
“La principe de dualité et la théorie des groupes simples et semi-simples,” Bull. des Sciences math. 49 
(1925), 361-374. 

 
 

The principle of duality and the theory of simple and semi-
simple groups 

 
By E. CARTAN 

 
Translated by D. H. Delphenich 

_________ 
 
 

 1. – In a recent paper, Weinstein (1) posed and solved the following problem: 
 
 Make an arbitrary matrix X of order n correspond to another matrix X′ of order n 
according to some rule, in such a way that the product XY of two arbitrary matrices will 
correspond to the product X′ Y′ of the two corresponding matrices. 
 
 If one confines oneself to the case in which the n2 elements of X′ are independent 
functions of the n2 elements of X, and in which the matrices in question have 
determinants that are equal to 1, then the problem will include two solutions, which are 
given by the formulas: 
 
(1)      X′ = A−1 XA, 
 
(2)      X′ = 1 1A X A− − , 
 
respectively, in which A denotes an arbitrary, but fixed, matrix, and X  denotes the 
matrix that is deduced from X by switching the rows and columns. 
 If one remarks that the n2 of a matrix X are the parameters of a linear substitution then 
Weinstein’s problem amounts to finding all parameter transformations that will leave 
invariant the law of composition of the substitutions of the linear group.  A substitution 
with determinant 1 can be regarded as defining a homography in n – 1-dimensional 
space, so formulas (1) and (2) will provide all of the transformations that can be 
performed on the homographies of the projective space that preserve the structure of that 
space.  Formulas (1) and (2) show that the structure of projective space is invariant under 
the mixed group of homographies [form. (1)] and correlations [form. (2)].  One sees that, 
from that viewpoint, the principle of duality is introduced into projective geometry out of 
necessity (2). 
 The Weinstein problem is a particular case of the following general problem: 

                                                
 (1) Math. Zeit. 16 (1923), 78-91.  
 (2) One might even say that the structure of ordinary Euclidian space is invariant under the mixed group 
of displacements and symmetries; it is also invariant under the group of similitudes.  
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 Given a continuous group G with r parameters a1 , …, ar , find all of the 
transformations that leave invariant the law of composition for the transformations of the 
group when they are performed on those parameters, or rather, they leave invariant the 
structure of the group. 
 
 If one lets Sa denote any of the transformations of the group G then one will have a 
first solution to the problem in the formula: 
 
(3)      Sξ = 1

a aS S Sξ
− , 

 
in which the a are fixed.  It makes the transformation Sξ′ correspond to the variable 
transformation Sξ while obviously respecting the law of composition of the 
transformations of the group.  The transformations of the parameters that are defined by 
equation (3) generate the adjoint group Γ to G, in the sense of S. Lie. 
 It can happen that the transformations of the adjoint group are the only ones that leave 
the structure of the group invariant.  However, opposite case can also present itself: In 
that case, the most general transformations will form a group Γ′ that contains the adjoint 
group Γ as an invariant subgroup.  If one indeed performs the same transformation T of 
Γ′ on the a, ξ, and ξ′ in formula (3) then the transformations Sa , Sξ , Sξ′ will change into 
Sb , Sη , Sη′ , and one will have the relation: 
 

Sη′  = 1
b bS S Sη
− , 

 
which indeed shows that the transformation T leaves the group Γ invariant. (The 
transformation of the parameter a of Γ is simply changed into the transformation of the 
parameters b.) 
 Any transformation T of Γ′ will be determined theoretically if one knows the effect 
that it produces on the infinitesimal transformations of G.  Indeed, it is obvious that the 
identity transformation of G is preserved by T and that every infinitesimal transformation 
of G will be, in turn, changed into another infinitesimal transformation by T.  Having said 
that, let: 

X1,  X2, …, Xr  
 
be the symbols of r independent infinitesimal transformations of G with the structure 
relations: 
 
(4)     (Xi Xj) = ijs s

s

c X∑  (i, j = 1, …, r) . 

 
Under the transformation T, the transformations Xi will submit to a linear substitution: 
 
(5)     iX ′  = ik k

k

Xα∑  (i = 1, …, r) . 

