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INTRODUCTION  
 

 The original idea of applying the considerations of the analysis situs to the theory of 
finite, continuous groups goes back to Hurwitz in 1897 [4], who appealed to integrals that 
were applied to the entire domain of certain closed groups (viz., the linear group of a 
positive-definite Hermitian form and the orthogonal group) in his research on invariants.  
That process was used by H. Weyl in 1925 [8], who, thanks to some considerations of the 
analysis situs, made important progress in the theory of the linear representation of semi-
simple groups, which is a theory for which E. Cartan gave a basis in 1912 by assuming 
the infinitesimal viewpoint of S. Lie, but with a lacuna that one cannot further manage to 
fill by algebraic means.  From a different viewpoint, H. Poincaré [5, 6, 7], in three 
penetrating memoirs that were published in 1900, 1901, and 1908, showed the 
importance of the role that is played by the singular transformations of a group in the 
theory of the structure of that group, which is a role that is analogous to the one that is 
played by the critical points of an analytic function.  Finally, we point out two memoirs 
of O. SCHREIER [24 and 25] that appeared in 1926 and 1927 on the abstract, continuous 
groups that were envisioned from a very general viewpoint. 
 In all of these papers, which remain isolated, except for the relatively recent ones by 
H. Weyl and O. Schreier, the finite and continuous groups are studied in their entire 
domain of existence, and not just, as with S. Lie, in the neighborhood of the identity 
transformation: They are “integral” studies, and not “local” ones.  The objective of this 
fascicle is to review a certain number of fundamental problems that are posed in the 
theory of groups upon assuming the “integral” viewpoint, either by envisioning a finite, 
continuous group, as in Chapter I, to be a variety inside of which one defines an 
associative law of multiplication or composition that satisfies, at a minimum, some 
continuity conditions, or, as in Chapter II, by introducing some supplementary 
hypotheses on the analytic properties of the law of composition of the group in order to 
obtain what I call “Lie groups.”  One knows of no finite, continuous group that is not a 
Lie group; a fundamental theorem (no. 26) shows that if such a group existed then it 
could not be isomorphic to any linear group.  In the theory of Lie groups itself, we point 
out the insufficiency of the usual proofs of the third fundamental theorem, which prove 
the existence of only a subset of a group when one is given a system of constants ciks that 
cannot be prolonged to form a complete group; a rigorous proof of that theorem will be 
summarized in Chapter II.  We also point out the search for necessary and sufficient 
conditions that a connected or mixed subgroup g of a Lie group G must satisfy in order 
for g to be the largest subgroup that leaves invariant a point of a manifold that is 
transformed transitively by G; these conditions are not of an exclusively local nature.  
The manifolds that are capable of being transformed transitively by a Lie group are not, 
moreover, arbitrary from the viewpoint of the analysis situs. 
 Chapter III is dedicated to the study of closed groups, which play a very important 
role in applications.  Chapter IV presents the principles E. Cartan’s theory of Riemannian 
symmetric spaces, when envisioned from the viewpoint of group theory, and which have 
a great variety of applications to geometry and the theory of groups itself. 
 The theory of linear representations of closed groups, along with some applications 
that one can make to the theory of complete, orthogonal systems of function on a closed 
manifold that is transformed transitively by a closed group, is left completely aside in this 
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fascicle, since it is far too easy to go beyond its scope, which can already be quite 
extensive. 

 
_____________ 

 
 



 

CHAPTER I 
 

GENERALITIES ON MANIFOLDS AND ABSTRACT, CONTINUOUS GROUPS 
 
 

I. – Manifolds.  Closed and open manifolds. 
 

 1. The notion of a manifold is suggested by those of a line and a surface that are 
embedded in ordinary space.  We shall, at the same time, specify the generalization and 
limitation of that by the introduction of a number of postulates that are analogous to the 
ones that were stated by F. Haussdorff in his Grundzüge der Mengenlehre (Leipzig, 
1914). 
 What we shall call an n-dimensional manifold is a set of elements – or points – such 
that one can define a system of subsets – called neighborhoods – that satisfy the 
following conditions: 
 
 A.  Each neighborhood V is associated with a well-defined one-to-one 

correspondence between the points of V and the points of a hypersphere Σ in n-

dimensional Euclidian space.  The points of V that correspond to the interior point of Σ 

will be called interior to V, while the other ones will constitute the frontier of V. 

 
 B. Any point of the manifold is interior to at least one neighborhood. 
 
 C. Let V be an arbitrary neighborhood, let Σ be the hypersphere that is associated 

with it, let M be an interior point of V, let m be the corresponding point of Σ, and let s be 

a hypersphere with its center at m that is interior to Σ.  There exists a neighborhood V 

that is interior to V and is such that the correspondents of all points of V in Σ belong to 

σ. 
 
 D. Let M be a point that belongs to the interior or to the frontier of V, let m be its 

correspondent in Σ, and let V′  be a neighborhood that contains M in its interior.  There 

exists a hypersphere σ with its center at m such that the correspondents of all points of Σ 
that belong to σ in V will be interior to V′  . 
 
 E. If one is given two distinct points M and N then one can find two neighborhoods 
that have M and N in their interiors, respectively, and have no point in common. 
 
 
 2. A point A of the manifold is called an accumulation point for an infinite set of 
distinct points of that manifold if any neighborhood that contains A in its interior contains 
at least one point of the set that is distinct from A.  Any infinite set of distinct points that 
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belongs to the same neighborhood V will admit at least one accumulation point that 

belongs to V (by virtue of postulates A, D and the Bolzano-Weierstrass theorem). 

 One says that an infinite sequence of points A1, A2, …, An, … tends to a limit point A 
if when one is given an arbitrary neighborhood V that contains A in its interior, all of the 

points of the set are interior to V, past a certain rank.  The infinite sequence cannot tend to 

another limit point B (by virtue of postulate E). 
 From any infinite set that admits an accumulation point A, one can extract an infinite 
sequence of distinct points that tends to A. 
 It then results from postulates A, C, and D that the one-to-one correspondence that 
exists between the interior of a neighborhood V and the interior of the hypersphere Σ that 

it is associated with will be bicontinuous.  One can thus analytically define the points that 
are interior to any neighborhood of an n-dimensional manifold in a unique manner by 
means of n coordinates, in such a way that two infinitely close points will have infinitely 
close coordinates. 
 
 
 3. A continuous path is a set of points that one can put into one-to-one 
correspondence with the numerical values of a real variable t that satisfies 0 ≤ t ≤ 1, in 
such a way that if tn → t0 then the sequence of points that corresponds to tn will tend to 
the point that corresponds to t0 . 
 The manifold is called connected if two arbitrary points can be linked by a continuous 
path.  We shall consider only connected manifolds or ones that are composed of a finite 
or denumerably infinite number of connected manifolds. 
 
 
 4.  Now, assume the following supplementary hypothesis: 
 
 F. It is possible to find a finite or denumerably infinite number of neighborhoods 
such that any point of the manifold is interior to at least one of these neighborhoods. 
 
 To abbreviate, we agree to say that the manifold is covered by the neighborhoods in 
question. 
 Arrange the neighborhoods considered into a certain order: 
 

V1, V2, …, Vn, … 

 
We suppose that the first neighborhood Vα in the preceding sequence for which any point 

that is interior to Vα is interior to at least one of the preceding neighborhoods.  We begin 

the process again with the new sequence that is thus obtained, and so on.  We thus arrive 

at a sequence of neighborhoods such that for each neighborhood Vi of the sequence there 

exists at least one interior point that is not interior to any of the neighborhoods V1, V2, 

…, Vi−1 .  Such a sequence will be called normal. 
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 5. The manifolds that are capable of being covered by a finite normal sequence of 
neighborhoods are distinguished from the other ones by some characteristic properties.  
Indeed, consider an infinite set of points in such a manifold.  There will exist at least one 
of the neighborhoods in the sequence – say, Vn – that contains an infinitude of points of 

the set, so (no. 2) the given set will admit at least one accumulation point. 
 On the contrary, suppose that the manifold is covered by a normal sequence of a 
denumerable infinitude of neighborhoods.  Take a point Mi in each neighborhood Vi that 

is interior to Vi , but which is not interior to any neighborhood of an accumulation point.  

Indeed, such a point A will be interior to a certain neighborhood Vk without being interior 

to the preceding neighborhoods.  Let k
′V  be a neighborhood (that does not belong to the 

normal sequence) that is interior to Vk and contains A in its interior.  None of the points 

Mk+1, Mk+2, … of the set belong to k′V , and therefore k′V  can contain only a finite number 

of points of the set, which contradicts the hypothesis. 
 
 We say that a manifold is open or closed according to whether one can or cannot find 
infinite sets of points that admit no accumulation point, respectively. 
 One sees that if a closed manifold can be covered by a denumerable infinitude of 
neighborhoods then it can be covered by a finite number of neighborhoods 
(generalization of the Heine-Borel theorem). 
 
 

II. – Abstract finite, continuous groups. 
 

 6. One calls a set of elements an abstract group when one has defined an operation – 
called “multiplication” – on it that makes two arbitrary elements A, B that are arranged in 
a certain order correspond to a third element that is denoted by AB and satisfies the 
following conditions: 
 
 a. There exists an element 1 (viz., the unity element) such that for any A, one will 
have 1A = A1= A. 
 
 b. Any element A corresponds to an element A−1 such that AA−1 = 1. 
 
 c. One has: 

(AB) C = A (BC). 
 

 It results from these hypotheses that one will also have A−1A = 1.  Indeed, the equality 
BA = CA implies that B = C.  As a result, the product A−1 A = J will agree with 1 due to 
the equalities JA−1 = A−1AA−1 = A−11 = 1A−1.  The equality AB = AC will then also imply 
that B = C. 
 
 
 7. One can associate each element A of an abstract group with an operation – or 
transformation – namely, the one that makes the element M of the group correspond with 
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the element M′ = AM.  That set of transformations contains the identity transformation T1.  

Each transformation TA will correspond to an inverse transformation 1A−T .  Finally, the 

resultant of the transformations TA and TB, when performed in succession, will be the 

transformation: 
M′ = B (AM) = (BA) M, 

 
which corresponds to the element BA.  We say that the transformations TA realize the 

abstract group as a group of transformations.  They constitute the parameter group of the 
abstract group.  The transformations M′ = MA define the second parameter group. 
 
 
 8. An abstract group is called finite and continuous of order r if its elements 
generate an r-dimensional manifold.  Moreover, if one is given two infinite sequences of 
elements An and Bn that tend to A and B, respectively, then the infinite sequence of 
elements An Bn will tend to AB.  Finally, if An tends to 1 then 1

nA−  will tend to 1.  If V0 is a 

neighborhood of the group manifold that contains the element 1 in its interior then the set 
of elements AV0 that is obtained by multiplying A times the elements of V0 can be 

regarded as another neighborhood that contains the element A in its interior; the same 
thing will be true for the set of elements V0 A. 

 A finite, continuous group will be called connected or mixed according to whether its 
manifold is connected or composed of a finite or denumerably infinite number of 
connected manifolds, respectively.  One of the connected families of elements that it is 
composed of will define a group in its own right, namely, the one that contains the 
element 1. 
 
 
 9. The manifold of an abstract, finite, continuous group always satisfies hypothesis F 
by itself: It can be covered by a denumerable infinitude of neighborhoods AnV0, in which 

V0 denotes any of the neighborhoods that contain the element 1 in its interior. 

 We shall first show that any element of the group (which one can assume to be 
connected) can be obtained by multiplying a finite number of elements in the interior of 
V0 .  Indeed, join the element 1 to a given element A by a continuous path, where a 

variable element of the path will depend upon a parameter t that varies from 0 to 1.  Let t0 
be the lower limit of the set of values of t that correspond to the elements of the path that 
cannot be obtained by the indicated process, and let A0 be the corresponding element.  
The element A0 itself cannot be the product of a finite number q of elements that are 
interior to V0, since for all of the values of t that are greater than t0 and sufficiently close 

to t0, one will have an element that will be the product of q + 1 elements that are interior 
to V0 .  Now, consider the neighborhood A0V0 .  It contains elements of the curve that 

correspond to values of t that are less than t0 and are also as close to t0 as one desires, for 
example, an element 0A′  = A0s, where s is as close to 1 as one desires; for example, close 
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enough to 1 for s−1 to belong to V0 .  It will then result that the element A0 = 0A′ s−1 is the 

product of a finite number of elements that are interior to V0, which contradicts the 

hypothesis. 
 Now, take an integer p.  By hypothesis, one can put the elements of V0 into a 

continuous, one-to-one correspondence with the points of a hypersphere Σ of radius R in 
ordinary n-dimensional space.  One can find a number ρ that enjoys the following 
property: If A1, A2, …, Ap are p points that are interior to Σ, and if M1, M2, …, Mp are 
likewise interior to Σ, but interior to the hyperspheres of radius ρ whose centers are at A1, 
A2, …, Ap then the product M1M2…Mp will belong to the neighborhood A1A2…ApV0 .  

When the number ρ has been determined in that way, we can find a finite sequence of 
points in the interior of Σ − say, C1, C2, …, NC

ρ
 − such that any point that is interior to S 

will be interior to at least one of the hyperspheres of ρ whose centers are at C1, C2, …, 

NC
ρ
.  It will then result that any element that is capable of being obtained by the 

multiplication of p elements that are interior to V0 will be interior to at least of the (Nρ)
p 

neighborhoods 
1 2 0C C C

ρα α α⋯ V .  Since that property is true for any p, one will thus arrive 

at a denumerable sequence of neighborhoods AkV0 such that any element of the group is 

interior to at least one of these neighborhoods [cf., 24, pp. 19]. 
 
