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Spaces with conformal connections 

 
By 

 
E. CARTAN †. 

 
 

The goal of the present memoir is the study of the essential properties of what I call 
spaces with conformal connections.  It is a sequel to a very important memoir that is 
dedicated to the theory of spaces with affine connections and spaces with metric 
connections that will appear next in the Annales de l’Ecole Normale Supérieure; it may 
be read independently of the latter with no loss of rigor.  Either of them constitute the 
development of some Notes that I have published throughout the last year in the Comptes 
Rendus de l’Académie des Sciences de Paris 1).  The notion of a space with an affine 
connection is not absolutely new, since it has been considered, at least in the special case 
of what I call spaces without torsion, by various authors, especially H. Weyl and 
Eddington, who have been led to such a notion in their remarkable work on the general 
theory of relativity 2).  On the other hand, the notion of a space with a conformal 
connection is essentially new, since the viewpoint that was taken by the preceding 
authors in order to edify the notion of a space with affine connection seems to exclude 
any generalization of that type. 

This memoir is divided into two chapters.  The first one is occupied with the 
properties of spaces with conformal connections in their own right.  The second chapter 
is occupied with the properties of manifolds that are embedded in a given space with a 
conformal connection.  In that regard, it poses problems that are analogous to the ones 
that arise in the study of the properties of surfaces vis-à-vis the group of conformal 
transformations of that space; in particular, I will cite the problem of the conformal 
representation or first order deformation of hypersurfaces, to which I have dedicated a 
memoir several years ago in the case of a space of dimension more than four 3). 

In the present memoir, I will prove that in a four-dimensional space with conformal 
connection the hypersurfaces that admit a conformal representation on other distinct 
hypersurfaces are exceptional and depend upon three arbitrary functions of two 
arguments; this is a result that I have previously announced in the case of a four-
dimensional conformal space 4).  As an application, I will give several indications on the 
nature of the surfaces that admit a second order deformation in a normal three-
dimensional space; these surfaces generalize the isothermal surfaces in ordinary space. 

                                                
† Translated by D.H. Delphenich. 
1 Comptes Rendus Paris, t. 174, pp. 487, 593, 784, 857, 1104; see, especially, “Sur les espaces à 
connexione conforme,” pp. 857-860. 
2 H. Weyl: Raum, Zeit, Materie, 4th edition; A.S. Eddington, Espace, Temps et Gravitation. 
3 E. Cartan, “La déformation des hypersurfaces dans l’espace conforme réel à n $ 5,” Bull. Soc. Math. de 
France, t. XLV, pp. 57-120 (1917). 
4 E. Cartan, “Sur le problème général de la déformation,” C.R. Congrès de Strasbourg, pp. 397-406 (1921). 
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In this memoir, I employ the notations and methods of the memoirs that I have 
already dedicated to Differential Geometry 1). 

 
 

First Chapter. 
 

Definition and properties of manifolds with conformal connections. 
 

Conformal space, conformal transformations. 
 

 1.  Consider an n-dimensional space that is referred to a rectangular coordinate 
system.  Any hypersphere may be defined by an equation of the form: 

 
2 2

0 1( )nx X X+ +⋯ − 2x1X1 − 2x2X2 − … − 2xnXn − 2xn+1 = 0, 

 
with a system of n+2 homogeneous coordinates x0, x1, …, xn+1.  The condition that the 
hypersphere have a null radius is expressed by the relation: 
 

Φ ; 2 2
1 nx x+ +⋯ + 2x0xn+1 = 0. 

 
Conformal transformations may be defined analytically defined by linear substitutions 
that act on the variables x0, x1, …, xn+1 and leave the form Φ invariant; they therefore 
preserve the hypersphere of null radius, and because of that they may be considered to be 
point transformations, when each point of the space is associated with the hypersphere of 
null radius whose center is at that point.  Conformal geometry has the goal of studying 
the properties of figures that remain invariant under an arbitrary conformal 
transformation; we therefore say that it has the object of describing a theory of conformal 
spaces. 

An arbitrary set of n+2 coordinates (x0, x1, …, xn+1) that are not all null will define 
what we will call, in a general sense, a hypersphere, and that we will denote, for the sake 
of abbreviation, by a letter such as X.  The symbols X and mX, in which m is an arbitrary 
numerical coefficient, will thus denote two distinct hyperspheres, although they are 
identical from a geometrical viewpoint. 

A unit hypersphere will be defined by the condition that Φ has the value 1 for all of 
its coordinates.  In a general manner, we will call the expression: 

 

XY =
1

2 i
i

y
x

∂Φ
∂∑ =

1

2 i
i

x
y

∂Φ
∂∑  

 
the scalar product of two hyperspheres X and Y; this scalar product remains invariant 
under a conformal transformation.  A unit hypersphere is characterized by the condition 
                                                
 1 The reader may especially consult the memoir cited above (note 1) for the methods that are employed, 
and also my Leçons sur les Invariants intégraux, Paris, Hermann, 1922, especially chapters VI and VII.  
One may also confer the summary of properties that were used for Pfaff systems in involution in a memoir 
in the Bulletin de la Soc. Math. de France, t. XLVIII (1920), chap. III, pp. 136, et seq. 
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that its scalar square is equal to 1.  Two orthogonal hyperspheres are characterized by the 
property that their scalar product is null. 

The scalar square of a hypersphere-point – or, more simply, a point – is null; a 
hypersphere passes through a point when the scalar product of that point and the 
hypersphere is null. 

 
 

 2.  One may find a system of (n+2)-spherical coordinates in an infinitude of ways.  It 
suffices to consider n mutually orthogonal unit hyperspheres A1, …, An and two points A0 
and An+1 that are common to these hyperspheres, when one subjects the two indeterminate 
factors that enter into these coordinates to the condition that the scalar product A0 An+1 is 
equal to 1.  One will thus have: 

2
1A = … = 2

nA = A0An+1 = 1, 

 
and all of the other scalar products that relate to pairs of the n+2 hyperspheres, whether 
distinct or identical, are null. 

Any hypersphere X may then be put into the form: 
 

X = 0 0 1 1 1 1n nx A x A x A+ ++ + +⋯  

 
in one and only one manner, and one will have: 
 

X2 = 2 2
0 0 12n nx x x x++ + +⋯ ; 

 
the formulas that permit us to pass from the old coordinates xi to the new onesix thus 

define a conformal transformation.  The initial system of coordinates may be regarded as 
a particular system of n+2-spherical coordinates in which the coordinates of the 
hypersphere are the origin of the coordinates for A0, the n coordinate hyperplanes for A1, 
…, An, and the hyperplane at infinity for An+1 (which is regarded as a hypersphere of null 
radius).  To abbreviate, we refer to the set of the n+2 hyperspheres A0, A1, …, An+1 as a 
frame. 