 
 The coefficients αik are constrained to satisfy the algebraic relations: 
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(6)    
,

ik jl kls
k l

cα α∑ = ijl ls
l

c α∑  (i, j, s = 1, …, r), 

 
which expresses the idea that the substitution (5) preserves the relations (4). 
 Formulas (6) collectively define the group Γ′ then. 
 
 
 2. – The problem is particularly interesting in the case where the group G is simple or 
semi-simple.  In that case, in effect, every infinitesimal transformation of Γ′ will leave 
invariant the continuous adjoint group Γ, which is simple or semi-simple and belongs to 
the adjoint group itself (1).  Therefore, if the group Γ′ does not coincide with Γ then it will 
be composed of several discrete continuous families of transformation (a mixed group, 
according to S. Lie), only one of which forms a group (namely, the adjoint group).  That 
is what happens in the example that was cited above, in which one has two families that 
are defined by (1) and (2). 
 One knows that any general infinitesimal transformation Y (2) of G belongs to an 
Abelian subgroup γ whose order is equal to the rank l of the group and which is defined 
by the set of infinitesimal transformations that commute with Y.  That subgroup is not 
invariant under any subgroup that is greater than G.  The subgroups γ depend upon 
essentially r – l parameters, since Y depends upon r parameters and ∞l distinct 
transformations Y will give the same subgroup γ .  On the other hand, when one performs 
the ∞ r transformations of the adjoint group on a subgroup γ, one will obviously get ∞r−l 
subgroups γ, since there exist ∞l transformations of the adjoint group that leave γ 
invariant.  One must then presume that the various subgroups γ are all homologous to 
each other with respect to the adjoint group.  However, the preceding argument is not 
sufficient to prove that, because the various subgroups γ can form several distinct (but not 
mutually homologous) families a priori, each of which nonetheless has dimension r – l.  
We shall see that the latter possibility cannot present itself. 
 Indeed, any subgroup γ is composed of r transformations i ie X∑  that are defined by 

r linear equations (only r – l of which are independent): 
 

,
i k iks

i k

a e c∑ = 0  (s = 1, …, r), 

 
in which the arbitrary parameters ai are subject to the single condition that they must not 
annul a certain integer algebraic polynomial ψ r−l (a1, …, ar).  It then results that in the 
complex domain, one can always pass from an arbitrary subgroup γ to another subgroup γ 
by continuity.  The subgroups γ then form only one connected domain.  If the hypothesis 
that was posed is not satisfied exactly then one can find a subgroup γ0 that will not be 
homologous with all of the infinitely-close subgroups γ.  Now, that contradicts the 

                                                
 (1) E. CARTAN, Thése, Paris, Nony, 1894, pp. 113. 
 (2) That means that its characteristic equation admits the minimum number (namely, l) of zero roots.  
The characteristic equation of Y is the one to which one will be led upon seeking the values of λ for which 
there exists an infinitesimal transformation Z such that one has (Y Z) = λ Z.  
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transitivity of the adjoint group in the infinitesimal domain when one considers it to 
operate on the subgroups γ. 
 Having said that, let Y be a general transformation of the group G, and let Y′ be the 
transformation that one deduces from it by a given transformation T of Γ′.  Let γ and γ′ be 
two Abelian subgroups that correspond to Y and Y′, resp.  Finally, let Θ be a 
transformation of the adjoint group that transforms γ′ into γ .  The transformation T Θ−1 of 
Γ′ will leave the subgroup γ fixed. 
 It will then suffice to determine all of the transformations T that leave invariant a 
subgroup γ that is fixed once and for all and to then multiply it by an arbitrary 
transformation of the adjoint group.  On the other hand, if two transformations T and T′ 
leave invariant the subgroup γ when it is transformed in the same manner as the 
infinitesimal transformations of γ then the transformation T′ T−1 will leave invariant each 
of those transformations, and one will easily prove that it belongs to the adjoint group 
then. 
 Finally, everything comes down to seeking the transformations of Γ′ that leave 
invariant the subgroup γ and studying the manner by which they transform the 
transformations of γ amongst themselves. 
 
