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INTRODUCTION  
 

 The following pages constitute the development of five conference talks that 
were made in Moscow from 16 to 20 June 1930 at the invitation of the Moscow 
Mathematical Institute.  They were translated and published in Russian in 1933.  
It does not seem pointless to me to insert them in the collection of Exposés de 
géométrie, in the hopes of submitting them for the approval of a larger number of 
geometers.  Some theorems that required technical knowledge from the theory of 
partial differential equations have been stated without proof. 
 
 
  ELIE CARTAN 
 
 

_____________ 
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I  
 

 1. – All of the geometry that has been known in the study of curves and surface since 
G. Darboux has been derived by the use of a moving trihedron that is attached to the 
different points of the curve or surface according to some intrinsic law (1).  In the case of 
a curve, the trihedron, which is known by the name of the Frenet trihedron, has the 
tangent, principal binormal, and binormal to the curve for its axes.  Darboux also used tri-
rectangular trihedra that were subject to only the condition that the third axis must be 
normal to the surface.  The use of the moving trihedron is also well-indicated in a certain 
number of other geometric theories – for example, in the theory of triple orthogonal 
systems. 
 If one would indeed like to reflect upon the profound reasons for the fecundity of the 
method of the moving trihedron then one must first remark that the field of application of 
that method is differential geometry; it is of no use in the theory of algebraic curves when 
they are considered qua algebraic curves.  The method is adapted to only the problems 
that appeal exclusively to the infinitesimal properties of a curve or surface.  However, in 
that domain of differential geometry, the success of the method is due to two reasons: 
 
 1. The trihedron that is attached to a given point of a curve or surface constitutes the 
simplest reference system for the study of the infinitesimal properties of the curve or the 
surface in the neighborhood of a point. 
 
 2. The curve (or surface) is determined completely, up to a displacement in space, 
by the knowledge of the components with respect to the moving trihedron of the 
infinitesimal displacement of that frame when one passes from one point of the curve (or 
surface) to an infinitely-close point. 
 
 
 2. – The second reason has the character of simple convenience – one might say, 
esthetics − in the sense it imposes no rigorous condition upon the choice of frame.  One 
even imagines that for some questions, one might find that it would be more convenient 
to take a non-rectangular trihedron whose form can even vary from one point to another.  
Be that as it may, the trihedron must be determined by those differential properties of the 
curve or surface that present themselves at the outset – i.e., the ones that involve the 
differential elements of low order.  In the case of a curve or surface, they are essentially 
the differential elements of the first two orders that determine Darboux’s moving 
trihedron. 
 
 
 3. – The second reason that was pointed out above is based upon the following well-
known theorem: 
 
 If one has two families that contain tri-rectangular trihedra, and if one can establish 
a bijective correspondence between the trihedra of those two families such that the 

                                                
 (1) See G. DARBOUX’s Leçons sur la théorie des surfaces, especially v. I and II.  See also 
RIBAUCOUR, Mémoire sur la théorie générale des surfaces courbes, J. de Math. (4) 7 (1891).  
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relative components of the infinitesimal displacement of a trihedron of the first family are 
equal to the relative components of the infinitesimal displacement of a trihedron of the 
second family then there will exist a well-defined displacement that simultaneously brings 
the trihedra of the first family into coincidence with the corresponding trihedra of the 
second family. 
 
 The relative components of the infinitesimal displacement of a moving tri-rectangular 
trihedron are the six components with respect to the axes of that trihedron of the 
infinitesimal translation that is suffered by the origin of the trihedron and the 
supplementary infinitesimal rotation that is suffered by the trihedron. 
 The theorem does not demand, in full rigor, that one has to make the trihedra tri-
rectangular, but it does demand that, at the very least, the trihedra must all be equal to 
each other.  The six quantities that define the infinitesimal displacement of that trihedron 
analytically with respect to the axes of the moving trihedron will have a more or less 
complicated significance, but the theorem will persist nonetheless.  On the contrary, if 
one utilizes trihedra of variable form then one can even define the passage from one 
trihedron to an infinitely-close trihedron analytically, but one must then introduce 
variations of the form of the trihedron – i.e., parasitic elements with no relationship to the 
properties of the curve or surface under study. 
 
 
 4. – The preceding considerations show that the method of the moving frame must 
satisfy the following conditions if it is to preserve its scope: 
 
 1. The trihedron that is attached to each point of the manifold under study must be 
determined in an intrinsic manner by the first-order differential elements of the manifold. 
 
 2. The various trihedra must be rectangular, or at least, they must be equal to each 
other. 
 
 To say that the trihedron is determined in an intrinsic manner is to say that if one 
makes the determination of the trihedra at two homologous points of the two equal 
manifolds according to the chosen law then the two trihedra that are obtained will be 
brought into coincidence by the displacement that brings the two manifolds into 
coincidence. 
 As for the condition of convenience that was envisioned above, it will be a question 
of type.  From the purely logically viewpoint, nothing will prevent one from, for 
example, substituting any other trihedron – tri-rectangular or not – that is invariably 
coupled with a skew curve for the Frenet frame. 
 
 

II.  
 

 5. – In the classical applications of the method of moving frames, the choice of the 
trihedron was indicated by itself without the geometer feeling the slightest hesitation.  
However, even without leaving Euclidian geometry, there are some cases in which that 
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would no longer be true.  For example, consider a minimal curve in complex Euclidian 
geometry.  The Frenet trihedron (which one can consider to be composed of three unitary 
vectors that are carried by the tangent, the principal normal, and the binormal) can no 
longer exist in that case, since any vector that is carried by the tangent will have length 
zero.  True, one can choose a trihedron whose coordinate vectors e1, e2, e3 are such that 
the first and last ones have zero length and a scalar product that is equal to 1, while the 
second one has length 1 and is perpendicular to the first two.  One can then take the 
vector e1 to be tangent to the curve, but one sees no reason − at least, to begin with – to 
take e1 to be such a vector, rather than any other tangent to the curve. (They are, 
moreover, all equal to each other.)  On the other hand, since the normal plane to the curve 
coincides with the osculating plane, there will exist no other apparent reason to make that 
normal play the role of principal normal, rather than any other role.  One then knows 
neither how to choose the vector e1 nor how to choose the vector e2 . 
 That example indeed shows the legitimacy of the following problem: 
 
 Is it possible to attach a well-defined trihedron that is always equal to itself to each 
point of a minimal curve in an intrinsic manner? 
 
 More generally: 
 
 Is the method of the moving trihedron itself susceptible to being generalized to all 
questions of differential geometry? 
 
 
 6. – Before we address that general question, we remark that there certainly exist 
cases in which the intrinsic determination of a trihedron that attached to a variable point 
of a curve or surface is impossible.  It will suffice to contemplate the case of a (non-
isotropic) straight line.  The first axis of the Frenet trihedron will be well-defined, but 
there will be no reason to choose the second axis to be this or that perpendicular to the 
line.  We remark that in that case (and one will see the importance of this remark later 
on), the impossibility is due to the nature of things itself.  Indeed, there exists a group of 
displacements that simultaneously leave all of the points of the line invariant.  In order 
for the determination of the trihedron to be logically impossible, it would likewise suffice 
that the manifold in question should be invariant under a group of displacements, 
provided that there should be an infinitude of displacements of that group that leave an 
arbitrary given point M of than manifold fixed, because the intrinsic determination of the 
trihedron that is attached to M (if that is possible) will be given by that trihedron, as well 
as all of the ones that are deduced from it by displacement.  For example, that is why the 
intrinsic determination of a tri-rectangular trihedron that is attached to a point M of a 
sphere will be impossible: viz., there is an infinitude of displacements that leave the 
sphere invariant and leave the point M fixed. 
 
 
 7. – Let us leave that case aside. (Later on, we shall see that it is the only one in 
which the intrinsic determination of the trihedron is impossible.)  Before examining the 
case of a minimal curve, we recall the classical case of an ordinary skew curve and 
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analyze (if somewhat pedantically) the process by which one might be led to the Frenet 
frame, while forsaking all geometric intuition, as much as possible. 
 First, attach an entire family of tri-rectangular trihedra – namely, the ones that have 
the point M for their origins – to a given point M of a skew curve, which is assumed to be 
defined by means of one parameter t; we call them the frames of order zero.  They 
depend upon three parameters u1, u2, u3, which we call secondary parameters of order 
zero.  If one varies the point M then the zero-order trihedra will depend upon four 
parameters: viz., u1, u2, u3, and t.  Let ω1, ω2, ω3 denote the components along the moving 
axes of the translation that is suffered by the origin M of the trihedron, and let ω23, ω31, 
ω12 denote the relative components of the instantaneous rotation that is experienced by 
the trihedron.  It is clear that the three components ω1, ω2, ω3 , which will be zero when 
the point M remains fixed, have the form: 
 

ω1 = p1 dt,  ω2 = p2 dt, ω3 = p3 dt. 
 
As for the components ω23, ω31, ω12 of the rotation, they involve not only dt, but also the 
differentials of the second parameters du1, du2, du3 .  One likewise easily sees that they 
are linearly independent with respect to those three differentials. 
 The coefficients p1, p2, p3 obviously depend upon the numerical values of the 
secondary parameters.  One can then establish two relations between those parameters 
and t such that the ratios ω2 / ω1 and ω3 / ω1 are annulled; geometrically, that amounts to 
choosing the first axis of the trihedron to be tangent to the curve.  Frames that satisfy that 
condition are called first-order frames, and if one confines oneself to those frames then 
one will have: 

ω2 = 0,  ω3 = 0. 
 
 The first-order frames no longer depend upon more than one parameter, and the 
components ω23, ω31, ω12 of the infinitesimal rotation will be related by two relations 
when one sets dt = 0.  Geometrically, when one fixes the point M, the first-order frame 
will only be susceptible to a rotation around its first axis, in such a way that the 
components ω31, ω12 of the rotation with respect to the last two axes will be annulled.  
Upon varying the point M, it will then result that: 
 

ω31 = p31 dt,  ω12 = p12 dt. 
 The ratios: 

31

1

ω
ω

= 31

1

p

p
, 12

1

ω
ω

= 12

1

p

p
 

 
now depend upon the first-order secondary parameter, and one can choose that parameter 
in such a manner as to annul one of those ratios – for example, p31 .  One then arrives at a 
second-order frame that is perfectly well-defined.  The expression ω1 is the elementary 
arc length ds, while the ratio p12 / p1 is the curvature of the curve; the component ω23 = 
p23 dt then gives the torsion p23 / p1 . 
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 One sees that, by successive restrictions, one passes from zero-order frames that 
depend upon three parameters to trihedra of order 1 that depend upon one parameter to a 
definite trihedron of order 2, which is the Frenet frame. 
 
 
 8. – We now go on to the case of a minimal curve.  For reasons of convenience, we 
shall utilize a trihedron that is composed of three vectors e1, e2, e3 that are attached to a 
point M of the curve and satisfy the conditions: 
 
(1)    (e1)

2 = (e3)
2 = e1 e2 = e2 e3 = 0, (e2)

2 = e1 e3 = 1. 
 
The relative components of the infinitesimal displacement of the trihedron are the 
coefficients that are introduced into the formulas: 
 
 dM  = ω1 e1  + ω2 e2 + ω3 e3 , 
 dei = 1

iω e1 + 2
iω e2 + 3

iω e3 . 

 
The nine components jiω  are not independent.  Upon differentiating the relations (1), one 

will easily find that: 

(2)   
3 1 2

1 3 2
2 3 1 2 1 3

1 2 2 3 1 3

0,

0.

ω ω ω
ω ω ω ω ω ω

 = = =
 + = + = + =

 

 
We keep the six quantities ω1, ω2, ω3, 1

1ω , 2
1ω , 2

3ω  for the components of the 

infinitesimal displacement. 
 We can economize immediately by skipping the zero-order frames and beginning 
with the trihedra of order 1, for which e1 is an arbitrary vector that is tangent to the curve.  
Those trihedra depend upon two secondary parameters, one of which serves to fix to the 
vector e1 itself, and the other of which fixes the direction of the vector e2 that is 
perpendicular to e1 .  One first has: 

ω2 = ω3 = 0. 
 
 Of the four components that remain, two of them will be annulled if one fixes the 
point M – namely, ω1 and 2

1ω .  Indeed, the differential de1 of the vector e1 must be a 

vector that is carried along the tangent that is fixed to the curve and must have any 
component that is parallel to e2 .  As for the other two components 11ω and 2

3ω , they 

depend linearly upon the differentials of the two secondary parameters.  Upon varying the 
principal parameter t and the two secondary parameters, one will then have: 
 

ω1 = p1 dt, 2
1ω = 2

1p dt. 

 
 The coefficients p1 and 2

1p  depend upon secondary parameters a priori.  In order to 

see the manner in which they depend, replace the frame (e1, e2, e3) with another first-
order trihedron (ηηηη1, ηηηη2, ηηηη3).  One easily has: 
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ηηηη1 = λ e1 , ηηηη2 = e2 + λ e1 ,  ηηηη3 = 
2

3 2 1

1

2

µ µ
λ λ λ

− −e e e . 

 
The new values of the components ω1 and 2

1ω  are then calculated with no difficulty, and 
one will find that: 

1ω  = 11 ω
λ

, 2
1ω  = 2

1λ ω , 

so: 
1p  = 11

p
λ

, 2
1p  = 2

1pλ . 

 
 One can then dispose of λ in such a manner that the ratio 21p  / p1 reduces to a fixed 
numerical value – for example, 1.  One will then obtain a family of second-order trihedra 
that depend upon only one secondary parameter, and for which one will have: 
 

ω2 = 0,  ω3 = 0,  2
1ω  = ω1. 

 
 If one now varies the second-order trihedron while fixing the point M then the two 
components 1

1ω  and 2
3ω  will no longer be independent; they will be coupled by one 

relation.  One will get it easily upon remarking that the vector e1 is now fixed, so its 
differential is zero, and as a result, the component 1

1ω  will be annulled with dt.  Upon 

varying M, one will then have: 
1

1ω  = 1
1p dt. 

 
 In order to see how 1

1p  depends upon the secondary parameters of the second-order 

trihedron, replace the trihedron (e1, e2, e3) with the trihedron (ηηηη1, ηηηη2, ηηηη3): 
 

ηηηη1 = e1, ηηηη2 = e2 + µ e1 ,  ηηηη3 = 21
3 2 12µ µ− −e e e . 

 
Upon remarking that 1

1ω  is nothing but the scalar product e3 de1 , one will find that: 

 
2

1ω  = 1 2
1 1ω µω−  = ( 1

1p − µ p1) dt. 

