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INTRODUCTION

The following pages constitute the development of fivef@@nce talks that
were made in Moscow from 16 to 20 June 1930 at the invitafitinleoMoscow
Mathematical Institute. They were translated and pltisin Russian in 1933.
It does not seem pointless to me to insert thenhéncbllection ofExposés de
géomeétrie in the hopes of submitting them for the approval @rger number of
geometers. Some theorems that required technical kdgevkeom the theory of
partial differential equationsave been stated without proof.

ELIE CARTAN




1. — All of the geometry that has been known in the studyuofes and surface since
G. Darboux has been derived by the use of a moving trihethadnis attached to the
different points of the curve or surface accordingames intrinsic law {). In the case of
a curve, the trihedron, which is known by the name ofRtenet trihedron has the
tangent, principal binormal, and binormal to the curvatfoaxes. Darboux also used tri-
rectangular trinedra that were subject to only the itimmdthat the third axis must be
normal to the surface. The use of the moving triheds@iso well-indicated in a certain
number of other geometric theories — for example, e ttieory of triple orthogonal
systems.

If one would indeed like to reflect upon the profound reagonthe fecundity of the
method of the moving trihedron then one must first rerttaakthe field of application of
that method islifferentialgeometry; it is of no use in the theory of algebcaitves when
they are consideregua algebraic curves. The method is adapted to only the gansbl
that appeal exclusively to the infinitesimal propertiea gurve or surface. However, in
that domain of differential geometry, the succes$efrhethod is due to two reasons:

1. The trihedron that is attached to a given point @frae or surface constitutes the
simplest reference system for the study of the it&@&mmal properties of the curve or the
surface in the neighborhood of a point.

2. The curve (or surface) is determined completgbyfo a displacement in space
by the knowledge of the components with respect to tbheing trihedron of the
infinitesimal displacement of that frame when onespadrom one point of the curve (or
surface) to an infinitely-close point.

2. — The second reason has the character of simple menge — one might say,
esthetics- in the sense it imposes no rigorous condition upon tb&ee of frame. One
even imagines that for some questions, one might finditthaould be more convenient
to take a non-rectangular trihedron whose form can &aey from one point to another.
Be that as it may, the trihedron must be determinedhdset differential properties of the
curve or surface that present themselves at the outset, +he ones that involve the
differential elements of low order. In the caseaafurve or surface, they are essentially
the differential elements of the first two orders ttliletermine Darboux’s moving
trihedron.

3. — The second reason that was pointed out above is basedhepfllowing well-
known theorem:

If one has two families that contain tri-rectangular trihedra, and if oneesdablish
a bijective correspondence between the trihedra of those two dansilich that the

() See G. DARBOUX'sLecons sur la théorie des surfacesspecially v. | and Il. See also
RIBAUCOUR, Mémoire sur la théorie générale des surfaces courhede Math. (47 (1891).
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relative components of the infinitesimal displacement of a trinedrtredfrst family are
equal to the relative components of the infinitesimal displacementrdfeglron of the
second family then there will exist a well-defined displacerhahstmultaneously brings
the trihedra of the first family into coincidence with the correspondiingdra of the
second family.

Therelativecomponents of the infinitesimal displacement of asimg tri-rectangular
trihedron are the six components with respect to thes af that trihedron of the
infinitesimal translation that is suffered by the gari of the trihedron and the
supplementary infinitesimal rotation that is sufferedhsytrinedron.

The theorem does not demand, in full rigor, that orsetbamake the trihedra tri-
rectangular, but it does demand that, at the very,ldassttrihedra must all be equal to
each other. The six quantities that define the inBimtal displacement of that trihedron
analytically with respect to the axes of the movingeoiron will have a more or less
complicated significance, but the theorem will perasishetheless. On the contrary, if
one utilizes trihedra of variable form then one can edefne the passage from one
trihedron to an infinitely-close trihedron analyticalliput one must then introduce
variations of the form of the trihedron — i.e., paieg®lements with no relationship to the
properties of the curve or surface under study.

4. — The preceding considerations show that the methodeombving frame must
satisfy the following conditions if it is to preseng scope:

1. The trihedron that is attached to each point of the manifold under study must be
determined in an intrinsic manner by the first-order differentiaineits of the manifold.

2. The various trihedra must be rectangular, or at least, they mustjed & each
other.

To say that the trihedron is determined in an intcimeanner is to say that if one
makes the determination of the trihedra at two homologmists of the two equal
manifolds according to the chosen law then the two drdn¢hat are obtained will be
brought into coincidence by the displacement that britige two manifolds into
coincidence.

As for the condition of convenience that was envisioasalve, it will be a question
of type. From the purely logically viewpoint, nothing Wwgrevent one from, for
example, substituting any other trihedron — tri-rectangatanot — that is invariably
coupled with a skew curve for the Frenet frame.

I.
5. — In the classical applications of the method of moviagnés, the choice of the

trihedron was indicated by itself without the geometetirfgethe slightest hesitation.
However, even without leaving Euclidian geometry, theresarae cases in which that
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would no longer be true. For example, consider a minguale in complex Euclidian
geometry. The Frenet trihedr@mhich one can consider to be composed of three unitary
vectors that are carried by the tangent, the principahalb and the binormal) can no
longer exist in that case, since any vector that is chhyethe tangent will have length
zero. True, one can choose a trihedron whosedinate vectore;, e, e; are such that
the first and last ones have zero length and a spedaiuct that is equal to 1, while the
second one has length 1 and is perpendicular to theticst One can then take the
vectore; to be tangent to the curve, but one sees no reaspiteast, to begin with — to
take e; to be such a vector, rather than any other tangenheocurve. (They are,
moreover, all equal to each other.) On the other l&ande the normal plane to the curve
coincides with the osculating plane, there will eristother apparent reason to make that
normal play the role of principal normal, rather tlany other role. One then knows
neither how to choose the vectamor how to choose the vectey.

That example indeed shows the legitimacy of the iotig problem:

Is it possible to attach a well-defined trihedron that is always equied to each
point of a minimal curve in an intrinsic manner?

More generally:

Is the method of the moving trihedron itself susceptible to being geeerad all
guestions of differential geometry?

6. — Before we address that general question, we remarkhéi certainly exist
cases in which the intrinsic determination of a tribedthat attached to a variable point
of a curve or surface is impossible. It will suffiae ¢dontemplate the case of a (non-
isotropic) straight line. The first axis of the Fremehedron will be well-defined, but
there will be no reason to choose the second axis thiber that perpendicular to the
line. We remark that in that case (and one will theeimportance of this remark later
on), the impossibility is due to the nature of thingelit Indeed, there exists a group of
displacements that simultaneously leave all of thatpaf the line invariant. In order
for the determination of the trihedron to be logicaihpossible, it would likewise suffice
that the manifold in question should be invariant under a gafudisplacements,
provided that there should be an infinitude of displacesnehthat group that leave an
arbitrary given poinM of than manifold fixed, because the intrinsic deternomadf the
trihedron that is attached M (if that is possible) will be given by that trihedras, well
as all of the ones that are deduced from it by displasentéor example, that is why the
intrinsic determination of a tri-rectangular trihedrbvat is attached to a poiM of a
sphere will be impossible: viz., there is an infinituded@dplacements that leave the
sphere invariant and leave the pdwhfixed.

7. — Let us leave that case aside. (Later on, we shalltlsat it is the only one in
which the intrinsic determination of the trihedron is irsgible.) Before examining the
case of a minimal curve, we recall the classical a#san ordinary skew curve and
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analyze (if somewhat pedantically) the process by whiemight be led to the Frenet
frame, while forsaking all geometric intuition, as mashpossible.

First, attach an entire family of tri-rectangulahédra — namely, the ones that have
the pointM for their origins — to a given poil of a skew curve, which is assumed to be
defined by means of one parameteiwe call them thdrames of order zero.They
depend upon three parameteisu,, us, which we callsecondary parametersf order
zero. If one varies the poiNl then the zero-order trinedra will depend upon four
parameters: vizy, Uy, Us, andt. Leta, @, az denote the components along the moving
axes of the translation that is suffered by the orfdiof the trihedron, and ledys, a1,
> denote the relative components of the instantaneoatiaotthat is experienced by
the trinedron. It is clear that the three componestsw, a3, which will be zero when
the pointM remains fixed, have the form:

w=pdt, w=pdt, w=psdt

As for the componentays, a1, > of the rotation, they involve not ondit, but also the
differentials of the second parametdts, du,, dus . One likewise easily sees that they
are linearly independent with respect to those three diftels.

The coefficientsp;, p., ps obviously depend upon the numerical values of the
secondary parameters. One can then establish twommnsldietween those parameters
andt such that the ratiogy / ca and a3 / aa are annulled; geometrically, that amounts to
choosing the first axis of the trihedron to be tangenhe curve. Frames that satisfy that
condition are calledirst-order frames and if one confines oneself to those frames then
one will have:

w =0, a = 0.

The first-order frames no longer depend upon more thanparemeter, and the
componentsays, azi, @2 Of the infinitesimal rotation will be related by twelations
when one setdt = 0. Geometrically, when one fixes the pdimt the first-order frame
will only be susceptible to a rotation around its firgisa in such a way that the
componentsa, w2 of the rotation with respect to the last two axed fal annulled.
Upon varying the poini, it will then result that:

as1 =Pz dt,  awo=prdt
The ratios:
Wy_ Py b P
2] P 2] P

now depend upon the first-order secondary parameter, ancharehoose that parameter
in such a manner as to annul one of those ratios exfimpleps; . One then arrives at a
second-order frame that is perfectly well-defined. Tkxgressiona is the elementary
arc lengthds while the ratiop;2 / p:1 is the curvature of the curve; the component=
p23 dt then gives the torsiopps / p1 .
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One sees that, by successive restrictions, one passaszéro-order frames that
depend upon three parameters to trinedra of order 1 thatdlepen one parameter to a
definite trinedron of order 2, which is the Frenet frame

8. — We now go on to the case of a minimal curve. Fasaes of convenience, we
shall utilize a trihedron that is composed of three orsat;, e, e; that are attached to a
point M of the curve and satisfy the conditions:

(1) @)=’ =ee=-ee=0, @)’=ee=1.

The relative components of the infinitesimal disptaeat of the trihedron are the
coefficients that are introduced into the formulas:

dM =de +dde+ e,
de =w'e+we+we.

The nine components) are not independent. Upon differentiating the relat{@hsone
will easily find that:

C({S :a)gl:w;:o’
(2) 2 3 1 2 1 3

W tw, =w, tw, =w +w; =0.

We keep the six quantitiesd, of, o, &', @?, w? for the components of the

infinitesimal displacement.

We can economize immediately by skipping the zero-ofidenes and beginning
with the trihedra of order 1, for whiah is an arbitrary vector that is tangent to the curve.
Those trihedra depend upon two secondary parametersf agch serves to fix to the
vector e itself, and the other of which fixes the direction tbé vectore, that is
perpendicular t@;. One first has:

W= =0.

Of the four components that remain, two of them Wwdl annulled if one fixes the
point M — namely,} and «’. Indeed, the differentiale; of the vectore; must be a
vector that is carried along the tangent that is fixedhe curve and must have any
component that is parallel t& . As for the other two components'and «y, they

depend linearly upon the differentials of the two secondarameters. Upon varying the
principal parameterand the two secondary parameters, one will then have:

o =ptdt, «?= pjdt

The coefficientp® and p depend upon secondary parametegwiori. In order to

see the manner in which they depend, replace the freine;,(e;) with another first-
order trihedron g1, 172, n73). One easily has:
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1.y i
=le, =e+le, =—e -t e-"—¢.
m €1 n=e €1 3 I e I € Y g
The new values of the componeasand «)® are then calculated with no difficulty, and
one will find that:

@ =2d @ =adf,

SO:

1 1

L 1 ~
pP=Sp. B4R

One can then dispose #fin such a manner that the ratji’ / p; reduces to a fixed

numerical value — for example, 1. One will themaitoa family of second-order trihedra
that depend upon only one secondary parametefpamdich one will have:

«f =0, @ =0, W? = d.