 

III. – Subgroups. 
 

 10. A subgroup of an abstract group G is a group whose elements all belong to G.  A 
subgroup might contain just a finite number of elements.  If it contains an infinitude then 
it might or might not be continuous.  In the latter case, there is yet another distinction to 
be made.  The subgroup g is called properly discontinuous in G if one can find a 
neighborhood V0 in G that contains 1 in its interior and contains no element of g that is 

not 1.  In the contrary case, the subgroup will be called improperly discontinuous in G.  
Each element of g will then be an accumulation point in G for the set of elements of g. 
 The subgroup g is called closed in G if any accumulation point in G of the set of 
elements of g also belongs to g.  Any properly discontinuous subgroup is closed in G.  In 
the contrary case, the subgroup will be called open in G. 
 The set of elements of a subgroup g that is closed in G and its accumulation points 
will define a new subgroup g  that is closed in G. 
 If the group G is closed then the subgroups g that are closed in G will be the closed 
subgroups. 
 
 11. One calls the element AMA−1 the transform of an element M of the group G by an 
element A of that group.  One says that a subgroup g is invariant under G if the 
transforms of the elements of g by the various elements of G again belong to g.  In that 
case, the set of elements Ag that are obtained by multiplying a given element A of G by 
the various elements of g is identical to the set of elements gA.  If one regards such sets as 
being composed of new elements then one can define an associative multiplication upon 
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them by agreeing that the product of Ag with Bg will be ABg.  These new elements define 
an abstract group whose unity element is g; one denotes it by the symbol G / g. 
 One calls the set of elements of a group that commute with all elements of the group 
the center of the group.  These elements form an invariant commutative subgroup in G.  
The center of G will agree with G when G is commutative. 
 
 

IV. – The abstract groups of order 1. 
 

 12. One can easily determine all of the finite, continuous, connected groups of order 
1.  Let V0 be a neighborhood that contains the element 1 in its interior.  One can represent 

it by a line segment along which one takes the point that corresponds to 1 to be the origin.  
The abscissas x of the points of the segment vary, for example, from – a to + a.  If x and 
x′ are the abscissas of the two points that are sufficiently close to the origin – for 
example, between – b and + b – then the product of two corresponding elements will 
belong to V0 .  If x″ is the abscissa of the point that represents that product then one will 

have a relation: 
x″ = ϕ(x, x′), 

 
in which ϕ is a continuous function.  One easily proves that ϕ is an increasing function of 
its two arguments. 
 One can then find one and only one root in the interval (0, b) of the successive 
equations: 
 ϕ (a1, a1) = a, 
 ϕ (an, an) = a1, 
 …………….. 
 ϕ (an, an) = an−1, 
 …………….. 
 
 The numbers a1, a2, …, an, … decrease while remaining positive; they thus tend to a 
limit a ≥ 0.  However, since one has: 
 

ϕ(a, a) < ϕ(a, an) < ϕ(an, an) = an−1 , 
 

it will then result that in the limit: 
 

ϕ (a, a) ≤ a = ϕ (0, a); 
 

that will be possible only if a = 0. 
 Let Sn be the element of the parameter an .  Assign a new parameter pn / 2

n to an 
element np

nS .  The new parameters of elements of that nature will follow in the same 

order as the old ones, and the multiplication of two elements whose new parameters are t 
and t′ will give an element whose new parameter is t + t′.  The assignment of a new 
parameter t extends, by continuity, to all of the elements whose old parameter x is found 
between 0 and a, and the multiplication formula will become: 
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t″ = t −  t′   (0 ≤ t, t′, t″ ≤ 1). 
 
 If we agree to set Sx = Σt then we can define Σn to be (Σ1)

n for any positive integer n, 
and then Σn+t to be the product Σn Σt for t between 0 and 1.  The multiplication law is 
extended to these new group elements.  Finally, one defines Σ−t to be (Σt)

−1 for positive t 
and again extends the multiplication law. 
 One is sure to obtain all of the elements of the group by this process (no. 9), but one 
might possibly get each of them several times.  If that is true and c is the smallest positive 
value of t for which Σc is the element 1 then the element Σt+c will be the same as the 
element Σt .  The group that is obtained will then be closed, while in the contrary case, t 
can vary from − ∞ to + ∞ without the elements of the group being obtained two, and the 
group is open. 
 
 The connected groups of order 1 are therefore all commutative; one type is open and 
the other is closed. 
 
 One can add that all of the open groups are basically identical, as well as all the 
closed groups.  Indeed, in the case of a closed group, one can always take a new 
parameter t′ whose period is 1 instead of c. 
 
 

V. – Isomorphism. 
 

 13. A group G is called isomorphic to a group G′ if it is possible to make an element 
of G correspond to a well-defined element of G′ in such a way that if A′, B′, C′ are three 
elements of G′ that satisfy A′ B′ = C′ then the three corresponding elements A, B, C of G 
will satisfy AB = C.  The unity element 1′ of G′ will necessarily correspond to the unity 
element 1 of G. 
 The isomorphism is called holohedral if any element of G corresponds to one and 
only one element of G′ ; it is hemihedral in the contrary case.  The elements of G′ that 
have the unity element of G for their correspondent define an invariant subgroup of G′. 
 Two finite, continuous groups of the same order G and G′ are called locally 
isomorphic if one can establish a one-to-one, continuous correspondence between the 
elements of a neighborhood V0 of G that contains unity in its interior and those of a 

neighborhood 0′V  of G′ that contains the unity element in its interior, and that 

correspondence will satisfy the condition that if A, B, and C are three elements of V0 such 

that AB = C then the corresponding elements of 0′V  must satisfy A′ B′ = C′. 
 Suppose that the manifold of one of the groups – G, for example – is simply 
connected.  That means that any closed, continuous contour can be deformed in a 
continuous manner until it reduces to a point.  Then let S be an arbitrary element of G that 
does not belong to V0 .  Join the unity element 1 to S by a continuous path that belongs to 

(C) and take some intermediate points S1, S2, …, Sp−1 on that path such that the elements 

S1, 
1

1 2S S− , …, 1
1p pS S−

−  belong to V0 ; denote them by s1, s2, …, sp .  Let 1s′ , 2s′ , …, ps′  be 
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the corresponding elements of 0′V , and consider the element S′ = 1s′ 2s′ … ps′  of G′.  It is 

easy to see that if one takes another sequence of intermediate points in the path (C) then 

one will always arrive at the same element S′.  One finally arrives at the same element 
again by deforming the path (C) that joins 1 to S sufficiently little. 

 Since the manifold of G is simply connected, one can thus make any element S of G 
correspond to a well-defined element S′ of G′. 
 An analogous argument will show that any element S′ of G′ provides at least one 
element S of G, and one easily sees that one has an isomorphic correspondence between 
the two groups, so G′ will be isomorphic to G. 
 
 
 14. If the isomorphism is not holohedral then several elements of G will correspond 
to the unity element 1′ of G′ that can be finite or infinite in number and which will 
generate a properly-discontinuous subgroup of G.  Let 1, T1, T2, … be the elements of 
that subgroup.  If the element S of G corresponds to the element S′ of G′ then all of the 
other elements of G that enjoy the same property will have the form Ti S, and also the 
form STj .  However, the equality Ti S = STj would demand that if S were very close to 1 
then Tj would have to be equal to Ti , and therefore if one displaces them by continuity in 
the manifold of the group then the index j would only remain equal to the index i.  The 
elements Ti would thus belong to the center (no. 11) of the group G. 
 
 Hence, if the group G′ is locally isomorphic to the simply-connected group G then a 
properly-discontinuous subgroup of the center of G will correspond to the unity element 
of G′. 
 
 
 15. This theorem admits a converse.  Let g be a properly-discontinuous subgroup of 
the center of G.  Take the sets Sg = gS to be new elements, where S is fixed, and g 
successively denotes all of the elements that comprise that group.  Define the 
multiplication of these new elements by the relation: 
 

Sg ⋅⋅⋅⋅ S′ g = SS′ g. 
 

One sees immediately that the new elements Sg generate a finite, continuous abstract 
group G′ that is locally isomorphic to G and is such that the unity element of G′ (namely, 
g) corresponds to the given subgroup g. 
 
 The search for groups that are locally-isomorphic to G thus amounts to the search for 
properly-discontinuous subgroups of the center of G. 
 
 For example, if G is the group of translations of the line then it will agree with its 
own center, and any properly-discontinuous subgroup will be defined by the powers with 
integer exponents of a particular translation; one will obtain the closed group of order 1. 
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 The group of G of similitudes of the line is simply connected, and its center reduces 
to the identity element.  Any group that is locally isomorphic to it is then integrally 
isomorphic. 
 
 
 16. Given a finite, continuous, connected, abstract group G, the problem of the search 
for groups that are locally isomorphic to it is then solved when G is simply-connected.  In 
the contrary case, one can construct a simply-connected group G  that is locally 
isomorphic to G.  In order to do that [13, 25], introduce new elements, each of which will 
be the set [S, (C),] of an element S of G and a continuous path (C) that joins 1 to S.  We 

continue to say that the two elements [S, (C),] and [S′, (C′ ),] are identical if S′ = S and one 

can pass from (C) to (C′ ) by a continuous deformation.  One will define the product of 

two elements [S, (C),] and [S′, (C′ ),] by imagining an element P that moves along (C) and 

considering the product SP that, when one follows it by starting with S, will describe a 
certain path (C″ ).  The desired product will be [S′, (C) + (C″ )].  One easily verifies that 

this definition satisfies the conditions for the new elements [S, (C)] to constitute an 

abstract group G .  That group will obviously be simply connected, and, on the other 
hand, it will be locally isomorphic to G.  The unity element of G will corresponds to 
many elements of G  that are closed contours in the manifold of G that are irreducible to 
each other.  The properly-discontinuous commutative subgroup of the center of G  that 
corresponds to the unity element of G will be the fundamental group, in the sense of the 
analysis situs, of the manifold of G.  We shall give preference to the name of connection 
group, while reserving an entirely different significance for the expression “fundamental 
group,” as we shall do in the following number. 
 
 

VI. – Homogeneous spaces. 
 

 17. One calls a connected, n-dimensional manifold upon which a finite, continuous 
group operates transitively a homogeneous space.  That can say that there exists a finite, 
continuous group of point-like transformations of the manifold that satisfies the following 
conditions: 
 
 1. Any transformation of G makes a well-defined point M′ correspond to a point M 
of the manifold. 
 
 2. Given two arbitrary points M and M′ of the manifold, there exists at least one 
transformation of the group that takes M to M′. 
 
 3. If the sequence of points M1, M2, …, Mn, … of the manifold tends to a limit point 
M, and if the sequence of transformations S1, S2, …, Sn, … of the group tends to a 
transformation S then the point nM ′  that is the transform of Mn by Sn will tend to the point 

M′ that is the transform of M by S. 
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 The latter condition expresses the idea that the continuity in the manifold of the group 
(when considered as an abstract group) assures the continuity of the effects that are 
produced in the points of space. 
 A homogeneous space must therefore be regarded as the set of a connected manifold 
and a group G that operates transitively on that manifold.  We say that G is the 
fundamental group of the space. 
 One can define the neighborhoods of a homogeneous space by the set of points that 
are transforms of a fixed point O by the transformations of an arbitrary neighborhood of 
the fundamental group.  A homogeneous space can thus be covered by a denumerable 
infinitude of neighborhoods.  A homogeneous space whose fundamental group is closed 
is obviously closed, but the converse is not true.  For example, the projective line, which 
is a closed, one-dimensional space, is transformed transitively by the homographic group 
of one variable, which is open. 
 
 
 18.  The set of transformations of G that leave invariant a particular given point O of 
space defines a subgroup g of G that is obviously closed in G, since if an infinite 
sequence of transformations of g tend to a transformation S of G then that transformation 
will leave the point O invariant; later on (no. 29), we shall return to that important 
property. 
 It can happen that G admits transformations that leave all points of space fixed; they 
will necessarily belong to g and generate a subgroup γ that is invariant in G.  In reality, 
the group of transformations of the space is then G / γ.  If one excludes the possibility that 
was envisioned before then the subgroup γ will contain no subgroup that is invariant in 
the total group. 
 

 



 

CHAPTER II 
 

LIE GROUPS 
 

I. – Definition and review of some fundamental theorems [1]. 
 

 19.  We say that a finite, continuous, abstract group is a Lie group if one can find a 
system of coordinates or (real) parameters a1, a2, …, ar in a sufficiently small 
neighborhood V0 of the unity element such that the parameters ci of the element C = AB 

result from the multiplication of the element A with the parameters ai by the element B 
whose parameters are bi are expressed by functions: 
 

ci = ϕi (a, b) 
 
that admit continuous partial derivatives of the first two orders. 
 In short, the problem of knowing whether there exist finite, continuous groups of 
order r > 1 that are mot Lie groups has never been addressed.  Later on (no. 26), we shall 
confirm the only precise result that one knows regarding that question. 
 If one is dealing with a Lie group then one can choose the group parameters in such a 
manner that the ϕi are analytic functions of their arguments [2].  The operations of each 
group of parameters (no. 7) are, moreover, generated by linearly-independent 
infinitesimal transformations X1, X2, …, Xr . 
 The brackets of pairs of infinitesimal transformations satisfy relations of the form: 
 
(1)     Xi (Xj) – Xj (Xi) ≡ (Xi Xj) = ijs s

s

c X∑ . 

 
The (real) constants cijs satisfy the algebraic relations: 
 
(2)   ( )ij kh jk ih ki jhc c c c c cρ ρ ρ ρ ρ ρ

ρ
+ +∑  = 0  (i, j, k, h = 1, 2, …, r) 

 
that are deduced from the Jacobi identity: 
 

[(Xi Xj) Xk] + [(Xj Xk) Xi] + [(Xk Xi) Xj] = 0. 
 