 
One can then dispose of µ in such a manner as to annul 11p .  One will then arrive at a 
well-defined third-order trihedron, for which one will have: 
 

ω2 = ω3 = 2
1ω − ω1 = 1

1ω = 0. 
 

The component 2
3ω  will then have the form k ω1, and the coefficient k will be a 

differential invariant of the curve; it is its pseudo-curvature. 
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 Furthermore, the expression ω1, which will be indeterminate when one appeals to 
first-order trihedra, will take on a well-defined value when one arrives at second-order 
trihedra.  It is the elementary pseudo-arc length dσ of the minimal curve. 
 One can now write the Frenet formulas of the minimal curves, namely: 
 

(3)     

1

1
2

2
1 2

3
2

,

,

,

.

dM

d
d

d
d

k
d
d

k
d

σ

σ

σ

σ

 =

 =


 = − −


 =


e

e
e

e
e e

e
e

 

 
 Two minimal curves are equal if the pseudo-curvature is the same function of the 
pseudo-arc length σ for those two curves; or rather, if dk / dσ is the same function of k. 
 
 
 9. – We remark that along the path that we have chosen, we have made an implicit 
hypothesis, namely, that we have reduced the ratio: 
 

2
1

1

p

p
= λ2

2
1

1

p

p
 

 
to 1, which assumes that the coefficient 2

1p  is not zero; i.e., geometrically, that one is 

dealing with a straight line.  If the given line is a straight line then one will have no 
means of differentiating one of the other first-order trihedra, and one will no longer have 
any means of defining a natural parameter σ on the straight line, which is geometrically 
obvious, moreover. 
 In addition, we remark that in the passage from first-order trihedra to trihedra of 
higher order, we appeal to geometric considerations in order to predict what will be the 
new components of the infinitesimal displacement that should no longer depend upon 
differentials of the secondary parameters.  Although the method that we appeal to will 
give the form of the Frenet equations − which is, moreover, the only interesting thing in 
theoretical research − it will give us neither the expression for dσ nor the expression for 
k explicitly. 
 One can obviate these various inconveniences by explicitly calculating the 
components of the infinitesimal displacement of a trihedron of order zero from the outset.  
We shall do that in the case of a minimal curve. 
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 10. – With Weierstrass (2), define a minimal curve by the following equations in 
rectangular coordinates: 
 

(4)   x = 
21

2

t−
∫  F (t) dt, y = 

21

2

t
i

+
∫  F (t) dt, z = t∫  F (t) dt, 

 
where x, y, and z denote the rectangular coordinates of a point of the curve, and F(t) is an 

analytic function of t.  Let αi , βi , γi denote the projections of the vector ei onto the fixed 
rectangular axes: 
 ω1 =   e3 dM  =  α3 dx  + β3 dy + γ3 dz, 
 ω2 =   e2 dM  =  α2 dx  + β2 dy + γ2 dz, 
 ω3 =   e1 dM  =  α1 dx  + β1 dy + γ1 dz, 
 
 ω1

1 =    e3 de1  =    α3 dα1 + β3 dβ1 + γ3 dγ1 , 
 ω1

2 =    e2 de1  =    α2 dα1 + β2 dβ1 + γ2 dγ1 , 
 ω3

2 = − e3 de1  = − α3 dα2 − β3 dβ2 − γ3 dγ2 . 
 
In order to define a first-order trihedron, one can take: 
 

 α1 = λ 
21

2

t−
, β1 = iλ 

21

2

t+
, γ1 = λ t, 

 

 α2 = − t +µ 
21

2

t−
, β2 = it + iµ 

21

2

t+
, γ2 = 1 + µ t, 

 

 α3 = ρ 
21

2

u−
, β3 = iρ 

21

2

u+
, γ3 = ρ u , 

 
with the conditions: 

u – t = 
2

µ
, λ ρ = − 1

2 µ2. 

 Calculation will then give: 
 

ω1 =
1

λ
F(t) dt,  ω2 = 0,  ω3 = 0, 

ω1
1 = − µ dt, ω1

2 = λ dt, ω3
2 = 2ρ 2

dµ
µ

 – ρ dt. 

 
One then sees that the ratio: 

                                                
 (2) WEIERSTRASS, “Ueber die Flächen deren mittlere Krümmung überall gleich Null ist,” 
Sitzungsber. Berlin (1866).   
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2
1
1

ω
ω

= 
2

( )t

λ
F

 

can be reduced to 1 by setting: 
λ2 = F(t). 

One will then have: 

 ω1 = dσ = ( )tF  dt, 

(5)    

  ω1
1 = 

1 ( )

2 ( )

t

t
µ

′ 
− 

 

F

F
dt, 

 
and one can reduce ω1

1 to zero by setting: 
 

µ = 
1 ( )

2 ( )

t

t

′F
F

,  hence, ρ = −
2

2

1

8 λ
′F
F

. 

 
One will finally have: 

ω3
2 = 

2

2

5 4

8λ
′ ′′−F FF

F
dt = 

2

3

5 4

8

′ ′′−F FF

F
dσ, 

 
which will give the curvature: 

(6)   k = 
2

3

5 4

8

′ ′′−F FF

F
. 

 
 One sees that dσ is defined only up to a sign, but that k is defined rationally in terms 
of the derivatives of F(t) the first two orders.  The two vectors e1 and e3 are likewise 

defined up to sign. (The second one is determined completely when one fixes the first 
one.)  As for the vector e2 , it is defined unambiguously. 
 Once the Frenet trihedron has been determined, it will be up to the geometer to 
specify the geometric significance of the vectors e1, e2, e3  that determine it, as well as 
that of the pseudo-arc length and the curvature.  However, it is clear that the previous 
knowledge of the Frenet formulas is a powerful aid in that purely-geometric study, and 
that it will suggest some interpretations that one could not have imagined a priori. 
 
 

III 
 

 11. – Before commencing with a systematic study of the method of moving frames, 
we shall examine some further examples that go beyond the scope of Euclidian geometry, 
properly speaking. 
 One can propose to study the properties of curves that are not only independent of 
their particular position in space, but which do not change under a homothety.  From that 
viewpoint, two similar figures must be regarded as equal.  It is clear that two tri-
rectangular trihedra that are constructed from three vectors of the same length must be 
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regarded as equal, even if the common length of the vectors of the first trihedron is not 
the same as that of the vectors of the second one.  The passage from one tri-rectangular 
trihedron to another one that is infinitely close will then be accomplished by an 
infinitesimal translation and a rotation, accompanied by a homothety whose ratio is 
infinitely close to 1.  One will need seven quantities, instead of six, in order to define that 
new type of displacement analytically, and one will have the formulas: 
 
 dM =  ω1 e1 +  ω2 e2 +  ω3 e3 , 
 
 de1 =   ω  e1 + ω12 e2 + ω13 e3 , 
 de2 = ω21 e1 +   ω e2  + ω23 e3 , 
 de3 = ω31 e1 + ω32 e2 +   ω e3 , 
 
in which ω1 , ω2 , ω3 are the components of the translation, ω23 = − ω32 , ω31 = − ω13 , ω12 
= − ω21 are the components of the rotation, and 1 + ω is the homothety ratio. 
 If one is given a skew curve then one cannot perceive immediately what the vector e1 
will be that one agrees to choose to be tangent to the curve, and in fact, if one sticks to the 
first-order elements of the curve then there will be no reason to choose one vector rather 
than another.  Meanwhile, there is a unit of length that one can attach to each point of the 
curve in an intrinsic manner, namely, the length of the radius of curvature that relates to 
that point; the desired trihedron will then be determined completely by geometric 
considerations.  Upon denoting the unitary vectors of the ordinary Frenet trihedron by T, 
N, B, and denoting the curvature and torsion by 1 / ρ and 1 / τ, resp., one will then take: 
 
 e1 = ρ T, e2 = ρ N, e3 = ρ B, 
 
and the Frenet formulas will become: 
 

 dM =  
ds

ρ
e1 , 

 

 de1 = 
dρ
ρ

e1 + 
ds

ρ
e2 , 

 de2 = − ds

ρ
e1 +

dρ
ρ

e2 +
ds

τ
e3 , 

 de3 =             − ds

τ
e2 +

dρ
ρ

e3 . 

 
 The new natural parameter is defined by: 
 

(7)     ds = 
ds

ρ
, 

and one has: 
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(8)   

1

1
1 2

2
1 2 3

3
2 3

,

,

,

,

dM

d
d

k
d
d

k h
d
d

h k
d

σ

σ

σ

σ

 =

 = +


 = − + +


 = − +


e

e
e e

e
e e e

e
e e

 

 
with the two fundamental invariants: 
 

(9)    k = 
d

ds

ρ
, h = 

ρ
τ

. 

 
 Two curves for which k and h are the same functions of s are equal in the sense of the 
geometry of similitudes; i.e., they are similar, in the common sense of the word. 
 
 
 12. – Now take an example that is even more estranged from ordinary Euclidian 
geometry.  We propose to study the properties of a plane curve that are invariant under a 
unimodular affine transformation – i.e., by a transformation that is defined by formulas of 
the form: 
 x′ = a x + b y + c, 
 y′ = a′x + b′y + c′ 
 
in a Cartesian coordinate system, with the condition that: 
 
 ab′ – ba′ = 1. 
 
 The systems of reference – or frames – that must replace the tri-rectangular trihedra 
are the Cartesian coordinate systems that are defined by two vectors e1, e2 that are subject 
to the single condition that the parallelogram that is constructed from those two vectors 
must have a given area, which will be the unit of area. 
 We once more give the name of displacement to an affine, unimodular 
transformation.  One will have formulas: 
 

(10)    

1 2
1 2

1 2
1 1 1 1 2

1 2
2 2 1 2 2

,

,

dM

d

d

ω ω
ω ω
ω ω

 = +
 = +
 = +

e e

e e e

e e e

 

 
for an infinitesimal displacement of the frame, whose origin is assumed to be M, but the 
condition that relates to the area of the parallelogram (e1, e2) will give: 
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(11)     1 2
1 2ω ω+  = 0. 

 
 The infinitesimal transformation in question will then have five components ω1, ω2, 

1
1ω , 2

2ω  with respect to the moving frame. 

 One can prove that if one has two families of moving frames that correspond with 
equality of the components ω i and j

iω  then one can pass from one of the families to the 

other by a well-defined unimodular affine transformation. 
 Having said that, suppose that a fixed reference system has been chosen.  Let x and y 
be the coordinates of a point of a curve that is assumed to be planar, to simplify, and is 
given by its equation y = f(y).  Attach a first-order frame to each point such that the 
vector e1 is tangent to the curve.  The components of the two vectors e1 and e2 will then 
have the form: 
 For e1 : α, α y′, 

 For e2 : β, β y′ + 
1

α
. 

 
 The calculation of the components ω i and j

iω  will be achieved with no difficulty 

upon appealing to equations (10), and that will give: 
 

 ω2 = 0,  ω1 = 
dx

α
, 2

1ω = α 2 y″ dx, 

 

 1
1ω = 

dα
α

− αβ y″ dx,  1
2ω = 

2

d dβ αβ
α α

+ − β 2 y″ dx. 

 
 We will get second-order frames upon equating the ratio 2

1ω / ω1 to 1 (which assumes 

that y″ ≠ 0).  Those frames depend upon just one parameter β ; one will have: 
 
 α = y″–1/3. 
 
Moreover, since ω1 is determined perfectly, one can define the differential dσ of affine 
arc length: 
(12)     ds = y″1/3 dx. 
 
 For second-order frames, the component 1

1ω  does not depend upon the differential of 

the single secondary parameter β ; one has: 
 

1
1ω = 2/31

3

y
y

y
β

′′′ ′′− − ′′ 
 dx. 

 
One will get a third-order frame by annulling 11ω , which will give: 
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β = − 5/31
3 y y−′′ ′′′ = ( )2/31

2 y − ′′′ . 

 
 For the third-order frame, which is the desired well-defined frame, upon setting: 
 
 2/3y −′′  = z, 
one will get: 
 1

2ω = 1/21
2 z− z″ dx = 1

2 z″ dσ = k dσ. 

 
 The formulas for the Frenet frames are then: 
 

(13)    

1

1
2

2
1

,

,

.

dM

d
d

d
d

k
d

σ

σ

σ

 =

 =

 =


e

e
e

e
e

 

 
 The differential invariant k is the affine curvature.  The conics are characterized by 
the property of having constant affine curvature, which conforms to the differential 
equation of the conics: 

( )2/3y − ′′′′′ = 0, 

which is due to Monge, up to form. 
 In reality, there are three possible choices for the frame: If j denotes an arbitrary cube 
root of unity then one can replace: 
 

dσ,  e1, e2, k 
with 

j dσ, j2 e1,  j e3, jk, 
respectively. 
 In order for two curves to be equal – i.e., to differ only by a unimodular affine 
transformation – it is necessary and sufficient that either k3 must have the same constant 
value for the two curves or that dk / dσ must be the same function of k3 for the two 
curves. 
 
 

IV  
 

 13. – We shall now point out another method (which is very fast in certain cases) for 
obtaining explicitly the differential invariants and moving frame that is attached to the 
variety in question, at least in order to obtain the Frenet formulas.  That new method 
utilizes the method of reduced equations, which was developed systematically by Tresse 
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(3) in order to look for differential invariants.  We shall be content to present in two 
particular examples. 
 The first of them is the one that we just treated in the preceding number.  We shall 
attach a Cartesian coordinate system to a point M of a plane curve whose origin is M in 
such a way that the equation of the curve in the neighborhood of the point M will be as 
simple as possible.  We restrict the coordinate vectors e1 and e2 by the condition that the 
parallelogram that they determine has an area that is equal to 1.  Upon choosing the first 
axis to be tangent to the curve, the equation of the curve, which is assumed to be analytic, 
will have the form: 
     y = 1

2 a2 x
2 + 1

6 a3 x
3 + … 

 
One can multiply x and y by two factors λ and 1 / λ, resp., which corresponds to a 
permissible change of coordinates, in such a manner as to give the value 1 to the 
coefficient a2 .  Upon setting, in turn: 
 
  x = X + µ Y, y = Y, 
 
which is also permissible, one will easily confirm that one can annul the coefficient a3.  
One will then arrive at the reduced equation, which we can write in the form: 
 
(14)    y = 1

2  x2 − 1
8 k x4 + … 

 
 If we consider a point M′ that is infinitely close to M then the abscissa x of that point 
will be a quantity that is coupled to the arc length of the curve MM′ in an intrinsic 
manner; we can call it the elementary affine arc length.  Upon taking a point on the curve 
to be the origin, one can attribute an affine curvilinear abscissa σ to each point M of the 
curve, and the coefficients k, … of the reduced equation will be well-defined functions of 
the abscissa σ of the corresponding point. 
 Having said that, one will obviously have, upon displacing along the curve: 
 

 
dM

dσ
= e1 , 

 1d

dσ
e

= 1 2
1 1 1 2p p+e e , 

 2d

dσ
e

= 1 1
2 1 1 2p p−e e . 