If one now varies the second-order trihedron whiteng the pointM then the two
componentsegt and «? will no longer be independent; they will be coupley one
relation. One will get it easily upon remarkingatithe vectore; is now fixed, so its
differential is zero, and as a result, the compongh will be annulled withdt. Upon
varyingM, one will then have:

@' = pldt

In order to see howp," depends upon the secondary parameters of thedsecder
trihedron, replace the trinedroa (e, e3) with the trihedron g, 2, 773):

M =ey MN2=e+ /e, Ms=6-He-3/8.
Upon remarking thaty" is nothing but the scalar produgstde; , one will find that:
@ = - pe’ = (pr- 4 dt

One can then dispose pfin such a manner as to annpf. One will then arrive at a
well-defined third-order trihedron, for which ondllvihave:

d=d=wq-d=a=0.

The componentw? will then have the formk «f, and the coefficienk will be a
differential invariantof the curve; it is itpseudo-curvature.
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Furthermore, the expressiad, which will be indeterminate when one appeals to
first-order trihedra, will take on a well-defined value whene arrives at second-order
trihedra. It is the elementapgeudo-arc lengtdo of the minimal curve.

One can now write the Frenet formulas of the maliourves, namely:

3)

Two minimal curves are equal if the pseudo-cumatis the same function of the
pseudo-arc lengtbrfor those two curves; or ratherdik/ dois the same function &f

9. — We remark that along the path that we have c¢hose have made an implicit
hypothesis, namely, that we have reduced the ratio:

ﬁTf:AZ&Z
P P

to 1, which assumes that the coefficignt is not zero; i.e., geometrically, that one is

dealing with a straight line. If the given line asstraight line then one will have no
means of differentiating one of the other first@rtrihedra, and one will no longer have
any means of defining @atural parametero on the straight line, which is geometrically
obvious, moreover.

In addition, we remark that in the passage fromst-bbrder trihedra to trinedra of
higher order, we appeal to geometric consideratiorerder to predict what will be the
new components of the infinitesimal displacemerait tthould no longer depend upon
differentials of the secondary parameters. Althotlge method that we appeal to will
give the form of the Frenet equationsvhich is, moreover, the only interesting thing in
theoretical research- it will give us neither the expression fdo nor the expression for
k explicitly.

One can obviate these various inconveniences hylicély calculating the
components of the infinitesimal displacement aflfeetiron of order zero from the outset.
We shall do that in the case of a minimal curve.
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10. — With Weierstrass?, define a minimal curve by the following equations in
rectangular coordinates:

(4) j— FoOd, y=[iT- L F@dt 2= [t 7o dt,

wherex, y, andz denote the rectangular coordinates of a poinh@fturve, and(t) is an

analytic function ot. Leta; , £, y denote the projections of the vecgonto the fixed
rectangular axes:

o = esdM = azdx +Sdy+ sdz
& = &dM = mdx +Bdy+ pdz
@ = edM = ;dx +Bdy+pudz
w'= ede = osdai+ B dB+ s du,
w’= ede = @mdai+BdB+ psduy,
w=-ede =-mdm - (K dB- s dp.

In order to define a first-order trinedron, one take:

1-t? 1+t

a=A , =iA , =At,
1 5 B 5 )al

_t2 2
G-t pmit+iptel p=lept

2 2
a=p Y pr=ip V- y=pu
3 2 1 2 1 1

with the conditions:
—t= Ap=-1if

Calculation will then give:
o :%]-“(t) dt, o =0, @ =0,
d
=—pudt, w?=Ad, @’ = Zpy_él —pdt

One then sees that the ratio:

() WEIERSTRASS, “Ueber die Flachen deren mittlere Krimghuiberall gleich Null ist,”
Sitzungsber. Berlin (1866).
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aiZ AZ
o F@)
can be reduced to 1 by setting:
A% = F().

One will then have:
o =do= ./ F(t) dt,

1_ (17O
“ _(2 ) ”jdt’

and one can reduea’ to zero by setting:

(5)

_1FQ) __1rF¢
=——", hence,p=--—.
2 F(t) 8AF
One will finally have:
12 _ n 12 _ n
2 _ SF 43—7—" gt = SF 4;]—7—" do
8AF 8F
which will give the curvature:
12 _ n
(6) K= 2P AR

8F°

One sees thato is defined only up to a sign, but thais defined rationally in terms
of the derivatives ofF(t) the first two orders. The two vectoes ande; are likewise

defined up to sign. (The second one is determimadptetely when one fixes the first
one.) As for the vecta, it is defined unambiguously.

Once the Frenet trihedron has been determinedijllitbe up to the geometer to
specify the geometric significance of the vectarse,, e; that determine it, as well as
that of the pseudo-arc length and the curvaturewever, it is clear that the previous
knowledge of the Frenet formulas is a powerful iaidhat purely-geometric study, and
that it will suggest some interpretations that coeld not have imagined priori.

11. - Before commencing with a systematic study ofrtiethod of moving frames,
we shall examine some further examples that gorigetle scope of Euclidian geometry,
properly speaking.

One can propose to study the properties of cutlvatsare not only independent of
their particular position in space, but which da cleange under a homothety. From that
viewpoint, two similar figures must be regardedempial. It is clear that two tri-
rectangular trihedra that are constructed fromethwectors of the same length must be
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regarded as equal, even if the common length of the ngeofdhe first trihedron is not
the same as that of the vectors of the second ®he. passage from one tri-rectangular
trihedron to another one that is infinitely close wiilen be accomplished by an
infinitesimal translation and a rotation, accompaniedabfiomothety whose ratio is
infinitely close to 1. One will need seven quantitiastead of six, in order to define that
new type of displacement analytically, and one wiltdhthe formulas:

dMm

wert et aes,

de; = we+twe+ wses,
deo =w1e1+ we +wses,
des =awye+ap e+ wes,

in which ax, a», as are the components of the translatioss = — a2, a1 = — w3, W2
= — wp1are the components of the rotation, and @is the homothety ratio.

If one is given a skew curve then one cannot perceiveethiately what the vect@;
will be that one agrees to choose to be tangent touttve, and in fact, if one sticks to the
first-order elements of the curve then there will beemson to choose one vector rather
than another. Meanwhile, there is a unit of length ¢ln@ can attach to each point of the
curve in an intrinsic manner, namely, the length of tlddusaof curvature that relates to
that point; the desired trihedron will then be determimednpletely by geometric
considerations. Upon denoting the unitary vectors@btfdinary Frenet trihedron By,
N, B, and denoting the curvature and torsion bylahd 1 /7, resp., one will then take:

e=pT, e=pN, e =pB,

and the Frenet formulas will become:

dM = —ey,
o
d d
delz—pe1+—sez,
P P
dez :_d_sel+%ez+d_se3,
P P r
d d
de; = - L6+
r P

(7) ds=—,

and one has:
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(8)

(9)

Two curves for whiclk andh are the same functions eareequalin the sense of the
geometry of similitudes; i.e., they asinilar, in the common sense of the word.

12. — Now take an example that is even more estrafiged ordinary Euclidian
geometry. We propose to study the propertiesméne curve that are invariant under a
unimodular affine transformation — i.e., by a tfanshation that is defined by formulas of
the form:

X =ax+by+c,
y =ax+by+c

in a Cartesian coordinate system, with the conditiat:
ab —bd = 1.

The systems of reference —faames— that must replace the tri-rectangular trihedra
are the Cartesian coordinate systems that areedkelfiy two vectors;, & that are subject
to the single condition that the parallelogram tisatonstructed from those two vectors
must have a given area, which will be the unitreba

We once more give the name dalisplacementto an affine, unimodular
transformation. One will have formulas:

dM = we +wfle,
(10) de = w'e +w’e,
de, =wye+w, €

for an infinitesimal displacement of the frame, wla®rigin is assumed to M but the
condition that relates to the area of the paraielm €1, &) will give:
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(11) @ +w’ =0.

The infinitesimal transformation in question will theave five components}, ¢4,
«’, w’ with respect to the moving frame.

One can prove that if one has two families of movirmgnies that correspond with
equality of the components' and @’ then one can pass from one of the families to the
other by a well-defined unimodular affine transformation.

Having said that, suppose that a fixed reference systeivekaschosen. Letandy
be the coordinates of a point of a curve that is assumée planar, to simplify, and is
given by its equatioty = f(y). Attach afirst-order frameto each point such that the

vectore; is tangent to the curve. The components of the twtovee; ande, will then
have the form:

4

Forey: a, ay,,

Fore: yéi ﬁy'+%.

The calculation of the components and ' will be achieved with no difficulty
upon appealing to equations (10), and that will give:

=0, a}:%, W?= a’y" dx,
1:d_0'_ ! 1:% %— 2\
o= apy" dx @=— +'8a2 BTy dx

We will get second-order frames upon equating the rqﬁba} to 1 (which assumes
thaty” # 0). Those frames depend upon just one paranfetene will have:

a:y’"“s.
Moreover, sincet is determined perfectly, one can define the differentiabf affine
arc length:

(12) ds=y""* dx

For second-order frames, the compongntdoes not depend upon the differential of
the single secondary paramef&rone has:

wll: (_:_]?-)y_"_ﬁynzmj dx
y

One will get a third-order frame by annulling', which will give:
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ﬁ: _ %y"—5/3yn - %(yn—2/3)’ .

For the third-order frame, which is the desired wellradi frame, upon setting:

y"—2/3 =z
one will get:
C(&l: %2—1/2211 dx = %Z" do=k do:

The formulas for the Frenet frames are then:

dM _
do E
de,

13 %o,

(13) io €,
de,
—2=ke.
do &

The differential invariank is theaffine curvature. The conics are characterized by
the property of having constant affine curvaturdiioclr conforms to the differential
equation of the conics:

which is due to Monge, up to form.
In reality, there are three possible choiceslierftame: 1 denotes an arbitrary cube
root of unity then one can replace:

do, e, &, Kk
with
jdo, e, je,
respectively.
In order for two curves to bequal — i.e., to differ only by a unimodular affine
transformation — it is necessary and sufficient #itherk® must have the same constant
value for the two curves or thak / do must be the same function kT for the two

curves.

vV

13. — We shall now point out another method (whickesy fast in certain cases) for
obtaining explicitly the differential invariants @dmoving frame that is attached to the
variety in question, at least in order to obtaie #renet formulas. That new method
utilizes the method ateduced equationsvhich was developed systematically by Tresse
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(®) in order to look for differential invariants. We #hae content to present in two
particular examples.

The first of them is the one that we just treatethan preceding number. We shall
attach a Cartesian coordinate system to a pdiotf a plane curve whose origin 8 in
such a way that the equation of the curve in the neighbdrbbthe pointM will be as
simple as possible. We restrict the coordinate veeioasde, by the condition that the
parallelogram that they determine has an area that i$ #qlia Upon choosing the first
axis to be tangent to the curve, the equation of theecwriiich is assumed to be analytic,
will have the form:

y=la X +lagxC+ ...

One can multiplyx andy by two factorsAd and 1 /A, resp., which corresponds to a
permissible change of coordinates, in such a manner ggveéothe value 1 to the
coefficienta, . Upon setting, in turn:

Xx=X+uyY, y=Y,

which is also permissible, one will easily confirmttieme can annul the coefficieas.
One will then arrive at theeduced equatignwhich we can write in the form:

(14) y=31xX-1kxX+ ..

If we consider a pointl“that is infinitely close toM then the abscissaof that point
will be a quantity that is coupled to the arc length & tdurve MM’ in an intrinsic
manner; we can call it the elementaffine arc length Upon taking a point on the curve
to be the origin, one can attribute a&ffine curvilinear absciss& to each poinM of the
curve, and the coefficienks ... of the reduced equation will be well-defined functiohs
the abscissa of the corresponding point.

Having said that, one will obviously have, upon displacinggatbe curve:

am_
do ’

d

ﬁ: p'e, + p’e,,
de

d_OZ'_ pzlel_ plleZ

Everything comes down to determining the unknown coeffisieslt p:% p2*.