 If a group of transformations other than a group of parameters realizes the abstract 
group, and if that group admits infinitesimal transformations then they will also satisfy 
the relation (1) with the same constants cijs . 
 
 20. One can add the following properties [13] to the preceding ones, which constitute 
the first two fundamental theorems of S. Lie: If one chooses a system of coordinates a1, 
…, ar in a certain neighborhood of a group then the infinitesimal element 1

a a daS S−
+  can be 

represented by the symbol ∑ ωk Xk , where the Pfaff forms ωi satisfy the relations 
(Maurer-Cartan equations): 
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(3)     dωs(δ) – δωs(d) = 
,

( ) ( )ijs i j
i j

c dω ω δ∑ . 

 
 Likewise, the infinitesimal transformation Sa+da

1
aS−  can be represented by the symbol 

∑ ϖk Xk , with the relations: 
 
(4)     dϖs(δ) – δϖs(d) = −

,

( ) ( )ijs i j
i j

c dϖ ϖ δ∑ . 

 
 The forms ωs are invariant under the first group of parameters, while the forms ϖs are 
invariant under the second one. 
 Finally, the group can be defined by its canonical parameters in a sufficiently small 
neighborhood V0 of the unity element, where an operation is characterized by the 

parameters ai of the infinitesimal transformation ∑ ai Xi that generates it.  With these 
canonical parameters, the forms ωi can be obtained [11] by integrating the differential 
equations: 

(5)     sd

dt

ω
 = das + 

,
ijs i j

i j

c aω∑  

 
while assuming that they are annulled for t = 0, and then setting t = 1 in it.  In these 
equations, one must regard the arguments ai and dai as constant parameters, while the ωs 
are unknown functions of the independent variable t. 
 The forms ϖs can likewise be obtained by integrating the equations: 
 

(5)     sd

dt

ϖ
 = das − 

,
ijs i j

i j

c aϖ∑ . 

 
 All of these results can be regarded as classical. 
 
 
 21. The third fundamental theorem of S. Lie expresses the idea that if one has a 
system of constants cijk that satisfy the relations (2) then there will exist a finite, 
continuous group of order r whose independent infinitesimal transformations satisfy 
relations (1).  In order to prove it, one can, for example, integrate equations (5), as we 
said above.  By virtue of the relations (2), the Pfaff equations: 
 
(7)     ωs (u′; du′) = ωs (u; du) 
 
are completely integrable and give the iu′  as functions of the ui and r parameters ai that 

define a group of order r that satisfies the desired conditions; for example, one can take 
the parameters ai to be the values of iu′  for u1 = … = ur = 0. 

 In reality, the preceding proof, like the other known proofs, moreover, except for the 
first proof of Lie that we shall discuss soon, is completely unsatisfactory.  The ωs are 
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linear forms in du1, du2, …, dur whose coefficients are entire analytic functions of the 
variable ui, but the determinant of the coefficients of dui is non-zero only in a certain 
neighborhood of the origin ui = 0.  Moreover, the determinant will be everywhere non-
zero, which will not suffice to assure the existence of the finite transformations of the 
group that are valid in the entire space of the ui .  In order to convince oneself of that, it 
will suffice to consider the simple equation: 
 

21

du

u

′
′+

 = 
21

du

u+
, 

 
which does not provide any finite transformation that valid in the entire domain of 
existence of the real variable u. 
 
 One has thus proved definitively the existence of a set of transformations that are 
defined for sufficiently small values of the parameters in a sufficiently small region of the 
Euclidian space of the ui, and that the product of two transformations of the set will again 
will belong to the set in the case where that product is defined in the region considered.  
In short, one obtains a piece of the group that operates upon a piece of space.  It is 
necessary to prove that one can prolong that piece of space and that piece of the group in 
such a manner that one would obtain a manifold in which a group operates. 
 
 
 22. Lie’s first proof, when it is valid from the local viewpoint, easily provides the 
basis for a rigorous proof.  It consists of starting with r infinitesimal transformations: 
 

(8)      Es ≡ 
,

isj i
i j j

f
c e

e

∂
∂∑  

 
that satisfy the relations (1).  For sufficiently small values of the parameters, they 
generate a piece of the group in which all of the operations are valid in the entire space 
of the ei .  Upon multiplying them together a finite number of times, and in all possible 
ways, one will obtain a group of well-defined linear transformations of the entire 
Euclidian space of variables ei .  The argument is valid only if the r transformations (8) 
are linearly independent, which demands that the infinitesimal group admit no 
distinguished infinitesimal transformation; i.e., one that commutes with all of the other 
ones.  That will be true, for example, if the form: 
 

ϕ(e) = 
, , ,

i j ikh jhk
i j k h

e e c c∑ , 

 
which gives the sum of the squares of the roots of the Killing equation: 
 

s isj ij
s

e c δ λ−∑  = 0  
1 if  

0 if  ij

i j

i j
δ
 = 

=  ≠ 
, 
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has a non-zero discriminant.  The groups that satisfy that condition are the simple or 
semi-simple groups [3]. 
 In the general case, one can prove the theorem directly by beginning with the case of 
an integrable group.  One can choose the infinitesimal basis for an integrable group and 
the parameters u1, …, ur in such a manner that the matrix of coefficients of du1, …, dur in 
ω1, …, ωr will have the form: 

2

3

1 0 0 0

0 0

0

r

U

U

U

e

e

e

∗
∗ ∗

⋅
∗ ∗ ∗

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
in which Ui is a linear form in the variables u1, …ui−1 , and the terms that appear as 
asterisks are, for the i th row, entire analytic functions of the u1, …ui−1 (

1).  The integration 
of equations (7) will then give entire, analytic functions of the ui and the ai for the iu′  that 

are initial values of the iu′ .  One thus has directly a group whose manifold is 

homeomorphic to Euclidian space and which operates on a space that is homeomorphic 
to Euclidian space.  That group is simply connected. 
 In the case of a non-integrable infinitesimal group G that admits a larger invariant, 
integrable subgroup g, one can, in order to obtain a finite group with the given 
infinitesimal structure, come down to the integration of a Pfaff system: 
 

ωs (u′; du′) = αs1(a) ω1 (u; du) + … + αss(a) ωs (u′; du′), 
 

in which the ωs are the forms that were just in question for the integrable groups, and the 
αij(a) are the coefficients of a semi-simple, linear group with a known infinitesimal 
structure.  The conclusion is the same, so the manifold of the group that is obtained will 
be composed of points (a, u), each of which is the set of a point a of the manifold of a 
semi-simple linear group and a point u of the Euclidian space of the ui . 
 
 
 
 
 

                                                
 (1) Meanwhile, it can happen that one has: 
 

 aii  = 1cosUi
ie U + , ai , i+1 = − 1sinUi

ie U + , 

 ai+1, i = 1sinUi
ie U + , ai+1, i+1 =   1cosUi

ie U +  

 
 
for two consecutive rows – for example, the i th and the (i + 1) th – in which the elements aij and ai+1, j (j < i) 
are entire functions of the u1, …, ui−1 . 
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II. – Adjoint group. 
Generating a group by its infinitesimal transformations. 

 
 23. If Sa is a particular operation of a group G, and Su is a variable operation then the 
equation: 

Su′ = 1
a u aS S S−  

 
will define an operation Ta that makes Su go to the transform Su′  of Su by Sa .  These 
operations Ta are automorphisms of the group, in the sense that if Su and Sv have 
transforms of Su′ and Sv′ , resp., then the product Sv Su will have the transform of Sv′ Su′ .  
Moreover, they form a group, which is the adjoint Lie group.  In particular, they leave 
invariant the identity transformation and transform the infinitesimal transformations 
linearly amongst themselves.  From this viewpoint, they constitute the linear adjoint 
group Γ of G.  The infinitesimal transformations of Γ are given precisely by the formulas 

(8): In fact, the transformation ∑ ei Xi , when transformed by ε Xs becomes: 
  

∑ ei Xi  + ε ( )i i se X X⋅∑  = 
,

j j isj i j
j i j

e X c e Xε+∑ ∑ . 

 
 The coefficients of the infinitesimal transformation s s

s

e E∑  are the elements of the 

matrix Ha : 

(9)    Ha = 
11 21 1

1 2

s s s s s sr

s s r s s r s srr

a c a c a c

a c a c a c

 
 
 
 
 

∑ ∑ ∑

∑ ∑ ∑

⋯

⋯ ⋯ ⋯ ⋯

⋯

; 

 
this matrix plays a fundamental role in the question of the generation of a group by its 
infinitesimal transformations. 
 
 
 24. In a sufficiently small neighborhood V0 of the identity operation, any operation of 

the group will admit a system of well-defined canonical parameters (a1, …, ar), which are 
those of the infinitesimal transformation that it generates.  Now, follow a continuous path 
in the manifold of the group that starts at the identity operation; let S(t) be the operation 
that corresponds to point a of the path, which one can assume depends upon a parameter 
t.  One then follows the canonical parameters that one assigns to S(t), step-by-step.  
Indeed, if the ai are the parameters of S(t) then one can calculate the parameter ai + dai of 
S(t + dt) if the parameters ωi of [S(t)]−1 S(t + dt) are independent linear forms in da1, …, 
dar .  Now, integrating equations (5) will show that the ωi are deduced from the dai by 
performing the linear substitution that is represented by the matrix: 
 

1 + 
1

2!
Ha + 21

3! aH  + … + 11

!
n
aH

n
−  + … = 

1aH

a

e

H

−
, 
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whose determinant is annulled only if one of the characteristics roots of the matrix Ha 
(viz., the Killing roots) is a non-zero integer multiple of 2iπ.  Consequently, one can 
pursue the determination of the canonical parameters as long as one does not arrive at a 
transformation S whose canonical parameters (which are obtained by continuity step-by-
step) give a Killing root to the matrix Ha that is a non-zero integer multiple of 2πi. 
 The transformations S of the group that one will conclude with are the ones for which 
the substitution corresponding T of the linear adjoint group will admit a characteristic 
root e2niπ that is equal to 1, but which is provided from a root that is different from 1 by 
continuity.  If one knows in advance that these singular transformations define a manifold 
of dimension greater than r – 2 in the group manifold then one can always arrive at a non-
singular transformation without encountering a singular transformation, and in turn, the 
group (or at least the set of its non-singular transformations) will be generated completely 
by its infinitesimal transformations. 
 In the contrary case, and contrary to what H. Poincaré [5] believed that he had 
proved, it can happen that the infinitesimal transformations generate only a portion of the 
group.  The simplest case is provided by the group of real, unimodular, linear 
substitutions in two variables: 

(10)     
,

.

x a x b y

y a x b y

′ = +
 ′ ′ ′= +

 

 
The substitutions for which the equation (a – λ) (b′ – λ) – ba′ = 0 admits two distinct, 
negative real roots (a + b′ < − 2) cannot be generated by any infinitesimal transformation 
of the group. 
 
 
 25.  One can arrive at a very interesting result in the particular case of a group G of 
real linear substitutions.  Any substitution of the group that cannot be generated by an 
infinitesimal transformation can be regarded as the product of two substitutions of the 
group that commute with each other, one of which is involutive, and the other of which is 
generated by an infinitesimal substitution.  The proof is based upon the consideration of 
the group G′ that is obtained by regarding the real parameters of the G as complex.  In a 
more precise manner, G′ is the linear group of 2r real parameters that are generated by 
infinitesimal substitutions X1, …, Xr of G and by the substitutions iX1, iX2, …, iXr . 
 In that regard, it is important to remark that if one is given a group G of order r then 
there will never exist a group G′ of order 2r that has G as a subgroup and is such that the 
2r real, canonical parameters of G′ are obtained by giving arbitrary complex values to the 
r canonical parameters of G.  As an example, we cite the simply-connected Lie group G 
that is infinitesimally isomorphic to the homographic group of one real variable. 
 