 
3.  Consider a moving frame that depends upon one or more parameters.  It is 

obvious that one will have the formulas: 
 

(1)  

0 1 1
0 0 0 0 1 0 1

0 1 1
1 1 0 1 1 1 1

0 1 1
1 1 0 1 1 1 1,

n
n

n
n

n
n n n n n

dA A A A

dA A A A

dA A A A

ω ω ω
ω ω ω

ω ω ω

+
+

+
+

+
+ + + + +

 = + + +
 = + + +


 = + + +

⋯

⋯

⋮

⋯

 

 
in which the j

iω are linear with respect to the differentials of the parameters. 

These (n+2)2 expressions j
iω are not arbitrary, because one must obviously have: 
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Ai dAj + Aj dAi = 0, 
 
for any values of the two indices i, j, distinct or not; this amounts to saying that all of the 
scalar products AiAj are constant.  One easily deduces the following relations, which are 
fundamental: 

(2)  

1 0 1 0
0 1 1 0

1 0
0 1

0, ,

, , ( 1,2, , )

0, 0, ( , 1,2, , ).

n n
n n

i n i
i n i

i j i
i i j

i n

i j n

ω ω ω ω
ω ω ω ω
ω ω ω

+ +
+ +

+
+

 = = = −
 = − = − =
 = + = =

⋯

⋯

 

 
What thus remain are the expressions for the independent j

iω : 

 
0
0ω = 1

1
n
nω +

+− , 0
iω = 1n

iω +− , 0
iω = 1

i
nω +− , j

iω = i
jω− ; 

 

they number
( 1)( 2)

2

n n+ +
.  Moreover, the maximum number may be attained since the 

most general frame depends upon precisely
( 1)( 2)

2

n n+ +
parameters. 

 
4.  It is obvious that the passage from a given frame to an infinitely close frame may 

be obtained by an infinitesimal conformal transformation, and that the quantitiesjiω may 

be regarded as the components of that conformal transformation.  It is of interest for one 

to study the geometric properties of the
( 1)( 2)

2

n n+ +
infinitesimal conformal 

transformations that correspond to the
( 1)( 2)

2

n n+ +
distinct components j

iω .  They fall 

into three different types. 
First, take the transformation whose only non-zero component is 0

0ω = 1
1

n
nω +

+− .  It 

gives: 
dA0 = e A0, dAn+1 = − e An+1,  dAi = 0; 

 
the hypersphere ∑ xi Ai is then transformed into the hypersphere: 
 

∑ (xi + dxi) Ai, 
with: 

dx0 = e x0, dxn+1 = − e xn+1, dxi = 0. 
 
If the point An+1 is at infinity then one sees that the point whose Cartesian coordinates 

are
0

ix

x
is transformed into the points whose coordinates are (1 – e) 

0

ix

x
; one has thus 

effected a homothety with center A0.  In the general case, we will have what we call a 
conformal homothety with centers A0 and An+1; since all of the circles that pass through 
the two centers of the homothety remain invariant, a point M of one of these circles will 
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be transformed into an infinitely close pointM ′ of the same circle, with the condition that 
the anharmonic ratio of the four (geometric) points M, M ′ , A0, An+1 must be equal to a 
given fixed ratio. 

A second type of infinitesimal conformal transformation is obtained by giving one of 
the components0

iω or 0
iω a value that is different from zero, all other components being 

null.  For example, take1
0ω  = 1

1
nω +− = e.  One will have: 

 
dA0 = e dA1, dAn+1 = 0, dA1 = − e An+1,  dA2 = … = dAn = 0, 

 
and, as a result: 
 

dx0 = 0, dx1 = e x0, dx2 = … = dxn = 0, dxn+1 = − e x1. 
 

If the point An+1 is at infinity then the point whose Cartesian coordinates are 1

0

x

x
, 2

0

x

x
, 

…,
0

nx

x
 is transformed into the point whose coordinates are1

0

x

x
+ e, 2

0

x

x
, …,

0

nx

x
; one has 

effected a translation.  In the general case, we say that the translation is an elation (?) of 
center An+1.  There exists a family of circles that pass through An+1 that are all tangent to 
each other at that point, and each circle of that family remains invariant under the 
transformation in such a manner that its points are transformed into each other in a 
parabolic manner; the hyperspheres that are orthogonal to these circles and pass through 
An+1 (here, the hypersphere A1 + ρ An+1) are transformed into themselves. 

One will likewise have an elation of center A0 if one gives 0
1ω  = 1

1nω +− a value e that 

is different from zero. 
Finally, a third type of infinitesimal conformal transformation is obtained by giving, 

for example, 2
1ω  = 1

2ω−  , a value e that is different from zero.  In this case, one has: 

 
dA0 = 0, dAn+1 = 0, dA1 = e A2, dA2 = − e A1,  dA3 = … = dAn = 0, 

 
and, as a result: 
 

dx0 = dxn+1 = 0, dx1 = − e x2, dx2 = e x1, dx3 = … = dxn = 0. 
 
All of the points (which consist of A0 and An+1) that are common to the hyperspheres A1 
and A2 remain fixed, while the hyperspheres of the sheaf λA1 + µA2 are interchanged 
among themselves in such a manner that each makes a fixed (infinitesimal) angle with its 
transform.  One thus has a rotation that has the hypercircle [A1A2] that is the intersection 
of A1 and A2 for its axis.  Under this rotation, each point M describes an arc of the circle 
that is normal to the hypersphere λA1 + µA2 that passes through that point. 

If n = 3 and if the circle [A1A2] is reduced to a line then one obtains an ordinary 
rotation with that line for its axis. 
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5.  In summary, if one is given two points A and B of the conformal space then any 
infinitesimal conformal transformation may be decomposed in one and only one way 
into: 

1.  An elation with center B. 
2.  An elation with center A. 
3.  A homothety with centers A and B. 
4.  A rotation around a hypercircle that passes through A and B. 
 
If the point B is at infinity then the elation with center B becomes a translation and 

the homothety with centers A and B becomes an ordinary homothety with center A.  The 
elation with center A, the homothety, and the rotation leave the point A invariant.  
Moreover, the elation with center A and the homothety changes any circle that passes 
through A into a tangent circle; in other words, it leaves all of the directions that issue 
from A invariant.  Finally, the homothety is the one and only transformation that leaves 
all of the circles that pass through A and B invariant. 

We remark that when one is given the point A the decomposition of an infinitesimal 
conformal transformation into two other ones, one of which fixes the point A0, may not 
be carried out in an invariant manner, as would apply to displacements in Euclidian 
space.  Indeed, in the latter space the decomposition into a translation and a rotation 
around A has an absolute significance; this is no longer true in conformal space, in which 
the translation is replaced with an elation whose center is arbitrary. 

