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 The Pfaff problem has been the object of numerous papers.  I have no intention of 
passing all of them in review (1).  The most prominent are those of Pfaff himself, and 
then those of Grassmann, Natani, Clebsch, Lie, Frobenius, and Darboux.  The problem in 
question is, in summary, the solution of a total differential equation, and later on it is 
joined with that of the reduction of a linear expression in total differentials – or Pfaff 
expression – to a canonical form by means of a convenient change of variables. 
 Pfaff (2) was the first to give the result that a total differential equation can always be 
verified by a system of integral equations whose number does not exceed n / 2 if n is even 
and (n + 1) / 2 if n is odd.  His method is based upon the gradual reduction of the number 
of differential elements in the equation, each reduction by one unit being provided by the 
complete integration of a system of ordinary differential equations and a change of 
variables. 
 Grassmann applied the principles of the calculus of extensions to the same problem in 
the second edition of his Ausdehnungslehre (3).  At its basis, his method is the same as 
that of Pfaff, but only applies to equations that can be converted into a general equation 
in an even number of variables by a gradual reduction.  It gives the necessary and 
sufficient condition for the equation to be verified by a system of m integral equations.  
His results have an extremely concise form. 
 Natani (4) and Clebsch (5) successively reduced the number of differential elements in 
the equation, but – and this represents a great advance – each reduction required only the 
                                                
 (1) For the bibliography, consult, for example, FORSYTH, Theory of differential equations, Part I, 
Chapter III.  In this work, the Pfaff problem is presented in a very interesting manner from the historical 
standpoint (Chap. IV and XII). 
 (2) Methodus generalis aequationes differentiarum partialium necnon aequationes differentiales 
vulgares, utrasque primi ordinis, inter quotcumque variabiles complete integrandi (Abh. d. K.-P. Akad. d. 
Wiss. zu Berlin (1814-1815), 76-136. 
 (3) Die Ausdehnungslehre, vollständig und in strenger Form bearbeite.  Berlin, 1862.  
 (4) Journal de Crelle, 58, January, 1860, 301-328. 
 (5) Ibid., 60, September, 1860, 193-251.  
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search for one integral of a system of differential equations.  However, as in the Pfaff 
method, one must make a change of variable each time.  Nevertheless, Natani sought, 
without arriving at very simple results, to form the successive auxiliary systems directly 
by only knowing the integrals that had already been found for the preceding systems. 
 In a second paper (1), Clebsch solved the problem in a very elegant manner in the 
case of general equations in an even number of variables.  One must seek an integral of a 
certain number of successive complete systems, and each equation of a system of that 
series will depend linearly upon the partial derivatives of just one of these previously-
found integrals, except for an equation that is common to all of these systems that 
depends upon only the coefficients of the given equation.  His method does not extend to 
the other case, and furthermore, Clebsch has never complete solved the case of a general 
system of an odd number of variables.  In the same paper, Clebsch indicated the manner 
of deducing the most general integral system from a particular integral system. 
 Lie (2) was, in short, the first one to occupy himself with the reduction of a Pfaff 
expression.  He exhibited the invariant character of a certain integer number (viz., the 
class of the Pfaff expression, following Frobenius) that completely determines the 
canonical form to which it can reduce.  His method is based upon the theory of contact 
transformations.  The reduction is obtained as in the first method of Clebsch, except that 
it is combined with the integration method of Mayer for first-order, partial differential 
equations. 
 Frobenius, in his beautiful paper in the Journal de Crelle (3), employed a completely 
new method.  It is based upon the consideration of that which one calls the bilinear 
covariant that is associated with the Pfaff expression.  The equivalence conditions – i.e., 
the possible reduction to the same form – of two Pfaff equations are then the algebraic 
equivalence conditions for two forms that are linear and bilinear with respect to the 
differential elements.  He thus arrives at the notion of class.  His method of reduction is 
analogous to that of Natani and Clebsch, except that the successive complete systems are 
formed without changing the variables, and their equations depend upon partial 
derivatives of all the preceding integrals that were found. 
 Finally, in a paper that was contemporaneous to that of Frobenius, but published five 
years later (4), Darboux began with the same bilinear covariant, whose invariance 
properties permitted him to deduce the first auxiliary system that is common to all of the 
methods for reducing the class of the Pfaff expression.  One also deduces the 
fundamental formulas of the theory of contact transformations from it in a very elegant 
manner. 
 The present paper constitutes an exposition of the Pfaff problem that is based upon 
the consideration of certain symbolic differential expressions that are integer and 
homogeneous with respect to the differentials in n variables, the coefficients being 
arbitrary functions of these variables.  These expressions can be subject to the ordinary 
rules of calculation, on the condition that one does not change the order of the 
differentials of a product.  The calculation of these quantities is, in short, that of 

                                                
 (1) Ibid., 61, September, 1860, 146-179.  
 (2) Most especially, see: “Theorie des Pfaffschen Problems,” Arch. for Math. og Nat., II  (1877), 338-
379. 
 (3) “Ueber das Pfaffsche Problem,” Journal de Crelle 82 (1877), 230-315. 
 (4) “Sur le problème de Pfaff,” Bulletin des Sciences mathématiques (3) VI  (1882), 14-36, 49-68. 
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differential expressions that are placed under a multiple integral sign (1).  This calculation 
also presents numerous analogies with the Grassmann calculus.  It is, moreover, identical 
to the geometric calculations that Burali-Forti did in a recent book (2). 
 It is clear that if one makes a change of variables then any differential expression of 
degree p is changed into a differential expression of degree p in the new differentials.  In 
the case of a Pfaff expression, which is of degree one, one can associate it with another 
differential expression of second degree that is a covariant with respect to the changes of 
variables, and which is nothing but the bilinear covariant of Frobenius and Darboux.  I 
call it the derivative of the Pfaff expression.  However, thanks to the notion of symbolic 
differential expressions, this covariant is the first term in a sequence of symbolic 
covariants of third, fourth, … degree that are deduced intuitively from the Pfaff 
expression and its derivative by multiplications.  They constitute the second, third, … 
derivatives of the Pfaff expressions, the pth one being of degree p + 1. 
 One understands how much one can deduce from the consideration of these 
derivatives, thanks to their invariant character.  They are the only quantities that 
intervene in the statement of all the results of the theory, and their form is very simple. 
 The consideration of these derivatives permits one to find all of the results that are 
already known in a manner that is, so to speak, intuitive; however, it has allowed me to 
discover some others.  Among others, I will point out the extension of the second Clebsch 
method to the reduction of arbitrary Pfaff expressions (3), of either even or odd class, and 
in an arbitrary number of variables.  It has also allowed me to completely present the 
theory of singular integrals of a Pfaff equation (4). 
 This memoir is divided into five parts.  In the first one, I present the principles of the 
calculus of differential expressions that intervene in what follows.  In the second one, I 
introduce the derivatives of a Pfaff expression and the notion of class, and I prove the 
necessary and sufficient condition for a Pfaff expression to be of class p.  The result is 
extremely simple, viz., that the pth derivative has all of its coefficients zero.  I then 
introduce what I call the “adjoint complete system” and then discuss the reduction of an 
expression to its canonical form, either by successive changes of variables (i.e., the 
method of Natani and Clebsch) or without changes of variables (i.e., the Frobenius 
method). 
 The third part is dedicated to the solution of a Pfaff equation, a problem that admits 
general solutions that depend upon the reduction of the left-hand side to its canonical 
form, and singular solutions that are obtained by annulling all of the coefficients of a 
certain derivative. 
 The fourth part is dedicated to the following two problems: 
 

                                                
 (1) Cf., CARTAN, “Le principe de dualité et certaines intégrales multiples de l’espace tangentiel et de 
l’espace réglé,” Bulletin de la Société mathématique de France, XXV , 1-39. 
 (2) Introduction à la Géométrie différentielle, suivant la méthode de Grassmann (Gauthier-Villars, 
1898). 
 (3) See below, Chap. IV, §§ 69, 70, 75.  
 (4) Apart from the classical case of singular integrals of the equation in three variables, I know of only a 
paper of Frisiani, which I have not consulted and which is entitled: “Sull’ integrazione delle equazioni 
differenziali ordinarie di primo ordine e lineari fra un numero qualunque di variabili (Effer. astr. di Milano, 
1848).  Following Forsyth, he has discussed the possibility of satisfying a Pfaff equation by equations that 
are fewer in number than the canonical number. 
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 Solve a Pfaff equation by means of a given number r of unknown relations. 
 
 Solve a Pfaff equation by means of a given number r of relations, among which, h of 
them are given in advance. 
 
 These two problems admit general solutions and singular solutions.  The former are 
given by the search for an integral of several successive complete integrals, the equations 
of these systems containing the derivatives of all the integrals that were already found 
linearly.  As for the singular solutions, they are the solutions of an analogous problem, 
but in which the given relations between the variables are greater in number and can be 
formed by differentiations. 
 In the very general case where the desired solutions are not singular solutions of the 
Pfaff equation – or, more precisely − do not annul all of the coefficients of the (2r − 2)th 
derivative of the expression, the form of the complete systems can be simplified for the 
calculations in such a manner that each equation depends upon no more than the 
derivatives of just one of the preceding integrals that were found.  In particular, this 
method gives the generalization of the second Clebsch method. 
 Finally, the fifth part is dedicated to the applications of the theory to the integration of 
first-order, partial differential equations, whether ordinary or homogeneous.  I have also 
indicated how the consideration of derivatives lends itself to the establishment of the 
fundamental formulas of the theory of contact transformations. 



I. – Differential expressions. 
 

 1. Being given n variables x1, x2, …, xn, consider some purely symbolic expressions 
ω that are deduced by means of a finite number of addition or multiplication signs from n 
differentials dx1, dx2, …, dxn and certain coefficients that are functions of x1, x2, …, xn ; 
these expressions are homogeneous in dx1, dx2, …, dxn , in the usual sense of the word.  
Since they are purely symbolic, we restrict ourselves to not changing the order of the 
terms whenever one has an addition or multiplication sign or of the factors that are united 
by that sign. 
 Subject to the usual rules of calculation, these expressions can be put into the form of 
homogeneous integer polynomials in dx1, dx2, …, dxn .  The degree of these polynomials 
will be, by definition, the degree of the corresponding expression ω.  The differentials of 
the first degree are further called Pfaff expressions; they are of a form analogous to the 
following one: 
(1)      A1 dx1 + A2 dx2 + … 
 
 As examples of differential expressions of higher order, one might give the following 
ones: 
(2)      A1 dx2 dx1 + A2 dx3 dx2 , 
(3)    (A1 dx1 + A2 dx2) (B1 dx1 dx2 + B2 dx1 dx1) + A1 dx1 dx2 dx1 , 

………………………………….. 
 

 2. Monomial differential expressions. – These are the ones that are deduced by 
multiplication signs from a certain coefficient and certain differentials dx1, dx2, …, dxn , 
repeated or not; for example, one might have the following: 
 
(4)     A dx1 dx2 dx1 dx4 dx3 dx2 . 
 
 Beyond these differential expressions, the simplest are the ones that one deduces by 
addition signs from a certain number of monomial differential expressions of the same 
degree; they have the form of polynomials in dx1, dx2, …, dxn , such as the expression (2). 
 Apart from these particular expressions, we also consider the ones that one deduces 
by multiplication signs from a certain number of the preceding differential expressions, 
such as the expression: 
 
(5)   (A1 dx1 + A2 dx2) (B1 dx1 dx2 + B2 dx1 dx3) + (C1 dx1 dx2 + C2 dx2 dx4). 
 
 3. Rank of a differential in a differential expression. – Consider a differential that 
enters in a certain place in a differential expression.  If that differential expression is a 
monomial expression then the rank distinguishes the place that the differential occupies 
in the monomial; therefore, the differential dx4 in the expression (4) occupies the fourth 
rank. 
 If one is dealing with a polynomial differential expression then the rank of a 
differential is the one that it occupies in the monomial that it enters into. 
 Finally, in the general case, if one subjects an arbitrary differential expression to the 
usual rules of calculation in such a manner as to transform it into a polynomial 
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expression, but taking care to respect the order of the differentials in each product, then 
the rank of a given differential is the one that it will have in the polynomial expression 
thus obtained.  For example, in the expression (3), the differential dx1, which enters into 
the second term in the second parenthesis, is of third rank.  In a differential expression 
that is the product of several polynomial differential expressions, the differentials of the 
first factor, which are assumed to be of degree h, have ranks 1, 2, …, h; those of the 
second factor, which are assumed to be of degree k, have ranks h + 1, h + 2, …, h + k, 
and so on. 
 
 4. Value of a differential expression. – By convention, in order to define the value of 
a differential expression ω – of degree h, for example – we consider x1, x2, …, xn to be 
functions of h indeterminate parameters α1, α2, …, αh that are assumed to have ranks that 
are in a certain order that we call the natural order. 
 This being the case, one considers all the h! permutations of the letters α1, α2, …, αh .  
Let (β1, β2, …, βh) be one of these permutations.  One makes that permutation correspond 
to the value that is taken by the expression ω according to the usual rules of calculation 
when one replace the differentials that occupy the 1st, 2nd, …, hth rank with the 
corresponding derivatives that are taken with respect to β1, β2, …, βh , respectively.  One 
precedes the quantity thus determined with a + or – sign according to whether the 
permutation (β1, β2, …, βh) presents an even or odd number of inversions.  The algebraic 
sum of the h! quantities thus obtained is, by definition, the value of the given differential 
expression. 
 Therefore, the value of the expression (2) is: 
 

3 31 1 2 1 1 2
1 2 1 2

1 2 1 2 2 1 2 1

x xx x x x x x
A A A A

α α α α α α α α
   ∂ ∂∂ ∂ ∂ ∂ ∂ ∂+ − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

. 

 
 5. Equivalent differential expressions. – Two differential expressions are called 
equivalent when, being of the same degree, they have the same value for any parameters 
that one chooses in order to define that value. 
 It results from the definition given above that one can, without changing the value of 
a differential expression, apply all of the usual rules of calculation to it, on the condition 
that one leave the rank of the differential unaltered – i.e., on the condition that one does 
not invert the order of the differentials in the products that one forms.  Indeed, these 
modifications change none of the h! quantities that serve to define the value of the 
differential expression. 
 It results from this that an arbitrary differential expression is equivalent to a 
polynomial differential expression and that, moreover, one can invert the order of the 
monomials in that polynomial expression in an arbitrary manner, and likewise reduce two 
monomials that differ only by the coefficients into just one monomial. 
 That is why the expression (3) is equivalent to the polynomial expression: 
 
(3′)  A1 B1 dx1 dx1 dx2 + (A1 B2 + C) dx1 dx2 dx1 +  A2 B1 dx2 dx1 dx2 + A2 B2 dx2 dx2 dx1 . 
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 6. Value of a monomial differential expression. – If one seeks to find the value of a 
monomial differential expression such as: 
 

1 2 hm m mA dx dx dx⋯  

 
following the rules that were given above, m1, m2, …, mh being h of the indices 1, 2, …, n 
(distinct or not) then one finds the product of A with the functional determinant of 

1mx , 

2mx , …, 
hmx  with respect to α1, α2, …, αh quite simply.  It immediately results from this 

that if a monomial differential expression contains two identical differentials then it must 
have the value zero; one says that it is identically zero.  It likewise results from the theory 
of determinants that one can invert the order of the differentials in a monomial expression 
in an arbitrary manner, on the condition that one change the sign of the coefficient if that 
substitution amounts to an odd number of transpositions, or furthermore if the two 
permutations of the indices of the differentials are of opposite parity.  For example, one 
has: 
 

A dx1 dx2 dx3 = A dx2 dx3 dx1 = A dx3 dx1 dx2  
= − A dx2 dx1 dx3 = − A dx3 dx2 dx1 = − A dx1 dx3 dx2 . 

 
 7. Reduction of a differential expression to its simplest form. – It results from the 
preceding that one can always put an arbitrary differential expression into the form of a 
polynomial expression such that each monomial of the latter expression does not contain 
identical differentials, and the differentials that it does contain are arranged by order of 
increasing indices.  We say that under these conditions the expression is reduced to its 
simplest form.  That is why the simplest form for the expression: 
 

(A1 dx1 + A2 dx2 + A3 dx3 + A4 dx4) (B1 dx2 dx3 + B2 dx1 dx4) 
is 

 A1 B1 dx1 dx2 dx3 − A2 B2 dx1 dx2 dx4 − A3 B2 dx1 dx3 dx4 + A4 B1 dx2 dx3 dx4 . 
 
 8. Identically zero differential expressions. – These are the ones whose value is zero 
no matter what the parameters are that one makes x1, x2, …, xn depend upon. 
 A differential expression in n variables and of degree greater than n is necessarily 
zero, because if one puts it into the form of a polynomial expression then all of the 
monomials must have at least two identical differentials. 
 A differential expression of degree h ≤ n will be identically zero if, upon reducing it 
to its simplest form, the coefficients of all of the monomials are zero.  One accounts for 
this by taking α1, α 2, …, α h to be h arbitrary ones of the variables x1, x2, …, xn . 
 
 9. Inversion of the factors in a product of differential expressions. – Consider a 
(symbolic) product ω of differential expressions ω1, ω2, …, ωm .   
 

ω = ω1 ω2 …ωm . 
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 Imagine that we invert two of the factors ωµ , ων of this product, which are assumed 
to be of order h and k, resp., and suppose that these two factors are separated by one or 
more other factors ωρ of total degree p.  It is clear that such an operation amounts to 
making a certain substitution of the ranks of the differentials of any of these monomials 
of ω when it is reduced to a polynomial expression. 
 If this substitution is even then the value of ω does not change, while if it is odd then 
the sign does change. 
 Now, in order to perform this operation, one can first make ων come before ωµ , 
which demands k (h + p) transpositions, and then make ωµ appear after the group of 
factors ωρ , which requires hp transpositions.  Therefore, in all, one has hk + (h + k) p 
transpositions.  The differential expression ω is thus multiplied by (−1)hk+(h+k)p. 
 In particular, suppose that the two factors considered have degrees of the same parity.  
p(h + k) is then even, and ω is multiplied by (−1)hk.  Therefore, the transposition of the 
two factors into a product of differential expressions does not change this product if the 
factors are pair-wise even and changes the sign of this product if they are pair-wise odd. 
 It results from this that if a differential expression ω is the product of several other 
differential expressions, among which one finds two that are identical and of odd degree, 
then the expression ω is identically zero. 
 
 10. Powers of a differential expression. – One calls the symbolic product of p 
expressions that are identical to ω the pth power of a differential expression ω. 
 The pth power of a monomial is identically zero, because it is a monomial expression 
that contains some identical differentials. 
 The pth power of a differential expression of odd degree is also identically zero, 
because it is a product that contains two identical factors of odd degree. 
 It therefore suffices to consider differential expressions ω of even degree.  Reduced to 
its simplest form, ω is a sum of m monomials of the same degree: 
 

ω = ω1 + ω2 + … + ωm . 
 

 One immediately sees that the square of ω is: 
 

ω2 = 2 (ω1ω2 + ω1ω3 + … + ω1ωm + ω2ω3 + … + ωm−1ωm), 
 
because the squares of ω1, ω2, …, ωm are zero and the product of two monomials of even 
degree is independent of the order of the factors.  One likewise verifies that: 
 

ω3 = 2 ⋅ 3 (ω1ω2 ω3 + ω1 ω2 ω4 + … + ωm−2ωm−1ωm), 
 

and, in a general manner, that ωp is obtained by multiplying the sum of all the products of 
p of the m monomials ω1, ω2, …, ωm by p!. 
 
 11. Change of variables in a differential expression. – Imagine that one performs a 
change of variables on x1, x2, …, xn by taking the new variables to be n independent 
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functions y1, y2, …, yn of x1, x2, …, xn .  Conversely, x1, x2, …, xn are then independent 
functions of y1, y2, …, yn . 
 This being the case, replace the old variables in a differential expression ω in x1, x2, 
…, xn with the new variables and the differentials dx1, dx2, …, dxn with: 
 

1 1 1
1 2

1 2
n

n

x x x
dy dy dy

y y y

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

………………………………., 
 

1 2
1 2

n n n
n

n

x x x
dy dy dy

y y y

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ . 

 
 We thus obtain a certain differential expression ϖ of the same degree in y1, y2, …, yn , 
and in which each differential dy will have the same rank as the differential dx in ω that 
provided it. 
 It results from this that the value of ϖ is equal to the value of ω if one expresses the 
variables as functions of the same parameters α, because in the h! quantities that define 
the value of ω, one replaces, in short, derivatives such as ∂xi / ∂βr by the expressions: 
 

1 2

1 2

i i i n

r r n r

x x x yy y

y y yβ β β
∂ ∂ ∂ ∂∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂

⋯ , 

 
which are obviously equal to them. 
 It immediately results from this that if the expressions ω1, ω2, …, ωm transform into 
ϖ1, ϖ2, …, ϖm by a change of variables then the expression: 
 

ω = ω1ω2 …ωm  
transforms into: 

ϖ = ϖ1ϖ2 …ϖm . 
 