In order to do that, consider faxed point P on the curve. Lek, y denote its
coordinates relative to the frame that is attacheda@tmtM whose abscissa &; they
are functions ofo that satisfy certain differential equations that argye@ construct.

() A. TRESSE, “Sur les invariants différentiels des groupmesinues de transformations,” Acta Math.
18 (1894).
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Indeed, it suffices to express the idea that the pdirtx e; +y & is fixed, which will
give:

§_X+1+ p'x+ py=0,
(15) dy”

—  +p’x-p'y=0.

i, TROXTRY

On the other hand, the coordinaxeendy will satisfy the relation:
(14) y=3xX -1k X'+ ... =f (x, 0),
for anyo. By differentiation and the use of formulas (15), aiédeduce from this that:
(16) —px+pf(x, @) =f, [~ pt 1 —p2' x—f(x, ] + f,

That relation must be true for amy but also for any poirfe that one fixes along the
curve; it is then andentity in x and oo We shall then equate the coefficients of the
different powers ofx in the two sides of the identity (16), which is writtarpon
developing:

(16) —p2x+prt (D -fké+-)

= (x—%kx°'+~~-)(—1— R x-3 g >8+-~-)—% KX+ ...
One will find, successively, that:

-pP=-1,
%pll == pll,
0=-1p +1k
SO
p12 = 1, p]_l = 0, pzl =k

One will then find the Frenet formulas (13) thagres obtained already. However,
upon pursuing the identifications, one will get tdeefficients of the development phs
a function ofx as functions of the affine curvature and its sasse derivatives. That
indeed confirms what we have said already, naméist the curve is determined
completely, up to a unimodular affinity, by the kvledge ofk as a function of ().

14. — We shall further apply the same method to alpmlof Euclidian geometry.
We shall consider an analytic, imaginary surfacd th not a minimal developable, but
whose second fundamental form has one and onlyconamon factor with the first

(") For the same method applied to plane projective geonsstey E. CARTAN, “Sur un probléme du
calcul des variations,” Recueil Soc. Math. Mos8dy(1927).
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fundamental form, in such a way that the surface admitlouble family of lines of
minimal curvature. Here, we use the same trihedria #% theory of minimal curves,
with the isotropic vectorg, and e, tangent to the surface, and the unitary veeor
normal to it. The reduced equation of the surface wilehtae form:

y=1axX +bxz+ ...

If one considers a poi¥l’ that is infinitely close toM then the infinitely-small
guantitiesx andz will be linked intrinsically to the pair of those tweoipts; they will be
the components} and «f of the infinitesimal displacement of the moving tdhen. As
in no.8, one then sets:

dM = w'e +afe,
de = w'e+w’e,
(18) el_ a)lzel 12e2
de,=-wyg-we,
de,= w’e-we,

The coordinatex, y, z of a fixed pointP on the surface, when referred to the
trihedron whose origin i81, will satisfy equation (17), where a, S ... will depend
upon M and the differential equations that express the ideathieapointP is fixed,
namely:

dx+ o + xa' - yai =0,
(19) dy  +xa”+ 25 =0,
dz+ &’ - yw’® - zg = 0.

As in the preceding example, one will deduce fraim that:

-x @’ -z’ = (x+kztia X+ xz-iy 2+ [—a}—xq1+(%x2+ kxz+..-)a%2]
+(kx+%,3x2+yxz+—;5 Z+---) [—af’+zaf+(% X2+ kxz+~~-)a)f]
+xz dk+13 da +1x% z B +ixZ dy+iZ do+ ...

By identification, one will find, successively, tha

-xw’-zw?=- (x+k? of —kx &,
0=-x(x+ka @' - (tax’ +Bxz+iyZ) ) +kx za' - (1 8% +yxz+ 15 7) +xz dk
)

(20) W = ket wP=koh wl=-iaw'-1pw’
y=0=0, dk:ﬁa}
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One sees that the third-order terms in the developofeniare not arbitrary. That
amounts to saying that the lines of minimal curvatukehich are, at the same time, the
asymptotic lines- are straight lines. Indeed, one will obtain that updtinsedt = 0.
The vectore; is tangent to it, and upon displacing along one ofdHimes, one will see
thatde, is again tangent to that line, which proves that the lias a fixed tangent.

The (second-order) differential invariants the principal curvature that is unique to
the surface, whose total curvaturekis One can deduce all of the other differential
invariants of the surface from the differential invatsam and/ upon setting:

da=m o+ o,
dB = o+ &,

The coefficientan, a2, 4, [, ... are the differential invariants that one seeks.

Despite the results that we have obtained by thisiodetwe also see that something
essential is missing from it. For example, we do naivwkrwhether there are any
necessary relations between the differential invasidimat were found. If possible, we
give the relation that must certainly exist betwee, andk, etc. arbitrarily. In order to
solve all of these problems, one must take into accoune ssmmpatibility conditions
that must be satisfied by the components of an infimtal displacement of a moving
trihedron that depends upseveralparameters. We will soon recover those conditions
in a form that is completely general, and as we shajliseontains the entire essence of
differential geometry within it.

For the moment, we shall be content to remarkttieexpressions} and «f are not
exact differentials, in general, and that one canntclata system of two natural
parametersn and ¢; to the surface that are analogous to the natural pteaméhat is
introduced whenever we are dealing with a curve.

Vv

15.— It is now time to begin the general theory of th&ving frame by appealing to
the fundamental principles of the theory of continugtsups. From F. Klein®j, any
continuous grous in n variablesx, X, ..., X, corresponds to a geometry in the space of
n dimensions that has the goal of studying the figures d@hatinvariant under the
transformations of that group. Thus, elementary geonwatimesponds to the group of
displacements, affine geometry corresponds to the groaffioé transformations, and
projective geometry corresponds to the group of projettaresformations. The group
is sometimes called tfandamental groupf the geometry, or the fundamental group of
the space in which one studies the properties of fighegsate invariant under the group.

In the sequel, we shall assume that the groufinike — i.e., that the general
transformation depends upon a finite number of parametéfge also suppose, to
simplify, that the transformed variableg,x,, ..., x, are analytic functions of the

() F. Klein, “Vergleichende Betrachtungen iiber neuere getsulee Forschungen” (which is known
by the name of the Erlanger Programm), 1872.
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original variablesq, X, ..., X, and the parametess, a, ..., a . Finally, we assume that
the group idransitive which signifies that there always exists at least tbansformation
of the group that will bring two arbitrarily-give poinis space into coincidence. By
extension, we give the name di§placementso the transformations of the group and let
S, denote the displacement whose parameteragray( ..., &).

16.— The first question that we must pose is the follovaing: What should replace
the notion of a tri-rectangular trinedron in ordinary geometry in an arbitr&igin
geometry? Recall that the set of tri-rectangular trinedra gajthe following property:
Two arbitrary tri-rectangular trinedra can be brought into coincidence by ame only
one displacementWe shall indeed see that this is the property that pley®ssential
role in the application of the method of moving trihedra.

Having said that, we say that a family of figures counsts a system of framéstwo
arbitrary figures of the family can be brought into coincidence by one andagrlynap
of the group G.

It is clear that if one can find a particular figuRg)(such that any transformation that
is not identical taG will transform Rp) into a figure that is distinct froniRg) then the set
of the figure Ry) and the figuresR,) that one can deduce from it by the various
transformationss, of G will constitute a system of frames. Indeed, in ordetake R,)

to (Ry), it will be sufficient to apply, in succession, thensrmationS;* that takesRy)

to (Ry) and then the transformatiof, that takes Ry) to (R,). The resulting
transformation:

$=5S"

will again be a transformatio®. of G, and that transformatio& will take (Ry) to (Ry).
Conversely, ifS takes R.) to (R,) then the transformatio®,* S-S, will successively

take Ry to (R), and then to R,), and then to K. One then has the identity
transformation, which gives:

$S=S, S=SS5'=%.

The search for a system of frames then amountiset@earch for a particular figure
(Ro) that is not invariant under transformation Gfthat is distinct from the identity
transformation.

17.— There are some cases in which frames present themselan entirely natural
way. For example, in the general affine geometrg dimension, it is natural to take a
frame to be the figure that is composed of a pointrewelctors that issue from that point,
but are not situated in the same hyperplanen-dimensional projective geometry, the
figure that is composed af + 2 points can likewise serve as a frame. Howevas, i
more convenient to take the figure that is composen 6fl analytic points, where an
analytic point is the set of + 1 numbers that are not all zero. If one is giweh 1
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linearly-independenanalytic pointsA;, Ay, ..., An1 then any analytic point can be put
into the form:
M=xi A1 +X% Ao+ ... +Xu+1 Ant1

in one and only one way, and the coefficiextsxo, ..., X.+1 can be regarded as the
homogeneous coordinates of the geometric point thataneassociate witM and all
analytic points of the formdM. However, one must remark that, as a frame, properly
speaking, the ordered setroft 1 analytic pointsAs, Ay, ..., Anr1) Must not be regarded
as distinct from the set of+ 1 analytic pointsnfA, mAy, ..., MAq.1).

18. — Let us return to an arbitrary gro@® If the group is simply-transitive — i.e., if
there exists just one transformation of the group thiets two arbitrarily-given points
into coincidence — then the points of the space wilktitute a set of frames.

Suppose that the group is not simply transitive, whichuatoto saying that the
orderr of the group is greater than the number of variablesStart with an arbitrary
point Ay . By hypothesis, there exists an infinitude of trans&dioms ofG that leave that
point fixed; they define a subgrogp with r; =r — n parameters. There certainly exist
points that are not invariant undgr; let B, be one of those points. The transformations
of g; that leave the poir, fixed define a subgroup of order<r; . Ifr; is positive then
there will certainly exist points that are not invariamiderg, ; let C, be one of those
points. The transformations gf that leave the point, fixed will define a subgrougs
of orderrs <r, . Ifrsis zero — i.e., ifj3 reduces to the identity transformation — then the
figure that is defined by the three poimtg Bo, Co can serve as the initial framBf.
Otherwise, one continues with the same procedure, whith certainly have a
conclusion, since the orders of the successive subgm@ume, ..., must constantly
decrease.

One can then always find a system of frames, each of which isddéefine finite
number of points that are arranged in a certain order.

It is pointless to remark that there exists an infohé of other possible systems of
frames. One can also observe that in Euclidian gegntde tri-rectangular trinedron
can be assimilated to a figure that is composed of foutgpanamely, the origin of the
trihedron and the extremities of three unitary vectaas ¢arried by the axes.

19. — In Euclidian geometry, the tri-rectangular trinedwat serve as a coordinate
system. The same thing will be true in the general. chsgeed, associate a particular
frame Rp), which we shall call thenitial frame, with the initially-given coordinate
systenmxy, Xo, ..., X, . Let (Ra) be an arbitrary frame, I8 be an arbitrary point in space,

and letM’ be the point that is the transformMfunder the displacemerg;* that takes
(Ry) to (Ro). We agree to say that the initial coordinateddfire thecoordinates of M
relative to the framgR,). We see that the figure that is defined by a fraR)ead a
point M and the figure that is defined by a frani®) (and a pointN are equal if the

coordinates oM, when referred to the fram®&)(are equal to the coordinatesMyfwhen
referred to the frameR).
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If we utilize coordinates, &, ..., & relative to the frameRp), instead of the initial
coordinatesq, X, ..., X», then the equations that define the transformatiorniseofiroup
G analytically will have exactly the same form asdoef Indeed, le§, be an arbitrary
transformation ofG, and letMy, be the point that is the transformMfby S, . On the

other hand, leM"and M, be the points that are the transformdvb&ndMy, resp. by
S;'. The initial coordinates &fl’and M, are the coordinatesof M andM,, . Now, one

a

passes fronM’to M| by the successive transformatids S, S;*. One then passes

analytically from the coordinateSof M to the coordinateg’ of a transformed poiri,
by the transformatiorS,'S, S, , which is a transformation of the group. However, it
should be remarked that the parameters that figure iagqbations of that transformation
(& —» &) are not the parametdssof S, but the parameters of the transformatih S,
S, which are called thi#ansform of §by S .

