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Spaces with conformal connections
By

E. CARTAN ',

The goal of the present memoir is the study of therdsd properties of what | call
spaces with conformal connectiondt is a sequel to a very important memoir that is
dedicated to the theory of spaces with affine connectem$ spaces with metric
connections that will appear next in the Annales de I&dddrmale Supérieure; it may
be read independently of the latter with no lossigdrr Either of them constitute the
development of some Notes that | have published througheuast year in the Comptes
Rendus de I'Académie des Sciences de PrisThe notion of a space with an affine
connection is not absolutely new, since it has beendenesl, at least in the special case
of what | call spaces without torsion, by various auth@specially H. Weyl and
Eddington, who have been led to such a notion in tleararkable work on the general
theory of relativity?). On the other hand, the notion of a space withoraformal
connection is essentially new, since the viewpohdt twas taken by the preceding
authors in order to edify the notion of a space witinaftonnection seems to exclude
any generalization of that type.

This memoir is divided into two chapters. The firsteos occupied with the
properties of spaces with conformal connections in them right. The second chapter
is occupied with the properties of manifolds that are elidée in a given space with a
conformal connection. In that regard, it poses problgras are analogous to the ones
that arise in the study of the properties of surfacesawis the group of conformal
transformations of that space; in particular, 1 willecthe problem of the conformal
representation or first order deformation of hypersugate which | have dedicated a
memoir several years ago in the case of a spaceneihdion more than fody.

In the present memoir, | will prove that in a four-dm®nal space with conformal
connection the hypersurfaces that admit a conformal septation on other distinct
hypersurfaces are exceptional and depend upon three arbitracyions of two
arguments; this is a result that |1 have previously anrexunc the case of a four-
dimensional conformal spaée As an application, | will give several indications the
nature of the surfaces that admit a second order deformaét a normal three-
dimensional space; these surfaces generalize theismhsurfaces in ordinary space.

" Translated by D.H. Delphenich.

! Comptes Rendus Paris. 174, pp. 487, 593, 784, 857, 1104; see, especially, “Surspces a
connexione conforme,” pp. 857-860.

2 H. Weyl: Raum, Zeit, Materie4" edition; A.S. EddingtorEspace, Temps et Gravitation

3 E. Cartan, “La déformation des hypersurfaces dans I'esparforme réel a $ 5,” Bull. Soc. Math. de
France t. XLV, pp. 57-120 (1917).

* E. Cartan, “Sur le probléme général de la déformdtiorR. Congrés de Strasbougp. 397-406 (1921).
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In this memoir, | employ the notations and methodshef memoirs that | have
already dedicated to Differential Geometyy

First Chapter.

Definition and properties of manifolds with conformal mnnections.
Conformal space, conformal transformations.

1. Consider am-dimensional space that is referred to a rectangwardmate
system. Any hypersphere may be defined by an equatioe ¢drtim:

Xy ( X7+ + X2) = 26X = 20Xo = ... = 2 Xn — A1 = 0,

with a system oh+2 homogeneous coordinates xi, ..., X+1. The condition that the
hypersphere have a null radius is expressed by th@relat

D ;% +-F X+ DoXnea = 0.

Conformal transformationsnay be defined analytically defined by linear substitutions
that act on the variables, xi, ..., X.+1 and leave the fornd invariant; they therefore
preserve the hypersphere of null radius, and becaubatahey may be considered to be
point transformations, when each point of the spaesssciated with the hypersphere of
null radius whose center is at that poir@onformal geometryas the goal of studying
the properties of figures that remain invariant under antrarpi conformal
transformation; we therefore say that it has theatlgédescribing a theory @abnformal
spaces.

An arbitrary set oh+2 coordinatesx, xi, ..., Xn+1) that are not all null will define
what we will call, in a general sense, a hypersplare,that we will denote, for the sake
of abbreviation, by a letter such s The symbolX andmX in whichm is an arbitrary
numerical coefficient, will thus denote two distinctpeyspheres, although they are
identical from a geometrical viewpoint.

A unit hypersphere will be defined by the condition @pahas the value 1 for all of
its coordinates. In a general manner, we will callexgression:

1 odb _1 0P
XY == —=— —
22)/'(%(i 2 xayi

the scalar productof two hypersphereX andY; this scalar product remains invariant
under a conformal transformation. A unit hypersphe characterized by the condition

! The reader may especially consult the memoir citedeatote 1) for the methods that are employed,
and also myLecgons sur les Invariants #graux Paris, Hermann, 1922, especially chapters VI and VII.
One may also confer the summary of properties that used for Pfaff systems in involution in a memaoir
in theBulletin de la Soc. Math. de Franade XLVIII (1920), chap. Ill, pp. 136, et seq.
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that its scalar square is equal to 1. Two orthogonalregperes are characterized by the
property that their scalar product is null.

The scalar square of a hypersphere-point — or, more \girappoint — is null; a
hypersphere passes through a point when the scalar profitkatopoint and the
hypersphere is null.