 That property is paramount in the applications that we will make of this theory. 
 For example, one has: 
 

dx1 dx2 = 1 1 2 2
1 2 1 2

1 2 1 2

x x x x
dy dy dy dy

y y y y

  ∂ ∂ ∂ ∂+ +  ∂ ∂ ∂ ∂  
 = 1 2 1 2

1 2
1 2 2 1

x x x x
dy dy

y y y y

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
, 

 
which agrees with the well-known property of functional determinants that is expressed 
by the equality: 

1 2

1 2

( , )

( , )

D x x

D α α
= 1 2 1 2

1 2 1 2

( , ) ( , )

( , ) ( , )

D x x D y y

D y y D α α
. 

 



II. – Application of the preceding theorems to Pfaff expressions. 
 

 12. Derived expression of a Pfaff expression. – Being given a Pfaff expression in n 
variables: 

ω = A1 dx1 + A2 dx2 + … + An dxn , 
 
one calls the second-degree differential expression that is defined by the equality: 
 

ω′ = dA1 dx1 + dA2 dx2 + … + dAn dxn , 
the derived expression. 
 The fundamental property of that derivative is the following: 
 
 Theorem. – If a change of variables transforms the Pfaff expression ω into an 
expression ϖ then that same change of variables transforms the derived expression ω′ 
into the derived expression ϖ′. 
 
 Indeed, suppose that with the new variables y1, y2, …, yn, ω becomes: 
 

ϖ = B1 dy1 + B2 dy2 + … + Bn dyn . 
 
If one lets α, β denote two arbitrary parameters then one has: 
 

(6)   1 2
1 2

n
n

xx x
A A A

α α α
∂∂ ∂+ + +

∂ ∂ ∂
⋯  = 1 2

1 2
n

n

yy y
B B B

α α α
∂∂ ∂+ + +

∂ ∂ ∂
⋯ , 

 

(6)   1 2
1 2

n
n

xx x
A A A

β β β
∂∂ ∂+ + +

∂ ∂ ∂
⋯  = 1 2

1 2
n

n

yy y
B B B

β β β
∂∂ ∂+ + +

∂ ∂ ∂
⋯ . 

 
 Differentiate the first of these equations with respect to β and the second one with 
respect to α, and subtract the two equations thus obtained.  We will have: 
 

(8)    1 1 1 1A x A x

α β β α
 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 

+ … + n n n nA x A x

α β β α
 ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ 

 

 = 1 1 1 1B y B y

α β β α
 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 

+ … + n n n nB y B y

α β β α
 ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ 

. 

 
 The left-hand side of (8) is nothing but the value of ω′ relative to the two parameters 
α, β; the right-hand side is the value of ϖ′ with the same two parameters. 
 Since these two values are equal for any α and β, the change of variables transforms 
ω′ into a differential expression that is equivalent to ϖ′, and which, in turn, after the 
making the reductions, is nothing but ϖ′.  The theorem is thus proved (1). 

                                                
 (1) The consideration of the derivative ω′, or, what amounts to the same thing, of the bilinear covariant 
of ω, forms the basis for the beautiful research of Frobenius and Darboux on the Pfaff problem (loc. cit.).  
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 13. Derivatives of higher order. – Along with the derivative of a Pfaff expression ω, 
we also consider other differential expressions of higher order ω″, ω″′, …, which we 
define in the following manner: 
 
(9)  ω″ = ωω′ = (A1 dx1 + … + An dxn) (dA1 dx1 + … + dAn dxn), 
 
(10) ω″′ = 21

2 ω′ = 1
2 (dA1 dx1 + dA2 dx2 + … + dAn dxn)

2 = 
,

i i j j
i j

dA dx dA dx∑ , 

 

(11) ωIV = ωω″′ = (A1 dx1 + … + An dxn) 
,

i i j j
i j

dA dx dA dx
 
 
 
∑ . 

 
 In a general manner, the derivative of order 2m – 1, ω(2m−1), of a Pfaff expression ω 
will be the mth power of ω′, divided by m!, or the sum of all the m products of n 
monomials dA1 dx1, dA2 dx2, …, dAn dxn .  The derivative of order 2m, ω(2m), will be the 
product of ω with ω(2m−1).  The pth derivative is of degree p + 1. 
 These derivatives enjoy the same property as the derivative ω′.  It is obvious that if a 
change of variables transforms ω into ϖ then the same change of variables will 
transform the pth derivative of ω into the pth derivative of ϖ, because that derivative is 
deduced by multiplying the two differential expressions ω and ω′, which are transformed 
into ϖ and ϖ′. 
 
 14. Exact differential Pfaff expressions. – Suppose that the Pfaff expression ω is an 
exact differential form.  It is then clear that under a change of variables it can be put into 
the form: 

ϖ = dy1 . 
 

 Conversely, suppose that the derivative ω′ of a Pfaff expression: 
 

ω = A1 dx1 + A2 dx2 + … + An dxn 
 

is identically zero.  I say that ω is an exact differential.  The theorem is true for n = 1.  
Suppose that it is true up to n – 1, and prove that it is true for n.  If one sets dx1 = 0 in ω 
and regards x1 as a constant then one obtains a Pfaff expression ω1 in n – 1 variables 
whose derivative 1ω′  is deduced from ω′ by the same operations.  It then results that this 

derivative 1ω′  is identically zero, and that ω1 is, in turn, an exact differential du.  Now, if 

one no longer regards x1 as a constant then one sees that one has: 
 

ω = du + 1 1
1

u
A dx

x

 ∂− ∂ 
, 

 
and, by a change of variables, one can assume that: 
 



Cartan – On certain differential expressions and the Pfaff problem.                         12 

ω = A1 dx1 + dx1 . 
 

Upon calculating ω′, which must remain zero, one finds that: 
 

ω′ = dA1 dx1 = 1 1 1
2 1 3 1 1

2 3
n

n

A A A
dx dx dx dx dx dx

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  = 0. 

 
One then sees that the derivatives of A1 with respect to x2, x3, …, xn are zero, and 
consequently depend only upon x1, so: 
 

ω = ( )2 1 1d x A dx+ ∫  

is an exact differential. 
 The conditions for a Pfaff expression to be an exact differential are thus given by the 
equation: 

ω′ = dA1 dx1 + dA2 dx2 + … + dAn dxn = 0, 
or, in finite terms: 

(12)    ji

j i

AA

x x

∂∂ −
∂ ∂

 = 0  (i, j = 1, 2, …, n). 

 
 15.  Class of a Pfaff expression. – In the case that we just examined, one can, by a 
change of variables, put ω into a form that contains just the one variable y1 explicitly.  In 
the general case, it can happen that by a change of variables ω takes a form ϖ that 
contains just the p variables y1, y2, …, yp explicitly: 
 

ϖ = B1 dy1 + B2 dy2 + … + Bp dyp , 
 

in which the B1, B2, …, Bp depend upon only y1, y2, …, yp . 
 One calls the minimum number of variables, by means of which, one can express a 
Pfaff expression by a convenient change of variables the class (1) of that expression.  A 
Pfaff expression of the first class is an exact differential. 
 
 16. Necessary condition for a Pfaff expression to be of class p. – If a Pfaff expression 
ω is of class p then one can, by a change of variables, put it into the form of a Pfaff 
expression ϖ in p variables.  Thus, consider the pth derivative of ϖ, which is of degree p + 
1.  Since that differential expression is in p variables and of degree p + 1, it is identically 
zero.  It then results that the pth derivative of ω, which is equal to it, is also identically 
zero. 
 Therefore, in order for a Pfaff expression to be of class p, it is necessary that its pth 
derivative be identically zero. (2). 
 

                                                
 (1) That expression was introduced by Frobenius, loc. cit.  
 (2)  Cf., GRASSMAN, loc. cit. 
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 17. Converse of the preceding theorem. – We shall now prove that, conversely, if the 
pth derivative of a Pfaff expression is identically zero then that expression is of class at 
most p.  Since the theorem is true for p = 1, we shall suppose that it has been proved for p 
1, 2, …, p – 1 and prove it for p. 
 Thus, consider a Pfaff expression: 
 

ω = A1 dx1 + A2 dx2 + … + An dxn 
 

whose pth derivative is identically zero, so: 
 

ω(p) = 
1

21
1

!
2

p

p
ω

+

′
+ 

 
 

 

if p is odd, or: 

ω(p) = 21

!
2

p

p
ωω′

 
 
 

 

if p is even. 
 It is clear that if n is less than or equal to p then that Pfaff expression has class at most 
p.  Therefore, suppose that it has been proved that a Pfaff expression in 1, 2, …, n – 1 
variables whose pth derivative is zero has class at most p, and prove it for an expression in 
n variables. 
 If we regard x1 in ω as a constant and make dx1 = 0 then we obtain an expression ω1 
in n – 1 whose pth derivative ( )

1
pω  is therefore identically zero, and in turn, from the 

hypothesis that was made, ω1 has class at most p.  One can thus make a change of 
variables such that ω1 is transformed into: 
 

ϖ1 = B2 dy2 + B3 dy3 + … + Bp+1 dyp+1 , 
 
where y2, y3, …, yp+1 are p functions of x1, x2, …, xn, and where the B’s are functions of 
y2, y3, …, yp+1, as well as the constant x1 .  Now, if one no longer regards x1 as a constant 
in ω then one will obviously obtain: 
 

ω = A1 dx1 + 2
2 2 1

1

y
B dy dx

x

 ∂− ∂ 
+ … + 1

1 1 1
1

p
p p

y
B dy dx

x
+

+ +

∂ 
− ∂ 

. 

 
 Finally, after changing the notations, one has: 
 

ω = A1 dx1 + A2 dx2 + … + Ap+1 dxp+1 , 
 

where A2, A3, …, Ap+1 depend upon only x1, x2, …, xp+1 . 
 This being the case, two cases can be present themselves: Either A1 is independent of 
x1, x2, …, xp+1 or A1 depends upon only these p + 1 variables. 
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 18. In the first case, one can always suppose that one has taken A1 = xp+2 .  If one then 
groups the terms in ω(p) that contain dxp+2 then one easily verifies that one obtains: 
 

dxp+2  dx1
( 2)
1

pω − , 

 
where ω1 has the same significance as it did above.  Since the derivative ω(p) is identically 
zero, the same must be true for the group of terms in that derivative that contain dxp+2 , 
and consequently, for ( 2)

1
pω − .  Since the Pfaff expression ω1 has its (p – 2)th derivative 

equal to zero, it is of order at most p – 2.  In other words, one can suppose that Ap and 
Ap+1 are zero and that A2, A3, …, Ap−1 depend upon only x1, x2, …, xp−1.  The expression ω 
then becomes an expression in only p variables x1, x2, …, xp−1, xp−2, and the theorem is 
proved. 
 
 19.  In the second case, one comes down to an expression ω in p + 1 variables x1, x2, 
…, xp+1.  Then consider the differential expression of (p + 1)th degree: 
 

ω(p−1) df, 
 

where f denotes an arbitrary function of x1, x2, …, xp+1 ; it is of the form: 
 

H dx1 dx2 … dxp+1 =  1 2 1
1 2 1

p
p

f f f

x x x
α α α +

+

 ∂ ∂ ∂+ + +  ∂ ∂ ∂ 
⋯ dx1 dx2 … dxp+1, 

 
in which the α’s are functions of x that depend upon only the coefficients A.  If a change 
of variables transforms ω into ϖ and the function f of x1, x2, …, xp+1 into the function ϕ of 
y1, y2, …, yp+1 then that change of variables will transform ω(p−1) df into ϖ(p−1) dϕ, and in 
turn, any function f that annuls the first of these two expressions will be transformed into 
a function ϕ that annuls the second one, and conversely.  Now, the equation: 
 

ω(p−1) df = 0, 
or 

1 2 1
1 2 1

p
p

f f f

x x x
α α α +

+

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ = 0 

 
is a partial differential equation that is linear in f and admits p independent integrals.  One 
can make a change of variables by taking y1 to be one of these integrals, or furthermore, 
one can, by changing the notations, suppose that x1 is one of these integrals; i.e., that one 
has: 

ω(p−1) dx1 = 0. 
 
The coefficient of dx1 in the left-hand side of this equality is nothing but ω(p−1), where one 
has set dx1 = 0.  If one then regards x1 as a constant then it is the (p − 1)th derivative of ω1, 
where ω1 has the same significance as it did above.  Since the (p − 1)th derivative of the 
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expression ω1 is zero, it therefore has class at most p − 1.  In other words, one can 
suppose that: 

ω = A1 dx1 + A2 dx2 + … + Ap dxp , 
 

where A2, A3, …, Ap depend upon only x1, x2, …, xp .  If A1 is independent of x1, x2, …, xp 

then one comes down to the first case, and the theorem is proved.  If A1 depends upon 
only x1, x2, …, xp then ω takes the form of an expression in p variables, and the theorem 
is likewise proved. 
 
 20. Introduction of a remarkable complete system. – Consider a Pfaff expression of 
class p in n variables: 

ω = A1 dx1 + A2 dx2 + … + An dxn 
 
and the equation that one obtains by equating the differential expression ω(p−2) df to zero, 
where f denotes an arbitrary function of x1, x2, …, xn .  Upon writing down that this 
expression is identically zero, one obtains a certain number of partial differential 
equations for f that are linear and of first order. 
 Consider a transformation of variables that makes ω now depend upon only p 
variables: 

ϖ = B1 dy1 + B2 dy2 + … + Bp dyp , 
 
and let ϕ be the function of y1, y2, …, yp that f is transformed into.  It is clear that the two 
equations: 
(13)     ω(p−2) df = 0, 
(14)     ϖ(p−2) dϕ = 0 
 
transform into each other under the change of variables, or that the system of partial 
differential equations for f that is equivalent to equation (13) is transformed into the 
system of partial differential equations for ϕ that is equivalent to equation (14).  Now, 
this latter system is, first of all, comprised of the equations: 
 

(15)    
1py

ϕ
+

∂
∂

 = 
2py

ϕ
+

∂
∂

 = … = 
ny

ϕ∂
∂

 = 0. 

 
Because ϖ(p−2) is not identically zero (since otherwise ϖ, and in turn, ω, would not be of 
class p), the coefficient of dy1 dy2 … dyp−1, for example, in ϖ(p−2) is not zero, and 
consequently equations (15) are obtained by annulling the coefficients of: 
 

dy1 dy2 … dyp−1 dyp+1, …, dy1 dy2 … dyp−1 dyn 
 
in the right-hand side of (14). 
 Other than equations (15), equations (14) provides one and only one equation for ϕ 
that one obtains by taking the coefficient of dy1 dy2 … dyp, namely: 
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(16)    1 2
1 2

p
py y y

ϕ ϕ ϕβ β β∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  = 0 

in (14). 
 Equation (14) is therefore equivalent to the system of equations (15) and (16).  Since 
the β’s are functions of y1, y2, …, yp, that system is obviously a complete system that 
admits p – 1 independent integrals that are functions of y1, y2, …, yp . 
 Upon returning to equation (13), we see that it is equivalent to a complete system that 
admits p independent integrals.  The integration of that system − by the Mayer method, 
for example – amounts to the integration of a system of ordinary differential equations in 
p variables. 
 We call this system the adjoint complete system to the Pfaff expression (1). 
 
 21. Example. – Consider, for example, the Pfaff expression in five variables: 
 
(17)   ω = x1 x3 dx2 + x1 x2 dx3 + (x1 + x3 x5) dx4 + x3 x4 dx5 . 
 
 Here, one has, upon performing the calculations: 
 
  ω′ = x3 dx1 dx2 + x2 dx1 dx3 + dx1 dx4 + x5 dx3 dx4 + x4 dx3 dx5 , 
 
  ω″′ = 21

2 ω′  = x3 x5 dx1 dx2 dx3 dx4 − x4 dx1 dx3 dx4 dx5 + x3 x4 dx1 dx2 dx3 dx5 , 

so 
ωIV = ω ω′″ = 0. 

 
 The expression ω is therefore of fourth class.  The adjoint complete system is then 
given by the equation: 

ω″ df = ωω′ df = 0, 
 

and must therefore admit three independent integrals.  Upon performing the calculations, 
one finds for the preceding equation: 
 
 ω″ df = ( 2

3x x5 dx1 dx2 dx4 +
2
3x x4 dx1 dx2 dx5 + x2 x3 dx1 dx3 dx4 

 + x2 x3  x4 dx1 dx3 dx5 + x3  x4 dx1 dx4 dx5  

 + x1 x3  x5 dx2 dx3 dx4 + x1 x3  x4 dx2 dx3 dx5 − x1 x4  x3 dx3 dx4 dx5) 

   × 1 2 5
1 2 5

f f f
dx dx dx

x x x

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
⋯  = 0, 

which gives the system for f: 
 

4 3 4 3 5
2 4 3

f f f
x x x x x

x x x

∂ ∂ ∂− +
∂ ∂ ∂

= 0, 

                                                
 (1) In the case where p is even and n is equal to p, it is the first auxiliary system that one finds in all of 
the methods of reduction. 
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1 2 3
1 2 3

f f f
x x x

x x x

∂ ∂ ∂− +
∂ ∂ ∂

= 0. 

 
 This is indeed a complete system that admits the three independent integrals x1 / x3, 
x2x3 + x4, x4 x5 . 
 
 22. Properties of the integrals of the adjoint complete system. – Consider a Pfaff 
expression ω of class p and one of the p independent integrals of the adjoint complete 
system.  Make a change of variables by taking that particular integral to be one of the 
new variables y1 .  The expression ω then becomes a certain expression ϖ in y1, y2, …, yn, 
and one has: 

ϖ(p−2) dy1 = 0. 
 

That equality expresses the idea that if one regards y1 as a constant in ϖ and one sets dy1 
= 0 then the expression ϖ1 thus obtained has its (p − 2)th derivative equal to zero.  In 
other words, the expression ϖ has class at most p – 2; moreover, it certainly does not 
have a lower class, or else the introduction of a term in dy1 could not make ϖ have class 
p. 
 Conversely, if ϖ1 has class p – 2 then its (p − 2) th derivative is zero, or furthermore, 
the expression ϖ(p−2) dy1 is zero. 
 An integral of the adjoint complete system is therefore a function f that reduces the 
class of the Pfaff expression considered by two units when one equates it to an arbitrary 
constant. 
 Naturally, this statement implicitly assumes that at the same time that one couples x1, 
x2, …, xn by the relation: 

f(x1, x2, …, xn) = a 
 
one couples the differentials by the relation: 
 

df = 1 2
1 2

n
n

f f f
dx dx dx

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  = 0. 

 
 Therefore, in the example that was previously treated, if one takes the integral x1 / x3 
of the adjoint complete system then the substitution of ax3 for x1 and adx3 for dx1 must 
reduce the class of ω by two units.  Indeed, ω becomes: 
 

(18)  
2
3 2 2 3 2 3 5 4 3 4 5

3 2 3 5 4

( )

[ ( ) ],

ax dx ax x dx x a x dx x x dx

x d ax x a x x

ω = + + + +
 = + +

 

 
and is no longer of class two. 
 
 23. Reduction of a Pfaff expression of class p to a canonical form. – Given a Pfaff 
expression ω of class p, let f1 be an integral of the adjoint complete system.  Consider the 
equations: 
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(19)     ω(p−4) df1 df = 0, 
 
where f denotes an arbitrary function of x1, x2, …, xn .  If one makes a change of variables 
by taking f1 to be one of the variables y1 then if that change of variables transforms ω into 
ϖ and f into ϕ then the preceding equation becomes: 
 
(20)     ϖ(p−4) dy1 dϕ = 0. 
 
If one regards y1 as a constant in ϖ and ϕ, and one makes dy1 = 0 everywhere then this 
equation can be further written: 
(21)     ( 4)

1
p dω ϕ−  = 0. 

 
Since ϖ1 has class p – 2, one sees that it is equivalent to the adjoint complete system to 
ϖ1 .  This system admits p – 3 independent integrals that are functions of y2, y3, …., yn, 
and also the constant y1 .  Upon going back to equation (20) and no longer regarding y1 as 
a constant, one sees that the equation is equivalent to a complete system that admits p – 2 
independent integrals, among which is y1 . 
 Finally, equation (19) is equivalent to a complete system that admits p – 2 
independent integrals, among which one finds the function f1 itself. 
 Those of the integrals f of the complete system that is equivalent to (19) that are 
independent of f1 are functions such that the relations: 
 

(22)    1 1

1

, ,

0, 0,

f a f a

df df

= =
 = =

 

 
reduce the class of ω by four units.  The proof is absolutely the same as in the preceding 
case. 
 From the Mayer method, these functions are given by the integration of a system of 
ordinary differential equations in p – 2 variables. 
 It is indeed clear that when it is practical to infer one of the variables as a function of 
the n – 1 other ones from f1 = a, it will suffice to integrate the adjoint complete system to 
the Pfaff expression that results from ω by that substitution. 
 One can then continue step-by-step.  Letting f2 denote an independent integral of f1 in 
equation (19), one considers the equation: 
 
(23)     ω(p−6) df1 df2 df = 0. 
 