 
The structure equations of conformal space. 

 
6. They may be obtained by saying that the integrals: 
 

∫ dA0,  ∫  dA1,  …, ∫ dAn+1, 
 
are null when taken over an arbitrary closed contour. 

One thus obtains the relations: 
 

( )j
iω ′ = 0 1 1

0 1 1[ ] [ ] [ ]j j n j
i i i nω ω ω ω ω ω+

++ +⋯ , 

 
in which( )j

iω ′ denotes the (bilinear covariant) exterior derivative of j
iω . 

If one preserves only the independent expressions0
iω , ωi , 

0
0ω , j

iω then one obtains: 

 

(3)   

0 1 0 0
0 0 1 0

0
0 0 0 0

1

0 0
0 0

1

0 0 0 0
0

1

( ) [ ] [ ],

( ) [ ] [ ],

( ) [ ] [ ] [ ],

( ) [ ] [ ].

n
n

n
i i k i

k
k

n
j i j k j

i j i i k
k

n
k

i i i k
k

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω

=

=

=

′ = + +

 ′ = + +


 ′ = − +

 ′ = +


∑

∑

∑

⋯

⋯
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These are the desired structure equations. 
 
 

Manifolds with conformal connections. 
 

7.  Consider an n-dimensional manifold and attach an n-dimensional conformal 
space to each point P of this manifold that we frame by means of a system of n+2 
hyperspheres A0, A1, …, An+1, the first of which will be identified (as far its position is 
concerned) with the point P itself.  The given manifold will be said to have a conformal 
connection if we give it a law (which is arbitrary, moreover) that permits us to refer (in a 
conformal manner) the conformal space that is attached to an infinitely close pointP′ .  If 
we call 0 1 1, , , nA A A+′ ′ ′⋯ the frame that is attached to the pointP′ then this says that we have 

associated the hyperspheres0 1 1, , , nA A A+′ ′ ′⋯ in the conformal space that is attached to the 

pointP′with the hyperspheres: 
A0 +

0 1
0 0 0 1 0

n
nA A Aω ω ω+ + +⋯ , 

A1 +
0 2 1
1 0 1 2 1 0 1

n
n nA A A Aω ω ω ω ++ + + −⋯ , 

… 
An+1 − 0 0 0

1 1 2 2 0 1nA A Aω ω ω +− − −⋯  

 
in the conformal space that is attached to P.  To abbreviate, we write: 
 

dA0 =
0
0 0 0

i
iA Aω ω+∑ , 

dAi =
0

0 0 1
i k

i n i kA A Aω ω ω+− +∑ , 

dAn+1 = 0 0
0 1n i iA Aω ω+− −∑ , 

 
and we say that the frame that is attached toP′  is deduced from the frame that is attached 
to P by an infinitesimal conformal transformation whose components 0 0

0 0, , ,i j
i iω ω ω ω are 

linear expressions in the differentials: 
 1.  of the parameters u1, …, un that define the position of a point P on the given 
manifold. 
 2.  of the parameters vi that depend at each point of the manifold on the frame 
attached to that point.   

If that frame is chosen in the most general manner possible then it depends 

upon
2 2

2

n n+ +
 parameters.  It is essential to remark that the n components 1 2

0 0 0, , , nω ω ω⋯  

depend upon only the differentials of the parameters u, since if one leaves the parameters 
u fixed then the point P does not change, the point A0 no longer changes in position, and 
dA0 may depend only upon A0.  From now on, we write A instead of A0 and ωi instead 
of 0

iω . 

Finally, we say that the expressions0 0
0 , ,i

iω ω ω are the components of the conformal 

connection of the manifold.  They naturally depend upon the frame that is attached to 
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each point of the manifold; if one changes this frame then it is modified according to 
formulas that are not difficult to write down. 

One may remark that the scalar square (dA)2, which is equal to: 
 

(ω1)2 + (ω2)2 + … +(ωn)2 , 
 

represents, up to a factor, the square of the distance between two points P andP′ , a 
distance that results from the conformal connection on the manifold. 
 
 

The structure equations of manifolds with conformal connections. 
 
8.  If one considers a closed infinitesimal contour on such a manifold then when the 

integrals ∫ dAi are taken around that closed contour they make no sense in themselves, 
since there is no absolute conformal space with respect to which one may frame the 
conformal spaces that are attached to the various points of the manifold.  However, if one 
frames the conformal spaces that are attached to the points of the contour, which is 
assumed to be infinitesimal, with respect to the conformal space that is attached to a fixed 
point Q that is infinitely close to the contour then the preceding integrals take on a sense, 
and one obtains: 

idA∫ = ( )k h k
k i i hA ω ω ω′ − ∑ ∑∫∫ =

1

0

n
k
i k

k

A
+

=
Ω∑∫∫ . 

 

One thus arrives at a system of 
( 1)( 2)

2

n n+ +
differential forms of second 

degree 0 0
0, , ,i j

i iΩ Ω Ω Ω that are defined by the formulas: 
 

(4)  

0 0 0
0 0

1

0
0

1

0 0

1

0 0 0 0 0
0

1

( ) [ ] ,

( ) [ ] [ ] ,

( ) [ ] [ ] [ ] ,

( ) [ ] [ ] .

n
k

k
k

n
i i k i i

k
k

n
j i j k j j

i j i i k i
k

n
k

i i i k i
k

ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω

=

=

=

=

 ′ = + Ω

 ′ = + + Ω


 ′ = − + + Ω


 ′ = + + Ω


∑

∑

∑

∑

 

 
We may take a little more general viewpoint.  At each point of the manifold attach a 

hypersphere: 
X = x0A0 + x1A1 + … + xn+1An+1 , 

 
according some arbitrary law, and calculate the integral ∫ dX when taken over an 
infinitesimal closed contour.  We have: 
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dX = ∑ dxi Ai + ∑ xi dAi, 
 
from which, upon taking the exterior derivative and remarking that dAi is not an exact 
differential, we have: 
 

( )dX ′ = − ∑ [dxi dAi] +  ∑ [dxi dAi] +  ∑ xi ( )idA ′ = i k
i kx AΩ∑ . 

 
One thus has: 

∫ dX = i k
i kx AΩ∑∫∫ . 

 
Since the contour is given, the differential element in the right-hand side depends 

only upon the components xi of the hypersphere X at a point of the contour. 
In other words, to any infinitesimal closed contour that starts at one point P in the 

manifold and returns to it there is associated an infinitesimal conformal displacement that 
transforms any hypersphere X of the conformal space that is attached to P into an 
infinitely close hypersphere X + ∆X; this displacement is therefore defined analytically by 
the formulas: 

(5)    ∆xk =
1

0

n
k i
i

i

x
+

=
Ω∑   (k = 0, 1, …, n+1). 

