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The Pfaff problem has been the object of numerous papdrave no intention of
passing all of them in review)( The most prominent are those of Pfaff himself, and
then those of Grassmann, Natani, Clebsch, Lie, FrohesalsDarboux. The problem in
guestion is, in summary, the solution of a total défeial equation, and later on it is
joined with that of the reduction of a lineexpressionin total differentials — oPfaff
expression- to a canonical form by means of a convenient changeiables.

Pfaff ¢) was the first to give the result that a total défatial equation can always be
verified by a system of integral equations whose numbes dokeexceed / 2 ifn is even
and f+1)/2ifnis odd. His method is based upon the gradual reductidre afumber
of differential elements in the equation, each redadbip one unit being provided by the
complete integration of a system of ordinary diffél@nequations and a change of
variables.

Grassmann applied the principles of the calculus t#sions to the same problem in
the second edition of hisusdehnungslehr€). At its basis, his method is the same as
that of Pfaff, but only applies to equations that cadreverted into @eneralequation
in an even number of variables by a gradual reduction. vlsgihe necessary and
sufficient condition for the equation to be verified &ysystem ofn integral equations.
His results have an extremely concise form.

Natani {) and Clebsch’] successively reduced the number of differential elesnient
the equation, but — and this represents a great advance redaction required only the

() For the bibliography, consult, for example, FORSYTHeory of differential equationsart |,
Chapter 1. In this work, the Pfaff problem is presehin a very interesting manner from the historical
standpoint (Chap. 1V and XII).

() Methodus generalis aequationes differentiarum partialium necnon denest differentiales
vulgares, utrasque primi ordinis, inter quotcumque variabiles compigtgrandi(Abh. d. K.-P. Akad. d.
Wiss. zu Berlin (1814-1815), 76-136.

() Die Ausdehnungslehre, vollstandig und in strenger Form bearbBéein, 1862.

(Y Journal de Crelle58, January, 1860, 301-328.

() Ibid., 60, September, 1860, 193-251.
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search for one integral of a system of differentiqliations. However, as in the Pfaff
method, one must make a change of variable each tinevertideless, Natani sought,
without arriving at very simple results, to form the gssive auxiliary systems directly
by only knowing the integrals that had already been fdonthe preceding systems.

In a second paper)( Clebsch solved the problem in a very elegant mannétein
case ofyeneralequations in an even number of variables. One must seategral of a
certain number of successive complete systems, andegaehion of a system of that
series will depend linearly upon the partial derivativegust one of these previously-
found integrals, except for an equation that is comnmrmalk of these systems that
depends upon only the coefficients of the given equatidis. method does not extend to
the other case, and furthermore, Clebsch has neveretengolved the case of a general
system of an odd number of variables. In the same p@pysch indicated the manner
of deducing the most general integral system from a p&tintegral system.

Lie () was, in short, the first one to occupy himself witle reduction of a Pfaff
expression He exhibited the invariant character of a certaiegat number (viz., the
class of the Pfaff expression, following Frobenius) thatmpdetely determines the
canonical form to which it can reduce. His method is dagmn the theory of contact
transformations. The reduction is obtained as in tisé riiethod of Clebsch, except that
it is combined with the integration method of Mayer fostforder, partial differential
equations.

Frobenius, in his beautiful paper in theurnal de Crelle(*), employed a completely
new method. It is based upon the consideration of vilmth one calls théilinear
covariantthat is associated with the Pfaff expression. Tqwevalence conditions — i.e.,
the possible reduction to the same form — of two Pfaff mpumare then the algebraic
equivalence conditions for two forms that are linead &ilinear with respect to the
differential elements. He thus arrives at the motéclass His method of reduction is
analogous to that of Natani and Clebsch, except thatuteessive complete systems are
formed without changing the variables, and their equatidepend upon partial
derivatives of all the preceding integrals that weratbu

Finally, in a paper that was contemporaneous to thitaifenius, but published five
years later 4, Darboux began with the same bilinear covariant, whiosariance
properties permitted him to deduce the first auxiliaryesysthat is common to all of the
methods for reducing the class of the Pfaff expressio@ne also deduces the
fundamental formulas of the theory of contact tranmshtions from it in a very elegant
manner.

The present paper constitutes an exposition of thé pfalblem that is based upon
the consideration of certain symbolic differentialpeessions that are integer and
homogeneous with respect to the differentialsnirvariables, the coefficients being
arbitrary functions of these variables. These expyasstan be subject to the ordinary
rules of calculation, on the condition that one dowd change the order of the
differentials of a product. The calculation of thegeantities is, in short, that of

[N

Ibid., 61, September, 1860, 146-179.
Most especially, see: “Theorie des Pfaffschen Rrob|”Arch. for Math. og Nat.ll (1877), 338-
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“Ueber das Pfaffsche Problem,” Journal de Ci@R¢1877), 230-315.
“Sur le probleme de Pfaff,” Bulletin des Sciences réathtiques (3Y1 (1882), 14-36, 49-68.
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differential expressions that are placed under a pialtitegral sign’). This calculation
also presents numerous analogies with the Grassmémusa It is, moreover, identical
to the geometric calculations that Burali-Forti dicairecent booly.

It is clear that if one makes a change of variablles tany differential expression of
degreep is changed into a differential expression of degr@ethe new differentials. In
the case of a Pfaff expression, which is of degree @me,can associate it with another
differential expression of second degree that is ar@vawith respect to the changes of
variables, and which is nothing but the bilinear covaridrfErobenius and Darboux. |
call it thederivativeof the Pfaff expression. However, thanks to theomodf symbolic
differential expressionsthis covariant is the first term in a sequence of symbolic
covariants of third, fourth, ... degree that are deduced intuitively frben Rfaff
expression and its derivative by multiplication$hey constitute the second, third, ...
derivatives of the Pfaff expressions, fifeone being of degrege+ 1.

One understands how much one can deduce from the c@t®ideof these
derivatives, thanks to their invariant charactemhey are the only quantities that
intervene in the statement of all the results of the theoy their form is very simple.

The consideration of these derivatives permits onéntbdll of the results that are
already known in a manner that is, so to speak, im&giiowever, it has allowed me to
discover some others. Among others, | will point ihatextension of the second Clebsch
method to the reduction of arbitrary Pfaff expressifisof either even or odd class, and
in an arbitrary number of variables. It has also allowexito completely present the
theory ofsingular integralsof a Pfaff equation®}.

This memoir is divided into five parts. In thest one, | present the principles of the
calculus of differential expressions that intervémaevhat follows. In thesecondone, |
introduce the derivatives of a Pfaff expression and themaif class, and | prove the
necessary and sufficient condition for a Pfaff egpi@n to be of clasg. The result is
extremely simple, viz.that the ' derivative has all of its coefficients zerd. then
introduce what | call the “adjoint complete systemtdhen discuss the reduction of an
expression to its canonical form, either by successhanges of variables (i.e., the
method of Natani and Clebsch) or without changes of masa(i.e., the Frobenius
method).

Thethird part is dedicated to the solution of a Pfaff equation, dlera that admits
general solutions that depend upon the reduction of the ledt-bigie to its canonical
form, and singular solutions that are obtained by annullihgfahe coefficients of a
certain derivative.

Thefourth partis dedicated to the following two problems:

() Cf., CARTAN, “Le principe de dualité et certaines graes multiples de I'espace tangentiel et de
I'espace réglé,” Bulletin de la Société mathématique decerxXV, 1-39.

() Introduction & la Géométrie différentielle, suivant la méthodeGaassmann(Gauthier-Villars,
1898).

() See below, Chap. IV, §§ 69, 70, 75.

() Apart from the classical case of singular integodlhe equation in three variables, | know of only a
paper of Frisiani, which | have not consulted and whichnistled: “Sull’ integrazione delle equazioni
differenziali ordinarie di primo ordine e lineari fra nnmero qualunque di variabili (Effer. astr. di Milano,
1848). Following Forsyth, he has discussed the possibilisatigfying a Pfaff equation by equations that
are fewer in number than the canonical number.
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Solve a Pfaff equation by means of a given number r of unknown relations.

Solve a Pfaff equation by means of a given number r of relations, among hwbich,
them are given in advance.

These two problems admit general solutions and singolations. The former are
given by the search for an integral of several suoees®mplete integrals, the equations
of these systems containing the derivatives of all tbegrals that were already found
linearly. As for the singular solutions, they are simdutions of an analogous problem,
but in which the given relations between the variablesgreater in number and can be
formed by differentiations.

In the very general case where the desired solutienaasingular solutions of the
Pfaff equation — or, more precisetydo not annul all of the coefficients of the @22)"
derivative of the expression, the form of the congpletstems can be simplified for the
calculations in such a manner that each equation depends opomom than the
derivatives of just one of the preceding integrals thate found. In particular, this
method gives the generalization of the second Clebsdioohet

Finally, the fifth part is dedicated to the applicatiai the theory to the integration of
first-order, partial differential equations, whether aedly or homogeneous. | have also
indicated how the consideration of derivatives lendslfito the establishment of the
fundamental formulas of the theory of contact tramshtions.



|. — Differential expressions.

1. Being givenn variablesxs, X, ..., X, cOnsider some purely symbolic expressions
wthat are deduced by means of a finite number of additiomudtiplicationsignsfromn
differentialsdx, dx, ..., dx, and certain coefficients that are functionsxgfxz, ..., X ;
these expressions anemogeneous dx;, dx, ..., dx,, in the usual sense of the word.
Since they are purely symbolic, we restrict ourseleesdt changing the order of the
terms whenever one has an addition or multiplicasign or of the factors that are united
by that sign.

Subject to the usual rules of calculation, these egjyas can be put into the form of
homogeneous integer polynomialsdr, dx, ..., dx,. The degree of these polynomials
will be, by definition, the degree of the correspondimgressionce  The differentials of
the first degree are further call@faff expressionghey are of a form analogous to the
following one:

(1) Ardxy +Adx + ...

As examples of differential expressions of higher grdee might give the following
ones:
(2) Ay dx dx +Ax dxs dx ,
(3) (A1 dxg + Ao dxo) (B1 dxq dxe + Bp dxg dxg) + Ag dxg dxe dxg

2. Monomial differential expressions: These are the ones that are deduced by
multiplication signs from a certain coefficient argltain differentialddx;, dx, ..., dx,,
repeated or not; for example, one might have the foligwi

(4) A dx dx dxq dxg dXs dXe .

Beyond these differential expressions, the sim@estthe ones that one deduces by
addition signs from a certain number of monomial défeial expressions of the same
degree; they have the form of polynomialsiy, dx, ..., dx,, such as the expression (2).

Apart from these particular expressions, we also denshe ones that one deduces
by multiplication signs from a certain number of thecping differential expressions,
such as the expression:

(5) (Al dxg + A dXz) (Bl dx; dx + B dxg ng) + (Cl dx, dx + C, dx dX4)

3. Rank of a differential in a differential expressienConsider a differential that
enters in a certain place in a differential exp@ssilf that differential expression is a
monomial expression then the rank distinguishes thee pilzet the differential occupies
in the monomial; therefore, the differentd, in the expression (4) occupies the fourth
rank.

If one is dealing with a polynomial differential exp®es then the rank of a
differential is the one that it occupies in the maowa that it enters into.

Finally, in the general case, if one subjects an arpittdferential expression to the
usual rules of calculation in such a manner as to tamsfit into a polynomial
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expression, but taking care to respect the order ofiffezedhtials in each product, then
the rank of a given differential is the one that il Wave in the polynomial expression
thus obtained. For example, in the expression (3)differentialdx, which enters into
the second term in the second parenthesis, is of thnkl rIn a differential expression
that is the product of several polynomial differeng&pressions, the differentials of the
first factor, which are assumed to be of dednedave ranks 1, 2, ..h; those of the
second factor, which are assumed to be of degreave rank$1 + 1, h + 2, ...,h + k,
and so on.

4. Value of a differential expression.By convention, in order to define the value of
a differential expressiow — of degreeh, for example — we considei, xp, ..., X, to be
functions ofh indeterminateparametersr, o>, ..., an that are assumed to have ranks that
are in a certain order that we call tregtural order.

This being the case, one considers allthgermutations of the lettets;, a, ..., an.
Let (&, B ..., £) be one of these permutations. One makes that peronutatrespond
to the value that is taken by the expressiwaccording to the usual rules of calculation
when one replace the differentials that occupy tfle 2¢ ..., h" rank with the
corresponding derivatives that are taken with res@ebt, i, ..., 5, respectively. One
precedes the quantity thus determined with a + or — sigarding to whether the
permutation 31, 2, ..., () presents an even or odd number of inversions. Théralge
sum of theh! quantities thus obtained is, by definition, the valtiéhe given differential
expression.

Therefore, the value of the expression (2) is:

0X, 6xl+ 0x; 0%, | axlaxl+ 0% 0%
(Aaal da, Azaalaaz Aaazaal Aﬁaazaal '

5. Equivalent differential expressions. Two differential expressions are called
equivalentwhen, being of the same degree, they have the samefonlagy parameters
that one chooses in order to define that value.

It results from the definition given above that oae,owithout changing the value of
a differential expression, apply all of the usual sudé calculation to it, on the condition
that one leave theank of the differential unaltered — i.e., on the comahtthat one does
not invert the order of the differentials in the produtist one forms. Indeed, these
modifications change none of the quantities that serve to define the value of the
differential expression.

It results from this that an arbitrary differentiakpression is equivalent to a
polynomial differential expression and that, moreover can invert the order of the
monomials in that polynomial expression in an arbitraanner, and likewise reduce two
monomials that differ only by the coefficients into joste monomial.

That is why the expression (3) is equivalent to therpotyial expression:

(3’) A1 By dxg dxg dye + (A]_ B, + C) dx; dxo dxg + Ay B1dxe dxg dxe + A Bodx dx dx .
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6. Value of a monomial differential expressienlf one seeks to find the value of a
monomial differential expression such as:

Ad)quxnz--- d>gR

following the rules that were given abowe, my, ..., m, beingh of the indices 1, 2, ..n
(distinct or not) then one finds the productfofvith the functional determinant of

X, s +++s Xy With respect tam, @, ..., an quite simply. It immediately results from this

that if a monomial differential expression contawvs identical differentials then it must
have the value zero; one says that idl&ntically zero. It likewise results from the theory
of determinants that one can invert the order of tHeréifitials in a monomial expression
in an arbitrary manner, on the condition that one gbahe sign of the coefficient if that
substitution amounts to an odd number of transpositiondurthermore if the two
permutations of the indices of the differentials aremposite parity. For example, one
has:

Adx dxo dxs = A dx dxs dxg = A dxs dx dx
=—Adxdxydg=—Adgdxdy=—Adx dg dx.

7. Reduction of a differential expression to its simplest fefrit. results from the
preceding that one can always put an arbitrary diffexkatpression into the form of a
polynomial expression such that each monomial ofdtterl expression does not contain
identical differentials, and the differentials thiatloes contain are arranged by order of
increasing indices. We say that under these conditiengtpression iseduced to its
simplest form That is why the simplest form for the expression:

(Agdxg + A dxo + Az dxs + Ay dxg) (Br dxe dxs + B, dxg dxg)
A1 Bidx dxo dxg — Ax BodXxg dXx dxs — Az Bodxg dxs dxg + As B dX dxz dxa .

8. ldentically zero differential expressions.These are the ones whose value is zero
no matter what the parameters are that one makes ..., x, depend upon.

A differential expression im variables and of degree greater timais necessarily
zero, because if one puts it into the form of a polyilabrexpression then all of the
monomials must have at least two identical diffesdsti

A differential expression of degrde< n will be identically zero if, upon reducing it
to its simplest form, the coefficients of all oktimonomials are zero. One accounts for
this by takingm, a», ..., anto beh arbitrary ones of the variablgsg x;, ..., X, .

9. Inversion of the factors in a product of differential expressien€onsider a
(symbolic) productwof differential expressiongy, @, ..., & .

w=a & ...0n .
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Imagine that we invert two of the factasg , a, of this product, which are assumed
to be of ordeh andk, resp., and suppose that these two factors are sephyabed or
more other factorsy, of total degreep. It is clear that such an operation amounts to
making a certain substitution of the ranks of theed#htials of any of these monomials
of wwhen it is reduced to a polynomial expression.

If this substitution is even then the valuecofloes not change, while if it is odd then
the sign does change.

Now, in order to perform this operation, one can firstke aw, come beforew,,
which demandx (h + p) transpositions, and then makeg appear after the group of
factors ap, which requireshp transpositions. Therefore, in all, one s+ (h + k) p
transpositions. The differential expressiois thus multiplied by-{1)"™ 9P,

In particular, suppose that the two factors considees® degrees of the same parity.
p(h + K) is then even, andvis multiplied by €1)™. Therefore, the transposition of the
two factors into a product of differential expressidogs not change this product if the
factors are pair-wise even and changes the signsoptbduct if they are pair-wise odd.