This equation is equivalent to a complete system that admits p − 5 independent integrals 
of f1 and f, and these integrals are functions f such that the relations: 
 

(24)    1 1 2 2

1 2

, , ,

0, 0, 0

f a f a f a

df df df

= = =
 = = =

 

 
reduce the class of ω by six units, and so on. 
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 Having done that, two cases can present themselves, according to whether p is even 
or odd. 
 
 24. Canonical form for an expression of even class. – If p is even and equal to 2m, for 
example, then the (m – 1)th complete system will be given by the equation: 
 
(25)    ω′ df1 df2 … dfm−2 df = 0, 
 
and the mth one will be, in turn: 
 
(26)    ω df1 df2 … dfm−2 dfm−1 df = 0. 
 
It is clear that this will give functions fm such that the relations: 
 

(27)   1 1 2 2 1 1

1 2 1

, , , , ,

0, 0, , 0, 0
m m m m

m m

f a f a f a f a

df df df df
− −

−

= = = =
 = = = =

⋯

⋯

 

 
render ω identically zero.  If one then takes the new variables to be y1 = f1, y2 = f2, …, ym 
= fm and m other arbitrary functions that are independent of the latter then ω will take the 
form: 

ϖ = B1 dy1 + B2 dy2 + … + Bm dym . 
 

It is clear that the m coefficients B are mutually independent functions that are 
independent of y1, y2, …, ym, since other wise ϖ would have a class that was lower than 
2m.  One can thus take m independent variables other than y1, y2, …, ym .  Upon changing 
notations, we have the following theorem: 
 
 Theorem. – Given an arbitrary Pfaff expression of class 2m, one can always put it 
into the form: 
(28)    ω = p1 dx1 + p2 dx2 + … + pm dxm  
 
by a change of variables, where x1, x2, …, xm ; p1, p2, …, pm are 2m independent 
variables. 
 
 This reduction can be accomplished by the search for one integral of m systems of 
ordinary differential equations in 2m, 2m – 2, …, 4, 2 variables, respectively (1). 
 
 25. In the example that was treated above, one had m = 2; we then found an integral 
x1 / x3 of the first complete system.  The second one is provided by the equation: 
 
(29)  [a 2

3x dx2 + a x2 x3 dx3 + x3 (a + x5) dx4 + x3 x4 dx5] 

                                                
 (1) Equations (25) differ only in form from the equations that present themselves when one uses the 
Frobenius method of reduction. 
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    × 2 3 5
2 3 5

f f f
dx dx dx

x x x

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
⋯  = 0, 

 
and can be put into the form: 
 

(30)   2
2
3

f

x

a x

∂
∂

= 3

2 3

f

x

a x x

∂
∂

= 4

3 5( )

f

x

x a x

∂
∂

+
= 5

3 4

f

x

x x

∂
∂

. 

 
One easily finds an integral, namely: 
 

a x2 x3 + (a + x5) x4 = b = x1 x2 + x4 x5 + 1 4

3

x x

x
. 

By setting, for example: 

x1 =  a x3 , x5 = − a + 2 3

4

b a x x

x

−
, 

 
and substituting this in (17), while regarding a and b are variables, one finds, after 
making all reductions: 

ω = − x3 (x4 + x2 x3) da + x3 db. 
 

Here, the variables x1, x2, p1, p2 in the canonical form are: 
 

1

3

x

x
, x1 x2 + x4 x5 + 1 4

3

x x

x
, − x3 (x4 + x2 x3), x3 . 

 
 26. Canonical form for an expression of odd class. – If p is odd and equal to 2m + 1, 
for example, then the mth complete system is: 
 
(31)    ω′ df1 df2 … dfm−1 df = 0. 
 
Thus, if fm is an independent integral of f1, f2, …, fm−1 then the relations: 
 

(32)   1 1 2 2

1 2

, , , ,

0, 0, , 0
m m

m

f a f a f a

df df df

= = =
 = = =

⋯

⋯

 

 
makes ω have first class; i.e., a exact differential dz.  The following theorem results: 
 
 Theorem. – Given an arbitrary Pfaff expression of class 2m + 1, one can always put 
it into the form: 
(33)    ω = dz – p1 dx1 – p2 dx2 − … – pm dxm 
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by a change of variables, where x1, x2 , …, xm , z, p1, p2, …, pm are 2m + 1 independent 
variables. 
 
 This reduction can be accomplished by the search for one integral of the m systems of 
ordinary differential equations in 2m + 1, 2m – 1, …, 5, 3 variables, respectively, and by 
a quadrature. 
 
 27. For example, take: 
 
    ω = x3 dx1 + x1 dx2 – x3 x5 dx4 – x3 x4 dx5 + x2 dx6 . 
One finds that: 
  ω′ = dx2 dx6 – x5 dx3 dx4 – x4 dx3 dx5 , 
  ω″′  = − x5 dx2 dx3 dx4 dx6 – x4 dx2 dx3 dx4 dx6 , 
  ωV = 0. 
 
The expression ω therefore has class five at most; one easily confirms that since ωIV is 
identically zero, ω is effectively of class five. 
 Here, the adjoint complete system is: 
 

ω″′ df = 0, 
which decomposes into: 

1

f

x

∂
∂

= 0, 

4 5
4 5

f f
x x

x x

∂ ∂−
∂ ∂

= 0. 

 
One can take x2 to be one of the integrals of that complete system.  Then, take x2 = a1, 
and form the complete system: 

ω′ df = 0, 
which is: 

1

f

x

∂
∂

= 0, 

4

f

x

∂
∂

= 0, 

4 5
4 5

f f
x x

x x

∂ ∂−
∂ ∂

= 0, 

 
here.  The function x2 is an integral of this system.  Thus, upon setting x2 = a1, x3 = a2, ω 
must become an exact differential.  Indeed, one finds that: 
 

ω = d(a1 x1 − a2 x4 x5 + a1 x6), 
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and if one no longer regards a1 and a2 as constants then one gets (1): 
 
    ω = d(a1 x1 − a2 x4 x5 + a1 x6) – x6 da1 + x4 da2 , 
    ω = d(x1 x2 − x3 x4 x5 + x2 x6) – x4 dx2 + x4 x5 dx3 . 
 
 28. Remark. – The adjoint complete system for a Pfaff expression, when put into its 
canonical form, reduces to the equation: 
 

1 2
1 2

m
m

f f f
p p p

p p p

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ = 0 

 
in the case where the class is even, and to the equation: 
 

f

z

∂
∂

 = 0 

 
in the case where the class is odd.  It thus admits the independent integrals: 
 

x1, x2, …, xm, 1

m

p

p
, 2

m

p

p
, …, 1m

m

p

p
−  

 
in the former case, and the independent integrals: 
 

x1, x2, …, xm, p1, p2, …, pm  
in the latter case. 
 One sees that all of the integrals of the complete system that one encounter in the 
reduction satisfy the adjoint complete system, since the m integrals that are used here are 
x1, x2, …, xm . 
 Later on (IV, 69, 70, 75), one will give a new form into which one can put the 
equations of the successive complete systems that facilitate the reduction. 

                                                
 (1) The Frobenius method of reduction for the expressions of odd class differs from the one that we just 
presented in that it begins by determining a function f such that ω − df is only of class 2m. 



III. – Total differential equations.  
 

 29. The total differential equations that we shall occupy ourselves with are the ones 
that one obtains by equating a Pfaff expression to zero. 
 To solve an equation of that nature is to find a system of finite relations between x1, 
x2, …, xm such that these relations between the variables and the ones that one deduces 
between their differentials annul the Pfaff expression. 
 We shall first propose to find, in a general manner, all of the systems of equations that 
annul a Pfaff expression.  In that regard, any Pfaff expression can be assumed to be of 
odd class, since one can always reduce the class of a Pfaff expression of even class by 
one unit because by dividing by a convenient factor.  Thus, the equation: 
 

p1 dx1 + p2 dx2 + … + pm dxm = 0 
can be written 

dxm + 11 2
1 2 1

m
m

m m m

pp p
dx dx dx

p p p
−

−+ + +⋯  = 0, 

 
where the left-hand side has class 2m – 1. 
 
 30. Minimum number of equations that annul a Pfaff expression. – Consider a Pfaff 
expression ω of class 2m + 1 (or 2m + 2) that has been put into canonical form, and seek 
to solve the equation: 
(1)     ω = dz − p1 dx1 − p2 dx2 − … − pm dxm = 0 
 
by means of a minimum number of relations between x1, x2, …, xm, z, p1, p2, …, pm , and 
the other variables that do not enter into ω explicitly.  A first solution is provided by 
equating x1, x2, …, xm, z to m + 1 arbitrary constants, which gives m + 1 relations.  I say 
that it is not possible to satisfy equation (1) with a smaller number of relations. 
 Indeed, equation (1) expresses the idea that there is at least one relation between z, x1, 
x2, …, xm .  Suppose that there are exactly h + 1 of them, and, more precisely, these 
relations can be put into the form: 
 

(2)     

1 1 1 2

2 2 1 2

1 2

1 2

( , , , ),

( , , , ),

..............................

( , , , ),

( , , , ).

h h m

h h m

h h h h m

h h m

x x x x

x x x x

x x x x

z x x x

ϕ
ϕ

ϕ
ψ

+ +

+ +

+ +

+ +

=
 =

 =


=

…

…

…

…

 

 
 Since the variables xh+1, xh+2, …, xm are not coupled by any relation, equation (1) 
gives: 
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(3)   

1 1
1 1 1

1 1 1 1

1 1
1 1

0,

......................................................................,

0.

h
h h

h h h h

h
h m

m m m m

p p p p
x x x x

p p p p
x x x x

ϕϕ ϕψ

ϕϕ ϕψ

+
+ + + +

∂∂ ∂∂ − − − − − =∂ ∂ ∂ ∂


 ∂∂ ∂∂
 − − − − − =

∂ ∂ ∂ ∂

⋯

⋯

 

 
 These m – h new relations (3) are mutually independent and independent of equations 
(2).  Along with (2), they form a system of m + 1 equations that solve the problem. 
 At the same time, one sees that in order to get the most general solution, it suffices to 
append to these equations an arbitrary number of other equations that form an 
algebraically compatible system with the first ones.  One can take ϕ1, ϕ2, …, ϕh to be 
absolutely arbitrary functions, the number h being equal to 0, 1, 2, …, m.  The particular 
solution that was obtained above is obtained by taking h = m, so the functions ϕ and ψ 
are then constants. 
 
 31. In order to make what we just said about the general solution to the equation: 
 
(1)     ω = dz − p1 dx1 − p2 dx2 − … − pm dxm = 0 
 
precise and complete, one directly looks for all of the systems of relations that satisfy that 
equation, and for which a given system of values 0

1x , …, 0
mx , z0, 

0
1p , …, 0

mp  constitutes a 

simple example; i.e., such that in the neighborhood of this system of values, a certain 
number 2m – h + 1 of the variables can be expressed as holomorphic functions of h other 
ones, or, what amounts to the same thing, one looks for all systems of 2m – h + 1 
relations such that the left-hand sides of these relations are holomorphic in the 
neighborhood of this system of values and the functional determinants of these left-hand 
sides with respect to the 2m – h + 1 variables are not zero for the same system of values, 
moreover.  The h different variables of the 2m – h + 1 variables with respect to which one 
can solve the system will be called the h independent variables. 
 This being the case, one can always suppose that z is not one of the independent 
variables; indeed, otherwise, one would have: 
 

1 − 1 2
1 2

m
m

xx x
p p p

z z z

∂∂ ∂− − −
∂ ∂ ∂

⋯  = 0. 

 
This equality shows that x1, x2, …, xm cannot all be independent variables, since then the 
left-hand side would reduce to 1 and one of the derivatives ∂x1 / ∂z, …, ∂xm / ∂z – the first 
one, for example − would be non-zero for 0

1(x , …, 0 )mp .  This shows that one can deduce 

z as a holomorphic function of x1 and h – 1 other independent variables, and that, in turn, 
one can replace z with x1 as an independent variable. 
 One can likewise suppose that among the h independent variables that are taken from 
the x and p, there are not two of them such as x1 and p1, in other words, that these h 
variables have h distinct indices.  Indeed, otherwise one would have: 
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1 1 2 2

1 1 1 1 1 1

( , )( , ) ( , )

( , ) ( , ) ( , )
m mD x pD x p D x p

D x p D x p D x p
+ + +⋯  = 0 

 
upon considering the derivative ω′, which must be zero for the system of relations 
considered. 
 The first term in that equality is equal to 1.  It then results that at least one of the 
indices is not represented in any of the h independent variables, because otherwise all of 
the terms that follow the first one would be zero.  If the unrepresented indices were, for 
example, the last m – α indices then only the last m – α terms in the equality could be 
non-zero, and, in turn, at least one of the quantities: 
 

1

1

x

x
α +∂

∂
, 2

1

x

x
α +∂

∂
, …, 

1

mx

x

∂
∂

; 1

1

p

x
α +∂

∂
, …, 

1

mp

x

∂
∂

 

 
would be non-zero for 0

1(x , …, 0 )mp , namely, ∂xα+1 / ∂x1 .  One could then deduce z as a 

holomorphic function of xα+1 and substitute xα+1 for x1 as an independent variable.  The 
indices 1 and a + 1 would then be represented just one time amongst the h independent 
variables.  If there were another pair of variables, such as (x2, p2), then one would repeat 
the same operation, in such a manner that one would finally arrive at h independent 
variables with all of their indices distinct.  This proves, in particular, that h cannot exceed 
m. 
 
 32. This being the case, suppose that the h independent variables are: 
 

x1, x2, …, xα ; pα+1, pα+2, …, ph . 
 

 One will then have relations of the form: 
 

(4)   

1 1 1 1

1 1 1 1

1 1

1 1 1 1

( , , , , , ),

( , , , , , ),

............................................,

( , , , , , ),

( , , , , , ),

.................................

h h h

h h h

m m h

h h h

z x p x p w x x p p

x u x x p p

x u x x p p

p v x x p p

α α α α

α α

α α

α α

+ + +

+ + +

+

+ + +

− − − =
=

=
=

⋯ … …

… …

… …

… …

1 1

...........,

( , , , , , ),m m hp v x x p pα α +










 = … …

 

 
the functions uh+1, …, um, vh+1, …, vm, w being holomorphic in the neighborhood of 01(x , 

…, 0xα , 0
1pα + , …, 0)hp  and subject to the sole condition that for this system of values they 

must take the values: 
 

0
1hx + , …, 0

mx , 0
1hp + , …, 0

mp , z0 − 0 0
1 1x pα α+ + − … − 0 0

h hx p , 
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respectively. 
 Upon substituting this in the total differential equation (1), it takes the form: 
 

dw – p1 dx1 − … − pα dxα + xα+1 dpα+1 + … + xh dph – vh+1 duh+1 − vm dum = 0, 
 

which immediately gives the values for p1, p2, …, pα, xα+1, …, xh, namely: 
 

(5)   

1
1 1

1 1 1

1
1

1
1 1

1 1 1

,

.................................................,

,

,

..........................................

h m
h m

h m
h m

h m
h m

u uw
p v v

x x x

u uw
p v v

x x x

u uw
x v v

p p x

α
α α α

α
α α α

+
+

+
+

+
+ +

+ + +

∂ ∂∂= − − −
∂ ∂ ∂

∂ ∂∂= − − −
∂ ∂ ∂

∂ ∂∂= − + + +
∂ ∂ ∂

⋯

⋯

⋯

1
1

...............,

.h m
h h m

h h h

u uw
x v v

p p x
+

+













 ∂ ∂∂= − + + +

∂ ∂ ∂
⋯

 

 
 Formulas (4) and (5) resolve the question.  The solution thus depends upon 2m – 2h + 
1 arbitrary functions of h arguments and h of them can take the values 0, 1, 2, …, m.  If 
we combine these two groups of formulas then we get the general solution of equation (1) 
that admits the system of values 01(x , …, 0 )mp  as a simple element in the form of the 

following relations: 
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(6)  

1 1
1 1 1

1 1

1
1

1
1 1

1 1 1

1
1

,

,

................................................,

h h
h h h

h h

m m
m h

h

h m
h m

h
h

u uw w
z w p p v p p

p p p p

u u
v p p

p p

u uw
p v v

x x x

uw
p v

x x

α α
α α

α
α

α
α

+ +
+ + +

+ +

+
+

+
+

+
+

 ∂ ∂∂ ∂= − − − + + + + ∂ ∂ ∂ ∂ 

 ∂ ∂+ + + ∂ ∂ 

∂ ∂∂= − − −
∂ ∂ ∂

∂∂= −
∂ ∂

⋯ ⋯ ⋯

⋯

⋯

1
1 1

1 1 1

1
1

1 1

1 1

,

,

.........................................................,

,

,

.........,

,

,

.........,

,

m
m

h m
h m

h m
h h m

h h h

h h

m m

h h

m m

u
v

x

u uw
x v v

p p p

u uw
x v v

p p p

x u

x u

p v

p v

α α

α
α α α

+
+ +

+ + +

+
+

+ +

+ +



∂− −
∂

∂ ∂∂= − + + +
∂ ∂ ∂

∂ ∂∂= − + + +
∂ ∂ ∂

=

=
=

=

⋯

⋯

⋯
































 

 
where uh+1, …um, vh+1, …, vm, w are holomorphic functions of x1, …, xα , pα+1, …, ph that 
are holomorphic in the neighborhood of 01(x , …, 0)hp  and take given values for that 

system of values, while the first-order, partial derivatives of the first 2m – 2h of them take 
given values that are easy to calculate (always for the same system of values). 
 In particular, for h = m, there is only one arbitrary function w of m arguments − 
namely, of x1, …, xα , pα+1, …, pm – and one has: 
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(7)   

1
1

1
1

1
1

,

,

.........,

,

,

...............,

.

m
m

m
m

w w
z w p p

p p

w
p

x

w
p

x

w
x

p

w
x

p

α
α

α
α

α
α

+
+

+
+

∂ ∂ = − − − ∂ ∂


∂ = ∂


 ∂ = ∂
 ∂= − ∂



∂ = −
 ∂

⋯

 

 
In particular, if one takes w to be a linear function of pα+1, …, pm then one recovers 
formulas (2) and (3), with a simple change of notations. 
 
 33. General solution of an arbitrary Pfaff equation. – We just solved the particular 
Pfaff equations (1).  From that, if one is given an arbitrary Pfaff expression of class 2m + 
1 or 2m + 2 then one will only have to reduce it to its canonical form.  The equation to be 
solved will then be of the form (1), and equations (6) will provide the general solution of 
the problem.  One sees that if ω(2m+2) is the first derivative of even order that is annulled 
identically then in order to annul ω one must have a system of at least m + 1 equations 
between the variables, and then one will have an infinitude of them that depend upon an 
arbitrary function of m arguments. 
 
 34. Singular solutions. – The preceding conclusion can nevertheless be incorrect in 
certain particular cases.  It can happen that the first derivative of even order of a Pfaff 
expression ω that is identically zero is ω(2m), so one can either annul that expression by 
means of a system of less than m relations between x1, x2, …, xn or by means of a system 
of at most m relations, but those relations do not enter into formula (7).  This case can 
present itself when the change of variables that reduces ω to its canonical form is illusory 
for the system of values of the variables that satisfy these relations.  That is why the third-
order expression: 

dx1 – x1 x2 dx3 
 
can be annulled by means of the single equation: 
 

x1 = 0, 
 
which indeed translates into the system of two equations: 
 

x1 = x1 x2 = 0 
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with the canonical variables (x1, x2, x3, x4).  Moreover, that is why one can satisfy the 
equation: 

p1 dx1 + … + pm dxm = 0 
with the system of m relations: 

p1 = p2 = … = pm = 0, 
 
which does not fall into the general type. 
 It is therefore important to find all of the solutions that do not fall into the general 
type.  In order to do this, we shall give a very simple criterion. 
 
 35. Conditions for a solution to be singular. – We shall prove that if the Pfaff 
expression ω is of class 2m – 1 or 2m then in order for a solution to be singular, it is 
necessary that this solution should annul all of the coefficients of the (2m – 2)th derivative 
of ω, which is assumed to be put into its simplest form. 
 
 We suppose that the coefficients of ω are holomorphic functions of the variables, and 
we consider only solutions, which are general or singular, that are defined by a certain 
number h of equations whose left-hand sides are holomorphic in the neighborhood of an 
arbitrary system of values that satisfies these equations, and the functional determinants 
of these h left-hand sides with respect to h arbitrary ones of the variables are not all zero 
for this same system of values. 
 This being the case, we shall prove that if the coefficients of ω(2m−2) are not all zero 
for an arbitrary system of values of the variables that corresponds to a given solution then 
that solution is general – i.e., one can obtain it by the procedure presented above. 
 Indeed, first consider the equation: 
 
(8)      ω(2m−2) df = 0. 
 
