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Introduction 
 
 Among the most noteworthy advances in the research of the last century into 
thermodynamics, one must indeed include the discovery that this discipline is free of any 
basic hypothesis that cannot be experimentally verified.  The standpoint that most of the 
authors in the last fifty years have taken since the great discoveries of R. Mayer, the 
measurements of Joule, and the ground-breaking work of Clausius and W. Thomson, is 
perhaps the following one: 
 There is a physical quantity, which is not identical with the mechanical quantities 
(mass, force, pressure, etc.), whose changes can be determined by calorimetric 
measurements, and which one calls heat.  Heat has the property of being comparable to 
ordinary mechanical work under certain circumstances, but beyond that, when two bodies 
with differing temperatures come into contact it always flows from the hotter one to the 
colder one, and never the converse. 
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 Now, although no other assumptions on the nature of heat can be made, one can 
construct a theory that accounts for all of the results of experience.  The understanding of 
this theory will later be made easier by the introduction of a new notion, whose 
importance in all of physics had gradually emerged, that of energy.  This physical 
quantity has the property of depending only upon the instantaneous state of the various 
substances considered, which is not true of heat. 
 The first main theorem of heat theory amounts to a definition of energy and states that 
this quantity can be determined in any concrete case with the help of mechanical and 
calorimetric measurements. 
 However, various authors have already remarked that this point of view contains an 
over-determinacy: *)  One can derive the entire theory without assuming the existence of 
a physical quantity that deviates from ordinary mechanical quantities, namely, heat. 
 The purpose of the present work is to show this as clearly as possible in all of its 
details.  Naturally, one can develop a physical theory in very different ways.  I have 
chosen an arrangement of the conclusions that differs from the classical proofs as little as 
possible and likewise exhibits the parallelism that must necessarily exist between the 
main results of the theory and the picture that emerges from the measurements that are 
actually carried out. 
 The essential feature of the presentation that is given here consists in the fact that the 
notions of “adiabatic” and “adiabatically isolated” do not lead back to that of energy, as 
they usually are, but are defined through physical properties.  One can then express the 
axiom of the first law in such a way that it corresponds to the experimental set-up of 
Joule precisely when one regards the calorimeter that is used in it as an adiabatically 
isolated system. 
 For the axiom of the second law I have chosen a definition that is very applicable to 
that of Planck, but the latter must be modified in a certain way, in order to take into 
account the fact that heat and quantity of heat are not defined anywhere in our manner of 
representation. 
 I have thoroughly examined the conditions under which an adiabatic change of state 
is reversible, or furthermore, a system of sufficient conditions under which this is the 
case.  I then came to the definition of certain thermodynamic systems that one can call 
“simple,” because they can be treated precisely like the simplest systems that are known 
to thermodynamics.  This terminology deviates from the one that Bryan introduced in his 
aforementioned Encyklopädie article.** ) 
 Finally, in order to be able to treat systems with arbitrarily many degrees of freedom 
from the outset, instead of the Carnot cycle that is almost always used, but is intuitive and 
easy to control only for systems with two degrees of freedom, one must employ a 
theorem from the theory of Pfaffian differential equations, for which a simple proof is 
given in the fourth section. 
 At the conclusion, I would like to draw attention to the fact that the notion of 
temperature is not included in the coordinates from the outset, but first appears as a result 
of certain equations of condition, which are presented on pp. 16.  The grounds for which 

                                                
 * ) Encyklopädie der mathem. Wiss. v. 3, Bryan, “Thermodynamik,” pp. 81.  J. Perrin, “Le contenu 
essentiel des principes de la thermodynamique,”  Bull. de la soc. franc. de philos. 4 (1906), pp. 81. 
 **  ) loc. cit., pp. 80. 
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this conception of temperature is to be preferred are briefly hinted at in the final section; 
they originate in certain situations that give rise to radiative phenomena. 
 
 

§ 1. − Definitions. 
 

 In the following investigation, we will deal with the description of the thermal 
properties of systems that exist in various chemical substances. 
 However, the general principles from which this description can be attained come to 
light in their full generality when we, in order to make things more concise, specialize the 
problem and make the same assumptions as – say – Gibbs did in the first part of his 
ground-breaking treatise “On the equilibrium of heterogeneous substances.”  *) 
 At the end of this work, we will suggest how one can also treat further questions with 
these same principles. 
 With the aforementioned authors, we would also like to postulate ** ) that when the 
system S is found in equilibrium a finite number α of fluid or gaseous media are present – 
the “phases” 

ϕ1, ϕ2, …, ϕα 
 
of the system – and that external forces, such as gravity, as well as electromagnetism and 
capillarity, are to be neglected. *** ) 
 The system S that we consider will now be defined by associating it with certain 
“symbols,” the totality of which will completely characterize the system. 
 To that end, we consider any equilibrium point of S and direct our attention to its 
phases: 

ϕ1, ϕ2, …, ϕα  
 
in sequence.  We associate each of these phases ϕi with two types of symbols: First, 
certain features by which the chemical composition of ϕi will be established qualitatively, 
such that the various substances and compounds that appear in ϕi will be enumerated.  
Second, numbers that one obtains by measurements.  These numbers represent the 
following quantities: 
 
 a) The total volume Vi of the phase ϕi . 
 
 b) The pressure pi that the phase in question exerts on the bodies that it contacts. 
 
 c) The set: 

m1i , m2i , …, mβ i  
 

of different substances and compounds that exist in any unit volume of ϕi . 

                                                
 * ) J. W. Gibbs: Scientific Papers, vol. I, pp. 55. 
 **  ) Loc. cit., pp. 62. 
 ***  )  The consequences of the latter two assumptions first appear in the second section. 
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 If the first phase exists as, e.g., a solution of salt in water then for our theory a 
particular equilibrium point of this phase would be characterized completely by the 
numbers V1, p1, and a symbolic equation such as: 
 
(1)     ϕ1 = m11H2O + m21 NaCl. 
 
 All of the phases ϕi will now indeed be uniquely characterized through symbolic 
equations such as (1) and the totality of numbers: 
 

(2)     Vi , pi , mχ i     
1,2, ,

1,2, ,

i α
χ β

=
=

⋯

⋯

 

 
although, by comparison, the entire system S will not, by any means.  To that end, we 
must consider the properties of S that come about from the contact between the different 
phases or the walls of the vessels that contain them, resp. 
 Therefore, we assume that the mass of these walls is so small that our later results 
will not be restricted by the fact that we have not included the walls themselves in the 
phases ϕi .  For a general theory in which fixed isotropic and crystalline bodies can 
appear in the phases, these restrictions will disappear. 
 The physical properties of the walls of the vessels that contain one or more phases are 
now of a very diverse nature. 
 Such a vessel Γ can have the property that, e.g., the phases that are found in its 
interior remain in equilibrium and the numbers (2) that represent these phases preserve 
their values when one alters the bodies that are found in the exterior of the vessel with 
only the single restricting condition that Γ shall remain at rest and preserve its original 
form; a “Thermos bottle” is a tangible example of such a vessel.  I would, however, like 
to expressly emphasize that the wall of Γ does not need to be rigid, and one may indeed 
think in terms of a completely deformable vessel Γ that possesses the aforementioned 
properties.  The changes in the bodies that are found external to Γ must then be restricted 
in such a way that the pressures that they exert on Γ do not deform it. 
 A vessel with these properties imposed on it shall be called adiabatic, and the phases 
that it contains are adiabatically isolated. 
 If two phases ϕ1 and ϕ2 meet along a rigid adiabatic wall then, by analogy with the 
foregoing, no equation of condition will exist between V1, p1, mχ1 and V2, p2 , mχ2  due to 
this contact; two arbitrary equilibrium points for the phases of S that are found on both 
sides of the wall can, in other words, coexist. 
 For other rigid bodies, however, it can happen that the equilibrium can exist only 
when one or more relations of the form: 
 