2. One may find a system afi{2)-spherical coordinates in an infinitude of ways. It
suffices to considem mutually orthogonal unit hypersphergs ..., A, and two point#\,
andA,.1 that are common to these hyperspheres, when onetuthje two indeterminate
factors that enter into these coordinates to theitiondhat the scalar produgh An+1 is
equal to 1. One will thus have:

A= =AP= AcAws = 1,

and all of the other scalar products that relate to pditee n+2 hyperspheres, whether
distinct or identical, are null.
Any hyperspher& may then be put into the form:

X ZYOAb+7(1'Ai+"'+_)ﬁ+1An‘+1

in one and only one manner, and one will have:
X=X+ XA 2K X,

the formulas that permit us to pass from the old coorelinatto the new onesg thus

define a conformal transformation. The initial syst&Engoordinates may be regarded as
a particular system oh+2-spherical coordinates in which the coordinates of the
hypersphere are the origin of the coordinatesAipthen coordinate hyperplanes fés,

..., Ay, and the hyperplane at infinity fé.; (which is regarded as a hypersphere of null
radius). To abbreviate, we refer to the set ofrth2 hypersphere8y, A, ..., Ans1 @s a
frame

3. Consider a moving frame that depends upon one or morengiars. It is
obvious that one will have the formulas:

dA = ah A+ At +aT A

(1) dAiza)fAb+a)}A1+"'+ajlwl%+l

dAh+1 :(‘)2+1Ab+(‘)1n+1pi+"'+wnn:ipﬁ+1’

in which thew’ are linear with respect to the differentials of theapaaters.
These (+2) expressiona) are not arbitrary, because one must obviously have:
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AdA + AdA =0,

for any values of the two indicesj, distinct or not; this amounts to saying that althef
scalar product&A; are constant. One easily deduces the following osistiwhich are
fundamental:

" =af, =0,  afii=-af,
(2) o =-af", ==,  (=12;-n)
o =0, o+ =0,  (j=12-n)

What thus remain are the expressions for the inthbgrey’ :

=, =", of=-d, o=-d;

[ J

they numb n+1)2(n+2). Moreover, the maximum number may be attainedesthe

most general frame depends upon preci y 1)2(n+ 2) parameters.

4. It is obvious that the passage from a given fréonan infinitely close frame may
be obtained by an infinitesimal conformal transfation, and that the quantitieg may
be regarded as tltwmponent®f that conformal transformation. It is of intstdor one

to study the geometric properties of +1)2(n+2)infinitesimal conformal

transformations that correspond to +1)2(n+2)distinct components’ . They fall

into three different types.
First, take the transformation whose only non-zeomponent isf= -af;;. It
gives:
dAs =e A, dAni1 = — € Aug, dA = 0;

the hyperspherZ x A is then transformed into the hypersphere:

> (% +dx) A,
with:
dxo = e X, X1 = = € Yos1, dx = 0.

If the pointAn+1 is at infinity then one sees that the point whGsetesian coordinates

areﬁ is transformed into the points whose coordinates (ar—e) i; one has thus
%o

X
effected ahomothetywith centerAo. In the general case, we will have what we call a
conformal homothetyith centersAy andA.+1; since all of the circles that pass through
the two centers of the homothety remain invariarppintM of one of these circles will
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be transformed into an infinitely close pdimt of the same circle, with the condition that
the anharmonic ratio of the four (geometric) poiMitsM’, Ao, An+1 must be equal to a
given fixed ratio.

A second type of infinitesimal conformal transformatisibtained by giving one of

the components} ore’a value that is different from zero, all other compaseseing
null. For example, takg, = -« =e. One will have:

dAo:edA, dAn+1:0, dA]_:_eAq+1, dA2:...:dAn:0,
and, as a result:
dxp =0, dx. = e %, d=..=dx,=0, dxs1=—€ex.

If the point A.+1 IS at infinity then the point whose Cartesian coorltéiﬂaare)i,ﬁ,

X %
...,ﬁ is transformed into the point whose coordinates)—(]aﬁee,ﬁ, ...,ﬁ; one has

Xo Xo Xo Xo
effected dranslation In the general case, we say that the translatianagation (?) of
centerAn:1. There exists a family of circles that pass throdgh that are all tangent to
each other at that point, and each circle of thatilyapemains invariant under the
transformation in such a manner that its points anestbamed into each other in a
parabolic manner; the hyperspheres that are orthogonal to thesesand pass through
An+1 (here, the hypersphefg + p Aq+1) are transformed into themselves.

One will likewise have aelation of centerA, if one givesaf = -, a valuee that

is different from zero.
Finally, a third type of infinitesimal conformal trangfeaition is obtained by giving,

for exampleaf = -al , a valueethat is different from zero. In this case, one has:

dA =0, dA.+1 =0, dAr=e A, dAh=-eA, dr=...=dA, =0,
and, as a result:
dXo = d¥w1 = 0, dxy=—ex» de=ex, dxz = ... =dx, = 0.