If ω has class 2m then this equation is equivalent to the adjoint complete system to ω and 
admits 2m – 1 independent integrals.  This complete system is thus formed from n – 2m + 
1 independent equations.  If ω has class 2m – 1, and if one takes the variables y1, y2, …, 
yn such that ω depends upon only y1, y2, …, y2m−1 explicitly then equation (8) is obviously 
equivalent to the system: 

2m

f

y

∂
∂

= 
2 1m

f

y +

∂
∂

= … = 
n

f

y

∂
∂

= 0, 

 
and, in turn, to a complete system that admits 2m – 1 independent integrals and forms n – 
2m + 1 independent integrals.  In any case, equation (8) furnishes a complete system that 
shall call the COMPLETE SYSTEM that is adjoint to the total differential equation ω = 
0 and which admits 2m – 1 independent integrals. 
 
 36. This being the case, we return to our particular solution and let: 
 

0 0 0
1 2( , , , )nx x x…  
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be an arbitrary system of values that correspond to that solution.  By hypothesis, the 
coefficients of ω(2m−2), which has degree 2m – 1, are not all zero for this system of values.  
For example, suppose that the coefficient of: 
 

dx1 dx2 … dx2m−1 
 
is not zero.  Since the expression ω(2m−2) results from the product of ω(2m−1) with ω′, it 
then results that the coefficients of the various monomials in ω(2m−1) that are formed from 
the differentials dx1, dx2, …, dx2m−1 are not all zero, always for the same system of values.  
For example, suppose that this is true for the coefficient of: 
 

dx1 dx2 … dx2m−2 . 
 
We can continue in that way and assume that: 
 
 The coefficient of dx1 dx2 … dx2m−1  in ω(2m−2) is not zero, 
  “ dx2 dx3 … dx2m−2  in ω(2m−4)  “, 
 ………………………………………………………….., 
  “ dxr dxr+1 … dx2m−r  in ω(2m−2r) “, 
 ………………………………………………………….., 
  “ dxm in ω “. 
 
 Under these conditions, consider the adjoint complete system to the equation ω = 0.  
In order to form it, take the total coefficients of the monomials: 
 
 dx1 dx2 … dx2m−1 dx2m , 
 dx1 dx2 … dx2m−1 dx2m+1, 
 ……………………….., 
 dx1 dx2 … dx2m−1 dxn  
 
in the left-hand side of (8).  From the hypotheses that were made, we will thus have n – 

2m + 1 equations solved for 
2m

f

x

∂
∂

,
2 1m

f

x +

∂
∂

, …, 
n

f

x

∂
∂

, while the coefficients of the other 

derivatives are holomorphic in the neighborhood of 0
1x , 0

2x , …, 0
nx .  Since the complete 

system contains exactly n – 2m + 1 equations, it is determined completely.  We see, 
moreover, that from the theory of complete systems this system admits 2m – 1 
independent integrals that are holomorphic in the neighborhood of 0

1x , 0
2x , …, 0

nx  and 

reduce to x1 − 0
1x , x2 − 0

2x , …, x2m−1 − 0
2 1mx −  for x2m = 0

2mx , x2m+1 = 0
2 1mx + , …, xn = 0

nx .  We 

take u1 to be the one of these integrals that reduces to x1 − 0
1x .  Upon neglecting terms of 

degree two and higher, that integral is therefore of the form: 
 

u1 = x1 − 0
1x + α2m(x2m − 0

2mx ) + α2m+1(x2m+1 − 0
2 1mx + ) + … + αn(xn − 0

nx ). 
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 If one equates u1 to a constant, and one takes into account the fact that du1 = 0 then 
the expression ω no longer has class 2m – 2 or 2m – 3, since its (2m – 2)th derivative is 
annulled, and its class cannot be reduced by more than two units. 
 
 37. We now consider the equation: 
 
(9)      ω(2m−4) du1 df = 0, 
 
which, from the preceding, is equivalent to the adjoint complete system to the equation ω 
= 0, where one makes u1 = const. 
 This complete system admits 2m – 3 independent integrals, and if one does not regard 
u1 as a constant then it admits 2m – 2 independent integrals.  It is composed of n – 2m + 2 
independent equations.  In order to find them, here, it suffices to take the coefficients of 
dx1 dx2 … dx2m−2 dx2m−1 , dx1 dx2 … dx2m−2 dx2m , …, dx1 dx2 … dx2m−2 dxn .  These 

coefficients contain the derivatives 
2 1m

f

x −

∂
∂

, 
2m

f

x

∂
∂

, …, 
n

f

x

∂
∂

, respectively, multiplied by a 

coefficient that is non-zero, by hypothesis, as well as some terms in 
1

f

x

∂
∂

, 
2

f

x

∂
∂

, …, 

2 2m

f

x −

∂
∂

. 

 Upon equating these coefficients to zero, one has n – 2m + 2 independent equations 

that one can consider as being solved for 
2 1m

f

x −

∂
∂

, 
2m

f

x

∂
∂

, …, 
n

f

x

∂
∂

, while the coefficients 

of the other derivatives are holomorphic in a neighborhood of 0
1x , 0

2x , …, 0
nx .  These n − 

2m + 2 are the equations of the desired complete system.  One sees, moreover, that this 
system admits 2m – 2 holomorphic independent integrals that reduce to x1 − 0

1x , x2 − 0
2x , 

…, x2m−2 − 0
2 2mx −  for: 

x1 = 0
1x , x2  = 0

2x , …, x2m−2 = 0
2 2mx − , 

 
respectively.  The first one is nothing but u1 .  We denote the second one by u2 .  Up to 
terms of higher degree, u2 has the form: 
 

u2 = x2 − 0
2x  + β2m−1(x2m−1 − 0

2 1mx − ) + β2m(x2m − 0
2mx ) + … + βn(xn − 0

nx ). 

 
 We then continue by forming: 
 
(10)     ω(2m−6) du1 du2 df = 0, 
 
an equation that is equivalent to a complete system that admits a holomorphic integral u3 
that reduces to x3 − 0

3x  for: 

 
x2m−2 = 0

2 2mx − , x2m−1 = 0
2 1mx − , …, xn = 0

nx , 
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and so on, up to the complete system: 
 

ω du1 du2 … dum−1 df = 0, 
 

which will admit the holomorphic integral um that reduces to xm − 0
mx  for: 

 
xm+1 = 0

1mx + ,  xm+2 = 0
2mx + , …, xn = 0

nx . 

 
 38. We thus finally arrive at m holomorphic functions, in all: 
 

u1, u2, …, um, 
reduce to: 

x1 − 0
1x , x2 − 0

2x , …, xm − 0
mx , 

respectively, when one sets: 
 

xm+1 − 0
1mx +  = xm+2 − 0

2mx + = … = xn − 0
nx = 0. 

 
 Moreover, ω becomes zero when one gives constant values to these m functions, in 
such a way that one has an equality of the form: 
 
(11)    ω = C1 du1 + C2 du2 + … + Cm dum . 
 
 The C coefficients are holomorphic functions in a neighborhood of 0

1x , 0
2x , …, 0

nx .  

Indeed, if one makes a change of variables by taking: 
 
 y1 = u1, y2 = u2, …, ym = um, 
 ym+1 = xm+1 − 0

1mx + , …, yn = xn − 0
nx  

 
then any holomorphic function of the old variable in the neighborhood of 0

1x , 0
2x , …, 0

nx  

is a holomorphic function of the new ones in the neighborhood of  y1 = y2 = … = yn = 0, 
and conversely.  In particular, ω remains holomorphic in the neighborhood of zero y’s, 
and since it must contain only dy1, dy2, …, dym, it then results that C1, C2, …, Cn are 
holomorphic. 
 One sees, moreover, that 0mC  is non-zero, because the developed expression (11) 

gives a quantity for the coefficient of dxm whose values for01x , 0
2x , …, 0

nx , which is, by 

hypothesis, non-zero, is nothing but 0
mC .  It then results that in a neighborhood of 0

1x , 0
2x , 

…, 0
nx  the total differential equation is equivalent to the equation: 

 

(12)   dum + 11 2
1 2 1

m
m

m m m

CC C
du du du

C C C
−

−+ + +…  

= dum – v1 du1 − … − vm−1 dum−1 = 0, 
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where the v are again holomorphic.  Finally, if one reduces u1, u2, …, um, v1, v1, …, v m−1 
to their terms of first degree then one obtains 2m – 1 expressions of first degree in x1, x2, 
…, xn that must be independent. 
 Indeed, it is only these terms of first degree that are involved with expressing the 
value of the coefficients of ω(2m−2) when one sets x1 = 0

1x , x2 = 0
2x , …, xn = 0

nx .  If these 2m 

– 1 quantities are not independent then they furnish a Pfaff expression of class at most 2m 
− 2, and consequently ω(2m−2) will be zero for x1 = 0

1x , x2 = 0
2x , …, xn = 0

nx , which is 

contrary to hypothesis. 
 
 39. It ultimately results that if v1, v1, …, v m−1 take the values 01v , 0

2v , …, 0
1mv −  for x1 = 

0
1x , x2 = 0

2x , …, xn = 0
nx  then one can make a change of variables by taking the new 

variables to be u1, u2, …, um, v1 − 0
1v , v2 − 0

2v , …, vm−1 − 0
1mv − , and n – 2m + 1 quantities xi 

− 0
ix .  Any holomorphic function of the old variables in the neighborhood of 0

ix  will be 

holomorphic in the new ones in a neighborhood of their zero values.  The solution 
considered will then transform into a solution that contains the system of zero values of 
the variables and annuls the expression: 
 

dum – v1 du1 – v2 du2 − …− vm−1 dum−1 . 
 

 It can be provided only by the general process of solution of that total differential 
equation. 
 One will have an infinitude of systems of m, m + 1, …, 2m – 1 dependent functions of 
arbitrary variables, to which one adds, if necessary, arbitrary equations in an arbitrary 
number if n is greater than 2m – 1. 
 The problem that we just solved is, in short, the following one: 
 
 Find all solutions of the equation ω = 0 that admit a point (or system of values) 01(x , 

0
2x , …, 0)nx  that does not annul all of the coefficients of the (2m − 2)th derivative of ω for 

a simple point. 
 
 One sees that all of these solutions are given by formulas that all fall into a finite 
number of types that depend upon arbitrary functions. 
 
 40. Search for singular solutions. – From the foregoing, we call a solution whose 
points all annul the coefficients of ω(2m−2), which is assumed to be reduced to its simplest 
form, a SINGULAR SOLUTION. 
 If one equates all of these coefficients to zero then one has a system of equations that 
can be algebraically incompatible, and then there is no singular solution; they can also 
decompose into several other incompatible ones.  Each of them can be put into a form 
such that the left-hand sides of the h equations that comprise them are holomorphic with 
respect to an arbitrary system of values of variables that satisfy the system, and such that 
the functional determinants of these h left-hand sides with respect to h arbitrary ones of 
these variables are not zero for the same system of values, moreover. 
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 This being the case, consider a well-defined singular solution and an arbitrary simple 
point 0

1(x , 0
2x , …, 0)nx  of that solution.  If the two conditions that were enumerated above 

are verified for this point then one can deduce h of these variables as holomorphic 
functions of the n – h other ones and substitute them into ω.  One then has a new Pfaff 
expression that is holomorphic in a neighborhood of 0

1x , 0
2x , …, 0

nx , and which will be of 

class at most 2m – 2.  One will come down to looking for solutions to the equation thus 
obtained by equating this expression to zero. 
 If the second condition, which relates to the functional determinants, is not realized 
for all the points 0

1(x , 0
2x , …, 0)nx  of the solution considered then one has a higher-order 

solution of the singularity.  One will get all the solutions by adding to the h solutions that 
were found above, the ones that one obtains by equating all of the functional 
determinants of their left-hand sides with respect to h of the variables to zero.  One thus 
obtains a new system of k > h equations that one can put into a form that satisfies the two 
conditions stated above.  One proceeds for the second system as one did for the first one, 
and so on. 
 These operations necessarily terminate, because one is necessarily dealing with a 
finite number of total differential equations of lower order than the given equation.  Each 
of them can lead to other total differential equations whose order will be less than their 
own.  It is indeed clear that this will conclude after a finite sequence of these operations. 
  
 41. Examples. – Take the Pfaff expression: 
 
(13)    ω = x5 dx1 + x3 dx2 + x1 dx4 + x1 dx5 . 
 Here, one has: 
 

(14)  

1 4 3 2

5 1 2 3 3 1 2 4 1 2 3 4

1 1 4 5 1 2 3 5
IV

1 1 2 3 4 5
VI

,

,

,

0.

dx dx dx dx

x dx dx dx x dx dx dx x dx dx dx

x dx dx dx x dx dx dx

x dx dx dx dx dx

ω
ω

ω
ω

′ = +
 ′′ = − − − + −
 = −


=

 

 
 Thus, m = 3, here.  The singular solutions are the ones for which one has: 
 

x4 = 0, 
 

since the only coefficient of ωIV is x1.  If one replaces the variable x1 with zero in ω then 
one gets the equation: 

ϖ = x3 dx2 = 0. 
 

 The general solution to that equation is: 
 

x2 = a, 
and the singular solution is: 

x3 = 0. 
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 As a result, the singular solutions of the equation ω = 0 are: 
 
(15)     x1 = 0,  x2 = a 
and 
(16)     x1 = 0,  x2 = 0, 
 
and the ones that one gets by adding arbitrary equations to each of these solutions. 
 Here, the general solution is given by at least three equations, whereas one has 
singular solutions that are comprised of just two equations. 
  
 42. Once again, consider the Pfaff expression that has already served as an example: 
 

ω = x1 x3 dx2 + x1 x2 dx3 + (x1 + x3 x5) dx4 + x3 x4 dx5 . 
 
 Here, one finds: 
 

(17)  

2 2
3 5 1 2 4 3 4 1 2 5 2 3 5 1 3 4

2
2 4 1 3 5 3 4 1 4 5 1 3 5 2 3 4

1 3 4 2 3 5 1 4 3 4 5
IV

,

0.

x x dx dx dx x dx x dx dx x x x dx dx dx

x x dx dx dx x x dx dx dx x x x dx dx dx

x x x dx dx dx x x dx dx dx

ω

ω

′′ = + +
 + + +


+ −
 =

 

 
 One thus has m = 2.  The singular solutions are obtained annulling the coefficients of 
ω″.  One thus finds: 
(18)    x1 x4 = x3 x4 = x3 x5 = 0. 
 
 This system decomposes into three others: 
 

(18)a 
1

3

0,

0,

x

x

=
 =

 (18)b 
3

4

0,

0,

x

x

=
 =

 (18)c 
4

5

0,

0.

x

x

=
 =

 

 
 The first system, as well as the second one, annuls ω identically; they thus constitute 
two singular solutions.  The third one gives: 
 
(19)    ϖ = x1 x3 dx2 + x1 x2 dx3 = 0, 
 
and m = 1 for ϖ.  The general solution of equation (19) is immediate; it is: 
 
(20)     x2 x3 = a. 
 
 As for the singular solutions, they are obtained by annulling the x1 x3 and x1 x2 
coefficients of ϖ.  One thus has two cases: Either: 
 

x1 = 0 
or 
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x2 = x3 = 0 
 
 The system (18)c thus gives the singular solutions of the original equation: 
 
(21)   x4 = 0,  x5 = 0,  x2 x3 = a, 
(22)   x4 = 0,  x5 = 0,  x1 = 0, 
(23)   x4 = 0,  x5 = 0,  x2 = 0,  x3 = 0. 
 
 The last one enters into the singular solution (18)b, moreover. 
 
 43. Finally, consider the equation: 
 
(24)    ω = A1 dx1 + A2 dx2 + A3 dx3 = 0, 
 
where the A are functions of x1, x2, x3 .  In the general case, ω will be of third class, and in 
turn, m = 2.  The singular solutions will be furnished by annulling the coefficients of 
ω(2m−2) = ω′.  Now: 
 

ω″ = 3 32 1 1 2
1 3 2

3 2 1 3 2 1

A AA A A A
A A A

x x x x x x

      ∂ ∂∂ ∂ ∂ ∂− + − + −      ∂ ∂ ∂ ∂ ∂ ∂     
 dx1 dx2 dx3 , 

here. 
 If the quantity inside the brackets is identically zero then one can satisfy equation (24) 
by just one equation that depends upon one arbitrary parameter.  Otherwise, in certain 
cases, upon annulling that quantity one might get a singular solution that might be formed 
from the only relation thus obtained, but which will generally need to be completed with 
another relation.  That is why upon taking: 
 
(25)    ω = 2 2 2 3

1 1 2 1 2 3 2 3 2(1 )x x x dx x x dx x dx− − + + , 

 
the equation that is obtained by annulling the coefficient of ω″ is: 
 

2 2 2
1 2 3 1 2 32 ( 1)x x x x x x+ + −  = 0. 

 
 This equation decomposes into four other ones, and when each of them is treated 
separately, one is finally led to the following singular solutions: 
 
(25)a    x1 = 0,  2 2

2 3x x+  = a, 

(25)b    x2 = 0,  2 4 4
1 1 32x x x− +  = a, 

(25)c    x1 = 0,  x3 = a, 
(25)d     2 2 2

1 2 3x x x+ +  = 1. 

 
 Of course, from each of these solutions one deduces an infinitude of other ones by 
adding arbitrary equations to the equations that determine them. 



IV. – Systems formed from several finite equations 
and one total differential equation. 

 
 44.  Given a total differential equation: 
 
(26)   ω = A1 dx1 + A2 dx2 + … + An dxn = 0 
 
and a system of h finite equations in the variables: 
 

(27)    

1 1 2

2 1 2

1 2

( , , , ) 0,

( , , , ) 0,

.....,

( , , , ) 0,

n

n

h n

f x x x

f x x x

f x x x

=
 =


 =

…

…

…

 

 
one addresses the problem of satisfying equation (26) by means of a system of equations 
that consist of equations (27). 
 We suppose, as always, that the left-hand sides of equations (27) satisfy the two 
fundamental conditions that were stated above that relate to all the systems of equations 
that we are concerned with. 
 Before solving the problem, we shall prove a theorem that is important in itself, and 
which has already helped us implicitly. 
 
 45.  Class of a Pfaff expression, when one supposes that the variables are coupled by 
given relations. – Consider the Pfaff expression ω.  Suppose that one deduces h of the 
variables as functions of the n – h other ones from equations (27), and one substitutes 
them into ω.  That expression contains more than n – h variables.  I say that the class of 
that new expression is the smallest whole number p such that the coefficients of the 
expression: 
(28)     ω(p) df1 df2 … dfh , 
 
which is assumed to be reduced to its simplest form, are all zero by virtue of relations 
(27). 
 Indeed, suppose that the functional determinant of f1, f2, …, fh, with respect to x1, x2, 
…, xh is not identically zero.  One can then take the new variable to be: 
 

y1 = f1,  y2 = f2, …, yh = fh,  yh+1 = fh+1, …, yn = fn, 
 
and any holomorphic function of the old variables will be a holomorphic function of the 
new ones, and conversely.  If one lets ϖ denote what ω becomes under this change of 
variables then expression (28) transforms into: 
 
(29)     ϖ(p) dy1 dy2 … dyh . 
 
It is indeed clear, moreover, that each coefficient of (28) is a linear combination with 
holomorphic coefficients of the coefficients of (29), and conversely.  (The coefficients of 
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these expressions are taken once the reduction to the simplest form has been performed.)  
Now, the coefficients of the expression (29) are the same as those of ϖ(p), where one has 
removed the terms that contain the differentials dy1, dy2, …, dyh .  Therefore, if one takes 
the relations (27) into account in the coefficients of (28) then this amounts to setting, on 
the one hand: 

dy1 = dy2 = …= dyh = 0, 
and on the other: 

y1 = y2 = …= yh = 0 
in ϖ(p). 
 Let ϖ0 be what ϖ becomes when one makes these substitutions.  It is easy to see that 
ϖ′ changes into 0ϖ ′  under these substitutions.  Indeed, if: 

 
ϖ = B1 dy1 + … + Bh dyh  + Bh+1 dyh+1 + … + Bn dyn 

then one has: 
ϖ0 = 0 0

1 1h h n nB dy B dy+ + + +⋯ , 

from which, one infers that: 
 

0ϖ ′  = 
0

,

h i
h i h j

i j h j

B
dy dy

y
+

+ +
+

∂
∂∑  = 

,
0

h i
h i h j

i j h j

B
dy dy

y
+

+ +
+

 ∂
  ∂ 

∑ , 

 
where the index 0 expresses the idea that one sets y1 = y2 = …= yh = 0.  One indeed sees 
that 0ϖ ′  is deduced from ϖ′ by setting: 

 
y1 = y2 = …= yh = dy1 = dy2 = …= dyh = 0. 

 
 Under the latter substitution, ϖ changes into ϖ0 and ϖ′ into 0ϖ ′ , so it is clear that ϖ′q 
changes into 0

qϖ ′  and that ϖϖ′q changes into ϖ0 0
qϖ ′ , and in other words, that ϖ(p) 

changes into ( )
0

pϖ . 

 One sees from this that the necessary and sufficient condition for the coefficients of 
(28) to be zero by virtue of (27) is that ( )

0
pϖ  must be identically zero, or, since ϖ0 is what 

ω becomes when one derives x1, x2, …, xh from (27), that the class of ω is at most p, after 
the variables in it are linked by the relations (27).  This conclusion proves the theorem. 
 
