} is a subdivision of z_v . Any z_v determines an (n - 1)-dimensional net fragment $J'_v(J''_v, \text{resp.})$ in R_n as the simplicial image of J'(J'', resp.), and a closed, two-sided (n - 2)-dimensional net j_v as the simplicial image of j. We assign a basic point of z_v to any element corner point of η_v when it lies in j and possesses the smallest possible distance from that corner point, and correspondingly construct a simplicial map of η_v out of representative simplexes S of J' that we project from the midpoint of S onto s.

Then, along with η_{ν} , we take a simplicial decomposition ζ_{ν} such that under the aforementioned projection any basic simplex of η_{ν} will be mapped inside of a single basic simplex of *s* that belongs to z_{ν} . The corner points of an arbitrary basic simplex of ζ_{ν} are then assigned to those points of j_{ν} that are contained in a single basic simplex of j_{ν} .

By a suitable simplicial decomposition of the limit elements of γ_{ν} , we extend ζ_{ν} to a simplicial decomposition of γ_{ν} , and when we establish all of the basic points of this decomposition that do not belong to η_{ν} , but replace each basic point that belongs to η_{ν} with the point of j_{ν} that corresponds to it, a two-sided, (n - 1)-dimensional net fragment \mathcal{F}_{ν} will be determined as the simplicial image of γ_{ν} whose limit λ_{ν} is composed of the simplicial image under η_{ν} of a finite number of closed, two-sided (n - 2)-dimensional nets and is contained in j_{ν} .

§4.

For a sufficiently large ν , the polygon w has no point in common with \mathcal{F}_{ν} , except R, so the total degree of λ_{ν} relative to w equals ± 1 .

^{**}) Concerning the relationship between "positive indicatrix" and "positive boundary indicatrix," cf., Math. Ann. **71**, pp. 108.

We denote the degree of the map of λ_{ν} onto j_{ν} (cf., Math. Ann. **71**, pp. 105) by *c* and the degree of j_{ν} relative to *w* by *c'*.

Let \mathfrak{C}_1 be a two-sided, (n-1)-dimensional net fragment that is endowed with a positive indicatrix that possesses j_v as its limit and the negative indicatrix of j_v as its positive boundary indicatrix, while no corner point and no sub-segment of w lies in \mathfrak{C}_1 and no side of w meets an (n-2)-dimensional basic side of \mathfrak{C}_1 .

Let \mathfrak{C}_2 , \mathfrak{C}_3 , ..., \mathfrak{C}_c be further net fragments of the same kind, so the numbers of positive and negative crossings of *w* with $\mathcal{F}_v + \mathfrak{C}_1 + \mathfrak{C}_2 + \mathfrak{C}_3 + \ldots + \mathfrak{C}_c$ are equal to each other.

The total degree of λ_v relative to *w* will thus be obtained when we multiply the degree of j_v relative to *w* by *c*; i.e., one has the following formula:

$$cc' = \pm 1.$$

However, this formula can only be satisfied when c, as well as c', is equal to ± 1 .

§ 5.

We now assume the contrary of the theorem to be proved, that outside of I yet a second finite region I' exists that is determined by J. We then construct γ' and \mathcal{F}'_{ν} in I' in analogy to the way that we constructed γ and \mathcal{F}_{ν} in I, from which, the limit λ'_{ν} of \mathcal{F}'_{ν} , just like the limit λ_{ν} of \mathcal{F}_{ν} , covers the net j_{ν} with the degree ± 1 . We may further think of the path segments ν' and ν'' as being constructed in such a way that they meet γ' as many times as γ , such that γ' has no point in common with w.

Now, on the one hand, any polygon, no corner point and no sub-segment of which lies in $\mathcal{F}_{\nu} + \mathcal{F}'_{\nu}$, and no side of which meets an (n-2)-dimensional basic side of $\mathcal{F}_{\nu} + \mathcal{F}'_{\nu}$, must be associated with an even number of crossing points, but on the other hand, we can choose ν to be so large that the polygon w has not point in common with \mathcal{F}'_{ν} , so it crosses $\mathcal{F}_{\nu} + \mathcal{F}'_{\nu}$ at only a single point, namely, the point R.

From this contradiction, we infer that J can determine only a single finite region I.

Q. E. D.