 
Everything comes down to determining the unknown coefficients p1

1, p1
2, p2

1. 
 In order to do that, consider a fixed point P on the curve.  Let x, y denote its 
coordinates relative to the frame that is attached to the point M whose abscissa is σ ;  they 
are functions of σ that satisfy certain differential equations that are easy to construct.  

                                                
 (3) A. TRESSE, “Sur les invariants différentiels des groupes continues de transformations,” Acta Math. 
18 (1894).  
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Indeed, it suffices to express the idea that the point M + x e1 + y e2 is fixed, which will 
give: 

(15)    

1 1
1 2

2 1
1 1

1 0,

0.

dx
p x p y

d
dy

p x p y
d

σ

σ

 + + + =

 + − =


 

 
 On the other hand, the coordinates x and y will satisfy the relation: 
 
(14)    y = 1

2 x2 – 1
8 k(σ) x4 + … = f (x, σ), 

 
for any σ.  By differentiation and the use of formulas (15), one will deduce from this that: 
 
(16)   − p1

2 x + p1
1 f(x, σ) = xf ′ [− p1

1 1 – p2
1 x – f(x, σ)] + fσ′  

 
 That relation must be true for any σ, but also for any point P that one fixes along the 
curve; it is then an identity in x and σ.  We shall then equate the coefficients of the 
different powers of x in the two sides of the identity (16), which is written, upon 
developing: 

(16′)  − p1
2 x + p1

1 ( )2 21 1
2 8x kx− +⋯   

  = ( )( )3 1 1 2 41 1 1
1 22 2 81x kx p x p x k x′− + − − − + −⋯ ⋯ + … 

 
 One will find, successively, that: 
 
 − p1

2 = − 1, 
 1

2 p1
1 = − p1

1, 

 0 = − 1
2 p2

1 + 1
2 k, 

so 
p1

2 = 1,      p1
1 = 0,      p2

1 = k. 
 
 One will then find the Frenet formulas (13) that were obtained already.  However, 
upon pursuing the identifications, one will get the coefficients of the development of y as 
a function of x as functions of the affine curvature and its successive derivatives.  That 
indeed confirms what we have said already, namely, that the curve is determined 
completely, up to a unimodular affinity, by the knowledge of k as a function of x (4). 
 
 
 14. – We shall further apply the same method to a problem of Euclidian geometry.  
We shall consider an analytic, imaginary surface that is not a minimal developable, but 
whose second fundamental form has one and only one common factor with the first 

                                                
 (4) For the same method applied to plane projective geometry, see, E. CARTAN, “Sur un problème du 
calcul des variations,” Recueil Soc. Math. Moscou 34 (1927). 
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fundamental form, in such a way that the surface admits a double family of lines of 
minimal curvature.  Here, we use the same trihedra as in the theory of minimal curves, 
with the isotropic vectors e1 and e2 tangent to the surface, and the unitary vector e3 
normal to it.  The reduced equation of the surface will have the form: 
 

y = 1
2 ax2 + bxz + … 

 
 If one considers a point M′ that is infinitely close to M then the infinitely-small 
quantities x and z will be linked intrinsically to the pair of those two points; they will be 
the components ω1 and ω2 of the infinitesimal displacement of the moving trihedron.  As 
in no. 8, one then sets: 

(18) 

1 2
1 2

1 2
1 1 1 1 2

2 2
2 2 1 1 2

2 1
3 3 1 1 2

,

,

,

.

dM

d

d

d

ω ω
ω ω
ω ω
ω ω

 = +
 = +
 = − −
 = −

e e

e e e

e e e

e e e

 

 
 The coordinates x, y, z of a fixed point P on the surface, when referred to the 
trihedron whose origin is M, will satisfy equation (17), where k, α, β, … will depend 
upon M and the differential equations that express the idea that the point P is fixed, 
namely: 

(19)    

1 1 2
1 3
2 2

1 3
3 2 1

1 1

0,

0,

0.

dx x y

dy x z

dz y z

ω ω ω
ω ω

ω ω ω

 + + − =
 + + =
 + − − =

 

 
As in the preceding example, one will deduce from this that: 
 

− x ω1
2 – z ω3

2 = ( )2 21 1
2 2x kz x xz zα β γ+ + + + +⋯ ( )1 1 2 21

1 32x x kxzω ω ω − − + + + ⋯  

 +( )2 21 1
2 2kx x xz zβ γ δ+ + + +⋯ ( )3 1 2 21

1 12z x kxzω ω ω − + + + + ⋯  

 + x z dk + 1
6 x3 dα + 1

2 x2 z dβ + 1
2 xz2 dγ + 1

6 z3 dδ + … 

 
By identification, one will find, successively, that: 
 

− x ω1
2 – z ω3

2 = − (x + kz) ω1 – kx ω3, 
 

0 = − x (x + kz) ω1
1 – ( )2 21 1

2 2x xz zα β γ+ + ω1 + k x z ω1
1 − ( )2 21 1

2 2x xz zβ γ δ+ +  + xz dk, 

 
so 

(20)  
2 1 2 2 1 1 1 21 1

1 3 1 2 2
1

, , ,

0, .

k k

dk

ω ω ω ω ω ω αω βω
γ δ βω

 = + = = − −


= = =
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 One sees that the third-order terms in the development of y are not arbitrary.  That 
amounts to saying that the lines of minimal curvature − which are, at the same time, the 
asymptotic lines − are straight lines.  Indeed, one will obtain that upon setting ω1 = 0.  
The vector e3 is tangent to it, and upon displacing along one of those lines, one will see 
that de2 is again tangent to that line, which proves that the line has a fixed tangent. 
 The (second-order) differential invariant k is the principal curvature that is unique to 
the surface, whose total curvature is k2.  One can deduce all of the other differential 
invariants of the surface from the differential invariants α and β upon setting: 
 
 dα = α1 ω1 + α2 ω2, 
 dβ = β1 ω1 + β2 ω2, 
 …  … … 
 
The coefficients α1, α2, β1, β2, … are the differential invariants that one seeks. 
 Despite the results that we have obtained by this method, we also see that something 
essential is missing from it.  For example, we do not know whether there are any 
necessary relations between the differential invariants that were found.  If possible, we 
give the relation that must certainly exist between α, β, and k, etc. arbitrarily.  In order to 
solve all of these problems, one must take into account some compatibility conditions 
that must be satisfied by the components of an infinitesimal displacement of a moving 
trihedron that depends upon several parameters.  We will soon recover those conditions 
in a form that is completely general, and as we shall see, it contains the entire essence of 
differential geometry within it. 
 For the moment, we shall be content to remark that the expressions ω1 and ω2 are not 
exact differentials, in general, and that one cannot attach a system of two natural 
parameters σ1 and σ2 to the surface that are analogous to the natural parameter σ that is 
introduced whenever we are dealing with a curve. 
 
 

V 
 

 15. – It is now time to begin the general theory of the moving frame by appealing to 
the fundamental principles of the theory of continuous groups.  From F. Klein (5), any 
continuous group G in n variables x1, x2, …, xn corresponds to a geometry in the space of 
n dimensions that has the goal of studying the figures that are invariant under the 
transformations of that group.  Thus, elementary geometry corresponds to the group of 
displacements, affine geometry corresponds to the group of affine transformations, and 
projective geometry corresponds to the group of projective transformations.  The group G 
is sometimes called the fundamental group of the geometry, or the fundamental group of 
the space in which one studies the properties of figures that are invariant under the group. 
 In the sequel, we shall assume that the group is finite – i.e., that the general 
transformation depends upon a finite number of parameters.  We also suppose, to 
simplify, that the transformed variables 1x′ , 2x′ , …, nx′  are analytic functions of the 

                                                
 (5) F. Klein, “Vergleichende Betrachtungen über neuere geometrische Forschungen” (which is known 
by the name of the Erlanger Programm), 1872. 
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original variables x1, x2, …, xn and the parameters a1, a2, …, ar .  Finally, we assume that 
the group is transitive, which signifies that there always exists at least one transformation 
of the group that will bring two arbitrarily-give points in space into coincidence.  By 
extension, we give the name of displacements to the transformations of the group and let 
Sa denote the displacement whose parameters are (a1, a2, …, ar). 
 
 
 16. – The first question that we must pose is the following one:  What should replace 
the notion of a tri-rectangular trihedron in ordinary geometry in an arbitrary Klein 
geometry?  Recall that the set of tri-rectangular trihedra enjoys the following property: 
Two arbitrary tri-rectangular trihedra can be brought into coincidence by one and only 
one displacement.  We shall indeed see that this is the property that plays the essential 
role in the application of the method of moving trihedra. 
 Having said that, we say that a family of figures constitutes a system of frames if two 
arbitrary figures of the family can be brought into coincidence by one and only one map 
of the group G. 
 It is clear that if one can find a particular figure (R0) such that any transformation that 
is not identical to G will transform (R0) into a figure that is distinct from (R0) then the set 
of the figure (R0) and the figures (Ra) that one can deduce from it by the various 
transformations Sa of G will constitute a system of frames.  Indeed, in order to take (Ra) 
to (Rb), it will be sufficient to apply, in succession, the transformation 1

aS−  that takes (Ra) 

to (R0) and then the transformation Sb that takes (R0) to (Rb).  The resulting 
transformation: 

Sc = Sb
1

aS−  

 
will again be a transformation Sc of G, and that transformation Sc will take (Ra) to (Rb).  
Conversely, if Sc′ takes (Ra) to (Rb) then the transformation 1

bS−  Sc′ Sa will successively 

take (R0) to (Ra), and then to (Rb), and then to (Rc).  One then has the identity 
transformation, which gives: 
 

Sc′ Sa = Sb , Sc′ = Sb
1

aS− = Sc . 

 
 The search for a system of frames then amounts to the search for a particular figure 
(R0) that is not invariant under transformation of G that is distinct from the identity 
transformation. 
 
 
 17. – There are some cases in which frames present themselves in an entirely natural 
way.  For example, in the general affine geometry of n dimension, it is natural to take a 
frame to be the figure that is composed of a point and n vectors that issue from that point, 
but are not situated in the same hyperplane.  In n-dimensional projective geometry, the 
figure that is composed of n + 2 points can likewise serve as a frame.  However, it is 
more convenient to take the figure that is composed of n + 1 analytic points, where an 
analytic point is the set of n + 1 numbers that are not all zero.  If one is given n + 1  
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linearly-independent analytic points A1, A2, …, An+1 then any analytic point can be put 
into the form: 

M = x1 A1 + x2 A2 + … + xn+1 An+1 
 
in one and only one way, and the coefficients x1, x2, …, xn+1 can be regarded as the 
homogeneous coordinates of the geometric point that one can associate with M and all 
analytic points of the form λM.  However, one must remark that, as a frame, properly 
speaking, the ordered set of n + 1 analytic points (A1, A2, …, An+1) must not be regarded 
as distinct from the set of n + 1 analytic points (mA1, mA2, …, mAn+1). 
 
 
 18. – Let us return to an arbitrary group G.  If the group is simply-transitive – i.e., if 
there exists just one transformation of the group that takes two arbitrarily-given points 
into coincidence – then the points of the space will constitute a set of frames. 
 Suppose that the group is not simply transitive, which amounts to saying that the 
order r of the group is greater than the number of variables n.  Start with an arbitrary 
point A0 .  By hypothesis, there exists an infinitude of transformations of G that leave that 
point fixed; they define a subgroup g1 with r1 = r – n parameters.  There certainly exist 
points that are not invariant under g1 ; let B0 be one of those points.  The transformations 
of g1 that leave the point B0 fixed define a subgroup of order r2 < r1 .  If r1 is positive then 
there will certainly exist points that are not invariant under g2 ; let C0 be one of those 
points.  The transformations of g2 that leave the point C0 fixed will define a subgroup g3 
of order r3 < r2 .  If r3 is zero – i.e., if g3 reduces to the identity transformation – then the 
figure that is defined by the three points A0, B0, C0 can serve as the initial frame (R0).  
Otherwise, one continues with the same procedure, which will certainly have a 
conclusion, since the orders of the successive subgroups g1, g2, …, must constantly 
decrease. 
 One can then always find a system of frames, each of which is defined by a finite 
number of points that are arranged in a certain order. 
 It is pointless to remark that there exists an infinitude of other possible systems of 
frames.  One can also observe that in Euclidian geometry, the tri-rectangular trihedron 
can be assimilated to a figure that is composed of four points, namely, the origin of the 
trihedron and the extremities of three unitary vectors that carried by the axes. 
 
 
 19. – In Euclidian geometry, the tri-rectangular trihedron will serve as a coordinate 
system.  The same thing will be true in the general case.  Indeed, associate a particular 
frame (R0), which we shall call the initial  frame, with the initially-given coordinate 
system x1, x2, …, xn .  Let (Ra) be an arbitrary frame, let M be an arbitrary point in space, 
and let M′ be the point that is the transform of M under the displacement 1

aS−  that takes 

(Ra) to (R0).  We agree to say that the initial coordinates of M′ are the coordinates of M 
relative to the frame (Ra).  We see that the figure that is defined by a frame (R) and a 
point M and the figure that is defined by a frame (R′) and a point N are equal if the 
coordinates of M, when referred to the frame (R) are equal to the coordinates of N, when 
referred to the frame (R′). 
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 If we utilize coordinates ξ1, ξ2, …, ξn relative to the frame (R0), instead of the initial 
coordinates x1, x2, …, xn , then the equations that define the transformations of the group 
G analytically will have exactly the same form as before.  Indeed, let Sb be an arbitrary 
transformation of G, and let Mb be the point that is the transform of M by Sb .  On the 
other hand, let M′ and bM ′  be the points that are the transforms of M and Mb , resp. by 

1
aS− .  The initial coordinates of M′ and bM ′  are the coordinates x of M and Mb .  Now, one 

passes from M′ to bM ′  by the successive transformations Sa , Sb , 
1

aS− .  One then passes 

analytically from the coordinates ξ of M to the coordinates ξ′ of a transformed point Mb 
by the transformation 1

aS− Sb Sa , which is a transformation of the group.  However, it 

should be remarked that the parameters that figure in the equations of that transformation 
(ξi → iξ ′ ) are not the parameters bi of Sb , but the parameters of the transformation 1

aS−  Sb 

Sa , which are called the transform of Sb by Sa . 
 It is then indispensible to distinguish between Sa , when considered to be a geometric 
operation, and Sa , when considered to be an analytic operation.  The geometric 
transformation Sa is represented analytically by the analytic transformation Sa only if one 
adopts the initial coordinate system that is attached to the frame (R0). 
 