 46.  General solutions to the proposed problem. – After that, we return to our 
problem and suppose that m is the smallest whole number such that the coefficients of: 
 
(30)     ω(2m) df1 df2 … dfh , 
 
are all zero by virtue of (27).  The general solutions will be the ones, by virtue of which, 
the coefficients of: 
(31)     ω(2m−2) df1 df2 … dfh , 
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will not all be zero.  In particular, the functional determinants of f1, f2, …, fh with respect 
to any h of the variables will not all be zero for these solutions, since otherwise the 
expression df1 df2 … dfh would have all of its coefficients zero (those coefficients are 
these functional determinants themselves) and the same would be true for the expression 
(31). 
 From this, if 0

1(x , 0
2x , …, 0)nx  denotes an arbitrary system of values that correspond to 

a well-defined general solution then one can derive h of the variables as holomorphic 
functions of the other ones from (27) in a neighborhood of 0

1(x , 0
2x , …, 0)nx , and if one 

substitutes them into ω then one will come down to solving a total differential equation 
whose left-hand side will be of order 2m or 2m − 1, while the derivative ω(2m−2) does not 
have all of its coefficients zero for the system of values 0( )ix  considered.  One will arrive 

at this stage by considering m successive complete systems and determining a 
holomorphic integral for each of them. 
 
 47. Here, one can give the following form to these complete systems.  The first one 
will be equivalent to the equation: 
 
(32)     ω(2m−2) df1 df2 … dfh df = 0, 
 
where the variables are assumed to be coupled by the relations (27).  If fh+1 is a 
holomorphic integral that does not reduce to a constant by virtue of (27) then the 
complete second system will be: 
(33)     ω(2m−2) df1 df2 … dfh dfh+1 df = 0, 
and so on, up to: 
      ω df1 df2 … dfh+m−1 df = 0, 
 
which will give a holomorphic integral fh+m .  We will thus have m independent 
holomorphic functions fh+1, fh+2, …, fh+m , while likewise taking (27) into account.  One 
can, moreover, arrange that the equation to be solved is put into the form: 
 
(34)   dfh+m = ϕh+1 dfh+1 − … − ϕh+m−1 df h+m−1 = 0, 
 
where the ϕ are also holomorphic in a neighborhood of 0

1x , …, 0
nx .  One will thus be in a 

position to find all of the solutions that admit the point ( 0
1x , …, 0

mx ) as a simple point. 

 
 48.  Singular solutions. – In order to have singular solutions, one must append the 
relations that one obtains by annulling all of the coefficients of the differential 
expression: 
(31)     ω(2m−2) df1 df2 … dfh  
 
to equations (27).  One will thus have a new system of relations, and one will be, in short, 
reduced to a problem that is analogous to the first one, except that the integer h will 
become larger.  For this new problem, we will have a new value m′ for m that is equal to 
at most m, and it will admit general solutions and singular solutions that will be given by 
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the solutions of a third problem, where h will again be augmented.  It is clear that h 
cannot exceed the number n – 1, so these operations will terminate. 
 
 49.  Solution of a total differential equation by means of a given number of equations. 
– The new problem that we propose is the following one: Given the total differential 
equation (26), solve that equation by means of r finite relations between the variables, 
among which h < r are given relations (27). 
 To that effect, we shall first prove that if a system of r relations annuls the Pfaff 
expression ω then all of the coefficients of ω(2r) are zero by virtue of these relations. 
 
 50.  Indeed, let: 

(35)    

1 1 2

2 1 2

1 2

( , , , ) 0,

( , , , ) 0,

.............................,

( , , , ) 0

n

n

r n

f x x x

f x x x

f x x x

=
 =


 =

…

…

…

 

 
be the system of r relations that annul ω.  One supposes that the left-hand sides always 
verify the same two fundamental hypotheses.  If the functional determinant of f1, f2, …, fr 
with respect to x1, x2, …, xr is not zero by virtue of (35) then we can take the new 
variables to be: 
 

y1 = f1,  y2 = f2, …, yr = fr ,  yr+1 = fr+1, …, yn = fn, 
 

and from a remark that was made above, if ω transforms into ϖ then the coefficients of 
ω(p) will be annulled by virtue of (35) at the same time as those of ϖ(p), and conversely. 
 Now, if we form the expression ϖ: 
 

ϖ = B1 dy1 + B2 dy2 + … + Br dyr + Br+1 dyr+1 + … + Bn dyn  
 
then, by hypothesis, it is necessary that Br+1 , Br+2, …, Bn be annulled at the same time as 
y1, y2, …, yr .  Then consider: 

ϖ(2r) = 
1

!r
ϖ ⋅⋅⋅⋅ϖ′r, 

 
and set y1 = y2 = …= yr = 0 in the coefficients.  The terms in ϖ whose coefficients are not 
annulled cannot be the terms in dy1, dy2, …, dyr .  Likewise, if a term in ϖ′ has a 
coefficient that is non-zero by virtue of (35) then it must contain at least one of the 
differentials dy1, dy2, …, dyr , since otherwise there would be a term of the form: 
 

r i

r j

B

y
+

+

∂
∂

dyr+i dyr+i , 
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and the value of the coefficient of that term for y1 = y2 = …= yr = 0 can obviously be 
obtained by first setting y1 = y2 = …= yr = 0 in Br+i and then differentiating with respect to 
yr+i , which will necessarily give zero. 
 Therefore, if one preserves only the terms with non-zero coefficients in the r + 1 
factors ϖ and ϖ′ of ϖ(2r) then each term of each of these factors contains at least one of 
the r differentials dy1, dy2, …, dyr .  Since there are more factors than differentials, the 
coefficients of the total symbolic product will certainly all be zero. 
 The coefficients of ω(2r) are annulled by virtue of the expressions (35) at the same 
time as the coefficients of ϖ(2r), so the theorem is proved. 
 One proves that all of the coefficients of ω(2r+1) are annulled in the same fashion. 
 
 51.  We shall further prove a theorem that is a little more general.  If a Pfaff 
expression ω is annulled by means of r relations, where h of these relations are given by 
(27), then all of the coefficients of the expression: 
 
(36)    ω(2r−2h) df1 df2 … dfh 
 
are annulled by virtue of these r relations. 
 Indeed, the theorem is true if one first has that all of the functional determinants of 
the left-hand sides f1, f2, …, fh of the h given relations with respect to any h of the 
variables are annulled by virtue of the relations considered, because the expression df1 df2 
… dfh then has all of its coefficients zero by virtue of the relations in question, and 
consequently expression (36) does as well. 
 If these functional determinants are not all zero by virtue of the r relations then we 
can derive h of the variables as holomorphic functions of the n – h other ones from (27) 
and substitute them in ω; we will then have an expression ϖ.  Moreover, the coefficients 
of ω(p) df1 df2 … dfh are annulled at the same time as those of ϖ(p), and conversely.  Now, 
the expression ϖ can be annulled by means of r − h relations between the variables.  As a 
result, from the preceding theorem, all of the coefficients of the derivative ϖ(2r−2h) are 
annulled by virtue of these r − h relations.  Consequently, all of the coefficients of (36) 
are annulled by virtue of the r relations in question.  The same is true for all of the 
coefficients of: 

ω(2r−2h+1) df1 df2 … dfh . 
 
 52. This being the case, one arrives at the solution of the proposed problem: Solve the 
system of equations (26) and (27) by means of r – h relations that are distinct from (27). 
 One forms the differential expression: 
 
(36)    ω(2r−2h) df1 df2 … dfh , 
 
and one equates all of its coefficients to zero.  In general, one will obtain equations that 
are distinct from the given equations, in such a way that the system (27) will be replaced 
with a new system of h′ > h equations.  If h′ is greater than r then the problem is 
impossible.  If not, then one forms the differential expression for this new system that is 
analogous to (36), and so on.  One concludes by arriving at either a system of more than r 
relations, in which case, one has the impossibility of a solution, or a system of k < r 
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relations for which the expression ω(2r−2k) df1 df2 … dfk  will have all of its coefficients 
equal to zero, by virtue of these k relations.  Then, if m is the smallest whole number such 
that ω(2r−2h) df1 df2 … dfh  has all of its coefficients equal to zero by virtue of the k 
relations that were obtained then one will have the general solution of the problem by 
solving a certain Pfaff equation: 
 

dZ – P1 dX1 − … − Pm−1 dX m−1 = 0, 
 

where the X, P, Z will be given by the successive complete systems.  One will then have 
an infinitude of systems of m relations, to each of which, one adds r – m – k arbitrary 
equations. 
 
 53. The singular solutions are obtained by adding the relations that one obtains by 
annulling all of the coefficients of ω(2r−2) df1 df2 … dfk  to the k relations in question.  One 
will then have a new system of relations, and one will come back to the original problem, 
but h will be augmented.  One sees how one continues, and one indeed accounts for the 
fact that all of these operations will have a conclusion. 
 The solution that was just presented includes the one where there is no relation 
between the variables given a priori (i.e., h = 0) as a special case. 
 
 54.  Example. – Take the example that was treated before (13): 
 

ω = x5 dx1 + x1 dx2 + x1 dx4 + x1 dx5 . 
 
One seeks to annul ω by a system of r = 3 relations whose h = 1 relation is given: 
 

x4 = 0. 
 
Here (r – h = 2), so one must form the expression ωIV dx4 .  Now, upon referring to the 
value (14) for ωIV, one finds that: 

ωIV dx4 = 0. 
 
Here, there are general solutions then. Since one has: 
 

ω″ dx4 = − x5 dx1 dx2 dx3 dx4 + x1 dx2 dx3 dx4 dx5 , 
 
the number m is equal to 2 here, and the general solutions are the ones that do not annul 
both x1 and x5 simultaneously.  Upon setting x4 = 0 in (37), one finds that: 
 

ϖ = x5 dx1 + x3 dx2 + x1 dx5 = x3 dx2 + d(x1 x5) = 0. 
 

 The general solution of the problem will then be provided by: 
 

x4 = 0,  x1 x5 = ϕ(x2), x3 = − ϕ′ (x2). 
 

 The singular solutions must consist of the h = 3 relations: 
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x1 = x4 = x5 = 0. 
  
One must therefore annul the coefficients of ω dx1 dx4 dx5 , since r – h = 3 – 3 = 0.  Now, 
one finds that: 

ω dx1 dx4 dx5 = − x3 dx1 dx2 dx4 dx5 . 
 

One must then append the equation: 
x3 = 0 

 
to equations (40), which gives more than three relations.  There is therefore no singular 
solution. 
 
 55. Another solution to the same problem. – The equations that one add to the given 
equations (27) in the general case, namely, the ones that one obtains by annulling the 
coefficients of the differential expression: 
 
(36)     ω(2r−2h) df1 df2 … dfh , 
 
are all very complicated if h is large, since they depend on the partial derivatives of h 
functions f1, …, fh .  In a very extended case, one can substitute other equations that are 
much simpler to define for them. 
 We first remark that any solution of the problem will be a solution of the system: 
 

(37)     
1

0,

0,f

ω =
 =

 

 
and consequently, since h is equal to 1 here, one must annul all of the coefficients of the 
expression ω(2r−2) df1 .  We thus see already that one will have to add the equations that 
one obtains by annulling the coefficients of h differential expressions: 
 
(38)    ω(2r−2) df1 (i = 1, 2, …, h) 
to equations (27). 
 Likewise, is h is greater than 1, one will, by an analogous argument, have to annul all 
of the coefficients of the differential expressions: 
 

(39)    
(2 3)

(2 4)

r
i j

r
i j

df df

df df

ω
ω

−

−





  (i, j = 1, 2, …, h). 

 
 The expressions (38) and (39) contain only the derivatives of at most two functions f.  
Here is a theorem that permits one to restrict oneself to the consideration of analogous 
expressions in three very general cases. 
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 56.  Theorem. – Suppose one is given a system of h relations: 
 

(27)    

1 1 2

2 1 2

1 2

( , , , ) 0,

( , , , ) 0,

..............................,

( , , , ) 0,

n

n

h n

f x x x

f x x x

f x x x

=
 =


 =

…

…

…

 

 
whose left-hand sides always satisfy the same conditions relative to their functional 
determinants. 
 If one considers only systems of values for the variables that satisfy (27) and do not 
annul all of the coefficients in the expression: 
 

ω df1 df2 … dfh 
 

or, at the same time, those of ω(r−1) and ω(r−2), then they do not annul those of the 
expression: 
     ω(2r−2h−2) df1 df2 … dfh 
either. 
 Furthermore, under the same conditions: 
 
 1. If these systems of values do not annul ω(2r−1) then the equation: 
 
(36)    ω(2r−2h) df1 df2 … dfh = 0 
 
is algebraically equivalent to the equations: 
 

(40)   
(2 2)

(2 3)

0,

0

r
i

r
i j

df

df df

ω
ω

−

−

 =
 =

  (i, j = 1, 2, …, h). 

 
 2. If these systems of values do not annul ω(2r−2)  then the equation: 
 
(36)    ω(2r−2h) df1 df2 … dfh = 0 
 
is algebraically equivalent to the equations: 
 
(41)   ω(2r−4) dfi dfj = 0  (i, j = 1, 2, …, h). 
 
 3. If these systems of values do not annul ω(2r−2)  then the equation: 
 
(42)    ω(2r−2h−1) df1 df2 … dfh = 0. 
 
is algebraically equivalent to the equations: 
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(43)    
(2 3)

(2 4)

0,

0

r
i

r
i j

df

df df

ω
ω

−

−

 =
 =

  (i, j = 1, 2, …, h). 

 
 The integer h is assumed to be equal to at least one in the first and third cases, and 
equal to at most 2 in the second case.  Finally, if the coefficients of (36) and (37) are zero 
then the same thing is true for those of ω(2r)  in the three cases, and in addition, of ω(2r−1)  
in the last case. 
 We shall first prove the following lemma: 
 
 57.  Lemma. – Suppose one is given a differential expression ω of second degree and 
h + 1 differential expressions ω, ω1, …, ωh of first degree in n variables x1, x2, …, xn . 
 
 1. If the coefficients of ϖr are not all zero for a certain system of variables that do 
not annul ω ω1 … ωh then the coefficients of: 
 

ϖr−h ω ω1 … ωh 
 
are annulled for this system of values only at the same time as those of the expressions: 
 

ϖr−1ω ωi , ϖr−1ωi ωj  (i, j = 1, 2, …, h), 
and conversely. 
 
 2. Under the same conditions, if the coefficients of ωϖr−1 are not all zero then the 
coefficients of: 

ϖr−hω ω1 … ωh 
 
are annulled only at the same time as those of the expressions: 
 

ϖr−2ω ωi ωj   (i, j = 1, 2, …, h). 
 
 3. If the coefficients of ωϖr−1 are not all zero then the coefficients of: 
 

ϖr−hω ω1 ω2 …ωh 
 
are annulled only at the same time as those of the expressions: 
 

ϖr−1ωi ,  ϖr−2ω ωi ωj  (i, j = 1, 2, …, h). 
 
 In any case, the coefficients of the expression: 
 

ϖr−h−1ω ω1 ω2 …ωh 
 
can never be annulled simultaneously. 
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 Without changing any of the conditions of the statement, one can suppose that the 
coefficients of the expressions ϖ, ω, ω1, …, ωh keep the constant values that they possess 
for the system of values for the variables that was considered.  This amounts to supposing 
that ϖ, ω, ω1, …, ωh are the differentials of linear forms in x1, x2, …, xh . 
 This being the case, the hypothesis that was made on the product ω, ω1, …, ωh 
expresses the notion that these h + 1 linear forms are independent.  Moreover, one can 
perform an arbitrary linear substitution with a non-zero determinant on the last h of them 
without changing any of the conditions of the statement.  Finally, one can likewise make 
an arbitrary linear substitution with non-zero determinant on the n variables in such a 
manner as to have, for example: 

ω1 = dx1, ω2 = dx2, …, ωh = dxh, ω = dxn . 
 
 58.  This being the case, the set of terms in ϖ that contain dxn is of the form: 
 

dxn du, 
 

where u is a certain linear form in x1, x2, …, xn−1 that can be identically zero.  Now, 
consider the terms that do not contain dxn .  If we let: 
 
  i, j, … denote the indices 1, 2, …, h, and 
  λ, µ  “ h + 1, h + 2, …, n – 1 
 
then we see that ϖ is composed of three groups of terms, in addition to dxn du: 
 
 1. Terms of the form Ai,j dxi dxj , 
 2. “ Ai,λ dxi dxλ , 
 3. “ Aλ,µ dxλ dxµ . 
 
 Suppose that the coefficient of: 

dxh+1 dxh+2 
 
in the third group is non-zero.  We the make a change of variables by taking: 
 

1hx +′  = 
1

, 2
1

n

hA xρ ρ
ρ

−

+
=
∑ , 

 

Ah+1, h+2 1hx +′  = 
1

1,
1

n

hA xρ ρ
ρ

−

+
=
∑ . 

 
We then see that the product 1 2h hdx dx+ +′ ′  contains all of the terms in dxh+1 and dxh+2 that 

are found in ϖ – dxn du.  Therefore, upon taking 1hx +′  and 2hx +′  instead of xh+1 and xh+2 , ϖ 

– dxn du no longer contains terms in 1hdx +′  and 2hdx +′ . 

 Upon removing 1 2h hdx dx+ +′ ′ , we will have an analogous expression in n – 3 variables.  

In this new expression, there will be terms of the third group, so we can repeat the 
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preceding operation until all of these terms are absent.  In other words, we can suppose 
that the terms of the third group are: 
 

dxh+1 dxh+2 + dxh+2 dxh+4 + … + dxh+2α−1 dxh+2α , 
 

since the terms of the first and second group do not contain any differentials dxh+1, dxh+2 , 
…, dxh+2α . 
 Now, take the terms in the second group – if they exist – that contain one of the 
differentials dx1, dx2, …, dxh .  For example, suppose that the coefficient of dx1 dxh+2α−1 is 
non-zero.  We can then, as we just did, take new variables in place of the x1 and xh+2α−1 : 
 

1x′  = , 2 1
1

h

hA xρ α ρ
ρ

+ +
=
∑ , 

 

A1, h+2α+1 2 1hx α+ +′  = 
1

1,
1

n

A xρ ρ
ρ

−

=
∑ , 

 
in such a manner that 1dx′  and 2 1hdx α+ +′  do not enter into any terms of the first and second 

group other than 1dx′ 2 1hdx α+ +′ .  Finally, upon repeating this operation as many times as 

necessary, one puts the terms of the second group into the form: 
 

dx1 dxh+2α+1 + dx2 dxh+2α+2 + dxβ dxh+2α+β , 
 

so the terms of the first group contain none of the differentials dx1, dx2, …, dxβ . 
 Finally, the terms of the first group themselves − if there are any – can be put into the 
form: 

dxβ+1 dxβ+2 + dxβ+3 dxβ+4 + … + dxβ+2γ−1 dxβ+2γ  
 

by a process that is identical to the preceding ones. 
 Finally, upon changing the notations, we can write: 
 

(44) 

1 1 2 2

1 1 3 4 2 1 2

1 2 3 4 2 1 2

,

h h h

h h h h h h

n

dx dx dx dx dx dx

dx dx dx dx dx dx

dx dx dx dx dx dx

dx du

α α

α α α α α β α β

α α α α α γ α γ

ϖ + + +

+ + + + + − +

+ + + + + + + + + + − + +

= + + +
 + + + +
 + + + +
 +

…

…

…

 

 
where α, β, γ are integers that can be zero, such that: 
 

α + 2β ≤ h, h + α + 2γ ≤ n – 1. 
 
 59.  This being the case, we pass on to the proof of the lemma.  One can first convert 
the first two cases into each other.  Indeed, if the second case is proved then it will suffice 
to suppose that ϖ does not depend upon dxn, and to then replace r with r + 1, h with h + 
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1, so the h expressions ω1, ω2, …, ωh will become h + 1 expressions ω, ω1, ω2, …, ωh in 
order to the get back to the first case. 
 We thus have only the last two cases to prove. 
 
 60.  Second case. – The hypothesis is that ω ϖr−1 does not have all of its coefficients 
equal to zero; i.e., that ϖ – dxn du contains at least r − 1 terms.  One then has: 
 

α + β + γ ≥ r – 1. 
 
 One first sees that ϖr−h−1ωω1ω2 …ωh cannot be annulled, because upon removing the 
terms in dx1, dx2, …, dxh, dxn from ϖ, there will remain at least r – 1 – h terms. 
 This being the case, if ϖr−hω ω1ω2 …ωh is zero then that signifies that upon removing 
the terms in dx1, dx2, …, dxh, dxn from ϖ, there remain at most r − h – 1 terms.  However, 
this amounts to removing at most h of the ϖ – dxn du that contain at least r – 1 of them.  
This must then be true upon removing exactly h of them, and ϖ – dxn du contains exactly 
r – 1 of them.  One then has: 

α + β + γ = r – 1 
and 

a = h,  b = 0; 
 
conversely, if this is true then ϖr−hω ω1ω2 …ωh is zero. 
 We likewise look for the conditions for all of the expressions ϖr−2ω ωi ωj to be zero.  
In order for this to be true, it is necessary that upon removing the terms in dxn, dxi, dxj 
from ϖ there must remain at most r − 3 of them.  Now, this amounts to removing at most 
two terms from ϖ – dxn du that contain at least r − 1 of them.  It is then necessary that ϖ 
– dxn du must contain exactly r – 1 of them and that one removes exactly two.  If that is 
true then for any indices i and j it is necessary that each of the differentials dx1, dx2, …, 
dxh are contained in one and only one of the terms in ϖ – dxn du; i.e., that one will have: 
 

α + β + γ = r – 1, 
α = h,  β = 0, 

 
and conversely, if this is true then the expressions ϖr−2ω ωi ωj are all zero. 
 Therefore, if: 

ϖr−hω ω1ω2 …ωh  
 
is annulled then the same is true for: 
 

ϖr−2ω ωi ωj (i, j = 1, 2, …, h), 
 
and conversely.  The proof is obvious. 