 

III. – The subgroups of a Lie group. 
 

 26.  One can prove two fundamental theorems that relate to the subgroups of a Lie 
group. 
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 The first theorem is the following one: Any continuous subgroup of a Lie group is a 
Lie group.  More precisely, one can find two neighborhoods V0 and v0 of the unity 

elements in the manifolds of G and g, resp., that are sufficiently small that the various 
operations of v0 that are interior to V0 are the ones that are generated by a certain linear 

family of infinitesimal transformations of G.  A particular case of that theorem that refers 
to the subgroups of the linear group in n variables was proved by J. von Neumann [23]. 
 Let N and n be the order of G and g, respectively.  Take a hypersphere Σ in the 
Euclidian space EN of dimension N of canonical parameters of G that has the origin for its 

center and a radius R that is small enough that two distinct, interior points of Σ will 
represent two distinct elements of G.  We agree to call the distance from the origin to the 
representative point of an element of G that is interior to Σ its modulus.  Now, consider a 
neighborhood v0 in g that surrounds the unity element such that all of its elements have 
moduli that are less than R.  It is legitimate to suppose that it is represented by a 
hypersphere σ of radius r in Euclidian space EN of dimension n, the center represents the 

unity element.  Let R′ < R be the lower bound of the moduli of the elements g that are 
represented by frontier points of σ.  Take a number R″ < R′.  We can find a hypersphere 
σ′ in EN , whose radius r′ is sufficiently close to r that the elements of g that are exterior 

to σ′ and interior to σ will all have modulus greater than R″.  Finally, determine a number 
ε that is small enough that the product of an element g that is interior to the hypersphere 
σε of radius ε with an element of g that interior to σ′ will itself be interior to σ. 
 Having said that, consider an infinite sequence of points in σ that converge to the 
origin; let A1, A2, …, An, … be the corresponding points of Σ.  The half-lines in EN that 

join the origin to these points will admit at least one accumulation half-line ∆; take an 
arbitrary point H on that half-line that is situated at a given distance R0 ≤ R″ from the 
origin.  If sn is the element of g that is represented in EN by An then determine the largest 

integer pn such that σn and all of its powers up to np
ns  inclusively have moduli that are 

less than R0 .  If n is large enough that sn is interior to σε then the representative point of 
2
ns  in the space EN  will be interior to σ, and it will likewise be interior to σ′, since its 

modulus if less than R″; the same thing will be true for all of the other powers.  The 
representative points in the space EN  will all be interior to the hypersphere whose radius 

is R0, and they will obviously admit the point H as an accumulation point.  One can then 
extract a partial infinite sequence of points that converges to H from that sequence.  The 
sequence of corresponding points in En, which are all interior to σ′, admits at least one 

accumulation elements in En, and since it cannot admit more than one in G, the point H 

must therefore represent an element of g that is interior to σ.  The reasoning that was 
made for H is valid for all points of ∆ whose modulus is less than R″, and in turn, R′.  In 
other words, the neighborhood v0 of g contains all elements of modulus less than R′ of a 
subgroup that is generated by an infinitesimal transformation of G. 
 One easily sees then that all of the infinitesimal transformations of G that belong to g 
generate a Lie subgroup g′ that is contained in g, and whose elements of modulus less 
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than R′ all belong to the neighborhood v0 of g.  No other element that belongs to v0 can be 
interior to the hypersphere Σ of radius v0 in g.  Indeed, such an element s can be joined to 
the unity element of g by a continuous path that belongs to v0, and whose elements will 
all be of modulus less than R.  Let A be the representative point of that element that is 
interior to Σ.  Interior to Σ, the manifold that is the locus of element sg′ will be an 
analytic manifold that passes through A and has the same dimension n′ as the order of g′.  
The planar manifold of dimension N − n′ that issues from the origin and is orthogonal to 
g′ will meet that manifold at a well-defined point.  One will then have a sequence of 
points that converges to the origin at the same time as A and is such that the lines that join 
the origin to these points form angles with the lines that generate g′ that converge to π / 2. 
It then results that there exist infinitesimal transformation in g that are distinct from those 
of g′, which is contrary to hypothesis.  The theorem is then proved completely. 
 
 In particular, one deduces the following consequence: Any finite, continuous, linear 
group is a Lie group.  The same thing will be true for any projective, conformal, etc., 
group.  Therefore, if there exists a finite, continuous group that is not a Lie group then it 
cannot be isomorphic to any linear group.  The question of knowing whether any Lie 
group is isomorphic to a linear group is, as one knows, still open. 
 
 
 27. The second fundamental theorem relates to subgroups that are closed in G.  It is 
stated in the following manner: If a subgroup g of a Lie group G is closed in G without 

being properly discontinuous then one can find a neighborhood V0 of the unity element in 

G that is sufficiently small that all of the elements of g that are interior to V0 will be the 

ones that are generated by a certain linear family of infinitesimal transformation of G. 
 The proof is analogous to the preceding, but simpler, and its starting point is again the 
consideration of an infinite sequence of elements of g that converge to the unity element 
in G. 
 In particular, it results from the second theorem that any improperly-discontinuous 
subgroup g is open in G, so the subgroup that is composed of g and its accumulation 
points in G will be a continuous Lie group. 
 
 

IV. – Homogeneous spaces whose fundamental group is a Lie group. 
 

 28. Among the homogeneous spaces whose fundamental group is a Lie group (viz., 
Lie homogeneous spaces), one finds, in particular, the Lie groups in which one or the 
other of the parameter groups operate transitively.  These spaces are not arbitrary 
manifolds from the viewpoint of the analysis situs, as the examination of the two-
dimensional case will show.  The two-parameter Lie groups are either commutative or 
isomorphic to the group of similitudes of the line.  The manifold of a commutative group 
is homeomorphic to either the Euclidian plane (viz., the group of translations of the 
plane), a cylinder of revolution, or a torus.  As for the manifold of the group of 
similitudes of the line x′ = ax + b (a > 0), it is homeomorphic to the Euclidian plane (or to 
a half-plane, which is the same thing).  That group will then be simply connected, and 
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since its center reduces to the identity operation, there will exist no other group that has 
the same infinitesimal structure.  We thus obtain the Euclidian plane, the cylinder of 
revolution, and the torus as the only Lie group manifolds of order 2. 
 
 
 29.  Now consider an arbitrary Lie homogeneous space E that admits a connected, 
continuous group G for its fundamental group.  The largest subgroup g that leaves 
invariant a particular point O of space is, as we saw (no. 18), closed in G, and in turn (no. 
27), properly discontinuous, or even continuous, and connected or mixed.  Moreover, it 
admits no invariant subgroup in G. 
 Conversely, let g be an arbitrary closed subgroup in G that admits no invariant 
subgroup in G.  Let r – n and n be the orders of g and G, respectively.  If there exists a 
homogeneous space that is transformed transitively by G and is such that g is the largest 
subgroup that leaves a point O of space invariant then one can associate each point M of 
space with the set Sg of transformations of G that take O to M, and which are all obtained 
by multiplying a particular transformation S times all of the transformations of g.  Then, 
consider the set of “elements” or “points” Sg.  It defines an n-dimensional manifold that 
satisfies the desired conditions. 
 Indeed, define the neighborhood of a “point” Sg to be the set of “points” sSg, where s 
is an arbitrary element of a neighborhood V0 of the unity element in G.  Choose n 

infinitesimal transformations X1, …, Xn arbitrarily that define a basis for the group G with 
the r – n infinitesimal transformations SgS−1.  Any element s is, in one and only manner, 
the product of a transformation t of V0 that is generated by e1 X1 + … + en Xn and a 

transformation of V0 that belongs to SgS−1.  One will then have: 

 
s S g = t S g. 

 
One can thus make any “point” of the neighborhood V0Sg considered correspond to a 

point (e1, …, en) of an n-dimensional Euclidian space that is interior to a hypersphere of 
sufficiently small radius.  On the other hand, two distinct points of that hypersphere will 
correspond to two distinct “points” tSg.  If that were not the case then no matter how 
small one took the neighborhood V0 one could find an infinite sequence of pairs of 

elements tn, nt′  that converged to the unity element and were such that nt′ S had the form 

tnSRn, where the element Rn belongs to g.  One would then have: 
 

1
n nt t− ′  = SRnS

−1, 

 
in which Rn could converge to the unity element without belonging to the immediate 
neighborhood of the unity element in g.  However, that would contradict the second 
fundamental theorem (no. 27) that relates to subgroups g that are closed in G.  Postulate A 
is then verified.  The other postulates present no difficulty, except perhaps the last one E, 
which is proved in the following manner: If one is given two distinct “points” Sg and S′g 
such that one cannot find two neighborhoods of these “points” that have no point in 
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common then one can find an infinite sequence of pairs of elements sn, ns′  of G that 

converge to the unity element, and are such that: 
 

sn S g = ns′  S′ g . 

 One will then have: 
S′ = 1

ns −′ sn S Rn , 

 
in which Rn belongs to g.  The element Rn will converge to S−1 S′, which does not belong 
to g, which contradicts the hypothesis that g is closed in G. 
 It is indeed clear that one can start with any other subgroup S0 g 1

0S−  that is 

homologous to g in G. 
 
 
 30.  Instead of supposing that the space E is transformed transitively under a group 
that is holohedrally isomorphic to G, one can suppose simply that it is transformed by a 
group that is infinitesimally isomorphic to G.  In that case, the subgroup g can contain 
elements that define a subgroup γ that is invariant in G, but not continuous.  On the other 
hand, since γ is composed of the set of transformations of G that leave all of the points of 
space invariant, it is closed in G, and in turn, in g; it is thus properly discontinuous in g.  
Each of its elements is then invariant by itself in G – in other words, it belongs to the 
center of G.  The homogeneous spaces that are transformed transitively under G, with the 
possibility that there exists a non-continuous subgroup in G that leaves invariant all of 
the points of space, are thus associated with the various closed subgroups g in G that, 
like the possible subgroups that are invariant in G, admit only one properly-
discontinuous subgroup of the center of G. 
 If G is simply-connected then one can construct all of the homogeneous spaces that 
admit a group that is infinitesimally isomorphic to G for their fundamental group. 
 
 
 31.  Suppose that the group G is simply connected.  The subgroup g can be connected 
or mixed.  In the latter case, the connected family g0 of g that contains the unity element 
will be invariant under all transformations of g. 
 If g is connected then the homogeneous space E will be simply connected.  Indeed, 
take a closed contour (C) in E that starts at O and returns to it, and associate each point M 

of that contour by continuity with one of the transformations of G that take O to M, 
starting with the identity transformation.  The contour (C) will correspond to a path (C′ ) 
in the manifold G that starts with the unity element and ends at an element of g, which is 
a path one can close without leaving g, since g is connected.  One can deform the closed 
contour (C′ ) thus obtained in a continuous manner in such a way that it reduces to a 

point.  That deformation will imply a corresponding continuous deformation of the 
contour (C), which can thus be reduced to a point. 

  Q. E. D. 
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 If g is not connected then every connected family gi that constitutes g will correspond 
to a set of closed contours in space E that are all reducible to each other by continuous 
deformations.  In order to obtain them, one connects the unity element in the manifold of 
G to an element of gi by a closed path.  The elements of that path will yield 
transformations that will give a closed contour in E when they are applied to the point O.  
In a general manner, there are many closed contours in E that are not reducible to each 
other that give distinct, connected families in g.  The connection group of the space E, in 
the sense of the analysis situs, is the abstract group whose elements (ei) can be identified 
with the family gi, where the product (ei)(ej) will be equal to (ek) if the products of the 
elements of gi with the elements of gj give elements of gk . 
 
 
 32.  An interesting consequence results from the preceding.  No longer suppose that G 
is simply connected.  If the homogeneous space E is simply connected then one can assert 
that the subgroup g of G that is associated with the space E is connected.  On the 
contrary, if the space E is not simply connected then one can assert that either the 
subgroup g is not connected or that the group G is not simply connected.  That is what 
happens, for example, in the case of the projective line when it is transformed transitively 
by the (connected) homographic group of one variable.  The projective line is not simply 
connected, but the subgroup g that leaves the point x = ∞ invariant is the group x′ = ax + 
b (a > 0), which is connected; therefore, the homographic group is not simply connected.  
One can infer the same conclusion for the unimodular linear group in two real variables, 
which transforms the pointed Euclidian plane (in which, one has singled out the origin) 
transitively, and for which the subgroup g that leaves the point (1, 0) invariant is the 
connected group: 
 x′ = x + ay, 
 y′ =         y. 
 
 These remarks show how the topological study of the fundamental group of a 
homogeneous space can be quite interesting in the topological study of that space. 
 
 
 33.  In conclusion, we point out that the knowledge of all of the types of Lie groups in 
two variables will permit one to determine all of the two-dimensional Lie homogeneous 
spaces.  We content ourselves by pointing out the result. 
 
 Any two-dimensional Lie homogeneous space is homeomorphic to one of the 
following spaces: 
 
 The Euclidian plane. 
 The cylinder of revolution. 
 The pointed projective plane. 
 The sphere. 
 The projective plane. 
 The torus. 
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 The first three are open, while the last three are closed.  One sees that the Riemann 
surface of an algebraic curve of genus greater than 1 cannot be transformed transitively 
by any Lie group.  An analogous theorem, which is less restrictive as far as the nature of 
the group is concerned, was proved by D. van Dantzig and B.-L. van der Waerden [26]. 
 
 

V. – Orientable and non-orientable homogeneous space.  Volume. 
Metric homogeneous spaces. 

 
 34.  Let G be the fundamental group of a homogeneous space, let g be the associated 
subgroup, and let γ be the subgroup of the linear adjoint group that corresponds to g.  
Suppose that the last r – n infinitesimal transformations in the infinitesimal basis for G 
are the ones that generate g, or at least, the connected part of g that contains the unity 
element.  The linear substitutions of g subsume the parameters ei of the most general 
infinitesimal transformation ∑ ei Xi of the group, but since g obviously leaves invariant 
the set of transformations of g, these substitutions will transform the parameters e1, …, en 
between themselves.  We let γ  denote the linear group that indicates how these n 
parameters are transformed. 
 Suppose that the determinants of the various substitutions of γ  are always positive: 
The space E will then be orientable.  Consider a parallelepiped that is constructed from n 
infinitely small vectors OAi that issue from the point of origin O.  Each point Ai can be 

obtained by applying an infinitesimal transformation ( )

1

n
i

k k
k

e X
=
∑  to O.  Arrange the n 

vectors into a certain order, and agree to say that the parallelepiped has a positive or 

negative sense according to whether the determinant ( )j
ie  is positive or negative, resp.  

The parallelepiped will be changed into another one by any transformation of g that will 
have the same sense as the first one, since one passes from the values ( )

1
je , ( )

2
je , …, ( )j

ne  

to the transformed values by a substitution of the γ , and similarly for the indices i.  One 
can likewise define the sense of an infinitely small parallelepiped of origin A that is 
different from O by moving its origin to O by a transformation of G, and the sense will be 
conserved by any transformation of G. 
 On the contrary, if certain substitutions of γ  have negative determinants then the 
space will not be orientable. 
 If the subgroup g is connected then it will be clear that the determinants of the 
substitutions of the connected linear group γ  will always be positive; the space will then 
be orientable.  In particular, the manifold of a group is then always orientable. 
 