It results from this thaif a differential expressiomvis the product of several other
differential expressions, among which one finds two that are identical asattialegree,
then the expressiowis identically zero.

10.Powers of a differential expressior. One calls the symbolic product pf
expressions that are identicaldgthep™ powerof a differential expressiom

Thep™ power of a monomial is identically zero, becauss @ monomial expression
that contains some identical differentials.

The p" power of a differential expression of odd degree is asatically zero,
because it is a product that contains two identical factbodd degree.

It therefore suffices to consider differential exgieaswof even degree. Reduced to
its simplest formgis a sum ofn monomials of the same degree:

W=+ a+ .. +an.
One immediately sees that the squarevs:
=2+ W+ ... + W+ B+ ... + Wn1Gh),

because the squares@f, , ..., amare zero and the product of two monomials of even
degree is independent of the order of the factors. Rewike verifies that:

W=2B (W &+ W e -+ ... + o),

and, in a general manner, thdtis obtained by multiplying the sum of all the products of
p of them monomialsa, @, ..., an by pl.

11.Change of variables in a differential expressienlmagine that one performs a
change of variables ox, X, ..., Xy by taking the new variables to leindependent
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functionsy, Yz, ..., Yn Of Xq, X2, ..., Xn. Converselyxi, X, ..., X, are then independent
functions ofyy, v, ..., Vn.

This being the case, replace the old variables in ardiifial expressiomw in x;, X,
..., Xn With the new variables and the differentidig, dx, ..., dx, with:

X . 0% 0x,
dy + 2% gy +...+ 2% ¢
oy, oy, % oy, &

%, . 0%, 0X,
dy, + 25 gy +...+ 2% g
oy, T ay, oy, *

We thus obtain a certain differential expressiaf the same degree ya, o, ..., Y¥n,
and in which each differentiay will have the same rank as the differentalin wthat
provided it.

It results from this that the value afis equal to the value abif one expresses the
variables as functions of the same parameateisecause in thk! quantities that define
the value ofwy one replaces, in short, derivatives sucbxasds by the expressions:

ox Oy, 0% 0y, 0% 3y
oy, 03 0y, 043 6% Gy

which are obviously equal to them.
It immediately results from this that if the expriess w, @, ..., an transform into
i, ok, ..., h by a change of variables then the expression:

W= ...Wn
transforms into:

=m0k ...00nm.

That property is paramount in the applications thatwllanake of this theory.
For example, one has:

_[ 9% 0% 0% 0% v | = 9% 9% _0% 9%
dxy dx = | ==y +—d>aj( dy+—=2 dy | = | —=—=2-—=—=Idy dy,
(6% ' Y, y, ay, gy, dy, 0y, 0y, '

which agrees with the well-known property of functiodaterminants that is expressed
by the equality:

D(x, %) _ D(x,%) D(¥ ¥»)

D(a,,a;) D(y.¥,) Da,a,)




Il. — Application of the preceding theorems to Pfaff expresions.

12. Derived expression of a Pfaff expressienBeing given a Pfaff expressionmn

variables:
w=A1dxg +A dxo + ... + A, dx,,
one calls the second-degree differential expressionslaatfined by the equality:
W =dA dxg +dA dx + ... +dA, dX,,

thederived expression.

The fundamental property of that derivative is th®fwing:

Theorem. — If a change of variables transforms the Pfaff expressiomto an
expressionw then that same change of variables transforms the derived expregsion
into the derived expressiad.

Indeed, suppose that with the new varialley,, ..., yn, wbecomes:

w=B;dy; +B,dy, + ... +B,dy;.

If one letsa, S denote two arbitrary parameters then one has:

K 7%, A% g M, g, g
©) Alaa+A26a+ +Aﬁ6a Blaa+826a+ +Bhaa’
L TN N T V) )
(©) Aapthapt T A TR T BT T R

Differentiate the first of these equations with resge £ and the second one with
respect tax, and subtract the two equations thus obtained. We wi:ha

® (6_/%6_&_6_&%} L, (%%_%%j
da 0B 9B da da 03 0B da

_ [6_81%_6_81%} . (%%_6_&%}
da 08 9B da da 08 0B da

The left-hand side of (8) is nothing but the valuadofelative to the two parameters
a, G, the right-hand side is the value @fwith the same two parameters.

Since these two values are equal for amgnd S, the change of variables transforms
w into a differential expression that is equivalentaio and which, in turn, after the
making the reductions, is nothing it The theorem is thus provet.(

() The consideration of the derivativé, or, what amounts to the same thing, of the bilirevariant
of @ forms the basis for the beautiful research of Frinlzeand Darboux on the Pfaff probletodq, cit)).
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13. Derivatives of higher order Along with the derivative of a Pfaff expressian
we also consider other differential expressions of higinder ¢, &', ..., which we
define in the following manner:

Q) & = = (ALdx + ... +A dx) (dAL dxq + ... +dA dxy),

(10) & =1af?= 1(dAcdx +dAcdx + ... +dA dx)? = 3 dA dx dA dx,
i

(11) &Y = w’ = (A dxg + ... +A, dx) [ZdAI dx dA d;j.

In a general manner, the derivative of order21, «*™%, of a Pfaff expressiow
will be the m™ power of &, divided bym!, or the sum of all them products ofn
monomialsdA; dx, dAy dxs, ..., dA, dx,. The derivative of orderrg «*™, will be the
product ofwwith «*™%. Thep™ derivative is of degrep + 1.

These derivatives enjoy the same property as the deewati It is obvious thaif a
change of variables transform& into w then the same change of variables will
transform the P derivative of winto the ' derivative of; because that derivative is
deduced by multiplying the two differential expressiemand ¢, which are transformed
into wand.

14.Exact differential Pfaff expressions.Suppose that the Pfaff expressions an
exact differential form. It is then clear that undechange of variables it can be put into
the form:

w=dy; .
Conversely, suppose that the derivatwef a Pfaff expression:
w=A1dxg +Adx+ ... +AdX
is identically zero. | say thabis an exact differential. The theorem is trueror 1.
Suppose that it is true up to- 1, and prove that it is true far If one setslx = 0 in w

and regards; as a constant then one obtains a Pfaff expression n — 1 variables
whose derivativer] is deduced fromJ by the same operations. It then results that this

derivative «J is identically zero, and thaty is, in turn, an exact differentidl. Now, if
one no longer regards as a constant then one sees that one has:

ou
w=du+ [A——j dx,
0%

and, by a change of variables, one can assume that:
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w=A; dxg +dx; .

Upon calculatingd, which must remain zero, one finds that:

_ _0A 0A 0A _
@ =dA dxg = —Ldx, dx +—2 dx dx+---+—2 dx dy = 0.
1 dxg axzstaxgézs ox x dy

One then sees that the derivativesPafwith respect toxp, Xs, ..., X, are zero, and
consequently depend only upxi so:

w= d(x2+ j Ad)g)
is an exact differential.
The conditions for a Pfaff expression to be an eddfgrential are thus given by the
equation:
W =dA dxg +dAcdx + ... +dAdX, =0,
or, in finite terms:
0A
(12) 0A _9%A
ox. 0%

J

=0 G.i=1 2, ...

15. Class of a Pfaff expression.In the case that we just examined, one can, by a
change of variables, pudinto a form that contains just the one variahlexplicitly. In
the general case, it can happen that by a change @blesiw takes a formw that
contains just the variablesyy, y», ..., Y, explicitly:

w=B1dyr +Body, + ... +Bpdyp,

in which theBy, B, ..., By depend upon onlyy, yo, ..., ¥p.

One calls the minimum number of variables, by meanshat¢h, one can express a
Pfaff expression by a convenient change of variablesl#®s(") of that expression. A
Pfaff expression of the first class is an exactedéhtial.

16.Necessary condition for a Pfaff expression to belads p — If a Pfaff expression
w is of classp then one can, by a change of variables, put it intofohm of a Pfaff
expressionwin p variables. Thus, consider th8 derivative ofe, which is of degree +
1. Since that differential expression ispivariables and of degrge+ 1, it is identically
zero. It then results that tip' derivative ofay which is equal to it, is also identically
zero.

Thereforejin order for a Pfaff expression to be of classtfs inecessary that its"p
derivative be identically zerd?).

() That expression was introduced by Froberlas, cit.
() Cf., GRASSMANloc. cit.
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17.Converse of the preceding theoremWe shall now prove that, conversely, if the
p" derivative of a Pfaff expression is identically zererthihat expression is of class at
mostp. Since the theorem is true for= 1, we shall suppose that it has been proveg for
1,2, ....p—1and prove it fop.

Thus, consider a Pfaff expression:

w=A1dxg +A dx+ ... +A,dx,

whosep™ derivative is identically zero, so:

ORI S
(pﬂj!

2

if pis odd, or:
=1 gt
2)

2

if pis even.

It is clear that ih is less than or equal fothen that Pfaff expression has class at most
p. Therefore, suppose that it has been provedalRiaff expressionin 1, 2, .n,—1
variables whose™ derivative is zero has class at mpsand prove it for an expression in
n variables.

If we regardx; in was a constant and maéti, = 0 then we obtain an expressian

in n — 1 whosep™ derivative of” is therefore identically zero, and in turn, frohet

hypothesis that was madej has class at mogt One can thus make a change of
variables such thaty is transformed into:

L =Bydy, + Bz dys + ... +Bp+1 dyp+1 ,
whereys, ys, ..., Yp+1 arep functions ofxy, xo, ..., X, and where th®&'s are functions of

Y2, Ya, ..., Yp+1, @S Well as the constaxit. Now, if one no longer regaras as a constant
in wthen one will obviously obtain:

0 0Y,.
w=A; dx, + Bz[dyz—a—f d)gj+ ot Bpﬂ(dypﬂ— ;11 d)gj.

Finally, after changing the notations, one has:
w=A1dx +A dx + ... +Ap+1 d)ﬁo+1 )
whereAy, Ag, ..., Ay+1 depend upon onb, Xa, ..., Xp+1-

This being the case, two cases can be presenséheass: EitheA; is independent of
X1, X2, ..., Xp+1 Or A1 depends upon only thepe+ 1 variables.
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18.In the first case, one can always suppose that orn@akersA, = X,+2. If one then
groups the terms inf” that contairtx,:, then one easily verifies that one obtains:

pr+2 Xm(A{p_z) ,

wherea has the same significance as it did above. Sincdetieativec” is identically
zero, the same must be true for the group of ternisainderivative that contaitix,.» ,

and consequently, foef?® . Since the Pfaff expressian has its p — 2)" derivative
equal to zero, it is of order at mgst- 2. In other words, one can suppose Haand
Ap+1 are zero and thab, As, ..., A,-1 depend upon onby, X, ..., X-1. The expressiow

then becomes an expression in oplyariablesxi, X, ..., Xp-1, Xp-2, and the theorem is
proved.

19. In the second case, one comes down to an expressiop + 1 variables, Xo,
..., Xo+1. Then consider the differential expressionmf (1)" degree:

Y df,
wheref denotes an arbitrary function xf X, ..., Xp+1; it is of the form:

i+ai+---+a —af dx dx ... d
ox - 0x, p+16>$+1 ’ o T

Hdx dX ... dX1 = {al
in which thea’s are functions ok that depend upon only the coefficieAts If a change
of variables transformainto aand the functiof of x1, X, ..., Xp+1 into the functionp of
Y1, ¥ar ..., Yp1 then that change of variables will transfordfi ™ df into @ dg, and in
turn, any functiorf that annuls the first of these two expressions pgltransformed into
a functiong that annuls the second one, and conversely. Novedbation:

&PV df =0,
or
of of of
a_—+a,—+-+a,—=0
0x  “0% 0%,

is a partial differential equation that is lineaf @mnd admitp independent integrals. One
can make a change of variables by takmnd¢o be one of these integrals, or furthermore,
one can, by changing the notations, supposexthatone of these integrals; i.e., that one
has:

(Jp—l) dX1 =0.

The coefficient ofix, in the left-hand side of this equality is nothing b#ff®, where one
has setlx, = 0. If one then regards as a constant then it is the< 1)" derivative ofc,
where i has the same significance as it did above. Sincéothel)" derivative of the
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expressiona is zero, it therefore has class at mpst 1. In other words, one can
suppose that:
w=~A1dxg +A dx+ ... +Adep,

whereAy, As, ..., Apdepend upon only, X, ..., % . If A¢is independent ofy, xa, ..., %
then one comes down to the first case, and the thesr@noved. [fA; depends upon
only xi, Xo, ..., X thenwtakes the form of an expressionpivariables, and the theorem
is likewise proved.

20.Introduction of a remarkable complete systenmConsider a Pfaff expression of
classp in n variables:
w=A1dxg +A dx+ ... +A,dx,

and the equation that one obtains by equating the diffetexpressiond®? df to zero,
wheref denotes an arbitrary function &f, X2, ..., X, . Upon writing down that this
expression is identically zero, one obtains a certaimber of partial differential
equations fof that are linear and of first order.
Consider a transformation of variables that makesw depend upon onfy
variables:
w=B1dyr +Body, + ... +Bpdyp,

and letg be the function of1, y», ..., Y thatf is transformed into. It is clear that the two
equations:

(13) P2 df= 0,

(14) @2 dg=0

transform into each other under the change of variableshat the system of partial
differential equations fof that is equivalent to equation (13) is transformed it t
system of partial differential equations fgrthat is equivalent to equation (14). Now,
this latter system is, first of all, comprised of dguations:

5) 09 _ 39 _ _9¢ _

ayp+j|_ B ayp+2 h ayn

Becausad® ? is not identically zero (since otherwige and in turn,c would not be of
classp), the coefficient ofdy, dy, ... dy,-1, for example, ind@”? is not zero, and
consequently equations (15) are obtained by annulling théaesefs of:

dyl dyz dyp—1 dyp+1, . dyl dy2 dyp—1 dyn

in the right-hand side of (14).
Other than equations (15), equations (14) provides one andpalgquation fop
that one obtains by taking the coefficientgf dy- ... dy,, namely:
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(16) 131%+ﬁ2%+...+ p% =
ay, "oy, ay,
in (14).

Equation (14) is therefore equivalent to the systengoégons (15) and (16). Since
the s are functions ofs, Yo, ..., Yp, that system is obviously a complete system that
admitsp — 1 independent integrals that are functiong.ofo, ..., Yp .

Upon returning to equation (13), we see that it is equivatea complete system that
admitsp independent integrals. The integration of that systdm the Mayer method,
for example — amounts to the integration of a systeordihary differential equations in
p variables.

We call this systerthe adjoint complete system to the Pfaff expregs)on

21.Example~ Consider, for example, the Pfaff expression in Vi&aables:
(17) W=X1 X3 UXe + X1 X2 dX3 + (X1 + X3 X5) UXs + X3 Xa X5 .
Here, one has, upon performing the calculations:
W =Xz dxg dxo + X2 dxqg dxg + dxg dxa + X5 dxs dxa + Xg dXg dXs,

W' = 1a? = X3 X5 dxq dxe dxg dXg — X dxq dXs dXg dXs + Xg X4 dxq Ao dX dXs,
so
' = wa" = 0.

The expressionw is therefore of fourth class. The adjoint complggstem is then
given by the equation:
o df = ad df = 0,

and must therefore admit three independent integrals.n Yedorming the calculations,
one finds for the preceding equation:

o df = (X Xs dxy dxo dxg + X5 X dx dXe dXs + X2 X3 Oxq dXg dxg

+ X2 X3 Xg 0X1 dXs dX% + X3 X4 dX dXs dXs
+ X1 X3 X5 UX% dX3 dXs + X1 X3 X4 OX% dX3 A% — X1 Xa X3 dXs AX4 OX)

which gives the system fér

() In the case whengis even ana is equal t, it is the first auxiliary system that one finds ih @l
the methods of reduction.
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of _ of . of _
0% ° 0% 0%

This is indeed a complete system that admits the thdspendent integrals / xs,
XoX3 + X4, Xa X5 .

22.Properties of the integrals of the adjoint complete syster@onsider a Pfaff
expressionw of classp and one of thg independent integrals of the adjoint complete
system. Make a change of variables by taking that patiategral to be one of the
new variabley: . The expressiowthen becomes a certain expressmm yi, Vo, ..., Yn,
and one has:
(ﬁp—Z) dyl =0.

That equality expresses the idea that if one regards a constant itwand one setgy;

= 0 then the expressiom;, thus obtained has itp ¢ 2)" derivative equal to zero. In
other words, the expressian has class at mogt — 2; moreover, it certainly does not
have a lower class, or else the introduction of entierdy; could not makewo have class
p.

Conversely, ifm has clasp — 2 then its§ — 2) ™ derivative is zero, or furthermore,
the expressio”? dy; is zero.

An integral of the adjoint complete system is therefore a functioat fréduces the
class of the Pfaff expression considered by two units when one £duatan arbitrary
constant.