It is then indispensible to distinguish betwe&nwhen considered to beggometric
operation, andS, , when considered to be amalytic operation. Thegeometric

transformation Sis represented analytically by thealytic transformation Sonly if one
adopts the initial coordinate system that is attachéletdrame R).

20.— We now arrive at the infinitesimal displacemerat thrings two infinitely-close
frames R.) and Ra:gs) iNto coincidence. One passes froRy)(to (Ra+ds) by the
geometrictransformationSuqa S;*, which is the resultant of the displacemejt that
takes R,) to (Rg) and the displaceme&..q4a that takes ) to (Ra+da). However, if one
would like to express that infinitesimal displacememnialgtically with the aid of
coordinates relative to the fram@,) then one must first displace the figure that is
defined by the two frames in such a manner as to Rj§ed (Ry). If (Ry) is the position
that Ra+da) Must occupy then the infinitesimal displacement in golesan be expressed
analytically by theanalytictransformatiors;. Now, one passes frorRd) to (R, by the
successive displacemerfis.qa and S;*. As a result, the parameters that relate to the
infinitesimal displacement that takd®,) t0 (Ra«da) Will be the parameters of the
infinitesimal analytic transformation,$ S.* Sida-

If we suppose that the identity transformation corredpaio zero values of the
parameters then the relative components the infinitesimal displacement of the frame
will be infinitely-small quantities that will be mangeed linearly with respect to tlus
with coefficients that are functions af; we denote them by the notatian(a; da):

(21) w (a; da) = ai(a) day + aix(a) dag + ... +ai(a) da .
When viewed from a certain angle, the preceding resaitstitutes thefirst

fundamental theorerof the theory of Lie group€) In fact, it expresses the idea that
since the transformatiors, which are assumed to depend upgrarameters, define a

() See S. LIE,Theorie der Transformationsgruppewith the collaboration of F. Engel (Leipzig,
Berlin, reprinted in 1930).
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group, the infinitesimal transformatio8,* S..qa depend upon only parametersy (a;
da), and not 2 of them. That theorem admits a converse, but wé gass over it here.

21.— It is easy to get the expressiansf one knows the finite equations:
x =fi(x a) i=12..n

of the groupG. One can first define the infinitesimal transformatiofshe group by
giving infinitely-small values; to the parameteig, which will give:

upon neglecting infinitesimals that are second-ovdéh respect to the . Having said
that, in order to obtain thenalytictransformationS,* Siqa, We see that it is the resultant
of the two transformations:

X =fi (x; a+da)
and

x =fi (x"; a),

in which the x' are the variables that are the transformsxofoy the desired
transformation. Upon setting:
X' =X + O

and neglecting the second-order infinitesimals, witlfind immediately that:

of. of.
22 —-da = —-0X .
(22) 2 72, 93 Z o %%

When these equations are solveddgr, the resulting equations must have the form:

&= w(adaé&(R.

Take the example of the group of Euclidian disphaents. The equations of a
displacement, in rectangular coordinates, are:

X =X+ ax+ py+yz
Y =Yota'x+ fy+yz
Zl :ZO+a//X+ﬁlly+yllzl
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There are six independent infinitesimal transformatioms,hghich one can express by
the formulas:

X=& +6& Z— &Y,

N=E+&EX—&1Z

Jz:£3+£4y—£5x.

Having said that, we must solve the equations (22), whekwatten:

adx+ gdy+ydz =dxy+xda + ydG+zdy
a’dx+ p'dy+ ydz=dy+xda’+ yds'+z dy,
a”dx+ B7dy+ y’dz=dzn +x da”+y dB”+z dy,

here. Upon appealing to the relations between the nieetidin cosines, they will give:
X=(adxp+a'dy+a”’dz) + (ady+a’ dy+a”dy’) z— (fda+ p'da’+ £7da”) y,
g =(Bdotfdp+ S dza) + (Bda+p'da’+ f7da”) x - (ydB+ y dB’+ y” dB’) z,
a=(ydo+y dp+y” dz) +(ydB+yds'+y” dB)y —(ady+a’dy+a”dy) x.
One will indeed find equations of the predicted form with:

w =adx+a’dyp+a’dzn,
w =Ldx+ B dy + [57ds,
@ =y do+)ydyp+yda,

@ =y dB +yds’'+y’ds” == (B dy+ fdy +B”dy),
w =a dy+a’'dy+a”’dy’=-(y da+yda’+ y’da”,
w =LFda +p'da’+ pB"da"=-(adB+ a’dB’ + a”dB".

We make the important remark here that theelative componentsy of the
infinitesimal displacement of the frame are definedyaid to a linear substitution with
constantcoefficients. One easily shows, moreover, thay thill be linearly independent
if at leastr parameters of the group are essential.

22.— We shall now make an essential remark: Suppose tieaha@s performed the
same displaceme& on the two framesR;) and Ra:da). The relative components of the
infinitesimal displacement that brings the two infinitely-close &sumto coincidence are
not changed. That is easy to verify analytically, because wBgrs replaced witls. S

andSu+da With & Sida , the transformatiors;* Suga Will be replaced with:

(S 9™ (S Swda) = S'S'S Seda = S, Sovca;

hence, it does not change.
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The converse is fundamentalSuppose that one has two continuous families of
frames R,) and R,) that depend upon the same numbef parametersi, uy, ..., U, and
Vi, Vo, ..., Vp . Suppose that one can establish a bijective correspontiehween the
frames of those two families such that the relatteenponentsaw (u; du) of the
infinitesimal displacement of a frame of the fifatnily become equal to the analogous
componentsa(v; dv) relative to the second family. | then say thatréhexists a
displacement that simultaneously brings all of themies of the first family into
coincidence with the corresponding frames of the stone.

The proof is simple. Indeed, I8 andS, denote the displacements that takg (o
(Ry and R), resp. One has:

Sj_ls.ﬂdu = S:lSHdv
or
S S = Suav Srau-

An easy argument then shows that the transform&idg* is afixed transformatior,

of G. On will then have, in turn:
S=8S,

which proves that the frameR) is deduced from the frameR( by the fixed
displacemeng. .

We then have the generalization of the fundamental theorem of the metihed of
moving trihedron.

Vi

23. — We now arrive at the compatibility conditions thatstnbe satisfied by the
relative components of the infinitesimal displacemeihtt moving frame that depends
upon several parameters. They are well-known in teeryhof surfaces when they are
studied with the aid of a moving trihedron that depends upormparameters.

We first preface the search for those conditionthvai remark of a very simple
analytical order. Since the formeg, w, ..., a are linearly independent with respect to
da, d&, ..., da, one can conversely express any linear differentiah o day, day, ...,
da as a linear form i, @, ..., @ .

Having said that, first consider the set of all franmespace that depend upon the
parametersy . Consider two mutually-interchangeable symbols fdedghtiationd and
o, and the expressions:

da (a; da) — o (a; da),

which are nothing but the bilinear covariants of the fomm; as one knows, they are
bilinear expressions that are alternating with respetttd series of variableks anddg; :

das (9 - 0 () = z{%—‘%j da dg
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If we now replace the variables with the variablesu (d) and replace the variables;
with the variablesy (J) then we will again obtain a bilinear form that isafiating in the
new series of variables, in such a way that one c#éa:w

(23) daa (-0 (d) = Y G @)@ (@)  (Gp+Gs=0),

thecjs are functions o#,, ay, ..., & that are determineal priori.

In regard to these coefficientgs , we have the following fundamental theorem,
which is nothing but thesecond fundamental theorem of the theory of grouf®n
viewed from a certain angle:

The coefficientsgin relations(23) are absolute constants.

The proof is immediate. Perform the same fixespldicementS. on the various
frames; we have already observed that it will fearge the relative componenisof
the infinitesimal displacement of the frame. Téf-hand sides of formulas (23), as well
as the quantitiess (d) and«y (J) in the right-hand sides, will not change therhafTwill
be possible only if the coefficientg have the same numerical values for the fraRag (
that they do for the framdR{) that is the resultant oR{) under the displacemengj].
However, since one can always pass from an arpiframe R.,) to an arbitrary frame
(Ra) by a convenient displacement, that will demanat tihe coefficientsis must be
absolute constants.

These constants bear the namataicture constant§’) of the group, and equations
(23) are thestructure equationsf the group.

One can write them in a less condensed form binga#é to be the symbol of
differentiation with respect to one of the parameég and takingdto be the symbol for
differentiation with respect to another parameter Upon introducing the functions;
in formulas (21), they will then become:

Jda., Oa
24 —Sh——S"ZEC- a, a, .
( ) aak aah - ijs 7ik 7 jh

If one gives all possible values to the indig%k, h then one will get the desired
compatibility conditions in explicit form.

In the opposite sense, one can write the struatgrations (23) in an even more
condensed form. Indeed, we remark that upon cantpihe two terms in the right-hand
side that correspond to the sacoenbination(i, j) of the two indices andj, one will get:

() These constants are introduced in a completely diffevag in Lie’s theory. If one lets X, f + ...
+ e X f denote the general infinitesimal transformation ofgt®ip then one will have:

(X X)= D G X

S
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(25) dea (9 —dea (d) = D¢

i<j

@(d) @ (d)
W) w(d)|

which can be written in the following symbolic:

(25) « =) . lmw].

i<j

One remarks that the symbali[«] takes the place of a determinant, and that as a
result the symboldy «w] must be regarded as equal and oppositestay] (®).

24.— We have proved priori, the existence of the structure equations, withstamt
coefficientscis . It is quite clear that there exists only onstegn of relations of that
nature. In Euclidian geometry, one can obtain thessentially without having to
construct the expressian , as we did in na21. It suffices to start with the equations:

dM = et+twe+aues,

dei =& — a6,
deo =wses— w26,
des = w161 - ws e,

in which a3, a31, wzare the scalar produatsde,, esde; , e des, resp., and are, in turn,
identical to the components that we have denoteghpys, as, resp.

If we express the idea thdtM, dde;, dde,, dde; are equal tadM, Ade;, Ade,, ddes,
respectively, then we will obtain the desired stuoe equations precisely upon equating
the coefficients o0&, e, esin both cases. That will give:

() For the exterior calculus and its applications, see:CBRTAN, “Sur certaines expressions
différentielles et probleme de Pfaff,” Ann. Ec. Nord6 (1899). “Sur lintegration des systemes
d’equations aux différentielles totales,” Ann. Ec. Not8.(1901). Lecons sur les invariants intégraux
Paris, Hermann, 1922. E. GOURSATEcons sur le probléme de Pfdffaris, Hermann, 1922.
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day(3) - dwy(d) = 23 Zi?ﬁ\‘\ﬁ? Zﬁiﬁiﬁ ’

-l siaae wol
RN RS s P

da,(8) - dwyg(d) = Zj:g leg |

dca,(3) - dw,,(d) = Zzg ZZE;; |

400 (s o |

One recovers Darboux’s classical formulas in the cdgwo-parameter motions by
setting:

@ =¢du+édy
@, =ndu+n,dy
@ ={ du+d,dy
W, = pdu+ pdy
@, =qdu+ qdy
a, =rdu+rdy,

(27)

and upon takingl and dto be the symbols of the differentiation with respeat andv,
resp. One will then get:

0§ _o¢ _
Ju o0v

0 0
a_lzjl_a_zz‘(rl_rfl‘fpﬁ pnd .,

94 9 -
50 v TR PLmEat &

op, dp
"L =rg -qr,
u oy hTAh

dg, 0dq
—L "= pr -rp,
u oy PR

%_Gr

W a—vqul_ Pg.

qu_qzl_nrl-i_”?l’

(27)
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In the theory of groups, equations (24) are known by theenafmthe Maurer
equations Buhl proposed to call them thHdaurer-Cartan equations One would be
justified in not stopping along that beautiful path andirathem theDarboux-Maurer-
Cartan equations

25. — One obtains some immediate generalizations of @msat{26) in affine
geometry. Upon introducing a frame that is composedpafist M andn vectorsey, &,
..., & that issue from that point, one will have:

dM=> de,

de =) s, .
h

The same process that was just employed in Euclidian eggeprwill give the
structure equations of the general affine group here irotine f

- | @ (d) cqj(d)‘
da)(J)—&d(d)—Z : ,
| (0) @'(9)
29
- dw'(8)-&' (@)=Y 4D (”“j(d)‘
| <l @0 «'(9)]
or in an even more condensed form:
(W) =[],

30 ok |
(50) (@) =Y (@ @].