 
 35.  The preceding considerations permit one to define the volume of an infinitely 
small parallelepiped of a homogeneous space if all of the linear substitutions of γ  have 
determinants that are equal to 1 (viz., orientable spaces) or determinants that are equal to 
± 1 (viz., non-orientable spaces).  The volume thus-defined will be conserved by any 
transformation of G. 
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 In particular, take the manifold of a group G, when considered to be a space that is 
transformed transitively by the first parameter group; g will reduce to the identity 
transformation here.  Define the volume of the parallelepiped whose origin is at O (viz., 
the unity element) and is constructed from the vectors that define the infinitesimal 
transformations e1 X1 ,  e2 X2 , …, er Xr to be equal to e1e2…er .  The volume element of 
the space will be [12, 13]: 

dτ = ω1 ω2 … ωr, 
 

in which the right-hand side is an exterior product. 
 On the contrary, if one regards the manifold of the group as a space is transformed 
transitively by the second group of parameters then one will have a second volume 
element [12, 13]: 

dτ ′ = ϖ1 ϖ2 … ϖr . 
 
 
 36. If the linear group γ  leaves invariant a positive-definite quadratic form – for 

example, 2 2
1 2e e+ +  …+ 2

ne  − then there will exist a Riemannian metric in the 

homogeneous space E that is invariant under G.  Indeed, let A be a point that is infinitely 

close to the origin O.  Call the quantity 2 2 2
1 2 ne e e+ + +⋯  the distance OA, in which e1, 

…, en denote the parameters of the infinitesimal transformation e1X1 + …+ en Xn that 
takes O to A.  If A goes to A′ under a transformation of g then one will see that the 
distance OA′ is equal to the distance OA.  One then defines the distance MN between two 
infinitely close points M and N by taking M to O by a transformation of G.  If N then goes 
to A then one can set MN = OA.  The distance that is obtained is independent of the 
transformation that takes M to O.  It is preserved by an arbitrary transformation of G. 
 Analytically, if Sa and Sa+da are two transformations of G that take O to two infinitely 
close points M and N, respectively, and if 1

a a daS S−
+  has the symbol ω1 X1 + … + ωr Xr 

then one will have: 
2

MN  = 2 2
1 2ω ω+  + … + 2

nω . 

 
 In particular, the space of the group G, when considered as being transformed 
transitively by the first parameter group, admits an infinitude of metrics that are invariant 
under that group; it will suffice to take a positive-definite metric with arbitrary constant 
coefficients in ω1, ω2, …, ωn .  If one takes a finite, properly-discontinuous subgroup for 
g, in place of the identity transformation, then γ  will be a finite, linear group that always 
leaves invariant at least one positive-definite quadratic form, and in turn, the r-
dimensional space E that is associated with g will always admit at least one metric that is 
invariant under G. 
 
 



 

CHAPTER III 
 

CLOSED, LIE GROUPS 
 

I. – Volume of a closed group. 
 

 37.  We saw (no. 35) that one can define two different volumes in the manifold of a 
Lie group.  It is obvious that each of them will be finite if the group is closed, since the 
manifold can be covered by a finite number of neighborhoods, each of which has a finite 
volume. 
 On the contrary, if the group is open then one and the other of the volumes of its 
manifold will be infinite.  Indeed, let V0 be a neighborhood of the unity element, and let 

0′V  be a neighborhood that is interior to V0 and sufficiently small that if s and s′ are two 

arbitrary elements of 0′V  then the element ss′−1 will belong to V0 .  We know that if p is an 

arbitrary integer then there will exist elements of G that cannot be obtained by 
multiplying p elements that are interior to V0, since otherwise the manifold of G could be 

covered by a finite number of neighborhoods.  Let S be an element of that nature, so: 
 

S = s1 s2 … sq  (q > p); 
 
we can suppose that q is the minimum number of factors that one can take in the interior 
of V0 in order to obtain S.  Consider the neighborhoods: 

 

0′V , s1 s2 0′V , s1 s2 s3 0′V , …; 

 
one easily sees that no pair of them has an element in common.  On the other hand, they 
all have the primary volume v′, which is the volume of V0 .  One can thus find as many 

regions in the group manifold as one desires that all have volume v′ and have no point in 
common. 
  Q. E. D. 
 
 The two volumes that one can define on the manifold of a closed group are identical. 
 
 

II. – A theorem of H. Weyl. 
 
 38.  There exists a fundamental theorem that is due to H. Weyl [8, pp. 289] for closed, 
linear groups G that are connected or mixed, namely, that such a group leaves invariant 
at least one positive-definite Hermite form. 
 First, suppose that the group G is connected and defined by the equations: 
 

ix′ = ik k
k

a x∑   (i = 1, 2, …, n), 



Cartan – The theory of finite, continuous groups and the analysis situs. 25 

where the coefficients aik naturally depend upon the substitution S of the group G.  We 

denote the right-hand sides by Sxi and their complex conjugates by iSx .  For the 

following integral that is taken over the entire group manifold: 
 

1 1 2 2( )n n SSx Sx Sx Sx Sx Sx dτ+ + +∫ ⋯ ; 

 
it is a positive-definite Hermitian form F(x1, …, xn).  It is invariant under G, since if one 
performs the particular substitution S0 on the variables xi then the form will become: 
 

0 1 0 1 0 2 0( )n SSS x SS x SS x SS x dτ+ +∫ ⋯ . 

 
Upon setting SS0 = S′ and remarking that dτS = dτS′, if one takes dτ to be the second 
volume element then one will prove the theorem. 
  If the group G is mixed then it will necessarily be formed of a finite number of 
connected families; it will then suffice to define the form F by the sum of as many 
integrals as their families in the group. 
 If the closed, linear group G has real coefficients then one can substitute a positive-
definite quadratic form for the Hermitian form. 
 
 
 39.  A particular consequence of Weyl’s theorem is that the coefficients aij of the 
substitutions of a closed, linear group are bounded, because if one supposes that the 
invariant form F is, for example: 
 

F ≡ 1 1 2 2 n nx x x x x x+ + +⋯ , 
then one will have: 
(1)      

,
ki ki

k i

a a∑ = 1. 

 

 This property can be proved directly, moreover.  Call the quantity 
,

ij ij
i j

a a∑  the 

modulus of a linear substitution.  If the coefficients were not bounded then one could find 
an infinite sequence of substitutions S1, S2, …, Sn, … in the group such that the modulus 
of each of them is greater than twice the modulus of the preceding one, and that sequence 
would have no accumulation element in the group. 
 One can add another essential property that follows from the preceding one, namely, 
that the roots λ of the characteristic equation of S, namely: 
 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

λ
λ

λ

−
−

−

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = 0, 
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are all of modulus equal to 1.  Indeed, one can, by a previous change of variables, 
suppose that one of the equations of the substitution S is: 
 

1x′  = λ x1 ; 

 
the substitution Sn will thus have λn for its coefficient, and that quantity can be bounded 
only if λ has modulus 1.  Finally, it results from this that the determinant ∆ of the 
substitution, which is the product of the characteristic roots, has a modulus that is equal 
to 1.  One can say directly that each substitution S is associated with the substitution v′ = 
∆v that shows how S changes the volume; these substitutions can generate a closed group 
only if ∆ has a modulus that is equal to 1.  That is, moreover, the reason for the fact that 
there can be only kind of volume in the manifold of closed group. 

 
 
 40.  One can attach the following important theorem to the preceding considerations: 
Any bounded, linear, algebraic group is closed.  A linear group G will be called bounded 
if the coefficients of its equations are bounded, and algebraic if it is defined by a system 
of entire algebraic relations between the coefficients.  The theorem is almost obvious, 
since if the coefficients are bounded then any infinite set of substitutions of the group will 
admit at least one accumulation element Σ in the group of all linear substitutions that act 
upon the given variables, and Σ will belong to the group G, since its coefficients satisfy 
the given entire algebraic relations. 
 The orthogonal group of n real variables, the linear group of a positive-definite 
Hermitian form, and the unimodular linear group of such a form are thus closed groups.  
However, their subgroups are not all closed, as one proves with the example of the 
group: 

x′ = eia x, y′ = emia y, 
 
in the real parameter a, while m is a real irrational constant; that group is not closed, and 
yet it leaves invariant the Hermitian form xx yy+ . 
 
 

III. – The structure of closed groups. 
 

 41. If a group G is closed then its adjoint group Γ will also be so.  It thus leaves 
invariant at least one positive-define quadratic form, namely: 
 

F(e) ≡ 2 2
1 2e e+ + … + 2

ne ; 

 
upon expressing the idea that the infinitesimal transformation Ei (no. 22) of the adjoint 
group leaves F invariant, one will obtain the relations: 
 

cjik + cijk = 0. 
 

 One can thus choose the basis for a closed group in such a way that one has: 



Cartan – The theory of finite, continuous groups and the analysis situs. 27 

(2)     cijk = cjki = ckij = − cikj = − ckji = − cjik . 
 
 One deduces that one has: 

1 1
,

jk kj
j k

c c∑ = − 2
1

,
jk

j k

c∑  

 
for the coefficients of 2

1e  in the form ϕ(e) that was defined in no. 22. 

 The form ϕ(e) is therefore negative-definite or negative semi-definite.  That is, 
moreover, a property that results immediately from the fact that it represents the sum of 
the squares of the characteristic roots of the infinitesimal substitutions of the adjoint 
group, and that these roots are purely imaginary, since otherwise the characteristic roots 
of the finite substitutions of the adjoint would have modulus 1. 
 
 
 42. Regard e1, e2, …, er as the rectangular coordinates of a point in an r-dimensional 
Euclidian space.  If Γ leaves invariant a planar manifold in that space that passes through 
the origin then it will also leave invariant the orthogonal manifold.  One can thus suppose 
that an infinitesimal basis for the group has been chosen in such a manner that Γ leaves 
separately invariant the planar manifolds that are define by the first p1 coordinate axes, 
then the next p2, then the next p3, and so on, such that Γ leaves invariant no smaller 
planar manifold that is contained in one of the preceding manifolds.  A simple calculation 
will then show that the constant cijk can be non-zero only if all three indices i, j, k belong 
to the first p1 indices, or the next p2 indices, and so on.  The infinitesimal transformations 
of each sequence generate a group, and the group G is (at least, in a neighborhood of the 
identity element) the direct product of a certain number of other groups G1, G2, …, Gh .  
That must say that any transformation of G that is sufficiently close to the identity can be 
regarded, in one and only one manner, as the product of a transformation of G1, a 
transformation of G2, etc., such that these h component transformations commute with 
each other (and each taken in a neighborhood of the identity transformation). 
 The component groups G1, G2, …, Gh are simple, because they obviously cannot 
admit any continuous, invariant subgroup, so such an invariant subgroup will correspond 
to a planar manifold that is invariant under Γ. 
 
 
 43. Some of the component groups can have one parameter.  First, suppose that they 
all enjoy that property.  The constants cijk are then all zero, and one has a closed, 
commutative group.  The simply-connected group with the same infinitesimal group is 
the group of translations of an r-dimensional Euclidian space.  In order to pass from the 
latter to a closed group, it is necessary to determine a properly-discontinuous subgroup.  
One sees immediately that the closed group can always be obtained by regarding two 
translations as identical when their projections differ by integers.  Such a group is 
therefore always holohedrally isomorphic to the linear group: 
 

1x′  = 1
1

iae x , 2x′  = 2
2

iae x , …, rx′  = ria
re x  
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in the parameters a1, a2, …, ar . 
 Any linear group that is isomorphic to the preceding one will be reducible to the 
form: 

1y′  = 1

1
k ki m a

e y∑ , 2y′  = 2

2
k ki m a

e y∑ , …, ny′  = nk ki m a

ne y∑ , 

 
in which the mkh are arbitrary integers.  In order for the isomorphism to be holohedral, it 
is necessary and sufficient that one can conversely express a1, a2, …, ar in terms of linear 
combinations with integer coefficients in the n forms ik k

k

m a∑  (i = 1, 2, …, n). 

 It is interesting to remark that the group G admits a continuous infinitude of local 
isomorphisms that one obtains by performing an arbitrary linear substitution on the ai .  
However, such a local automorphism can be prolonged into any group only if the 
substitution has integer coefficients and a determinant that is equal to ± 1. 
 
 
 44.  Any closed group is (infinitesimally) the direct product of a commutative group 
and another group for which the form ϕ (e) is negative-definite.  The groups for which 
the form ϕ (e) has a non-zero discriminant are the simple and semi-simple groups.  We 
shall briefly study the groups for which the form ϕ (e) is definite. 
 
 

IV. – Closed, semi-simple groups. 
 

 45. Let G be a connected group for which the form ϕ (e) is definite: 
 

ϕ (e) = 2 2 2
1 2( )re e e± + + +⋯ . 

 
The structure constants cijk then satisfy the relations (2), and in turn, the form ϕ (e) will 
be negative- definite.  We shall show that the adjoint linear group Γ is closed. 
 Indeed, consider [9, 21] the set of linear automorphisms of G; viz., the set of linear 
substitutions: 

ie′  = ik k
k

a e∑ , 

 
which, when performed on the parameters of an infinitesimal transformation i i

i

e X∑ , 

will preserve the structure relations: 
 

(Xi Xj) = ijk k
k

c X∑ . 