 
 3. – Recall that the roots of the characteristic equation of an arbitrary transformation 
of γ are r – l linear forms ω1 , …, ωr−l in e1 , …, el and that r – 2l of them are linear 
combinations with well-defined integer coefficients of the other l (which are called 
fundamental).  Each of the r – l roots ωα is associated with a well-defined transformation 
Yα of the subgroup γ .  Any transformation T will have the effect of performing a 
substitution (1) on the r – l transformations Yα that are associated with the r – l roots ωα , 
and as a result, also on those roots themselves, subject to only the condition that they 
must leave invariant the linear relations with integer coefficients that couple those r – l 
roots.  The set of all those substitutions forms a finite group of r – l letters that we shall 
call G (2). 

 It can happen that some of the substitutions of G are derived from transformations of 

the adjoint group.  Here is how that can happen: 
 Each root ωα is associated with a group with three parameters gα in G that is 
generated by the infinitesimal transformation Yα of γ that is associated with ωα , and with 
two other transformations (that do not belong to γ) Xα and Xα′ .  In addition to the identity 

transformation, the corresponding subgroup of the adjoint group contains another 
transformation that leaves invariant the subgroup γ, and that transformation will change 
the transformation Yλ that is associated with a roots ωλ into the transformation Yµ = Yλ + 
aαλ Yα that is associated with the roots ωλ + aαλ ωα , in which the aαλ are well-defined 
integers (3).  The root ωα then corresponds to a certain substitution Θα that acts upon the r 

                                                
 (1) It amounts to a substitution of r – l objects, each of which is replaced by another.  
 (2) I studied that group in a paper that was entitled: “Sur la réduction à sa forme canonique de la 
structure d’un groupe de transformations fini et continu, Amer. J. Math. 18 (1896), 1-61. 
 (3) E. CARTAN, Thése, pp. 57. 
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– l transformations Yλ and belongs to the adjoint group.  Those substitutions Θα generate 
(by themselves and their products) a finite group G′ that is an (invariant) subgroup of G. 

 If the group G′ is identical to G then the group Γ′ will coincide with the continuous 

adjoint group Γ.  If G′ is a subgroup of index h in G then the group Γ′ will be composed of 

h discrete continuous families of transformations, and one will immediately have a 
particular transformation from each of those families. 
 
 
 4. – The comparative study of the two finite groups G and G′ presents no difficulty in 

the case where the group G is simple.  The two groups G and G′ are distinct only for three 

types of simple groups, namely: 
 
 The type A of rank l ≥ 2, 
 The type D of rank l ≥ 4, 
 The type E of rank l = 6 . 
 
 In the case of type A (viz., the projective group in l variables), the group G has order 

2 (l + 1)!, while the group G′ has order only (l + 1)!.  Here, one then has h = 2.  The two 

families of transformation of Γ′ are obtained, in the former case, by transforming a 
transformation of G by a fixed homography, and in the latter case, by transforming it with 
a fixed correlation.  One sees the role of the principle of duality in projective geometry 
here. 
 In the case of type D with rank l > 4, the group G has order 2l l !  When the roots ωα 

are put into the form: 
± ωi ± ωj  (i, j = 1, …, l), 

 
one will get a substitution of G upon performing an arbitrary permutation of the indices 1, 

…, l and changing the signs of an arbitrary number of quantities ωi .  The order of the 
group G′ is only 2l−1 l !  It is composed of substitutions of G that correspond to an even 

number of sign changes. 
 If one takes G to be the linear group of a non-degenerate quadratic form in 2l 
variables then the group Γ′ will be composed of two families that are obtained by 
transforming either an orthogonal transformation with a determinant equal to + 1 (in the 
adjoint group) or an orthogonal transformation with a determinant equal to − 1. 
 In the case of type E with rank 6, the group G′ is isomorphic to the Galois group of 

the equation that gives the 27 roots of a third-order surface; it contains: 
 

27 × 16 × 10 × 6 × 2 
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substitutions.  The order of the group G is twice that (1).  If one takes G to be the linear 

group of the cubic form: 
J = i k ikx y z z z zαβ γβ λµ−∑ ∑  

 
then the group Γ′ will be obtained by transforming the transformations of G by either a 
homography or a correlation that leaves the variety J = 0 invariant. 
 