All of the points (which consist ok andA.+1) that are common to the hypersphetes
and A, remain fixed, while the hyperspheres of the shtaf + /A, are interchanged
among themselves in such a manner that each makesldifiiaitesimal) angle with its
transform. One thus hagetation that has the hypercirclé&{A;] that is the intersection
of A; andA; for its axis. Under this rotation, each pdihtdescribes an arc of the circle
that is normal to the hypersphet@; + LA, that passes through that point.

If n = 3 and if the circleA1A;] is reduced to a line then one obtains an ordinary
rotation with that line for its axis.
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5. In summary, if one is given two poimsandB of the conformal space then any
infinitesimal conformal transformation may be decongabén one and only one way
into:

Anelationwith centerB.

Anelationwith centerA.

Ahomothetywith centersA andB.

Arotation around a hypercircle that passes throAgindB.

PwpNdPE

If the pointB is at infinity then the elation with centBrbecomes a translation and
the homothety with centes andB becomes an ordinary homothety with ceerThe
elation with centerA, the homothety, and the rotation leave the pdininvariant.
Moreover, the elation with centér and the homothety changes any circle that passes
throughA into a tangent circle; in other words, it leaves &lthe directions that issue
from A invariant. Finally, the homothety is the one and drdypsformation that leaves
all of the circles that pass througtandB invariant.

We remark that when one is given the pdirthe decomposition of an infinitesimal
conformal transformation into two other ones, one bicl fixes the poin#,, may not
be carried out in amvariant manner, as would apply to displacements in Euclidian
space. Indeed, in the latter space the decompositionaittanslation and a rotation
aroundA has an absolute significance; this is no longer trueimMormal space, in which
the translation is replaced with an elation whoseeres arbitrary.

The structure equations of conformal space.
6. They may be obtained by saying that the integrals:
[dAo, [ dAy, ...,[dAw,

are null when taken over an arbitrary closed contour.
One thus obtains the relations:

(@) =[] Haew] +{ f ']

in which(«)')' denotes the (bilinear covariamtyterior derivativeof ' .
If one preserves only the independent expressibnar , «f , w'then one obtains:

(ah) =[ahay] +--H wp],
(@) =[afed] +-+ YT ahed)

3 | | | n |
G) () =ldf] [ wha] +Z_] of o],

() =) +i_[ oy}
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These are the desired structure equations.

Manifolds with conformal connections.

7. Consider am-dimensional manifold and attach andimensional conformal
space to each poiR of this manifold that we frame by means of a systenm+¢f
hypersphereé\, A4, ..., Ansa, the first of which will be identified (as far its posn is
concerned) with the poirR itself. The given manifold will be said to have@nformal
connectionif we give it a law (which is arbitrary, moreoverpttpermits us to refer (in a
conformal manner) the conformal space that is attached tofinitely close poinP’. If
we callA, A,---, A,,the frame that is attached to the pdiithen this says that we have

associated the hypersphefgsA,---, A,,in the conformal space that is attached to the
pointP' with the hyperspheres:

Ao +ap A+ At + WA,
Ao+l A+ A+ + WA~ WA,

At =W A =ah A=~ A,
in the conformal space that is attache&.toTo abbreviate, we write:

dAo =af A+ WA,
dA = A —ah AL+ D o A,
dAv1 = ~afA., - > A,

and we say that the frame that is attachd®l e deduced from the frame that is attached
to P by an infinitesimal conformal transformation whosemponentsf, a,,«f,«) are

linear expressions in the differentials:

1. of the parametens, ..., u, that define the position of a poift on the given
manifold.

2. of the parameterg that depend at each point of the manifold on the frame
attached to that point.

If that frame is chosen in the most general manner lpesshen it depends
2

+n+2 . ,
upon—_— parameters. It is essential to remark thatntikemponentsy, «f -+, &)}

depend upon only the differentials of the paransaiesince if one leaves the parameters
u fixed then the poinP does not change, the poiyg no longer changes position and
dA, may depend only upof,. From now on, we writd instead ofA, and « instead

of ) .
Finally, we say that the expressiagsa ,«’are thecomponents of the conformal
connectionof the manifold. They naturally depend upon treme that is attached to
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each point of the manifold; if one changes this frahentit is modified according to
formulas that are not difficult to write down.
One may remark that the scalar squam? which is equal to:

(a)? + ()’ + ... +)?,

represents, up to a factor, the square of the distaneeedrettwo pointd? andP’, a
distance that results from the conformal connectiothermanifold.

The structure equations of manifolds with conformal connetons.

8. If one considers a closed infinitesimal contour orhsaenanifold then when the
integrals] dA are taken around that closed contour they make no sertkemselves,
since there is no absolute conformal space with redpewathich one may frame the
conformal spaces that are attached to the variousspoithe manifold. However, if one
frames the conformal spaces that are attached to tinés paf the contourwhich is
assumed to be infinitesimalith respect to the conformal space that is atththe fixed
point Q that is infinitely close to the contour then thegeing integrals take on a sense,

and one obtains:
Joa=lIE AL -Eafed]=[[ XA

differential forms of second

One thus arrives at a system n+1)2(n+2)

degree],Q',Q°,Ql that are defined by the formulas:

(@) = Y [af] +0

(@) =[] + YT fad] +Q,
(4) a
(@) =[Wef] T ¢f) + D] )+,

(o) =lafed] + Yl afef) + 0

We may take a little more general viewpoint. Atle@oint of the manifold attach a
hypersphere:
X=X + XA + .+ X A,

according some arbitrary law, and calculate thegral | dX when taken over an
infinitesimal closed contour. We have:
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dX=Y dX A + Y X dA,

from which, upon taking the exterior derivative and renmgrkhatdA is not an exact
differential, we have:

(dX)' ==X [dX dA] + X [dX dA] + T X (dA) =D XQFA, .