Naturally, this statement implicitly assumes thathatsame time that one coupies
X2, ..., Xn by the relation:

f(x1, X2, ..., %) =@

one couples the differentials by the relation:

df = idxﬁi d)%++i d)ﬁ =0.

0%, 0%, 0,

Therefore, in the example that was previously treateshe takes the integral / xs
of the adjoint complete system then the substitutibax; for x; andadx for dx; must
reduce the class @by two units. Indeedwbecomes:

(18) {w=ax§d>§+a>§>sd>5+ (& 3 de xxd
=xdlax x+(a %) A,

and is no longer of class two.
23.Reduction of a Pfaff expression of class p to a canonical fer@iven a Pfaff

expressionwof classp, letf; be an integral of the adjoint complete system. dictam the
equations:
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(19) P4 dfy df = 0,

wheref denotes an arbitrary functionxf xo, ..., X, . If one makes a change of variables
by takingf; to be one of the variablgs then if that change of variables transforammto
w andf into ¢ then the preceding equation becomes:

(20) @™ dy, dg = 0.

If one regardy; as a constant itvand ¢, and one makedy; = 0 everywhere then this
equation can be further written:

(21) of*dg =0

Sincew has clasp — 2, one sees that it is equivalent to the adjointpdete system to
@ . This system admits — 3 independent integrals that are functiong.p¥s, ...., Yn,
and also the constapt . Upon going back to equation (20) and no longer regasdiag
a constant, one sees that the equation is equivalantdmplete system that adnjis- 2
independent integrals, among whiclyis

Finally, equation (19) is equivalent to a complete systbat admitsp — 2
independent integrals, among which one finds the funétibself.

Those of the integrals f of the complete system that is equital¢h®) that are
independent ofifare functions such that the relations:

(22) {f:& i

df =0, df. =0,

reduce the class abby four units. The proof is absolutely the same as in the preceding
case.

From the Mayer method, these functions are giverhbyiritegration of a system of
ordinary differential equations m— 2 variables.

It is indeed clear that when it is practical to infee @f the variables as a function of
then — 1 other ones from = a, it will suffice to integrate the adjoint completgstem to
the Pfaff expression that results fraoby that substitution.

One can then continue step-by-step. Lettindenote an independent integrafoin
equation (19), one considers the equation:

(23) P ® dfy df, df = 0.

This equation is equivalent to a complete system thaitag — 5 independent integrals
of f; andf, and these integrals are functidrsich that the relations:

(24)

=a, fi=a, f,=a,
df =0, df =0, df,= 0

reduce the class @by six units, and so on.
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Having done that, two cases can present themselvesdaayto whethep is even
or odd.

24.Canonical form for an expression of even clasH.p is even and equal ta1® for
example, then thar(— 1)th complete system will be given by the equation:

(25) ¢ dfudf ... dfns df= 0,
and them™ one will be, in turn:
(26) wdfydfy ... Ao dfvs df = 0.

It is clear that this will give functiorfg, such that the relations:

(27)

fl:al’ f2:a21"" fm-lz%y fm:a'm’
df. =0, df,=0, ---,df_,=0, df.=0

renderwidentically zero. If one then takes the new varialdebey; =f1, y» =12, ..., Ym
= fn andm other arbitrary functions that are independent of akterd thencwwill take the
form:

w=B1dy; +Bxdy, + ... +Bndym.

It is clear that them coefficients B are mutually independent functions that are
independent oy, Yo, ..., Ym, Since other wiseo would have a class that was lower than
2m. One can thus taka independent variables other thanys, ..., ym. Upon changing
notations, we have the following theorem:

Theorem. — Given an arbitrary Pfaff expression of cla&as, one can always put it
into the form:

(28) w=prdxg +p2dxe + ... + Py dXm
by a change of variables, where, Xz, ..., Xm ; P1, P2, ..., Pm are 2m independent
variables.

This reduction can be accomplished by the searcbreintegral ofm systems of
ordinary differential equations im®2 2m— 2, ..., 4, 2 variables, respectively.(

25.1n the example that was treated above, onennad2; we then found an integral
x1 I X3 of the first complete system. The second one iiged by the equation:

(29) [aX; dxe + @ % X dXs + Xs (@ + Xs) X4 + X3 X4 0]

() Equations (25) differ only in form from the equatiohattpresent themselves when one uses the
Frobenius method of reduction.
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X idx2 +i d)%++i d)g =0,
0X, 0%, 0%
and can be put into the form:

ot ot ot of
(30) ox, _ 0% _ 0x, _ 0%

axX  axx x(atx) xx
One easily finds an integral, namely:

X
axXst+t@+Xs) Xg=b=X X2+ X4 X5 + X%

X

By setting, for example:
+b—agg’
X4

X1= ax, Xs=—a

and substituting this in (17), while regardiagand b are variables, one finds, after
making all reductions:
W=~ X3 (X4 + X2 X3) da+ xz db.

Here, the variables,, X, p1, p2 in the canonical form are:

i,X1X2+X4X5+

)9);(4,—>@(X4+XZ>@),>@.

26.Canonical form for an expression of odd classf p is odd and equal ton2+ 1,
for example, then the" complete system is:
(31) o dfidf, ... dfg df = 0.

Thus, iffn is an independent integralfaffz, ..., fm-1 then the relations:

f =a f.=a, .- f
32 1 ' 2 27 4 m
( ) { fm

a‘n!
df, =0, df,=0, -, df =0

makeswhave first class; i.e.,exact differential dz The following theorem results:

Theorem. — Given an arbitrary Pfaff expression of cld&da + 1,0ne can always put
it into the form:
(33) w=dz—prdxy —p2 X% — ... —Pm dXn
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by a change of variables, wherg %, ..., Xm, Z p1, P2, ..., Pm are 2m + 1l independent
variables.

This reduction can be accomplished by the searcbrnfeintegral of them systems of
ordinary differential equations im2+ 1, 2n—1, ..., 5, 3 variables, respectively, and by
a quadrature.

27.For example, take:

W= X3 X + X1 A% —X3 X5 dXs — X3 X4 AX5 + X2 AXe .
One finds that:
W =% dx—Xs dxs dx — X4 dxz dXs |
ZJ)’/' =—Xs X dxs dx4 dXs —X4 dX dxe dXs dXs ,
=0.

The expressionw therefore has class five at most; one easily cosfifmat sincer’ is
identically zero,wis effectively of class five.
Here, the adjoint complete system is:

o' df =0,
which decomposes into:

i: O,

0%
of of
X,——%—=0
* ox, X56><S

One can take;, to be one of the integrals of that complete systdihen, takex; = a,,
and form the complete system:

wdf =0,
which is:

of  of _

X,——-%—=0,
* ox, X56><S

here. The functio®, is an integral of this system. Thus, upon settprga, X3 = &, W
must become an exact differential. Indeed, one finals th

w=d(a1 X1 — & X4 X5 + a1 Xe),
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and if one no longer regards anda, as constants then one géis (

w=d(a X1 — @ Xs X5 + a1 Xe) — X Uy + X4 da ,
w=d(X1 X2 = X3 X4 X5 + X2 Xg) —X4 AXo + X4 X5 AXs .

28.Remark.— The adjoint complete system for a Pfaff expressidren put into its
canonical form, reduces to the equation:

pi+ p i+...+ nni:()
“op, ' op, o,

in the case where the class is even, and to the equatio

ﬂ:o
0z

in the case where the class is odd. It thus adnatgwttependent integrals:

P P P

X1, X2, ..y Xmy ,
Pn  Pn Pm

in the former case, and the independent integrals:

X1, X2, «ooy Xm, P1, P2y ---5s Pm
in the latter case.

One sees that all of the integrals of the compdgstem that one encounter in the
reduction satisfy the adjoint complete system, sihe@tintegrals that are used here are
X1, X2, vvey Xm -

Later on (IV, 69, 70, 75), one will give a new form inuich one can put the
equations of the successive complete systems thatdeeiihe reduction.

() The Frobenius method of reduction for the expressionsdfclass differs from the one that we just
presented in that it begins by determining a fundtisimch thatv— df is only of class .



lll. — Total differential equations.

29. The total differential equations that we shall occopyselves with are the ones
that one obtains by equating a Pfaff expression to zero.

To solve an equation of that nature is to find a systefmite relations betweenry,
X2, ..., Xm Such that these relations between the variables &ndris that one deduces
between their differentials annul the Pfaff expressio

We shall first propose to find, in a general manner,fah® systems of equations that
annul a Pfaff expression. In that regard, any Pfafiression can be assumed to be of
odd class, since one can always reduce the class aifffaeRpression of even class by
one unit because by dividing by a convenient factor. Thasdhation:

p]_dX]_ +p2dX2 + ... +pmd><m: 0
can be written

dxm, + &dxl.f-& d)%+...+ P d)ﬁl—l =0,

m m m

where the left-hand side has clags-21.

30. Minimum number of equations that annul a Pfaff espron — Consider a Pfaff
expressionwof class tn + 1 (or 2n + 2) that has been put into canonical form, and seek
to solve the equation:

(1) w=dz-prdxs—pdx%— ... = pndxn=0

by means of a minimum number of relations betwaeRry,, ..., Xm, Z P1, P2, ..., Pm, and
the other variables that do not enter imtcexplicitly. A first solution is provided by
equatingxs, Xz, ..., Xm, Zto m+ 1 arbitrary constants, which gives+ 1 relations. | say
that it is not possible to satisfy equation (1) withmaber number of relations.

Indeed, equation (1) expresses the idea that therdemsatone relation betweenx,
X2, ..., Xm . Suppose that there are exadtly 1 of them, and, more precisely, these
relations can be put into the form:

X = 01K Xz X))
X2 :¢2()91+1’ )qﬂ+2""’ Xn)’

(2)
X = B (Kaas Xz o0 %),
Z=Y (K Kuzreeor Ko)-

Since the variablegh:1, X2, ..., Xm are not coupled by any relation, equation (1)

gives:
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oy 09, 09, 09, _
“p- R o= = P, =0,
Oy Oy 0%y, 0%y
) N T ,
oy 09, 09, 09, _
_ _ =0
o P P P oy P

Thesem—h new relations (3) are mutually independent and independeofuations
(2). Along with (2), they form a systemwif+ 1 equations that solve the problem.

At the same time, one sees that in order to get ts general solution, it suffices to
append to these equations an arbitrary number of other i@mpathat form an
algebraically compatible system with the first on€3ne can takep:, ¢, ..., ¢, to be
absolutely arbitrary functions, the numltebeing equal to O, 1, 2, .m. The particular
solution that was obtained above is obtained by takiargm, so the functiong and ¢
are then constants.

31.In order to make what we just said about the general@olid the equation:
(1) w=dz-prdxs—pdx— ... = pndxn=0

precise and complete, one directly looks for all ef slgstems of relations that satisfy that
equation, and for which a given system of valups..., X2, z, p;, ..., p5, constitutes a

simple example; i.e., such that in the neighborhoothisf system of values, a certain
number 2n—h + 1 of the variables can be expressed as holomorphstidas ofh other
ones, or, what amounts to the same thing, one lookslf®ystems of & — h + 1
relations such that the left-hand sides of these ioewtare holomorphic in the
neighborhood of this system of values and the functidesdrminants of these left-hand
sides with respect to ther2-h + 1 variables are not zero for the same systemlaésa
moreover. Thé different variables of ther2—h + 1 variables with respect to which one
can solve the system will be called thendependent variables.

This being the case, one can always supposeztlsanhot one of the independent
variables; indeed, otherwise, one would have:

This equality shows that, x,, ..., Xm cannot all be independent variables, since then the
left-hand side would reduce to 1 and one of the derivadixeb0z, ..., 0xn / 0z — the first
one, for example- would be non-zero fo¢x’, ..., p2). This shows that one can deduce

z as a holomorphic function af andh — 1 other independent variables, and that, in turn,
one can replacewith x; as an independent variable.

One can likewise suppose that amonghtiedependent variables that are taken from
the x andp, there are not two of them such»sand p;, in other words, that thede
variables havé distinct indices. Indeed, otherwise one would have:
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DOy p) , DOG R, DO Pw) _
D(x,p) D(x, p) D(x, p)

upon considering the derivativey, which must be zero for the system of relations
considered.

The first term in that equality is equal to 1. It thesults that at least one of the
indices is not represented in any of thendependent variables, because otherwise all of
the terms that follow the first one would be zerbthé unrepresented indices were, for
example, the lasin — a indices then only the lash — a terms in the equality could be
non-zero, and, in turn, at least one of the quantities:

0%y OXyip 0%y . 0Py 0Py,
i K i-val vt Rt
would be non-zero fo(x’, ..., p2), namely,0Xq1/ 8% . One could then dedueeas a

holomorphic function ok,1 and substitute,+; for x; as an independent variable. The
indices 1 andch + 1 would then be represented just one time amongst itdependent
variables. If there were another pair of variableshsas X., p.), then one would repeat
the same operation, in such a manner that one wouldyfiagive ath independent
variables with all of their indices distinct. This pesy in particular, thdt cannot exceed
m.

32.This being the case, suppose thatitidependent variables are:

Xll X21 ey Xa, pa+1, pa+21 ey ph .

One will then have relations of the form:

Z= X R~ X R= WX X Parees P
Xz = U (X0 X0 Rans -0 B,

(4) X UK s %0 Raareeo s B
ph+l :Vh+1(X1""’ )57' 97+1""' R)’

the functionuns1, ..., Um, Vhe1, ..., Vm, W being holomorphic in the neighborhood ©f,

ey X0y Po.s -5 Pr) and subject to the sole condition that for thisesysof values they
must take the values:

Xoets +oor Ko Pheas +oor P 2~ XguPpa ™ o = XY,
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respectively.
Upon substituting this in the total differential equatid) it takes the form:

dw—p1 dxs — ... = Pa dXg + Xge1 APgea + ... +Xq dph — Ve dUnss — Vi duy, = 0,

which immediately gives the values fof, p, ..., Pay Xo+1, ---, Xn, NAMeLly:

:a_W— auh‘”l—...—v%
pl 6)(1 h+1 aXl m axl !
_ow o O0u, ou,,
(5) a axa h+1 aXa m a)&l '
_ 0w ou, I ou,,
o apaﬂ m apa+1 " a)gﬁl ,
_ ow ou,,, ou,,
X =~ + Vi1 oot Vin .
ap, ap, %,

Formulas (4) and (5) resolve the question. Thetism thus depends upomi2- 2h +
1 arbitrary functions of arguments ant of them can take the values 0, 1, 2, m., If
we combine these two groups of formulas then welgegeneral solution of equation (1)

that admits the system of valu¢g’, ...,p2) as a simple element in the form of the
following relations:
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Z= W- ow —= 6_ Uy, R OUp,, +
I T S T "o
+Vv_ | P aum +...4 ﬂq%
m a+1 apa+l aﬂq ’
p _ow_ . Oy, OU,
d 6)(1 h+1 6)(1 n a)(l
P, = ow O,y ou,
o axa h g m axa )
__ ow 0y ou,
a+l T Vh+1 +"'+Vm ,
aF)Ll‘f-]_ apg+1 a pﬂ+l
:_a_W auh“1+...+ %
Xh aph h+1 aph m ag'] )
Xh+l = uh+11
Xn = Up
(6)
ph+1 = Vh+11
pm = le

whereun1, ...Um, Vi1, -.., Vm, W are holomorphic functions od, ..., Xz, Pa+1, ..., pPn that
are holomorphic in the neighborhood @£, ..., pJ) and take given values for that
system of values, while the first-order, partialidgtives of the first &h— 2h of them take
given values that are easy to calculate (alwaythisame system of values).

In particular, forh = m, there is only one arbitrary functiom of m arguments-
namely, ofxy, ..., Xs, Pa+1, ..., Pm— @nd one has:
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z=w—n. N W
Rr1 .. S8 ap,
_ow
S ax,
_ow
(7) pa - 6Xa '
_ 0w
a+1 apaﬂ ’
__ow
op,,
In particular, if one takesv to be a linear function gbg+1, ..., pm then one recovers

formulas (2) and (3), with a simple change of notet.

33.General solution of an arbitrary Pfaff equation.We just solved the particular
Pfaff equations (1). From that, if one is givenaahitrary Pfaff expression of clasm2
1 or 2n + 2 then one will only have to reduce it to itsicaical form. The equation to be
solved will then be of the form (1), and equati@®swill provide the general solution of
the problem. One sees thawf™? is the first derivative of even order that is alted
identically then in order to annubone must have a system of at least 1 equations
between the variables, and then one will have &nitinde of them that depend upon an
arbitrary function ofn arguments.