 
The components j

iΩ  of this infinitesimal displacement – by their very nature – are double 
integral elements that involve only the differentials dui of the parameters that define the 
position of a point on the given manifold; they may not involve the differentials of the 
other parameters, which may possibly depend upon the frame that is attached to each 
point of the manifold.  In other words, one has expressions of the form: 
 

j
iΩ =

1, ,

,

[ ]
n

j k l
ikl

k l

A ω ω∑
…

, 

 
in which the j

iklA  may depend upon all of the parameters ui and vi. 

The infinitesimal conformal displacement that is associated to any infinitesimal 
contour that is traced out on the given manifold defines the curvature of the manifold, 
and equations (4) are the structure equations of the manifold with the given conformal 
connection. 

 
9.  One may present things in a manner that has a more intuitive sense. 
Consider a path on the manifold that joins two points P and Q.  One may recursively 

associate the conformal space that is attached to a point M of this path to the conformal 
space that is attached to the point of departure.  For this, it suffices to remark that if one is 
given a frame at each point M then the components jiω  may be put into the form j

ip dt  

when one displaces along the path considered; t denotes parameter that defines the 
position of a point M on the path and j

ip denotes a chosen function of t.  One will then 

have, upon displacing along the path: 
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(6)   

00
0 0

0
0 1

0 01
0 1

,

,

.

i
i

i ki
i n i k

n
n i i

dA
p A p A

dt
dA

p A p A p A
dt

dA
p A p A

dt

+

+
+

 = +

 = − − +

 = − −


∑

∑

∑

 

 
One may regard these equations as linear ordinary differential equations in the unknowns 
A0, …, An+1; in the general solution of these equations, which are assumed to be 
integrable, one will replace the initial values of the unkown functions by the hyperspheres 
that define the chosen frame at P, and one will therefore have the frame that is attached to 
an arbitrary point M, which is referred to the frame that is attached to the point P.  In 
other words, one will refer the conformal space that is attached to M to the conformal 
space that is attached to P. 

One may proceed further in the following manner: 
The conformal connection permits us to identify the hyperspheres of the space that is 

attached to a point of the manifold with the hyperspheres of the space that is attached to 
an infinitely close point.  This identification is obtained by the symbolic identity: 

 
d(∑ xi Ai) = 0, 

or: 

(7)    dxi +
1

0

n
k i

k
k

x ω
+

=
∑ = 0  (i = 0, 1, …, n+1). 

 
If one replaces i

kω  with i
kp dt  in these relations then one will have a system of linear 

differential equations whose integration will allow us to know what hypersphere in the 
conformal space attached to M is identified with a given hypersphere in the conformal 
space that is attached to P.  These formulas are of the form: 
 

(7 )′     xi =
1

0
0

( )
n

i k
k

k

a x
+

=
∑    (i = 0, 1, …, n+1), 

 
in which the i

ka are given functions of t, the (xk)0 are the coordinates of a hypersphere in 

the conformal space that is attached to P, and the xi are the coordinates of the 
corresponding hypersphere in the conformal space that is attached to M. 

The linear substitution that is defined by the preceding formulas obviously preserves 
the quadratic form: 

Φ = 2x0xn+1 + (x1)2 + … + (xn)2; 
 
it has the same analytical form as the one that defines a change of frame in the conformal 
space. 

Having said this, consider a closed contour that starts at the point P and returns to it; 
the position parameter t on this contour starts with the value 0 and ends, we assume, with 
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the value l.  If one recursively refers the conformal space attached to P to the conformal 
space that is attached to a point M of the contour then one will have a correspondence, 
which is defined by formula(7 )′ , between the hyperspheres that are attached to P and the 
hyperspheres that are attached to M. 

When the point M returns to P this correspondence will not be an identity in general 
because it will define a certain (infinitesimal) conformal displacement that is applied to 
the hyperspheres that are attached to P and naturally depends upon the closed contour in 
question. 

In the particular case in which the closed contour is infinitesimal, one may prove that 
this displacement is defined by the formulas: 

 
(8)    ∆xi + ∑ xk i

kΩ = 0 1). 

 
One may further say that if one attaches a frame to each point of the manifold then 

the passage from the frame that is attached at a point M to the frame that is attached at an 
infinitely close pointM ′ is effected by an infinitesimal conformal displacement.  If we 
start from a given initial frame in a conformal space, properly speaking, and effect 
successive infinitesimal conformal displacements relative to the various infinitesimal 
segmentsMM ′of the contour then one will not return to the conformal space E when M 
arrives again at P, the initial frame, on the manifold. 

The point of the conformal space E that has the coordinates (x0, x1, …, xn+1) with 
respect to the initial frame will indeed have the coordinates: 

 
xi + ∆xi = xi – ∑ xk i

kΩ   (i = 0, 1, …, n+1) 
 
with respect to the final frame.  In other words, the final frame may be deduced from the 
initial frame by the infinitesimal conformal displacement of the components j

iΩ . 
 

The theorem of the conservation of curvature. 
 

10.  The exterior differentiation of formulas (4) gives the relations: 
 

(9) 

0 0 0
0

1 1

0 0
0 0

1 1

0 0 0 0

1

0 0 0 0 0 0
0 0

1 1

( ) [ ] [ ] 0,

( ) [ ] [ ] [ ] [ ] 0,

( ) [ ] [ ] [ ] [ ] [ ] [ ] 0,

( ) [ ] [ ] [ ] [ ]

n n
k k

k k
k k

n n
i i i i k k i

k k
k k

n
j j j i j j k k j
i j i j i k i i k

k

n n
k k j

i i i k i i k
k k

ω ω

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω

= =

= =

=

= =

′Ω + Ω − Ω =

′Ω + Ω − Ω + Ω − Ω =

′Ω + Ω − Ω − Ω + Ω + Ω − Ω =

′Ω + Ω − Ω + Ω − Ω

∑ ∑

∑ ∑

∑

∑ 0,











 =


∑

 

                                                
 1) There is no contradiction between these formulas and formula (5); the problems treated are not the 
same, although there is naturally a very close relationship between them. 
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which may be interpreted geometrically and give us the theorem of the conservation of 
curvature. 
 
 

Classification of manifold with conformal connections. 
 

11.  The curvature of a manifold with a conformal connection translates into the 
statement that for any infinitesimal closed contour that starts at a point and returns to it 
with an infinitesimal conformal displacement, one may already distinguish certain 
important categories of manifold with conformal connections. 