 
 20. – We now arrive at the infinitesimal displacement that brings two infinitely-close 
frames (Ra) and (Ra+da) into coincidence.  One passes from (Ra) to (Ra+da) by the 
geometric transformation Sa+da 

1
aS− , which is the resultant of the displacement 1aS−  that 

takes (Ra) to (R0) and the displacement Sa+da that takes (R0) to (Ra+da).  However, if one 
would like to express that infinitesimal displacement analytically with the aid of 
coordinates relative to the frame (Ra) then one must first displace the figure that is 
defined by the two frames in such a manner as to take (Ra) to (R0).  If (Rε) is the position 
that (Ra+da) must occupy then the infinitesimal displacement in question can be expressed 
analytically by the analytic transformation Sε .  Now, one passes from (R0) to (Rε) by the 
successive displacements Sa+da and 1

aS− .  As a result, the parameters that relate to the 

infinitesimal displacement that takes (Ra) to (Ra+da) will be the parameters of the 
infinitesimal analytic transformation Sε = 1

aS−  Sa+da . 

 If we suppose that the identity transformation corresponds to zero values of the 
parameters then the relative components εi of the infinitesimal displacement of the frame 
will be infinitely-small quantities that will be manifested linearly with respect to the dai 
with coefficients that are functions of ai ; we denote them by the notation ωi (a; da): 
 
(21)  ωi (a; da) = αi1(a) da1 + αi2(a) da2 + … + αir(a) dar . 
 
 When viewed from a certain angle, the preceding result constitutes the first 
fundamental theorem of the theory of Lie groups (6).  In fact, it expresses the idea that 
since the transformations Sa, which are assumed to depend upon r parameters, define a 

                                                
 (6) See S. LIE, Theorie der Transformationsgruppen, with the collaboration of F. Engel (Leipzig, 
Berlin, reprinted in 1930). 
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group, the infinitesimal transformation 1
aS−  Sa+da depend upon only r parameters ωi (a; 

da), and not 2r of them.  That theorem admits a converse, but we shall pass over it here. 
 
 
 21. – It is easy to get the expressions ωi if one knows the finite equations: 
 

ix′  = fi (x, a)  (i = 1, 2, …, n) 

 
of the group G.  One can first define the infinitesimal transformations of the group by 
giving infinitely-small values εi to the parameters ai , which will give: 
 

ix′  = xi + 
0

i

k k

f

a

 ∂
 ∂ 

∑ εi = xi + ( )k ki
k

xε ξ∑ , 

 
upon neglecting infinitesimals that are second-order with respect to the εi .  Having said 
that, in order to obtain the analytic transformation 1

aS−  Sa+da , we see that it is the resultant 

of the two transformations: 
 ix′  = fi (x; a + da) 
and 
 ix′  = fi (x″ ; a), 
 
in which the ix′′  are the variables that are the transforms of xi by the desired 
transformation.  Upon setting: 
 ix′′= xi + δxi 
 
and neglecting the second-order infinitesimals, one will find immediately that: 
 

(22)     i
k

k k

f
da

a

∂
∂∑ = i

j
j j

f
x

x
δ∂

∂∑ . 

 
When these equations are solved for δxj , the resulting equations must have the form: 
 
 δxi = ( ; ) ( )k ki

k

a da xω ξ∑ . 

 
 Take the example of the group of Euclidian displacements.  The equations of a 
displacement, in rectangular coordinates, are: 
 
 x′ = x0 +  α x +   β y + γ z, 
 y′ = y0 + α′ x +  β′ y + γ′ z, 
 z′ = z0 + α″ x + β″ y + γ″ z. 
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There are six independent infinitesimal transformations here, which one can express by 
the formulas: 
 δx = ε1 + ε5 z – ε6 y, 
 δy = ε2 + ε6 x – ε4 z, 
 δz = ε3 + ε4 y – ε5 x . 
 
Having said that, we must solve the equations (22), which are written: 
 
   α dx +  β dy + γ dz = dx0 + x dα  +   y dβ + z dγ, 
  α′ dx + β′ dy + γ′ dz = dy0 + x dα′ +  y dβ′ + z dγ′, 
 α″ dx + β″ dy + γ″ dz = dz0 + x dα″ + y dβ″ + z dγ″, 
 
here.  Upon appealing to the relations between the nine direction cosines, they will give: 
 
 δx = (α dx0 + α′ dy0 + α″ dz0) + (α dγ + α′  dγ′ + α″ dγ″) z − (β dα + β′ dα′ + β″ dα″) y, 
 
 δy = (β dx0 + β′ dy0 + β″  dz0) + (β dα + β′ dα′ + β″ dα″) x − (γ dβ + γ′ dβ′ + γ″  dβ″) z, 
 
 δz = (γ dx0 + γ′  dy0 + γ″  dz0)  + (γ dβ + γ′ dβ′ + γ″  dβ″) y  − (α dγ + α′ dγ′ + α″ dγ″) x . 
 
One will indeed find equations of the predicted form with: 
 
 ω1 = α dx0 + α′ dy0 + α″ dz0 , 
 ω2 = β dx0 + β′ dy0 + β″ dz0 , 
 ω3 = γ  dx0 + γ′ dy0 + γ″ dz0 , 
 
 ω4 = γ  dβ  + γ′ dβ′ + γ″ dβ″  = − (β  dγ +  β′ dγ′ + β″ dγ″), 
 ω5 = α  dγ  + α′ dγ′ + α″ dγ″ = − (γ  dα + γ′ dα′ + γ″ dα″), 
 ω6 = β dα  + β′ dα′ + β″ dα″ = − (α dβ + α′ dβ′ + α″ dβ″). 
  
 We make the important remark here that the r relative components ωi of the 
infinitesimal displacement of the frame are defined only up to a linear substitution with 
constant coefficients.  One easily shows, moreover, that they will be linearly independent 
if at least r parameters of the group are essential. 
 
 
 22. – We shall now make an essential remark: Suppose that one has performed the 
same displacement Sc on the two frames (Ra) and (Ra+da).  The relative components of the 
infinitesimal displacement that brings the two infinitely-close frames into coincidence are 
not changed.  That is easy to verify analytically, because when Sa is replaced with Sc Sa 
and Sa+da with Sc Sa+da , the transformation 1

aS− Sa+da will be replaced with: 

 
(Sc Sa)

−1 (Sc Sa+da) = 1 1
a cS S− − Sc Sa+da = 1

aS− Sa+da ; 

 
hence, it does not change. 
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 The converse is fundamental.  Suppose that one has two continuous families of 
frames (Ru) and (Rv) that depend upon the same number p of parameters u1, u2, …, up and 
v1, v2, …, vp .  Suppose that one can establish a bijective correspondence between the 
frames of those two families such that the relative components ωi (u; du) of the 
infinitesimal displacement of a frame of the first family become equal to the analogous 
components ωi(v; dv) relative to the second family.  I then say that there exists a 
displacement that simultaneously brings all of the frames of the first family into 
coincidence with the corresponding frames of the second one. 
 The proof is simple.  Indeed, let Su and Sv denote the displacements that take (R0) to 
(Ru) and (Rv), resp.  One has: 

1
uS− Su+du = 1

vS− Sv+dv  

or 
Sv 

1
uS−  = Sv+dv 

1
u duS−

+ . 

 
An easy argument then shows that the transformation Sv 

1
uS−  is a fixed transformation Sc 

of G.  On will then have, in turn: 
Sv = Sc Sa , 

 
which proves that the frame (Rv) is deduced from the frame (Ru) by the fixed 
displacement Sc . 
 We then have the generalization of the fundamental theorem of the method of the 
moving trihedron. 
 

VI  
 

 23. – We now arrive at the compatibility conditions that must be satisfied by the 
relative components of the infinitesimal displacement of a moving frame that depends 
upon several parameters.  They are well-known in the theory of surfaces when they are 
studied with the aid of a moving trihedron that depends upon two parameters. 
 We first preface the search for those conditions with a remark of a very simple 
analytical order.  Since the forms ω1, ω2, …, ωr are linearly independent with respect to 
da1, da2, …, dar , one can conversely express any linear differential form in da1, da2, …, 
dar as a linear form in ω1, ω2, …, ωr . 
 Having said that, first consider the set of all frames in space that depend upon the r 
parameters ai .  Consider two mutually-interchangeable symbols for differentiation d and 
δ, and the expressions: 

dωs (a; da) – δωs (a; da), 
 

which are nothing but the bilinear covariants of the forms ωs ; as one knows, they are 
bilinear expressions that are alternating with respect to the series of variables dai and δai : 
 

dωs (δ) – δωs (d) = 
,

sj si

i j i ja a

α α ∂ ∂−  ∂ ∂ 
∑ dai daj . 
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If we now replace the variables dai with the variables ωi (d) and replace the variables δai 
with the variables ωi (δ) then we will again obtain a bilinear form that is alternating in the 
new series of variables, in such a way that one can write: 
 
(23)   dωs (δ) – δωs (d) = 

,

( ) ( )ijs i j
i j

c dω ω δ∑  (cijs + cjis = 0), 

 
the cijs are functions of a1, a2, …, ar that are determined a priori. 
 In regard to these coefficients cijs , we have the following fundamental theorem, 
which is nothing but the second fundamental theorem of the theory of groups, when 
viewed from a certain angle: 
 
 The coefficients cijs in relations (23) are absolute constants. 
 
 The proof is immediate.  Perform the same fixed displacement Sc on the various 
frames; we have already observed that it will not change the relative components ωi of 
the infinitesimal displacement of the frame.  The left-hand sides of formulas (23), as well 
as the quantities ωi (d) and ωj (δ) in the right-hand sides, will not change then.  That will 
be possible only if the coefficients cijs have the same numerical values for the frame (Ra) 
that they do for the frame (Ra′) that is the resultant of (Ra) under the displacement (Sc).  
However, since one can always pass from an arbitrary frame (Ra) to an arbitrary frame 
(Ra′) by a convenient displacement, that will demand that the coefficients cijs must be 
absolute constants. 
 These constants bear the name of structure constants (7) of the group, and equations 
(23) are the structure equations of the group. 
 One can write them in a less condensed form by taking d to be the symbol of 
differentiation with respect to one of the parameters ak and taking δ to be the symbol for 
differentiation with respect to another parameter ah .  Upon introducing the functions αsi 
in formulas (21), they will then become: 
 

(24)    sh sk

k ha a

α α∂ ∂−
∂ ∂

 = 
,

ijs ik jh
i j

c α α∑ . 

 
If one gives all possible values to the indices s, k, h then one will get the desired 
compatibility conditions in explicit form. 
 In the opposite sense, one can write the structure equations (23) in an even more 
condensed form.  Indeed, we remark that upon combining the two terms in the right-hand 
side that correspond to the same combination (i, j) of the two indices i and j, one will get: 
 

                                                
 (7) These constants are introduced in a completely different way in Lie’s theory.  If one lets ε1 X1 f + … 
+ er Xr f denote the general infinitesimal transformation of the group then one will have: 
 

(Xi Xj) = 
s
∑ cijs Xs f. 
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(25)   dωs (δ) – δωs (d) = 
( ) ( )

( ) ( )
i j

ijs
i j i j

d d
c

ω ω
ω δ ω δ<

∑ , 

 
which can be written in the following symbolic: 
 
(25′)     sω′  = [ ]ijs i j

i j

c ω ω
<
∑ . 

 
 One remarks that the symbol [ωi ωj] takes the place of a determinant, and that as a 
result the symbol [ωj ωi] must be regarded as equal and opposite to [ωi ωj] (

8). 
 
 
 24. – We have proved, a priori, the existence of the structure equations, with constant 
coefficients cijs .  It is quite clear that there exists only one system of relations of that 
nature.  In Euclidian geometry, one can obtain them essentially without having to 
construct the expression ωi , as we did in no. 21.  It suffices to start with the equations: 
 
 dM = ω1 e1 + ω2 e2 + ω3 e3 , 
 
 de1 = ω12 e2 − ω31 e3 , 
 de2 = ω23 e3 − ω12 e1 , 
 de3 = ω31 e1 − ω23 e2 , 
 
in which ω23 , ω31 , ω13 are the scalar products e3 de2 , e3 de1 , e1 de3 , resp., and are, in turn, 
identical to the components that we have denoted by ω4, ω5, ω6, resp. 
 If we express the idea that dδM, dδe1, dδe2, dδe3 are equal to δdM, δde1, δde2, δde3, 
respectively, then we will obtain the desired structure equations precisely upon equating 
the coefficients of e1 , e2 , e3 in both cases.  That will give: 
 

                                                
 (8) For the exterior calculus and its applications, see: E. CARTAN, “Sur certaines expressions 
différentielles et problème de Pfaff,” Ann. Ec. Norm. 16 (1899).  “Sur l’integration des systèmes 
d’equations aux différentielles totales,” Ann. Ec. Norm. 18 (1901).  Leçons sur les invariants intégraux, 
Paris, Hermann, 1922.  E. GOURSAT, Leçons sur le problème de Pfaff, Paris, Hermann, 1922. 
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(26) 

3 31 2 12
1 1

3 31 2 12

3 231 12
2 2

3 231 12

2 23 1 31
3 3

2 23 1 31

12
23 23

( ) ( ) ( ) ( )
( ) ( ) ,

( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ,

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ,

( ) ( ) ( ) ( )

(
( ) ( )

d d d d
d d

d dd d
d d

d d d d
d d

d d

ω ω ω ω
ω δ δω

ω δ ω δ ω δ ω δ
ω ωω ω

ω δ δω
ω δ ω δω δ ω δ

ω ω ω ω
ω δ δω

ω δ ω δ ω δ ω δ
ω

ω δ δω

− = −

− = −

− = −

− = 31

12 31

23 12
31 31

23 12

31 23
12 12

31 23

) ( )
,

( ) ( )

( ) ( )
( ) ( ) ,

( ) ( )

( ) ( )
( ) ( ) .