 
 5. – All that remains is the case of type D with rank 4 (viz., the linear group for a non-
degenerate quadratic form in eight variables).  That case is the most interesting one.  
Here, as in the general case, the order of the group G′ is three times greater than in the 

general case, so it will have order 3 × 24 × 4!  The index h is equal to 6.  The peculiarity 
that presents itself here comes from the fact that one can replace the quantities ωi that 
enter into the general expression for the roots ± ωi ± ωj with expressions of the form 
1

1 2 3 42 ( )ω ω ω ω± ± ± ± . 

 Suppose that the quadratic form that is invariant under G is reduced to the canonical 
form: 

2 2 2
0 1 7x x x+ + +⋯ . 

 
Any infinitesimal transformation of G will have the form: 
 

,
ij i j

i j j i

f f
a x x

x x

 ∂ ∂−  ∂ ∂ 
∑  (aij = − aji) . 

 
 Having said that, let i be any of the indices 1, 2, …, 7 and consider the seven sets of 
four components: 

a0, i , ai+1, i+3 , ai+4, i+6 , ai+2, i+3 , 
 
in which one supposes that any index that is greater than 7 will be identical to the same 
index, minus 7.  Consider the substitutions: 
 

H = 

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

− − − −
− −

− −
− −

 

and 

                                                
 (1) See E. CARTAN, loc. cit., Amer. J. Math., pp. 35-43.  
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K = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−

. 

 
They generate a finite group of order 6 that contains, not only H, K, and the identity 
substitution, but also the substitutions: 
 

H 2 = 

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

−
− − −
− − −
− − −

 

 

HK = KH 2 = 

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

− −
− − −
− − −
− − −

, 

 

H 2 K = KH = 

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

− −
− −
− −

. 

 
 Any transformation of Γ′ is obtained by performing one of the six preceding 
substitutions on the quantities: 
 

a0, i , ai+1, i+3 , ai+4, i+6 , ai+2, i+3 
 

for each value 1, 2, …, 7 of the index i and then performing a transformation from the 
adjoint group. 
 The preceding results relate to a system of complex numbers that was invented by 
Graves and Cayley, which generalize the quaternions and which one calls the octaves.  
Consider seven units eα (α = 1, …, 7) that satisfy the laws of multiplication: 
 

2eα = − 1, 

 
  eα = eα+1 eα+5 = − eα+5 eα+1 = eα+4 eα+6 , 

 
  = − eα+6 eα+4 = eα+2 eα+3 = − eα+3 eα+2 . 
 
An octave is a complex number of the form: 
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X = x0 + x1 e1 + x2 e2 + … + x7 e7 ; 
 
the product Z = i iz e∑  of two octaves: 

  
X = i ix e∑ , Y = i iy e∑  

 
enjoys the property that is expressed by the formula: 
 

2 2 2
0 1 7z z z+ + +⋯  = 2 2 2 2 2 2

0 1 7 0 1 7( )( )x x x y y y+ + + + + +⋯ ⋯ . 

 
 Having said that, perform a given orthogonal substitution A (with determinant equal 
to 1) on the components xi of the octave.  It will be possible to determine an orthogonal 
substitution B such that for any two octaves X and Y, the product AX, BY will be deduced 
from the product XY by a suitably-chosen orthogonal substitution C.  The passage from 
the substitution A to the substitution B is given by a transformation of Γ′ that is nothing 
but the one that is provided by the substitution H 2 (1), and the passage from A to C is 
provided by the substitution H 2 K. 
 There are an infinitude of transformations of G that are invariant under the 
substitutions H and K.  All of those transformations leave the variable x0 invariant and 
transform the other seven variables according to a simple group with fourteen parameters 
of type G. 
 