Similarly, the structure equations of tirelimensional projective group are:

(31) @) => w9l (,j=12,..n+1),

in Whic_h the components of the infinitesimal disglement are the quantities’ (i # j)
and w' -} ; there aren (n + 2) of them, which is the number of parametershi
projective group.

26. — Before passing on to the applications, we calelyith an important theorem
that explains the significance of the structureagigus:
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If one is given r differential form& (u; du) that are constructed from an arbitrary
number p of variables;u..., u, and their differentials dy ..., dy, , and if these forms
satisfy the structure equation@3) then one can make each system of values u
correspond to a fram@r,) in such a way that the relative components of the infinitesimal

displacement of that frame are precisely the given fam(y.

We shall prove that theorem, in order to not have ritereinto the theory of
completely-integrable systems of partial differentiqiations. We shall remark only that
the determination of the frameR,] is possible in an infinitude of ways, because if one
has one solution to the problem then one will obvioustyagether one by performing
the same arbitrary displacemegton all of the framesR;). The general solution to the
problem will then depend upararbitrary constants.

That theorem contains Darboux’s theorem as a spexsal camely, that there always
exists a two-parameter motion for a trihedron for whitle components of the
infinitesimal displacement are given quantities tetisfy equations (28). In particular,
one sees that the Codazzi equations of the theory GHcegrare only one particular
application of the structure equations of the group of Biaclidisplacements.

One can demand to know whether one can choose thetus& constants;s of a
group arbitrarily. The response is negative: There exisbadgerelations that those
constants must satisfy in order for one to be abletbr linearly-independent forma;
that satisfy the structure equations. We shall not enter an examination of that
guestion, which is the point of thieird fundamental theoremif the theory of Lie groups.

Vi

27. — We are now in a position to present the method @¥img frames in full
generality. We shall considepadimensional manifold/ in ann-dimensional space that
is endowed with a fundamental groGp to each point of which we shall try to attach a
frame in an intrinsic manner. To simplify, we supptisegp = 3.

First of all, we remark that we can associate déa@rhe R,) with a point that we shall
call theorigin of the frame according to a well-defined law. If freame is composed of
a finite number of point#, B, C, as in no.18, then we can, for example, associate the
point A with that frame. If one then considers the familyrames that have a common
origin A then it can be identified with the poiAt in some sense, and conversely. The
frames of that family obviously depend upon n parameters, and when one passes from
one of those frames to another that is infinitelysel®o it, the relative componenis of
the infinitesimal displacement that it experienced e linked byn linear relations,
since thew depend upon only — n differentials. Those relations will have constant
coefficients. Indeed, suppose that when they are solvea fofrthe components they
take the form:

A=A 1+ .. A @,

() E. CARTAN, Lecons sur la géométrie des espaces de Rignfanis, Gauthier-Villars, 1929. nos.
46-49.
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Wh=An1 @1 + ... +/]n,r—n al .

If one performs an arbitrary displacement on the infnitely-close frames in
question then the quantitie® will not change. As a result, the coefficients will
depend upon neither the polnor the two frames considered; they will then bsohlie
constants. Since they are defined only up to a linear substitution with constant
coefficients,one can then suppose that one has:

(32) Ww=w=..=a=0

for any infinitesimal displacement of a frame that leaves itfrofixed.

Equations (32) can be considered to be differential equations of the points
space. They are completely integrable, since theirrgeselution depends upom
arbitrary constants. One can remark that if onetletsLatin letters, j, ... denote the
indices 1, 2, ...n and lets the Greek letters denote the indites 1, ...,r then the
constant,g; will all be zero. Indeed, the family of frames walgiven origin, like any
family of frames, will satisfy the structure equatio88)( As a result, il and o denote
two elementary variations within the family then dagd) and aw (J) will all be zero, and
in turn,da (9 — dw (d), as well. It results from this that one will have

z Capi ak(d) ap(9) =0,

a.p

and that will be true for ang, (d) and ax(J); that is what must be proved.

The infinitesimal transformations whose firsparameters are zero are the ones that
leave the origin of the fram&() fixed. If one modifies the law that associatgsat to
each frame then the subgroup that is generated by ther lastn infinitesimal
transformations of the group will change in the subgroupl¢iaaes fixed the new point
that is associated withR{); those two subgroups will beomologousn the groupG.

28. — We now arrive at the method of moving frames. Attde family of frames
whose origin iM to each pointM of a given manifoldv. Those frames, which we call
zero-order framesdepend upom — n secondary parameters. Sincg, ..., a are
annulled when the poiri¥l remains fixed, whem displaces orV, they will be linear
combinations of the differentials of the thrpencipal parameterg;, ty, t3 that fix the
position of a point ov. One will then hava — 3 linear relations between tlag, which
are relations that we can write in the form:

(33) W=a1a tazatasa (=2 ..,n).

The coefficientsy; can depend upon both t,, tz and the secondary parameters. One
disposes of the latter in such a manner as to give fixaderical values to the greatest
possible number of coefficients. The other coeffidentll take on values that will be
well-defined functions oft;, tp, t3, and which will constitutdirst-order differential
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invariantsof the manifold. The frames that are obtained, in @agr, as was said, from
the secondary parameters constitute the famifirsiforder frames.

Let o1 <r — nbe the number of parameters that the first-orderdsagdepend upon. If
o is effectively less tham — n then the relative components.; , ..., @ of the
infinitesimal displacement of a first-order framellwio longer be linearly independent
when one fixes the poir¥l, but must be linked by — n — o linearly-independent
relations. The coefficients of those relations are well-defined functions dfrtterder
differential invariants.

Indeed, if one utilizes only first-order frames then ¢befficients of formulas (33)
will all be either constants or functions of thesfiorder differential invariants.
Therefore, they will not depend upon first-order seconganameters. Then apply the
structure equations (23), where the symbdfers to an elementary variation of the first-
order frame that leaves the poit fixed, while the symbob refers to an arbitrary
variation. Pug in place ofa (J), to abbreviate, and) in place ofaw(d). Sinceey, ..., &,
are all zero, one will have:

k<n

0w = ) Cp &
az=n
as a result, upon remarking thiat; = O:
ksn

D (Coti = B1Gia— G2~ R Ged B =0,

az=n

or, upon replacing thex with their values:

> (Cog =BG~ DGz~ B G X =0,
ak
D (Coe =BG~ DGk~ G B2 £=0,
ak
> (G = 3Gia ™ B Gia™ R Gd Ao £70.
ak

When one successively sets 4, 5, ...,n, these equations will give relations that
exist between the, — i.e., between they, when one leaves the poist fixed. One will
then see that the coefficients depend upon onhafhei.e., upon first-order differential
invariants ofv.

29. — Suppose that upon performing, if needed, adisghstitution with coefficients
that are functions of first-order differential imants, the relations that exist between
wh+1, .., @@ When one leaves the poMtfixed are:

W1 = ... =@, =0 (L—n=r—n-pm).

Upon varying the pointl onV, one will then have:
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(34) Ohe1 = nsil G+ Bnei2 G + Ansi3 (B (=12, ..n—n),

where the coefficients on the right-hand side depend ppoaipal parameters and first-
order second parameters.

One will then have two means of distinguishing cerfast-order frames from the
other ones and arriving at the family of second-ordendsa

1. One seeks to reduce the largest-possible number obéfiécientsa,.; ; to fixed
numerical values.

2. If there are first-order differential invariantsttla@e mutually-independent — for
example, two of thenh andJ — then one forms the differentiadé anddJ, which one
expresses linearly in terms af, w, a3

d‘] = Jla)l+ ‘J2w2+ J@S

One then establishes relations between the first-om®yndary parameters and the
principal parameters that permit one to reduce the lapgssible number of coefficients
that enter into formulas (35) to fixed numerical valuekhe first-order frames whose
parameters satisfy those relations constitute théyfash second-order framesAs for
the coefficients of equations (34) and (35) that have eeh beduced to fixed numerical
values, they will take on values that are either comgiafunctions of only the principal
parameters, to, t3 ; they will besecond-order differential invariants.

The componentga.1, ..., ap of the infinitesimal displacement of a second-order
frame will be linked by — n —p, relations when one fixes the polt wherep, is the
number of second-order secondary parameters. One pravese just did, that the
coefficients of those relations are functions af thfferential invariants of the first two
orders. One then passes from second-order frames tiortherder frames as one did in
order to pass from first-order frames to second-ordes.onNevertheless, one uses
relations such as (35) only if there exists a second-dlitlerential invariant that is not a
function of the two invariants andJ that were used already. One continues in that way
indefinitely.

30.— Suppose that the frames of orgdrave been obtained, and:

1. The frames of ordgr+ 1 coincide with those of order
2. The differential invariants of ordgy + 1 are functions of the differential
invariants of order less than or equapto

One then shows that sinbké andM’are two points of the manifold for which all of
the differential invariants of order less than or eqaal have the same numerical values,
and R) and R’) are, on the other hand, two frames of opesith their origins aM and
M’ respectively, the displacement that takBy 0 (R’ ) will leave the manifoldV
invariant. It is then clear that it is impossibledistinguish one frame of ordprfrom the
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other. The manifold admits a group of displacemegntshose order is equal to the
number of secondary parameters of orgemplus the difference between 3 and the
number of independent differential invariants. In paldicuif there exist three
independent differential invariants of order less thaaqual top then any displacement
of the groupy will leave all of the points of the manifold fixetf)

If the situation that was just envisioned never presigself then one will arrive at the
complete determination of the frame that is attacheeach point of the manifold.
Indeed, one will stop in the successive specializatiothefframes only if, at a given
moment, the frames of order+ 1 coincide with those of ordgr; since a differential
invariant of order at leagt + 1 must be independent of the ones that were obtained
already. However, since one cannot have more thaee tmdependent differential
invariants, that situation can present itself only adimumber of times. As a result of
that, the number of secondary parameters of framescoéasing order will always
decrease until it is annulled.

31.— Suppose that one is dealing with the general cas¢handne arrives at a well-
defined frame, which we assume to have ogderhe differential invariants of order less
than or equal tg are thfundamental invariants.

In order to recognize whether two manifoMsindV’ are equal, one constructs the
differential invariants of ordey + 1. If they are functions of the fundamental défaial
invariants for the manifol/ then it will be necessary and sufficient that teagne thing
must be true folW’and that the relations that exist between the diffekemvariants of
order< g+ 1 must be the same for both manifolds.

If at least one of the differential invariants oflerq + 1 is independent of the ones of
lower order then one will construct the differentiavariants of ordeq + 2. If that
produces no invariant that is independent of the precedieg then it will be necessary
and sufficient that the relations that exist betwdendifferential invariants of order g
+ 2 must be the same for the two manifolds.

One then continues until the differential invariantsaofertain ordeq + h are all
functions of the invariants of lower order, which willrsly happen after a finite number
of operations.

We remark that in the examples that were treated prdyjotise differential
invariants will never present themselves once the friardetermined completely.

32. — We give an example of the role that is played bydifierential invariants
before the definitive specialization of the frame.

TakeG to be the three-parameter group of translations and thetes in the plane.
Take the frame to be the figure that is composed ofrat pband two rectangular vectors
e; ande; with the same length and fixed directions. For an itefsmmal displacement of
the frame, one will have:

(*% A very general example of a manifold in which it ippmesible to determine a frame intrinsically is
provided in projective geometry by the ruled surfacesatatit two rectilinear directrices. If one regards
those surfaces as loci of lines then there will obvipesist a group ofo' homographic transformations
that leave the two directrices fixeas well as each line that they meet.
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dM=awe+we,
de; = wey,
de, = we,.