 
I.  First, suppose that the conformal displacement that is associated with any 

infinitesimal closed contour is null.  In this case, if we are given two arbitrary points of 
the manifold, P and Q, then one may refer the conformal space that is attached to Q to the 
conformal space that is attached to P in a manner that is independent of the path taken 
from P to Q.  In particular, one may give the variable point Q the coordinates ui that are 
the (n+2)-spherical coordinates of the hypersphere-point in the conformal space that is 
attached to P that corresponds to the hypersphere-point Q in the conformal space that is 
attached to Q.  The manifold is then basically itself a conformal space, although it is 
referred to different frames depending upon the point of the manifold in question. 

 
II.  A more general category is defined by the manifolds for which the infinitesimal 

displacement associated with an arbitrary infinitesimal closed contour with origin P 
leaves the point P invariant, along with all of the directions that issue from P.  This 
amounts to saying that this conformal displacement reduces to an elation with center A0 
and a homothety with centers A0 and An+1.  One thus has: 

 
Ωi = 0, j

iΩ = 0. 

 
Formulas (9) then give the relations: 
 

(10)  
0
0
0 0

[ ] 0, ( 1, , )

[ ] [ ] 0, ( , 1,2, , ).

i

i j
j i

i n

i j n

ω
ω ω

 Ω = =
 Ω − Ω = =

…

…
 

 
Suppose n $ 3.  The first n relations show that the form 0

0Ω is identically null; in order 

words, the displacement that is associated with an infinitesimal closed contour reduces to 
an elation with center A0 (or P).  Formulas (9) then allow us to write: 

 

0

1

[ ]
n

i
i

i

ω
=

Ω∑  = 0. 

 
From the latter relations (10) one deduces: 
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0[ ]j i
iω ω Ω = 0, 

 
which shows that the form 0[ ]i

iω Ω contains each of the forms ω1, ω2, …, ωn as a factor. 

Therefore, if n > 3 then the form 0[ ]i
iω Ω  is identically null; in other words, one has: 

 
0
iΩ = [ ]i

iω ωɶ , 

 
if we introduce n conveniently chosen linear forms1 2, , , nω ω ωɶ ɶ ɶ… . 

If we substitute this in the latter relations (10) then we obtain: 
 

[ ( )]i j
i jω ω ω ω+ɶ ɶ = 0. 

 
From this, one deduces thatiωɶ  depends only upon ωi, ωj, ωk, if j and k are two arbitrary 

values for the n – 1 distinct indices of i.  Since one supposes that n $ 4, this is possible 
only if iωɶ is proportional to ωi; however, 0

iΩ is then identically null. 

As a result, if n $ 4 then, outside of conformal space, properly speaking, there exists 
no manifold with a conformal connection for which the conformal displacement that is 
associated with an arbitrary  infinitesimal closed contour with origin P leaves the point P 
and all of the directions that issue from P invariant. 

On the contrary, if n = 3 then such manifolds do exist; one easily verifies that if one 
forms the expressions that one develops from0

iΩ : 

 
0
1Ω = a123[ω2ω3] + a131[ω3ω1] + a112[ω1ω2], 
0
2Ω = a223[ω2ω3] + a231[ω3ω1] + a212[ω1ω2], 
0
0Ω = a323[ω2ω3] + a331[ω3ω1] + a312[ω1ω2] 

 
then the matrix of coefficients of the right-hand side is symmetric and the sum of the 
elements on the principal diagonal is null. 
 

III.  One obtains a category of manifolds that is even more general than the 
preceding one when one supposes that the conformal displacement that is associated with 
an infinitesimal closed contour that starts from an arbitrary point P leaves the point P 
invariant.  One then says that the manifold is without torsion. 

This property is characterized by the relations: 
 

Ω1 = 0, Ω2 = 0, …, Ωn = 0. 
One then has the relations: 

0
0

1

[ ] [ ]
n

i k i
k

k

ω ω
=

Ω − Ω∑  = 0,   (i = 1, 2, …, n) 
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between 0
0Ω  and j

iΩ .  A particular case is the one for which one also has 0
0Ω  = 0.  This 

hypothesis expresses the fact that if one makes an inversion of the point P at infinity then 
the conformal displacement that is associated with an infinitesimal closed contour that 
issues from P reduces to a Euclidian displacement (which preserves lengths).  In this 
case, one has the relations: 

1

[ ]
n

k i
k

k

ω
=

Ω∑  = 0,   (i = 1, 2, …, n) 

    0

1

[ ]
n

k
k

k

ω
=

Ω∑  = 0. 

 
 

The curvature tensor. 
 

12.  The coefficients of the forms Ωi, 0
0Ω , 0

iΩ , j
iΩ constitute a tensor, in the sense that 

if one effects a change of frame in the conformal space that is attached to a point P of the 
manifold then these coefficients are subjected to a linear substitution (the totality of 
which forms a group). 

The coefficients of the forms Ωi also form a tensor in their own right because the 
annihilation of all of these coefficients gives an intrinsic property of the manifold that is 
independent of the particular choice of frame.  The same is true for: 

The coefficients of the n+1 forms Ωi, 0
0Ω , 

The coefficients of the
( 1)

2

n n+
forms Ωi, j

iΩ , 

The coefficients of the
2 2

2

n n+ +
forms Ωi, 0

0Ω , j
iΩ . 

 
We will show later on that there also exist other remarkable tensors that are formed 

from the components of the curvature tensor.  Here, there exists a fundamental difference 
compared to the manifolds with affine connections, namely, the curvature tensor may not 
be decomposed into irreducible tensors. 

 
 

Isomorphism of manifolds with conformal connections. 
 

13.  Two n-dimensional manifolds with conformal connections are called isomorphic 
when one may establish a point-wise correspondence between these two manifolds such 
that if the frame that is attached to each point of the first one is chosen arbitrarily then 
one may chose choose the frame that is attached to the points of the second one in such a 
manner that the components of the conformal connections on the two manifolds are all 
equal.  It is obvious that the intrinsic geometric properties of two isomorphic manifolds 
are identical; they basically define the same manifold with a conformal connection.  One 
may consider a less complete isomorphism that one may call a meromorphic 
isomorphism.  Imagine two n-dimensional manifolds with conformal connections, 
between which one has established a point-wise correspondence.  Suppose that one has 
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likewise established a (conformal) correspondence between the points of the two 
conformal spaces that are attached to two corresponding points, A and B, of the two 
manifolds, which amounts to saying that to any frame that is attached to A one associates 
a frame that is attached to the corresponding point B.  Imagine further that one has 
brought the two frames (R) and (S) that are attached to the two particular corresponding 
points A and B into coincidence.  In order to pass from the frames that are attached to two 
infinitely close corresponding pointsA′andB′one must give two infinitesimal conformal 
displacements to the frames (R) and (S).  In the case of a holomorphic isomorphism these 
two displacements are identical, but in the case of a meromorphic isomorphism they no 
longer are, and the infinitesimal displacement of one of the frames relative to the 
displacement of the other is constrained to belong to a given linear sheaf of infinitesimal 
conformal transformation; however, in order for this statement to correspond to an 
essential geometric property, it is necessary that this sheaf must remain invariant under 
the conformal displacements that fix the point A.  For example, this sheaf might consist 
precisely of the displacements that fix the point A, or perhaps from two of these 
displacements that leave all of the directions that issue from A invariant. 