(3)     F (V1, p1, mχ1 ; V2, p2, mχ 2) = 0 
 
are fulfilled.  One then says that the wall is “permeable.”  A wall can be either permeable 
only “to heat” or also for some of the chemical substances that contact it, as well, or it 
exhibits complicated behavior.  What each of these various expressions means must be 
defined precisely each time one experimentally establishes the equations of conditions in 
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the form (3) that describe the thermodynamic properties of the wall in question.  For a 
non-rigid wall, one must add the condition that the pressure on both of its sides must be 
the same. 
 There likewise exist necessary conditions of the form (3) for equilibrium when no 
material wall is found between the phases ϕ1 and ϕ2 and these phases come into direct 
contact. 
 The exploration of all such conditions, to the extent that they appear in nature, defines 
one of the main problems of thermodynamic measurements, and we will further focus our 
attention on the most important of them. 
 For the time being, however, it suffices for us to know that when one (in order to 
simplify the notation) denotes the sequence of numbers (2) collectively by: 
 
(4)     c0 , c1 , c2 , …, cn+λ 
 
certainly mutually independent equations: 
 

(5)     

1 0 1

2 0 1

0 1

( , , , ) 0,

( , , , ) 0,

( , , , ) 0,

n

n

n

F c c c

F c c c

F c c c

λ

λ

λ λ

+

+

+

=
=

=

⋯

⋯

⋯

⋯

 

 
between these numbers must necessarily be satisfied in order for equilibrium to exist. 
 We now make the assumption that we can experimentally determine all equations of 
condition of this type; i.e., that for each combination of numbers (4) that satisfy equations 
(5) an equilibrium point can be established that corresponds to these numbers.   
Experience suggests that this assumption will be satisfied in each concrete case. 
 
 Definition I:  Two systems S and S′ shall be called “equivalent” when there exists a 
one-to-one correspondence between their phases, in the sense of equation (1), and 
moreover when the corresponding coefficients ci , ic′ must be subject to the same or 

mathematically equivalent conditions (5) in order for equilibrium to be possible. 
 
 In the sequel, equivalent systems shall not be distinguished.  The “symbols” that 
define our system S are thus, on the one hand, symbolic equations like (1), and, on the 
other, the system of equations (5). 
 We now add to system (5) (n + 1) equations of the form: 
 

(6)     

0 0 1 0

1 0 1 1

0 1

( , , , ) ,

( , , , ) ,

( , , , ) .

n

n

n n n

G c c c x

G c c c x

G c c c x

λ

λ

λ

+

+

+

=
=

=

⋯

⋯

⋯

⋯
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The functions Gi shall be chosen in such a way that when one varies the ci in them 
between the bounds imposed in practice, and likewise considers the conditions (5) then a 
one-to-one correspondence exists between the possible systems of values for: 
 

c0 , c1 , …, cn+λ 
and the corresponding one for: 

x0 , x1 , …, xn . 
 
Therefore, it is necessary (but not sufficient) that the functional determinant: 
 

0 1 1 2

0 1

( , , , ; , , , )

( , , , )
n

n

G G G F F F

c c c
λ

λ+

∂
∂
⋯ ⋯

⋯

 

 
for all of the values of ci that come into consideration be different from zero. *)  Thus, 
one can solve the system of equations (5), (6) for the ci here, and consider the ci to be 
functions: 
(7)     ci = ci (x0, x1 , …, xn), 
 
that satisfy the system of equations identically when they are substituted. 
 Through a one-to-one correspondence between the various possible equilibrium 
points of S and the system of values of the sequence of numbers: 
 
(8)     x0, x1 , …, xn , 
 
we have achieved the means to compare these equilibrium points with each other and to 
represent them by “general coordinates” that are analogous to the ones that are used in 
mechanics. 
 Any system of numbers (8) corresponds, as one says, to a “state” of the system S, and 
for the numbers xi themselves we would like to introduce the name of “state 
coordinates.” 
 In order to use the language of geometry in the following, it is convenient to regard 
the state coordinates as Cartesian coordinates in (n+1)-dimensional space; each state of S 
then corresponds to one point of this multidimensional space, and the totality of the 
equilibrium points that come into consideration is then mapped onto a certain region G of 
this space. 
 One then has the following theorem that summarizes the above: 
 
 Definition II: In order to characterize the equilibrium points of a system, the state 
coordinates (8) come into consideration exclusively, and two equivalent systems for 
which these quantities agree shall be identical objects from the thermodynamic 
standpoint. 

                                                
 * ) The non-vanishing of the functional determinant has only the one consequence, namely, that there 
is a one-to-one correspondence between c and x “in the small;” i.e., it exists in the neighborhood of any 
individual point   However, this does not state that the neighborhood of x is not multiply covered. 
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 We now consider “changes of state” of the systems, i.e., transitions of one 
equilibrium point into another.  Changes of state will be characterized by certain symbols 
precisely as the equilibrium points are. 
 The coordinates of the initial state and final state are to be regarded in this way.  
Furthermore, another quantity comes into consideration that is associated with each 
change of state, and which one calls the external work; this quantity, which we denote by 
A, shall originate in the systems that are considered here exclusively from the 
deformations of the external form of S. *)  They shall be identical with the mechanical 
work that any force delivers when it is exerted by any bodies that lie on the exterior of  S 
(but contact the system) during the change of state considered.  The physical meaning of 
these forces is clear, and one can also measure A at any time by means of certain 
mechanical devices, such as one employs in technology for testing steam and gas motors. 
 Finally, however, we associate the change of state with a special feature.  Namely, 
when the system A is adiabatically isolated during the entire time interval of a change of 
state one calls that change of state itself adiabatic; the adiabatic changes of state shall 
define a particular class. 
 We thus arrive at the following definition: 
 
 Definition III: Each change of state will be characterized by the coordinates of the 
initial state and the final state, the external force that is applied to them, and the given of 
whether they are adiabatic or not. 
 

§ 2. −−−− Axioms. 
 
 Certain axioms are valid for the notions that were described in the foregoing sections, 
i.e., generalizations of the facts of experience that will be observed under certain 
particularly simple circumstances.  Thermodynamics knows two mutually independent 
axioms of this type: 
 The first one defines the foundations of the so-called “first law” of heat theory, and is 
nothing but an expression for the general energy principle for the system considered by 
us. 
 We would like to give it the following statement: 
 
Any phase ϕi of a system S is, in equilibrium, associated with a function εi of the 
quantities (2):  

Vi , pi , mχ i , 
 
which is proportional to the total volume of this phase and is called the internal energy of 
this phase. 
 The sum: 

ε = ε1 + ε2 + … + εα , 
 
when taken over the totality of the phases, is called the internal energy of the system. 