( ) ( )

d d

d d
d d

d d
d d

ω
ω δ ω δ
ω ω

ω δ δω
ω δ ω δ
ω ω

ω δ δω
ω δ ω δ
















− =


 − =


 

 
 One recovers Darboux’s classical formulas in the case of two-parameter motions by 
setting: 

(27)    

1 1

2 1

3 1

23 1

31 1

12 1

,

,

,

,

,

,

du dv

du dv

du dv

p du p dv

q du q dv

r du rdv

ω ξ ξ
ω η η
ω ζ ζ

ω
ω
ω

= +
 = +
 = +
 = +
 = +


= +

 

 
and upon taking d and δ to be the symbols of the differentiation with respect to u and v, 
resp.  One will then get: 
 

(27)   

1
1 1 1 1

1
1 1 1 1

1
1 1 1 1

1
1 1

1
1 1

1
1 1

,

,

,

,

,

.

q q r r
u v

r r p p
u v

p p q q
u v
p p

rq qr
u v
q q

pr rp
u v
r r

qp pq
u v

ξ ξ ζ ζ η η

η η ξ ξ ζ ηζ

ζ ζ η η ξ ξ

∂ ∂ − = − − + ∂ ∂


∂ ∂ − = − − +
 ∂ ∂
 ∂ ∂ − = − − +
 ∂ ∂
 ∂ ∂ − = −
 ∂ ∂
 ∂ ∂
 − = −

∂ ∂
 ∂ ∂− = −

∂ ∂
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 In the theory of groups, equations (24) are known by the name of the Maurer 
equations; Buhl proposed to call them the Maurer-Cartan equations.  One would be 
justified in not stopping along that beautiful path and calling them the Darboux-Maurer-
Cartan equations. 
 
 
 25. – One obtains some immediate generalizations of equations (26) in affine 
geometry.  Upon introducing a frame that is composed of a point M and n vectors e1, e2, 
…, en that issue from that point, one will have: 
 
 dM = i

i
i

ω∑ e , 

 dei =
h

i h
h

ω∑ e . 

 
 The same process that was just employed in Euclidian geometry will give the 
structure equations of the general affine group here in the form: 
 

(29)   

( ) ( )
( ) ( ) ,

( ) ( )

( ) ( )
( ) ( ) ,

( ) ( )

k i
i i k

k i
k k

k j
j j i k

i i k j
k i k

d d
d d

d d
d d

ω ωω δ δω
ω δ ω δ

ω ω
ω δ δω

ω δ ω δ


− =



 − =


∑

∑
 

 
or in an even more condensed form: 
 

(30)    

( ) [ ],

( ) [ ].

i k i
k

k

j k j
i i k

k

ω ω ω

ω ω ω

′ =

 ′ =


∑

∑
 

 
 Similarly, the structure equations of the n-dimensional projective group are: 
 
(31)   (ωi 

j)′ = [ ]k j
i k

k

ω ω∑  (i, j = 1, 2 , …, n + 1), 

 
in which the components of the infinitesimal displacement are the quantities ωi 

j (i ≠ j) 
and ωi 

i − 1
1

n
nω +

+ ; there are n (n + 2) of them, which is the number of parameters in the 
projective group. 
 
 
 26. – Before passing on to the applications, we conclude with an important theorem 
that explains the significance of the structure equations: 
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 If one is given r differential forms ωi (u; du) that are constructed from an arbitrary 
number p of variables u1, …, up and their differentials du1, …, dup , and if these forms 
satisfy the structure equations (23) then one can make each system of values ui 
correspond to a frame (Ru) in such a way that the relative components of the infinitesimal 
displacement of that frame are precisely the given forms ωi (

9). 
 
 We shall prove that theorem, in order to not have to enter into the theory of 
completely-integrable systems of partial differential equations.  We shall remark only that 
the determination of the frames (Ra) is possible in an infinitude of ways, because if one 
has one solution to the problem then one will obviously get another one by performing 
the same arbitrary displacement Sc on all of the frames (Ra).  The general solution to the 
problem will then depend upon r arbitrary constants. 
 That theorem contains Darboux’s theorem as a special case, namely, that there always 
exists a two-parameter motion for a trihedron for which the components of the 
infinitesimal displacement are given quantities that satisfy equations (28).  In particular, 
one sees that the Codazzi equations of the theory of surfaces are only one particular 
application of the structure equations of the group of Euclidian displacements. 
 One can demand to know whether one can choose the structure constants cijs of a 
group arbitrarily.  The response is negative: There exist algebraic relations that those 
constants must satisfy in order for one to be able to find r linearly-independent forms ωi 
that satisfy the structure equations.  We shall not enter into an examination of that 
question, which is the point of the third fundamental theorem of the theory of Lie groups. 
 
 

VII  
 

 27. – We are now in a position to present the method of moving frames in full 
generality.  We shall consider a p-dimensional manifold V in an n-dimensional space that 
is endowed with a fundamental group G, to each point of which we shall try to attach a 
frame in an intrinsic manner.  To simplify, we suppose that p = 3. 
 First of all, we remark that we can associate each frame (Ra) with a point that we shall 
call the origin of the frame according to a well-defined law.  If the frame is composed of 
a finite number of points A, B, C, as in no. 18, then we can, for example, associate the 
point A with that frame.  If one then considers the family of frames that have a common 
origin A then it can be identified with the point A, in some sense, and conversely.  The 
frames of that family obviously depend upon r – n parameters, and when one passes from 
one of those frames to another that is infinitely-close to it, the relative components ωi of 
the infinitesimal displacement that it experiences will be linked by n linear relations, 
since the ωi depend upon only r – n differentials.  Those relations will have constant 
coefficients.  Indeed, suppose that when they are solved for n of the components ωi they 
take the form: 
 ω1 = λ11 ωn+1 + … + λ1,r−n ωr , 
 ……………………………… 

                                                
 (9) E. CARTAN, Leçons sur la géométrie des espaces de Riemann, Paris, Gauthier-Villars, 1929.  nos. 
46-49. 
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 ωn = λn1 ωn+1 + … + λn,r−n ωr . 
 
 If one performs an arbitrary displacement on the two infinitely-close frames in 
question then the quantities ωi will not change.  As a result, the coefficients λij will 
depend upon neither the point A nor the two frames considered; they will then be absolute 
constants.  Since the ωi are defined only up to a linear substitution with constant 
coefficients, one can then suppose that one has: 
 
(32)    ω1 = ω2 = … = ωn = 0 
 
for any infinitesimal displacement of a frame that leaves its origin fixed. 
 Equations (32) can be considered to be the differential equations of the points of 
space.  They are completely integrable, since their general solution depends upon n 
arbitrary constants.  One can remark that if one lets the Latin letters i, j, … denote the 
indices 1, 2, …, n and lets the Greek letters denote the indices n + 1, …, r then the 
constants cαβ i will all be zero.  Indeed, the family of frames with a given origin, like any 
family of frames, will satisfy the structure equations (23).  As a result, if d and δ denote 
two elementary variations within the family then the ωi (d) and ωi (δ) will all be zero, and 
in turn, dωi (δ) – δωi (d), as well.  It results from this that one will have: 
 

,α β
∑ cαβ i ωα (d) ωβ (δ) = 0, 

 
and that will be true for any ωα (d) and ωβ (δ); that is what must be proved. 
 The infinitesimal transformations whose first n parameters are zero are the ones that 
leave the origin of the frame (R0) fixed.  If one modifies the law that associates a point to 
each frame then the subgroup that is generated by the last r – n infinitesimal 
transformations of the group will change in the subgroup that leaves fixed the new point 
that is associated with (R0); those two subgroups will be homologous in the group G. 
 
 
 28. – We now arrive at the method of moving frames.  Attach the family of frames 
whose origin is M to each point M of a given manifold V.  Those frames, which we call 
zero-order frames, depend upon r – n secondary parameters.  Since ω1, …, ωn are 
annulled when the point M remains fixed, when M displaces on V, they will be linear 
combinations of the differentials of the three principal parameters t1, t2, t3 that fix the 
position of a point on V.  One will then have n − 3 linear relations between the ωi , which 
are relations that we can write in the form: 
 
(33)   ωi = ai1 ω1 + ai2 ω2 + ai3 ω3   (i = 2, …, n). 
  
 The coefficients aij can depend upon both t1, t2, t3 and the secondary parameters.  One 
disposes of the latter in such a manner as to give fixed numerical values to the greatest 
possible number of coefficients.  The other coefficients will take on values that will be 
well-defined functions of t1, t2, t3, and which will constitute first-order differential 
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invariants of the manifold.  The frames that are obtained, in particular, as was said, from 
the secondary parameters constitute the family of first-order frames. 
 Let ρ1 ≤ r – n be the number of parameters that the first-order frames depend upon.  If 
ρ1 is effectively less than r – n then the relative components ωn+1 , …, ωr of the 
infinitesimal displacement of a first-order frame will no longer be linearly independent 
when one fixes the point M, but must be linked by r – n – ρ1 linearly-independent 
relations.  The coefficients of those relations are well-defined functions of the first-order 
differential invariants. 
 Indeed, if one utilizes only first-order frames then the coefficients of formulas (33) 
will all be either constants or functions of the first-order differential invariants.  
Therefore, they will not depend upon first-order secondary parameters.  Then apply the 
structure equations (23), where the symbol δ refers to an elementary variation of the first-
order frame that leaves the point M fixed, while the symbol d refers to an arbitrary 
variation.  Put ei in place of ωi (δ), to abbreviate, and ωi in place of ωi(d).  Since e1, …, en 
are all zero, one will have: 

δωi = 
k n

i k
n

c eαβ α
α

ω
≤

>
∑ ; 

as a result, upon remarking that δaij = 0: 
 

 1 1 2 2 3 3( )
k n

ki i k i k i k k
n

c a c a c a c eα α α α α
α

ω
≤

>
− − −∑  = 0, 

 
or, upon replacing the ωk with their values: 
 
 1 1 2 2 3 3 1

,

( )ki i k i k i k k
k

c a c a c a c a eα α α α α
α

− − −∑  = 0, 

 1 1 2 2 3 3 2
,

( )ki i k i k i k k
k

c a c a c a c a eα α α α α
α

− − −∑  = 0, 

 1 1 2 2 3 3 3
,

( )ki i k i k i k k
k

c a c a c a c a eα α α α α
α

− − −∑  = 0. 

 
 When one successively sets i = 4, 5, …, n, these equations will give relations that 
exist between the eα – i.e., between the ωα when one leaves the point M fixed.  One will 
then see that the coefficients depend upon only the aij – i.e., upon first-order differential 
invariants of V. 
 
 
 29. – Suppose that upon performing, if needed, a linear substitution with coefficients 
that are functions of first-order differential invariants, the relations that exist between 
ωn+1, …, ωr when one leaves the point M fixed are: 
 

ωn+1 = … =
1nω = 0  (n1 – n = r – n – ρ1). 

 
 Upon varying the point M on V, one will then have: 
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(34)  ωn+1 = an+i,1 ω1 + an+i,2 ω2 + an+i,3 ω3   (i = 1, 2, …, n1 – n), 
 
where the coefficients on the right-hand side depend upon principal parameters and first-
order second parameters. 
 One will then have two means of distinguishing certain first-order frames from the 
other ones and arriving at the family of second-order frames. 
 
 1. One seeks to reduce the largest-possible number of the coefficients an+i, j to fixed 
numerical values. 
 2. If there are first-order differential invariants that are mutually-independent – for 
example, two of them I and J – then one forms the differentials dI and dJ, which one 
expresses linearly in terms of ω1, ω2, ω3 : 
 

(35)    1 1 2 2 3 3

1 1 2 2 3 3

,

.

dI I I I

dJ J J J

ω ω ω
ω ω ω

= + +
 = + +

 

 
 One then establishes relations between the first-order secondary parameters and the 
principal parameters that permit one to reduce the largest possible number of coefficients 
that enter into formulas (35) to fixed numerical values.  The first-order frames whose 
parameters satisfy those relations constitute the family of second-order frames.  As for 
the coefficients of equations (34) and (35) that have not been reduced to fixed numerical 
values, they will take on values that are either constant or functions of only the principal 
parameters t1, t2, t3 ; they will be second-order differential invariants. 
 The components ωn+1, …, ωr of the infinitesimal displacement of a second-order 
frame will be linked by r – n – ρ2 relations when one fixes the point M, where ρ2 is the 
number of second-order secondary parameters.  One proves, as we just did, that the 
coefficients of those relations are functions of the differential invariants of the first two 
orders.  One then passes from second-order frames to the third-order frames as one did in 
order to pass from first-order frames to second-order ones.  Nevertheless, one uses 
relations such as (35) only if there exists a second-order differential invariant that is not a 
function of the two invariants I and J that were used already.  One continues in that way 
indefinitely. 
 
 
 30. – Suppose that the frames of order p have been obtained, and: 
 
 1. The frames of order p + 1 coincide with those of order p. 
 2. The differential invariants of order p + 1 are functions of the differential 
invariants of order less than or equal to p. 
 
 One then shows that since M and M′ are two points of the manifold for which all of 
the differential invariants of order less than or equal to p have the same numerical values, 
and (R) and (R′ ) are, on the other hand, two frames of order p with their origins at M and 
M′, respectively, the displacement that takes (R) to (R′ ) will leave the manifold V 
invariant.  It is then clear that it is impossible to distinguish one frame of order p from the 
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other.  The manifold admits a group of displacements g whose order is equal to the 
number of secondary parameters of order p, plus the difference between 3 and the 
number of independent differential invariants.  In particular, if there exist three 
independent differential invariants of order less than or equal to p then any displacement 
of the group g will leave all of the points of the manifold fixed (10). 
 If the situation that was just envisioned never presents itself then one will arrive at the 
complete determination of the frame that is attached to each point of the manifold.  
Indeed, one will stop in the successive specialization of the frames only if, at a given 
moment, the frames of order p + 1 coincide with those of order p, since a differential 
invariant of order at least p + 1 must be independent of the ones that were obtained 
already.  However, since one cannot have more than three independent differential 
invariants, that situation can present itself only a finite number of times.  As a result of 
that, the number of secondary parameters of frames of increasing order will always 
decrease until it is annulled. 
 