34.Singular solutions— The preceding conclusion can nevertheless d@riect in
certain particular cases. It can happen that itee derivative of even order of a Pfaff
expressionwthat is identically zero i/*™, so one can either annul that expression by
means of a system of less thamelations betweery, X, ..., X, or by means of a system
of at mostm relations, but those relations do not enter imtonfula (7). This case can
present itself when the change of variables thduiceswto its canonical form is illusory
for the system of values of the variables thasBathese relations. That is why the third-
order expression:

dxg — X X2 dxs

can be annulled by means of the single equation:
X1 =0,
which indeed translates into the system of two Bouost

x1:x1x2:0
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with the canonical variables( X, X3, X4). Moreover, that is why one can satisfy the
equation:
P1 dxg + ... +pmd><m: 0
with the system ofn relations:
pr=p2=...=pm=0,

which does not fall into the general type.
It is therefore important to find all of the solut®that do not fall into the general
type. In order to do this, we shall give a very singpiterion.

35.Conditions for a solution to be singular We shall prove thaif the Pfaff
expressionwis of class2m — 1 or 2m thenin order for a solution to be singular, it is
necessary that this solution should annul all of the coefficients ¢2nte 2)" derivative
of ey which is assumed to be put into its simplest form.

We suppose that the coefficientscofre holomorphic functions of the variables, and
we consider only solutions, which are general or singtiat, are defined by a certain
numberh of equations whose left-hand sides are holomorphic imeéfghborhood of an
arbitrary system of values that satisfies these equsatend the functional determinants
of theseh left-hand sides with respect hoarbitrary ones of the variables are not all zero
for this same system of values.

This being the case, we shall prove that if the cdieffts ofS*™2 are not all zero
for an arbitrary system of values of the variables tbhatesponds to a given solution then
that solution iggeneral- i.e., one can obtain it by the procedure presenteceabov

Indeed, first consider the equation:

(8) W?™2 df = 0.

If whas classra then this equation is equivalent to the adjoint comgstem tacwand
admits Zn— 1 independent integrals. This complete system is thoeédfromn — 2m +

1 independent equations. dfhas classr? — 1, and if one takes the variablgsys, ...,
Yn such thatwdepends upon only, y», ..., Yam-1 €Xplicitly then equation (8) is obviously
equivalent to the system:

N S

Now  Womas ay,

and, in turn, to a complete system that admits-21 independent integrals and forms
2m + 1 independent integrals. In any case, equatiofufBjshes a complete system that
shall call theCOMPLETE SYSTEMthat is adjoint to the total differential equatian=

0 and which admit2m — 1independent integrals.

36. This being the case, we return to our particular soldiod let:

040+ %)
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be an arbitrary system of values that correspond @b gblution. By hypothesis, the
coefficients ofaf*™?, which has degreen®— 1, are not all zero for this system of values.
For example, suppose that the coefficient of:

dx; dx ... dXom-1

is not zero. Since the expressiafi™? results from the product af®™™ with ¢, it
then results that the coefficients of the variousiamials inc*™™ that are formed from
the differentialglx, dx, ..., dxm-1 are not all zero, always for the same system of galue
For example, suppose that this is true for the coeftioé

dx dx ... dxom—2 .
We can continue in that way and assume that:

The coefficient ofix; dx ... d%my  in *™ 2 is not zero,
g dxo dxs ... domo i 2™«

Under these conditions, consider the adjoint comgstem to the equatiow = 0.
In order to form it, take the total coefficients oé thonomials:

dx dx% ... dxom-1 OX%m,
dxg dX ... dxom-1 Xome,

dxs dx ... dXom-1 dX%

in the left-hand side of (8). From the hypotheses st made, we will thus hawve—

2m + 1 equations solved fmi, of L ey i while the coefficients of the other

0% Moy 0x,
derivatives are holomorphic in the neighborhoodkdf X2, ...,x°. Since the complete

system contains exactly — 2n + 1 equations, it is determined completely. We see,
moreover, that from the theory of complete systdinis system admit2m — 1

independent integrals that are holomorphic in treghborhood ofx’, X, ...,x° and
reduce to X=X, X2 =X, ...y Xom1 = X5, fOr Yom = X0, Xome1 = Xogs ooy Xn = X0 We
takeu; to be the one of these integrals that reduces to«’. Upon neglecting terms of
degree two and higher, that integral is therefore ofate:

U = X1 =X+ Qom(Xem = X)) + Qome1(Xomes = Xoer) + -+ 00(%0 = X7).
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If one equatesi; to a constant, and one takes into account the facttia 0 then
the expressiomwno longer has class?— 2 or 2n — 3, since its (@& — 2)" derivative is
annulled, and its class cannot be reduced by more than tvgo unit

37.We now consider the equation:
9) &™) dy, df = 0,

which, from the preceding, is equivalent to the adjoamhglete system to the equatian
= 0, where one makes = const.

This complete system admitei2- 3 independent integrals, and if one does not regard
u; as a constant then it admits12 2 independent integrals. It is composed of2m + 2
independent equations. In order to find them, here, it sgffic take the coefficients of

dxg dx% ... dom2 dem1, dX dx ... dom2 d%m, ..., dX dx ... dxem2 dX% . These
coefficients contain the derlvatlvesaf— o i , respectively, multiplied by a
%1 6x ox.
coefficient that is non-zero, by hypothesis, as wsllsame terms |ni (;’)_f
0x  OX
of

aX2m—2 .

Upon equating these coefficients to zero, onerha$2dm + 2 independent equations
that one can consider as being solved—fglf— o .. i , While the coefficients

%1 6x L ox

of the other derivatives are holomorphic in a nelghborhn‘oxf, X, ..., X. Thesen -

2m + 2 are the equations of the desired complete sys@ne sees, moreover, that this
system admitsr@ — 2 holomorphic independent integrals that reduce to x’, X, —x;,

0 .
.y Xom-2 = X, fOI:

— 0 — 0 — 0
Xl_ X11X2 _XZl ---,X2m—2—X2m_2,

respectively. The first one is nothing hyt. We denote the second onelay. Up to
terms of higher degree; has the form:

U2 =X =% + Bom1(Xem1 = Xon1) + Boml¥em =X ) + ... + Ba(Xa = X7).
We then continue by forming:
(10) *™® du, du, df = 0,

an equation that is equivalent to a complete systenmathaits a holomorphic integres
that reduces t& —x; for:

— 0 — 0 —
X2m—2—X2m_2, sz_l_XZm—ll ey Xn_le
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and so on, up to the complete system:
wdy dw, ... dunq df =0,

which will admit the holomorphic integral, that reduces t&y, —x°, for:

erH-l:X21+11 Xm+2:X,?1+2, ey Xn:)ﬂ?
38. We thus finally arrive atn holomorphic functions, in all:

ull u21 ey um,
reduce to:

X1 = X X2 =Xy ey X = X5y
respectively, when one sets:

Xt "Xy, =Xz ™ Xp = e S X 7%= 0.

Moreover, w becomes zero when one gives constant values to tinésections, in
such a way that one has an equality of the form:

(11) w=Cidy +Codw, + ... +Cduy.

The C coefficients are holomorphic functions in a neighborhobd?, X2, ..., x°.
Indeed, if one makes a change of variables by taking:

yl = ull y2 = u21 sy ym = um,
Yt = Xmsl = Xy ey Y =X X

then any holomorphic function of the old variable in te@hborhood ofc’, X, ..., X

is a holomorphic function of the new ones in the nesghtbod ofy; =y, = ... =y, =0,
and conversely. In particulatwy remains holomorphic in the neighborhood of z¢s)
and since it must contain ontly, dys, ..., dym, it then results tha€i, C,, ..., C, are
holomorphic.

One sees, moreover, th@’ is non-zero, because the developed expression (11)
gives a quantity for the coefficient dk, whose values fot’, X7, ..., X°, which is, by
hypothesis, non-zero, is nothing KOf . It then results that in a neighborhooddf X,

..., X the total differential equation is equivalent to the ¢iqua
C

C C
12 dun+ =2du +—=2du +...+—2L dy__
(12) Um C U C u C U1

=dun—viduy; — ... = Vi1 dU-1 = O,

m m m
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where thev are again holomorphic. Finally, if one reducgsus, ..., Un, V1, Vi, ..., Vm1
to their terms of first degree then one obtaims—21 expressions of first degreexi) xz,
.., Xn that must be independent.
Indeed, it is only these terms of first degree thatimvelved with expressing the

value of the coefficients af®™2 when one setg; = x°, X2 =X, ..., %, =x°. If these 2
— 1 quantities are not independent then they furnish a @&fpfession of class at mosh2
- 2, and consequentlg®™? will be zero forx; = X, x2 =x2, ..., X, =x°, which is
contrary to hypothesis.

39. 1t ultimately results that ¥, v4, ..., Vm take the values?, V3, ..., vo_, for x; =
X', X2 =X, ..., X» =X’ then one can make a change of variables by taking the new
variables to b&i, Up, ..., Un, Vi — V0, Vo = V5, ..., V1 — V2, @andn — 2m + 1 quantities;

-x’. Any holomorphic function of the old variables in theighborhood ofx’ will be

holomorphic in the new ones in a neighborhood of their zexlaes. The solution
considered will then transform into a solution that eord the system of zero values of
the variables and annuls the expression:

dun—vidu —vo dp — ...— Vi1 dUn-1 -

It can be provided only by the general process of soluticthat total differential
equation.

One will have an infinitude of systemsmafm+ 1, ..., 2n— 1 dependent functions of
arbitrary variables, to which one adds, if necessarytrarpiequations in an arbitrary
number ifn is greater thanrd — 1.

The problem that we just solved is, in short, thiefahg one:

Find all solutions of the equatiow= 0 that admit a point (or system of valugsy,

X0, ..., X) that does not annul all of the coefficients of (o — 2)" derivative ofwfor

a simple point.

One sees that all of these solutions are given by fasrihat all fall into a finite
number of types that depend upon arbitrary functions.

40.Search for singular solutions: From the foregoingwe call a solution whose
points all annul the coefficients a#*™2, which is assumed to be reduced to its simplest
form, aSINGULAR SOLUTION.

If one equates all of these coefficients to zerao thee has a system of equations that
can be algebraically incompatible, and then there isingukar solution; they can also
decompose into several other incompatible ones. Eatieof can be put into a form
such that the left-hand sides of thequations that comprise them are holomorphic with
respect to an arbitrary system of values of varialilasdatisfy the system, and such that
the functional determinants of thelsdeft-hand sides with respect koarbitrary ones of
these variables are not zero for the same systesmlwds, moreover.
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This being the case, consider a well-defined singular ealatind an arbitrary simple
point (X, X5, ..., XJ) of that solution. If the two conditions that were meuated above
are verified for this point then one can dedirc®f these variables as holomorphic
functions of then — h other ones and substitute them im0 One then has a new Pfaff
expression that is holomorphic in a neighborhoodafx;, ..., X, and which will be of
class at mosem — 2. One will come down to looking for solutions to #dggiation thus

obtained by equating this expression to zero.

If the second condition, which relates to the fun@lodeterminants, is not realized
for all the points(x’, X7, ..., X}) of the solution considered then one has a higher-order
solution of the singularity. One will get all the soduts by adding to thie solutions that
were found above, the ones that one obtains by equatingfathe functional
determinants of their left-hand sides with respedt td the variables to zero. One thus
obtains a new system kf h equations that one can put into a form that satidfieswo
conditions stated above. One proceeds for the segstehsas one did for the first one,
and so on.

These operations necessarily terminate, becausesonecessarily dealing with a
finite number of total differential equations of lower orttean the given equation. Each
of them can lead to other total differential equatiolm®se order will be less than their
own. It is indeed clear that this will conclude aftdiniie sequence of these operations.

41.Examples— Take the Pfaff expression:

(13) W=Xsdxg + X3 dx + X1 dxg + X dXs .
Here, one has:

o =dxdx + dx dx,

o ==-x dxdx dx— x dxdyx de xdxdxd
(14) +x dxdx dx— x dx dy dx
" =-x dxdx dx dx dx

w”" =0.

Thus,m = 3, here. The singular solutions are the ones fochwime has:
X4 =0,
since the only coefficient oY is x;. If one replaces the variabte with zero inwthen
one gets the equation:
w=Xzdx =0.
The general solution to that equation is:
X2 =a,

and the singular solution is:
x3 = 0.
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As a result, the singular solutions of the equationO are:

(15) X1 =0, X =a
and
(16) X1 =0, X2 =0,

and the ones that one gets by adding arbitrary equaticeech of these solutions.

Here, the general solution is given by at least thgeateons, whereas one has
singular solutions that are comprised of just two equati

42. Once again, consider the Pfaff expression that head served as an example:

W= X1 X3 X + X1 X OXz + (X1 + X3 X5) AX4 + X3 X4 UXs .

Here, one finds:

of = x5 xdx dx dy+ X dy xdx d¢ xxxdxdxgh

(17) X, dx dbg dy+ x x dydy dr XX dx g
+ X% %%, dx dx dx— x ¥ dx dx dx
W’ =0.

One thus has1= 2. The singular solutions are obtained annulling th&ficeats of
. One thus finds:
(18) X1 Xa = X3 X4 = X3 X5 = 0.

This system decomposes into three others:

X, =0, X, =0,

X, =0,

% =0,

(18)a { (18} { (18) {

The first system, as well as the second one, armmiudentically; they thus constitute
two singular solutions. The third one gives:
(19 W=X1 X3 X + X3 X2 dxg = 0,
andm =1 fora The general solution of equation (19) is immediatis; it
(20) X2 X3 = a.

As for the singular solutions, they are obtained by Binguthe x; X3 and x; X
coefficients ofem One thus has two cases: Either:

X1= 0
or
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X2=x3=0

The system (18)hus gives the singular solutions of the original equation

(21) X4= 0, Xs= 0, Xo X3 = Q,
(22) X4 = 0, X5 = 0, X1= 0,
(23) X4=0, xs= 0, X2=0, x3= 0.

The last one enters into the singular solution{I@preover.
43. Finally, consider the equation:
(24) w=A1dx + Az dx + As dxs = 0,

where theA are functions oxy, X, X3 . In the general caseywill be of third class, and in
turn, m = 2. The singular solutions will be furnished by annulling toefficients of
*™? = ¢5. Now:

o AR ) A ] e
0%, 0%, 0% 0% 0% 0X
here.

If the quantity inside the brackets is identically zéven one can satisfy equation (24)
by just one equation that depends upon one arbitrary paamétherwise, in certain
cases, upon annulling that quantity one might get a singalation that might be formed
from the only relation thus obtained, but which will geally need to be completed with
another relation. That is why upon taking:

(25) W= x(1=x =) dx+ x % dx+ % d,
the equation that is obtained by annulling the coefficiémtf is:
2% %,%(% + %+ %-1) = 0.

This equation decomposes into four other ones, and wlemadahem is treated
separately, one is finally led to the following singulausons:

(25) X =0, X+ X2 =4,
(25) X =0, 23X =X+ X =a,
(25) X1 =0, X3 = &,

@5k Kg+g =1

Of course, from each of these solutions one deduc&sfinitude of other ones by
adding arbitrary equations to the equations that deternmame. th



IV. — Systems formed from several finite equations
and one total differential equation.

44. Given a total differential equation:
(26) w=~Adxg+Ado+ ... +A,dx, =0

and a system df finite equations in the variables:

fl(Xl,X ,...,)‘1): 0,
(27) f, (X, %01 %)= 0,
fh(xlaxg,...,)%): 0,

one addresses the problem of satisfying equation (26) by raéansystem of equations
that consist of equations (27).

We suppose, as always, that the left-hand sides oftieqsg27) satisfy the two
fundamental conditions that were stated above thattereo all the systems of equations
that we are concerned with.

Before solving the problem, we shall prove a theoremishanportant in itself, and
which has already helped us implicitly.

45. Class of a Pfaff expression, when one supposes that the variablesuated by
given relations— Consider the Pfaff expressiam Suppose that one dedudesf the
variables as functions of the— h other ones from equations (27), and one substitutes
them intocw That expression contains more timanA h variables. | say thahe class of
that new expression is the smallest whole number p such that effecieats of the
expression:

(28) P dfy df; ... dfy,

which is assumed to be reduced to its simplest form, are allbzevirtue of relations
(27).

Indeed, suppose that the functional determinamt, &f, ..., fn, with respect toq, Xz,
..., Xn IS not identically zero. One can then take the wamable to be:

yl = fla y2 = f21 ey yh = fha yh+1 = fh+1l ey yn = fn,
and any holomorphic function of the old variables will bgogomorphic function of the

new ones, and conversely. If one letslenote whatw becomesunder this change of
variables then expression (28) transforms into:

(29) @ dy; dys ... dy, .