 
 They are defined by the entire algebraic relations: 
 
(3)    

,
ki ijk khs

k h

a c c∑ = ijk sk
k

c a∑   (i, j, s = 1, 2, …, r). 
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 The group of linear automorphisms is therefore algebraic, and also bounded, since it 
leaves the form ϕ (e) invariant; it is therefore closed (no. 40).  Now, the linear adjoint 
group Γ is a subgroup, and similarly, an invariant subgroup, since the transform by an 
automorphism A of the transformation Ta of the adjoint group: 

 
(Ta)     Sa′ = Sa Sn 

1
nS−  

 
will be the transformation Tb that is provided by the element Sb of G that is the transform 
of Sa by the automorphism A.  The group Γ is therefore (no. 42) (at least, infinitesimally) 

the direct product of Γ with a group Γ1 that commutes with Γ; however, it is impossible 
for that group Γ1 to not reduce to the identity operation, because it will give linear 
automorphisms that leave invariant each transformation Ta of the adjoint group, and in 
turn, each element of G. 
 The group Γ is therefore identical to Γ′, or at least, it constitutes one of the connected 
families (which are finite in number) that Γ′ is composed of.  It is therefore closed. 
 
 
 46. We shall now show that the group G itself is closed; in order to do that, it will 
suffice to prove, with H. Weyl [8, pp. 380], that the simply-connected group of the same 
infinitesimal structure can cover the adjoint group only a finite number of times, or even 
that there exist finite number of closed contours in the adjoint group that are not 
reducible to each other by continuous deformations.  That number will be that of the 
elements of the center of the simply-connected group with the given infinitesimal 
structure. 
 In order to prove that theorem, it is necessary to establish previously some properties 
of the adjoint group Γ.  Suppose that one can find l independent infinitesimal 
transformations of Γ that commute with each other and which do not all simultaneously 
commute with any other infinitesimal transformation; we can suppose that these l 
transformations are E1, E2, …, El .  The subgroup γ of Γ that they generate is closed, since 
it is one of the connected subsets of a bounded group, and it is formed algebraically from 
the substitutions of Γ′ that leave invariant the variables e1, e2, …, el .  On the other hand, 
that subgroup γ is commutative; as a result (no. 43), the characteristics roots of its most 
general infinitesimal transformation a1 E1 + a2 E2 + … + al El have the form ± i ωα , in 
which the ωα are linear combinations with integer coefficients of the l canonical 
parameters ϕ1, ϕ2, …, ϕ l that are each defined up to 2π and depend linearly upon the, 
likewise canonical, parameters a1, a2, …, al .  The characteristic roots are pair-wise equal 
and opposite because the group γ has real coefficients. 
 
 
 47. Since the infinitesimal transformations of γ that are not singular – i.e., the ones 
for which, one of the quantities ωα is annulled – are invariant under γ, they each admit 
∞n−l homologues in Γ, and since they depend upon l parameters, one sees that the 
transformations of γ and the homologues depend upon r parameters.  The singular 
transformations of γ that are invariant under a subgroup of at least l + 2 parameters each 
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admit at most ∞n−l−2 homologues, and since they depend upon at most l – 1 parameters, 
the singular transformations of Γ will depend upon at most: 
 

r – l – 2 + (l – 1) = r – 3 
 
parameters.  In particular (no. 24), it then results all of the non-singular, finite 
transformations of Γ, and also of G, admit infinitesimal transformations as generators.  
Moreover, the same thing will be true for the singular transformations that are limits of 
non-singular transformations, because one can always suppose that the parameters ϕ1, ϕ2, 
…, ϕ l of a generating infinitesimal transformation are found between 0 and 2π – i.e., they 
are bounded – and under these conditions, the generating infinitesimal transformation of 
an infinite sequence of non-singular, finite transformations that converge to a singular, 
finite transformation will admit at least one accumulation point, which will provide a 
generating infinitesimal transformation of the singular transformation.  Any semi-simple 
group of the definite form ϕ (e) is therefore generated completely by its infinitesimal 
transformations. 
 
 
 48. Now, consider the hyperplanes: 
 

ωα = 0,  ωα = ± 2π 
 
in the l-dimensional Euclidian space whose rectangular coordinates are the canonical 
parameters a1, …, al of a transformation of γ. 
 The first of them delimit a certain number of polyhedral angles (D1), (D2), … around 
the origin.  The last ones, along with the first ones, delimit a certain number of polyhedra 
(P1), (P2), … in the interior of these angles that have the origin for their vertices.  
Describe a path (C) in the manifold Γ that takes the unity element to an arbitrary element 

T; we can always, if needed, suppose that this path meets no singular element.  Follow 
the parameters ϕ1, ϕ2, …, ϕ l of the variable element along (C) by continuity.  Starting 

from the origin, we enter into one of the polyhedra (P) without ever leaving it.  As a 
result, any element of Γ is homologous to an element of γ that has its image in the interior 
or on the frontier of one of the polyhedra (P).  Now, suppose that the contour (C) returns 

to the identity element.  The interior image point of (P), starting from the origin, will 
necessarily end at one of the summits of (P) that corresponds to the identity 
transformation of Γ. (The ωα are all multiples of 2π for the identity transformation of Γ).  
If the image point returns to the origin then the closed contour that it describes can be 
reduced to the origin by a sequence of homotheties with ratios of k that decrease from 1 
to 0, and the closed contour (C) can be correspondingly reduced to a point by a 

continuous deformation.  On the contrary, if the image point interior to (P) goes from the 
origin to another summit then the contour (C) cannot be reduced to a point by a 

continuous deformation, since if it could then it would always be possible to realize the 
reduction without ever encountering singular elements, which only define r – 3-



Cartan – The theory of finite, continuous groups and the analysis situs. 31 

dimensional manifold, but then the image point, which does not leave (P), will always be 
the origin at the same summit of (P), which is absurd. 
 There are thus [15] as many closed contours in the manifold of Γ that are not 
reducible to each other as there are summits in the polyhedron (P) that represent the 
identity transformation.  Since that number is finite, the theorem is proved. 
 
 
 49. The various polyhedra (P) that emanate from the origin in l-dimensional space 
each represent transformations of the group.  In particular, two neighboring polyhedra (P) 
and (P1), which are contiguous along a lateral face that issues from the origin, are 
mutually symmetric with respect to that face.  There exists a transformation of the adjoint 
group that transforms the infinitesimal transformations of γ that are interior to (P) into 
infinitesimal transformations of γ that are interior to (P1).  All of these transformations of 
γ into itself generate a finite group (S).  Moreover, there is no other transformation that 
leaves γ invariant in the adjoint group Γ; indeed, otherwise, one of those transformations 
T would leave invariant the polyhedral angle (D).  As a result, there will exist a non-
singular infinitesimal transformation X of γ that is invariant under T.  Now, the 
transformation T can always be generated by an infinitesimal transformation of Γ that 
leaves X invariant.  However, the only infinitesimal transformations of Γ that commute 
with X all belong to γ.  The transformation T will thus leave invariant all of the 
transformations of g, which is absurd. 
 The polyhedral angle (D) thus the fundamental region of the finite group (S) whose 
generating operations are symmetric with respect to the lateral faces of (D).  The number 
of polyhedra (P) that emanate from the origin is equal to the number of operations of (S).  
The number of lateral faces of (D) is equal to the rank l of the group [16]. 
 
 
 50.  The search for automorphisms of G can be attached to the preceding 
considerations.  It comes down to the search for rotations and symmetries about the 
origin that leave invariant the figure that is defined by the polyhedral angles (D), (D1), 
etc.  The number of these operations is a multiple of the number of operations of (S).  Its 
knowledge immediately gives the number of distinct, connected families into which the 
total group Γ of automorphisms of G is decomposed.  For simple groups, that number is 
equal to 1, 2, or 6, as was determined by E. Cartan [10]. 
 
 
 51. There exist four general classes of closed, simple groups and five exceptional 
groups, in addition.  The general classes of groups are isomorphic to: 
 
 A. The unimodular linear group of a positive-definite Hermitian form in l + 1 
variables.  That group is simply connected, and it covers its adjoint group l + 1 times.  
For l > 1, it will admit two distinct families of automorphisms. 
 
 B and D.  The orthogonal group of n real variables (n = 2l + 1 or n = 2l ≥ 8).  That 
group covers its adjoint group twice if n is even and once if n is odd.  It is covered twice 
by the simply-connected group of the same structure.  The number of its distinct, 
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connected families of automorphisms is 1 for odd n, 6, for n = 8, and 2, for n even and 
greater than 8. 
 
 C. The linear group that leaves invariant the Hermitian form: 
 

1 1 2 2 2 2l lx x x x x x+ + +⋯  

and the exterior quadratic form: 
 

[x1 x2] + [x3 x4] + … + [x2l−1 x2l]. 
 
That group is simply connected and covers its adjoint group twice.  Its automorphisms all 
belong to the adjoint group. 
 
 

V. – Constructing the most general closed group. 
 

 52.  Return to an arbitrary, closed, connected group G.  Infinitesimally (no. 42), it is 
the direct product of a commutative group and several simple groups.  The simply-
connected group G  with the same infinitesimal structure as G is thus the direct product 
of a group of translations 0G  of order r0 and several simply-connected, closed, simple 

groups 1G , 2G , …, hG . 

 In order to pass from G  to G, one must (no. 14) construct a properly-discontinuous 
subgroup g of the center if G , which is a subgroup that will provide the unity element of 
G.  Now, the center of G  is the direct product of the centers of the component groups.  
On the other hand, since the center of the group 0G  is 0G  itself, if one denotes the centers 

of G , 1G , …, hG  by C, C1, …, Ch then one will have: 

 
C = 0G  × C1 ×…× Ch . 

 
Any element of C is the product of h + 1 elements that are taken from 0G , C1, …, Ch, 

respectively.  It can happen that the subgroup g is the direct product of a subgroup of 0G , 

a subgroup of C1 , …, and a subgroup of Ch .  In that case, G will be the direct product of 
a closed, commutative group and h closed, simple groups. 
 In the general case, we denote the largest subgroup of 0G , C1, …, Ch that belongs to g 

by g0, g1, …, gh, respectively.  The group g0 × g1 × …× gh is a subgroup of g.  It defines a 
group G′ that covers G an integer number of times, and that number is finite, since it is 
equal to at most the number of operations of C1 × …× Ch ; the group G′ is then closed.  
On the other hand, one passes from G′ to G by constructing a finite subgroup of its 
center. 
 As a result, one can obtain any closed group G by starting with a closed group G′ 
that is the direct product of a closed, commutative group and a certain number of closed, 
simple groups.  It will suffice to take a finite subgroup g′ of the center of G′ to be the 
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unity element of G, where g′ has only the unity element in common with each of the factor 
groups that the center of G′ is a direct product of.  If g′ does not reduce to the unity 
element then G will not be the direct product of commutative or simple groups. 
 
 
 53. A classical example of a closed, semi-simple group that is not the direct product 
of simple groups is furnished by the connected orthogonal group in four variables, which 
is covered twice by the direct product of two simply-connected simple groups of order 3, 
and which covers its adjoint group twice.  Similarly, the linear group of a positive-
definite Hermitian form 1 1x x  + … + n nx x  is covered n times by the direct product of the 

closed commutative group: 

kx′  = eiθ xk (k = 1, 2, …, n) 

 
and unimodular linear group of the Hermitian form. 
 
 

VI. – Homogeneous spaces with closed fundamental groups. 
 

 54. If G is a closed group then any homogeneous space E that is transformed 
transitively by G will be associated with a closed subgroup g of G.  The space itself is 
closed.  There exists at least one Riemannian metric on the space that is invariant under 
the group.  That amounts to saying that the subgroup γ of the adjoint group that 
corresponds to g is closed, and in turn, will leave invariant a positive-definite quadratic 
form.  That form will permit us to define the metric in the neighborhood of the origin, 
and in turn, in all of space (no. 36). 
 Moreover, the preceding reasoning that makes the fundamental group G closed or 
open applies to any homogeneous space for which the group g is closed.  One can easily 
prove that if the space E admits a metric invariant under G, and if G is the largest 
continuous group that leaves that metric invariant then g will be closed. 
 The property of a closed space that transforms transitively under a closed group G 
that it must admit a metric that is invariant under G is very important.  One can appeal to 
it in order to prove the possibility of constructing a complete orthogonal system of 
functions in space by starting with linear groups that are isomorphic to G.  However, that 
is a theory that, due to its importance, exceeds the scope of this fascicle. 
 
 



 

CHAPTER IV 
 

SYMMETRIC RIEMANNIAN SPACES ( 1) 
 
 

I. – Definition and first properties. 
 

 55. Consider a Riemannian manifold with an everywhere-regular metric on which we 
suppose that any infinite, bounded set of distinct points admits at least one accumulation 
point.  (A set is called bounded if the distance from all of its points to a fixed point 
remains bounded, where the distance between two points is defined to be the lower bound 
of the lengths of the arcs of the curve that join the two points.) 
 The Riemannian manifold will be called symmetric if the symmetry with respect to an 
arbitrary point A of the space preserves the metric.  (That symmetry is defined in the 
following manner: One can make any point M that is sufficiently close to A correspond to 
the point M′ that is obtained by joining the geodesic MA to the prolongation of an arc 
AM′ that has the same length as the arc AM.)  The property of a Riemannian manifold 
being symmetric is equivalent to the following: Levi-Civita parallel transport preserves 
the Riemannian curvature; however, shall ignore this viewpoint completely. 
 Any symmetric, Riemannian manifold admits a transitive, continuous group of 
isometric transformations.  Indeed, if M and N are two arbitrary (sufficiently close) 
points then one only has to join them with the geodesic MN and successively perform the 
symmetry with respect to M and the symmetry with respect to the midpoint P of MN: The 
point M will then be taken to N.  That isometric transformation belongs to a continuous 
family of isometries that are obtained by leaving the point M fixed and describing a 
geodesic that issues form M to the point N. 
 If G is the largest connected, continuous group of isometries of the manifold then that 
manifold can be considered to be a homogeneous space whose fundamental group G is 
endowed with a metric that invariant under G.  The largest subgroup g of G that leaves 
invariant a given point O of space is then closed (no. 54).  We assume that G is a Lie 
group. 
 