 
 6. – One can also present the preceding results in a geometric form that differs only in 
appearance from the preceding one.  One can take the group G to be the conformal group 
of six-dimensional space.  Suppose that the ds2 of that space reduces to the form: 
 

dx1 dx4 + dx2 dx5 + dx3 dx6 . 
 

 There exist two families of three-dimensional planar varieties that are totally isotropic 
– i.e., ones that enjoy the property that two arbitrary points of such a variety that are 
along the same isotropic line will be contained entirely within the variety.  The general 
equations of the varieties V′ of the first family will be: 
 

(7)     
4 4 2 3 3 2

5 5 3 1 1 3

6 6 1 2 2 1

0,

0,

0,

x a a x a x

x a a x a x

x a a x a x

− + − =
 − + − =
 − + − =

 

 
while those of the varieties V″ of the second family are: 
 

                                                
 (1) When that transformation of Γ′ is applied to an infinitesimal transformation of G, it will be uniform.  
When it is applied to a finite transformation A, it will give two transformations B and – B (which will be 
identical, moreover, if one regards then as projective transformation on seven-dimensional space). 



Cartan – The principle of duality and the theory of simple and semi-simple groups. 9 

(8)     
1 1 2 3 3 2

5 5 3 4 4 3

6 6 4 2 2 4

0,

0,

0.

x b b x b x

x b b x b x

x b b x b x

− + − =
 − + − =
 − + − =

 

 
The varieties V′, as well as the varieties V″, depend upon six parameters. 
 Points, the varieties V′, and the varieties V″ enjoy certain common properties.  First, 
in the same way that ∞4 isotropic lines pass through a point, there likewise exist ∞4 
isotropic lines on a V′ or V″.  We agree to say that two points are united if the line that 
joins them is isotropic.  It can likewise happen that two distinct varieties V′ have an 
isotropic line in common (and therefore only one), so we say that they are united.  Two 
varieties V′ that are not united will have no point in common.  One defines two varieties 
V″ to be united similarly. 
 We agree to say that a variety V′ is incident on a point M when it contains that point.  
There will then exist ∞2 isotropic lines that pass through M and are contained in V′.  
Similarly, a variety V′ and a variety V″ do not have a common (isotropic) line, in general 
(but only a point).  If they do have a common line then there will be ∞2 of them; we then 
say that they are incident. 
 The conditions for two points with the coordinates (x) and (x′), two varieties V′ with 
parameters (a) and (a′ ), and two varieties V″ with parameters (b) and (b′) to be united 
are: 
 1 1 4 4 2 2 5 5 3 3 6 6( )( ) ( )( ) ( )( )x x x x x x x x x x x x′ ′ ′ ′ ′ ′− − + − − + − −  = 0, 

 1 1 4 4 2 2 5 5 3 3 6 6( )( ) ( )( ) ( )( )a a a a a a a a a a a a′ ′ ′ ′ ′ ′− − + − − + − − = 0, 

 1 1 4 4 2 2 5 5 3 3 6 6( )( ) ( )( ) ( )( )b b b b b b b b b x b x′ ′ ′ ′ ′ ′− − + − − + − −  = 0, 

 
respectively.  Similarly, equations (7) and (8) express the incidence conditions for a point 
and a variety (V′ ) and (V″ ), resp.  The incidence conditions for a variety (V′ ) and a 
variety (V″ ) are: 

(9)     
4 1 2 3 3 2

5 5 3 4 4 3

6 6 4 2 2 4

0,

0,

0.

b a a b a b

b a a b a b

b a a b a b

− + − =
 − + − =
 − + − =

 