It is indeed clear, moreover, that each coefficien{28) is a linear combination with
holomorphic coefficients of the coefficients of (2Mdaconversely. (The coefficients of
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these expressions are taken once the reduction tontidest form has been performed.)
Now, the coefficients of the expression (29) are #maesas those aff”, where one has
removed the terms that contain the differentidis dy», ..., dy, . Therefore, if one takes
the relations (27) into account in the coefficientsa#)(then this amounts to setting, on
the one hand:

dyy =dy, = ...=dy, = 0,
and on the other:

in .
Let an be whatawbecomes when one makes these substitutions. dsjste see that
a changes int@o, under these substitutions. Indeed, if:

w=B;dy + ... +Bp dy + Bnep dyher + ... + By dy;
then one has:
b = B|?+1dyh+1+"'+ B?dyu
from which, one infers that:

a 0+i a +i
w:) = Zth dyh+id¥1+j = Z(Gij dyh+i d}ij y
0

ihj h+ ihj h+j

where the index 0 expresses the idea that ongisetg, = ...=y, = 0. One indeed sees
that o, is deduced fronad by setting:

Vi=Vo= ..=¥h=dyr =dy, = ...=dy, = 0.

Under the latter substitutiory changes int@m anda@ into @), so it is clear thaid*
changes intow) and thatw® changes intoma,’, and in other words, thai”
changes intao” .

One sees from this that the necessary and sufficamdition for the coefficients of
(28) to be zero by virtue of (27) is tha” must be identically zero, or, sinag is what

wbecomes when one derivasxy, ..., X, from (27), that the class @dis at mosp, after
the variables in it are linked by the relations (27hisTconclusion proves the theorem.

46. General solutions to the proposed problemAfter that, we return to our
problem and suppose thatis the smallest whole number such that the coefiisief:

(30) ™ dfy df, ... df,,

are all zero by virtue of (27). The general solution$ va the ones, by virtue of which,
the coefficients of:
(31) *™ 2 df, df, ... dfy,
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will not all be zero. In particular, the functiorddterminants ofi, fo, ..., fn with respect
to anyh of the variables will not all be zero for theseusioihs, since otherwise the
expressiondf; df, ... df, would have all of its coefficients zero (those cmeédhts are
these functional determinants themselves) and the wemlel be true for the expression
(32).

From this, if (X, X, ..., X)) denotes an arbitrary system of values that corresjgond
a well-defined general solution then one can dehiv& the variables as holomorphic
functions of the other ones from (27) in a neighborhob@x’,x?, ..., X°), and if one

substitutes them intewthen one will come down to solving a total differengglation
whose left-hand side will be of ordemar 2m - 1, while the derivatived*™? does not
have all of its coefficients zero for the systenvalues(x’) considered. One will arrive

at this stage by consideringh successive complete systems and determining a
holomorphic integral for each of them.

47.Here, one can give the following form to these cotepsystems. The first one
will be equivalent to the equation:

(32) *™ 2 df, df, ... df, df= 0,

where the variables are assumed to be coupled by thgomslg27). Iffpg is a
holomorphic integral that does not reduce to a constant yevof (27) then the
complete second system will be:
(33) ™2 df df, ... dfy dfves df = 0,
and so on, up to:

wdfy df; ... dfyem-g df =0,

which will give a holomorphic integral,.m . We will thus havem independent
holomorphic function$hs1, fre2, ..., frem , While likewise taking (27) into account. One
can, moreover, arrange that the equation to be solyad isto the form:

(34) dfhem = @1 dfir — ... = Phem-1 Af o1 = 0,

where theg are also holomorphic in a neighborhooddf ..., x°. One will thus be in a
position to find all of the solutions that admit the pdixt, ..., X°) as a simple point.

48. Singular solutions— In order to have singular solutions, one must append th
relations that one obtains by annulling all of the ticehts of the differential
expression:

(31) &*™2 dfy df, ... df,

to equations (27). One will thus have a new systeralafions, and one will be, in short,
reduced to a problem that is analogous to the first oregpéxhat the integen will
become larger. For this new problem, we will havea va@luem' for mthat is equal to
at mostm, and it will admit general solutions and singular soluithat will be given by
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the solutions of a third problem, whehnewill again be augmented. It is clear thmat
cannot exceed the number 1, so these operations will terminate.

49. Solution of a total differential equation by means of a given number of equations
— The new problem that we propose is the following oneefsithe total differential
equation (26), solve that equation by means biite relations between the variables,
among whichh <r are given relations (27).

To that effect, we shall first prove thiita system of r relations annuls the Pfaff
expressionwthen all of the coefficients o™ are zero by virtue of these relations.

50. Indeed, let:
f,(X, %,...,%)=0,
f ., x)=0,
(35) Z(Xl’ XZ’ )41) O
fo (%, %, %)=0

be the system af relations that annula  One supposes that the left-hand sides always
verify the same two fundamental hypotheses. If thetioinal determinant of, f5, ..., f;

with respect tox;, X, ..., X IS not zero by virtue of (35) then we can take the new
variables to be:

yl:fl, y2:f21 ey yr :fr, yr+1:fr+1, ey yn:fn,

and from a remark that was made aboveayifansforms intowthen the coefficients of
P will be annulled by virtue of (35) at the same time as¢hofed”, and conversely.
Now, if we form the expressiom.

w=B;dy; +Body, + ... +B; dy + Bir1dyi + ... + B, dy,

then, by hypothesis, it is necessary tBai , B2, ..., By, be annulled at the same time as
Vi, Y2, ..., ¥r . Then consider:

o =L o
r ’
and sety; =y, = ...=y; = 0 in the coefficients. The termsamwhose coefficients are not
annulled cannot be the terms diy1, dy,, ..., dy. . Likewise, if a term ina@d has a

coefficient that is non-zero by virtue of (35) then itigh contain at least one of the
differentialsdy, dys, ..., dy;, since otherwise there would be a term of the form:

6 BI‘ +
oy,

r+j

dyr+i i,
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and the value of the coefficient of that term yer=y, = ...=y, = 0 can obviously be
obtained by first settings =y> = ...=y; = 0 inB and then differentiating with respect to
Yr+i , Which will necessarily give zero.

Therefore, if one preserves only the terms with nemo coefficients in the + 1
factorscwand a of @ then each term of each of these factors contaireaat bne of
ther differentialsdyi, dys, ..., dy; . Since there are more factors than differentidis,
coefficients of the total symbolic product will certgiall be zero.

The coefficients ofS® are annulled by virtue of the expressions (35) at the same
time as the coefficients @, so the theorem is proved.

One proves that all of the coefficientsadf Y are annulled in the same fashion.

51. We shall further prove a theorem that is a littlerengeneral. If a Pfaff
expressionwis annulled by means of r relations, where h of these relationgiaea by
(27),then all of the coefficients of the expression:

(36) & df, df, ... df,

are annulled by virtue of these r relations.

Indeed, the theorem is true if one first has that falhe functional determinants of
the left-hand side$,, f,, ..., fn of the h given relations with respect to amyof the
variables are annulled by virtue of the relations comsttldbecause the expressdfndf,

... df, then has all of its coefficients zero by virtue oé ttelations in question, and
consequently expression (36) does as well.

If these functional determinants are not all zerovioue of ther relations then we
can deriveh of the variables as holomorphic functions of the h other ones from (27)
and substitute them i we will then have an expressiom Moreover, the coefficients
of P dfy df; ... df, are annulled at the same time as thos&®f and conversely. Now,
the expressiomw can be annulled by meansrof h relations between the variables. As a
result, from the preceding theorem, all of the cokffits of the derivatived® " are
annulled by virtue of these— h relations. Consequently, all of the coefficientq28)
are annulled by virtue of the relations in question. The same is true for all of the
coefficients of:

&0 dfy df; ... dfy.

52.This being the case, one arrives at the solutioneoptbposed problengolve the
system of equatior{@6) and (27) by means of r — h relations that are distinct fr(2w).
One forms the differential expression:

(36) & df, df, ... df,,

and one equates all of its coefficients to zero. Ireggnone will obtain equations that
are distinct from the given equations, in such a wayttiesystem (27) will be replaced
with a new system off > h equations. Ifii is greater tham then the problem is
impossible. If not, then one forms the differengapression for this new system that is
analogous to (36), and so on. One concludes by arrivinthat a system of more than
relations, in which case, one has the impossibilitya folution, or a system &f<r
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relations for which the expressiad® ) dfy df, ... dfi will have all of its coefficients
equal to zero, by virtue of thekeelations. Then, im is the smallest whole number such
that ™" dfy df, ... df, has all of its coefficients equal to zero by virtue foé k
relations that were obtained then one will havedgéereral solution of the problem by
solving a certain Pfaff equation:

dZ—P]_ Xm— e T Pm—l erH = 0,
where theX, P, Z will be given by the successive complete systems. vdlihéhen have
an infinitude of systems ah relations, to each of which, one adds m — karbitrary
equations.
53.The singular solutions are obtained by adding the relatlmatsone obtains by
annulling all of the coefficients aff* ™ df; df, ... dfi to thek relations in question. One
will then have a new system of relations, and oneaaithe back to the original problem,
but h will be augmented. One sees how one continues, anthdeed accounts for the
fact that all of these operations will have a coriolus
The solution that was just presented includes the dmerewvthere is no relation
between the variables givarpriori (i.e.,h = 0) as a special case.
54. Example— Take the example that was treated before (13):
wW=Xs dxg + X3 dx + X1 dXg + X dXs .
One seeks to annubby a system af = 3 relations whosk = 1 relation is given:
X4 = 0.

Here ¢ — h = 2), so one must form the expressioi dx, . Now, upon referring to the
value (14) fore)”, one finds that:
¥ dxs = 0.

Here, there are general solutions then. Since one has:
W dxy == X5 dxg dxe dxs dXxg + X1 dXe dxs dXx dXs

the numbem is equal to 2 here, and the general solutions are tletbaedo not annul
bothx; andxs simultaneously. Upon setting = 0 in (37), one finds that:

=X dx + X3 X + X A% = X3 dx + d(X Xs5) = 0.
The general solution of the problem will then be provided by
X =0, X1 X5 = P(X2), X3 =— @’ (X).

The singular solutions must consist of the 3 relations:
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X1 =X4 =% = 0.

One must therefore annul the coefficientsudx dx dxs , sincer —h=3 -3 =0. Now,
one finds that:

wdx dxq dxs = — X3 dx dxe dxq dxs .

One must then append the equation:
X3 =0

to equations (40), which gives more than three relatidrere is therefore no singular
solution.

55. Another solution to the same problemThe equations that one add to the given
equations (27) in the general case, namely, the one®iieabbtains by annulling the
coefficients of the differential expression:

(36) & df, df, ... df,,

are all very complicated if is large, since they depend on the partial derivativds of
functionsf, ..., fn . In a very extended casene can substitute other equations that are
much simpler to define for them.

We first remark that any solution of the problem wdldsolution of the system:

w=0,
@) o

and consequently, sin¢eis equal to 1 here, one must annul all of the coefiisi of the
expressiond® @ df, . We thus see already that one will have to add thetiegsahat
one obtains by annulling the coefficientshadifferential expressions:

(38) S Adfy, (=12, ...h
to equations (27).

Likewise, ish is greater than 1, one will, by an analogous argumeng, teaannul all
of the coefficients of the differential expressions:

W Vdf df
39 o i,j=1,2,..,h).
( ) {CJZr —4)dfi df] (I J )

The expressions (38) and (39) contain only the derivatf/as most two functionk
Here is a theorem that permits one to restrict dhésehe consideration of analogous
expressions in three very general cases.



Cartan — On certain differential expressions and the pfafiiem. 44

56. Theorem.—Suppose one is given a system of h relations:

fl(Xl,X ,...,)‘1): 0,
(27) fo (%, X000 %) = 0,
fh(xlixg,.. ,)%): O,

whose left-hand sides always satisfy the same conditions relatittleeir functional
determinants.

If one considers only systems of values for the variables thattyg&r$ and do not
annul all of the coefficients in the expression:

a)dfl dfz dfh
or, at the same time, those of ™ and &2, then they do not annul those of the
expression:
&3 df df; ... dfy
either.
Furthermore, under the same conditions:
1. If these systems of values do not andfil™ then the equation:

(36) & dfy df, ... df, = 0

is algebraically equivalent to the equations:

(40)

2r-2) -
{(Af df =0, i,j=1,2,...,h.

o Idf df =0

2. If these systems of values do not arwdtil® then the equation:
(36) & df, df, ... df, = 0
is algebraically equivalent to the equations:
(41) S df df = 0 i.i=1,2 ..h).

3. If these systems of values do not andfil? then the equation:
(42) ¥ df, df, ... df, = 0.

is algebraically equivalent to the equations:
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(43)

2r-3) -
{Of df, =0, i,j=1,2,...h.

o~ 9df df, =0

The integeth is assumed to be equal to at least one in theand third cases, and
equal to at most 2 in the second case. Finidltile coefficients of36) and (37)are zero
then the same thing is true for thosecd) in the three cases, and in addition,«df ™
in the last case.

We shall first prove the following lemma:

57. Lemma. — Suppose one is given a differential expressimf second degree and
h + 1differential expressions) a, ..., a of first degree in n variableg x¢, ..., X, .

1. If the coefficients ofd are not all zero for a certain system of variables that do
not annulwa ... a then the coefficients of:

d"wa ... w
are annulled for this system of values only at the same time asofiibseexpressions:

d wa, dw o (i,j=1,2, ..h),
and conversely.

2. Under the same conditions, if the coefficientsuaf * are not all zero then the
coefficients of:
dwa ... w
are annulled only at the same time as those of the expressions:
d2ww g (i,j=1,2,...h.
3. If the coefficients ofud ™ are not all zero then the coefficients of:
d'wa w ...
are annulled only at the same time as those of the expressions:
dw, d?wwg (,j=1,2 ..h).
In any case, the coefficients of the expression:
d " ww w...a

can never be annulled simultaneously.
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Without changing any of the conditions of the statdmene can suppose that the
coefficients of the expressioms w w, ..., ay keep the constant values that they possess
for the system of values for the variables that veassicered. This amounts to supposing
thatw @ a, ..., ay are the differentials of linear formsxg X, ..., X, .

This being the case, the hypothesis that was made oprdkdect w w, ..., ah
expresses the notion that thdse 1 linear forms are independent. Moreover, one can
perform an arbitrary linear substitution with a non-zéeterminant on the laktof them
without changing any of the conditions of the stateméimally, one can likewise make
an arbitrary linear substitution with non-zero determinam then variables in such a
manner as to have, for example:

w = dxy, w = dxp, ah = dx, w=dx, .
58. This being the case, the set of termavithat contairdx, is of the form:
dx, du,

whereu is a certain linear form im, X, ..., X1 that can be identically zero. Now,
consider the terms that do not contdxq. If we let:

I,], ... denote the indices 1, 2, .h,and
AU “ h+1,h+2, ...,n-1

then we see thatis composed of three groups of terms, in additioaxtalu

1. Terms of the form A;; dx dx ,
2. ‘ Aidx dxy
3. ! A/l,,u dX/l d)SU .

Suppose that the coefficient of:
X1 OXns2

in the third group is non-zero. We the make a changar@dhles by taking:

n-1

X = zAp,h+2Xp |

p=1
n-1
A
Ah+1, h+2 Xh+1 - z Ah+1,p Xp '
p=1

We then see that the produttX ,,dX,, contains all of the terms itix..1 anddx.., that
are found inw— dx du. Therefore, upon taking;,, and x,, instead okn.1 andxn:2, @
— dx, duno longer contains terms iix,,, anddx,,,.

Upon removingdyx,,,dX,,, we will have an analogous expressiomin 3 variables.
In this new expression, there will be terms of thedtlgroup, so we can repeat the



Cartan — On certain differential expressions and the pfafiiem. 47

preceding operation until all of these terms are absknbther words, we can suppose
that the terms of the third group are:

dXe1 OXez + AXs2 AXea + ... + Ar2g-1 Aee2a

since the terms of the first and second group do notioceuty differentialsdx.«1, dXh+2,

sy d)%+2a .
Now, take the terms in the second group — if they existat d¢bntain one of the

differentialsdx, dx, ..., dx,. For example, suppose that the coefficierd»@fdXq+24-1 IS
non-zero. We can then, as we just did, take new vasablplace of th& andXn+zg-1:

X = z Ap,h+20+1xp )

p=1
n-1
' —
Alv h20+1 Xhyog1 = z Al,p Xp )
p=1

in such a manner thatx and dx,,,,,, do not enter into any terms of the first and second
group other thardx dx,,,,.,- Finally, upon repeating this operation as many times as
necessary, one puts the terms of the second group énforth:

dX OX+2a+1 + 0% OXaeoae2 + AXg AXr204 3,

so the terms of the first group contain none of tfffer@intialsdx., dx, ..., dxz.
Finally, the terms of the first group themselvei§ there are any — can be put into the
form:

del dez + dXﬁ+3 dXﬁ+4 + ...+ dXGFZy—l dX&zy

by a process that is identical to the preceding ones.
Finally, upon changing the notations, we can write:

@ =dxdx,, + dxdy,+...+ dx dx,
+an+ld)S7+1+ d)é+3 d§+4+"'+ d%-t—?ﬂ—l q}gg{;
+d)q1+a+ld)$1+a+2 + d)ﬁ+a+3 d%—a+4+"'+ d%’ﬂ‘f‘ -1 d%ﬂ‘fa/
+dx dy

(44)

wherea, [, yare integers that can be zero, such that:
a+26<h, h+a+2ysn-1
59. This being the case, we pass on to the proof of the &n®me can first convert

the first two cases into each other. Indeed, if ticerse case is proved then it will suffice
to suppose thatv does not depend upakx,, and to then replaaewith r + 1, h with h +
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1, so theh expressionsuy, @, ..., ay Will becomeh + 1 expressiongy w, @, ..., ay in
order to the get back to the first case.
We thus have only the last two cases to prove.