                                                
 * ) This follows from the fact that we neglect the distant forces. 
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 Under any adiabatic change of state, the external work done A by the change in 
energy is equal to zero; hence, in symbols, when one denotes the initial and final energy 
by e and ε : 
 
(9)      ε − ε + A = 0. 
 
 The formulation of the first law that was given just now includes the assumptions that 
were made at the beginning of this work, that neither distant nor capillary forces shall be 
considered.  Namely, had, e.g., capillary forces been considered then one would have to 
say that the sum over the various volume energies of the phases no longer represents the 
total energy ε of S, and that one must add certain terms to this sum that arise from the 
separating surface between the phases.  Moreover, if distant forces between the phases 
were noteworthy then new terms would likewise enter in that arise from the interaction 
between the phases, not from one phase alone, and would be dependent upon several of 
them. 
 The second law that now comes into question has a completely different nature: 
Namely, one has found that under all adiabatic changes of state that start from any given 
initial state certain final states are not attainable and that such “unattainable” final states 
can be found in any neighborhood of the initial state. 
 However, since physical measurements cannot be absolutely precise this fact of 
experience includes more than the mathematical content of the aforementioned law, and 
we must demand that when a point is excluded, the same shall also be true of a small 
region around this point whose size depends upon the precision of the measurement.  
However, in order for us to give this precision no weight it is convenient to give the 
axiom in question a somewhat more general form, and indeed in the following way: 
 
 Axiom II: In any arbitrary neighborhood of an arbitrarily given initial point there is 
a state that cannot be arbitrarily approximated by adiabatic changes of state. 
 
 

§ 3. −−−−  Simple systems. 
 

 The problem of the further examination, with the help of the two main axioms, now 
consists in explaining the possibility of the experimental determination of the internal 
energy of each of the physical systems examined, and likewise finding out the general 
properties of the energy function ε. 
 We will see that these problems are relatively easy to solve for certain special 
systems, which we would like to call “simple systems.”  Now consider a given phase ϕ1, 
whose internal energy one would like to describe as comprising a component of one such 
simple system, and if one knows, from prior examination, the internal energy of the 
remaining phases then one has all of the data that one needs; from axiom I, one then has 
the equation: 

ε1 = ε − ε2 – ε3 − … − εα . 
 

The problem of constructing the “simple” system that corresponds to a given phase in 
each case that occurs in practice is one of the most important ones, but also one of the 
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hardest, of thermodynamic measurement; the physical chemists call it “making a 
reversible process.”  For our general investigation, however, this problem itself does not 
enter into the considerations; it suffices for us to know that it is to be dealt with in 
general. 
 The properties that characterize “simple systems” are of a diverse nature. 
 First, all of the state coordinates of S except for one shall depend upon only the 
external form of the system.  We would like to call these coordinates that establish the 
external form deformation coordinates; upon consideration of eq. (5), they must include 
only the quantities V1 , V2 , …, Vα . 
 This is found to be the case, for example, when the system exists in a single phase in 
which all of the state quantities except for the pressure p and the total volume V are 
constant, or also when S exists in two such phases that are separated by a rigid wall that is 
permeable “only for heat.”  Then in this case the external form of S depends upon two 
quantities, namely, the total volumes V1 and V2 of its two components, and the system has 
two deformation coordinates, whereas between the four quantities V1, p1, V2, p2 that come 
into consideration here, one relation: 
 

F (V1, p1, V2, p2) = 0 
 
must exist due to the permeability of the wall (cf. § 6), such that S ultimately possesses 
only three state coordinates. 
 From this first property of simple systems it follows that when one knows the initial 
point of an adiabatic change of state, from the final form of the system and the external 
work done during the change of state, the final state of the simple system S can be 
calculated with the help of equation (9): 
 
(9)      ε − ε + A = 0 
 
(assuming that the energy ε is also known as a function of the state coordinates, and, as 
we likewise will see, is still not determined from the form of the system). 
 A second assumption that shall be valid for simple systems is that the external work 
that is done during an adiabatic change of state shall not be uniquely determined in terms 
of the initial and final states alone.  On the contrary, adiabatic changes of state shall be 
possible that lead from a given initial state to the same prescribed final state and which 
correspond to different amounts of work done.  When, e.g., a gas is found in an adiabatic 
cylinder that is closed off by a moving piston then the work that is done by the piston 
under a prescribed expansion of the gas varies with the velocity by which one withdraws 
the piston. 
 This assumption has the consequence, when one considers equation (9), that the 
energy ε, when regarded as a function of the coordinates xi , includes that coordinate that 
does not depend upon the external form of S.  Let x0 be this coordinate, and, by contrast, 
let x1, x2, ., …, xn be the coordinates of the deformation of the system. 
 We would now like to consider the various values of A that are possible when the 
system goes from a prescribed initial state to a prescribed final state.  One can interpret 
the totality of all these values as a point set on a line.  As a third property of simple 
systems, we would like to assume that in each possible case this point set is always 
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connected.  In other words, it shall fill out a single interval that usually can be extended 
to infinity in both directions. 
 From this last property, it follows, with the help of equation (9), that the possible 
values for x0 under the same circumstances also define a connected point set, at least 
when the domain of variation of the state coordinates is restricted to a certain 
neighborhood of the initial point. 
 Leaving from a given initial point, one can obviously actually arrive at any possible 
final form under the influence of particular external forces.  However, one can do more: 
Namely, the change of form of the system S that takes place during an adiabatic change 
of state is a prescribed function of time.  In other words: one can prescribe n functions 
 
(10)     x1 (t), x2 (t), …, xn (t) 
 
and demand that the change of state that goes through them is of a sort that the timelike 
variation of the coordinates x1, x2, …, xn will be represented by the sequence (10).  This 
new description of a change of state, under which only the variation of x0 is left out of 
consideration, is much more comprehensive than the one that we considered earlier; we 
would like to leave open the question of how an adiabatic change of state can be found 
that makes the magnitude of the corresponding external work A uniquely determined by 
the initial state and the functions (10) alone.  On the contrary, when the velocity with 
which the system is deformed becomes “infinitely slow,” or, more precisely, when the 
derivatives: 
  1 2( ), ( ), , ( )nx t x t x t′ ′ ′⋯  

 
converge uniformly to null, the work A shall go to a definite value in the limit.  We would 
like to call a change of state that takes place so slowly that the difference between the 
applied external work and this limiting value falls beneath the observed limit a quasi-
static change of state. 
 If, under a quasi-static change of state, the external work is known as a function of 
time then one can, with the help of the equation: 
 

ε { x0, x1 (t), x2 (t), …, xn (t)} – ε0 + A(t) = 0, 
 
in which ε0 means the initial value of the energy, then one can also regard the remaining 
coordinate x0 as also being a definite function of t.  A quasi-static, adiabatic change of 
state can thus be interpreted as a sequence of equilibrium points, and each quasi-static, 
adiabatic change of state corresponds to a certain curve in the space of xi . 
 Finally, we would like to make one last assumption: Under any quasi-static change of 
state one shall be able to measure the external work A as if the forces that bring about this 
work were the same as the ones that are necessary to maintain equilibrium when, in the 
foregoing, one regards the change of state as a sequence of equilibrium points.  These 
latter forces are, however, functions of only the states. 
 Therefore, the expression for A must necessarily have the form: 
 

(11)     A (t) =
0

t

t
DA∫ , 
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in which DA represents a Pfaffian expression: 
 