To each type of linear sheaf that is invariant under subgroup γ of conformal 
displacements that fix the point A there will correspond a definite type of meromorphic 
isomorphism.  Denote the components of the conformal connections on the two 
manifolds by j

iω and j
iω , and let δ be the symbol for the differentiation that acts only on 

the arbitrary parameters that depend upon the choice of frames at the two given 
corresponding points.  If we write: 

( )j
iω δ = j

ie  

then we will see that one has: 
ei = ie = 0. 

 
When one displaces on the two manifolds along two corresponding paths one will 

have, by hypothesis, a certain number of relations of the form: 
 

(11)  0 0
0 0 0 0

i j j i i
i i ia a a aω ω ω ω+ + +∑ ∑ ∑ = 0 0

0 0 0 0
i j j i i

i i ia a a aω ω ω ω+ + +∑ ∑ ∑ , 

 
which have constant coefficients, and these relations must remain invariant under any 
change of frame, provided that this change is the same for both manifolds.  Now, by 
virtue of formulas (4), one has: 
 

  δωi = 0
0

1

n
i i k

k
k

e eω ω
=

−∑ , 

  0
0δω = 0 0

0
1

n
k

k
k

e deω
=

− +∑ , 

  j
iδω = 0 0 0

1

[ ]
n

j i k j j j
i j i k k i i

k

e e e e deω ω ω ω
=

− + − +∑ , 

  0
iδω = 0 0 0 0 0 0 0

0 0
1

[ ]
n

k k
i i i k k i i

k

e e e e deω ω ω ω
=

− + − +∑ . 
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One obtains similar formulas by replacing the j
iω  with j

iω .  From this, one deduces: 

 

(12) 

0
0

1

0 0 0
0 0

1

0 0

1

0 0 0 0 0 0 0 0 0 0 0
0 0 0

1

( ) ( ) ( ),

( ) ( ),

( ) ( ) ( ) [ ( ) ( )],

( ) ( ) ( ) [ ( ) ( )].

n
i i i i i k k

k
k

n
i i

i
i

n
j j j j i i k j j j k k

i i i j i k k k i i
k

n
k k k

i i i i i i k k k i i
k

e e

e

e e e e

e e e e

δ ω ω ω ω ω ω

δ ω ω ω ω

δ ω ω ω ω ω ω ω ω ω ω

δ ω ω ω ω ω ω ω ω ω ω

=

=

=

=

− = − − −

− = − −

− = − − − + − − −

− = − − − + − − −

∑

∑

∑

∑














 

 
All that remains for us to do is to express that the relations (11) must remain 

invariant when one subjects the j j
i iω ω−  to variations that are given by formulas (12), 

regardless of the quantities 0 0
0 , ,j

i ie e e .  A simple calculation shows that if n ≠ 3 then 

relations (11) can have five possible forms: 
 
  1.  iω = ωi     (i = 1, 2, …, n), 
  2.  iω = ωI, 0 0

0 0ω ω=     (i = 1, …, n), 

  3.  iω = ωi, j j
i iω ω=     (i, j = 1, …, n), 

  4.  iω = ωi, j j
i iω ω= , 0 0

0 0ω ω=    (i, j = 1, …, n), 

  5.  iω = ωi, j j
i iω ω= , 0 0

0 0ω ω= , 0 0
i iω ω=  (i, j = 1, …, n). 

 
The fifth case corresponds to the holomorphic isomorphism.  As for the first one, it 

reduces to the second one; in other words, if one is given a pointwise correspondence 
between the two manifolds then one may define a correspondence between the two 
frames that are attached to the corresponding points in such a manner that one has iω = 
ωi, and one may also define this correspondence of frames in such a manner that one also 
has 0 0

0 0ω ω= .  Indeed, suppose that the frames are chosen in a certain manner on the first 

manifold and that they are chosen on the second one in such a manner that one has: 
 

iω = ωi. 
 
One will then have a relation of the form: 
 

0 0
0 0ω ω= + ρ1ω1 + ρ2ω2 + … + ρnωn. 

 
 Let 1 1, , , nA A A+…  be the hyperspheres that define the frame that is attached to the 

pointAof the second manifold; now, take another frame: 
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A′= A ,  iA′= i iA Aρ+ ,  2 21
1 1 12

1

( )
n

n n i i n
i

A A A Aρ ρ ρ+ +
=

′ = − − + +∑ ⋯ . 

We will have: 
0 0
0 0( )i i i

i i idA dA A A Aω ω ω ρ ω ω′ ′= = + = − +∑ ∑ ∑ . 

 
One sees, moreover, that with this new choice of frame the relations: 
 

iω = ωi 
 
remain invariant, but they must be combined with the relation: 
 

0 0
0 0ω ω= . 

 
 

14.  From this, there exist three types of meromorphic isomorphism between two 
manifolds with conformal connections, which respectively translate into the relations: 

 
    iω = ωi, 0 0

0 0ω ω= , 

    iω = ωi, j j
i iω ω= , 

    iω = ωi, j j
i iω ω= , 0 0

0 0ω ω= . 

 
If the points A andA  of the two manifolds that one has brought into coincidence are 
mapped to infinity under an inversion then the relative motion of the two frames (R) and 
(S) amounts to: 
 an arbitrary Euclidian displacement for the first type of meromorphic 
isomorphism, 
 an arbitrary homothety (or a translation) for the second type, 
 a translation for the third type. 
 

One see that in the three cases the linear sheaf of infinitesimal conformal 
displacements generates a group 1). 

The condition of meromorphic isomorphism of the first type may be stated in a 
geometrically simple form: 

In order for two manifolds to be meromorphically isomorphic of the first type, it is 
necessary and sufficient that one must establish a pointwise correspondence between 
them that preserves angles, i.e., that preserves the equation: 

 
ds2 = 0. 

 
The condition is obviously necessary, since the ds2 of a manifold is: 
 

(ω1)2 + (ω2)2 + … +(ωn)2. 

                                                
 1) This conclusion may be false for manifolds with a metric or Euclidian connection. 
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It is also sufficient since if, given an arbitrary choice of frame attached to the second 
manifold, one has: 
 

1 2 2 2 2( ) ( ) ( )nω ω ω+ + +⋯ = r[(ω1)2 + (ω2)2 + … +(ωn)2] 
 
then one will obviously modify this frame in such a manner that one satisfies the 
relations: 

iω = ωi. 
 
