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The theorem to be proved reads as follows:

A Jordan manifold in n-dimensional spacg-Ri.e., the one-to-one and continuous
image of a close@h-1)-dimensional manifold — determines two regions and is identical
with the boundary of each of these regions.

We shall depote the Jordan manifold bwnd (analogous to what was previously
done in the plang divide the theorem into three parts:

1. The boundary of a region that is determined by J is identical with J
2. J determines at most two regions.
3. J determines at least two regions.

As a result, the first part is included in the resaft§ 6 of my previo*gs paper, while
the third part can be deduced by a method that Lebesgue sketche). The still-
remaining second part shall be disposed of in what follows

) Math. Ann. 69, pp. 169-175.

) C. R. 27 March 1911. The result that was obtained tib@gether with the argument of Baire in
Bull. des Sc. Math. (2), 31, yields a second proof oftleariance of the-dimensional region.

For those readers whose interest pertains to threaadiomal spaces, | will carry out a very simple proof
of the third part of Jordan’s theorem that is only vadidnf= 3.

Let j; andj, be two closed, continuous curves (in the sense ofeBdlies) inR;, so we can regard the
entire gamut of; (j,, resp.) as the single-valued and continuous im&gé%, resp.) of a circle in an
infinitude of ways. For a certain choice@fandf, the distance between two corresponding poinjg of
andj, possesses a maximuvh the lower limit ofM that emerges upon varyi§ andf, shall be called
the parametric distance from{oj,.

When we construct a finite sequence of closed, continaonges in whichj is the first one and an
isolated point is the last element, in such a way tlmntaximum of the parametric distance between two
successive elements possesses the vgliben we will say thaj is contracted with the degree of
discontinuitye.

We shall briefly call a finite set of closed, contius curves aurve system

Now, letJ' be a Jordan surface Ry and letk be a sphere described around one of its points sacth th
one of part off' is contained in its exterior and only two-sided sub-regasr¥s are included in its interior.
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§1.

Let E be the infinite region that is determined Bylet | be a finite region that is
determined by, and letP be a point of. We choose an arbitrary elemehtfrom J,
denote the point set that is defined by the remaining exlesnby J”, the periphery
(Umfang) ofJ by |, the representative simplex (cf., Math. A4, pp. 100) of by S
and the periphery o by s, choose a positive sense of the indicatrixJinand
correspondingly (cf.loc. cit, pp 108) inj, connectP andJ" - inside ofl by a pathw,
and connecf’ — j andJ” - j inside ofE by a pathw .

We denote the set of those pointsothat possess a distaree/n /2" fromJ" by
J.
We decompose thg, into homotheticn-dimensional cubego with the edge length
1, each of thegp into 2' homothetic sub-cubeg with edge length 1/2, each of thginto

2" homothetic sub-cubeg with edge length 1/4, etc.

We lety; denote the point sets that are defined byythibat contain at least one point

of J. in their interior or their periphery, and the settad points that belong ta;, t/n1 ,

Ur2, ... DY 71 ; we choose to be sufficiently large that/ will not meetr/z,. We denote
the region that is determined by /7and includeP by | ,and the part of the boundary of
| that is not included id" by g.

We letE; denote those of the regions tlat+ g determine in whiclk is included and
draw a pathw” in E; fromE to g. The endpoinR of this path lies in a certain two-sided
(n — 1)-dimensional pseudo-manifold (cf., my previous paper, pp. B0@t belongs to
the boundary oE; and has planar elements and a boundary that isicedtin | ).
Thus, two ( — 2)-dimensional element sidesahat coincide irR, will also be regarded

By a suitable inversion d&;, « goes to a plank andJ' goes to a Jordan surfage Let® be a two-sided
region inJ that is cut out by, let ybe the boundary @, let S be polygonal system that approximagee
a distanceg, and letS be a curve system that lies krand possesses the parametric distandeom S.
When we letg, along withs,, converge to zero there exists a regidm k that will run throughS a non-
vanishing number of timesfor a sufficiently small; .

In the contrary case, we can, in fact, contractctiree systensin k to a distanc& & from ywith the
degree of discontinuity,, and on the basis of that, contract the curve sy&ien J to a distance & from

ywith the degree of discontinuitg, wheres; , &, &, andg, along withg, , converge to zero. However,
this contradicts the definition &5.

An altitudel that is erected at a point &f on k will run throughS as well as5, c times, such that the
difference between the numbers of positive and negatinssings df with an arbitrary sufficiently precise
simplicial approximation t@ is equal tax c. Thus, we can determine a sub-segmerittbat does not
enterJ — & and is bounded by endpoir@s andQ. that do not lie irJ, for which the difference between the
numbers of positive and negative crossigsot equal to zerdor an arbitrary, sufficiently precise,
simplicial approximation ta. However, an arbitrary segment that conn€gitdo Q, and an arbitrary,

sufficiently precise, simplicial approximation fomust necessarily meesuch that @ and Q will be
separated by.J

) We understand the boundaryyab mean the limit points gfthat are not contained |a Whether
or not such limit points exist will still remain undecidadhese paragraphs.
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as identical forywhen and only when the two corresponding elements subteadgle
that belongs té; .

We may assume that the polititloesnot belong to anr{— 2)-dimensional element of
V.

We choose a positive sense of the indicatrry, idraw a patlw” in 1, from P to R that
does not meeat/, and denote the segment that is defined/bgndw’ by wi .

The side ofythat belongs td&; shall be called it¢eft side, while the other one shall
be called itgight side. In turn, the patW, in | connects the right side gfwith J* —j,
while the pathw"’ possesses an end segm&nthat connects the left side @bfJ —j in
l.

By means of two path segmemsandV’ that lie in an arbitrary vicinity od' (J",
resp.) and do not megtwe can extend the pathg, wy, andw. to a yonly at a single
crossing point, namely, the points of a polygothat meet$.