60. Second case- The hypothesis is thabcd * does not have all of its coefficients
equal to zero; i.e., tha— dx, du contains at least— 1 terms. One then has:

a+p+y>2r-1.

One first sees thatl " e ap ... cannot be annulled, because upon removing the
terms indx, dx, ..., dX%, dx, from @, there will remairat least r— 1 —h terms.

This being the case, # "ww a ... a is zero then that signifies that upon removing
the terms irdx,, dx, ..., dx,, dx, from & there remain at most- h— 1 terms. However,
this amounts to removingt most hof the w— dx, du that contairat least r— 1 of them.
This must then be true upon removexgactly hof them, ando— dx, du containsexactly
r — 1 of them. One then has:

and

conversely, if this is true thed "waw ... is zero.

We likewise look for the conditions for all of thepeessionsd *w w ¢ to be zero.
In order for this to be true, it is necessary that ugomoving the terms idx,, dx, dx
from wthere must remaiat most r— 3 of them. Now, this amounts to removaigmost
two terms fromw — dx, du that contairat least r— 1 of them. It is then necessary tlat
— dx, du must contain exactly — 1 of them and that one remow&ctlytwo. If that is
true then for any indiceisandj it is necessary that each of the differentits dx, ...,
dx, are contained in one and only one of the terngg#dx, du; i.e., that one will have:

a+p+y=r-1,
a=h, £=0,

and conversely, if this is true then the expressiditew w ¢ are all zero.
Therefore, if:

dwaa ...a
is annulled then the same is true for:
d?wwg (,j=1,2, ..h),
and conversely. The proof is obvious.

61. Third case. — The hypothesis is thatrd ™ is non-zero, so the situation is the
same as in the preceding case. One thus has:
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a+p+y=r-1,

and one sees in the same mannerdhdt®w i w ... cannot be zero.
This being the case, @ "ww s ...a is zero then upon setting:

w=wm +dx, du
one sees that:
@ =@ " +dx, duz " .
One thus has:
@ " dxq, dx, ..., d% =0,

du @] ""dx, dx, ..., dx, = 0.

The first equality shows that upon removing the termdxindx, ..., dx, from wthere
remain at most —h — 1 of them. One then deduces, as we just did, dhatontain
exactlyr — 1 terms and that each of the differentials must apgpeane and only one of
the terms i . One thus has:
a+pB+y=r-1,
a=h, £=0.

The second equality is then written:
dxg dX% ...d%, dXens2 ... dXr—2 =0,
which shows thati is a linear combination of;, ..., Xn, Xon+1, ..., Xor—2 . Conversely,
these conditions are sufficient in order " ww a ...anto be zero.
Now, suppose that the expressions’w and @ ?w wa are all zero. Upon

considering the latter, one confirms, as before,dhatmust have:

a+pB+y=r-1,
a=h, £=0,

and that these conditions are sufficient.
Upon now considering the former, one has:

@ w = @ a + dx, dud, w .
The first term in the right-hand side is zero, andtiemains is:
dua@;, ?dx=0;

du dx dX...dX, dX+1...O%a+i-1 DXsist. .. dXon AXonsr...dXor— = 0.
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Since this is true for any value of the index 1, 2, ...,h, it is necessary and sufficient
thatu must be a linear combinationxaf ..., Xn, Xon+1, --., Xor—2 .
It results from this that the two systems:

d v ...an=0
and
D=0 wwy=0

are equivalent, which was to be proved.
62. Moreover, one easily sees that either one of\tlesystems entails that:
wd =0

in the three cases. Indeed, in the last two cases) whe makesv=dx, = 0, @w is
composed of — 1 terms, and in turn:

dx, @ = ww = 0.

In the first casew is a sum of terms, where one and only one of them containm
such a way thatwd is further zero. In the second case, one similagg seat all of the
expressionsd w a have zero coefficients.

Naturally, the lemma is meaninglessifs greater than or equal to 1 in the first and
third case, and greater than or equal to 2 in the seaand o

63.We now return to the theorem that we would like tovpr It is deduced
immediately from the preceding lemma upon takiogo be the derived expressian
and w to be the differentiatlf, , and upon giving the variables only those numerical
values that satisfy (27).

64. We shall now apply this theoremtiee solution of the Pfaff equation by means of
r relations, where h of the relations are given(By), by supposing that these r relations
do not simultaneously annul the coefficients®f> and o 2.

We shall successively examine the case where onédeosi®nly solutions that do
not annulad® ™ and then the one where one considers only solutionsithabtt annul

(JZr -2)

65. First case— Annul a Pfaff expressiowby means of r relations that do not annul
«* Y, among which, h of them are given(gy).

First, suppose thdt is equal to at most 1; i.e., that one is effectivglyen one or
more relations between the variabdegriori. From the general theorem, one must adjoin
the relations that are obtained by annulling all of iheffecients in the expressions:

¥ 2 df, (=1,2..h
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to these relations, andhfis greater than 1 then all of the coefficients m ¢xpressions:
73 df; df (,j=1,2...h),

since one must annabby means of; = 0 andr — 1 other relations, and also by means of:

andr — 2 other relations. If the relations thus obtainedcaresequences of (27) then the
system will be said to he involution Otherwise, one would have a new syster' of

h relations that one could put into a form that sasstihe conditions that relate to the
functional determinants of the left-hand sides. One pax®ith the new systems as one
did with the first one, and so on, until one arrivea aystem in involution.

66. The problem is thus converted into the case where ybem (27) is in
involution. If this system then contains more thamdependent relations then the
problem is impossible.

Suppose then thatof them are less than or equatto

If one first has:

wdfidf ... df,=0

by virtue of (27), sincelf; df, ... df, is not zero, then equations (27) will constitute a
solution to the Pfaff equation. Thereforehifs less tham then the coefficients off*"
and, by a stronger argument, thosef5f 2, and also ot* ™, will all be zero by virtue
of (27), which is contrary to the hypothesis that was nades” V. Therefore, in this
case,h will be equal tor, and equations (27) will constitute the unique solution & th
problem.

Conversely, if the system (27) in involution is formeahir relations then one has:

wdfydf; ... dfi =0,

as one sees upon referring to the preceding lemma thgtrasaesd, and equations (27)
constitute a solution.
Thus, suppose now thhatis less tham. One then has that not all of the coefficients
of:
C«)dfl dfz dfh

are zero by virtue of (27). As a result, one has, alugiysrtue of (27):

& df, df, ... df, = O,
without having
&2 df, df, ... df, = 0.

67. One will get thegeneral solutionsby seeking a non-constant integral of the
complete system:
722 dfy df, ... dfy, df = 0;
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i.e., from the theorem of no. 56, of the equivalgstem:
(45)

W 2df =0,
a)(Zr—3)dfldf — w(2r—3)df2 df=...= w(?t‘ - S)dtwl df=0,

and so on, until one has an intedralf the complete system:
2r-2) -

(47) s _ " i =0,

W2 df df = @ ¥df,df =--. = w? " 3df_, df=0

that is independent &f.1, frio, ..., fr—1 .
One will then have, upon taking (27) into account, aleig the derived relations in

dxg, dxo, ..., dX%, :
W= Pne1 Afner + Pheo dfpen + ... + @, df;,

and the general solutions are deduced as we said before.

In total, the first complete system (45) admits-2h — 1 independent integrals upon
taking (27) into account, the second one admits 2h — 3 independent integrals ff;,
and finally, the last one admits one independent inte§fali0fn:2, ..., fi—1, always while
taking (27) into account.

One must therefore perfonm- h operations of orders:

2r-2h-1, 2-2h-3, ..31,
respectively.
However, one must not forget that this method is valig ander the condition that
one considers only solutions that do not annul all ottheficients ofef® .

68. The singular solutionsof the system (27) are obtained by equating the
coefficients of:
&2 df df; ... dfy
to zero; i.e. (always by virtue of the same theoremprilling the coefficients of:

a)dfl dfz dfh .

One will thus equate all of the determinants of defred. in the matrix

A A A
ofy of, o
ox 0 F)
(48) X 0% X,
ox 0x,  0x
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to zero.
One must distinguish two cases: If the system ddticels thus obtained does not
annul:
dfy df, ... dfy,

i.e., it does not annul all of the functional determinants of f with respect ab the
variables, then this system constitutes a solution of the Pfaff equatloreover, if it
does not annukd* ™ then it contains at leastindependent relations, since otherwise
*? and b would be zero. Ifit contains exactlypf them then it gives the singular
solution of the problem. If it contains more thaten there is no singular solution.
On the contrary, if the equation:

C«)dfl dfz dfh =0
entails that:

dfydf, ... df, =0

then one can say nothing more. One has a new sydten® h relations that one treats
as one treated the original system, which can be ipatible, and which will admit both
general solutions and singular solutions.

69. Up to now, we have assumed that one is given at deestelation between the
variablesa priori. In the contrary case, one must anauby means ofr unknown
relations, but not annul® . In order to do this, one equates the coefficiehtsfd to
zero. Ifdf®™ is not identically zero then one is reduced to thequtieg case. 8% is
identically zero therwis a Pfaff expression of class, 8ince, by hypothesisS* ™ is not
identically zero. Here, the singular solutions artaimed by annullingd®?, since one
does not wish thatS* ™ be annulledipon equating all of the coefficientsafto zero.

As for the general solutions, they are given by the remuof the expressiowto its
canonical form. One will have to seek an intefyraf the complete system:

§* 2 df = 0,
and then an integréd of the complete system:

&> df =0,
o* 2 df df =0,

that is independent &f, and so on, up to an integfabf the complete system:

&2 df =0,
aer—3) df]_ df — QSZI’—3) dfz df = = d2f_3) dfr—l df = O,

that is independent &f, f,, ..., f,-1, and one will then have:

W= gy dfL + g df, + ...+, df,.
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70. In particular, if the number of variables is equalthe class 2 then the
expressiongd® 2df, o/~ df; df will be of degree £ in such a way that each of them
provide an equation of the complete system. The sugeessmplete systems are thus
composed of 1, 2, ..r,equations, respectivelyn this particular casethe method is due
to Clebsch; with the Clebsch notations, one has:

& 2df = (f) dx dx ... dxr,
> dfdg =, §) dx dx ... dxe: .

In the case where the number of variables is gréhaser the class, the method is a
natural generalization of that of Clebsch. In practiceorder to write the equations of
the ( + 1) complete system, one equates the coefficients ahtr®mials:

dx; dxo ... dXor—1 dXor—14i (i =12, ...n—2xr + 1)

in «*2Xdf to zero, upon supposing that the terntindx ... dx;—1 in & has a non-
zero coefficient. One then equates the coefficiénine of the differential monomials in
each of the expressions® 2df; df to zero, in such a manner that one then obtaimsw
equations that are independent of the original onessefhe 2 + h + 1 equations form
a complete system that must indeed have effectiveiti?— 1 independent integrals.

71. Second case- Annul a Pfaff expressiow by means of r relations that do not
annul all of the coefficients @b* 2, among which h relations are givé7).

First, suppose thdt is equal to at least 1 — i.e., that one is effectigiyen one or
more relations between the variabdepriori. If his equal to 1 then one must adjoin the
relations that one obtains by annulling all of the doedfits in the expression:

aer—Z)dfl

to these relations, and lif is greater than 1 then one must add the relationsotieat
obtains by annulling all of the coefficients in the eg®ions:

(41) S 9df, df (,j=1,2, ...h).

If the relations thus obtained are not consequences of li2iA) dne will have a new
system, to which one repeats the same operation, umtil aorives at a system in
involution; i.e., such that coefficients of (41) are all annubdgd/irtue of that system.

72. Therefore, suppose that the system (27) is in involutath h being equal to at
mostr, since otherwise this would be impossible. One shaw#) the first case, that the
coefficients of:

C«)dfl dfz dfh

can all be zero only if the system (27) constitutedwtisa of the Pfaff equation, and that
h is then equal ta; conversely, a system of independent equations in involution
constitutes a solution of the Pfaff equation.
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If his less tham then one will get thgeneral solutiondy seeking an integrél:, —
which is not constant by virtue of (27) — of the complgstean:

(49) SV df df = P df, df = ... =Y df, df = 0,

and then an integralf,., that is independent affy.1 by virtue of (27) of the complete
system:

(50) S dfy df = S df df = ... =™ dfiy df = 0,

and so on, until one gets an integkathat is independent df.1, fhs2, ..., fr-1 Of the
complete system:

(51) SV dfy df = ... = df_, df = 0.

The system that is obtained by combining (27) with thetensa
fhe1 = Apaa, fheo = Bpso, ey fr=a

is a system of equations in involution. It thus constitutes a solutidnthe Pfaff
equation that can, in turn, be put into the form:

P Of ey + Preo dfpa + ... + @ df, = 0.

73. This process can be applied to all of the solutioas do not annul all of the
coefficients off* ™. In practice, one applies it to only the ones thatukaneously
annul all of the coefficients off* ™, since in the contrary case the method that was
previously presented is simpler. However, a simplikicatn the general method might
be possible. Suppose that the relations (27) of a systenvolution annul all of the
coefficients of the expressions:

¥ 2 df, (i=1,2 ..h.

Then, from the theorem of no. 56, since one is nayudaihling with only systems of less
thanr relations, the coefficients of:
C«)dfl dfz dfh

are not all zero, and in turn, the coefficients of;
72D df, df, ... df,

are all zero. In other wordsjhen one takes into account the relatig28) between the
variables and the derived relations between the differentials, fifé épressiornw has
class2r — 2h— 1.
If his equal tor — 1 then this signifies thaw is an exact differential, andy a
guadratureone has:
w=df, ,
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which gives all the solutions of the problem.
If his less tham — 1 then one reducesto its canonical form by seeking an integral
of the complete system:
§* 3 df, df, ... df, df = 0;
i.e., of the complete system:

(52) { wW? =0,

W Vdf df = w* " Vdf,df =-.. = 0~ Vdf df=0,
a complete system that is equivalent to it, sincecamaot have:
wdf, df, ... dfydf =0,

ash + 1 is less than. If his equal tar — 2 thenwreduces to an exact differential, upon
taking into account (27) and the derived relations betweseditterentials, as well as:

fh+1 =aq, dfh+1 =0.
One will thus have, by quadrature:
w= dfr + ¢r—l dfr—]_ .

In the general case, one will have to seekh — 1 successive integrals o h— 1
complete systems, the last of which is:

(53) { W =0,

W df, df = @ 9df,df =-.- = @ Vdf_, df=0,

and, upon deducing— 1 of the variables as functionsmofr + 1 other ones from (27)
and the equations:

fhe1 = Apsa, fra=ar,
one will have an exact differential Pfaff expressimnsuch a way that by a quadrature
one will obtain:
w=df, + ¢h+l dfies + ... + ¢r—l df,—1 .
In total, the operations to be performed are of order:
2r-2h-2,2-h-4,..,6,4,2,0.

in which an operation of order 0 is a quadrature.

74. Thesingular solutionsare obtained, as before, by annulling the coefficiefits o
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C«)dfl dfz dfh .
If the coefficients of the expression:
dfy dfy ... dfy,

are not simultaneously annulled then if the relatidws tobtained, when combined with
(27), giver independent relations then they constitute the singntiagral. If they give
more tharr relations then there is no singular integral.
If the coefficients of:
dfy dfy ... dfy,

are all zero then one will have a new system ofembanh relations on which one can
proceed as one did on the given system (27), and so on.

75. In the case where one is not given any relationsd®et the variables priori, it
suffices to look for solutions that, while not annulling af the coefficients ofcf* 2,
annul all of those ots* ™. Then, if the coefficients of5* ™ are not identically zero
then one has a certain number of relations betwserdriables, and one comes back to
the discarded hypothesis. If the coefficientsudst ™ are all identically zero thewis a
Pfaff expression of clasg 2 1. The singular solutions do not exist here, sincei®ne
restricted to considering only solutions that do not aatiuf the coefficients ofS* 2.