 
 31. – Suppose that one is dealing with the general case, and that one arrives at a well-
defined frame, which we assume to have order q.  The differential invariants of order less 
than or equal to q are the fundamental invariants. 
 In order to recognize whether two manifolds V and V′ are equal, one constructs the 
differential invariants of order q + 1.  If they are functions of the fundamental differential 
invariants for the manifold V then it will be necessary and sufficient that they same thing 
must be true for V′ and that the relations that exist between the differential invariants of 
order ≤ q + 1 must be the same for both manifolds. 
 If at least one of the differential invariants of order q + 1 is independent of the ones of 
lower order then one will construct the differential invariants of order q + 2.  If that 
produces no invariant that is independent of the preceding ones then it will be necessary 
and sufficient that the relations that exist between the differential invariants of order ≤ q 
+ 2 must be the same for the two manifolds. 
 One then continues until the differential invariants of a certain order q + h are all 
functions of the invariants of lower order, which will surely happen after a finite number 
of operations. 
 We remark that in the examples that were treated previously, the differential 
invariants will never present themselves once the frame is determined completely. 
 
 
 32. – We give an example of the role that is played by the differential invariants 
before the definitive specialization of the frame. 
 Take G to be the three-parameter group of translations and homotheties in the plane.  
Take the frame to be the figure that is composed of a point M and two rectangular vectors 
e1 and e2 with the same length and fixed directions.  For an infinitesimal displacement of 
the frame, one will have: 

                                                
 (10) A very general example of a manifold in which it is impossible to determine a frame intrinsically is 
provided in projective geometry by the ruled surfaces that admit two rectilinear directrices.  If one regards 
those surfaces as loci of lines then there will obviously exist a group of ∞1 homographic transformations 
that leave the two directrices fixed, as well as each line that they meet. 
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 dM = ω1 e1 + ω2 e2 , 
 de1 = ω e1, 
 de2 = ω e2 . 
 
 Let a curve be y = f(x) then.  Let: 
 
 λ, 0, 
 0, λ 
 
be the projections of e1 and e2 onto the fixed axes.  The zero-order frames are those with 
their origin at M (x, y); they depend upon one secondary parameter λ.  One will have, 
moreover: 

ω1 = 
dx

λ
, ω2 = 

y dx

λ
′

, ω = 
dλ
λ

. 

 
 Since the ratio ω2 / ω1 = y′ is independent of λ, the frames of order 1 will be the same 
as those of order zero, and one will have one first-order differential invariant, namely, y′. 
 In order to get second-order frames, one forms: 
 

dy′ = λ y″⋅⋅⋅⋅ dx

λ
 = λ y″ω1 . 

 
Since the coefficient λ y″ depends upon λ, one can arrange λ in such a manner as to make 
it equal to 1.  One will then have a well-defined second-order frame. 
 The expression ω = dλ / λ will then give: 
 

ω = − y

y

′′′
′′

dx = − 2

y

y

′′′
′′

ω1 . 

 
As a result, the curve will be determined, up to a transformation of the group G, by the 
relation that exists between the third-order differential invariant y″′ / y″ 2 and the 
differential invariant y′. 
 We have assumed that the path makes y″ ≠ 0.  If we have y″ = 0 then we cannot 
distinguish between one first-order frame and another; the curve will be a straight line 
and will admit a two-parameter subgroup of G. 
 
 

VIII  
 

 33. – The general method of moving frames that was presented in the preceding 
numbers supposes that the manifold V is essentially given, and the successive 
calculations were performed completely.  However, as we have pointed out already, that 
is absurd in theoretical research, where one only wishes to arrive at the form of the Frenet 
formulas, while anticipating the various cases that can present themselves.  From that 
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standpoint, the structure equations will play a fundamental role, even in the theory of 
curves. 
 We return to the problem that was treated in no. 28 and following.  One attaches the 
frames whose origin is M to each point M of the three-dimensional manifold.  For any 
infinitesimal displacement of such a frame, one will have the relations (33): 
 
(33)   ωi = ai1 ω1 + ai2 ω2 + ai3 ω3  (i = 4, …, n). 
 
One must then envision the manner by which the coefficients aij depend upon the 
secondary parameters and what numerical values one can reduce them to.  In order to do 
that, imagine an elementary variation of the zero-order frame, which is represented by the 
symbol δ, while the point M remains fixed.  From the structure equations, and upon 
denoting the elementary variation that the coefficient aij is subjected to by δaij , one will 
have: 

δai1 ω1 + δai2 ω2 + δai3 ω3 = δωi − ai1 δω1 + ai2 δω2 + ai3 δω3 , 
so: 

 δai1 = 
1 4

r n

n k

eα
α = + =
∑ ∑ (cαki – ai1 cαk1 – ai2 cαk2 – ai3 cαk3) ak1 , 

 δai2 = 
1 4

r n

n k

eα
α = + =
∑ ∑ (cαki – ai1 cαk1 – ai2 cαk2 – ai3 cαk3) ak2 , 

 δai3 = 
1 4

r n

n k

eα
α = + =
∑ ∑ (cαki – ai1 cαk1 – ai2 cαk2 – ai3 cαk3) ak3 . 

 
 The right-hand sides are then the elementary variations that are suffered by the 
coefficients ai1, ai2, ai3 under the action of a group, for which, one knows the infinitesimal 
transformations; furthermore, that group will be a homographic group.  If one knows how 
to turn the infinitesimal transformations into finite transformations, which is simple in the 
present applications, then one will come down to the search for the numerical values to 
which one can reduce the aij by a transformation of that group (11).  For example, one 
knows that for the orthogonal group of three variables, one can reduce two of the 
variables to 0, while the third one will have a well-defined value, unless one is in the 
complex domain, in which case, it can happen that one can reduce the three variables to 
the values 1, i, 0, as long as the three variables are not all zero, moreover. 
 Thanks to the structure equations, it will then be theoretically possible to predict the 
various irreducible cases among them that can present themselves and to deduce the 
nature of the first-order frames in each case.  The same method will serve for the passage 
from frames of arbitrary order to the frames of immediately-higher order. 
 
 
 34. – We now apply what we just said to the study of plane curves in unimodular 
affine geometry.  With the notations of no. 12, and denoting the components of the 

                                                
 (11) It is, moreover, theoretical pointless to deal with the finite transformations of the group.  S. Lie has 
found a method that permits one to find a representative point of each family of mutually-homologous 
points when one has been given only the infinitesimal transformations. 
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infinitesimal displacement of the frame by ω1, ω2, ω3, ω1
1, ω1

2, ω2
1, one will have the 

structure equations: 
 

(36)  

1 1 2 1
1 1 1 2

1 1 2 1
1 2

1 2 2 1
2 2 1 1

1 2 2 1
1 1

2 2
1 1 1 2

1 1 2 2
1 1

1 2
2 2 1 1

1 1 1 2
1 1

( ) ( ) ( ) ( )
( ) ( ) ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ,

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ,

( ) ( )

( ) ( )
( ) ( ) 2

( ) (

d d d d
d d

d d d d
d d

d d
d d

d d
d d

ω ω ω ωω δ δω
ω δ ω δ ω δ ω δ

ω ω ω ωω δ δω
ω δ ω δ ω δ ω δ

ω ωω δ δω
ω δ ω δ

ω ωω δ δω
ω δ ω

− = +

− = −

− =

− =

1 1
1 1 2 1
2 2 1 1

2 1

,
)

( ) ( )
( ) ( ) 2 .

( ) ( )

d d
d d

δ

ω ωω δ δω
ω δ ω δ

















− =


 

 
 One can immediately start with first-order frames that satisfy ω2 = 0.  Upon 
remarking that ω1(d) = ω2(d) = 0, one will then have: 
 

δω2 = − e1
2 ω1, 

so: 
e1

2 = 0; 
 
as a result, upon varying the point of the curve, one will get a relation of the form: 
 

ω1
2 = α ω1. 

 
 On the other hand, for a variation of the first-order frame that fixes the point M (e1 = 
e2 = e1

2 = 0), one will have: 
 

δω1
2 = 2 e1

1 ω1
2, δω1 = − e1

1 ω1, 
so: 

δα = 3e1
1 α. 

 
That relation proves that under an infinitesimal variation of the first-order frame, the 
coefficient α will be multiplied by the constant 1 + 3e1

1, which is infinitely-close to 1; as 
a result, for a finite variation, it will be multiplied by an arbitrary constant.  Two cases are 
then possible: 
 
 1. Either α = 0 (viz., the case of a straight line), and one can then no longer 
distinguish one first-order frame from the others. 
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 2. Or α ≠ 0, and one can then choose a partial family amongst the first-order frames 
such that α becomes equal to 1; those are the second-order frames. 
 
 When the coefficient α reduces to 1, δα will then be zero for a variation of a second-
order frame, and one will have e1

1 = 0, which implies that: 
 

ω1
1 = β ω1. 

 
Now, vary the second-order frame, while the point M remains fixed (so e1 = e2 = e1

2 = e1
1 

= 0).  One will have: 
δω1

1 = − e2
1 ω1

2 = − e2
1 ω1,  δω1 = 0, 

so 
δβ = − e2

1. 
 
 As a result, the coefficient β will be increased by the infinitely-small quantity − e2

1 ; 
it will then be increased by an arbitrary finite quantity under a finite variation of the 
frame.  One can then arrange that it should be zero.  The frame will then be determined 
perfectly (third-order frame), and one will have: 
 

ω2
1 = kω1, 

 
in which k is the first differential invariant (affine curvature), which has order four. 
 One can recover the results that were obtained before by two other procedures (nos. 
12 and 13). 
 
 
 35. – The preceding considerations, when bolstered by some examples that we have 
used to illustrate them with, show that the structure equations of the group G contain 
everything that one can know about the differential geometry of a space that is endowed 
with the fundamental group G, with the single condition that one must know the linear 
relations with constant coefficients between the ωi that define the points of space.  The 
classification of curves, surfaces, and all sorts of point manifolds is achieved by starting 
with the structure equations without the logical necessity of any geometric intuition. 
 One knows that in projective geometry, the study of ruled spaces – i.e., ones that are 
considered to be generated by lines – is developed in parallel with the study of point 
spaces.  Naturally, in all geometry in the Klein sense, one can take any set of figures that 
enjoy the following two characteristic properties to be the generating elements of space: 
 
 1. The figures considered transform amongst themselves transitively under the 
fundamental group G. 
 
 2. There exists no transformation of the group G that leaves all of the figures of the 
set fixed. 
 
 The method of moving frames can be applied without modification when one replaces 
points with other generating elements.  For example, take three-dimensional Euclidian 
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geometry.  If we take the straight line to be the generating element then it will suffice to 
associate each frame with a well-defined line that plays the role of the origin line for that 
frame; for example, it might be the z-axis of the moving tri-rectangular trihedron.  When 
the frame varies in such a manner that its origin line remains fixed, we know that there 
are four linear relations with constant coefficients between the components ω1 , ω2 , ω3 , 
ω23 , ω31, ω12 of the infinitesimal displacement of the frame.  Upon remarking that the 
point M is displaced along the z-axis while that axis remain fixed, one will find that, in 
fact: 

ω1 = ω2 = ω23  = ω31 = 0. 
 
 These are the four differential equations of the lines in space, or rather, the equations 
that define the families of frames that have the same origin line.  The components ω1 , ω2, 
ω23 , ω31 are the ones that the same role in the application of the method of moving 
frames as the role that was played by the n components ω1, ω2, …, ωn in the presentation 
in para. VII. 
 In a general manner, any choice of generating element will correspond to a 
completely integrable system of total differential equations that establish linear relations 
in constant coefficients between ω1, ω2, …, ωr .  The converse is easy to prove (12). 
 The preceding, even more than before, the role that played by the structure equations 
of the group G. 
 
 

IX 
 
 36. – One can contemplate the structure equations from yet another viewpoint.  
Imagine an arbitrary system of curvilinear coordinates u1, u2, u3 in ordinary space.  
Suppose that a well-defined tri-rectangular trihedron is attached to each point in space.  If 
we know the six relative components ω1, ω2, ω3, ω23 , ω31 , ω12 of the infinitesimal 
displacement of that trihedron as linear functions of the du1, du2, du3 then we can 
construct all of Euclidian space by a differential route, with the necessary and sufficient 
condition that the six given forms satisfy the Darboux structure equations and that that 
the three forms ω1, ω2, ω3 must be linearly independent.  If we are given the point of 
space that corresponds to the coordinates (u1

0, u2
0, u3

0) and a tri-rectangular trihedron at 
that point then we can determine the point in space that corresponds to arbitrary 
coordinates and the tri-rectangular trihedron that one agrees to attach to it.  From another 
viewpoint, one can say that being given six differential forms ω1, ω2, ω3, ω23 , ω31 , ω12  in 
a three-dimensional continuum that satisfy the structure equations of the Euclidian group 
will permit one to organize the continuum in a Euclidian way (and even in an infinitude 
of ways), and to construct a Euclidian space, in some sense, at each point to which one 
attaches a well-defined tri-rectangular trihedron. 
 If one given the six forms under consideration then can, if one so desires, also 
associate each pair of infinitely-close points of the continuum with an infinitesimal 

                                                
 (12) From another viewpoint, any choice of generating element corresponds to a choice of well-defined 
subgroup of G that leaves the generating element fixed, as an origin.  Conversely, any subgroup will 
correspond to a family of generators. 
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Euclidian displacement whose parameters are ω1, ω2, ω3, ω23 , ω31 , ω12  precisely.  In that 
sense, a continuum that has been organized in a Euclidian way will support infinitesimal 
Euclidian displacements.  However, one must remark that these displacements that are 
associated with the various pairs of infinitely-close points are not arbitrary, since their 
components must satisfy the structure equations. 
 Being given six components ωi , ωij corresponds to choosing the trihedra that are 
associated with the various points of space; it will then be arbitrary up to a point.  Since 
the infinitesimal displacement that is associated with two infinitely-close points has the 
form 1

uS− Su+du , if Su and Su+du denote the displacements that make the origin frame 

coincide with the frames that are attached to those two points, one can replace Su with 
any other displacement that takes the origin to the point considered.  Now, these 
displacements have the form Su R, if R denotes an arbitrary rotation around the origin. It 
then results that if one associates each point (u1, u2, u3) of the continuum with a rotation 
Ru around the origin by some law then the infinitesimal displacement 1

uS− Su+du  will be 

replaced by the infinitesimal displacement 1uR− ( 1
uS− Su+du ) Ru+du . 

 The preceding result can be stated in the following manner: If one replaces the 
infinitely-small displacement Tu; du that is associated with two infinitely-close points with 
the displacement: 

;u duT′ = 1
uR− Tu; du Ru+du 

 
then one will get the same Euclidian organization of the continuum.  The change of 
givens corresponds to a simple change of trihedra that are attached to the various points 
of space. 
 More generally, one can take an arbitrary rotation that depends upon three 
parameters v1, v2, v3, instead of Ru, and one will have then endowed the continuum with a 
complete system of frames that depend upon six parameters.  One will know the linearly-
independent components ωi , ωij of the infinitesimal displacement of that frame, and one 
can, in turn, apply the method of moving frames with the given curvilinear coordinates. 
 