 
 61.  Third case. – The hypothesis is that ωϖr−1 is non-zero, so the situation is the 
same as in the preceding case.  One thus has: 
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α + β + γ  ≥ r – 1, 
 
and one sees in the same manner that ϖr−h−1ω ω1ω2 …ωh cannot be zero. 
 This being the case, if ϖr−hω ω1ω2 …ωh  is zero then upon setting: 
 

ϖ = ϖ1 + dxn du 
one sees that: 

ϖr−h = 1
1 1
r h r h

ndx duϖ ϖ− − −+  . 

One thus has: 

1
r hϖ − dx1, dx2, …, dxh = 0, 

du 1
1
r hϖ − − dx1, dx2, …, dxh = 0. 

 
The first equality shows that upon removing the terms in dx1, dx2, …, dxh from ϖ there 
remain at most r – h – 1 of them.  One then deduces, as we just did, that ϖ1 contain 
exactly r – 1 terms and that each of the differentials must appear in one and only one of 
the terms in ϖ1 .  One thus has: 

α + β + γ = r – 1, 
α = h,  β = 0. 

 
The second equality is then written: 
 

dx1 dx2 …dxh  dx2h+2 … dx2r−2 = 0, 
 

which shows that u is a linear combination of x1, …, xh , x2h+1, …, x2r−2 .  Conversely, 
these conditions are sufficient in order for ϖr−hω ω1ω2 …ωh to be zero. 
 Now, suppose that the expressions ϖr−1ωi and ϖr−2ω ωiωj are all zero.  Upon 
considering the latter, one confirms, as before, that one must have: 
 

α + β + γ = r – 1, 
α = h,  β = 0, 

 
and that these conditions are sufficient. 
 Upon now considering the former, one has: 
 

ϖr−1ωi = 1 2
1 1
r r

i n idx duϖ ω ϖ ω− −+ . 

 
The first term in the right-hand side is zero, and what remains is: 
 

2
1
r

idu dxϖ − = 0; 

i.e.: 
du dx1 dx2…dxh dxh+1…dxh+i−1 dxh+i+1…dx2h dx2h+1…dx2r−2 = 0. 
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Since this is true for any value of the index i = 1, 2, …, h, it is necessary and sufficient 
that u must be a linear combination of x1, …, xh , x2h+1, …, x2r−2 . 
 It results from this that the two systems: 
 

ϖr−hω ω1ω2 …ωh = 0 
and 

ϖr−1ωi = ϖr−2ω ωi ωj = 0 
 
are equivalent, which was to be proved. 
 
 62.  Moreover, one easily sees that either one of the two systems entails that: 
 

ω ϖr = 0 
 
in the three cases.  Indeed, in the last two cases, when one makes ω = dxn = 0, ϖ is 
composed of r − 1 terms, and in turn: 
 

dxn ϖr = ω ϖr = 0. 
 

In the first case, ϖ is a sum of r terms, where one and only one of them contains ω, in 
such a way that ω ϖr is further zero.  In the second case, one similarly sees that all of the 
expressions ϖr ω ωi have zero coefficients. 
 Naturally, the lemma is meaningless if h is greater than or equal to 1 in the first and 
third case, and greater than or equal to 2 in the second one. 
 
 63. We now return to the theorem that we would like to prove.  It is deduced 
immediately from the preceding lemma upon taking ϖ to be the derived expression ω′ 
and ωi to be the differential dfi , and upon giving the variables only those numerical 
values that satisfy (27). 
 
 64. We shall now apply this theorem to the solution of the Pfaff equation by means of 
r relations, where h of the relations are given by (27), by supposing that these r relations 
do not simultaneously annul the coefficients of ω(2r−1) and ω(2r−2). 
 We shall successively examine the case where one considers only solutions that do 
not annul ω(2r−1)  and then the one where one considers only solutions that do not annul 
ω(2r−2). 
 
 65. First case. – Annul a Pfaff expression ω by means of r relations that do not annul 
ω(2r−1), among which, h of them are given by (27). 
 First, suppose that h is equal to at most 1; i.e., that one is effectively given one or 
more relations between the variables a priori.  From the general theorem, one must adjoin 
the relations that are obtained by annulling all of the coefficients in the expressions: 
 

ω(2r−2) dfi  (i = 1, 2…, h) 
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to these relations, and if h is greater than 1 then all of the coefficients in the expressions: 
 

ω(2r−3) dfi dfj  (i, j = 1, 2…, h), 
 

since one must annul ω by means of fi = 0 and r – 1 other relations, and also by means of: 
 

fi = fj = 0, 
 

and r − 2 other relations.  If the relations thus obtained are consequences of (27) then the 
system will be said to be in involution.  Otherwise, one would have a new system of h′ > 
h relations that one could put into a form that satisfies the conditions that relate to the 
functional determinants of the left-hand sides.  One proceeds with the new systems as one 
did with the first one, and so on, until one arrives at a system in involution. 
 
 66.  The problem is thus converted into the case where the system (27) is in 
involution.  If this system then contains more than r independent relations then the 
problem is impossible. 
 Suppose then that h of them are less than or equal to r. 
 If one first has: 

ω df1 df2 … dfh = 0 
 

by virtue of (27), since df1 df2 … dfh is not zero, then equations (27) will constitute a 
solution to the Pfaff equation.  Therefore, if h is less than r then the coefficients of ω(2h) 
and, by a stronger argument, those of ω(2r−2), and also of ω(2r−1), will all be zero by virtue 
of (27), which is contrary to the hypothesis that was made on ω(2r−1).  Therefore, in this 
case, h will be equal to r, and equations (27) will constitute the unique solution to the 
problem. 
 Conversely, if the system (27) in involution is formed from r relations then one has: 
 

ω df1 df2 … dfr = 0, 
 
as one sees upon referring to the preceding lemma that was proved, and equations (27) 
constitute a solution. 
 Thus, suppose now that h is less than r.  One then has that not all of the coefficients 
of: 

ω df1 df2 … dfh  
 
are zero by virtue of (27).  As a result, one has, always by virtue of (27): 
 

ω(2r−2h) df1 df2 … dfh = 0, 
without having 

ω(2r−2h−2) df1 df2 … dfh = 0. 
 
 67.  One will get the general solutions by seeking a non-constant integral of the 
complete system: 

ω(2r−2h−2) df1 df2 … dfh df = 0; 
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i.e., from the theorem of no. 56, of the equivalent system: 
 

(45)  
(2 2)

(2 3) (2 3) (2 3)
1 2 1

0,

0,

r

r r r
h

df

df df df df df df

ω
ω ω ω

−

− − −
+

 =
 = = = = ⋯

 

 
and so on, until one has an integral fr of the complete system: 
 

(47)  
(2 2)

(2 3) (2 3) (2 3)
1 2 1

0,

0

r

r r r
r

df

df df df df df df

ω
ω ω ω

−

− − −
−

 =
 = = = = ⋯

 

 
that is independent of fh+1, f h+2, …, fr−1 . 
 One will then have, upon taking (27) into account, along with the derived relations in 
dx1, dx2, …, dxn : 

ω = ϕh+1 dfh+1 + ϕh+2 dfh+2 + … + ϕr dfr , 
 
and the general solutions are deduced as we said before. 
 In total, the first complete system (45) admits 2r − 2h – 1 independent integrals upon 
taking (27) into account, the second one admits 2r – 2h – 3 independent integrals of fh+1, 
and finally, the last one admits one independent integral of fh+1, fh+2, …, fr−1, always while 
taking (27) into account. 
 One must therefore perform r – h operations of orders: 
 

2r − 2h – 1, 2r − 2h – 3,  …, 3, 1, 
respectively. 
 However, one must not forget that this method is valid only under the condition that 
one considers only solutions that do not annul all of the coefficients of ω(2r−1). 
 
 68.  The singular solutions of the system (27) are obtained by equating the 
coefficients of: 

ω(2r−2h−2) df1 df2 … dfh 
 
to zero; i.e. (always by virtue of the same theorem), by annulling the coefficients of: 
 

ω df1 df2 … dfh . 
 

 One will thus equate all of the determinants of degree h + 1 in the matrix 
 

(48)    

1 2

1 1 1

1 2

1 2

n

n

h h h

n

A A A

f f f

x x x

f f f

x x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯
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to zero. 
 One must distinguish two cases: If the system of relations thus obtained does not 
annul: 

df1 df2 … dfh , 
 
i.e., it does not annul all of the functional determinants of f with respect to h of the 
variables, then this system constitutes a solution of the Pfaff equation.  Moreover, if it 
does not annul ω(2r−1) then it contains at least r independent relations, since otherwise 
ω(2r−2) and ω(2r−1) would be zero.  If it contains exactly r of them then it gives the singular 
solution of the problem.  If it contains more than r then there is no singular solution. 
 On the contrary, if the equation: 

ω df1 df2 … dfh = 0 
entails that: 

df1 df2 … dfh = 0 
 
then one can say nothing more.  One has a new system of h′ > h relations that one treats 
as one treated the original system, which can be incompatible, and which will admit both 
general solutions and singular solutions. 
 
 69.  Up to now, we have assumed that one is given at least one relation between the 
variables a priori.  In the contrary case, one must annul ω by means of r unknown 
relations, but not annul ω(2r−1).  In order to do this, one equates the coefficients of ω(2r) to 
zero.  If ω(2r) is not identically zero then one is reduced to the preceding case.  If ω(2r) is 
identically zero then ω is a Pfaff expression of class 2r, since, by hypothesis, ω(2r−1) is not 
identically zero.  Here, the singular solutions are obtained by annulling ω(2r−2), since one 
does not wish that ω(2r−1) be annulled upon equating all of the coefficients of ω to zero. 
 As for the general solutions, they are given by the reduction of the expression ω to its 
canonical form.  One will have to seek an integral f1 of the complete system: 
 

ω(2r−2) df = 0, 
 
and then an integral f2 of the complete system: 
 
  ω(2r−2) df  = 0, 
   ω(2r−2) df1 df   = 0, 

 
that is independent of f1, and so on, up to an integral fr of the complete system: 
 
  ω(2r−2) df  = 0, 
 ω(2r−3) df1 df = ω(2r−3) df2 df = …= ω(2r−3) dfr−1 df   = 0, 
 
that is independent of f1, f2, …, fr−1, and one will then have: 
 
  ω = ϕ1 df1 + ϕ2 df2 + … + ϕr dfr . 
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 70.  In particular, if the number of variables is equal to the class 2r then the 
expressions ω(2r−2)df, ω(2r−3) dfi df will be of degree 2r, in such a way that each of them 
provide an equation of the complete system.  The successive complete systems are thus 
composed of 1, 2, …, r equations, respectively.  In this particular case, the method is due 
to Clebsch; with the Clebsch notations, one has: 
 
 ω(2r−2)df  = (f) dx1 dx2 … dx2r , 
 ω(2r−3)df dϕ = (f, ϕ) dx1 dx2 … dx2r . 
 
 In the case where the number of variables is greater than the class, the method is a 
natural generalization of that of Clebsch.  In practice, in order to write the equations of 
the (h + 1)th complete system, one equates the coefficients of the monomials: 
 

dx1 dx2 … dx2r−1 dx2r−1+i   (i = 1, 2, …, n – 2r + 1) 
 

in ω(2r−2)df to zero, upon supposing that the term in dx1 dx2 … dx2r−1 in ω(2r−2) has a non-
zero coefficient.  One then equates the coefficient of one of the differential monomials in 
each of the expressions ω(2r−3)dfi df to zero, in such a manner that one then obtains h new 
equations that are independent of the original ones.  These n – 2r + h + 1 equations form 
a complete system that must indeed have effectively 2r – h – 1 independent integrals. 
 
 71.  Second case. – Annul a Pfaff expression ω by means of r relations that do not 
annul all of the coefficients of ω(2r−2), among which h relations are given (27). 
 First, suppose that h is equal to at least 1 – i.e., that one is effectively given one or 
more relations between the variables a priori.  If h is equal to 1 then one must adjoin the 
relations that one obtains by annulling all of the coefficients in the expression: 
 

ω(2r−2)df1 
 
to these relations, and if h is greater than 1 then one must add the relations that one 
obtains by annulling all of the coefficients in the expressions: 
 
(41)    ω(2r−4)dfi dfj   (i, j = 1, 2, …, h). 
 
If the relations thus obtained are not consequences of (27) then one will have a new 
system, to which one repeats the same operation, until one arrives at a system in 
involution; i.e., such that coefficients of (41) are all annulled by virtue of that system. 
 
 72.  Therefore, suppose that the system (27) is in involution, with h being equal to at 
most r, since otherwise this would be impossible.  One shows, as in the first case, that the 
coefficients of: 

ω df1 df2 … dfh 
 

can all be zero only if the system (27) constitutes a solution of the Pfaff equation, and that 
h is then equal to r; conversely, a system of r independent equations in involution 
constitutes a solution of the Pfaff equation. 
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 If h is less than r then one will get the general solutions by seeking an integral fh+1 – 
which is not constant by virtue of (27) – of the complete system: 
 
(49)   ω(2r−4) df1 df = ω(2r−4) df2 df = … = ω(2r−4) dfh df = 0, 
 
and then an integral dfh+2 that is independent of dfh+1 by virtue of (27) of the complete 
system: 
(50)   ω(2r−4) df1 df = ω(2r−4) df2 df = … = ω(2r−4) dfh+1 df = 0, 
 
and so on, until one gets an integral fr that is independent of fh+1, fh+2, …, fr−1 of the 
complete system: 
(51)    ω(2r−4) df1 df = … = ω(2r−4) dfr−1 df = 0. 
 
 The system that is obtained by combining (27) with the equations: 
 

fh+1 = ah+1,  fh+2 = ah+2, …, fr = ar 
 
is a system of r equations in involution.  It thus constitutes a solution of the Pfaff 
equation that can, in turn, be put into the form: 
 

ϕh+1 df h+1 + ϕh+2 df h+2 + … + ϕr dfr  = 0. 
 
 73.  This process can be applied to all of the solutions that do not annul all of the 
coefficients of ω(2r−2).  In practice, one applies it to only the ones that simultaneously 
annul all of the coefficients of ω(2r−1), since in the contrary case the method that was 
previously presented is simpler.  However, a simplification in the general method might 
be possible.  Suppose that the relations (27) of a system in involution annul all of the 
coefficients of the expressions: 
 

ω(2r−2) dfi (i = 1, 2, …, h). 
 

Then, from the theorem of no. 56, since one is naturally dealing with only systems of less 
than r relations, the coefficients of: 

ω df1 df2 … dfh 
 
are not all zero, and in turn, the coefficients of: 
 

ω(2r−2h−1) df1 df2 … dfh 
 
are all zero.  In other words, when one takes into account the relations (27) between the 
variables and the derived relations between the differentials, the Pfaff expression ω has 
class 2r – 2h – 1. 
 If h is equal to r – 1 then this signifies that ω is an exact differential, and by a 
quadrature one has: 

ω = dfr , 
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which gives all the solutions of the problem. 
 If h is less than r – 1 then one reduces ω to its canonical form by seeking an integral 
of the complete system: 

ω(2r−2h−3) df1 df2 … dfh df = 0; 
i.e., of the complete system: 
 

(52)  
(2 3)

(2 4) (2 4) (2 4)
1 2

0,

0,

r

r r r
hdf df df df df df

ω
ω ω ω

−

− − −

 =
 = = = = ⋯

 

 
a complete system that is equivalent to it, since one cannot have: 
 

ω df1 df2 … dfh df  = 0, 
 
as h + 1 is less than r.  If h is equal to r – 2 then ω reduces to an exact differential, upon 
taking into account (27) and the derived relations between the differentials, as well as: 
 

fh+1 = a, dfh+1 = 0. 
 

One will thus have, by quadrature: 
 

ω = dfr + ϕr−1 dfr−1 . 
 
 In the general case, one will have to seek r − h – 1 successive integrals of r – h – 1 
complete systems, the last of which is: 
 

(53)  
(2 3)

(2 4) (2 4) (2 4)
1 2 2

0,

0,

r

r r r
rdf df df df df df

ω
ω ω ω

−

− − −
−

 =
 = = = = ⋯

 

 
and, upon deducing r – 1 of the variables as functions of n – r + 1 other ones from (27) 
and the equations: 

fh+1 = ah+1, …, fr−1 = a r−1, 
 

one will have an exact differential Pfaff expression, in such a way that by a quadrature 
one will obtain: 

ω = dfr + ϕh+1 dfh+1 + … + ϕr−1 dfr−1 . 
 
 In total, the operations to be performed are of order: 
 

2r − 2h – 2, 2r – 2h – 4, …, 6, 4, 2, 0. 
 

in which an operation of order 0 is a quadrature. 
 
 74.  The singular solutions are obtained, as before, by annulling the coefficients of: 
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ω df1 df2 … dfh . 
If the coefficients of the expression: 

df1 df2 … dfh 
 
are not simultaneously annulled then if the relations thus obtained, when combined with 
(27), give r independent relations then they constitute the singular integral.  If they give 
more than r relations then there is no singular integral. 
 If the coefficients of: 

df1 df2 … dfh 
 
are all zero then one will have a new system of more than h relations on which one can 
proceed as one did on the given system (27), and so on. 
 
 75.  In the case where one is not given any relations between the variables a priori, it 
suffices to look for solutions that, while not annulling all of the coefficients of ω(2r−2), 
annul all of those of ω(2r−1).  Then, if the coefficients of ω(2r−1) are not identically zero 
then one has a certain number of relations between the variables, and one comes back to 
the discarded hypothesis.  If the coefficients of ω(2r−1) are all identically zero then ω is a 
Pfaff expression of class 2r – 1.  The singular solutions do not exist here, since one is 
restricted to considering only solutions that do not annul all of the coefficients of ω(2r−2). 
 The search for general solutions amounts to the reduction of ω to its canonical form.  
From the foregoing, one looks for an integral f1 of the complete system: 
 

ω(r−3) df1 = 0, 
 
and then an integral f2 of the complete system: 
 

ω(2r−3) df = ω(2r−4) df1 df = 0, 
 
and so on, until one has an integral fr−1 of the complete system: 
 

ω(2r−3) df = ω(2r−4) df1 df = … = ω(2r−4) dfr−2 df = 0, 
 
and then, upon deducing r – 1 of the variables as functions of the n – r + 1 other ones 
from: 

f1 = a1,  f2 = a2,  …, fr−1 = ar−1 
 

and substituting then in ω, that expression becomes an exact differential form.  One then 
achieves the reduction: 

ω = dfr + ϕ1 df1 + ϕ2 df2 + … + ϕ r−1 dfr−1 
by a quadrature. 
 In practice, the complete system that gives fh admits 2r – h – 1 independent integrals.  
It is therefore composed of n – 2r + h + 1 linearly independent equations. 
 One obtains them by equating all of the coefficients of the n – 2r + 2 differential 
monomials: 

dx1 dx2 … dx2r−2 dxi  (i = 2r – 1, 2r, …, n) 
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to zero, upon assuming that the coefficient of dx1 dx2 … dx2r−2 in ω(2r−2) is not zero.  One 
will thus have n – 2r + 2 equations that give: 
 

2 1r

f

x −

∂
∂

, 
2r

f

x

∂
∂

, …, 
n

f

x

∂
∂

 

as functions of 

1

f

x

∂
∂

, 
2

f

x

∂
∂

, …, 
2 2r

f

x −

∂
∂

. 

 
One will have h – 1 equations remaining upon annulling the coefficients of one of the 
differential monomials in each of the expressions: 
 

ω(2r−4) df1 df, …, ω(2r−4) dfh−1 df, 
 

in such a manner as to obtain equations that are mutually independent and independent of 
the first n – 2r + 2 equations. 
 If n is equal to 2r – 1 then the equations are defined by the expressions: 
 

ω(2r−3) df, ω(2r−4) df1 df, … 
 
themselves, which are of degree 2r – 1. 
 This method constitutes the generalization of the second method of Clebsch, which 
was known only for expressions of class 2r in 2r variables, to the expressions of odd 
class. 
  
 76.  Example. – Consider the Pfaff expression (Forsythe): 
 

ω = x2 dx1 + x3 dx2 + x4 dx3 + x5 dx4 + x6 dx5 + x1 dx6 . 
 