The search for general solutions amounts to the reducficwto its canonical form.
From the foregoing, one looks for an intedialf the complete system:

¥ df =0,
and then an integréd of the complete system:
&3 df = f dfy df = 0,
and so on, until one has an intedral of the complete system:
S df= SV dfdf= ... =SV df, df = 0,

and then, upon deducing— 1 of the variables as functions of the-r + 1 other ones
from:

f1 =&, f, = &y, froi = a1

and substituting then in) that expression becomes an exact differential fo@me then
achieves the reduction:
w=df + ¢1 dfy + ¢2 dh + ... + ¢r—l dfi-1

by a quadrature.

In practice, the complete system that gifresdmits 2 —h — 1 independent integrals.
It is therefore composed af— 2 + h + 1 linearly independent equations.

One obtains them by equating all of the coefficieritshe n — 2 + 2 differential
monomials:

dxg dX ... dxor—2 dX% (i=2r-1,2,...,n
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to zero, upon assuming that the coefficienthafdx ... dxx-2 in &2 is not zero. One
will thus haven — 2 + 2 equations that give:

of  of  of
0%y 0% 0K,

as functions of
of of of

ox o ok,

One will haveh — 1 equations remaining upon annulling the coefficientsnef of the
differential monomials in each of the expressions:

S df df, ..., ¥V dfy df,

in such a manner as to obtain equations that are muin@#pendent and independent of
the firstn — 2r + 2 equations.

If nis equal to 2— 1 then the equations are defined by the expressions:
& df, & dfy df,

themselves, which are of degrae-21.
This method constitutes the generalization of the regenethod of Clebsch, which

was known only for expressions of clagsi2 2r variables, to the expressions of odd
class.

76. Example — Consider the Pfaff expression (Forsythe):

W=Xo dxg + Xz dXo + X4 dXg + X5 dXg + Xs dXs + X1 dXs .

Here, one has:

o =0,

@Y = (X2 + X4 + Xe) (A% A% dxs dxs dxs + dxs dxy dxs dxs dxq + dxs dxs dxa Ao dxs)
+ (X1 + X3 + Xs) (A% dXs dxq dXs dXs + dXq dXs dXs dx; dXe + dXs dXx dXe dxs dXy).

The expressiorw is therefore of class five. In order to make the redoctame
calculates the expression$' df, ¢ df dg. One has:

o' df = i+i+i (dxa dx dxs dxq dXs + dxg dxs dXs dXg dXq + ...)
0x, 0% 0%

Lo o o (dxe dxs dx4 dxs dxe + dxs dxs dxs dx dxe + ...),
ox, 0X, 0X;
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and then, upon taking into account the fact that th#ficeats of /' df, «J' dg must be
zero, one has:

o df dg = [i%_i%+i%_i%j

0X 0X, 0%, 0X 0X0X% 0X%0X
X [(X1 + X3 + X5) x4 dXs dxXs X1 dXo + (X2 + X4 + Xe) dX1 AXe dXa X4 OXg]

L[of 3 Of g of op of 0p
OX, 0%, 0% 0X, 0X%0% O0X%0X%
X [(X1 + X3 + Xs) dx dxs dXxq dXs dXs + (X2 + X4 + Xs) dX6 dX dX1 dX dXg]

+| O 9¢ _o0f 0¢ , of 0¢ _of o¢
0%, 0%, 0X%, 0% O0%0% 0X%0X%
X [(X1 + X3 + Xs) d¥ dxg dxo dXs dxq + (X2 + Xg + Xg) dXs dXg dXs dXs dXy].

The complete system is therefore:

i+i+i: 0

of  of  of
+—+

Letf; = X3 — X3 be an integral of this complete system. The otherismmbtained by
appending:
of, of _of of, , of, of _of, of

0% 0% 0%0% 0x%0% 0x%0X

to the preceding equations; i.e.:
of
= O
0X,

An integral of this second system is, for example:
f2 =X1—X5.
Set:
fi=x1—-X=a, fo=x1—X=az,

and derivexs andx, from these equations. We obtain:

W=X dxg + (X1 —ag) dX + Xq dxg + (X2 — @) dXq + Xe dXg + Xg X,
or
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@W=d(X1 X2 + X1 Xg + X1 Xg —81 X2 — A2Xa) = d(X2 X3 + X4 X5 + X6 X1),

and, upon taking into account the fact that:

f1=ay, f, = ap,
one obtains:

W=d(X2 X3 + X4 X5 + X6 X1) + (X2 —X4) d(X1 —X3) + (X4 —Xe) (X1 —Xs).

77. Remark— One sees what sort of simplifications that thishoe introduces into
the calculations made during the reduction of Pfaff @exgions when compared to the
first method that we discussed. Previously, each fumetitcose differential entered into
the reduced form was given by a complete system, eaclti@guof which
simultaneously contained the partial derivatives ofhal functions that were previously
found. Now, the partial derivatives of any of the fumasi that were already found enter
into just one equation of the system, and that equdbes not contain the other ones.



V. — First-order, partial differential equations.

78. Givenn independent variablesg, X, ..., X,, and an unknown functionof these
variables, consider a systemtofirst-order, partial differential equations:

ARSI aXl ,axz ,...,a)% )
f X z,az o9z oz =0

(1) 2 Xi’ 27 ’)41’ a ’axz ”e ’6)41 )
f ZE E ﬂ =0
IR TRCIIIEERAY: ox ‘ox " ox

From the generalized notion that is due to Lientegrate this system is to finch 2
1 quantitiesx, Xz, ..., X, Z, P1, P2, ---, Po that are functions af parameters that satisfy the
system:

2)
fo (%, %, %, 2 R, By-rs R) =0,

identically, and the total differential equation:

(3) w=dz—-prdxa —p2dx — ... —pndx, =0,

or furthermoreto satisfy equation§2) and (3) by a system of a 1 distinct relations
between X X, ..., X, Z, P1, P2, -+, Pn -

From this last statement, we thus come back terbielem that was treated in the last
section: Annul the Pfaff expressiosa by means of a system of= n + 1 relations
between ther2+ 1 variables, among which,of them are given by (2).

79. Multiplicities. — Before applying the principles of the precedshgpter, we shall
define some expressions of geometric origin thitbeiof use to us in the sequel.

A system of valuegy, Xz, ..., X, Z, P1, P2, --., Pn Will be called arelement

An arbitrary system of relations between e, and thep will be said to define a
multiplicity if this system entails the total differential ejoa (3) as a consequence. We
have seen how one can find all of the multiplistielf the multiplicity is defined by
relations then it will be said to me—r + 1-dimensional. All of the systems of values for
variables that satisfy the equations of the mudtigyl define elements of the multiplicity.
The elements of an —r + 1-dimensional multiplicity then depend upan-r + 1
parameters. As-dimensional multiplicity will be denoted by thenslgol Ms .
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A multiplicity cannot be more thamdimensional, because it must have at leastl
relations in order to imply equation (3). An elemenmsreover, a multiplicitys .

An element is called simpleelement of a multiplicityMs if one can express2-s +
1 of the variables as holomorphic functions of thether ones in the neighborhood of
that element. We have (formula 6 of the precedingptenn determined all of the
multiplicities Ms that admit a given element as a simple element.

Given a system of partial differential equations (2) multiplicity whose elements
all satisfy the relations (2) will be called artegral multiplicity. To integrate the system
(2) is therefore to find all of the integmaldimensional multiplicitiedv,, .

80. Application of general theorems Bracket of two functions- Here is how one
must proceed in order to integrate the system (2) by usengiethod that was presented
in the preceding chapter.

The number that we have denoted rbjs equal ton + 1, here. The (2— 2)"
derivative ofwis:

¥ = oV = ([dz—pydx — prdx — ... = pr dxe) (dxedpy = ... — dx, dpy)"
=dzdxdp ... dx, dm.

Therefore, no integral multiplicity can annul theeffwients of that derivative?”.
As a result, we can surely apply the method that wesepted at the end of the previous
chapter.

We thus have to form the differential expression:

aer—4) df Cw,
in whichf and ¢ denote two arbitrary left-hand sides of the system {&.-
2 df dp = "™ df dg,

and equate all of its coefficients to zero. Now, ttiffierential expression im + 1
variables has degre@a 2 1. It therefore hagsist onecoefficient. Thus, if we set:

(4) D df dp = (f, ¢) dz dx dpy ... dx, dp,

then the expressiof, () is what one calls thieracketof the two function$ and ¢, which

is a bilinear form in the partial derivatives band ¢, and the equations that must be
added to equations (2) are:

(5) 6. f)=0 i,j=1,2,...h.

81.1t is easy to form the bracket of two functiohand ¢ explicitly. Indeed, the
differential expression (4) does not change if one oeldf anddg by:

of of of of
df=df—-—w=| —+p,— |dx +...+—dp + ...
oz [ax1 plazj % op,
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and

. 0¢ op . 9¢ 0¢
dg¢= d¢——za) [6)(1+p15jdxl+...+adpl+...

and that is true by the presence of the faatar the differential expression (4). One thus
has:

G2 df dp = ww "V d’f d'p,
and the differentiatlz no longer enters intain the right-hand side. As a consequence,
the coefficient odz dx dp; ... dx, dp, in (4) is nothing but the coefficient dk; dp; ...
dx, dp, in the expressiow™™ d’f d’g. One thus has, moreover:
(6) f, ) dx. dp; ... dx, dp, = "V d’f d'g,

and, upon replacingy™™® with its value:

W@V = dx, dpy ¥ dps ... d%1 dpht,

the X sign being extended over all combinationsief 1 of the indices 1, 2, ..n, one
obtains:
of of |0¢ ([ d¢ 09
f, = —+p,— || =
o Z(axn P 62}691 [0& i 62}6 R

the Y. sign being extended over all of the indices 1, 2n...Conforming to tradition, we
set:

ag) of (of o
) v z{ap.(ax Ej 69[% pﬁ_ZH'

82. The bracket of two functions enjoys the following pedies: One has:

(f, 9) == (4. 1).

Moreover, iff and ¢ depend upon variables by the intermediary of a certairbaum
of functionsu, v, w, ..., one has:

D(f.8) v+ DU0) (4 4 D)

®) €9 =5uv D(u, w) T D, w)

(v, w) +

Indeed, this results from the identity:

dfd¢— D(f ¢) dudv+ MdUdW+ + D(f1¢)

dvdw+ ...,
D(u, V) D(u,w) D(v,w)
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which gives the identity (8) upon multiplying its two sidBs*" 2.

83. Systems in involutior- Now that we have established these properties, weret
to the system (2). We append all of equations (5) tmtléich will give a new system,
in general. We proceed with this new system as we didtiw first one, and so on. We
thus conclude by arriving at either a system of at masiL equations, in which case, one
has the impossibility of a solution, or a system stheth the brackets of any two of the
left-hand sides of this system are zero by virtue ottheations of this system. We then
say that this systemis involution

A system in involution is therefore a system ginht+ 1 equationg2), in the left-hand
sides of which, one supposes that:

1. They are holomorphic in the neighborhood of an arbitrary elenfghtz’, p’)

that satisfies that system

2. The functional determinants of these h left-hand sides with respect toarthe
variables are not all zero for the same element.

3. The brackets of any two of these h left-hand sides are zero by wirttree
equations of the system

If his equal to 1 then the latter condition is naturallypged. In the general case, all
of the coefficients of*~? df, must be zero. Here, they are always zero, si¥fce df;
has degrea + 2.

From the preceding, one can always convert the integrafian arbitrary system of
first-order, partial differential equations into a gystin involution.

84. General integral of a system in involution Suppose one has to integrate a
system in involution oh equations (2). From the general theorem, one musideore
certain number of successive complete systems, areh@dr of them, it suffices to find
one integral. The first of these complete systesmgvien by the equations:

SV df, df = SV dfp df = ... =S¥ df,, df = 0;
i.e., one has:
(9) 1, f) =0, (., f) = 0, ey ) =0,
here.

Let A; be a particular integral of this complete system tha¢s not reduce to a
constant by virtue of (2).
One considers the second complete system:

(10) f.,f) =0, €, f) =0, ver ) =0, A, ) =0,

and one seeks an integfalof this second system that does not reduce to a furatian

by virtue of (2). One will then have — h successive complete systems that giveh
independent functiond, A, ..., Ann, respectively, also upon taking (2) into account,
and finally a last complete system:
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(11) {(fz,f)=0,---, (f,,f)=0,

(A, F)=0 -, (A,.T)=0,

which will admit one and only one integral that is indejgm of Aj, Az, ..., Ans,
namely,C.
The equation to solve can then be put into the form:

(12) dC—BldAl—Bszz—...—Bn-hdA1-h:0,

whereB aren —h functions that are determined by differentiations. @&bwer, from the
general theory, if one considers an arbitrary elenightz’, p°) that satisfies the system

(2) then one can always choose the integkal#\, ..., Ans, Cin such a manner that the
2n — Zn + 1 functionsAg, Az, ..., Ann, C, By, By, ..., Bys are holomorphic in the
neighborhood of that element. The most general integudtiplicity M, of the system
(2) that admits that element as a simple elemenbtaireed by appending —h + 1
relations between th&, B, andC to (2), relations that can be solved with respect -+t

+ 1 of these quantities, since the right-hand sidesaoeriorphic in the neighborhood of
(A, ..., A, ..., BL,). The relations fall into the general type of forami(7) in the

preceding chapter.
85. The complete systems (9), (10), ..., (11) admit:
2n—h+1, Hh-h ...,n+1

independent integrals, respectively; of course, they aalihoff the integrals,, o, ..., fn .
More than that, one must essentially suppose thatvéhebles are coupled by the
relations (2); it is only by means of this conditioattione can be sure that the systems
(9), (20), ... are complete.

Finally, if one remarks that &; is known then the system (10) adnfits 1 known
integrals, and iA; andA; is known then the system (10) adniits 2 known integrals,
and so on, so one sees that the indicated method dethargisarch for an integral ot
h + 1 successive complete systemsnnt2L variables, but which admit:

h, h+1, h+2, ..., n
known integrals, respectively. From the Mayer methbid, method thus amounts to the
search for a particular integral nf—h + 1 successive systems of differential equations

that have:
2n-2h+2, -2, 4, 2,

variables, respectively.

86. In particular, ifh = 1 then the first complete system is formed frost jone
equation:
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(f, f) = 0.
Here, there ara successive systems of differential equations thahare
2n, n-2, ..., 4, 2
variables, respectively.
If his equal tan + 1 then there is no integration to be doAesystem in involution of

n + 1 equations always defines an n-dimensional integral multiplicitiie converse is
obvious, moreover.

87. Particular case.— From the general theory, the integration of aesysin
involution is simplified if the coefficients of the exgssions:

& df, = oV df, (=12 ..h
are all annulled by virtue of the equations of this systBiow, one has:

&V df = ™ df = g—fdz dx dp, dxe dps ... dX, dpy .
VA

The simplification is then provided if the quantitefs/ 0z are all zero by virtue of
(2); i.e., if the system (2) does not contaexplicitly, or contains it onlyormally.

Therefore, if one is dealing with the integration o§ystem of first-order, partial
differential equations in involution that do not contdna unknown functioz explicitly:

) e, ,

then one seeks an integhalof the complete system:
SV df = P dfy df = .. = P dify df = O;
i.e., the complete system:

of

=0, €. f) =0, f2, ) =0, . ) =0,
0z
and then an integr&, of the complete system:

%:o, .H=0, (H=0, ... H=0  ALH=0

that is independent @f;, and so on, up to an integfal, of the complete system:
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— =0, f, ) =0, ceey @An-n-1,) =0

that is independent &, A,, ..., Ann-1. Then, upon deriving — 1 of the variables;, pk
as functions of the remaining variables, other tlkarfrom equations (2)and the
equations:
AL =ay, A = ay, ey Anh-1 = anhet,
the expression:
w=dz—prdxy—p2dXxe — ... = pr dXx,

becomes an exact differential, and by a quadrature orm@nspupon taking (2)into
account:
w=dz-dC-B;dA; —B,dAs — ... = Brh-1 dAgh-1,

whereC is a function ok andp.
Moreover, we remark that one has:

_ [ 0of 0 _of 94
(f’@_iz(api 0x 6>.<69j

for the functions that enter into the complete systéo be integrated.

88.Singular integrals — The expressiond® ™ = «*” can never have all of its
coefficients equal to zero, so the singular integralshefsystem in involution (2) are
obtained by annulling all of the coefficients in the egsion:

(13) wdf, df; ... df, =dz df, d'f, ... d'fy,
i.e., upon annulling all of the coefficients of the exgsien:

(14) df, df, ... d'fy,

into whichdzdoes not enter. One will thus consider the matrix:

o, , o o of,  ofof af,

ax téz ax "dzdp ap
615) N OO ,
Oy , O Ofy,  OF,0f Of,

ax 1oz 0x "dzdp ap

and one will annul all of its determinants withrows andh columns. From the general
theory, two cases can be presented:
If the coefficients of:
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(16) df, df, ... dfy

are not annulled at the same time as those of (14) tthe equations obtained, when
combined with equations (2), constitute the singular intagthey aren + 1 in number
(they cannot be less in number). If they are moneuimber tham + 1 then there is no
singular integral.