 
 37. – We clarify the preceding by indicating explicitly how things appear in the plane.  
We then have a two-dimensional continuum that is defined by means of the two 
coordinates u and v, and we give a system of three forms: 
 

ω1 = ξ du + ξ1 dv, ω2 = η du + η1 dv, ω12 = r du + r1 dv 
 
that satisfy the structure equations: 
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(37)    

1
1

1
1

1

,

,

0.

i

i

r r
v u

r r
v u

rr

v u

ξξ η η

ηη ξ ξ

∂∂ − = − ∂ ∂


∂∂ − = − + ∂ ∂
∂∂ − = ∂ ∂

 

 
 The quantities ω1, ω2, ω12 are: The first two are the components of a translation that is 
parallel to the (moving) axes, and the last one is the component of a rotation around the 
(moving) origin. 
 If we change the orientation of the axes – for example, we rotate it through an angle θ 
– then we will obtain the most general values: 
 
(38) ϖ1 = ω1 cos θ + ω2 sin θ, ϖ2 = − ω1 sin θ + ω2 cos θ, ϖ12 = ω12 + dθ 
 
that permit one to apply the method of moving frames.  For example, the straight lines are 
characterized by the property that one can attach them to a frame whose first axis is fixed, 
which gives: 

ϖ2 = 0,  ϖ12 = 0 ; 
one then deduces that: 
 

tan θ = 2

1

ω
ω

, so ω12 + 1 2 2 1
2 2

1 3

d dω ω ω ω
ω ω

−
+

= 0. 

 
One then obtains the differential equation of straight lines by replacing ω1, ω2, ω3 with 
their given values. 
 A circumference of radius a will likewise be characterized by the equations: 
 

ϖ2 = 0,  ϖ12 = 
1

a
ϖ1 , 

etc. 
 Naturally, all of this applies to no particular Klein space that is defined in arbitrary 
curvilinear coordinates. 
 
 
 38. – In order to prepare for the introduction of generalized spaces, it remains for us 
to show what the profound geometric significance of the structure equations is. 
 Take a Klein space and attach an infinitesimal displacement Tu ; du that satisfies the 
structure equations to each pair of infinitely-close points (ui) and (ui + dui); that amounts 
to attaching a frame (Ru) to each point; if that frame is deduced from the frame at the 
origin by the displacement Su then one will have: 
 

Tu ; du = 1
uS− Su + du . 
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Imagine a closed circuit in space – or cycle – that we divided into a large number of very 
small arcs that are subdivided by points M0 , M1, …, Mn−1 .  Let (Ri) denote the frame that 
is attached to the point Mi , and let Si be the displacement that takes the initial frame (R0) 
to (Ri).  The displacement that takes (R0) to (R1) is 1

0S− S1 , and the one that takes (R0) to 

(R2) is: 
1

0S− S2 = ( 1
0S− S1)(

1
1S− S2), 

 
and so on.  The displacement that takes (R0) to (Rp) will then be: 
 

( 1
0S− Sp) = ( 1

0S− S1) (
1

1S− S2) … ( 1
1pS−

− Sp); 

 
all of these displacements are referred to (R0).  Finally, when one has described the cycle, 
one will return to the frame (R0) by a displacement (which is necessarily zero) that will be 
the product of the infinitely-small displacements that are attached to the arcs into which 
the cycle has been composed. 
 If one then lets T1,2 denote the infinitely-small displacement, referred to (Ri), that 
takes (Ri) to (Ri+1) then one will have: 
 
(39)    T0,1 T1,2  … Tn−2,n−1 Tn−1,0 = 1. 
 
 
 39. – The preceding relation, which is assumed to be true for all cycles in an n-
dimensional continuum, will be sufficient for the components of the infinitesimal 
displacement Tu;du that is associated with infinitely-close points of the continuum to 
satisfy the structure equations.  Indeed, make a particular point (ui

0) of the continuum 
correspond to a well-defined point A0 of the Klein space and a well-defined frame (R0) at 
the origin A0 .  Now, let (ui) be an arbitrary point of the continuum.  Join (ui

0) to (ui) by a 
continuous path, and divide that path into a large number of partial arcs, and attach an 
infinitesimal displacement Tu;du to each of these arcs.  Then, construct the successive 
frames that start with (R0) and are deduced from each other by the corresponding 
infinitesimal displacement that was given, where that displacement is always assumed to 
be defined analytically with respect to the frame that one displaces.  One will then arrive 
at a final frame (Ru), which will be well-defined in the limit when one increases the 
number of partial arcs indefinitely, while each of them tends to zero.  The frame (Ru) that 
is then attached to the point (ui) of the continuum will not depend upon the path that is 
followed in the continuum in order to go from the point (ui

0) to the point (ui), and that is 
precisely because of the hypothesis that was made about the cycles of the continuum, and 
that translates into the relation (39).  One easily shows, in turn, that the displacement that 
takes (Ru) to (Ru+du) is precisely the given displacement Tu;du when it is referred to (Ru).  
That will obviously suffice for the components of Tu;du to satisfy the structure equations. 
 
 
 40. – From the preceding, it would seem that there is an absolute equivalence between 
the structure equations and the relations (39).  In reality, the structure equations are 
nothing but the relations (39) when they are applied to an arbitrary infinitely-small cycle.  
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A closer examination will show that if one is given the displacement Tu;du arbitrarily, with 
components ωi , and if one considers an elementary parallelogram whose summits are: 
 

(ui
0) = (ui),    (ui

1) = (ui + dui),    (ui
2) = (ui + dui + δui + dδui),    (ui

3) = (ui + δui), 
 

where d and δ are two mutually-interchangeable differentiation symbols, then the 
components of the displacement: 

T0,1 T1,2 T2,3 T3,0  
will be precisely the quantities: 
 

Ωi = dωi (δ) – δωi (d) – 
,

jhi
j h

c∑ ωj (d) ωh (δ). 

 
 It is almost obvious that the relations (39), which are assumed to be true for infinitely-
small cycles, will still be true for the finite cycles, but on the condition that those cycles 
are reducible to a point by a continuous deformations.  Therefore, the structure equations 
do not necessarily imply the relations (39) for the cycles that do not satisfy that condition. 
 
 

X 
 

 41. – We are now in a position to understand how one can generalize the notion of 
Klein space. 
 The first generalization of this type goes back to Gauss, who naturally could not 
assert the same viewpoint that we do.  Recall the Darboux equations (37) that relate to the 
plane.  Knowing the components ξ, ξ1, η, η1, r, r1 of a displacement in the plane as 
functions of the two parameters u and v will suffice to recover the Euclidian organization 
of the plane.  However, we can remark that knowing ξ, ξ1, η, η1 is sufficient, because the 
first two equations (37) will permit one to deduce the values of r and r1 .  On the other 
hand, instead of being given the two forms ω1 and ω2 that define ξ, ξ1, η, η1, we can, as 
we saw in no. 37, just as well give the two forms: 
 

ϖ1 = ω1 cos θ + ω2 sin θ, ϖ2 = − ω1 sin θ + ω2 cos θ . 
 

That amounts to saying that merely knowing the quadratic form ω1
2 + ω2

2 will suffice to 
recover the Euclidian organization of the plane.  That quadratic form is nothing but the 
ds2 of the plane, which is the square of the distance between two infinitely-close points.  
That is a well-known result whose deeper reason is that one can base Euclidian geometry 
upon only the notion of distance. 
 ds2 cannot be given arbitrarily if one desires that the structure equations should be 
satisfied.  Meanwhile, suppose that we are given an arbitrary ds2; i.e., we are given ξ, ξ1, 
η, η1 as arbitrary functions of u and v.  We can further infer r and r1 from the first two 
structure equations, but the third one will not be verified.  As we know, the two-
dimensional continuum that is endowed with the given ds2 can be assimilated to a surface 
and will enjoy all of the geometric properties of surfaces that are attached to their ds2.  On 
such a surface, the theory of curves will be identically the same as in the plane, and 
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nothing will be change in the application of the method of the moving frame.  Upon 
introducing the most general frame with the components ϖ1, ϖ2, ϖ3 for the infinitesimal 
displacement, one attaches a moving frame to a curve with the condition that ϖ2 = 0, 
which will give us the curvature (geodesic curvature, in the sense of Gauss): 
 

1

ρ
= 12

1

ϖ
ϖ

. 

 
 The difference between the surface and the plane is distinguished by the fact that the 
third structure equation (37) will no longer be verified; one will have: 
 

1rr

v u

∂∂ −
∂ ∂

= K (ξ η1 – η ξ1), 

or, with our notations: 

dω12(δ) – δω12(d) = − K 1 2

1 2

( ) ( )

( ) ( )

d dω ω
ω δ ω δ

; 

 
the coefficient K is the total curvature.  One can interpret this by imagining an infinitely-
small cycle and attaching a frame to the various points of the cycle and displacing it step-
by-step without rotation.  Upon returning to the starting point, it will take a different 
position from the initial position, and which will be deduced from it by the rotation K dσ, 
where dσ denote the area that is bounded by the cycle. 
 One can imagine some other generalizations of the Euclidian plane by associating any 
pair of infinitely-close points of a two-dimensional continuum with an infinitesimal 
Euclidian displacement Tu;du for which the first two structure equations are not verified.  
For example, one can give the functions ξ, ξ1, η, η1 arbitrarily, while taking r = r1 = 0.  
The Euclidian frames that are attached to the different points of the continuum are then 
deduced from each other by a simple translation.  One will have a space with Euclidian 
connection that is endowed with absolute parallelism.  In that space, the theory of curves 
will again be the same as it is in the Euclidian plane.  Upon introducing the most general 
frames, one will have: 
 

ϖ1 = ω1 cos θ + ω2 sin θ, ϖ2 = − ω1 sin θ + ω2 cos θ, ϖ12 = dθ, 
 
and the straight lines will be defined by: 
 

ϖ2 = ϖ12 = 0 
or 

η + η1 
dv

du
= C 1

dv

du
ξ ξ + 
 

, 

 
in which C is an arbitrary constant that defines the direction of the straight line.  One can 
define a Euclidian connection with absolute parallelism on a surface that is given by its 
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ds2 by decomposing its ds2 into a sum of two squares ω1
2 + ω2

2 and taking ω12 = 0.  For 
example, for a sphere that is referred to its longitude ϕ and it colatitude θ, one can take: 
 

ω1 = dθ, ω2 = sin θ dϕ,  ω12 = 0. 
 

The straight lines will be the loxodromes that admit the two poles of the sphere for their 
poles and are defined by the equation: 
 

sin θ 
d

d

ϕ
θ

 = C. 

 
 In this generalization, which is distinct from that of Gauss, the displacement T01 T12… 
that is associated with a cycle is not a simple rotation, but a translation whose 
components are: 

 Ω1 = dω1(δ) – δω1(d) + 2 12

2 12

( ) ( )

( ) ( )

d dω ω
ω δ ω δ

, 

 

 Ω2 = dω2(δ) – δω2(d) − 1 12

1 12

( ) ( )

( ) ( )

d dω ω
ω δ ω δ

; 

 
this is the torsion of the space, as opposed to the Gaussian curvature (13). 
 Finally, the most general two-dimensional space with Euclidian connection will be 
obtained by taking ξ, ξ1, η, η1, r, r1 to be absolutely arbitrary functions of u, v; one will 
then have its curvature and torsion.  However, once again, the theory of curves and the 
application of the method of moving frames will be identical to what it is in the plane. 
 
 
 42. – If one passes from the Euclidian plane to Euclidian space with an arbitrary 
number of dimensions then one will recover classical Riemannian geometry, in 
particular.  The structure equations of Euclidian space can be divided into two classes: 
 
 1. The equations that are written in condensed form as: 
 
(40)     iω′ = [ ]h hi

h

ω ω∑ . 

 2. The equations: 

                                                
 (13) With Darboux’s notation, torsion is defined analytically by the two coefficients a and b of the 
equations: 

 1

v u

ξ ξ∂ ∂
−

∂ ∂
= a (ξ η1 – η ξ1), 

 1

v u

η η∂ ∂
−

∂ ∂
= b (ξ η1 – η ξ1). 
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(41)     ijω′ = [ ]ih hj
h

ω ω∑ . 

 
 If one is then given the n forms ωi (viz., the components of the translation), which are 
assumed to be linearly-independent in du1, …, dun, on an n-dimensional continuum then 
equations (40) will permit one to unambiguously deduce the forms ωij (viz., the 
components of the rotation of the moving frame).  On the other hand, the ωi will be 
subjected to an arbitrary orthogonal transformation under a change of frame that is 
attached to a point, in such a way that being given: 
 

ds2 = ω1
2 + ω2

2 + … + ωn
2 

 
for the space will be sufficient for it to be organized in a Euclidian way, but with the 
condition that the structure equations (41) must be satisfied, of course. 
 If one is given the ds2 arbitrarily then one can obtain a Riemann space.  One can 
further arrange that it should satisfy the structure equations (40), which will permit one to 
define the infinitesimal Euclidian displacement that will bring two infinitely-close 
rectangular frames into coincidence according to a law that is intrinsically coupled to the 
given ds2, or what amounts to the same thing, to define the angle between two directions 
that emanate from two infinitely-close points in space.  One will then arrive at Levi-
Civita’s (14) notion of parallelism step-by-step.  The structure equations (41) are no 
longer verified, in general; one must add complementary terms to the right-hand side that 
define the Riemannian curvature of the space. 
 In Riemannian space, the application of the method of moving frames to the theory of 
curves is identically the same as it is in Euclidian space; i.e., the classification of curves, 
and the notions of curvature and torsion are the same.  In other words, all of the 
operations of Euclidian geometry that refer to the study of curves preserve the same 
significance in Riemannian geometry.  The application of the method of moving frames 
to the theory of surfaces also comes about in the same manner as in Euclidian geometry, 
but the results are not the same, in the sense that in Euclidian geometry, as in Riemannian 
geometry, one must take into account the values of the bilinear covariants iω′  and ijω′ , 

and those expressions will not be the same when the number of variables exceeds unity.  
That is why the notions of straight line, circumference, helix, etc, generalize 
automatically upon passing from Euclidian geometry to Riemannian geometry, but the 
notion of plane does not generally exist in Riemannian geometry, if one wishes to at least 
define the plane by the same differential properties as in Euclidian geometry.  Indeed, in 
a three-dimensional space, those differential properties translate into the equations: 
 

ω3 = 0,  ω13 = 0, ω23 = 0, 
 
and those equations will no longer be completely integrable if the structure equations 
cease to be verified. 