 Here, one has: 

ωV = 0, 
 

ωIV = (x2 + x4 + x6) (dx1 dx2 dx3 dx4 dx5 + dx3 dx4 dx5 dx6 dx1 + dx5 dx6 dx1 dx2 dx3) 
+ (x1 + x3 + x5) (dx2 dx3 dx4 dx5 dx6 + dx4 dx5 dx6 dx1 dx2 + dx6 dx1 dx2 dx3 dx4). 

 
 The expression ω is therefore of class five.  In order to make the reduction, one 
calculates the expressions ω″′ df, ω″ df dϕ.  One has: 
 

ω″′ df = 
1 3 5

f f f

x x x

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
 (dx1 dx2 dx3 dx4 dx5 + dx3 dx4 dx5 dx6 dx1 + …) 

+ 
2 4 6

f f f

x x x

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
(dx2 dx3 dx4 dx5 dx6 + dx4 dx5 dx6 dx1 dx2 + …), 
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and then, upon taking into account the fact that the coefficients of ω″′ df, ω″′ dϕ must be 
zero, one has: 
 

 ω″ df dϕ = 
1 2 2 1 4 5 5 4

f f f f

x x x x x x x x

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

  × [(x1 + x3 + x5) dx4 dx5 dx6 dx1 dx2 + (x2 + x4 + x6) dx1 dx2 dx3 dx4 dx5] 
 

  + 
2 3 3 2 5 6 6 5

f f f f

x x x x x x x x

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

  × [(x1 + x3 + x5) dx2 dx3 dx4 dx5 dx6 + (x2 + x4 + x6) dx5 dx6 dx1 dx2 dx3] 
 

  + 
3 4 4 3 6 1 1 6

f f f f

x x x x x x x x

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

  × [(x1 + x3 + x5) dx6 dx1 dx2 dx3 dx4 + (x2 + x4 + x6) dx3 dx4 dx5 dx6 dx1]. 
 
 The complete system is therefore: 
 

1 3 5

f f f

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

 

2 4 6

f f f

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 

 
 Let f1 = x1 – x3 be an integral of this complete system.  The other one is obtained by 
appending: 

1 1 1 1

1 2 1 2 4 5 5 4

f f f ff f f f

x x x x x x x x

∂ ∂ ∂ ∂∂ ∂ ∂ ∂− + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 = 0 

 
to the preceding equations; i.e.: 

2

f

x

∂
∂

= 0. 

 
 An integral of this second system is, for example: 
 

f2 = x1 – x5 . 
 Set: 

f1 = x1 – x3 = a1 , f2 = x1 – x5 = a2 , 
 
and derive x3 and x4 from these equations.  We obtain: 
 

ω = x2 dx1 + (x1 – a1) dx2 + x4 dx1 + (x1 – a2) dx4 + x6 dx1 + x1 dx6, 
or 
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ω = d(x1 x2 + x1 x4 + x1 x6 – a1 x2 − a2 x4) = d(x2 x3 + x4 x5 + x6 x1), 
 
and, upon taking into account the fact that: 
 

f1 = a1,  f2 = a2, 
one obtains: 
 

ω = d(x2 x3 + x4 x5 + x6 x1) + (x2 – x4) d(x1 – x3) + (x4 – x6) d(x1 – x5). 
 
 77.  Remark. – One sees what sort of simplifications that this method introduces into 
the calculations made during the reduction of Pfaff expressions when compared to the 
first method that we discussed.  Previously, each function whose differential entered into 
the reduced form was given by a complete system, each equation of which 
simultaneously contained the partial derivatives of all the functions that were previously 
found.  Now, the partial derivatives of any of the functions that were already found enter 
into just one equation of the system, and that equation does not contain the other ones. 
 



V. – First-order, partial differential equations. 
 

 78.  Given n independent variables x1, x2, …, xn, and an unknown function z of these 
variables, consider a system of h first-order, partial differential equations: 
 

(1)    

1 1 2
1 2

2 1 2
1 2

1 2
1 2

, , , , , , , , 0,

, , , , , , , , 0,

................................................................,

, , , , , , , , 0.

n
n

n

n

h n
n

z z z
f x x x z

x x x

z z z
f x x x z

x x x

z z z
f x x x z

x x x

  ∂ ∂ ∂ =  ∂ ∂ ∂ 
  ∂ ∂ ∂ = ∂ ∂ ∂  

 ∂ ∂ ∂ = ∂ ∂ ∂ 

… …

… …

… …









 

 
 From the generalized notion that is due to Lie, to integrate this system is to find 2n + 
1 quantities x1, x2, …, xn, z, p1, p2, …, pn that are functions of n parameters that satisfy the  
system: 

(2)    

( )
( )

( )

1 1 2 1 2

2 1 2 1 2

1 2 1 2

, , , , , , , , 0,

, , , , , , , , 0,

......................................................,

, , , , , , , , 0,

n n

n n

h n n

f x x x z p p p

f x x x z p p p

f x x x z p p p

=
 =


 =

… …

… …

… …

 

 
identically, and the total differential equation: 
 
(3)    ω = dz – p1 dx1 − p2 dx2 − … − pn dxn = 0, 
 
or furthermore, to satisfy equations (2) and (3) by a system of n + 1 distinct relations 
between x1, x2, …, xn, z, p1, p2, …, pn . 
 From this last statement, we thus come back to the problem that was treated in the last 
section: Annul the Pfaff expression ω by means of a system of r = n + 1 relations 
between the 2n + 1 variables, among which, h of them are given by (2). 
 
 79.  Multiplicities. – Before applying the principles of the preceding chapter, we shall 
define some expressions of geometric origin that will be of use to us in the sequel. 
 A system of values x1, x2, …, xn, z, p1, p2, …, pn will be called an element. 
 An arbitrary system of relations between the x, z, and the p will be said to define a 
multiplicity if this system entails the total differential equation (3) as a consequence.  We 
have seen how one can find all of the multiplicities.  If the multiplicity is defined by r 
relations then it will be said to be n – r + 1-dimensional.  All of the systems of values for 
variables that satisfy the equations of the multiplicity define elements of the multiplicity.  
The elements of an n – r + 1-dimensional multiplicity then depend upon n – r + 1 
parameters.  An s-dimensional multiplicity will be denoted by the symbol Ms . 
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 A multiplicity cannot be more than n-dimensional, because it must have at least n + 1 
relations in order to imply equation (3).  An element is, moreover, a multiplicity Ms . 
 An element is called a simple element of a multiplicity Ms if one can express 2n – s + 
1 of the variables as holomorphic functions of the h other ones in the neighborhood of 
that element.  We have (formula 6 of the preceding chapter) determined all of the 
multiplicities Ms that admit a given element as a simple element. 
 Given a system of partial differential equations (2), any multiplicity whose elements 
all satisfy the relations (2) will be called an integral multiplicity.  To integrate the system 
(2) is therefore to find all of the integral n-dimensional multiplicities Mn . 
 
 80.  Application of general theorems. – Bracket of two functions. – Here is how one 
must proceed in order to integrate the system (2) by using the method that was presented 
in the preceding chapter. 
 The number that we have denoted by r is equal to n + 1, here.  The (2r – 2)th 
derivative of ω is: 
 

ω(2r−2) = ω(2n) = (dz – p1 dx1 − p1 dx1 − … − p1 dx1) (dx1 dp1 − … − dxn dpn)
n 

= dz dx1 dp1 … dxn dpn . 
 

 Therefore, no integral multiplicity can annul the coefficients of that derivative ω(2n).  
As a result, we can surely apply the method that was presented at the end of the previous 
chapter. 
 We thus have to form the differential expression: 
 

ω(2r−4) df dϕ, 
 
in which f and ϕ denote two arbitrary left-hand sides of the system (2) – i.e.: 
 

ω(2r−2) df dϕ  = ωω(n−1) df dϕ, 
 

and equate all of its coefficients to zero.  Now, that differential expression in n + 1 
variables has degree 2n + 1.  It therefore has just one coefficient.  Thus, if we set: 
 
(4)     ω(2r−2) df dϕ  = (f, ϕ) dz dx1 dp1 … dxn dpn  
 
then the expression (f, ϕ) is what one calls the bracket of the two functions f and ϕ, which 
is a bilinear form in the partial derivatives of f and ϕ, and the equations that must be 
added to equations (2) are: 
(5)     (fi, fj) = 0 (i, j = 1, 2, …, h). 
 
 81. It is easy to form the bracket of two functions f and ϕ explicitly.  Indeed, the 
differential expression (4) does not change if one replaces df and dϕ by: 
 

d′f = df – 
f

z

∂
∂

ω = 1 1
1

f f
p dx

x z

 ∂ ∂+ ∂ ∂ 
 + … + 1

1

f
dp

p

∂
∂

 + … 
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and 

d′ϕ = dϕ  – 
z

ϕ∂
∂

ω = 1 1
1

p dx
x z

ϕ ϕ ∂ ∂+ ∂ ∂ 
 + … + 1

1

dp
p

ϕ∂
∂

 + … 

 
and that is true by the presence of the factor ω in the differential expression (4).  One thus 
has: 

ω(2r−2) df dϕ  = ωω′ (n−1) d′ f d′ϕ, 
 

and the differential dz no longer enters into ω in the right-hand side.  As a consequence, 
the coefficient of dz dx1 dp1 … dxn dpn in (4) is nothing but the coefficient of dx1 dp1 … 
dxn dpn in the expression ω′(n−1) d′ f d′ϕ.  One thus has, moreover: 
 
(6)     (f, ϕ) dx1 dp1 … dxn dpn = ω′(n−1) d′ f d′ϕ, 
 
and, upon replacing ω′(n−1) with its value: 
 

ω′(n−1) = ∑ dx1 dp1 dx2 dp2 … dxn−1 dpn−1 , 
 

the ∑ sign being extended over all combinations of n – 1 of the indices 1, 2, …, n, one 
obtains: 

   (f, ϕ) = n n
n n n n

f f f
p p

x z p x z p

ϕ ϕ ϕ   ∂ ∂ ∂ ∂ ∂ ∂+ − +   ∂ ∂ ∂ ∂ ∂ ∂   
∑ , 

 
the ∑ sign being extended over all of the indices 1, 2, …, n.  Conforming to tradition, we 
set: 

(7)   (f, ϕ) =
2

1

n

i i
i i i i i

f f f f
p p

p x z p x z

ϕ ϕ
=

    ∂ ∂ ∂ ∂ ∂ ∂+ − +    ∂ ∂ ∂ ∂ ∂ ∂    
∑ . 

 
 82.  The bracket of two functions enjoys the following properties:  One has: 
 

(f, ϕ) = − (ϕ, f). 
 
 Moreover, if f and ϕ depend upon variables by the intermediary of a certain number 
of functions u, v, w, …, one has: 
 

(8)   (f, ϕ) = 
( , )

( , )

D f

D u v

ϕ
(u, v) + 

( , )

( , )

D f

D u w

ϕ
(u, w) + … + 

( , )

( , )

D f

D v w

ϕ
(v, w) + … 

 
Indeed, this results from the identity: 
 

df dϕ = 
( , )

( , )

D f

D u v

ϕ
du dv + 

( , )

( , )

D f

D u w

ϕ
du dw + … + 

( , )

( , )

D f

D v w

ϕ
dv dw + …, 
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which gives the identity (8) upon multiplying its two sides by ω(2n−2). 
 
 83.  Systems in involution. – Now that we have established these properties, we return 
to the system (2).  We append all of equations (5) to them, which will give a new system, 
in general.  We proceed with this new system as we did with the first one, and so on.  We 
thus conclude by arriving at either a system of at most n + 1 equations, in which case, one 
has the impossibility of a solution, or a system such that the brackets of any two of the 
left-hand sides of this system are zero by virtue of the equations of this system.  We then 
say that this system is in involution. 
 
 A system in involution is therefore a system of h ≤ n + 1 equations (2), in the left-hand 
sides of which, one supposes that: 
 1. They are holomorphic in the neighborhood of an arbitrary element 0 0 0( , , )i ix z p  

that satisfies that system. 
 2. The functional determinants of these h left-hand sides with respect to any h of the 
variables are not all zero for the same element. 
 3. The brackets of any two of these h left-hand sides are zero by virtue of the 
equations of the system. 
 
 If h is equal to 1 then the latter condition is naturally dropped.  In the general case, all 
of the coefficients of ω(2r−2) df1 must be zero.  Here, they are always zero, since ω(2r−2) df1 
has degree n + 2. 
 From the preceding, one can always convert the integration of an arbitrary system of 
first-order, partial differential equations into a system in involution. 
  
 84.  General integral of a system in involution. – Suppose one has to integrate a 
system in involution of h equations (2).  From the general theorem, one must consider a 
certain number of successive complete systems, and for each of them, it suffices to find 
one integral.  The first of these complete systems is given by the equations: 
 

ω(2r−4) df1 df = ω(2r−4) df2 df = … = ω(2r−4) dfh df = 0; 
i.e., one has: 
(9)    (f1, f) = 0, (f2, f) = 0, …, (fh, f) = 0, 
here. 
 Let A1 be a particular integral of this complete system that does not reduce to a 
constant by virtue of (2). 
 One considers the second complete system: 
 
(10)  (f1, f) = 0, (f2, f) = 0, …, (fh, f) = 0, (A1, f) = 0, 
 
and one seeks an integral A2 of this second system that does not reduce to a function of A1 
by virtue of (2).  One will then have n – h successive complete systems that give n – h 
independent functions A1, A2, …, An−h, respectively, also upon taking (2) into account, 
and finally a last complete system: 
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(11)   2

1

( , ) 0, , ( , ) 0,

( , ) 0 , ( , ) 0,
h

n h

f f f f

A f A f−

= =
 = =

⋯

⋯

 

 
which will admit one and only one integral that is independent of A1, A2, …, An−h, 
namely, C. 
 The equation to solve can then be put into the form: 
 
(12)   dC – B1 dA1 – B2 dA2 − … − Bn−h dAn−h = 0, 
 
where B are n – h functions that are determined by differentiations.  Moreover, from the 
general theory, if one considers an arbitrary element 0 0 0( , , )i ix z p  that satisfies the system 

(2) then one can always choose the integrals A1, A2, …, An−h, C in such a manner that the 
2n – 2h + 1 functions A1, A2, …, An−h, C, B1, B2, …, Bn−h are holomorphic in the 
neighborhood of that element.  The most general integral multiplicity Mn of the system 
(2) that admits that element as a simple element is obtained by appending n – h + 1 
relations between the A, B, and C to (2), relations that can be solved with respect to n – h 
+ 1 of these quantities, since the right-hand sides are holomorphic in the neighborhood of 

0
1(A , …, 0

n hA − , …, 0 )n hB − .  The relations fall into the general type of formulas (7) in the 

preceding chapter. 
 
 85. The complete systems (9), (10), …, (11) admit: 
 

2n – h + 1, 2n – h,    …, n + 1 
 
independent integrals, respectively; of course, they admit all of the integrals f1, f2, …, fh .  
More than that, one must essentially suppose that the variables are coupled by the 
relations (2); it is only by means of this condition that one can be sure that the systems 
(9), (10), … are complete. 
 Finally, if one remarks that if A1 is known then the system (10) admits h + 1 known 
integrals, and if A1 and A2 is known then the system (10) admits h + 2 known integrals, 
and so on, so one sees that the indicated method demands the search for an integral of n – 
h + 1 successive complete systems in 2n + 1 variables, but which admit: 
 

h, h + 1, h + 2,  …, n 
 

known integrals, respectively.  From the Mayer method, this method thus amounts to the 
search for a particular integral of n – h + 1 successive systems of differential equations 
that have: 

2n − 2h + 2, 2n – 2h, …, 4, 2, 
 
variables, respectively. 
 
 86.  In particular, if h = 1 then the first complete system is formed from just one 
equation: 
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(f1, f) = 0. 
 

Here, there are n successive systems of differential equations that are in: 
 

2n,  2n – 2,   …, 4, 2 
variables, respectively. 
 If h is equal to n + 1 then there is no integration to be done.  A system in involution of 
n + 1 equations always defines an n-dimensional integral multiplicity.  The converse is 
obvious, moreover. 
 
 87.  Particular case. – From the general theory, the integration of a system in 
involution is simplified if the coefficients of the expressions: 
 

ω(2r−3) dfi = ω(2n−1) dfi  (i = 1, 2, …, h) 
 

are all annulled by virtue of the equations of this system.  Now, one has: 
 

ω(2r−1) df = ω′(n) df = 
f

z

∂
∂

dz dx1 dp1 dx2 dp2 … dxn dpn . 

 
 The simplification is then provided if the quantities ∂fi / ∂z are all zero by virtue of 
(2); i.e., if the system (2) does not contain z explicitly, or contains it only formally. 
 Therefore, if one is dealing with the integration of a system of first-order, partial 
differential equations in involution that do not contain the unknown function z explicitly: 
 

(2)′    
1 1 2 1 2

1 2 1 2

( , , , , , , , ) 0,

..................................................,

( , , , , , , , ) 0

n n

h n n

f x x x p p p

f x x x p p p

=


 =

… …

… …

 

 
then one seeks an integral A1 of the complete system: 
 

ω(2n−1) df = ω(2n−2) df1 df = … = ω(2n−2) dfh df = 0; 
 
i.e., the complete system: 
 

f

z

∂
∂

 = 0, (f1, f) = 0, (f2, f) = 0, …, (fh, f) = 0, 

 
and then an integral A2 of the complete system: 
 

f

z

∂
∂

 = 0, (f1, f) = 0, (f2, f) = 0, …, (fh, f) = 0, (A1, f) = 0 

 
that is independent of A1, and so on, up to an integral An−h of the complete system: 
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f

z

∂
∂

 = 0, (f1, f) = 0, …, (An−h−1, f) = 0 

 
that is independent of A1, A2, …, A n−h−1 .  Then, upon deriving n – 1 of the variables xi, pk 
as functions of the remaining variables, other than z, from equations (2)′ and the 
equations: 

A1 = a1, A2 = a2, …, An−h−1 = an−h−1 , 
the expression: 

ω = dz – p1 dx1 – p2 dx2 − … − pn dxn 
 

becomes an exact differential, and by a quadrature one obtains, upon taking (2)′ into 
account: 

ω = dz – dC − B1 dA1 – B2 dA2 − … − Bn−h−1 dAn−h−1 , 
 

where C is a function of x and p. 
 Moreover, we remark that one has: 
 

(f, ϕ) = 
i i i i i

f f

p x x p

ϕ ϕ ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑  

 
for the functions that enter into the complete systems to be integrated. 

 
 88. Singular integrals. – The expression ω(2r−2) = ω(2n) can never have all of its 
coefficients equal to zero, so the singular integrals of the system in involution (2) are 
obtained by annulling all of the coefficients in the expression: 
 
(13)    ω df1 df2 … dfh = dz d′f1 d′f2 … d′fh , 
 
i.e., upon annulling all of the coefficients of the expression: 
 
(14)     d′f1 d′f2 … d′fh , 
 
into which dz does not enter.  One will thus consider the matrix: 
 

(15)   

1 1 1 1 1 1
1

1 1

1
1 1

..........................................................

n
n n

h h h h h h
n

n n

f f f f f f
p p

x z x z p p

f f f f f f
p p

x z x z p p

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

⋯ ⋯

⋯ ⋯

, 

 
and one will annul all of its determinants with h rows and h columns.  From the general 
theory, two cases can be presented: 
 If the coefficients of: 
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(16)     df1 df2 … dfh 
 
are not annulled at the same time as those of (14) then the equations obtained, when 
combined with equations (2), constitute the singular integral if they are n + 1 in number 
(they cannot be less in number).  If they are more in number than n + 1 then there is no 
singular integral. 
 On the contrary, if the coefficients of (16) are annulled at the same time as those of 
(14) then one can say nothing further.  The equations obtained, when combined with (2), 
form a new system to integrate.  This system certainly contains more than h equations (h 
is assumed to be less than n + 1), but it cannot be in involution.  One thus completes it, as 
needed, in such a manner as to have a system of more than n + 1 equations, in which 
case, a solution is impossible, or a system in involution of h′ ≤ n + 1 equations.  One 
integrates this new system like the first one.  It will admit general integrals, and in turn, it 
can admit singular integrals that one finds by means of a third system in involution of h″ 
> h′ equations, and so on.  It is indeed clear that these operations will have a conclusion. 
 In particular, if the system (2) is composed of just one equation then the singular 
integrals will satisfy the system: 
 

f = 0,  1
1

f f
p

x z

∂ ∂+
∂ ∂

= … = n
n

f f
p

x z

∂ ∂+
∂ ∂

= 
1

f

p

∂
∂

= … = 
n

f

p

∂
∂

 = 0. 

 
If these equations do not annul ∂f / ∂z then they will or will not give a singular integral 
according to whether they can or cannot be reduced to n + 1 independent equations, 
respectively.  If they annul ∂f / ∂z then one has a new system that can be composed of less 
than n + 1 equations, and that one can integrate directly. 
 