(12)    DA = p1 dx1 + p2 dx2 + … + pn dxn , 
 
and the p1, …, pn mean functions of the x0, x1, …, xn . 
 The functions pi can be determined experimentally when, for each state of S, one 
measures the forces that must act on the system from the outside in order for equilibrium 
to exist.  As long one is dealing with quasi-static adiabatic changes of state, one can now 
give equation (9) of the first law the form: 
 

(13)     
1

0

[ ]
t

t
d DAε +∫ = 0, 

 
and since this relation must be valid for each t the conclusion follows that only curves in 
the (n+1)-dimensional space of the xi for which the Pfaffian equation: 
 
(14)     dε + DA = 0 
 
is satisfied can represent a quasi-static, adiabatic change of state. 
 Conversely, any curve in the (n+1)-dimensional space of the xi that satisfies equation 
(14) can be regarded as a quasi-static, adiabatic change of state in our simple system. 
 In fact, let such a curve segment be given in parametric representation through the 
equations: 

(15)    0 0 1 1( ), ( ), , ( ),

0 1.
n nx x x x x xτ τ τ

τ
= = =

 ≤ ≤

⋯

 

If one now sets: 
τ = λ t, 

 
in which t means time and λ, a parameter, then one can introduce adiabatic changes of 
state that satisfy the equations: 
 

x1 = x1 (λ t), x2 = x2 (λ t), …, xn = xn (λ t), 
 
for each prescribed value of λ.  For a sufficiently small λ, a change of state of this sort is 
now quasi-static and must ultimately satisfy equation (14).  By integrating this equation, 
however, one finds that: 

x0 = x1 (λ t), 
which proves our assertion. 
 Had we now substituted: 

τ = 1 – λt 
 
in equation (15), then for increasing t and sufficiently small λ, precisely the same curve 
would have been traversed, but in the opposite sense. 
 Quasi-static, adiabatic changes of state of a simple system are “reversible.” 
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 In the usual representation of the theory, one introduces “reversible” changes of state 
as something that is given intuitively; however, when one looks closer, the properties that 
one associates with reversible processes are precisely the ones that we based our 
definition of simple systems upon.  We summarize this as follows: 
 
 Definition:  A “simple” system with the (n+1) state coordinates must satisfy the 
following conditions: 
 
 1. n of its coordinates – e.g., x1, x2, …, xn − are deformation coordinates. 
 
 2. The external work A is not uniquely determined by the initial state and final state 
of S under adiabatic changes of state.  The totality of all these possible values for A under 
these assumptions defines a connected set of numbers. 
 
 3. Under “quasi-static” adiabatic changes of state the external work is equal to an 
integral of a definite Pfaffian expression of the form: 
 

DA = p1 dx1 + p2 dx2 + … + pn dxn . 
 
 Ordinarily, one assumes that the first assumption on the number of deformation 
coordinates entails the other two.  The examples that we gave on page 8 would then be 
simple systems.  This assumption, which we will always make from now on, is 
permissible for the substances that one examines in general, and especially for gases and 
fluids; after learning the consequences that we shall now deduce, it then agrees quite well 
with the results of measurement. 
 On the other hand, it is quite conceivable, and also physically conceivable, that 
substances can be present in nature that one can never regard as the components of 
simple systems.  This would be the case, e.g., when the internal friction of the substance 
in question, which is generally a function of the deformation velocity, does not converge 
to zero under quasi-static changes of state.  The forces that produce the external work A 
would then no longer be comparable to the equilibrium forces; the external force A itself 
could not be represented with the help of a Pfaffian expression such as (12), and the 
quasi-static changes of state would ultimately not be reversible.  Our theory cannot be 
carried over to such systems with no further assumptions, which must likewise be the 
case in classical thermodynamics. 
 The application of the axioms of the two laws to quasi-static, adiabatic changes of 
state in simple systems will now allow us to normalize the state coordinates of these 
systems in a characteristic way; for this, however, we need a mathematical theorem on 
Pfaffian equations, which we would now like to derive. 
 
 

§ 4. − Lemma from the theory of Pfaffian equations. 
 

 If a Pfaffian equation: 
 
(16)   dx0 + X1 dx1 + X2 dx2 + … + Xn dxn = 0 
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is given, in which the Xi are finite, continuous, differentiable functions of the xi , and one 
knows that in any neighborhood of an arbitrary point P of the space of xi there is a point 
that one cannot reach along a curve that satisfies this equation then the expression (16) 
must necessarily possess a multiplier that makes it into a complete differential. 
 
 Let: 

a0 , a1 , …, an 
 
be the coordinates of P.  There are then, by assumption, infinitely many points Pi that 
have the point P for an accumulation point and possess the property that no single curve 
exists that satisfies the differential equation (16) that includes both P and the Pi . 
 However, since the coefficient of dx0 does not vanish, one can always find curves Ci 
that satisfy equation (16), include Pi , and lie in the two-dimensional plane that connects 
Pi with the line G: 

x0 = t, xk = ak     (k = 1, 2, …, n), 

in the event that Pi does not itself already lie on this line.  Let Qi be the point of 
intersection of Ci with G; by their construction, the points Qi must converge to P for 
increasing i.  The points Qi cannot be reached by curves that start at P and satisfy 
equation (16) either, since one would then also reach Pi by the addition of the curve Ci , 
contrary to the assumption.  From this, it follows that in any interval on the line G that 
includes P there must be points that cannot be reached by starting from P. 
 One now considers a line G1, which is parallel to G, but otherwise arbitrary, and an 
arbitrary two-dimensional cylinder that connects G1 to G.  Let M be the point where any 
curve that satisfies equation (16), lies on this cylinder, and includes P, intersects the line 
G1 .  Under an arbitrary variation of the cylinder the point M must remain fixed; in the 
opposite case, any curve of the differential equation (16) that lies on the varied cylinder 
that goes through M can include an arbitrary point in the neighborhood of P on the line G.  
In this way, we can thus reach certain points Qi along curves of the differential equation 
(16) that go from P to M, which was excluded. 
 If one now continuously varies the position of the lines G1 then M would describe an 
n-dimensional surface, and all of the curves of the differential equation (16) that go 
through P must lie on this surface.  The point P was, however, chosen arbitrarily; by 
varying its position one thus obtains a family of surfaces: 
 

F (x0 , x1 , …, xn) = C 
 
that depends upon the parameter C and on which all of the curves of the differential 
equation (16) must lie.  The coefficients of the dxi in the two equations: 
 

dx0 + X1 dx1 + X2 dx2 + … + + Xn dxn = 0, 
 

0 1 2
0 1 2

n
n

F F F F
dx dx dx dx

x x x x

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

⋯ = 0 

 
are thus proportional to each other, and one has the equation: 
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(17)   
0 1 1 2 2

0

0 0

{ }

0, ,

n n

F
dF dx X dx X dx X dx

x

F F

x x

∂= + + + +
∂

∂ ∂≠ ≠ ∞
∂ ∂

⋯

 

 
from which, our theorem is proved. 
 
 

§ 5. − Normalizing the coordinates of a simple system. 
 
 Let S be a simple system, which may depend on the coordinates: 
 
(18)    ξ0 , x1 , x2 , …, xn , 
 
in which the last n quantities in the sequence (18) represent deformation coordinates, and 
the external work for quasi-static changes of state is produced by an integral of the 
expression: 

DA = p1 dx1 + p2 dx2 + … + pn dxn . 
 