§ 2.

We understand p-dimensionahet (net fragmentresp.) inR, to mean the simplicial
image of ap-dimensional pseudo-manifold (@dimensional fragment, resp.; cf., my
previous paper, pp. 306).

We understand théasic simplexesbasic points and basic sidesof a net (net
fragment, resp.) to mean the images of the basic skemldasic points, and basic sides
of the corresponding pseudo-manifold (corresponding fragmesy,).

If a polygon3 in R, is provided with a positive sense of traversal and sedlotwo-

sided, 6 — 1)-dimensional nelt is provided with a positive indicatrix in such a way that
no corner point and no sub-segmengibfies in 91 and no side off meets anr(— 2)-
dimensional basic side ot then the numbers of positive and negative crossingg of
with 91 are equal to each othey.

For the case in whicht is one-sided, one can only say that the absolute véalie o
crossings of3 and9t is even.

We now think of a closed, two-sidex{ 2)-dimensional néR in R, that is provided
with a positive indicatrix and a polygdl that is provided with a positive sense of
traversal and does not megt

Let & be a two-sided,n(— 1)-dimensional net fragment that is provided with a
positive indicatrix and which posses$@ss its only boundary and possesses the positive

") Letf be the end point of the crossing polygon sides for diymsense of traversal g, and leti be
a positive indicatrix of the crossed basic simplexe®tof In the event thaif represents a positive

indicatrix for theR,, the cross is called positive. In order to reallze property stated in the text, one
needs only to lefd go to infinity in such a way that the paths of the powoft§d meet no f — 3)-

dimensional basic side, and especially such that the pétttee corner points o3 meet no If — 2)-
dimensional basic sides .
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indicatrix of R as the positive boundary indicatriy, while no corner point and no sub-
segment off3 lies in€ and no side o3 meets anr(— 2)-dimensional basic side &f If
we then letp denote the number of positive crossingsjoénd¢ and letp’ denote the
number of negative crossings then for a gi¥gnand R the numberc = p — p' is
independent of the choice &f

The numbec thus represents a relationship betwgeandR. We call it thedegree
of R relative to3.

§ 3.

Those elements of that possess a distanee 1/2” from | define an if — 1)-
dimensional fragment that we denote jpyand whose limit, converges uniformly tp
for vincreasing without bound.

Along with J, we take a fundamental sequegrgez, ... of simplicial decompositions
such that a increases without bound the width of the basic simpksociated witlz,
falls below any limit, as long as amy:; is a subdivision ot, . Anyz, determines am(—
1)-dimensional net fragmert, (J), resp.) inR, as the simplicial image &f (J", resp.),
and a closed, two-sided £ 2)-dimensional ngt, as the simplicial image ¢f We assign
a basic point of, to any element corner point gf, when it lies inj and possesses the
smallest possible distance from that corner point, amdespondingly construct a
simplicial map ofr, out of representative simplex&of J that we project from the
midpoint ofS ontos.

Then, along with,, we take a simplicial decompositiofy such that under the
aforementioned projection any basic simplex/mfwill be mapped inside of a single
basic simplex o€ that belongs t@, . The corner points of an arbitrary basic simpléx o
{v are then assigned to those pointg, ¢lhat are contained in a single basic simplej, of

By a suitable simplicial decomposition of the limigreents ofy,, we extend{, to a
simplicial decomposition of4, , and when we establish all of the basic points of this
decomposition that do not belong 49, but replace each basic point that belongg.to
with the point ofj, that corresponds to it, a two-sided,« 1)-dimensional net fragment
Fv will be determined as the simplicial image jpfwhose limitA, is composed of the

simplicial image undery, of a finite number of closed, two-sided € 2)-dimensional
nets and is contained jin.

§ 4.

For a sufficiently large/, the polygorw has no point in common with,, exceptRr,
so the total degree dji, relative tow equalst 1.

") Concerning the relationship between “positive indigaiand “positive boundary indicatrix,” cf.,
Math. Ann.71, pp. 108.
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We denote the degree of the maplpbntoj, (cf., Math. Ann.71, pp. 105) by and
the degree gf, relative tow by c'.
Let ¢; be a two-sided,n(— 1)-dimensional net fragment that is endowed with a

positive indicatrix that possessgsas its limit and the negative indicatrix pfas its
positive boundary indicatrix, while no corner point andsob-segment ofv lies in ¢;

and no side ofv meets anr(— 2)-dimensional basic side &f .

Let ¢, , €3, ..., & be further net fragments of the same kind, so the nramife
positive and negative crossingswiwvith 7, + ¢€; + €, + €3 + ... + &, are equal to each
other.

The total degree of, relative tow will thus be obtained when we multiply the degree
of j, relative tow by c; i.e., one has the following formula:

cc ==x1

However, this formula can only be satisfied when c, as well &seqjual tat 1.

§ 5.

We now assume the contrary of the theorem to beeptothat outside off yet a
second finite regiofi exists that is determined By We then construgt and 7 inl’ in

analogy to the way that we construcyeghdF, in I, from which, the limitA, of £/, just

like the limit A, of F,, covers the ngt, with the degree- 1. We may further think of the

path segmentg andVv’ as being constructed in such a way that they rjie@$ many
times asy; such that/ has no point in common with.
Now, on the one hand, any polygon, no corner point andub-segment of which

lies inF, +F,, and no side of which meets anH 2)-dimensional basic side &%, +F, ,
must be associated with an even number of crossing pbutten the other hand, we can
choosev to be so large that the polygewn has not point in common witlf,, so it
crossesF, +F, at only a single point, namely, the pofit

From this contradiction, we infer thaican determine only a single finite region |

Q. E.D.