On the contrary, if the coefficients of (16) are aredilat the same time as those of
(14) then one can say nothing further. The equatiorar@at, when combined with (2),
form a new system to integrate. This system cept@ontains more thah equationsl{
is assumed to be less thar 1), but it cannot be in involution. One thus congdat, as
needed, in such a manner as to have a system ofthmra@ + 1 equations, in which
case, a solution is impossible, or a system in invaiutibh’ < n + 1 equations. One
integrates this new system like the first one. It adimit general integrals, and in turn, it
can admit singular integrals that one finds by meanstloif@ system in involution ofi”
> h' equations, and so on. Itis indeed clear that thesatapes will have a conclusion.

In particular, if the system (2) is composed of jus¢ @guation then the singular
integrals will satisfy the system:

of of of of _ of of
+ = ... =+ =2 =, =

f=0, P ip = =% p
X, Pz X, P52 op, ap,

If these equations do not anmil/ 0z then they will or will not give a singular integral
according to whether they can or cannot be reduced ol independent equations,
respectively. If they annaf / 0zthen one has a new system that can be composed of les
thann + 1 equations, and that one can integrate directly.

89. Example — In the case af = 2, consider the partial differential equation:
(17) f=pl+(z- B)?=0,
and look for its singular integrals. They satisfy dlogiations:
p(z= B) = p(z- B) = P = p,(z- B) =0;
i.e., the system:

(18) {fl =p, =0,

f,=z- g =0,

which is in involution, as is easy to verify. In orderhave the general integrals, we
solve forp; andp,, and substitute them in the equation:

dz—p;dx, —p2 dx = 0.
We find:
P2 (2dpz —dx) = 0.
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For a general integral depending upon an arbitrary corstar thus have:

%57

(19) P =0,

p, =222,
and for a singular integral:

z=0,
(20) p, =0,

p, =0.

90. Contact transformations- Following Lie, a contact transformation isidetl by
2n + 1 functionsZ, Xy, Xa, ..., P1, P, ..., Py of 2n + 1 variableg, x4, Xo, .., X, P1, P2, .-,
pn , and is such that one has:

(21) Q :dZ—P]_ Xm— . — Pn an :,O(dZ—p]_ dX]_— «o. — Pn dX1) = pw

identically, whereo denotes a function of the variables, p« that is not identically zero.
We first show that thesen2 1 functions are independent. From the identity:

Q = pw
one indeed deduces that:
Q' = pw +dpow

and upon raising this to thmd power:
Q,n :pna)n +,0”_1a)”_ld,0Daz
and finally:
(22) QQ'” — Q(Zn) — ,Onﬂéuﬁ) n_ pn+1a52n).

Upon replacingd® and Q® with their values one obtains:

(23) dZ DXy dP;y ... dX, dP, = p™dz dx dp... dx, dp,,
or finally:

DZ, Xy, R X R)_ o
D(z X, B2 %5 R)

The 2 + 1 functionsZ, X, Px are thus indeed independent by virtue of the hygms that
was made op.
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Similarly, letF and ® denote two arbitrary functions & X, Px, and letf and ¢
denote what these functions become when one repgledanctionsZ, X, P« with their
values. One has:

Q@D dF dd = (002 df dg,
but
Q(Zn—Z) — (,0(4)(2n_2) — pnwn—l — pn(JZn—Z)
One thus has:
QP2 dF dob = 02 df dg.
Let:
o il L AL
OB\ 0x 0z 0X% 0z)o P
denote the bracket of the two functidhend®, which are regarded as functionsZo¥;,
Py, and, as before, let, (¢) denote the bracket that relates to the variahlgspc. One
then has:

[F, ®] dZdX;...dP, = d" (f, #) dz dx... dp,

or, upon replacing the differential monomial in the-lednd side by its value (23):

(24) €. 9) =p[F, @]

This fundamental equality is written explicitly as:
| o (20, 00 og(ot  of
op. | 0% 0z) 0pl\ox 0z
:pz a_F a£+|:?a£ _6£ 6_F+|:|36_F ,
0P { 0% 0z) o0P\dx 0z

in whichf denotes whalf becomes ang denotes wha® becomes under substitution of
the values oZ, X, Px.
One applies that identity to all of the pairs whdtionsZ, X;, Pc. One then has:

(24)

(25)

{(Z,Xi)=(>§1>ﬁ)=(>§, R)=(P P)=0,
(Z,R)=-pR, (P, X)=p.

91. Conversely, given r 1 independent functions, X;, Xo, ..., X, that satisfy the
relations:
(Z, X) = (X, X =0,
there exist n other functiong,MP, ..., P, such that one has:

dZ—-PidX;— ... = PydX,=p(dz—prdx. — ... — pn dX),
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p being a function that is not identically zero.

Indeed, the equations that are obtained by equatiRg ..., X, to arbitrary constants
form a system in involution af + 1 equations; i.e., they determine a multiplicity. One
can thus determine + 1 functionsA such that:

dZ—pl dxg — ... — Pn d, = A1 dXg + A dX + ... + A, dX, + A1 dZ,

so one deduces the identity to be proved by setting:

92. One can, moreover, obtain the bracketg ahd the functionZ, X;, P . Indeed,
one has, while preserving the same notations:

Q(Zn—l) dF — (pa)(Zn—l) df,
ie.:
QU dF = 0" "V df - 0 &2 dp df.
However, one has:

QY gF = Z—Fdz dX dp; ... dX, dP,

,0”+la dz dx dp; ... dx, dp,
SO
& Vdf = g—fdz dx dpy ... dx, dpn,
VA

2 dpdf = - (o, f) dz dx dp; ... dx, dp,,

Finally, upon dividing by"™, one thus has the identity:

pz——p— +(o.f),

ie.:
_ 2 0F ﬂ
(26) (O,f)—ﬂza—Z Pag

Applying this identity to the functiorg, X, Px, one obtains:
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0z
(p,Z)=pz—pa—,
Z
X,
(26) (0, X)) =P, -
Z
oP
PY=-pZk,
(L, R)=-p 7

93. Homogeneous patrtial differential equatiorsGiven 2 variablesxy, ..., X, ; pa,
..., pn, One satisfies the total differential equation:

27) w=prdxy +pde+ ... +p,dx, =0

by means of relations between the variables andvetkrrelations between the
differentials, upon being given a certain numberf these relationa priori.
The expressiomwhas classr and its (2 — 1)" derivative is:

™ =dp, dx dp, d ... dp, d%, .

One must thus have at leastelations between the variables in order to sa{i27), and
the singular solutions of (27) are obtained, siad® ™ has its coefficients essentially
non-zero upon annulling the coefficientsafi.e., by annullingos, p2, ..., pn at the same
time.
Since amultiplicity is a system of relations that satisfy (27), itlveé callednon-
singularif it does not entail that:
pr=p2=...=pn=0.

It is at mosin-dimensional, and one obtains it in the most gdrashion if, for example,
p1 is non-zero, by solving:

dx + P2 dx + ...+ Podx, = 0.
P, P,

Given a system df relations:

f,(X, %oy Proee-s B,)= 0,

(28) (% Xeevs Py B)=0,

one integrates that system, and then one mustafiraf the n-dimensional multiplicities
whose elements satisfy these relations. One nhesefore annulkv by means o
relations, among which, akegiven relations.
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94. Here, if J*"® does not have all of its coefficients equal to zeenttve can
apply the theorem of the preceding chapter. In ordeppdyat, one must form the

expressions:
> df, 3 df dg .
One easily has:

_ of of of
Sdf == | p—+p—+--+ 0 — |dpy dx, dpp X% ... dp, dX, |
plapl p26p2 nwar% P dX dpp dX Pn 0%

529 df dg = Z[i%_i%j dpr dx dpe dXo ... dp, dX, .

=\ 0p, 0% 0% 0p
We set:
of of of
29 Hf)=p—+p—+-+p—,
(29) () plapl p26p2 |onaqu
X[ of ag of ag
30 =Y | ——— -,
(59 L9 ;(apiax 6>.<69j

This being done, (28) will be said to be in involution & #quations:
(31) H(f) = 0, f,f0=0 (k=12 ...h

are consequences of this system. The first equatigmmessxthe idea that the system (28)
is homogeneous py, p2, ..., pn — I.€., that it is equivalent to the system that obtains
by replacingps, p2, ..., pn With Aps, Apo, ..., Apn — or furthermore, that it can be put into
a form such that the left-hand sides are all homogenaqaisp,, ..., pn-

As a result, if the system (28) is not in involutioarnilwe append equations (31) to it.
We have a new system that, if it is not in involutiman be extended by the same
procedure, and so on, until one arrives at a system inuinwo (at least, one arrives at
either an incompatible system or a system of more thaquations in the sequence of
calculations).

95. Therefore, suppose that the system (28) is in involutidne will get its general
integral by seeking an integrfal, of the complete system:

H(f) =0, €, f)=...=(nf =0,
and then an integrél., of the complete system:
H(f) =0, €1, ) = (2, f) =... =1, ) =0

that is independent &f;;, and so on, until one has an intedsaif the complete system:
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H(f) =0, €, f)=@F"fH =...=¢-2,H)=0

that is independent &f;1, fre2, ..., fo-1.
Upon taking (28) into accountycan then be put into the form:

w= ¢h+1 dfh+1+ +¢n dfn,

and the solution is achieved as usual.
In particular, a system ofequations in involution provides a multiplicity.

96. Thesingular integralsare obtained by annulling all of the coefficients of the
expression:

wdfy dfy ... dfy;

i.e., all of the determinants with+ 1 rows and + 1 columns in the matrix:

of, of,  of, of,  of,

(32) ox, 0x, 0% 0p 69,

and if all of the determinants that are formed from ahthe lasth rows anch columns
are not zero then the system obtained constitutes alairigtegral if it contains only
independent equations. In the contrary case, one hast@nsyhat one treats as an
ordinary system.

In particular, ifh is equal to 1 — i.e., if one has an equation that isolgemeous i,
P2, ..., P
(33) f]_(Xl, cons Xy P2 -e pn) = 0,

then the singular integrals satisfy the equations:

of, _of _  _of_,
op, dp, op
(34) of, of, o,
X _0% _  _0%
S o R

and if the ratios in the second row are not zeem thquations (33) and (34) furnish the
singular integral in the case where they reduae t®ne can, moreover, limit oneself to
equations (34), because (33) is a consequencéyplirtue of:



Cartan — On certain differential expressions and the pfafiiem. 75

H(fy) = 0.
97. Example — In the case af = 2, consider the equation:
(35) fi=p + P —(pX+ RX)*=0.
Here, equations (34) become:

P1 —X1 (P1 X1+ P2X%2) =0,
P2 —X2 (P1 X1 + P2 X%2) =0,

“R(RX* PX) _ “P(RX* X))
P P,

Since the quantitiep; andp, are assumed to not both be zero, the last twosratie
equal to each other, and the three equations #tatrdine the singular integral reduce to
two of them:

P1 = X1 (P1 X1 + P2 X2),
P2 = X2 (P1 X1 + P2 X2).
Moreover, by eliminating, andp, these equations entail that:
X +x —1=0.
98. Homogeneous contact transformatiorsa homogeneous contact transformation
is defined by 8 functionsXy, Xy, ..., Xn; P1, P, ..., Py in 2n variablesx, Xz, ..., X1 ; P1.
P2, ..., pn that imply the identity:
(36) PrdXp + PodXe + ... +PrdX, = prdXxg + podXe + ... +pndX, .
If one denotes the left-hand side of that ideriity2 then one first has:
Q(Zn—l) — aSZn—l)
le.:
(87 dPdX; dP.dX; ...dP,dX, =dp dx dp dx...dp,dX, ,
which shows that the 2functions X;, Px are independent, and that their functional
determinant is equal to unity.

If f denotes what an arbitrary function Xf P« becomes when one replaces these
guantities with their values then one has, in tthat:

QP2 df = o7 df ;

i.e., upon taking (37) into account:
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oF oF oF of of of
38 P_+P—++P—— = p—+p—t-t g —.
( ) laa 26F)2 n aFI?1 plap1 p2 apz nﬁ ar‘}1

This identity, when applied to the functioXs Py, gives:

38y {H(Xi) =0,

H(R)=0,

which shows thathe X are homogeneous functions of degree zerg, io,p..., pn, and
the P are homogeneous functions of degree one.

If F and® denote two arbitrary functions of the big symbols aiadd ¢ denote the
functions of the small symbols that they becomeradtibstitution then one finally has:

Q" dF do = " df dg ;

i.e., upon taking (37) into account:

I(OF 00 _OF 00 ) _ [ of 9¢ _of ¢
(39) ;[«TRM 90X a?j ;[api 0 axapj'

When this identity is applied to the functioXsPx , that gives:

(39) {(X"Xk):(ﬁ)’ R)=(P %)=0,

(R, X)=1 (i#k)
The 2 functionsX;, Py therefore satisfy equations (38nd (39).

99. Conversely, if one given n independent functions<x ..., X, of %, ..., X, P1
P2, ..., pn that satisfy the relations:

(Xi,Xk):O @,k: 1, 2, ...,n)

then there exist n other functiong, PP, ..., P, that define a homogeneous contact
transformation, along with the first ones

This is obvious, because, by hypothesis, théunctions X; , when equated to
constants, define a system in involution, in such a we bne can determine
guantitiesP, P, ..., P, in such a manner that one has:

p]_dX]_ + pdez + ...+ pnan =P dXg +PodX + ... +P,dX, .

100. Partial differential equations in homogeneous coordinateSiven 2 variables
X1, X2, ..., Xn; Ug, U, ..., Unthat are coupled by the relation:
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(40) @=piXe+pP2Xet ... +paX =0,
one solves the total differential equation:
(41) w=U Xy +Udx + ... +U,dX,

by establishing a certain number of relations betweenvéinmbles, among which, a
certain number are given.

If one refers to the previous problem then one se¢®tigamust establish at least
1 relations besides (40). The singular solutions of te&eBys are given, moreover, by
annulling all of the coefficients avdg — i.e., all of the quantities; % . One thus has
either:

U=U=..=U=0
or
XL =X = .:Xn:0
We thus exclude these two singular solutions.
We have to formg, f), whereg is given by (40). One has:
of of of of
= —+ +x —— - 4.+ yu—3 1.
(#.1) ><1ax1 xqa)% (Lﬁaq L“an
We set:
H(f):uli.i-....{-uni,
ou, ou,
(42)
k(1) = x sy O
Xlaxl anxq,
and
. ( of of, of of
43 ,f = - 1 7 71,
) o ;{auiax 6>.<6LJ
101. Given a system df relations:
OG0 U, 4)= 0,
f(X..., %, U, ,U)=0,

this system is in involution if the equations:

H(f)=K(f)=0,

(45) Lﬁjuzo (k=12,.h)
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are consequences of (40) and (44). Any system can be tmohuato a system in
involution. A system oh — 1 equations in involution constitutes a solution to eqoati
(42).
If his less tham — 1 then one integrates (44) by seeking an intdgralof the
complete system:
H(f) = K(f) =0, f,)=@F, H=..=@ =0,

and so on, up to an integfal; of the complete system:
H(f) =K(f) = 0, L.f)=(@F, H=...=F=f)=0.
One then has, upon taking (40) and (44) into account, that:
W= Phe1 Afrir + Prao Ao + ... + P dfg

102. Thesingular integralsare obtained by annulling all of the coefficients of the
expression:
wdg df; ... dfy;

i.e., upon annulling all of the determinants with+ 2 rows anch + 2 columns in the
matrix:

w u -y 0 0 - 0
0 0 - 0 x X - X
of, of, of of of, of,
(46) ox 0x, 0% du oy 0y

In the case whereequals 1, the singular integrals are given by the equations:

oF o of
w u ou
of o o
ou _ou, _ _duy,
X X% %

and if these ratios are not all equal to each ottear these equations define the singular
integral in the case where they reduce to ust them.
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103. Particular case — Whenn is equal to 3, one obtains ordinary differential
equations in the two variables andy. Indeed, if we denote the homogeneous
coordinates of a point by, X2, X3 and the homogeneous coordinates of a line in the plane
by ui, Uz, Uz then one has:

U X1 FUXo +U3Xs =0
for an element, and:

ﬁ = ﬁ = ﬁ ﬁ = i: ul
X y 1 y -1 y-xy
In order to integrate an equation:
F(X’ y’ Y) = 01
le.:
F[ﬁ,ﬁ,_ﬂjz 0
X X% W
it is necessary to integrate the complete system:
H(f) =K(f) =0, . f) =0,

i.e., to find an integrdlof the system of differential equations:
dx _ dx, _ —du _ —du, _ —du,
OF " OF T OF ~ OF ~ OF
ou, du, 0X, 0X, 0X,

that is homogeneous and of degree zerq,ir, X3, on the one hand, andun, Uy, Uz , on
the other.