 The adiabatic, quasi-static changes of state of the system can be represented by the 
curves of the Pfaffian equation: 
 

(19)   
0 1 1 2 2

0

0,

.

n n

i i
i

d DA d X dx X dx X dx

X p
x

εε ξ
ξ

ε

∂+ = + + + + =
∂

∂= +
∂

⋯

 

 
 If one could reach each point of a certain neighborhood of this initial location along 
curves of the differential equation (19) that start from a give initial point then one could 
also, from our assumptions on the simple systems, approximate any arbitrary final state 
by adiabatic changes of state.  From our axiom II, however, the latter shall be impossible.  
On the other hand, due to the properties of simple systems, ∂ε / ∂ξ0 is not identically null; 
one could then, when one omits certain singular places, divide the expression (16) by ∂ε / 
∂ξ0 and arrive at precisely the same conclusions as in the foregoing section. 
 The expression (19) thus possesses a multiplier that is neither null nor infinite.  If one 
denotes it by 1/M then one ultimately has: 
 
(20)     dε + DA = M dx0 , 
 
in which x0 means a certain function of the variables (18).  However, one now has, by 
comparing (19) and (20): 
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0

0

x

ξ
∂
∂

= 0

M

ε
ξ

∂
∂

; 

 
hence, from the above, it is different from zero.  One can therefore solve the equation: 
 

x0 = x0 (ξ0 , x1, …, xn) 
 
for ξ0 , and introduce x0 as the (n+1)th coordinate of our system in place of ξ0, along with 
the n deformation coordinates. 
 If we do this then the expression: 
 
(21)    DA = p1 dx1 + p2 dx2 + … + pn dxn  
 
for the external work takes on its original form, because it does not include the 
differential dξ0 ; now, however, the pi are functions of the new variables x0 , x1, …, xn .  
Likewise, the function M in (20) must be regarded as dependent upon these same 
variables. 
 The curves that correspond to adiabatic, quasi-static changes of state in our system 
now satisfy the equation: 
(22)     x0 = const. 
 
Conversely, any curve in the space of the xi that leaves x0 constant can be regarded as the 
trace of a change of state of that sort; namely, equation (22) is equivalent to (19), and we 
have seen in the third section that curves that satisfy this equation possess the desired 
property. 
 One now remarks that equation (20) is an identity, and if one replaces the expression 
(21) for DA in this equation then one finally obtains the relations: 
 

(23)    M dx0 = dε + DA = 0
0

dx
x

ε∂
∂

, 

(24)     pi = −
ix

ε∂
∂

    i = 1, 2, …, n. 

 
 A coordinate system that possesses all of the properties cited in (21), (23), (24) shall, 
in the following, be called a “normalized” coordinate system.  Therefore, it must be 
remarked that these properties all remain valid when one replaces x0 with an arbitrary 
function f(x0) of these quantities, which usually follows directly from the theory of 
multipliers for a Pfaffian expression. 
 In thermodynamics one can distinguish a certain normalized coordinate system 
among all of the possible ones that is uniquely determined and, with the help of the 
physical properties of rigid bodies, will be defined only for heat-permeable walls; this 
shall be our next problem. 
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§ 6. − Conditions for thermal equilibrium. 
 

 Let two simple systems S1 and S2 be given with the normalized coordinates: 
 
      x0 , x1 , …, xn , 
      y0 , y1 , …, yn . 
 
 These systems shall be separated by a fixed wall that is permeable only by heat.  Such 
a wall will be defined by the following properties: 
 
 1. The deformation coordinates of the two systems in question can be varied 
independently of each other after the introduction of a coupling. 
 
 2. After any arbitrary change of form of the total system, when it is adiabatically 
isolated, equilibrium is reached after a finite time. 
 
 3. The total system S is then only found, but also always therefore in equilibrium, 
when a certain relation between the coordinates xi , yi of the form: 
 
(25)    F (x0 , x1 , …, xn ; y0 , y1 , …, ym) = 0 
 
is satisfied. 
 
 4. Whenever any two systems S1 and S2 are in equilibrium with a third system S3 
under analogous conditions, there likewise exists equilibrium between S1 and S2 . 
 
 This latter condition therefore means the same thing as saying that for the three 
equations: 

(26)    
0 1 0 1

0 1 0 1

0 1 0 1

( , , , ; , , , ) 0,

( , , , ; , , , ) 0,

( , , , ; , , , ) 0,

n m

n k

m k

F x x x y y y

G x x x z z z

H y y y z z z

=
=
=

⋯ ⋯

⋯ ⋯

⋯ ⋯

 

 
which, analogous to (25), bring about equilibrium between S1 and S2 , S1 and S3 , S1 and 
S3, each of them is a consequence of the other two. 
 This is, however possible only when the system of equations (26) is equivalent to a 
system of the form: 
 

ρ (x0 , x1 , …, xn) = σ (y0 , y1 , …, ym) = τ (z0 , z1 , …, zk) . 
 

In particular, the condition (25) can then be replaced by two equations of the form: 
 

(27)     0 1

0 1

( , , , ) ,

( , , , ) ,
n

m

x x x

y y y

ρ τ
σ τ

=
=

⋯

⋯

 

in which τ means a new variable. 
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 One calls this quantity τ the temperature and equations (27) the equations of state of 
the systems S1 and S2 . 
 On the other hand, the system (27) is, however, equivalent to a system of the form: 
 

W{ ρ} = τ1 , W [σ] = τ1 , 
 
where W means an arbitrary function.  The functions (27) are therefore not uniquely 
determined; one expresses this indeterminacy by saying that the “temperature scale” can 
be chosen arbitrarily. 
 From our assumptions, one further deduces that at least one of the quantities ∂ρ / ∂x0 , 
∂σ / ∂y0 is not identically null.  Namely, if these two quantities were null then ρ and σ 
would depend only upon x1 , x2 , …, xn ; y1 , y2 , …, ym .  However, they are nothing but 
deformation coordinates that one can vary independently of each other; one would thus 
be able to reach states for which it would be impossible to satisfy the equation (25), 
which contradicts our two assumptions on thermal equilibrium. 
 One of these quantities – e.g., ∂ρ / ∂x0 − is therefore different from zero, and one can, 
at points in general position, express x0 as a function of the remaining (n+m+1) 
coordinates with the help of the equation: 

ρ = σ . 
 

The system S can thus be considered to be a system with (n+m+1) degrees of freedom 
that possesses (n+m) deformation coordinates.  From our assumption on page 12, it is 
therefore a simple system to which our prior results can be applied. 
 
 

§ 7. − Absolute temperature. 
 

 The assumption that is appropriate to the foregoing sections is that the energy ε of our 
total system S is equal to the sum of the energies ε1 and ε2 of its two components.  
Likewise, the external work A that is done on S during an arbitrary change of state is 
equal to the sum of the quantities A1 and A2 that are associated with the two systems S1 
and S2.  However, these latter systems were simple and their coordinates were 
normalized.  Therefore, one can write: 
 
  dε1 + DA1 = M (x0 , x1 , …, xn) dx0 , 
 
  dε2 + DA2 = N (x0 , x1 , …, xn) dx0 . 
 
By adding these equations one obtains: 
 
(28)    dε + DA = M dx0 + N dy0 . 
 