 89.  Example. – In the case of n = 2, consider the partial differential equation: 
 
(17)    f = 3 2 2

1 2( )p z p+ −  = 0, 

 
and look for its singular integrals.  They satisfy the equations: 
 

2
1 2( )p z p−  = 2

2 2( )p z p−  = 2
1p  = 2

2 2( )p z p−  = 0; 

i.e., the system: 

(18)     1 1
2

2 2

0,

0,

f p

f z p

= =
 = − =

 

 
which is in involution, as is easy to verify.  In order to have the general integrals, we 
solve for p1 and p2, and substitute them in the equation: 
 

dz – p1 dx1 – p2 dx2 = 0. 
We find: 

p2 (2 dp2 – dx2) = 0. 
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For a general integral depending upon an arbitrary constant a, we thus have: 
 

(19)     

2

2

1

2
2

,
2

0,

,
2

x a
z

p

x a
p

 − =  
 

 =
 −
 =


 

and for a singular integral: 

(20)     1

2

0,

0,

0.

z

p

p

=
 =
 =

 

 
 90. Contact transformations. –  Following Lie, a contact transformation is defined by 
2n + 1 functions Z, X1, X2, …, P1, P2, …, Pn of 2n + 1 variables z, x1, x2, …, xn, p1, p2, …, 
pn , and is such that one has: 
 
(21)  Ω = dZ – P1 dX1 − … − Pn dXn = ρ(dz – p1 dx1 − … − pn dxn) = ρω 
 
identically, where ρ denotes a function of the variables z, xi, pk that is not identically zero. 
 We first show that these 2n + 1 functions are independent.  From the identity: 
 

Ω = ρω 
one indeed deduces that: 

Ω′ = ρω′ + dρ ⋅ ω, 
 
and upon raising this to the nth power: 
 

Ω′n = ρ nω′ n + ρ n−1ω′ n−1 dρ ⋅ ω, 
and finally: 
(22)    ΩΩ′n = Ω(2n) = ρ n+1ωω′ n = ρ n+1ω(2n). 
 
Upon replacing ω(2n) and  Ω(2n) with their values one obtains: 
 
(23)   dZ DX1 dP1 … dXn dPn = ρ n+1dz dx1 dp1… dxn dpn, 
or finally: 

1 1

1 1

( , , , , , )

( , , , , , )
n n

n n

D Z X P X P

D z x p x p

…

…

= ρ n+1. 

 
The 2n + 1 functions Z, Xi, Pk are thus indeed independent by virtue of the hypothesis that 
was made on ρ. 
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 Similarly, let F and Φ denote two arbitrary functions of Z, Xi, Pk , and let f and ϕ 
denote what these functions become when one replaces the functions Z, Xi, Pk with their 
values.  One has: 

Ω(2n−1) dF dΦ = (ρω)(2n−2) df dϕ, 
but 

Ω(2n−2) = (ρω)(2n−2) = ρ nωω′n−1 = ρ nω(2n−2). 
One thus has: 

Ω(2n−2) dF dΦ = ρnω(2n−2) df dϕ. 
 Let: 

[F, Φ] = 1 1
1 1 1 1

F F F
P P

P x z x z P

   ∂ ∂Φ ∂Φ ∂ ∂ ∂Φ+ − +   ∂ ∂ ∂ ∂ ∂ ∂   
+ … 

 
denote the bracket of the two functions F and Φ, which are regarded as functions of Z, Xi, 
Ph, and, as before, let (f, ϕ) denote the bracket that relates to the variables z, xi, pk .  One 
then has: 

[F, Φ] dZ dX1…dPn = ρn (f, ϕ) dz dx1… dpn , 
 

or, upon replacing the differential monomial in the left-hand side by its value (23): 
 
(24)     (f, ϕ) = ρ [F, Φ].  
 
 This fundamental equality is written explicitly as: 
 

(24)′   

,

i i
i i i i

i i
i i i i

f f f
p p

p x z p x z

F F F
P P

P x z P x z

ϕ ϕ ϕ

ρ

     ∂ ∂ ∂ ∂ ∂ ∂+ − +     ∂ ∂ ∂ ∂ ∂ ∂     


    ∂ ∂Φ ∂Φ ∂Φ ∂ ∂ = + − +     ∂ ∂ ∂ ∂ ∂ ∂    

∑

∑
 

 
in which f denotes what F becomes and ϕ denotes what Φ becomes under substitution of 
the values of Z, Xi, Pk . 
 One applies that identity to all of the pairs of functions Z, Xi, Pk .  One then has: 
 

(25)   
( , ) ( , ) ( , ) ( , ) 0,

( , ) , ( , ) .
i i k i k i k

i i i i

Z X X X X P P P

Z P P P Xρ ρ
= = = =

 = − =
 

 
 91.  Conversely, given n + 1 independent functions Z, X1, X2, …, Xn that satisfy the 
relations: 

(Z, Xi) = (Xi, Xk) = 0, 
 
there exist n other functions P1, P2, …, Pn such that one has: 
 

dZ – P1 dX1 − … − Pn dXn = ρ (dz – p1 dx1 − … − pn dxn), 
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ρ being a function that is not identically zero. 
 
 Indeed, the equations that are obtained by equating Z, X1, …, Xn to arbitrary constants 
form a system in involution of n + 1 equations; i.e., they determine a multiplicity.  One 
can thus determine n + 1 functions λ such that: 
 

dz – p1 dx1 − … − pn dxn = λ1 dX1 + λ2 dX2 + … + λn dXn + λn+1 dZ , 
 
so one deduces the identity to be proved by setting: 
 

Pi = − 
1

i

n

λ
λ +

,  ρ = 
1

1

nλ +

. 

 
 92.  One can, moreover, obtain the brackets of ρ and the functions Z, Xi, Pk .  Indeed, 
one has, while preserving the same notations: 
 

Ω(2n−1) dF = (ρω)(2n−1) df, 
i.e.: 

Ω(2n−1) dF = ρn ω(2n−1) df − ρn−1 ω(2n−2) dρ df. 
However, one has: 

Ω(2n−1) dF = 
F

Z

∂
∂

dZ dX1 dP1 … dXn dPn 

= ρn+1 F

Z

∂
∂

 dz dx1 dp1 … dxn dpn , 

so 

  ω(2n−1)df = 
f

z

∂
∂

dz dx1 dp1 … dxn dpn , 

  ω(2n−2) dρ df = − (ρ, f) dz dx1 dp1 … dxn dpn , 
 
 Finally, upon dividing by ρn−1, one thus has the identity: 
 

     ρ2 
F

Z

∂
∂

= ρ f

z

∂
∂

 + (ρ, f), 

i.e.: 

(26)    (ρ, f) = ρ2 
F

Z

∂
∂

− ρ f

z

∂
∂

. 

 
 Applying this identity to the functions Z, Xi, Pk , one obtains: 
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(26)′    

2( , ) ,

( , ) ,

( , ) .

i
i

k
k

Z
Z

z
X

X
z

P
P

z

ρ ρ ρ

ρ ρ

ρ ρ

∂ = − ∂


∂ = − ∂
∂ = − ∂

 

 
 93.  Homogeneous partial differential equations. – Given 2n variables x1, …, xn ; p1, 
…, pn , one satisfies the total differential equation: 
 
(27)    ω = p1 dx1 + p2 dx2 + … + pn dxn = 0 
 
by means of relations between the variables and derived relations between the 
differentials, upon being given a certain number h of these relations a priori. 
 The expression ω has class 2n, and its (2n – 1)th derivative is: 
 

ω(2n−1) = dp1 dx1 dp2 dx2 … dpn dxn . 
 
One must thus have at least n relations between the variables in order to satisfy (27), and 
the singular solutions of (27) are obtained, since ω(2n−1) has its coefficients essentially 
non-zero upon annulling the coefficients of ω; i.e., by annulling p1, p2, …, pn at the same 
time. 
 Since a multiplicity is a system of relations that satisfy (27), it will be called non-
singular if it does not entail that: 

p1 = p2 = …= pn = 0. 
 
It is at most n-dimensional, and one obtains it in the most general fashion if, for example, 
p1 is non-zero, by solving: 

dx1 + 2

1

p

p
dx2 + … + 

1

np

p
dxn = 0. 

 
 Given a system of h relations: 
 

(28)    

1 1 2 1

2 1 2 1

1 2 1

( , , , , , ) 0,

( , , , , , ) 0,

..........................................,

( , , , , , ) 0,

n

n

h n

f x x p p

f x x p p

f x x p p

=
 =


 =

… …

… …

… …

 

 
one integrates that system, and then one must find all of the n-dimensional multiplicities 
whose elements satisfy these relations.  One must therefore annul ω by means of n 
relations, among which, are h given relations. 
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 94.  Here, if ω(2n−1) does not have all of its coefficients equal to zero then we can 
apply the theorem of the preceding chapter.  In order to apply it, one must form the 
expressions: 

ω(2n−2) df, ω(2n−3) df dϕ . 
One easily has: 
 

 ω(2n−2) df  = − 1 2
1 2

n
n

f f f
p p p

p p p

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
⋯ dp1 dx1 dp2 dx2 … dpn dxn , 

 ω(2n−3) df  dϕ = 
1

n

i i i i i

f f

p x x p

ϕ ϕ
=

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ dp1 dx1 dp2 dx2 … dpn dxn . 

 
We set: 

(29)   H(f) = 1 2
1 2

n
n

f f f
p p p

p p p

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 

(30)   (f, ϕ) = 
1

n

i i i i i

f f

p x x p

ϕ ϕ
=

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ . 

 
 This being done, (28) will be said to be in involution if the equations: 
 
(31)   H(fi) = 0, (fi, fk) = 0 (i, k = 1, 2, …, h) 
 
are consequences of this system.  The first equations express the idea that the system (28) 
is homogeneous in p1, p2, …, pn  − i.e., that it is equivalent to the system that one obtains 
by replacing p1, p2, …, pn  with λp1, λp2, …, λpn  − or furthermore, that it can be put into 
a form such that the left-hand sides are all homogeneous in p1, p2, …, pn . 
 As a result, if the system (28) is not in involution then we append equations (31) to it.  
We have a new system that, if it is not in involution, can be extended by the same 
procedure, and so on, until one arrives at a system in involution (at least, one arrives at 
either an incompatible system or a system of more than n equations in the sequence of 
calculations). 
 
 95.  Therefore, suppose that the system (28) is in involution.  One will get its general 
integral by seeking an integral fh+1 of the complete system: 
 

H(f) = 0, (f1, f) = … = (fh, f) = 0, 
 
and then an integral fh+2 of the complete system: 
 

H(f) = 0, (f1, f) = (f2, f)  = … = (fh+1, f) = 0 
 
that is independent of fh+1, and so on, until one has an integral fn of the complete system: 
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H(f) = 0, (f1, f) = (f2, f)  = … = (fn−1, f) = 0 
 

that is independent of fh+1, fh+2, …, fn−1 . 
 Upon taking (28) into account, ω can then be put into the form: 
 

ω = ϕ h+1 df h+1 + … + ϕn dfn , 
 

and the solution is achieved as usual. 
 In particular, a system of n equations in involution provides a multiplicity. 
 
 96.  The singular integrals are obtained by annulling all of the coefficients of the 
expression: 

ω df1 df2 … dfn ; 
 

i.e., all of the determinants with h + 1 rows and h + 1 columns in the matrix: 
 

(32)    

1 2

1 1 1 1 1

1 2 1

1 2 1

0 0n

n n

h h h h h

n n

p p p

f f f f f

x x x p p

f f f f f

x x x p p

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

 , 

 
and if all of the determinants that are formed from any of the last h rows and h columns 
are not zero then the system obtained constitutes a singular integral if it contains only n 
independent equations.  In the contrary case, one has a system that one treats as an 
ordinary system. 
 In particular, if h is equal to 1 – i.e., if one has an equation that is homogeneous in p1, 
p2, …, pn: 
(33)    f1(x1, …, xn, p1, …, pn) = 0, 
 
then the singular integrals satisfy the equations: 
 

(34)    

1 1 1

1 2

11 1

1 2

1 2

0,

,

n

n

n

f f f

p p p

ff f

xx x

p p p

∂ ∂ ∂ = = = =∂ ∂ ∂


∂∂ ∂
 ∂∂ ∂
 = = =


⋯

⋯

 

 
and if the ratios in the second row are not zero then equations (33) and (34) furnish the 
singular integral in the case where they reduce to n.  One can, moreover, limit oneself to 
equations (34), because (33) is a consequence of it by virtue of: 
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H(f1) = 0. 
 
 97.  Example. – In the case of n = 2, consider the equation: 
 
(35)    f1 = 2 2 2

1 2 1 1 2 2( )p p p x p x+ − +  = 0. 

 
Here, equations (34) become: 
 

p1 – x1 (p1 x1 + p2 x2) = 0, 
p2 – x2 (p1 x1 + p2 x2) = 0, 

 

1 1 1 2 2

1

( )p p x p x

p

− +
= 2 1 1 2 2

2

( )p p x p x

p

− +
. 

 
Since the quantities p1 and p2 are assumed to not both be zero, the last two ratios are 
equal to each other, and the three equations that determine the singular integral reduce to 
two of them: 

p1 = x1 (p1 x1 + p2 x2), 
p2 = x2 (p1 x1 + p2 x2). 

 
Moreover, by eliminating p1 and p2 these equations entail that: 
 

2 2
1 2x x+  − 1 = 0. 

 
 98.  Homogeneous contact transformations. – a homogeneous contact transformation 
is defined by 2n functions X1, X2, …, Xn ; P1, P2, …, Pn in 2n variables x1, x2, …, xn ; p1, 
p2, …, pn that imply the identity: 
 
(36)  P1 dX1 + P2 dX2 + … + Pn dXn = p1 dx1 + p2 dx2 + … + pn dxn . 
 
 If one denotes the left-hand side of that identity by Ω then one first has: 
 

Ω(2n−1) = ω(2n−1), 
i.e.: 
(37)   dP1 dX1 dP2 dX2 …dPn dXn = dp1 dx1 dp2 dx2…dpn dxn , 
 
which shows that the 2n functions Xi, Pk are independent, and that their functional 
determinant is equal to unity. 
 If f denotes what an arbitrary function of Xi, Pk becomes when one replaces these 
quantities with their values then one has, in turn, that: 
 

Ω(2n−2) df = ω(2n−2) df ; 
 
i.e., upon taking (37) into account: 
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(38)  1 2
1 2

n
n

F F F
P P P

P P P

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  = 1 2
1 2

n
n

f f f
p p p

p p p

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ . 

 
 This identity, when applied to the functions Xi, Pk, gives: 
 

(38)′     
( ) 0,

( ) 0,
i

i

H X

H P

=
 =

 

 
which shows that the X are homogeneous functions of degree zero in p1, p2, …, pn , and 
the P are homogeneous functions of degree one. 
 If F and Φ denote two arbitrary functions of the big symbols and f and ϕ denote the 
functions of the small symbols that they become after substitution then one finally has: 
 

Ω(2n−2) dF dΦ = ω(2n−2) df dϕ ; 
 

i.e., upon taking (37) into account: 
 

(39)   
1

n

i i i i i

F F

P X X P=

 ∂ ∂Φ ∂ ∂Φ− ∂ ∂ ∂ ∂ 
∑  = 

1

n

i i i i i

f f

p x x p

ϕ ϕ
=

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ . 

 
 When this identity is applied to the functions Xi, Pk , that gives: 
 

(39)′   
( , ) ( , ) ( , ) 0,

( , ) 1 ( ).
i k i k i k

i i

X X P P P X

P X i k

= = =
 = ≠

 

 
 The 2n functions Xi, Pk therefore satisfy equations (38)′ and (39)′. 
 
 99.  Conversely, if one given n independent functions X1, X2, …, Xn of x1, …, xn , p1, 
p2, …, pn that satisfy the relations: 
 

(Xi, Xk) = 0 (i, k = 1, 2, …, n) 
 

then there exist n other functions P1, P2, …, Pn that define a homogeneous contact 
transformation, along with the first ones. 
 
 This is obvious, because, by hypothesis, the n functions Xi , when equated to 
constants, define a system in involution, in such a way that one can determine n 
quantities P1, P2, …, Pn in such a manner that one has: 
 

p1 dx1 + p2 dx2 + … + pn dxn = P1 dX1 + P2 dX2 + … + Pn dXn . 
 
 100.  Partial differential equations in homogeneous coordinates. – Given 2n variables 
x1, x2, …, xn ; u1, u2, …, un that are coupled by the relation: 
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(40)    ϕ = p1 x1 + p2 x2 + … + pn xn = 0, 
 
one solves the total differential equation: 
 
(41)    ω = u1 dx1 + u2 dx2 + … + un dxn 
  
by establishing a certain number of relations between the variables, among which, a 
certain number are given. 
 If one refers to the previous problem then one sees that one must establish at least n – 
1 relations besides (40).  The singular solutions of the systems are given, moreover, by 
annulling all of the coefficients of ω dϕ – i.e., all of the quantities ui xk .  One thus has 
either: 

u1 = u2 = … = un = 0 
or 

x1 = x2 = … = xn = 0. 
 
 We thus exclude these two singular solutions. 
 We have to form (ϕ, f), where ϕ is given by (40).  One has: 
 

(ϕ, f) = 1 1
1 1

n n
n n

f f f f
x x u u

x x u u

 ∂ ∂ ∂ ∂+ + − + + ∂ ∂ ∂ ∂ 
⋯ ⋯ . 

 We set: 

(42)    
1

1

1
1

( ) ,

( ) ,

n
n

n
n

f f
H f u u

u u

f f
K f x x

x x

∂ ∂ = + + ∂ ∂
 ∂ ∂ = + +
 ∂ ∂

⋯

⋯

 

and 

(43)    (f, f1) = 1 1

1

n

i i i i i

f ff f

u x x u=

 ∂ ∂∂ ∂− ∂ ∂ ∂ ∂ 
∑ . 

 
 101.  Given a system of h relations: 
 

(44)    

1 1 1

2 1 1

1 1

( , , , , ) 0,

( , , , , ) 0,

.......................................,

( , , , , ) 0,

n n

n n

h n n

f x x u u

f x x u u

f x x u u

=
 =


 =

… ⋯

… ⋯

… ⋯

 

 
this system is in involution if the equations: 
 

(45)    
( ) ( ) 0,

( , ) 0 ( , 1,2, , )
i i

i k

H f K f

f f i k h

= =
 = = …
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are consequences of (40) and (44).  Any system can be converted into a system in 
involution.  A system of n – 1 equations in involution constitutes a solution to equation 
(41). 
 If h is less than n – 1 then one integrates (44) by seeking an integral fh+1 of the 
complete system: 

H(f) = K(f) = 0, (f1, f) = (f2,  f) = … = (fh, f) = 0, 
 

and so on, up to an integral fn−1 of the complete system: 
 

H(f) = K(f) = 0, (f1, f) = (f2,  f) = … = (fn−2, f) = 0. 
 
 One then has, upon taking (40) and (44) into account, that: 
 

ω = ϕh+1 dfh+1 + ϕh+2 dfh+2 + … + ϕn−1 dfn−1 . 
 
 102.  The singular integrals are obtained by annulling all of the coefficients of the 
expression: 

ω dϕ df1 … dfh ; 
 

i.e., upon annulling all of the determinants with h + 2 rows and h + 2 columns in the 
matrix: 

(46)    

1 2

1 2

1 1 1 1 1 1

1 2 1 2

1 2 1 2

0 0 0

0 0 0
n

n

n n

h h h h h h

n n

u u u

x x x

f f f f f f

x x x u u u

f f f f f f

x x x u u u

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

 . 

 
 In the case where h equals 1, the singular integrals are given by the equations: 
 

1

1

f

x

u

∂
∂

 = 2

2

f

x

u

∂
∂

 = … = n

n

f

x

u

∂
∂

, 

 

1

1

f

u

x

∂
∂

 = 2

2

f

u

x

∂
∂

 = … = n

n

f

u

x

∂
∂

, 

 
and if these ratios are not all equal to each other then these equations define the singular 
integral in the case where they reduce to just n of them. 
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 103.  Particular case. – When n is equal to 3, one obtains ordinary differential 
equations in the two variables x and y.  Indeed, if we denote the homogeneous 
coordinates of a point by x1, x2, x3 and the homogeneous coordinates of a line in the plane 
by u1, u2, u3 then one has: 

u1 x1 + u2 x2 + u3 x3 = 0 
for an element, and: 

1x

x
 = 2x

y
 = 3

1

x
, 1u

y′
 = 1

1

u

−
= 1u

y xy′−
. 

 
 In order to integrate an equation: 

F(x, y, y′) = 0, 
i.e.: 

1 2 1

3 3 2

, ,
x x u

F
x x u

 
− 

 
= 0, 

 
it is necessary to integrate the complete system: 
 

H(f) = K(f) = 0, (F, f) = 0, 
 

i.e., to find an integral f of the system of differential equations: 
 

1

1

dx
F

u

∂
∂

 = 2

2

dx
F

u

∂
∂

 = 1

1

du
F

x

−
∂
∂

= 2

2

du
F

x

−
∂
∂

= 3

3

du
F

x

−
∂
∂

 

 
that is homogeneous and of degree zero in x1, x2, x3, on the one hand, and in u1, u2, u3 , on 
the other. 
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