One thus has:

Jax=[[ > xarA .

Since the contour is given, the differential elem@nthe right-hand side depends
only upon the componentsof the hyperspher¥ at a point of the contour.

In other words, to any infinitesimal closed contolat starts at one poiRt in the
manifold and returns to it there is associatech@iniiesimal conformal displacement that
transforms any hypersphebde of the conformal space that is attachedPtonto an
infinitely close hyperspheng + AX; this displacement is therefore defined analytyday
the formulas:

n+l

(5) AX =D OfX k=0, 1, ...n+1).

The component€)! of this infinitesimal displacement — by their vergture — are double

integral elements that involve only the differelstidy of the parameters that define the
position of a point on the given manifold; they magt involve the differentials of the
other parameters, which may possibly depend uperfrime that is attached to each
point of the manifold. In other words, one hasrespions of the form:

oi=S Aldd],

in which thed), may depend upon all of the parametg@ndyv;.

The infinitesimal conformal displacement that isasated to any infinitesimal
contour that is traced out on the given manifolfinds thecurvature of the manifold,
and equations (4) are the structure equationseithnifold with the given conformal
connection.

9. One may present things in a manner that has a mtuitive sense.

Consider a path on the manifold that joins two fgfhandQ. One may recursively
associate the conformal space that is attachedptmnaM of this path to the conformal
space that is attached to the point of departhce.this, it suffices to remark that if one is

given a frame at each poikt then the componentsy may be put into the fornp’ dt
when one displaces along the path considetedenotes parameter that defines the
position of a pointM on the path and’ denotes a chosen function tof One will then
have, upon displacing along the path:
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‘fj—’?:p(?ﬂwzwi\,

6) D=-rA-B AT H A
dAh+1__ 0 _ 0
- Po At z A

One may regard these equations as linear ordinteyanhtial equations in the unknowns
Ao, ..., Ans1; in the general solution of these equations, whach assumed to be
integrable, one will replace the initial valuegiod unkown functions by the hyperspheres
that define the chosen frameRgtand one will therefore have the frame that iadted to
an arbitrary pointM, which is referred to the frame that is attachedhe pointP. In
other words, one will refer the conformal space ikaattached tdv to the conformal
space that is attachedPRo

One may proceed further in the following manner:

The conformal connection permits us to identify blyperspheres of the space that is
attached to a point of the manifold with the hypéeyes of the space that is attached to
an infinitely close point. This identification abtained by the symbolic identity:

dE X A) =0,
or.

n+l

(7) dX +> x‘a} =0 i=0,1,..n+1).

If one replacesw] with p,dt in these relations then one will have a systentinefar

differential equations whose integration will allayg to know what hypersphere in the
conformal space attached kb is identified with a given hypersphere in the confal
space that is attachedRo These formulas are of the form:

n+l

(7) X =8 (X), (i=0,1,..n+1),

in which thea, are given functions df the &)o are the coordinates of a hypersphere in

the conformal space that is attached Rp and thex are the coordinates of the
corresponding hypersphere in the conformal spaateigtattached ti.
The linear substitution that is defined by the piog formulas obviously preserves
the quadratic form:
@ =20+ () + ..+ ()5

it has the same analytical form as the one thahelef change of frame in the conformal
space.

Having said this, consider a closed contour tlatsiat the poinP and returns to it;
the position parametéron this contour starts with the value 0 and ema@sassume, with
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the valuel. If one recursively refers the conformal space aéddbP to the conformal
space that is attached to a pdihtof the contour then one will have a correspondence,
which is defined by formulé’'), between the hyperspheres that are attachBdatal the
hyperspheres that are attachedito

When the poinM returns toP this correspondence will not be an identity in general
because it will define a certain (infinitesimal)néormal displacement that is applied to
the hyperspheres that are attache® #nd naturally depends upon the closed contour in
guestion.

In the particular case in which the closed contsumfinitesimal, one may prove that
this displacement is defined by the formulas:

(8) AX +Y X Ql=0%.

One may further say that if one attaches a frameatih point of the manifold then
the passage from the frame that is attached ain ldao the frame that is attached at an
infinitely close poinM'is effected by an infinitesimal conformal displassm If we
start from a given initial framén a conformal space, properly speakinand effect
successive infinitesimal conformal displacementatire to the various infinitesimal
segment®M ' of the contour then one will not return to the @onial spac& whenM
arrives again a@, the initial frame, on the manifold.