 However, the system S is also a simple system, as we have proved.  Therefore, upon 
consideration of (27) the expression on the right-hand side of (28) must possess a 
multiplier. 
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 We would now like to assume that in nature at least one system exists whose equation 
of state includes one more deformation coordinates.  Experience teaches that this 
assumption is satisfied for, e.g., gases.  If we now choose such a system for S1 then it 
follows that the function ρ includes at least one of the quantities x1 , …, xn  − say, x1 .  We 
can then regard the quantity M in (28) as a function of: 
 

x0 , τ, x2 , x3 , …, xn  . 
 For the equation of state: 

σ (y0 , y1 , …, ym) = τ, 
 

we shall now look at all of the possibilities. 
 
 1. In the case where σ depends upon no single one of the quantities y0 , y1 , …, ym , 
the τ in M must be replaced with a particular value.  In the identity that now exists: 
 
(29)    du = λ [M dx0 + N dy0] 
 
the function u must depend upon only x0 and y0, such that λM and λN also depend upon 
only these two variables.  Now, since the yi do not appear in M, λ cannot include any of 
the deformation coordinates of S2 ; however, they do not enter into λN, either.  It follows 
that N is also free from these quantities and depends upon just y0 . 
 
 2. In the case where σ depends upon only the one state coordinate y0 , one would 
replace the quantity τ in M with a function of y0, and in the same way deduce the 
conclusion that N also includes only y0 here. 
 
 The fact that neither of these two cases occur in nature is in no way a contradiction to 
our assumptions about simple systems. 
 
 3. Finally, we consider the case in which σ depends upon at least one deformation 
coordinate.  Let it be – say – y1; we can now regard this latter quantity, and as a result, 
also the quantity N, as functions of: 
 

y0 , τ,  y2 , y3 , …, ym . 
 

 In (29), λM and λN are also now functions of only x0 and y0 .  Now, since M, as well 
as λM, do not include the coordinates y2 , y3 , …, ym , the same is true for λ.  It follows 
that N is also independent of these quantities since otherwise λN would also include these 
quantities. 
  From the analogous considerations for the xi , one finally derives the result that λ 
depends upon at most x0 , y , τ, while M depends upon only x0 and τ, and N depends upon 
only y0 and τ . 
 Now, since λM and λN are also independent of τ , one thus has: 
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M
M

λ λ
τ τ

∂ ∂+
∂ ∂

= 0, 
N

N
λ λ
τ τ

∂ ∂+
∂ ∂

 = 0, 

 
from which one concludes that the logarithmic derivative: 
 

1 λ
λ τ

∂
∂

 

 
of λ with respect to τ can depend upon neither y0 not x0, and it follows that λ decomposes 
into a product of the single variable τ and a function of x0 and y0 .  Therefore, one write: 
 

λ = 0 0( , )

( )

x y

f

ψ
τ

, 

 
and from this it further follows, since λM is a function of x0 and y0 alone, that M must 
have the form: 

M = f (τ) α (x0), 
 

and in precisely the same way, one sees that: 
 

N = f (τ) β (y0). 
 
The most general splitting of M and N into a product of two factors, one of which 
depends upon only τ and the other, upon only x0 (y0, resp.), when C means an arbitrary 
non-null constant, is: 

(30)   M = 0( )
( )

x
C f

C

ατ , N = 0( )
( )

y
C f

C

βτ . 

 
 If one starts with a given temperature scale then for any system whose equation of 
state includes one of the deformation coordinates the function f (τ) is completely 
determined up to a multiplicative constant, and the same is true for all such systems. 
 If one now remarks that such a splitting of the function N is possible for the systems 
that we examined in 1 and 2 then we see that the function f (τ) possesses a completely 
general physical meaning.  The temperature scale that is defined by this function: 
 

t = C f (τ) 
 
will be called absolute.  In order to also determine the constants, one also prescribes the 
difference of two fixed temperatures – e.g., the melting of iron and the evaporation of 
water – under prescribed pressures. 
 
 
 
 
 



Foundations of thermodynamics                                                          20 

§ 8. − Entropy. 
 

 For any simple system, one can, from (23) and (30), normalize the coordinates such 
that one can have: 

    DA = 1 2
1 2

n
n

dx dx dx
x x x

ε ε ε∂ ∂ ∂− − − −
∂ ∂ ∂

⋯ , 

     
0x

ε∂
∂

= 0( )t x

c

α
, 

 
in which t means the absolute temperature.  We now introduce a new coordinate η with 
the help of the equation: 

(31)    η − η0 = 
0

0

0
0

( )x

a

x
dx

c

α
∫ ; 

 
equation (31) can be solved for x0 since M, and therefore, from (30), also α, is non-zero.  
The total differential of the energy function now assumes the form: 
 
(32)    dε = t dη – DA. 
 
 This new coordinate η was called the entropy of the system by Clausius, and is 
determined up to an arbitrary additive constant by (31). 
 For the system S = S1 + S2 that we considered in the previous section, one has, for any 
quasi-static change of state, when η1 , η2 mean the entropies of S1 and S2 : 
 

dε = dε1 + dε2 = t (dη1 + dη2) – DA1 – DA2 . 
 

 Thus, when η1 and η2 are expressed with the help of the equations: 
 

(33)    
1 2

1 2

1 2

,

0,

η η η
ε ε
η η

+ =
∂ ∂− =
∂ ∂

 

 
as functions of xi , yk and the new η variables, the total differential of the total energy ε 
once again takes on the form (32).  The entropy of the total system is therefore equal to 
the sum of the entropies of its various components.  Many physicists have overlooked 
this additive property of entropy, which also persists when one considers other walls 
besides planes that are permeable by only heat and are put between the systems S1 and S2, 
as one can gather from the theory of these walls, in order to regard entropy as a physical 
quantity that is similar to the mass that is attached to any spatially extended body, 
although it is dependent upon the instantaneous state of that body. 
 Since, from (30), the entropy depends only upon x0 in normalized coordinates, it 
remains constant for any quasi-static, adiabatic process, and any change of state of a 
simple system under which the entropy remains constant is, from our prior argument, 
reversible. 
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§ 9. −−−− Irreversible changes of state. 
 

 We have assumed that under adiabatic changes of state that are caused by the possible 
values of the work done for a given initial and final form, simple systems define a 
connected numerical set.  If one now calculates the corresponding final values of the 
entropy η with the help of the formula: 
 

ε (η, x1 , x2 , …, xn) – ε0 + A = 0, 
 
which is valid for arbitrary adiabatic processes, then it follows from continuity 
considerations that they also fill up an entire interval.  The initial value η0 of the entropy 
must necessarily be a point of this interval; the value of η then remains unchanged under 
quasi-static changes of state, which can indeed also be counted among the ones that come 
under consideration.  Now, if η0 were an interior point of the interval then one could next 
assume that under adiabatic changes of state the value of η would be arbitrary in a certain 
neighborhood of η0, and then under quasi-static changes of state for a fixed η the 
deformation coordinates would change arbitrarily.  However, this contradicts the axiom 
of the second law. 
 The value η0 is thus found at an endpoint of the interval in question.  From this, it 
follows that under arbitrary adiabatic changes of state that start from a given initial state 
the value of the entropy can either not increase or not decrease. 
 If one varies the initial state then one sees that, due to continuity, the impossibility of 
an increase or decrease in entropy for two arbitrary initial states of the same system must 
always follow in the same direction.  The same is also true, however, of two different 
systems S1 and S2 , due to the additive property of entropy that we spoke of in the 
preceding paragraphs. 
 Whether the entropy can only increase or only decrease depends upon the constant C 
in formula (31), in which η enters multiplicatively.  One chooses these constants in such 
a way that the absolute temperature t is positive.  Experiences then teaches that one only 
needs a single experiment to confirm that entropy never decreases. 
 From this, it follows that equilibrium will always come about when the entropy must 
decrease under all permissible virtual changes of state of a simple system, and it then 
possesses a maximum in the equilibrium state. 
 In addition, however, it follows from our conclusions that if the value of the entropy 
does not remain constant under any change of state then no adiabatic change of state can 
be found that takes the system in question from its final state to its initial state. 
 Any change of state under which the value of entropy changes is “irreversible.”  
 