Let a curve bg =f(x) then. Let:
A, 0O,
0, 1

be the projections a ande; onto the fixed axes. The zero-order frames areetiaath

their origin atM (x, y); they depend upon one secondary paraméte©One will have,

moreover:

dx = y'dx _ da

A A

Since the ratiay / aa = y’is independent of, the frames of order 1 will be the same

as those of order zero, and one will have one firdeiodifferential invariant, namely;,.
In order to get second-order frames, one forms:

dy’=A y’Di—X =Ay'w .

Since the coefficient y' depends upos, one can arrangéin such a manner as to make
it equal to 1. One will then have a well-defined seconddrdene.
The expressiow=dA / A will then give:

y"l yJ"

w=——dXx=-=-a .
y y

As a result, the curve will be determined, up to a foanstion of the groufss, by the
relation that exists between the third-order differentisdariant y”” / y” ? and the
differential invarianty”.

We have assumed that the path makég 0. If we havey” = 0 then we cannot
distinguish between one first-order frame and anotlher;curve will be a straight line
and will admit a two-parameter subgroupf

VIl

33. — The general method of moving frames that was presentduk ipreceding
numbers supposes that the manifold is essentially given, and the successive
calculations were performed completely. Howevemnvasave pointed out already, that
is absurd in theoretical research, where one only wishagive at the form of the Frenet
formulas, while anticipating the various cases that masent themselves. From that
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standpoint, the structure equations will play a fundanhenta, even in the theory of
curves.

We return to the problem that was treated in2&and following. One attaches the
frames whose origin i& to each pointM of the three-dimensional manifold. For any
infinitesimal displacement of such a frame, one tale the relations (33):

(33) W=a1a tazatas a (=4, ..n).

One must then envision the manner by which the coefteian depend upon the
secondary parameters and what numerical values onedace them to. In order to do
that, imagine an elementary variation of the zero+ofrdene, which is represented by the
symbol 4, while the point M remains fixed From the structure equations, and upon
denoting the elementary variation that the coefficagns subjected to byg; , one will
have:

081 (W + OBz W + Az (s = O — @1 O + &2 Oty + &3 Ouk,

SO:
r n
i1 = Y, €Y, (Cai—ai Caa— a2 Cae — a3 Caks) aa »
a=n+1 k=4
r n
iz = Y, €Y, (Cai—ai Caa— &2 Caz — a3 Caka) A »
a=n+l k=4
r n
dis = Y, €Y, (Cai—ai Caa — &2 Caxz — ai3 Caka) A -
a=n+l k=4

The right-hand sides are then the elementary vanmtihat are suffered by the
coefficientsa;;, aiz, &3 under the action of a group, for which, one knows thaiteSimal
transformations; furthermore, that group will be a horapgic group. If one knows how
to turn the infinitesimal transformations into fintransformationswhich is simple in the
present applicationsthen one will come down to the search for the nicakwralues to
which one can reduce tteg by a transformation of that group)( For example, one
knows that for the orthogonal group of three variabtas can reduce two of the
variables to 0, while the third one will have a well-defin@lue, unless one is in the
complex domain, in which case, it can happen that aner@duce the three variables to
the values 1i, 0, as long as the three variables are not all zeoogover.

Thanks to the structure equations, it will then be thigzally possible to predict the
various irreducible cases among them that can preseniséives and to deduce the
nature of the first-order frames in each case. Theesaethod will serve for the passage
from frames of arbitrary order to the frames of immagely-higher order.

34. — We now apply what we just said to the study of pleumneves in unimodular
affine geometry. With the notations of nb2, and denoting the components of the

(Y It is, moreover, theoretical pointless to deal vifth finite transformations of the group. S. Lie has
found a method that permits one to find a representatiet of each family of mutually-homologous
points when one has been given only the infinitesinaalsformations.
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infinitesimal displacement of the frame by, «f, o, @®, @? @', one will have the
structure equations:

so-ain= 40 4O 9]
da?(3) - dwr(d) = ﬁg 2$§HZ§§§ 213\’
(36) 063 (9) = dur(d) = Zg Zg‘
ey’ (0)-(®)=2 4 2%‘
da () - dwy (d) =2 Zig ﬁg ‘

One can immediately start with first-order framdmttsatisfy «f = 0. Upon
remarking thatJ(d) = «f(d) = 0, one will then have:

oF =-e? o,
SO.
e’ =0;

as a result, upon varying the point of the curve, otlegeti a relation of the form:
w?=ad.

On the other hand, for a variation of the first-orflame that fixes the poimil (e* =
e’ =e/? = 0), one will have:

0w’ =2e' w? ot =-et o,
so:
Jo=3'a

That relation proves that under an infinitesimal vaatof the first-order frame, the
coefficienta will be multiplied by the constant 1 43, which is infinitely-close to 1; as

a result, for a finite variation, it will be multied by an arbitrary constant. Two cases are
then possible:

1. Eithera = 0 (viz., the case of a straight line), and one da&mn tno longer
distinguish one first-order frame from the others.
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2. Ora# 0, and one can then choose a partial family amohgdfirst-order frames
such thata becomes equal to 1; those are the second-order frames.

When the coefficientr reduces to 1Ja will then be zero for a variation of a second-
order frame, and one will haeg" = 0, which implies that:

w'=pd.

Now, vary the second-order frame, while the ptMntemains fixed (se' =€’ = e* = e/
=0). One will have:
o' =-&'w=-&'d, o =0,
SO
B=-e

As a result, the coefficierf will be increased by the infinitely-small quantitye;®
it will then be increased by an arbitrary finite quantityder a finite variation of the
frame. One can then arrange that it should be z€he frame will then be determined
perfectly (third-order frame), and one will have:

w' = ka,

in whichk is the first differential invariant (affine curvaturghich has order four.
One can recover the results that were obtained ddipitwo other procedures (nos.
12 and13).

35. — The preceding considerations, when bolstered by some sathpt we have
used to illustrate them with, show thae structure equations of the group G contain
everything that one can know about the differential geometry of a spads dratowed
with the fundamental group,Gvith the single condition that one must know timedr
relations with constant coefficients between thehat define the points of space. The
classification of curves, surfaces, and all sorts ofitpmianifolds is achieved by starting
with the structure equations without the logical netgsdiany geometric intuition.

One knows that in projective geometry, the studyutdd spaces — i.e., ones that are
considered to be generated by lines — is developed in gdanath the study of point
spaces. Naturally, in all geometry in the Klein sense,@n take any set of figures that
enjoy the following two characteristic properties to liie generating elements of space:

1. The figures considered transform amongst themselvesitivaly under the
fundamental grouf.

2. There exists no transformation of the gr@fhat leaves all of the figures of the
set fixed.

The method of moving frames can be applied without neadibn when one replaces
points with other generating elements. For examples three-dimensional Euclidian
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geometry. If we take the straight line to be the gatirey element then it will suffice to
associate each frame with a well-defined line thatglag role of therigin line for that
frame; for example, it might be tlzeaxis of the moving tri-rectangular trihedron. When
the frame varies in such a manner that its origin demeains fixed, we know that there
are four linear relations with constant coefficientéween the componenta , w, a3,
w3, a1, w2 of the infinitesimal displacement of the frame. dpemarking that the
point M is displaced along theaxis while that axis remain fixed, one will find that, in
fact:

W == s = @ =0.

These are the four differential equations of the lines in spaceather, the equations
that define the families of frames that have theesangin line. The componenta , a,
w3, ax are the ones that the same role in the applicatiaieo method of moving
frames as the role that was played byrtltdmponentsuy, @, ..., & in the presentation
in para. VII.

In a general manner, any choice of generating element amiltespond toa
completely integrable systeatf total differential equations that establish lineaatiehs
in constant coefficients between, a, ..., w. The converse is easy to provd.(

The preceding, even more than before, the role thgeghlay the structure equations
of the groupG.

IX

36. — One can contemplate the structure equations fromagether viewpoint.
Imagine an arbitrary system of curvilinear coordinatigsu,, uz in ordinary space.
Suppose that a well-defined tri-rectangular trihedroitéehed to each point in space. If
we know the six relative components, «, @, w3, a1, @2 of the infinitesimal
displacement of that trihedron as linear functionsthe du, dw, dus then we can
construct all of Euclidian space by a differential puwith the necessary and sufficient
condition that the six given forms satisfy the Darbatructure equations and that that
the three formsu, ay, ay must be linearly independent. If we are given the pofint
space that corresponds to the coordinaies (", us®) and a tri-rectangular trihedron at
that point then we can determine the point in space thatspmnds to arbitrary
coordinates and the tri-rectangular trihedron that oneesgio attach to it. From another
viewpoint, one can say thbeing given six differential forms, @, a3, @3, a1, W2 in
a three-dimensional continuum that satisfy the structure equations otithidi&n group
will permit one to organize the continuum in a Euclidian \{@&yd even in an infinitude
of ways), and to construct a Euclidian space, in ssamse, at each point to which one
attaches a well-defined tri-rectangular trinedron.

If one given the six forms under consideration then daone so desires, also
associate each pair of infinitely-close points of tlmmtmuum with an infinitesimal

(*3 From another viewpoint, any choice of generatingnefet corresponds to a choice of well-defined
subgroup ofG that leaves the generating element fixed, as an ori@onversely, any subgroup will
correspond to a family of generators.
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Euclidian displacement whose parametersaarew, s, aps, i1, (2 precisely. In that
sensea continuum that has been organized in a Euclidian way will support infmiés
Euclidian displacementsHowever, one must remark that these displacembatsare
associated with the various pairs of infinitely-closenf®are not arbitrary, since their
components must satisfy the structure equations.

Being given six components , aj corresponds to choosing the trihedra that are
associated with the various points of space; it wéhtlve arbitrary up to a point. Since
the infinitesimal displacement that is associatedh wito infinitely-close points has the
form S,'Siau, if S and S..qy denote the displacements that make the origin frame

coincide with the frames that are attached to thogepeints, one can repla& with
any other displacement that takes the origin to thmtpcoonsidered. Now, these
displacements have the folsiR, if R denotes an arbitrary rotation around the origin. It
then results that if one associates each paintug, us) of the continuum with a rotation

R, around the origin by some law then the infinitesimapldisementS;* Syqu Will be

replaced by the infinitesimal displacemeRit ( S;* Syau) Ruvdu -

The preceding result can be stated in the following erarih one replaces the
infinitely-small displacement,Ty, that is associated with two infinitely-close points with
the displacement:

Tu’;du: RJ_lTu; du Ru+du

then one will get the same Euclidian organization of the continudime change of
givens corresponds to a simple change of trihedra thasteached to the various points
of space.

More generally, one can take arbitrary rotation that depends upon three
parameters;, v, Vs, instead oR,;, and one will have then endowed the continuum with a
complete system of frames that depend upon six paramédees will know the linearly-
independent componentg, «j of the infinitesimal displacement of that framagdaone
can, in turn, apply the method of moving frames with tkiergcurvilinear coordinates.

37.— We clarify the preceding by indicating explicitly holmings appear in the plane.
We then have a two-dimensional continuum that is defibg means of the two
coordinatess andv, and we give a system of three forms:

w =<&du+ & dy, w=ndu+mndv, wz=rdu+ridv

that satisfy the structure equations:
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The quantitiesu, a, a2 are: The first two are the components of a traisldhat is
parallel to the (moving) axes, and the last orthéscomponent of a rotation around the
(moving) origin.

If we change the orientation of the axes — fomepie, we rotate it through an angle
— then we will obtain the most general values:

(38) @@= cosfd+ a sing, wh == Sin @+ ap cosE, w2 = w2 +db

that permit one to apply the method of moving framEor example, the straight lines are
characterized by the property that one can attaeimto a frame whose first axis is fixed,
which gives:

@ =0, @i2=0;
one then deduces that:

tanezﬂ, SO wo +

Z W+

One then obtains the differential equation of gtiaiines by replacingu, w, a3 with
their given values.
A circumference of radius will likewise be characterized by the equations:

@ =0, W= — o,

Q|

etc.
Naturally, all of this applies to no particulareiid space that is defined in arbitrary
curvilinear coordinates.