 
 One sees from the preceding that the notions of union and incidence are common to 
the three sets of geometric entities or elements (viz., points, varieties V′, varieties V″ ) 
when one either considers two elements of the same type or two elements of different 
types.  We shall endow those three types of elements with the three indices 0, 1, 2, resp. 
 One easily verifies that a given element of type i is incident with ∞3 elements of a 
different type j, and that those ∞3 elements are pair-wise united.  Conversely, if there 
exist ∞3 elements of type i that are pair-wise united then they will be incident with the 
same element of a different type.  One also verifies that two united elements of type i are 
incident with ∞1 elements of type j ≠ i, and that conversely two elements of type i that are 
incident with ∞1 elements of different types are united. 
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 7. – Having said that, we shall consider some other transformations besides direct and 
inverse conformal transformations, properly speaking.  We seek to make any element of a 
given type i correspond to an element of another given type i′ according to a well-defined 
law, with the condition that two united elements of type i will correspond to two united 
elements of type i′.  For example, if i = 1, i′ = 2, then one must determine six functions 
b1, b2, …, b6 of a1, …, a6, in such a manner that the Monge equation: 
 

db1 db4 + db2 db3 + db3 db6 = 0 
 
is a consequence of the Monge equation: 
 

da1 da4 + da2 da3 + da3 da6 = 0 . 
 
The general solution is obtained by starting from an arbitrary conformal transformation, 
while regarding the bi are the coordinates of the point that is the transform of the point 
(ai).  There are even two continuous families of correspondence that satisfy the condition 
that was imposed. 
 Take one of those correspondences and let j ≠ i.  Consider an element of type j.  There 
exist ∞3 elements of type i that are incident with it, and they are pair-wise united.  the 
element in question will correspond to ∞3 elements of type i′ that are pair-wise united, 
and as a result, they will be incident with the same element of a different type.  Let j′ be 
that type.  We shall then establish a correspondence between an arbitrary element of type 
j and an element of type j′.  Furthermore, when two united elements of type j are incident 
with ∞1 elements of type i, the two corresponding elements of type j′ will be incident 
with ∞1 elements of type i′, and as a result, they will united.  Finally, if k is the third 
index besides i and j, and k′ is the index besides i′ and j′ then we can make any element of 
type k correspond, as above, to an element of type k′ by the intermediary of ∞3 elements 
of type i that are incident with it.  Two united elements of type k correspond to two united 
elements of type k′ .  One easily proves that two incident elements of types j and k will 
correspond to two incident element of types j′ and k′. 
 Therefore, we have finally made any substitution that acts upon the three indices 0, 1, 
2 correspond to a continuous family of transformations that will change two united 
elements into two united elements and two incident elements into two incident elements.  
The set of all those transformations forms a mixed group that is composed of discrete 
families that extends the conformal group in the same way that the group of 
homographies and correlations extends the group of homographies in projective 
geometry.  One can say that the principle of duality in projective geometry is replaced 
with a principle of triality here. 
 Meanwhile, there is an essential difference between the correlations of projective 
geometry and the new adjoint transformations of the conformal group of six-dimensional 
space, namely, that the latter cannot be defined as contact transformations.  That amounts 
to the fact that the varieties that correspond to an arbitrary point (in the sense of Lie) have 
the first-order partial differential equation: 
 

p1 p4 + p2 p5 + p3 p6 = 0. 
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 It is easy now to define the six families of transformations of the group Γ′ that 
preserve the structure of conformal group.  It suffices to make an arbitrary transformation 
of G correspond to the one that is deduced from it by a transformation of the extended 
mixed conformal group. 
 
 
 8. – Let us return to the general problem.  The case of semi-simple groups is easy to 
discuss.  If such a group G is composed of several simple subgroups with p different 
structures – namely, α1 with the first structure, α1 with the second, etc. – then the number 
h of discrete families of transformations that constitute the group Γi will be obtained 
immediately if one knows the numbers h1, h2, …, hp that correspond to the p given 
structures.  One has: 

h = α1 ! α2 ! … αp ! 1 2
1 2

p

ph h h
αα α

⋯ . 

 
 One simple case is that of the group G of orthogonal substitutions (with determinant 
1) of four variables, which is a group that is only semi-simple, since it is composed of 
two simple subgroups with three parameters of rank 1.  Here, one has p = 1, h1 = 1, α1 = 
2, h = 2.  That agrees with the general result that relates to the orthogonal group with an 
even number of variables (no. 4). 
 
 

___________ 