 

§ 10. − Possibility of the experimental determination of energy,  
entropy, and absolute temperature. 

 
 We must show that the quantities ε, η, and t that we introduced into our 
considerations can be determined by experiment in any concrete case.  The simplest way 
that this is achieved is when one, as we would now like to do, assumes that one can 
observe reversible processes with sufficient accuracy.  Since nothing stands in the way of 
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this assumption from a logical standpoint, one comes to the insight that thermodynamics 
is purely experimental; i.e., can be founded without any assumption on the nature of 
“heat.” 
 In reality, one would encounter difficulties in the application of the method that was 
given here that arise from the unavoidable errors in observation.  One thus divides the 
problem into two pieces: First, one determines the absolute temperature scale; I will not 
go into this question in the present work, since it requires lengthy discussion.  However, 
if t is known then one can compute the quantities ε and η rather easily, as we will see in 
the following sections, and indeed computations in which one employs measurements 
that can be made very accurately. 
 Here, we assume that a simple system S is given that may depend upon the 
coordinates: 

ξ0 , x1 , x2 , …., xn , 
 
in which the xi mean the deformation coordinates.  Furthermore, the following functions 
shall be capable of being established by measurements: 
 
 1. The equation of state of S for any temperature scale τ : 
 
(34)     ψ (ξ0 , x1 , x2 , …., xn) = τ . 
 
 2. The coefficients of the Pfaffian expression for the work A : 
 
(35)    DA = p1 dx1 + p2 dx2 + … + pn dxn . 
 
 3. The coefficients of the Pfaffian equation for quasi-static, adiabatic changes of 
state: 

(36)  0 =

0

1

x

ε∂
∂

(dε + DA) = dξ0 + X1 dx1 + X2 dx2 + … + Xn dxn . 

 
 In order to experimentally determine the coefficients X1, X2, …, Xn in this latter 
expression one makes the following attempt: One considers adiabatic changes of state of 
the system under which only one deformation coordinate – e.g., x1 – increases by ∆x1, 
while x2 , x3 , …, xn remain constant.  One measures the change ∆ξ0 in ξ0 that comes 
about during this process.  When ∆x1 is sufficiently small and, in addition, the change of 
state results sufficiently slowly, one then has: 
 

X1 = − 0

1x

ξ∆
∆

 

for the initial state in question. 
 The Pfaffian expression (36) must, from the previous results, possess a multiplier λ 
that makes it into a complete differential when the quantities Xi satisfy certain differential 
equations that must necessarily exist for any actual system as long as our theory is 
correct. 
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 There then exists the equation: 
 

λ (dξ0 + X1 dx1 + X2 dx2 + … + Xn dxn) = dx0 , 
 
which one can integrate.  If one now chooses x0 to be any of its integrals then that 
quantity can be introduced as a new coordinate.  Therefore, from (34), one will have: 
 
(37)    ϕ (x0 , x1, …, xn) = τ, 
 
and (35) also preserves its original form, except that the pi must be regarded as functions 
of the new variables. 
 If we now make the Ansatz for the absolute temperature t: 
 

t = β (τ) 
 
then it follows from equations (24) and (32) that: 
 
(38)   dε = β (τ) α (x0) dx0 – p1 dx1 − … − pn dxn . 
 
The functions α and β must be determined in such a way that the expression (38) is 
integrable. 
 This is first possible only when (35) is also integrable for constant x0, from which 
certain conditions for the pi arise that must be satisfied for any system.  If we further set: 
 

x2 = a2 , x3 = a3 ,  …, xn = an , 
 
where the ai refer to constants, and introduce the relations: 
 
(39)   τ  = ϕ (x0 , x1, a2, …, an) = f (x0 , x1), 
 
(40) p1 (x0 , x1, a2, …, an) = g (x0 , x1), 
 
then the expression: 

β (f (x0 , x1)) a (x0) dx0 – g (x0 , x1) dx1 
 
must be an exact differential, which yields the condition: 
 

0 1 0
1 0

[ ( , )] ( )
f g

f x x x
x x

β α∂ ∂′ +
∂ ∂

= 0 

or: 

(41)    β′ (τ) α (x0) = − 0

1

g

x
f

x

∂
∂
∂
∂

. 
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The right-hand side of this equation must then, if one introduces x1 as a function of x0 and 
τ into it with the help of (39), split into a product of a function of x0 and a function of τ, 
such that one can write: 

− 0

1

g

x
f

x

∂
∂
∂
∂

= Ψ (x0) Θ (τ). 

 
If C and C′ are yet-to-be-determined constants then one finally obtains: 
 

t = β (τ) = 
1

( )C d C
τ

τ
τ τ ′Θ +∫ , 

 

α (x0) = 
1

C
Ψ (x0). 

 
The first of these equations represents the absolute temperature, while the second one 
allows one to determine the entropy: 
 

η − η0 =
0

0
0 0

1
( )

x

a
x dx

C
Ψ∫ . 

 
 One obtains the integration constant C, when one prescribes the difference D in 
absolute temperature between two given temperatures τ1 and τ2 arbitrarily, from the 
formula: 

C = 
2

1

( )

D

d
τ

τ
τ τΘ∫

. 

 
 By the introduction of the values found for α and β into (38) one can integrate these 
equations when the integrability conditions are all satisfied, as must be true in concrete 
cases, and obtain: 

ε – ε0 = C′ (η – η0) + F (η, x1 , …, xn). 
 
 One sees that during reversible processes one can determine the absolute 
temperature only up to an additive constant and the internal energy only up to a linear 
function of the entropy. 
 However, one can remove this indeterminacy when one observes C′ for all time with 
the help of a single irreversible adiabatic process; e.g., one in which no external work is 
done.  In this case, the energy remains constant, while the coordinates experience 
measurable changes, from which a linear equation for C′ arises. 
 For ideal gases, the calculations take on the following form: When, for constant total 
mass, we choose the coordinates to be the pressure p and the specific volume v, we have 
the equation of state: 

p v = τ 
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and the equation of the adiabatic curves: 
 

p vγ+1 = const. 
We can thus set: 

v = x1 ,  p vγ+1 = x0 
 
and obtain, for formulas (39) and (40): 
 
      τ = f (x0, x1) = 0 1x x γ− , 

      p = g (x0, x1) = ( 1)
0 1x x γ− + . 

 
 Here, equation (41) takes the form: 
 

β′ (τ) α (x0) = 
0

1

xγ
, 

such that one obtains: 

t = β (τ) = C t + C′, α (x0) = 
0

1

C xγ
, 

 

dε = ( 1)1
0 0 1 1

0

x C
dx x x dx

C x

γ
γ

γ γ

−
− + ′

+ − 
 

. 