The point of the conformal spagethat has the coordinates’, (X', ..., X" with
respect to the initial frame will indeed have toeinates:

X +AX =X -Y XQ! (i=0,1,..n+l)

with respect to the final frame. In other wortle final frame may be deduced from the
initial frame by the infinitesimal conformal displacement of thepmomentsQ) .

The theorem of the conservation of curvature.

10. The exterior differentiation of formulas (4) gs/the relations:
(@3) + Y [afQ] - Y[R =0,
k=1 k=1
(Q') +[WQ Q] + ] QT - D] Q] =,
k=1 k=1

9) "
@) QT { 0] { JQf +2 A £ & 8,

(@) +1af0 a0 + 3] w0l -3 &) =0,

) There is no contradiction between these formutas farmula (5); the problems treated are not the
same, although there is naturally a very close ozlaliip between them.
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which may be interpreted geometrically and give us ther¢hne®f the conservation of
curvature.

Classification of manifold with conformal connections.

11. The curvature of a manifold with a conformal connecti@mslates into the
statement that for any infinitesimal closed contoat gtarts at a point and returns to it
with an infinitesimal conformal displacement, one malyeady distinguish certain
important categories of manifold with conformal coniets.

I. First, suppose that the conformal displacement thahssociated with any
infinitesimal closed contour is null. In this cadewe are given two arbitrary points of
the manifold,P andQ, then one may refer the conformal space that islathtoQ to the
conformal space that is attachedRan a manner that is independent of the path taken
from P to Q. In particular, one may give the variable pdhthe coordinates' that are
the (+2)-spherical coordinates of the hypersphere-point incthdormal space that is
attached tdP that corresponds to the hypersphere-pQint the conformal space that is
attached toQ. The manifold is then basically itself a conformpase, although it is
referred to different frames depending upon the point ofrizneifold in question.

II. A more general category is defined by the manifolasafbich the infinitesimal
displacement associated with an arbitrary infinitesiclased contour with origirP
leaves the point P invariant, along with all of the directions thatiesfrom P. This
amounts to saying that this conformal displacement rediacan elation with cente
and a homothety with centefg andA,.1. One thus has:

Formulas (9) then give the relations:

(10) {[wQO] =0, (i=1,...,n)

[WQ QT =0, (i,j=12...n).

Suppose § 3. The firstn relations show thahe formQJis identically null;in order

words, the displacement that is associated witimfamtesimal closed contour reduces to
an elation with cente®, (or P). Formulas (9) then allow us to write:

zn:[ch?] =0.

i=1

From the latter relations (10) one deduces:
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[(WWQ% =0,

which shows that the forfnJQ?] contains each of the formd, o, ..., J as a factor.
Therefore, if > 3 then the forw Q?] is identically null; in other words, one has:

if we introducen conveniently chosen linear for@s @, ..., &

n"

If we substitute this in the latter relations (10) thenoftain:
[We (@ +@)]=0.

From this, one deduces tliatdepends only upom, &, a, if | andk are two arbitrary
values for then — 1 distinct indices of. Since one supposes the$ 4, this is possible
only if @is proportional tow; howeverQ?is then identically null.

As a resultjf n $ 4 then, outside of conformal space, properly speaking, there exists
no manifold with a conformal connection for which the conformal displacemenisthat
associated with an arbitrary infinitesimal closed contour with origiedves the point P

and all of the directions that issue from P invariant.
On the contrary, ih = 3 then such manifolds do exist; one easily veritias if one

forms the expressions that one develops fijm

Qf: am[a}af’] + 3131[&}&}] + 3112[0}(4}],
Q) = apod W + apa W] + apad W ],
ng 8323[&}&}] + 8331[0}0}] + 3312[(4}(‘}]

then the matrix of coefficients of the right-handesid symmetric and the sum of the
elements on the principal diagonal is null.

lll. One obtains a category of manifolds that is everremgeneral than the
preceding one when one supposes that the conformal chismat that is associated with
an infinitesimal closed contour that starts from dniteary pointP leaves the poinP
invariant. One then says that the manifoldihout torsion

This property is characterized by the relations:

Q'=0, Q?=0,..Q"=0.
One then has the relations:

[ QY] —zn:[an‘k] =0, (=1, 2, ...n
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betweenQ] and Q’. A particular case is the one for which one als® @g = 0. This

hypothesis expresses the fact that if one makes an innerkthe poinP at infinity then
the conformal displacement that is associated witinfnitesimal closed contour that
issues fromP reduces to a Euclidian displacement (which preservagths). In this
case, one has the relations:

Zn‘,[ai‘QL] =0, (=12 ..n)
Zn:[an‘,Z] =0.

k=1

The curvature tensor.

12. The coefficients of the forn@', Q2,Q°, QJ constitute densor,in the sense that

if one effects a change of frame in the conformpalce that is attached to a pdhof the
manifold then these coefficients are subjected tmear substitution (the totality of
which forms a group). _

The coefficients of the form@' also form a tensor in their own right because the
annihilation of all of these coefficients givesiatrinsic property of the manifold that is
independent of the particular choice of frame. 3&me is true for:

The coefficients of tha+1 formsQ', Q9,

The coefficients of th@formsﬂi, Q/,

2+n+ - .
The coefficients of th{g%zformsQ', Q,Q).