38. — In order to prepare for the introduction of gatieed spaces, it remains for us
to show what the profound geometric significancéhefstructure equations is.

Take a Klein space and attach an infinitesimapldsementT, . 4, that satisfies the
structure equations to each pair of infinitely-elgmints ;) and (s + du); that amounts
to attaching a frameR() to each point; if that frame is deduced from fitsame at the
origin by the displaceme1g, then one will have:

Tu;du: SJ_lS.Hdu-
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Imagine a closed circuit in space —aycle— that we divided into a large number of very
small arcs that are subdivided by poibtg, My, ..., My1 . Let R) denote the frame that
is attached to the poil; , and letS be the displacement that takes the initial fraRg (

to (R). The displacement that takd®)to (Ry) is S;*Si, and the one that takeRo to
(Ry) is:
$'S=(§'S)(S'S,

and so on. The displacement that tak&$to (R,) will then be:
(S'9)=(§'S) (S'S) - (SLS):

all of these displacements are referred®g). Finally, when one has described the cycle,
one will return to the frameRf) by a displacement (which is necessarily zero)whiabe
the product of the infinitely-small displacements thed attached to the arcs into which
the cycle has been composed.

If one then lets 1> denote the infinitely-small displacement, referred(R), that
takes(R) to (R+1) then one will have:

(39) Toa1T12 ... Th-2p-1 Th-10= 1.

39. — The preceding relation, which is assumed to be true for all cyolesin-
dimensional continuum, will be sufficient for the components of the tasimial
displacement Jq, that is associated with infinitely-close points of the continuum to
satisfy the structure equationdndeed, make a particular point% of the continuum
correspond to a well-defined poif of the Klein space and a well-defined frarfg) (at
the originAy . Now, let (1) be an arbitrary point of the continuum. Jaif)(to (u;) by a
continuous path, and divide that path into a large numbpartial arcs, and attach an
infinitesimal displacemenT,.q, to each of these arcs. Then, construct the suceessiv
frames that start withRy) and are deduced from each other by the corresponding
infinitesimal displacement that was given, wheré thgplacement is always assumed to
be defined analytically with respect to the frame tra displaces. One will then arrive
at a final frame R,), which will be well-defined in the limit when one increasthe
number of partial arcs indefinitely, while each of thesmds to zero. The framBj) that
is then attached to the point)(of the continuum will not depend upon the path that is
followed in the continuum in order to go from the pdinf) to the point (), and that is
precisely because of the hypothesis that was made ditgocydtles of the continuum, and
that translates into the relation (39). One easilywshan turn, that the displacement that
takes R)) to (Ru+qu) is precisely the given displaceméty, when it is referred toR)).
That will obviously suffice for the componentsTafy, to satisfy the structure equations.

40.— From the preceding, it would seem that there is aalafe equivalence between
the structure equations and the relations (39). In redhgy,structure equations are
nothing but the relations (3%hen they are applied to an arbitrary infinitely-small cycle.
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A closer examination will show that if one is giveme tisplacement,.q, arbitrarily, with
componentgy , and if one considers an elementary parallelogranse/summits are:

(') = W), @)=@+du), @)= +du+di+dar), )=+ d),

where d and 0 are two mutually-interchangeable differentiation sylpdhen the
components of the displacement:

To1T12T23 T30
will be precisely the quantities:

Qi =dw (9 - du (d)_z Cni & (d) an (9.

It is almost obvious that the relations (39), whichaagumed to be true for infinitely-
small cycles, will still be true for the finite cyslebut on the condition that those cycles
are reducible to a point by a continuous deformatidrrerefore, the structure equations
do not necessarily imply the relatio(®89) for the cycles that do not satisfy that condition.

X

41. — We are now in a position to understand how one can derettze notion of
Klein space.

The first generalization of this type goes back to Gawbss, naturally could not
assert the same viewpoint that we do. Recall theddarbquations (37) that relate to the
plane. Knowing the componenés &, 7, m, r, r1 of a displacement in the plane as
functions of the two parameteusandv will suffice to recover the Euclidian organization
of the plane. However, we can remark that knowin§, 77, 71 is sufficient, because the
first two equations (37) will permit one to deduce the \&lofr andr; . On the other
hand, instead of being given the two formsand «» that defineé, &, 7, mi, we can, as
we saw in no37, just as well give the two forms:

W = ) c0S@+ wp Sin B, @ =—a Sin@+ ap cosl.

That amounts to saying that merely knowing the quadfatio w® + aw? will suffice to
recover the Euclidian organization of the plane. Thatdratic form is nothing but the
ds’ of the plane, which is the square of the distance dmtviwo infinitely-close points.
That is a well-known result whose deeper reasoratsdhe can base Euclidian geometry
upon only the notion of distance.

ds® cannot be given arbitrarily if one desires that the strecequations should be
satisfied. Meanwhile, suppose that we are given an anpdg’; i.e., we are gived, &,
n, m as arbitrary functions af andv. We can further infer andr; from the first two
structure equations, but the third one will not be \edifi As we know, the two-
dimensional continuum that is endowed with the giggrcan be assimilated to a surface
and will enjoy all of the geometric properties of sugfthat are attached to theéi. On
such a surfacethe theory of curves will be identically the sanseima the plane, and
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nothing will be change in the application of the method of the moving fradpan
introducing the most general frame with the componenism, s for the infinitesimal
displacement, one attaches a moving frame to a cunretthat condition thatp = O,
which will give us the curvaturegéodesic curvaturdan the sense of Gauss):

1_@,
p @

The difference between the surface and the pladstisguished by the fact that the
third structure equation (37) will no longer be verifiede avill have:

or or
———_—1=K — ,
v oy (Em—né&)

or, with our notations:

dars(d) — daax(d) = - K ‘ w(d) w(d)|

w(9) w(d)|

the coefficientk is thetotal curvature One can interpret this by imagining an infingtel
small cycle and attaching a frame to the varioustp®f the cycle and displacing it step-
by-step without rotation. Upon returning to tharshg point, it will take a different
position from the initial position, and which wile deduced from it by the rotatighdo,
wheredo denote the area that is bounded by the cycle.

One can imagine some other generalizations oEtlgfidian plane by associating any
pair of infinitely-close points of a two-dimensidneontinuum with an infinitesimal
Euclidian displacemernit,.q, for which the first two structure equations are werified.
For example, one can give the functiofasti, /7, /1 arbitrarily, while takingr =r; = 0.
The Euclidian frames that are attached to the mffepoints of the continuum are then
deduced from each other by a simple translatione ®ill havea space with Euclidian
connection that is endowed with absolute paralleligmthat space, the theory of curves
will again be the same as it is in the Euclidiaangl. Upon introducing the most general
frames, one will have:

W = ) c0S@+ ap Sin 6, o =—a Sin@+ w cosl w,=db
and thestraight lineswill be defined by:

a=wi2=0
or

dv dv
+m—=C|&+&— |,
n+m a0 (5 éduj

in which C is an arbitrary constant that defines the directabthe straight line. One can
define aEuclidian connectiowith absolute parallelism on a surface that iegiby its
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ds’ by decomposing itds’ into a sum of two squares® + a?® and takinga. = 0. For
example, for a sphere that is referred to its longitaded it colatituded, one can take:

w =dg, w = sin@dg, w> = 0.

The straight lineswill be the loxodromes that admit the two poles & sphere for their
poles and are defined by the equation:

sin 9% =C.
dé

In this generalization, which is distinct from that@duss, the displacemeny; Tio...
that is associated with a cycle is not a simple matibut a translation whose
components are:

w(d)  w,(d)
Q,=d — o\ (d ,
1 =da(J) — da(d) + w(8) w0
w(d) w,(d)
Q,=d — op(d) — )
2 a(9) () W) @)

this is thetorsion of the space, as opposed to the Gaussiarature(*3).

Finally, the most general two-dimensional space withlitiao connection will be
obtained by takind, &, 1, mi, r, r1 to be absolutely arbitrary functions wfv; one will
then have itsurvatureandtorsion. However, once again, the theory of curves and the
application of the method of moving frames will be ideaitto what it is in the plane.

42. — If one passes from the Euclidian plane to Euclidjgace with an arbitrary
number of dimensions then one will recover classic@nf@nnian geometry, in
particular. The structure equations of Euclidian spacebe divided into two classes:

1. The equations that are written in condensed form as:

(40) BEDNCYINE
h

2. The equations:

(** With Darboux’s notation, torsion is defined analytigaly the two coefficientsa and b of the
equations:

0 0
9%, =a(ém-né)),
ov u

on _on,
ov du

=b(Em—né&).
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(41) o= [w, .

If one is then given the forms aw (viz., the components of the translation), whioh a
assumed to be linearly-independentdu, ..., du,, on ann-dimensional continuum then
equations (40) will permit one to unambiguously wed the formsay (viz., the
components of the rotation of the moving frame)n t@e other hand, they will be
subjected to an arbitrary orthogonal transformatiower a change of frame that is
attached to a point, in such a way that being given

d = w?+ W’ + ... + W’

for the space will be sufficient for it to be orgaed in a Euclidian way, but with the
condition that the structure equations (41) mustdiesfied, of course.

If one is given thels® arbitrarily then one can obtain a Riemann spa@me can
further arrange that it should satisfy the strueteguations (40), which will permit one to
define the infinitesimal Euclidian displacement tthaill bring two infinitely-close
rectangular frames into coincidence according koaathat is intrinsically coupled to the
givends’, or what amounts to the same thing, to defineatigle between two directions
that emanate from two infinitely-close points inasp. One will then arrive at Levi-
Civita's (*Y) notion of parallelism step-by-step. The structure equations (41) are no
longer verified, in general; one must add complaamrierms to the right-hand side that
define theRiemannian curvaturef the space.

In Riemannian space, the application of the metifadoving frames to the theory of
curves is identically the same as it is in Euchdspace; i.e., the classification of curves,
and the notions of curvature and torsion are thmesa In other wordsall of the
operations of Euclidian geometry that refer to the study of curvesrpessige same
significance in Riemannian geometrirhe application of the method of moving frames
to the theory of surfaces also comes about indngesmanner as in Euclidian geometry,
but the results are not the same, in the senséntBatclidian geometry, as in Riemannian

geometry, one must take into account the valuesiebilinear covariants) and af ,

and those expressions will not be the same whenuheer of variables exceeds unity.
That is why the notions of straight line, circungfiece, helix, etc, generalize
automatically upon passing from Euclidian geométry\Riemannian geometry, but the
notion ofplanedoes not generally exist in Riemannian geometioneé wishes to at least
define the plane by the sarmdd#ferential properties as in Euclidian geometry. Indeed, in
a three-dimensional space, those differential ptegsetranslate into the equations:

w =0, w3 =0, w3 =0,

and those equations will no longer be completetggrable if the structure equations
cease to be verified.

(Y T. LEVI-CIVITA, “Nozioni di parallelismo in una weta qualunque,” Rendiconti Circ. mat.
Palermo42 (1917).
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Naturally, one can imagine spacsgh Euclidian connectiorthat are more general
than Riemannian spaces, for which the first structure masaf40) will cease to be
verified. The Riemannian spaces with absolute parallelifiat were recovered by
Einstein are the ones for which the last structure empum(41) are verified, but not the
first ones (40). The have no curvature, but they do lag®n.

43. - One now easily sees how each gr@upith n variables can be associated with
an infinitude of generalized spaces that ad@ifor their fundamental group. Those
spaces can be regarded radimensional continua in which one has attached a well-
defined infinitesimal transformatiof,.q, of the groupG to each pair of infinitely-close
points (1) and (4 + du) in such a manner that the structure equations ceaseifiedve
(*). In these spaces, the operations of differentiahmgry of the Klein space with
groupG continue to keep their significance. The theory ofesirin them is the same as
in Klein space; the method of moving frames also applitise same manner. However,
the classification of surfaces is not the same aneisome of their properties.