 
The integration of the latter equation now yields: 
 

ε – ε0 = 0 1
0log

x x C
x

C

γ

γ γ

− ′
+ , 

 
or, when we once again introduce τ and v as coordinates: 
 

ε – ε0 =
C C

l lv
C C

τ τ
γ γ

′ ′
+ + . 

 
 One now needs an irreversible process in order to determine the value of C′.  Under 
adiabatic expansion, during which no work is done on the gas, τ, for example, remains 
constant.  One thus has C′ = 0, and the well-known formulas: 
 

ε  = 
1

t
Cγ

, p v =
1

t
C

, 

 
 which easily lead back to the usual relations. 
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§ 11. − Practical determination of ε and η . 
 
 In this section, we assume that the absolute temperature is known already and that for 
a simple system S, whose state coordinates may again be: 
 

ξ0 , x1 , x2 , …, xn 
 
one can measure the following data: 
 
 1. The equation of state: 
 
 2. The functions p1 , p2 , …, pn in the Pfaffian expression for the external work. 
 
 3. The “specific heat” for constant volume.  The latter means that with the help of 
calorimetric measurements – i.e., by observing certain irreversible processes – the 
quantities: 

t

ε∂
∂

 

can be obtained for constant x1 , x2 , …, xn . 
 
 From 1, it follows that one can choose the (n+1) independent coordinates to be: 
 

t, x1, x2 , …, xn , 
 
in which t again represents the absolute temperature.  In these coordinates, (32) has the 
form: 

dε  = 
1

n

i i
i

t dt t p dx
t x

η η ∂ ∂+ − ∂ ∂ 
∑ . 

 
Since this expression shall be a complete differential, one has, due to the integrability 
conditions: 

(42)    
ix

η∂
∂

= ip

t

∂
∂

  i = 1, 2, …, n. 

 
In addition, however, from 3, we know the quantities: 
 

(43)     
t

η∂
∂

=
1

t t

ε∂
∂

. 

 
Equations (42) and (43) allow the entropy η to be determined uniquely, up to an additive 
constant, when only certain integrability conditions between the pi and the ∂ε / ∂t are 
satisfied.  If one introduces the value (42) into dε then one obtains the equation: 
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(44)    dε = 
1

n
i

i i

p
t dt t p dx

t t

η ∂∂  + − ∂ ∂ 
∑ , 

 
which can be integrated as long as the conditions above are satisfied. 
 By integrating equations (42), (43), and (44), one thus obtains all of the data that one 
needs. 
 One would be led to precisely analogous calculation if one had measured the specific 
heat for constant external forces instead of the specific heat for constant volume.  
However, one does not first compute the energy ε, but the “thermodynamic potential:” 
 

ε – p1 dx1 – p2 dx2 − … − pn dxn . 
 
 

§ 12. − Crystalline media. 
 

 All of our procedures and results up to now can be carried over to the general case 
where some of the media are fixed and possess a crystalline structure. 
 The only difference is that the quantities that characterize these phases are different 
from the ones that were considered heretofore.  Along with the volume V, differential 
invariants that were defined in elasticity theory come into consideration here.  Since we 
assume that the individual phases are homogeneous these quantities are the same at any 
point of a phase and can be regarded as characteristic features of the entire phase. 
 Instead of pressure, which is no longer independent of direction here, one must 
introduce the “mechanical invariants;” i.e., the coefficients of the differentials of the 
deformation quantities in the Pfaffian expression for the external work, which will 
likewise be drawn from the theory of elasticity. 
 When one further adds the quantity V, these collectively constitute thirteen 
coordinates, in place of the two – viz., V and p – that we had up to now.  This number 
can, however, be reduced for special crystalline systems. 
 By comparison, the chemical coordinates – i.e, the quantities mχi – that we considered 
in the first section of this work are precisely the same as before. 
 Between these various quantities, however, certain relations exist, also when we 
consider the individual phases, while previous equations of condition can only apply 
when the various phases come into contact.  For the statement of these relations, I must 
again refer to the theory of elasticity. 
 
 

§ 13.  Remarks on the consequences of the thermodynamic theorems. 
 

 The manner in which we have derived the main results of thermodynamics, and 
particularly the way that we presented the notion of “absolute temperature” and 
“entropy,” allows us to suspect (since other ways of presenting the theory are 
conceivable) that these theorems and notions are linked to many assumptions and their 
domain of validity is correspondingly restricted. 
 Naturally, certain generalizations are possible that are achieved with no further 
assumptions.  One can thus immediately free oneself from the assumption that the various 
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media shall be homogeneous.  One thus needs only to regard the state coordinates that we 
had up to now as functions of position and to modify the definition of the internal energy 
and the work done from the outside with the help of particular corresponding integrals.  
The difficulties that arise from such generalizations are of a purely mathematical nature; 
they are easily treated separately and will in no way detract from out results. 
 Similarly, one can treat the case where capillary forces are considered. A 
thermodynamic treatment of this problem can be found in the aforementioned treatise of 
Gibbs and already seems to include all of our main ideas that might lead to completely 
satisfying solutions of these questions. 
 By comparison, the problems of radiation and “heat motion” lead to difficulties of a 
completely different nature; thus, in particular, so does the thermodynamics of moving 
media. 
 For the simplest radiative phenomena, in order to define equivalent systems or the 
state of a system one no longer begins with a finite number of coordinates.  The emission 
capability of the substance, as well as its dispersion and absorption capabilities, must then 
be given for every wavelength, such that now not just numbers are necessary to describe 
these properties, but functions that depend upon one or more variables.  The same 
distinction presents itself in mechanics when one goes from systems with a finite number 
of degrees of freedom to continuum mechanics. 
 Now, the notion of temperature is not a primary one; i.e., one must be able to present 
the various state coordinates without making use of this quantity.  As we saw, 
temperature enters into the calculations when one considers certain equilibrium 
conditions.  One can now seek to define the temperature of a radiative medium S1 by the 
condition that it is in equilibrium with our previous system S2, which possesses the 
temperature t.  However, the fact that such a definition can lead to indeterminacy can be 
seen from the fact that the system S2 must now likewise be regarded as a radiative 
medium. However, there can very well exist two systems 2S′  and 2S′′  that are different 

from each other from the viewpoint of radiation, whereas, for ordinary thermodynamics, 
which knows less state coordinates, they represent precisely the same situation. Thus, it 
does not need to be true that S1 is likewise in equilibrium with 2S′  and 2S′′ , and when this 

is the case this system cannot possibly possess a temperature in the ordinary sense of the 
word.  Before one responds to this question, it must be subjected to a thorough test.  One 
can make completely similar thoughts valid for the notion of entropy, whose definition is 
so closely connected to that of absolute temperature. 
 In cases where the thermodynamics of moving media (among which one can also 
count the theory of heat conduction) can be treated without considering radiation 
phenomena the difficulties are of a different nature. 
 Here, one would probably associate each material point of the systems with a certain 
temperature that varies with time.  This temperature can, however, possibly depend upon 
all of the state coordinates here, and thus also on the velocity. 
 Nevertheless, for the determination of the energy function and equations of motion 
our previous methods cannot be employed since all such processes are now always 
irreversible, due to the internal friction that one cannot neglect. 
 
 Bonn, 10 December 1908. 

__________ 