We will show later on that there also exist otrenarkable tensors that are formed
from the components of the curvature tensor. Hbeere exists a fundamental difference
compared to the manifolds with affine connectioranely, the curvature tensor may not
be decomposed iniaeducibletensors.

Isomorphism of manifolds with conformal connections.

13. Two n-dimensional manifolds with conformal connections @alledisomorphic
when one may establish a point-wise correspondbatigeen these two manifolds such
that if the frame that is attached to each pointheffirst one is chosen arbitrarily then
one may chose choose the frame that is attachi feoints of the second one in such a
manner that the components of the conformal cororecion the two manifolds are all
equal. It is obvious that the intrinsic geomepioperties of two isomorphic manifolds
are identical; they basically define the same nadohivith a conformal connection. One
may consider a less complete isomorphism that oy mall a meromorphic
isomorphism Imagine two n-dimensional manifolds with conformal connections,
between which one has established a point-wiseegpondence. Suppose that one has



Spaces with conformal connections 15

likewise established a (conformal) correspondence betwieenpoints of the two
conformal spaces that are attached to two correspondingspA and B, of the two
manifolds, which amounts to saying that to any frameighattached t@ one associates
a frame that is attached to the corresponding pBintimagine further that one has
brought the two frames®Rj and © that are attached to the two particular correspandi
pointsA andB into coincidence. In order to pass from the frarhaes @re attached to two
infinitely close corresponding poinésandB' one must give two infinitesimal conformal
displacements to the frameR) @nd §). In the case of a holomorphic isomorphism these
two displacements are identical, but in the case oeeomorphic isomorphism they no
longer are, and the infinitesimal displacement oé af the framegelative to the
displacement of the other is constrained to belonggiven linear sheaf of infinitesimal
conformal transformation; however, in order for thistest@nt to correspond to an
essential geometric property, it is necessary thatstieaf must remain invariant under
the conformal displacements that fix the poat For example, this sheaf might consist
precisely of the displacements that fix the pofgt or perhaps from two of these
displacements that leave all of the directions id&te fromA invariant.

To each type of linear sheaf that is invariant under subgnowb conformal
displacements that fix the poiAtthere will correspond a definite type of meromorphic
isomorphism. Denote the components of the conformanecions on the two

manifolds byw' and @', and letd be the symbol for the differentiation that acts ooty

the arbitrary parameters that depend upon the choiceaaief at the two given
corresponding points. If we write:

@ ()= ¢
then we will see that one has:
€=e=0.

When one displaces on the two manifolds along two qooreing paths one will
have, by hypothesis, a certain number of relationkeofdrm:

(11) ad +aal+> daw +> 4@, =y ad +uf+Y. da) +> 4,

which have constant coefficients, and these relationst memain invariant under any
change of frame, provided that this change is the sambolthn manifolds. Now, by
virtue of formulas (4), one has:

daf= -y o +dg,
06y = ) el + Y[ e ~ ]+ e

daf = a°az§’—e§’w°+ki_[éa¢°— &uf1+ dé
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One obtains similar formulas by replacing e with @' . From this, one deduces:
8@ ~a)) = (@ ~0)~Y 4@ ~ ),
o - af) ==Y €@ - ),

(12) :
0@ -) =@ -a)-§@ )+ X[ E(@ -) - B -d))]

5(‘740‘040)=G°(f7)o°—wo°)—%°@°—ae‘>+i[é(@°—a,23 - @ -]

All that remains for us to do is to express that tHatimms (11) must remain
invariant when one subjects tli@ —«) to variations that are given by formulas (12),
regardless of the quantities,e’, €. A simple calculation shows that rif # 3 then
relations (11) can have five possible forms:

1. @=d i=1,2 ..n),
2. W=d, @ =af i=1,..n),

.W=0d, @ =¢f @,j=1,....n),
4. W=0, @ =df & =af (,j=1,...,n),
5. 0=0d, @ =) &=, & =af (,j=1,..,n).

The fifth case corresponds to the holomorphic isomorphigs for the first one, it
reduces to the second one; in other words, if one is givpaintwise correspondence
between the two manifolds then one may define a spomence between the two
frames that are attached to the corresponding poirgsdh a manner that one has=
&, and one may also define this correspondence of frangsh a manner that oaéso
has @ = «f. Indeed, suppose that the frames are chosen in iaedaner on the first

manifold and that they are chosen on the second onglmasmanner that one has:
@ = .
One will then have a relation of the form:
@ =af+ pdd + pdd + ..+ .