 

Finally, we remark that for a meromorphic isomorphism of the third type there is a 
pointwise correspondence that not only has a conformal representation, but also preserves 
torsion (for two arbitrary corresponding surface elements).  This results from the fact that 
the formulas: 

iω = ωi, j j
i iω ω= , 0 0

0 0ω ω=  

 
give, by exterior differentiation: 

iΩ = Ωi. 
 
 

15.  If two manifolds with conformal connections are without torsion then the three 
types of meromorphic isomorphism reduce to just one.  The relations: 

 
iω = ωi, 0 0

0 0ω ω=  

imply, in effect, that: 

1

[ ( )]
n

k i i
k k

k

ω ω ω
=

−∑  = 0, 

from which: 
j j

i iω ω= ; 

likewise, the relations: 
iω = ωi, j j

i iω ω= , 

imply that: 
0 0
0 0[( ) ]iω ω ω−  = 0, 

from which one has: 
0 0
0 0ω ω= . 

 
 

Normal manifolds with conformal connections. 
 

16.  Among all of the manifolds with conformal connections that are 
meromorphically isomorphic of the first type to a given manifold there is one that is 
distinguished from all of the other ones by some characteristic properties. 

Start with an arbitrarily given Monge equation: 
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∑ gik dui duk = 0, 
 
and consider an arbitrary manifold for which this equation defines isotropic directions.  If 
we decompose the left-hand side of that equation into a sum of n squares: 
 

∑ gik dui duk = (ω1)2 + (ω2)2 + … +(ωn)2 
 
then we will have the right, without making any restrictive hypothesis on the conformal 
connection on the manifold, to suppose that the ωi are the components of the conformal 
connection that we previously denoted by the same notation, and we will also have the 
right to suppose that00ω .  The frame that is attached to each point of the manifold, which 

is assumed to have a given conformal connection, is then completely determined. 
It is now easy to show that there exists one and only one system of forms ω such that 

one has: 

( )iω ′=
1

[ ]
n

k i
k

k

ω ω
=
∑     (i = 1, …, n); 

 
this choice of forms amounts to attributing null torsion to the manifold. 

Having thus chosen the0
iω , it is possible to annul 0

0Ω ; indeed, the formula: 

 

0
0( )ω ′ = 0 = 0

1

[ ]
n

i
i

i

ω ω
=
∑  

 
is compatible with an infinitude of different choices for the components0iω .  One has, in 

a general manner: 

0
iω =

1

n
k

ik
k

λ ω
=
∑     (i = 1, 2, …, n), 

 
in which the coefficients λij are subject to only the symmetry condition: 
 

λij = λji . 
Finally, consider the formula: 
 

( )j
iω ′ = 0 0

1

[ ] [ ] [ ]
n

i j k j j
j i i k i

k

ω ω ω ω ω ω
=

− + + Ω∑ . 

From it, one deduces that: 
 

j
iΩ =

1 1 1

( ) [ ] [ ] [ ]
n n n

j k j j k i k
i i k ik jk

k k k

ω ω ω λ ω ω λ ω ω
= = =

′ − − +∑ ∑ ∑ . 

If one sets: 

j
iΩ =

1, .

,

[ ]
n

j k l
ikl

k l

A ω ω∑
…

, 
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then one sees that one has: 
    j

iikA = j
iik jka λ−      (k ? i, j) 

    j
ijkA = j

ijk ika λ+      (k ? i, j) 

    i
jijA = j

iij ii jja λ λ− −  

    j
iklA = j

ikla      (k ? i, j), 

 
in which the j

ikla denote well defined coefficients.  As a result, one will have: 

 

1

n
k
iik

k

A
=
∑ =

1 1

( 1)
n n

k
iik ii hh

k h

a n λ λ
= =

− − −∑ ∑             (i = 1, …, n) 

 

1

n
k
ijk

k

A
=
∑ =

1

( 2)
n

k
ijk ij

k

a n λ
=

− −∑     (i ? j = 1, …, n). 

 
From this, one immediately deduces that it is possible, in one and only one manner, to 
choose the coefficients λij in such a way that one annuls the left-hand sides of the 
preceding equation.  Due to the symmetry of the λij, this meanwhile necessitates the proof 
of the equalities: 

k
ijkA = k

jikA      (i ? j ? k). 

 
Now, these equalities follow from the identity: 
 

1

[ ]
n

kρ
ρ

ρ
ω

=

Ω∑  = 0    (k = 1, …, n), 

 
which is itself a consequence of the fact that the forms Ωi and 0

0Ω  are null.  Upon 

equating all of the terms in [ωiω jωk] in this identity to zero one obtains precisely: 
 

k
ijkA − k

jikA = 0. 

 
 

17.  If one starts with a given Monge equation, it is thus possible to define a 
conformal connection that satisfies the relations: 

 

Ωi = 0, 0
0Ω = 0,  

1

n
k
ijk

k

A
=
∑ = 0. 

 
However, the proof has been carried out by making certain hypotheses on the frame that 
is attached to each point of the manifold.  One must now prove that the preceding 
relations persist for any other choice of frame.  The property of the Ωi and 0

0Ω being null 

obviously has an intrinsic significance, as we have seen above. 
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In order to show that the latter relations have an invariant significance, imagine that 
we have chosen the most general frame possible at each point, and let δ denote the 
symbol for differentiation of only the parameters vi, which depend upon the choice of 
frame, but not on the parameters ui, which localize the point of the manifold. 

The formulas: 
0 0[ ] [ ] [ ] [ ]j i j k j k j

i j i i k i kω ω ω ω′Ω − Ω + Ω + Ω − Ω = 0 

show us that one has: 

j
iδΩ =

1

( )
n

k j j k
i k k i

k

e e
=

Ω − Ω∑ , 

if we write j
ie in place of ( )j

iω δ . 

Likewise, the formulas: 

( )iω ′= 0
0

1

[ ] [ ]
n

i k i
k

k

ω ω ω ω
=

+∑  

show us that one has: 

δωi = 0
0

1

n
i i k

k
k

e eω ω
=

−∑ . 

 
The relations thus obtained give us the infinitesimal variations that the forms ωi, j

iΩ are 

subjected to under an infinitesimal change of frame.  One thus obtains, without difficulty: 

j
iklAδ  = 0

0
1

2 ( )
n

j j j j j
ikl i kl ikl k i l ikle A e A e A e A e Aρ ρ ρ ρ

ρ ρ ρ ρ
ρ =

− + − + +∑ , 

 
and as a result, after some simplifications: 
 

1

n
k
ijk

k

Aδ
=
∑ = 0

0
1 1 1 1 1

2
n n n n n

k k k
ijk i jk j i k

k k k

e A e A e Aρ ρ
ρ ρ

ρ ρ= = = = =

− + +∑ ∑ ∑ ∑ ∑ . 