 
 56.  Let σ be the symmetry with respect to O.  That symmetry defines an involutive 
automorphism of group G that makes the displacement S correspond to the displacement: 
 

S  = σ D σ−1 = σ D σ ; 
 
if S takes M to N then S  will take the symmetric point M of M with respect to O to the 
symmetric point N  of N with respect to O. 
 The transformations of g are obviously invariant under that automorphism.  On the 
other hand, if there are other ones then each of them must take O to a point that must be 

                                                
 (1) In this chapter, we shall summarize and simplify the theories that were presented in the memoirs 
[14], [15], [16], [17], [21] of E. Cartan; see also [12] and [13]. 
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its proper symmetric point with respect to O, so if they exist then they must define a 
family of displacements that one cannot link to g by continuity.  In particular, the only 
infinitesimal transformation that are invariant under the automorphism are the ones that 
belong to g. 
 
 
 57.  Conversely, start with a connected, continuous group G and an involutive 
automorphism A in that group such that the infinitesimal transformations that are 

invariant under A generate a closed subgroup g.  We shall show that the homogeneous 

space E that is associated with g can be endowed with a symmetric Riemannian metric 

that is invariant under G. 
 The automorphism A effects a linear substitution of the form: 

 

(1)     
( 1,2, , ),

( 1, , )
i ie e i n

e e n rα α α
′ = − =

 ′ = = +

…

…

 

 
in the parameters ei of the infinitesimal transformations of G; in what follows, we shall 
denote the first n indices by Latin letters and the last r – n ones by Greek letters. 
 By hypothesis, the infinitesimal transformations Xα generate a closed, continuous 
subgroup g.  The subgroup γ of the adjoint group Γ that corresponds to g is closed.  It 
transforms the e1, …, en amongst themselves.  It then leaves invariant (no. 38) at least one 
positive-definite quadratic form, namely: 
 

f(e) = 2 2 2
1 2 ne e e+ + +⋯ . 

 
 
 58.  Let O be the origin that is invariant under g.  Let S  be the transformation of G 
that is the transform of S under the automorphism A.  Finally, let Sg be the set of 

transformations of G that take O to a point M in space.  The conjugate transformations 
Sg define another well-defined point M .  One thus obtains a point-like transformation 

of the space E that leaves the point O fixed; we denote it by the symbol σ.  That 

transformation is isometric.  Indeed, if Sa and Sa+da take O to two infinitely close points 
M and M′ then their transforms M  and M ′  under σ will be the transformed points of O 
under aS  and a daS + , respectively.  The distance MM′ is obtained (no. 36) by considering 

the infinitesimal transformation 1
a a daS S−

+  whose symbol is ∑ (ωi Xi + ωa Xa), and one will 

have: 
 

MM′  = 2
i

i

ω∑ . 
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The distance M M ′  is obtained, in its own right, by considering the conjugate 

infinitesimal transformation ∑ (−ωi Xi + ωa Xa).  One then sees that the distance MM′  is 
not altered by the operation σ. 
 The trajectories of the infinitesimal transformations ∑ ei Xi , when applied to the point 
O are obviously invariant under σ (with a different sense of traversal).  The 
transformation σ then preserves the directions that issue from O, with a change in sense.  
In particular, the geodesics that issue from O are invariant under the isometry σ.  It then 
results immediately that one can pass from a point M to the point M that is the transform 
of M under σ by performing the symmetry with respect to O, at least as long as there 
exists a geodesic that joins O to M. 
 The space E thus admits an isometric symmetry with respect to O. 

 
 
 59.  The existence of an isometric symmetry σA with respect to an arbitrary point A in 
space follows immediately from the preceding.  Two points will be called symmetric with 
respect to A if one can, by a displacement of G, simultaneously take A to O and the two 
given points to two points that are symmetric with respect to O.  The symmetry σA will 
obviously be isometric. 
 If S0 is one of the transformations that take O to A, and if S is one of the 
transformations that take O to a point M then the symmetric point of M with respect to A 
will be defined by the transformation: 
 
(2)      S′ = 1

0 0S S S− . 

 
One immediately verifies that this point does not change if one multiplies S0 and S by an 
arbitrary transformation of g. 
 
 
 60. We agree to say that a transformation of G is a rotation if it belongs to g, and that 
it is a transvection if one can generate it by means of an infinitesimal transformation ∑ ei 
Xi .  We denote a rotation by the letter R and a transvection by the letter T.  One has: 
 

R  = R,  T = T−1. 
 
Let (C) be a line that links the points that are obtained by applying to the point O the 
transformations T(t) of the one-parameter group of transvections that are generated by a 
given infinitesimal transvection: 

e1 X1 + … + en Xn . 
 

We take t to be the canonical parameter of the subgroup, which we can suppose to be 
equal to the length of the arc that separates the point O on (C) from the point M that is the 
transform of O by T(t). 
 From (2), the symmetric point to the point M whose abscissa is t on the line (C) with 
respect to the point A whose abscissa t0 is given by: 
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S′ = T(t0) [T(− t0)]
−1 T(− t) = T(2t0 − t); 
 

it will again be a point of (C).  The trajectory is then its own symmetric image with 
respect to any of its points. 
 Having said that, let A be a point that is close to O along the line (C).  The geodesic 
OA is its own symmetric image with respect to A; it thus contains the point A1 that is the 
symmetric image of O with respect to A, which is a point that will belong to (C).  It will 
thus likewise contain the points A2, A3, … that are obtained by successively measuring 
out constant lengths on (C).  If A approaches O indefinitely then one will get the geodesic 
that is tangent to (C) at O in the limit, which must contain all of the points of (C).  The 
geodesics that issue from O are thus the trajectories of transvections. 
 
 
 61.  One can add a remarkable theorem.  Take two points A and A′ on the geodesic 
(C) whose abscissas are t0 and 0t′ , respectively; upon taking the symmetric point to a 

point S with respect to A and A′ in succession, one will obtain the points: 
 

T(2t0) S   and 0(2 )T t′ T(− 2 t0) S = T 0 0(2 2 )t t′ − S. 

 
 The result of the two symmetries is then the transvection whose amplitude is twice the 
distance AA′; it does not change if one slides the arc AA′ along the geodesic that carries it 
without changing its length or sense. 
 It is important to remark that the trajectory of a one-parameter group of transvections 
is a geodesic only if the trajectory starts from the point O. 
 
 

II. – Reducible and irreducible homogeneous spaces. 
 

 62.  Formulas (1), which define the involutive automorphisms A, show immediately 

that the brackets (Xi Xj) and (Xα Xβ) depend upon only the Xα , while the brackets (Xi Xα) 
depend upon only the Xi .  One thus has structure formulas of the form: 
 

(3)     

( ) ,

( ) ,

( ) .

i j ij

i i k k
k

X X c X

X X c X

X X c X

ρ ρ
ρ

α α

α β αβρ ρ
ρ

 =
 =

 =


∑

∑

∑

 

 
   The subgroup γ of the adjoint group Γ that corresponds to the subgroup g transforms 
the ei amongst themselves.  It transforms the variables eα amongst themselves, since g 
leaves invariant the linear family of infinitesimal transformations ∑ ei Xi .  Since the 
subgroup γ is closed, it will leave invariant not only the form f(e) ≡ 2

1e  + … + 2
ne , but also 

a positive-definite form such as: 
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(4)     F(e) ≡ 2

1e  + … + 2
ne  + 2

1ne +  + … + 2
pe . 

 
One immediately deduces the relations: 
 
(5)     cαij + cαji = 0,  cαβγ + cαγβ = 0. 
 
 
 63.  Consider the form ϕ(e) that relates to the group G.  Since it is invariant under the 
automorphism A, one can suppose that the infinitesimal basis for the group has been 

chosen in such a manner that one has: 
 
(6)     − ϕ(e) = 2 2

i i
i

e eα α
α

λ λ+∑ ∑ . 

 
 The coefficients λα are all positive; indeed, one has: 
 

λα = 2 2

, ,
ij

i j

c cα αβγ
β γ

+∑ ∑ . 

 
If λα is zero then the infinitesimal transformation Xα will be distinguished; the subgroup 
g will thus contain a continuous subgroup that is invariant under G, which is impossible 
(no. 18).  Since the subgroup γ leaves the form 2eα αλ∑  invariant, nothing prevents us 

from assuming that it is the one that one appeals to in order to define F, which amounts to 
assuming that the λα are equal to 1. 
 Upon now expressing the idea that the infinitesimal transformations Ei and Eα of the 
adjoint group leave the form ϕ(e) invariant, one will get the relations: 
 
(7)     cijα = λj cαij = λi cαij . 
 
 
 64.  Having made these preliminaries, suppose that the coefficients λi are not all equal 
to each other.  For example, separate the first n indices into two series, with the letters i, j, 
… being reserved for the first series, the letters i′, j′, …, for the second series, and 
suppose that the λi are all different from the iλ′ .  The relations (7) then give: 

 
cii ′α = c α ii ′ = 0. 

 
 One sees immediately that the infinitesimal transformations Xi and Xα generate a 
group G1; similarly, the transformations Xi′ and Xα generate a group 1G′ .  Finally, the 

transformations Xi commute with the Xi′ .  Any transvection of G, in turn, will be the 
product of a transvection of G1 and a transvection of 1G′  that commute with each other.  

The group G1 gives rise to a symmetric space E1 that is associated with g, and the group 
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G2, to a symmetric space E2 .  Any point of E (that is sufficiently close to O) can be 

defined by a transvection T = 1 1TT′ .  There then exist a one-to-one correspondence 

between the points of E and the pairs of points of E1 and 1′E .  On the other hand, the 

distance between two infinitely close points Te,e and Te+de, e′+de′ of E is given by the 

consideration of the infinitesimal transformation: 
 

1
, ,e e e de e deT T−

′ ′ ′+ +  = 1 1
1 1 1 1( )( )e e de e e deT T T T− −

′ ′ ′+ +′ ′ . 

 
If the first factor on the right-hand side has the symbol: 
 

i iX Xα αω ω+∑ ∑ , 

 
and if the second one has the symbol: 
 

i iX Xα αω ω′ ′ ′+∑ ∑  

 
then one will see immediately that the ds2 of E is the sum of the ds2 of E1 and 1′E . 

 We say that the space E results from the composition of symmetric spaces E1 and 1′E ; 

it will be called reducible. 
 
 One will arrive at an analogous conclusion if the subgroup γ, when considered as 
operating on the ei, leaves invariant a plane manifold of dimension at least n, so one can 
assume that ei′ = 0. 
 
 
 65.  If the space E is irreducible then the n coefficients λi of the form – ϕ(e) are then 

all equal to each other.  However, there are three cases to distinguish: 
 
 1. If the λi are all zero then relations (7) show that the transvections commute with 
each other.   The space is Euclidian, or more precisely, it is the manifold of a 
commutative group in which one has taken ds2 to be a positive-definite quadratic form 
with constant coefficients in the differentials of the n canonical parameters.  For n = 2, 
the space will be homeomorphic to the Euclidian plane, to the cylinder of revolution, or 
to the torus. 
 
 2. If the common value λ of the λi is negative then the group G will be open and 
simple or semi-simple.  The space E will itself be open, as one can prove by appealing to 

the property of g being closed. 
 
 3. If the common value λ of the λi is positive then the group G will be closed and 
simple or semi-simple.  The space E will likewise be closed. 
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 66. One can deduce the open irreducible symmetric spaces of the closed spaces by a 
very simple procedure.  Indeed, introduce the symbols: 
 

Yk = i Xk , Yα = Xα ; 
we obtain: 

(3′)     

( ) ,

( ) ,

( ) ,

i j ij

i i k
k

Y Y c Y

Y Y c Y

Y Y c Y

ρ ρ
ρ

α αρ

α β αβρ ρ
ρ

 = −
 = −

 = −


∑

∑

∑

 

 
which are formulas that define a new structure for the groups that admit the involutive 
automorphism (1).  The corresponding new form – ϕ(e) is obviously deduced from the 
preceding by changing λ into – λ.  As a result, any open, non-Euclidian, irreducible 
symmetric space is associated with a closed, non-Euclidian, irreducible, symmetric 
space, and conversely. 
 The search for the irreducible, symmetric spaces is then reduced to the search for 
closed ones. 
 
 
 67.  Before beginning that search, we shall prove that if an irreducible, symmetric 
space is furnished by a semi-simple group G then G will be the largest continuous group 
of displacements of the space. 
 First, observe that the brackets (Xi Xj) must yield r – n linearly-independent 
combinations of the Xα ; indeed, otherwise these brackets would generate an invariant 
subgroup g′ of g, as the Jacobi identity shows when it is applied to [Xα (Xi Xj)].  Since the 
subgroup g is closed, it will be the direct product of g′ and another subgroup g″.  
However, if Xρ belongs to g″ then formulas (7) will show that since cijρ is zero, the cρij 
will be zero; g″ is therefore invariant in G, which is impossible. 
 Having said that, suppose that there is a continuous group G′ that contains G as a 
subgroup and leaves invariant the metric on the space.  It is impossible for G′ to be semi-
simple, since the (Xi Xj) would not provide all of the transformations of the new subgroup 
g′ that leave the origin invariant then.  On the other hand, since space is irreducible, it can 
only be Euclidian, which is contrary to hypothesis.  There is thus a contradiction. 
 