Let A A,...,A,, be the hyperspheres that define the frame that ishetlaio the
pointAof the second manifold; now, take another frame:
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A=A, A=A+pA, A= A= AA-S(pI++P0) A,
i=1
We will have:
dA=dA=af A+ D o A= (@ -) p@d)+) @ A
One sees, moreover, that with this new choiceaoshé the relations:
@=d

remain invariant, but they must be combined wighrilation:

14. From this,there exist three types of meromorphic isomorphism between two
manifolds with conformal connectignshich respectively translate into the relations:

@=d,  a=df
@=d @@=,
@z @=d. d=df

If the pointsA andA of the two manifolds that one has brought intoncimience are
mapped to infinity under an inversion then the treéamotion of the two framed$j and
(S amounts to:

an arbitrary Euclidian displacement for the firsgpe of meromorphic
isomorphism,

an arbitrary homothety (or a translation) for seeond type,

a translation for the third type.

One see that in the three cases the linear sheaihfimitesimal conformal
displacements generates a grup

The condition of meromorphic isomorphism of thestfitype may be stated in a
geometrically simple form:

In order for two manifolds to be meromorphically isomorphic of the fyse, it is
necessary and sufficient that one must establish a pointwise correspendetween
them that preserves angle®,., that preserves the equation:

ds’ = 0.
The condition is obviously necessary, sinced#feof a manifold is:

()? + (F)? + ... Hd)

1) This conclusion may be false for manifolds with anneir Euclidian connection.



Spaces with conformal connections 18

It is also sufficient since if, given an arbitrary @ of frame attached to the second
manifold, one has:

(@) + (@) 2+ +(@) = 1[()* + () + ... HD)]]

then one will obviously modify this frame in such a mantieat one satisfies the
relations:

W=

Finally, we remark that for a meromorphic isomorphismhef third type there is a
pointwise correspondence that not only has a conformaseptation, but also preserves
torsion (for two arbitrary corresponding surface eletslenThis results from the fact that
the formulas:

G=d =, &=

give, by exterior differentiation: _
Q=Q".

15. If two manifolds with conformal connections are withtatsion then the three
types of meromorphic isomorphism reduce to just one. dlha#ons:

D=0  @=df
imply, in effect, that:

n

2l (@ —a))] =0,

k=1
from which:

i=a;

£l

likewise, the relations:
@ =4, @ =,
imply that:
[(&f -af)a] =0,

from which one has:
— 0

@ =af.

Normal manifolds with conformal connections.

16. Among all of the manifolds with conformal connecis that are
meromorphically isomorphic of the first type to &em manifold there is one that is
distinguished from all of the other ones by somaratteristic properties.

Start with an arbitrarily given Monge equation:
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2 Ok du du =0,

and consider an arbitrary manifold for which this equatidimds isotropic directions. If
we decompose the left-hand side of that equation into a$arequares:

> g du du = () + (F)* + ... +H(J)?

then we will have the right, without making any resiviethypothesis on the conformal
connection on the manifold, to suppose thatd¢hare the components of the conformal
connection that we previously denoted by the same notatimhwe will also have the

right to suppose thaf . The frame that is attached to each point of theifimld, which

is assumed to have a given conformal connection, msdbmpletely determined.
It is now easy to show that there exists one and @mdysystem of form& such that
one has:

(@)=Y (e ed] (=1, )

this choice of forms amounts to attributing nulision to the manifold.
Having thus chosen tle , it is possible to ann@]; indeed, the formula:

() = 0 =Y [aef)

is compatible with an infinitude of different chei for the components’. One has, in
a general manner:

Finally, consider the formula:

(@) =lGaf) L] + D] )+

From it, one deduces that:

0/=(@)y - Yld @] -> Al ] + Y AL S
If one sets:

Q=S Alld ],
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then one sees that one has:

Aijk:aiijk_Ajk k?1i,])
Ajjk :aijjk +Aik (k? t J)
Aﬁp‘ :ai;J ~4 -4

A =ay K21, J),

in which thea), denote well defined coefficients. As a result, onié vaive:

S A=Y - (-DA - Ay (=1, 1)
S A=Y al - (n-2) (2i=1, ...

From this, one immediately deduces that it is gmesin one and only one manner, to
choose the coefficientd; in such a way that one annuls the left-hand smlethe
preceding equation. Due to the symmetry ofAhehis meanwhile necessitates the proof
of the equalities:

A=A (2] ?K.

Now, these equalities follow from the identity:
Z[w"Q';] =0 k=1, ...,n),
p=1

which is itself a consequence of the fact that fillens Q' andQ? are null. Upon
equating all of the terms indaw’ o] in this identity to zero one obtains precisely:

A;(k _A;(ik =0.

17. If one starts with a given Monge equation, itthgis possible to define a
conformal connection that satisfies the relations:

Q'=0, Q=0 > A =0.
k=1

However, the proof has been carried out by makergge hypotheses on the frame that
is attached to each point of the manifold. Onetrmesv prove that the preceding

relations persist for any other choice of framehe property of the' andQ) being null
obviously has an intrinsic significance, as we hseen above.
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In order to show that the latter relations have aariant significance, imagine that
we have chosen the most general frame possible atpEact) and letd denote the
symbol for differentiation of only the parametetswhich depend upon the choice of
frame, but not on the parameterswhich localize the point of the manifold.