 
One thus sees that the relations: 

1

n
k
ijk

k

A
=
∑ = 0 

 
remain invariant under any change of frame 1). 

We have therefore proved precisely that if one is given an n-dimensional numerical 
manifold then among all of the conformal connections that are attributed to that manifold 
and are compatible with a Monge equation: 

 
∑ gik dui duk = 0, 

 

                                                
 1) In the case n = 4, the space-time for which the ds2 is (ω1)2 + (ω2)2 + (ω3)2 + (ω4)2 enjoys the property 
that its Einstein tensor is null. 
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which is given a priori in order to define the isotropic tangents on that manifold, there 
exists one and only one conformal connection that satisfies the characteristic relations: 
 

Ωi = 0, 0
0Ω = 0,  

1

n
k
ijk

k

A
=
∑ = 0. 

 
We agree to say that the manifold is endowed with a normal conformal connection; we 
also say that we are dealing with a normal manifold with a conformal connection. 

Normal manifolds with conformal connections, which are completely defined by the 
equation that is obtained by annulling their ds2, play the same role in the theory of 
manifolds with conformal connections that Riemannian manifolds do in the theory of 
manifolds with metric connections. 

 
 

Three-dimensional normal manifolds. 
 
18.  The case of three-dimensional normal manifolds is particularly interesting.  One 

has: 
  3

2Ω = 3 2 3 3 3 1 3 1 2
223 231 212[ ] [ ] [ ]A A Aω ω ω ω ω ω+ +  

  1
3Ω = 1 2 3 1 3 1 1 1 2

323 331 312[ ] [ ] [ ]A A Aω ω ω ω ω ω+ +  

  2
1Ω = 2 2 3 2 3 1 2 1 2

123 131 112[ ] [ ] [ ]A A Aω ω ω ω ω ω+ + . 

 
The following sets of relations exist between these three forms: 
 1.  The relations: 
 
   2 1 3 1

2 3[ ] [ ]ω ωΩ + Ω  = 0, 

   1 2 3 2
1 3[ ] [ ]ω ωΩ + Ω  = 0, 

   1 3 2 3
1 2[ ] [ ]ω ωΩ + Ω  = 0, 

 
whenever Ω1, Ω2, Ω3, 0

0Ω are null; they give: 

 
    2

131A = 1
312A , 

    3
212A = 2

123A , 

    1
323A = 3

231A . 

 2.  The relations: 
 

2 1
112 331A A+ = 0,  3 2

223 112A A+ = 0,  1 3
331 223A A+ = 0, 

1
231A = 0, 2

312A = 0, 3
123A = 0, 

 
whenever the manifold is normal.  These relations imply the nullity of all of the 
coefficients.  As a result, the formsjiΩ are all null. 
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In other words, the infinitesimal displacement that is associated with an infinitesimal 
closed contour that starts at a point P and returns to it leaves the point P invariant along 
with all of the directions that issue from P; it is an elation with center P. 

The fact that Ω1, Ω2, Ω3, 0 3 1 2
0 2 3 1, , ,Ω Ω Ω Ω are null implies the following relations 

between 0 0 0
1 2 3, ,Ω Ω Ω : 

   1 0 2 0 3 0
1 2 3[ ] [ ] [ ]ω ω ωΩ + Ω + Ω = 0, 

   2 0 3 0
3 2[ ] [ ]ω ωΩ − Ω = 0, 

   1 0 2 0
2 1[ ] [ ]ω ωΩ − Ω = 0. 

 
From this, one immediately deduces the formulas: 
 

0
1Ω = 2 3 3 1 1 2

1 3 2[ ] [ ] [ ]α ω ω β ω ω β ω ω+ + , 
0
2Ω = 2 3 3 1 1 2

3 2 1[ ] [ ] [ ]β ω ω α ω ω β ω ω+ + , 
0
3Ω = 2 3 3 1 1 2

2 1 3[ ] [ ] [ ]β ω ω β ω ω α ω ω+ + , 

 
in which the coefficients α1, α2, α3 have a null sum. 
 

19.  Consider a parallelogram that has the point P for one of its vertices, and the two 
(infinitesimal) sides that issue from P have the projections: 

 
(x1, x2, x3)  and (y1, y2, y3). 

 
The elation that is associated with a contour (or face) of this parallelogram has the 
components: 
  α1(x

2y3 – x3y2) + β3(x
3y1 – x1y3) + β2(x

1y2 – x2y1), 
  β3(x

2y3 – x3y2) + α2(x
3y1 – x1y3) + β1(x

1y2 – x2y1), 
  β2(x

2y3 – x3y2) + β1(x
3y1 – x1y3) + α3(x

1y2 – x2y1). 
 
To abbreviate, we set: 
 

u1 = x2y3 – x3y2, u2 = x3y1 – x1y3, u3 = x1y2 – x2y1; 
 
the quantities u1, u2, u3 may be regarded as the direction parameters of the plane of the 
face.  One sees that the elation that is associated with this face has an axis 1) whose 
direction has the direction parameters 
 

α1u1 + β3u2 + α2u3, β3u1 + α2u1 + β1u3, β2u1 + β1u2 + α3u3; 
 

this is the conjugate direction to the plane of the face with respect to the cone (C) that has 
the tangential equation: 

                                                
 1) This must say that the elation leaves invariant all of the circles that pass through P and are tangent to 
that diection at P. 
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2 2 2
1 1 2 2 3 3 1 2 3 2 3 1 3 1 32 2 2u u u u u u u u uα α α β β β+ + + + + = 0. 

 
The cone (C) thus has an invariant significance.  The relation: 
 

α1+ α2 + α3 = 0 
 
shows that it is capable of circumscribing a tri-rectangular triad. 

From the point-wise viewpoint, this cone defines the directions that issue from P 
such that the elations that admit one of these directions for their axis are associated with a 
face that contains that same direction.  As a particular case, the cone (C) may be reduced 
to three (rectangular) lines or to an (isotropic) double line.  It would be interesting to 
know the degree of generality of the normal manifolds for which this latter circumstance 
presents itself.  In the general case, the elations that are associated with the closed 
contours that start from a point P and return to it admit arbitrary directions for their axes.  
In the case where the cone (C) reduces to two rectangular lines, the axis of the elation is 
always situated in the plane of these two lines.  Finally, when the cone (C) reduces to an 
(isotropic) double line, all of the elations have that line for their axis. 

 
 

 
 