Any cycle of the generalized space for which one &mithe initial pointA, is
associated with a transformation of the gr@aip One can represent it in the following
manner: Imagine a sequence of observers that are spacddnguthe cycle, all of which
belong to a Klein space, and each of which adopts a wiietl frame. The observer
that is placed aB, can try to represent the sequence of positions efrdmes of his
colleagues in the Klein space to which he believestédielongs, provided that each of
them transmits the position of the infinitely-closanfre with respect to their own frame.
When the observer that is placeddaarrives at the end of the cycle, he will confirmttha
he must attribute a position to his own frame thalifierent from the one that he really
has. The displacement that is required in orderttonéo his initial position will be the
displacement that is associated with the cycle ithahdowed with the origid, . It is
obvious that the displacement, when considered frenptinely-geometric viewpoint by
the observer that is placed &g , will not depend upon the sequence of frames that is
chosen by the intermediate observers, but its anadpression will depend upon the
choice of the initial frame at the orighy . One can base an important notion upon the
considerations of the displacements that are assdaidgth the various cyclewith the
given origin A, namely, that of théaolonomy groupof space. However, we shall not
enter into that subject here.

If the cycle is an elementary parallelogram thendbwaponents of the infinitesimal
displacement that are associated with the cycletteecomplementary terms that one
must add to the right-hand sides of the structure eqsaitioorder for those equations to
become exact. They are bilinear expressions thatlteraating with respect to the two
series of differentialgu, and du;, or further, with respect to the two series of comptse
w (d)andw (9 (i =1, 2, ...,n) if one supposes that the differential equations of the

(*® More generally, in a continuum of dimensiom# n for which each point can be defined by an
arbitrary coordinate system, ..., un, one can attach an infinitesimal displacemgpt, of the groupG to
each pair of infinitely-close points. One will hazespace that again preserves some of the notiohg of t
differential geometry of a Klein space whose fundamentaipieG.
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points are obtained by annulling the firsforms a (*°). The space imrsionlessif the
complementary terms that relate to the firsire all zero. That is what happens for the
classical Riemannian spaces, so the displacementstla@isociated with an elementary
cycle with originA will be a rotation of the frame that is attached§@round its origin.

44. — The Kleinian geometry with the fundamental grdapcan exhibit different
aspects according to the choggmmerating elementin the preceding, we have supposed
that it was a point. With a different choice of geximg element, one will get
generalized geometries that assentially differenfrom the preceding ones. If one
regards space in ordinary geometry as a locus of plaeesttie notion of point will
persist, since the point can be regarded as a partfeufaly of planes that depend upon
three parameters. However, just like in a Riemann spdteh is apoint-like space with
Euclidian connection, the notion of plane will disappe&imilarly, in aspace of planes
with Euclidian connection, the notion of point will dipear, and geometry in such a
space will be completely different from Riemannian getyyn

If we are not to remain in these generalities themilitbe interesting to see how one
can imagine a ruled space with Euclidian connectionytically. If one associates each
tri-rectangular trihedron in Euclidian space with thedhaxis asorigin line then the
components of the infinitesimal displacement ofttiteedron that will be annulled when
the original line remains fixed are, as we have seer3§)o.

al, G, W2, 33 .

One defines a ruled space with Euclidian connection pgisix differential forms in
four variablesu;, u, us, Uz , while the four formsaw, w, w2 @3 are linearly
independent. One can remark here that the knowledge s& thar forms in Euclidian
space will imply that of the other two. With Darbosixiotations, one give§, 7, pi, Gi
(i=1, 2, 3, 4); the equations:

o0& 0¢,

-~ =pnr. -rn. -{Q + ,

ou oy i =n =49, +9¢,

o, _ 01,

" =-7p-pld -&r +
(42) 5 op

ﬂ——j:qiﬁ‘ﬁqj,

du; dy

aq aqj

— - =rp.—pr

du, dy PR

determine the; and ther; unambiguously.

(*®) These bilinear expressions are not arbitrary: Taeigfy some identities (viz., the Bianchi identities,
in Riemannian geometry) that constitute ttheorem of the conservation of curvature and torsion.
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In order to have a ruled space withbesionlessEuclidian connection, one must give
the functionsé, 7, pi, Gi, ¢, ri that satisfy the preceding 24 equations. However, we
know that there is an infinitude of ways to choose thectfons for the same space
according to the particular choice of frames that oakas. As far as the forma , w,
w3, ap3 are concerned, one confirms that the things that deargtwith the choice of
frame are the two quadratic forms:

W+ ws®  and @ ws—w W,

the first of which represents the square of the angledsat two infinitely-close lines,
and the second of which represents the product of tha¢ anti the shortest distance
between them. However, those two quadratic differefidems cannot be chosen
arbitrary if one desires that equations (42) should biéedtifor a convenient choice df
andr; . In particular, it is necessary that the firstniocds” + a3° can be expressed as a
quadratic differential form in only two variables. A pautarly simple manner of
choosing the two fundamental quadratic forms considiakafg:

0)_32 + @32 = dUl2 + dU22,
(43)
W w3— ap w3=dw dug —du duy .

The variablesu; and u, define thedirection of the straight line. One sees that in the
corresponding ruled geometry, the notion of point (wt@msidered to be the center of a
sheaf of lines) and the notion of plane (when consilemebe a network of lines) still
persist {'). The condition for two linesu() and (u') to belong to the same poiand the

condition for two lines§) and (u’) to belong to the same plaree the same, namely
)
(U —u) (U~ w) — (U4~ w(4- u=0.

45. — 1t is clear that a large number of generalized geaesetire only geometric
curiosities, up to now. Meanwhile, they have the doublamidge of casting a bright
light onto the fundamentals of differential geomethemselves, and providing an
inventory of geometric schemas into which mathematicsraathematical physics can
be drawn some day. Moreover, that is why Riemannian gegmvith absolute
parallelism, which is at the basis of Einstein’s reac@search, enters into the general
schema that we have presented. Likewise, Weyl spagdseraionless spaces that admit
the group of similitudes for their fundamental group. Teory of curves is given by
the Frenet formulas (8) in those spaces. Up to themirdsesides the Riemannian spaces
and Weyl spaces, it has been the spaces with affingecpve, and conformal

(") If the space is torsionless then the notion of plailievacessarily persist, but the same thing will not
generally be true for the notion of point.

(*®) That ruled geometry is linked in a very close way ®dlassical kinematics of the plane, where the
straight line represents a uniform, rectilinear moti®ee E. CARTAN, “La cinematique newtonienne et
les espaces a connexion euclidienne,” Bull. math. Soc. roendas Science3b (1933).



Cartan — Moving frame. Continuous groups. Generalizacesp 49

connections that have been studied, above all. ThénAastategories can be attached to
some very old problems of analysis that one can thereloak in a suggestive geometric
form. For example, if one is given a system of sdeorder ordinary differential
equations im variablesn — 1 of which are dependent, and one of which is independent,
can one regard the integral curves of that system gmgléhe role of straight lines in a
continuum that is endowed with a projective connectionf® sees immediately that this
will be possible only if the equations have particulamio For example, in the caserof

= 2, the given differential equations must have the form

2 3 2
(44) d’y :A(ﬂj + B(ﬂj + C(ﬂj+ D,
dx? dx dx dx

with coefficientsA, B, C, D that are functions of, y. The problem then involves an
infinitude of solutions. However, among all of the pobie connections that answer
that question, there exists one and only one that isdimken intrinsic manner to the
given equation. That must say that the law by which associates that projective
connection with the differential equation will remanvariant under an arbitrary change
of variables 1¥). The geometry of the two-dimensional spacexofy with projective
connection — which is calleabrmal thus-defined — then provides all of the properties of
the equation (44) that do not depend upon the choice oblesiay.

If the differential equation does not have the paldic form (44), but is arbitrary,
then one can further regard the integral curves as plagegole of straight lines in a
space with projective connection, but with the conditlmat one must not take the point
to be the generating element of the geometry, butinkar elementviz., the set of a
point and a line that passes through that point), whddundamental group is always the
projective group in the plane. Then again, among ahefprojective connections that
make the integrals of the differential equation taleftiim of straight lines, one of them
will be privileged, and the corresponding geometry willvisle all of the properties of
the differential equations that do not depend upon the elodicariables, y.

One can likewise regard the integral curves of an arlitthird-order differential
equation as the circumference of a plane by regardegdhtinuum of pointsx(y) as a
generalized space whose fundamental group is the groumiaictaransformations that
changes an oriented circle into an oriented cirdl@ere once more exists a privileged
connection, and the corresponding geometry will provideofathe properties of the
differential equation that are invariant under an antyitcantact transformation.

46. — One last example will bring us back to Euclidian ggoyneOne knows that
Riemann envisioned some expressions that were generaltibasquare root of a
guadratic differential form in order to define the disgrbetween two infinitely-close
points. In the case of two dimensions, one can talelatmary homogeneous function of
degree one idx, dy, which one can always write &§x, y, y’) dx by settingy’= dy/ dx

(*°) The determination of that intrinsic projective coctin enters into the general method of moving
frames, but only when it is applied to the case ofirdimite group G, namely, the group of all point
transformations in two variables.
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On the other hand, the calculus of variations, insingplest case of an integfaF(x, v,

y’) dx, leads to some notions that are very analogous to smtiens of elementary
geometry; for example, transversality is closelyleg@aus to perpendicularity. Certain
authors have developed a generalization of Riemannian gegothatris based upon
some considerations of that nature. That generaiza&nters into our general schema.
One can make the extremals of the intedig(x, y, y’) dx into the Euclidiarstraight
linesby introducing a Euclidian connection, but one must tle¢nake the point to be the
generating element, but the linear element. That ammdwnsaying that it is in the
neighborhood of a linear element, when considered to lextaemal element, that space
has the character of a Euclidian plane, but that cteravill be lost when one considers
the neighborhood of a point — i.e., the set of lineamefgs whose center is close to a
given point. One can then define angle between twoitilfy-close linear elements in a
Euclidian way, the distance between their centers, ddowever, it is important to
remark that the distance between those centers cgrif vane makes the linear elements
turn around their fixed centerS)

The fact that one found a geometry with Euclidian cohoe upon the given of the
analytical expressions for the distance betweenitfuoitely-close points in an intrinsic
manner poses the question of knowing whether one ctireresamething analogous by
being given the analytical expression for the area cludace element in a three-
dimensional continuun‘?’(). It is very remarkable that this is possible in genef@he
can associate an integfaF(x, y, z p, g) dx dywith a Euclidian connection according to
an intrinsic law such that the integral will represém Euclidian area of a surface.
However, there are two exceptional cases here;ll ct@only the case of the integrfél
(p® + ¢°) dx dy Since that integral is invariant under the infiniteugraf point-like
transformations:
(45) { x'+|y = f(x+1iy),

Z=2z+3g

in which f(x + iy) denotes an arbitrary analytic function, amddenotes an arbitrary
constant, it is certain that it is impossible tooasste it with a Euclidian connection
according to an intrinsic law (i.e., one that is invariander an arbitrary change of
variables), because any Euclidian connection can remaimianvanly under a group
with a maximum of six variables, whereas the integnastmmemain invariant under the
infinite group (45) ).

The preceding example is very suggestive. It first shthwe possibility of basing
Euclidian differential geometry in space upon only thiamoof area, just as it is possible
to found it upon just the notion of length. However,aiso shows that if, upon
generalizing the Euclidian analytical expression lkemgth one can always base a
geometry that preserves the fundamental notions fafrdiftial Euclidian geometry, then
the same thing will not always be true upon generalizireg Eluclidian analytical

(*®) See ELIE CARTANLes espaces de Fins|dxposés de Géométrie, I, 1934.

(*) During the correction of the proofs, L. KOSCHMIEDBBinted out some papers to me [Math. Ann.
94 (1925). Math. Zeit24 (1925). Math. Zeit25 (1926). Proc. Akad., Amsterda®i (1928)], in which
that problem was begun, and some interesting resulesotzxtained.

(*®) See E CARTAN]es espaces métriques fondés sur la notion d'&xposés de Géométrie, |, 1933.
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expression for area, and that in its own right wleo up new horizons in regard to the
fundamentals of elementary geometry itself.