The formulas:

Q' - [ HIQTH QU] 1 fQ) =0
show us that one has:
X/=3(gQ)-gQ)),
k=1

if we writee’ in place oty (9) .
Likewise, the formulas:

() =[eed] + Y o )

show us that one has:

The relations thus obtained give us the infinitedivariations that the forma), Q! are
subjected to under an infinitesimal change of fraf®&e thus obtains, without difficulty:

S, =—2e8A.i.+i:l(¢’ A-6 A+ &R+ B,

and as a result, after some simplifications:

O Al =-260) A +D &> M +> €> A
k=1 k=1 p=1 k=1 p=1 k=1
One thus sees that the relations:
Z A;(k =0
k=1

remain invariant under any change of frathe

We have therefore proved precisely thiatne is given an n-dimensional numerical
manifold then among all of the conformal conneditivat are attributed to that manifold
and are compatible with a Monge equation:

2. Ok du duc =0,

1) In the case = 4, the space-time for which th€ is (o})? + (<f)? + (F)* + (¢f)? enjoys the property
that its Einstein tensor is null.
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which is given a priori in order to define the isotropic tangents on itieifold, there
exists one and only one conformal connection that satisfies the charactetestions:

Q=0 Q=0 > A =0.
k=1

We agree to say that the manifold is endowed witloranal conformal connection; we
also say that we are dealing with a normal manifold widonformal connection.

Normal manifolds with conformal connections, which armpletely defined by the
equation that is obtained by annulling the#, play the same role in the theory of
manifolds with conformal connections that Riemannian mésfdo in the theory of
manifolds with metric connections.

Three-dimensional normal manifolds.

18. The case of three-dimensional normal manifolds isquéarly interesting. One
has:

Q; = A w'w]+ Al wwl + ALwwl
Q= A wwl + Al wwl + A wwy
Qf = Ayl + Al wwl + Afwwf .

The following sets of relations exist between theseetliorms:
1. The relations:

[an;] +[a)3§2§ =0,
[0 &) =0,
[(JQf] +[a)2§2§| =0,

wheneveiQ', Q% Q% Q%are null; they give:
'A§l23l: A:l;lZ’
Aj’12: 223’
A1;-23: Aj,3l'
2. The relations:
Alzlz + %131: 0, Ajza + A1212: 0, Aisf*' Agzez 0,
A:zlglz 0, A3.212: 0, Af’zaz 0,

whenever the manifold is normal. These relationslyntpe nullity of all of the
coefficients. As a result, the foria$ are all null.
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In other wordsthe infinitesimal displacement that is associated with an infimts
closed contour that starts at a point P and returns to it leaves the pamvariant along
with all of the directions that issue from iPjs an elation with centd?.

The fact thatQ', Q% Q% Q% Q3% Q% Q2are null implies the following relations
betweer?,Q3,Q3:
[ H Q) { w0 =0,
[w'Q3] {w] =0,
[WQ)] Q) =0.

From this, one immediately deduces the formulas:

Q) =qa, [’ + B] Ww] + B] wwi |
Q=B &) +af wwl + A wwi
Q;= B[] + Bl W) +af wwt

in which the coefficientsn, a», as have a null sum.

19. Consider a parallelogram that has the pBifir one of its vertices, and the two
(infinitesimal) sides that issue frofmhave the projections:

(x4, %, %) and ¢ V%Y.

The elation that is associated with a contour (or)faxfethis parallelogram has the
components:

a(CY’ =) + B(Cy = XYY) + B(XY =Xy,

LY —X°YP) + an(Cyt —X'y) + B(XY — Xy,

By =X + BiCY =X + as(Xly’ — Xy,

To abbreviate, we set:
u =Xy =Xy, U =Xy =Xy, Us = X'y =Xy

the quantitiess;, up, uz may be regarded as the direction parameters of tine plathe
face. One sees that the elation that is associaitbdthis face has an ax® whose
direction has the direction parameters

mup + B + aoUs,  [SsUr + aoln + Bils,  Bour + Bilp + asUs;

this is the conjugate direction to the plane of the Vaitde respect to the con€) that has
the tangential equation:

') This must say that the elation leaves invariantfathe circles that pass throughand are tangent to
that diection aP.
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alulz + a2u§ + a3u:2% + 2ﬁ1u2u3+ Zﬁ 2u3ul+ 2ﬂ 3ulu: O
The cone €) thus has an invariant significance. The relation:
atat+az=0

shows thatt is capable of circumscribing a tri-rectangular triad.

From the point-wise viewpoint, this cone defines the timas that issue fron®
such that thelationsthat admit one of these directions for their axesassociated with a
face that contains that same direction. As a@aei case, the con€) may be reduced
to three (rectangular) lines or to an (isotropic) doulne.| It would be interesting to
know the degree of generality of the normal manifoldsafbich this latter circumstance
presents itself. In the general case, the elations ate associated with the closed
contours that start from a poiRtand return to it admit arbitrary directions for thexes.
In the case where the cor@) (reduces to two rectangular lines, the axis of theoslas
always situated in the plane of these two lines. Kinaihen the coneQ) reduces to an
(isotropic) double line, all of the elations have that foretheir axis.