                                                
 (14) T. LEVI-CIVITA, “Nozioni di parallelismo in una varietà qualunque,”  Rendiconti Circ. mat. 
Palermo 42 (1917). 
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 Naturally, one can imagine spaces with Euclidian connection that are more general 
than Riemannian spaces, for which the first structure equations (40) will cease to be 
verified.  The Riemannian spaces with absolute parallelism that were recovered by 
Einstein are the ones for which the last structure equations (41) are verified, but not the 
first ones (40).  The have no curvature, but they do have torsion. 
 
 
 43. – One now easily sees how each group G with n variables can be associated with 
an infinitude of generalized spaces that admit G for their fundamental group.  Those 
spaces can be regarded as n-dimensional continua in which one has attached a well-
defined infinitesimal transformation Tu;du of the group G to each pair of infinitely-close 
points (ui) and (ui + dui) in such a manner that the structure equations cease to verified 
(15).  In these spaces, the operations of differential geometry of the Klein space with 
group G continue to keep their significance.  The theory of curves in them is the same as 
in Klein space; the method of moving frames also applies in the same manner.  However, 
the classification of surfaces is not the same, nor are some of their properties. 
 Any cycle of the generalized space for which one is given the initial point A0 is 
associated with a transformation of the group G.  One can represent it in the following 
manner: Imagine a sequence of observers that are spaced out along the cycle, all of which 
belong to a Klein space, and each of which adopts a well-defined frame.  The observer 
that is placed at A0 can try to represent the sequence of positions of the frames of his 
colleagues in the Klein space to which he believes that he belongs, provided that each of 
them transmits the position of the infinitely-close frame with respect to their own frame.  
When the observer that is placed at A arrives at the end of the cycle, he will confirm that 
he must attribute a position to his own frame that is different from the one that he really 
has.  The displacement that is required in order to return to his initial position will be the 
displacement that is associated with the cycle that is endowed with the origin A0 .  It is 
obvious that the displacement, when considered from the purely-geometric viewpoint by 
the observer that is placed at A0 , will not depend upon the sequence of frames that is 
chosen by the intermediate observers, but its analytic expression will depend upon the 
choice of the initial frame at the origin A0 .  One can base an important notion upon the 
considerations of the displacements that are associated with the various cycles with the 
given origin A0, namely, that of the holonomy group of space.  However, we shall not 
enter into that subject here. 
 If the cycle is an elementary parallelogram then the components of the infinitesimal 
displacement that are associated with the cycle are the complementary terms that one 
must add to the right-hand sides of the structure equations in order for those equations to 
become exact.  They are bilinear expressions that are alternating with respect to the two 
series of differentials dui and δui, or further, with respect to the two series of components 
ωi (d) and ωi (δ) (i = 1, 2, …, n) if one supposes that the differential equations of the 

                                                
 (15) More generally, in a continuum of dimension m ≠ n for which each point can be defined by an 
arbitrary coordinate system u1, …, um, one can attach an infinitesimal displacement Tu;du of the group G to 
each pair of infinitely-close points.  One will have a space that again preserves some of the notions of the 
differential geometry of a Klein space whose fundamental group is G. 
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points are obtained by annulling the first n forms ωi (
16).  The space is torsionless if the 

complementary terms that relate to the first n are all zero.  That is what happens for the 
classical Riemannian spaces, so the displacement that is associated with an elementary 
cycle with origin A0 will be a rotation of the frame that is attached to A0 around its origin. 
 
 
 44. – The Kleinian geometry with the fundamental group G can exhibit different 
aspects according to the chosen generating element.  In the preceding, we have supposed 
that it was a point.  With a different choice of generating element, one will get 
generalized geometries that are essentially different from the preceding ones.  If one 
regards space in ordinary geometry as a locus of planes then the notion of point will 
persist, since the point can be regarded as a particular family of planes that depend upon 
three parameters.  However, just like in a Riemann space, which is a point-like space with 
Euclidian connection, the notion of plane will disappear.  Similarly, in a space of planes 
with Euclidian connection, the notion of point will disappear, and geometry in such a 
space will be completely different from Riemannian geometry. 
 If we are not to remain in these generalities then it will be interesting to see how one 
can imagine a ruled space with Euclidian connection analytically.  If one associates each 
tri-rectangular trihedron in Euclidian space with the third axis as origin line then the 
components of the infinitesimal displacement of the trihedron that will be annulled when 
the original line remains fixed are, as we have seen (no. 35): 
 

ω1, ω2, ω12, ω23 . 
 

One defines a ruled space with Euclidian connection by giving six differential forms in 
four variables u1, u2, u3, u4 , while the four forms ω1, ω2, ω12, ω23 are linearly 
independent.  One can remark here that the knowledge of these four forms in Euclidian 
space will imply that of the other two.  With Darboux’s notations, one gives ξi , ηi , pi , qi 
(i = 1, 2, 3, 4); the equations: 
 

(42)   

,

,

,

ji
i j i j i j i u

j i

ji
i j i j i j i u

j i

ji
i j i j

j i

ji
i j i j

j i

r r q q
u u

p p r r
u u

pp
q r rq

u u

qq
r p p r

u u

ξξ η η ζ ζ

ηη ζ ζ ξ ξ

∂ ∂ − = − − + ∂ ∂
 ∂∂
 − = − − +

∂ ∂
 ∂∂ − = −
 ∂ ∂


∂ ∂ − = − ∂ ∂

 

 
determine the ζi and the r i unambiguously. 

                                                
 (16) These bilinear expressions are not arbitrary: They satisfy some identities (viz., the Bianchi identities, 
in Riemannian geometry) that constitute the theorem of the conservation of curvature and torsion.  
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 In order to have a ruled space with a torsionless Euclidian connection, one must give 
the functions ξi , ηi , pi , qi , ζi, r i  that satisfy the preceding 24 equations.  However, we 
know that there is an infinitude of ways to choose the functions for the same space 
according to the particular choice of frames that one makes.  As far as the forms ω1 , ω2 , 
ω13 , ω23  are concerned, one confirms that the things that do not vary with the choice of 
frame are the two quadratic forms: 
 

ω13
2 + ω23

2 and ω1 ω23 – ω2 ω13 , 
 
the first of which represents the square of the angle between two infinitely-close lines, 
and the second of which represents the product of that angle with the shortest distance 
between them.  However, those two quadratic differential forms cannot be chosen 
arbitrary if one desires that equations (42) should be verified for a convenient choice of ξi 
and r i .  In particular, it is necessary that the first form ω13

2 + ω23
2 can be expressed as a 

quadratic differential form in only two variables.  A particularly simple manner of 
choosing the two fundamental quadratic forms consists of taking: 
 

ω13
2 + ω23

2 = du1
2 + du2

2, 
(43) 

ω1 ω23 – ω2 ω13 = du2 du3 − du1 du4 . 
 
The variables u1 and u2 define the direction of the straight line.  One sees that in the 
corresponding ruled geometry, the notion of point (when considered to be the center of a 
sheaf of lines) and the notion of plane (when considered to be a network of lines) still 
persist (17).  The condition for two lines (ui) and ( )iu′  to belong to the same point and the 

condition for two lines (ui) and ( )iu′  to belong to the same plane are the same, namely 

(18): 

2 2 3 3 1 1 4 4( )( ) ( )( )u u u u u u u u′ ′ ′ ′− − − − − = 0. 

 
 
 45. – It is clear that a large number of generalized geometries are only geometric 
curiosities, up to now.  Meanwhile, they have the double advantage of casting a bright 
light onto the fundamentals of differential geometry themselves, and providing an 
inventory of geometric schemas into which mathematics and mathematical physics can 
be drawn some day.  Moreover, that is why Riemannian geometry with absolute 
parallelism, which is at the basis of Einstein’s recent research, enters into the general 
schema that we have presented.  Likewise, Weyl spaces are torsionless spaces that admit 
the group of similitudes for their fundamental group.  The theory of curves is given by 
the Frenet formulas (8) in those spaces.  Up to the present, besides the Riemannian spaces 
and Weyl spaces, it has been the spaces with affine, projective, and conformal 

                                                
 (17) If the space is torsionless then the notion of plane will necessarily persist, but the same thing will not 
generally be true for the notion of point. 
 (18) That ruled geometry is linked in a very close way to the classical kinematics of the plane, where the 
straight line represents a uniform, rectilinear motion.  See E. CARTAN, “La cinematique newtonienne et 
les espaces à connexion euclidienne,” Bull. math. Soc. roumaine des Sciences 35 (1933). 
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connections that have been studied, above all.  The last two categories can be attached to 
some very old problems of analysis that one can therefore cloak in a suggestive geometric 
form.  For example, if one is given a system of second-order ordinary differential 
equations in n variables, n – 1 of which are dependent, and one of which is independent, 
can one regard the integral curves of that system as playing the role of straight lines in a 
continuum that is endowed with a projective connection?  One sees immediately that this 
will be possible only if the equations have particular form.  For example, in the case of n 
= 2, the given differential equations must have the form: 
 

(44)   
2

2

d y

dx
 = A

3
dy

dx
 
 
 

+ B
2

dy

dx
 
 
 

+ C
dy

dx
 
 
 

+ D, 

 
with coefficients A, B, C, D that are functions of x, y.  The problem then involves an 
infinitude of solutions.  However, among all of the projective connections that answer 
that question, there exists one and only one that is linked in an intrinsic manner to the 
given equation.  That must say that the law by which one associates that projective 
connection with the differential equation will remain invariant under an arbitrary change 
of variables (19).  The geometry of the two-dimensional space of (x, y) with projective 
connection – which is called normal, thus-defined – then provides all of the properties of 
the equation (44) that do not depend upon the choice of variables x, y. 
 If the differential equation does not have the particular form (44), but is arbitrary, 
then one can further regard the integral curves as playing the role of straight lines in a 
space with projective connection, but with the condition that one must not take the point 
to be the generating element of the geometry, but the linear element (viz., the set of a 
point and a line that passes through that point), while the fundamental group is always the 
projective group in the plane.  Then again, among all of the projective connections that 
make the integrals of the differential equation take the form of straight lines, one of them 
will be privileged, and the corresponding geometry will provide all of the properties of 
the differential equations that do not depend upon the choice of variables x, y. 
 One can likewise regard the integral curves of an arbitrary third-order differential 
equation as the circumference of a plane by regarding the continuum of points (x, y) as a 
generalized space whose fundamental group is the group of contact transformations that 
changes an oriented circle into an oriented circle.  There once more exists a privileged 
connection, and the corresponding geometry will provide all of the properties of the 
differential equation that are invariant under an arbitrary contact transformation. 
 
 
 46. – One last example will bring us back to Euclidian geometry.  One knows that 
Riemann envisioned some expressions that were general than the square root of a 
quadratic differential form in order to define the distance between two infinitely-close 
points.  In the case of two dimensions, one can take an arbitrary homogeneous function of 
degree one in dx, dy, which one can always write as F(x, y, y′ ) dx by setting y′ = dy / dx.  

                                                
 (19) The determination of that intrinsic projective connection enters into the general method of moving 
frames, but only when it is applied to the case of an infinite group G, namely, the group of all point 
transformations in two variables.  
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On the other hand, the calculus of variations, in the simplest case of an integral ∫ F(x, y, 
y′) dx, leads to some notions that are very analogous to some notions of elementary 
geometry; for example, transversality is closely analogous to perpendicularity.  Certain 
authors have developed a generalization of Riemannian geometry that is based upon 
some considerations of that nature.  That generalization enters into our general schema.  
One can make the extremals of the integral ∫ F(x, y, y′ ) dx into the Euclidian straight 
lines by introducing a Euclidian connection, but one must then not take the point to be the 
generating element, but the linear element.  That amounts to saying that it is in the 
neighborhood of a linear element, when considered to be an extremal element, that space 
has the character of a Euclidian plane, but that character will be lost when one considers 
the neighborhood of a point – i.e., the set of linear elements whose center is close to a 
given point.  One can then define angle between two infinitely-close linear elements in a 
Euclidian way, the distance between their centers, etc.  However, it is important to 
remark that the distance between those centers can vary if one makes the linear elements 
turn around their fixed centers (20). 
 The fact that one found a geometry with Euclidian connection upon the given of the 
analytical expressions for the distance between two infinitely-close points in an intrinsic 
manner poses the question of knowing whether one can realize something analogous by 
being given the analytical expression for the area of a surface element in a three-
dimensional continuum (21).  It is very remarkable that this is possible in general.  One 
can associate an integral ∫∫ F(x, y, z, p, q) dx dy with a Euclidian connection according to 
an intrinsic law such that the integral will represent the Euclidian area of a surface.  
However, there are two exceptional cases here; I shall cite only the case of the integral ∫∫ 
(p2 + q2) dx dy.  Since that integral is invariant under the infinite group of point-like 
transformations: 

(45)     
( ),

,

x iy f x iy

z z a

′ ′+ = +
 ′ = +

 

 
in which f(x + iy) denotes an arbitrary analytic function, and a denotes an arbitrary 
constant, it is certain that it is impossible to associate it with a Euclidian connection 
according to an intrinsic law (i.e., one that is invariant under an arbitrary change of 
variables), because any Euclidian connection can remain invariant only under a group 
with a maximum of six variables, whereas the integral must remain invariant under the 
infinite group (45) (22). 
 The preceding example is very suggestive.  It first shows the possibility of basing 
Euclidian differential geometry in space upon only the notion of area, just as it is possible 
to found it upon just the notion of length.  However, it also shows that if, upon 
generalizing the Euclidian analytical expression for length, one can always base a 
geometry that preserves the fundamental notions of differential Euclidian geometry, then 
the same thing will not always be true upon generalizing the Euclidian analytical 

                                                
 (20) See ÉLIE CARTAN, Les espaces de Finsler, Exposés de Géométrie, II, 1934. 
 (21) During the correction of the proofs, L. KOSCHMIEDER pointed out some papers to me [Math. Ann. 
94 (1925).  Math. Zeit. 24 (1925).  Math. Zeit. 25 (1926).  Proc. Akad., Amsterdam 31 (1928)], in which 
that problem was begun, and some interesting results were obtained. 
 (22) See E CARTAN, Les espaces métriques fondés sur la notion d’aire, Exposés de Géométrie, I, 1933. 
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expression for area, and that in its own right will open up new horizons in regard to the 
fundamentals of elementary geometry itself. 
 

__________ 
 