 

III. – Closed, irreducible, symmetric spaces. 
 

 68. Let us pass over the locally-Euclidian spaces.  The group G is then closed and 
simple or semi-simple. 
 If a closed group G is simple and admits an involutive automorphism A that leaves 

invariant the transformations of a continuous subgroup g then one can easily see that g is 
closed.  The associated symmetric space E will necessarily be irreducible.  Indeed, if γ 
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leaves invariant a linear family e1 X1 + … + ev Xv (v < n) then the transformations Xi and 
(Xi Xj), where the indices i and j take the values 1, 2, …, v, will generate an invariant 
subgroup of G, which is impossible.  One will thus have a very large class of irreducible, 
symmetric spaces. 
 Now, suppose that G is (at least, infinitesimally) the direct product of several simple 
groups G1, G2, …, Gk .  The automorphism A will transform G1 into one of the 

component groups.  Since it is involutive, it will perform an involutive permutation of the 
component groups.  If h is greater than 2 then one can regard G as the direct product of 
two groups 1G′ , 2G′ , each of which is invariant under A.  The corresponding subgroup g 

will be the direct product of the two subgroups 1g′  and 2g′  of 1G′  and 2G′ ,.  One sees 

immediately that the space E results from the composition of the spaces that are 

associated with the subgroups 1g′  and 2g′ ; it is then reducible. 

 The only case in which space is irreducible with a semi-simple group G is the one in 
which G is the direct product of two simple groups G1, G2 that are isomorphic to each 

other, and in which the automorphism A transforms each element of G1 into the 

corresponding element of G2 . 
 
 
 69.  In the case where the group G is semi-simple, let Sα and Σα denote two 
corresponding elements of the two component groups.  The rotations, which are invariant 
under A, are the transformations Sα Σα , while the transvections are the transformations 

1Sα α
−Σ  that are inverse to their conjugates 1Sα α

− Σ . 

 Amongst all of the transformations of G that have the form: 
 

Sa Σb g = Sa Σb  Sa Σa 
 
and which take O to a point M in space, one and only one of them belongs to G1, namely, 

1
a bS S− ; one can thus regard the space E as the space of the simple group G1 .  If one 

applies the transformation Sα Σα  to the point Sx of the space E then one will obtain the 

transformation Sa Σb  Sx , or rather, the set of transformations: 
 

 Sa Σb  Sx g = Sa Σb  
1

bS− g . 
 
 Let X1, X2, …, Xr denote the infinitesimal transformations of the group G1, and let Y1, 
Y2, …, Yr denote the corresponding transformations of G2 .  The infinitesimal rotations 
are: 

Ui = Xi + Yi , 
 
while the infinitesimal transvections are: 
 

Vi = Xi − Yi . 
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The form – ϕ (e) that relates to G is the sum of the forms – ϕ (e) that relate to the two 
groups G1 and G2, and each of them is the sum of the squares of the r parameters.  It then 
results that the ds2 of the space E1, when considered to be the space of G1, is: 

 
2 2 2
1 2 rω ω ω+ + +⋯ . 

 
 Symmetry with respect to the origin replaces Sx g with Σx g or 1

xS g− ; it is then defined 

by: 
Sx′ = 1

xS− . 

 
The forms ωi are changed by that operation into the forms – ϖi, which are parameters of 

1
x x dxS S−

+ ; one will then hve the relation: 

 
2 2
1 rω ω+ +⋯  = 2 2

1 rϖ ϖ+ +⋯ . 

 
 There exist two remarkable families of displacements in the space E, namely, the left 

translations Sx′ = Sa Sx , and the right translations Sx′ = Sx Sb .  In the particular case in 
which G1 is the group of rotations in ordinary space, the space E will be the three-

dimensional elliptical space, which, in fact, admits two families of translations in the 
Clifford sense. 
 
 
 70.  The geodesics that issue from the origin in a space of a closed, simple group are 
lines that represent one-parameter subgroups [13].  If the rank l of the group is greater 
than 1 then an arbitrary geodesic is not closed, but will pass infinitely close to all of the 
points of an l-dimensional, locally-Euclidian manifold.  That manifold is represented by 
the polyhedron that is defined by the set of polyhedra (P) (no. 48) that emanate from the 
origin in l-dimensional Euclidian space; the opposite faces of the total polyhedron must 
be regarded as identical [15].  Any point of space admits different antipodal manifolds 
[15]. 
 
 
 71.  Closed, irreducible symmetric spaces whose group G is simple [17] present 
analogous peculiarities.  Here, the rank of the space is the maximum number l of linearly-
independent, infinitesimal transvections that commute with each other.  One introduces 
polyhedra (P) that are analogous to the polyhedra (P), whose interior points serve to 

represent the transvections of the group G.  If that group is simply connected, which one 
can always assume (no. 30), then one can prove, as in no. 48, that the manifold of finite 
transvections is simply connected. 
 Now, suppose that the subgroup g is connected: The space E will then be simply 

connected (no. 31).  One proves that any transformation S of G can be put into the form 
of the product TR of a transvection and a rotation in at least one way, which amounts to 
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saying that any point M can be related to the origin O by at least one geodesic.  No matter 
what the transformation S might be that takes O to M, the product 1SS−  = T 2 will always 
be the same; any point M will thus correspond to a well-defined transvection T 2.  As a 
result, the space E will be the simply-connected covering space of the manifold of 

transvections, which we have seen to be simply connected, in its own right.  There thus 
exists a one-to-one correspondence between the points of E and the transvections T 2.  

From the viewpoint of displacements of space, that translates into the formula: 
 
(8)      T′ 2 = 1S T S− . 
 
 That formula shows that if one considers the manifold V in the space of the group G 
of transvections, which one can regard as the image of the space E, then on the manifold 

V the displacements of that space E will translate into the displacements of all of the 

ambient group space.  There is more: The metric that is induced on V by its presence in 
the group space is identical to the proper metric of E.  The manifold V is a totally 

geodesic [13] of the group space.   
 
 
 72.  If the subgroup that leaves invariant the origin of the symmetric space is mixed 
then it will be composed of a connected subgroup g and a certain number of other 
families Θ1g, Θ2g, …, in which the Θi are conveniently-chosen transvections.  Since the 
transvections Θi are finite in number, they will belong to the center of G.  Conversely, 
any subgroup of transvections that belongs to the center of G will correspond to what one 
can call a Klein form of the simply-connected space E; one can obtain them by regarding 

the points T 2, 2 2
1 TΘ , 2 2

2 TΘ , … of E as being identical.  The transformations of G that 

yield a zero identity displacement are the transformations that belong to the center of G 
and which leave the origin fixed. 
 
 

IV. – Closed, reducible, symmetric spaces. 
 

 73.  If a closed, symmetric space E is reducible then that will say (no. 64) that in a 

neighborhood of O, any point of E is in one-to-one correspondence with a pair of points 

of two other symmetric spaces.  However, that correspondence cannot be prolonged to all 
of space. 
 Start with a certain number of closed, simply-connected, irreducible, symmetric 
spaces E1, E2, …, Eh, and consider the closed, integrally reducible, symmetric space E that 

results from the composition of the preceding spaces.  One will get Klein form that is 
likewise symmetric by considering the finite, Abelian subgroups in each of the simply-
connected groups G1, G2, …, Gh that are defined by the transvections that belong to the 
center of the group considered.  Let (c1), (c2), …, (ch) be these groups, respectively.  One 
takes an arbitrary subgroup of the group: 



Cartan – The theory of finite, continuous groups and the analysis situs. 44 

(c1) × (c2) ×…× (ch). 
 

 If that subgroup is the direct product of h subgroups that belong to (c1), (c2), …, (ch), 
respectively, then the symmetric space that is obtained will be integrally reducible; in the 
contrary case, it will be only be locally reducible.  One then has that the four-dimensional 
space whose points are each defined by a pair of points on two spheres will be integrally 
reducible, but will cease to be so if one regards two points as identical when they 
correspond to two pairs of points MN, M′ N′, where M′ is the antipode of M on the first 
sphere, and N′ is the antipode of N on the second one.  That space is nothing but the 
manifold of lines in three-dimensional elliptical space. 
 
 

V. – Open, irreducible, symmetric spaces. 
 

 74.  Any open, irreducible, symmetric space E is associated (no. 66) with a closed, 

irreducible, symmetric space Eu . 

 First, suppose that the closed space Eu is the space of a closed, simple group G.  The 

infinitesimal rotations and the infinitesimal transvections of the group of displacements 
will be: 

k k

k k

X Y

X Y

+
−

 (k = 1, 2, …, r), 

 
respectively, when one introduces the infinitesimal transformations Xk and Yk of two 
groups that are isomorphic to G.  Set: 
 

Uk = Xk + Yk ,  Vk = i (Xk – Yk); 
we will have: 
 (Ui Uj) = − (Vi Vj) = ijk k

k

c U∑ , 

 (Ui Vj) =    (Vi Uj) = ijk k
k

c V∑ . 

 
 These formulas define the structure of the group with complex parameters that is 
generated by the infinitesimal transformations ∑ (ak + i bk) Uk .  The open space E thus 

has a fundamental group that consists of the simple group with complex parameters that 
has the same structure as G.  The involutive automorphism that gives rise to the space E, 

and which makes any transformation of the complex group correspond to the conjugate 
imaginary transformation will change ∑ (ak + i bk) Uk into ∑ (ak − i bk) Uk . 
 If the closed space Eu admits a simple group Gu for a larger group of displacements 

then the associated open space E will admit an open, simple group G with the same 

complex structure, but a different real structure for a larger group of displacements. 
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 75.  In one and the other case, in order to realize the fundamental group of the open 
space, take the corresponding open, linear, adjoint group Γ.  The real, infinitesimal 
transvections of space correspond to the purely imaginary, infinitesimal transvections of 
the associated closed space; the characteristic roots of a finite transvection of E are thus 

all real or all positive.  One easily proves that any transformation of Γ can be put into the 
form TR in one and only one way, in which T is a transvection, and R is a rotation.  One 
and only one geodesic will then pass through any two points of space.  Moreover, the 
canonical parameters are valid in the entire domain of transvections, in such a way that 
the space E is simply connected and homeomorphic to Euclidian space.  It admits no non-

simply-connected Klein form. 
 Two locally reducible, symmetric spaces that are reducible to several other open, 
symmetric spaces are integrally reducible. 
 Finally, we remark that the subgroup g of rotations is connected for an open, 
irreducible, symmetric space, and the same thing will be true for the closed, simply-
connected space it is associated with. 
 
 
 76.  One might wonder whether the adjoint group Γ of an arbitrarily-given, open, 
simple group can always be regarded as the group of displacements of an irreducible, 
symmetric space.  The answer is in the affirmative.  There is more: All of the involutive 
automorphisms of an open, simple group that can be generated by a symmetric space are 
mutually homologous in the continuous, adjoint group [15, 21].  In other words, if one is 
given a space with an open, simple, fundamental group then there will exist one and only 
one choice of generating element of the space that can make the geometry of the space 
Riemannian symmetric. 
 In particular, the preceding theorem asserts the existence of a closed form with real 
parameters for any simple group with complex parameters.  If one can prove that 
theorem, a priori, without, like E. Cartan, verifying it for each particular structure, or 
without, like H. Weyl [8, pp. 371], appealing to the previously-established theory of 
simple groups then that will permit a considerable simplification in the presentation of 
the theory of simple groups [21]. 
 
 

VI. – Applications to the topology of open, simple groups. 
 

 77.  Let Γ be the adjoint group of an open, simple group G with real or complex 
parameters.  There exists an open, irreducible, symmetric space E that is homeomorphic 

to Euclidian space that admits Γ for the group of displacements.  Let g be the closed, 
connected subgroup of rotations in space.  Any transformation S of Γ can, in one and only 
one manner, can be put into the form of a product TR of a transvection and a rotation.  
Any closed manifold that is traced in the manifold of Γ will correspond to the set of two 
closed manifolds in a one-to-one way, one of which is traced in the manifold of the 
closed group g, while the other one is traced in the space E.  The latter is reducible to a 

point by continuous deformations.  It then results [17, 21] that the Betti numbers of the 
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manifold of the open group Γ will be the same as those of the manifold of the closed 
group g.  One can add a Betti number to them that is equal to 1 and corresponds precisely 
to the manifold of g, which is closed in the space of Γ.  The last non-zero Betti number of 
the manifold of an open, simple group is thus equal to 1, and it refers to refers to the 
closed manifolds that have the same number of dimensions as the symmetric, 
Riemannian space that has Γ for its group of displacements. 
 The first Betti number of the closed group g is, moreover, equal to 0 or to 1.  In the 
former case, the covering group of Γ will cover Γ only a finite number of times, while in 
the latter case it will cover it an infinite number of times, but there will exist only one 
category of closed curves in Γ such that no integer multiple of the is reducible to a point 
by continuous deformation.  The real projective group in n ≥ 2 variables belongs to the 
former case, along with the complex projective group in one or more variables.  The real 
projective group in one variable will belong to the latter case, and its manifold will be 
homeomorphic to the interior of a torus. 
 
 
 78.  One sees that any progress in the topology of the closed groups will imply 
progress in the topology of open groups.  As far as the former are concerned, if one has 
information about the first Betti number, and likewise the second one, then one will know 
almost nothing about the other Betti numbers.  Nevertheless, one is certain [20] that the 
third Betti number is non-zero, at least, if the group is not commutative, since there exists 

a triple integral of an exact differential − namely, the invariant integral ∫∫∫ ∑ cijk ωi ωj ωk  
− that admits non-zero periods; for example, the ones that one obtains by extending the 
integral over the manifold of a three-dimensional, simple subgroup of a given group.  
That is a very important subject of research that one can say has been almost unexplored. 
 

___________ 
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