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On manifolds with projective connections 
 

BY E. CARTAN†. 
 
 

For more than two years, in several Notes to the Comptes rendus de l’Academie des 
Sciences (1), I have indicated a very general viewpoint, from which one may envision the 
theory of metric manifolds and its various generalizations.   The fundamental idea is 
attached to the notion of parallelism that T. Levi-Civita has introduced in a manner that 
has proved fruitful (2).  For example, if we consider a surface in ordinary (Euclidian) 
space then one may say that a small piece of that surface that surrounds one of its points 
presents all of the character of a two-dimensional (planar) Euclidian space, properly 
speaking, but it is only thanks to the notion of parallelism that one may relate two small 
pieces of that surface that surround two infinitely close points to points in that same 
Euclidian plane.  It is the notion of parallelism that endows the surface with a Euclidian 
connection, to employ a term of H. Weyl. 

The numerous authors that have generalized the theory of metric spaces have all 
started with the fundamental idea of Levi-Civita, however, it seems that they have not 
freed it from the idea of a vector.  This is not an inconvenience when one is concerned 
with manifolds with an affine connection, in which the theory plays the role in these 
metric manifolds of affine Geometry with respect to Euclidian Geometry.  However, it 
seems to dash any hope of founding an autonomous theory of manifolds with conformal 
or projective connections.  In fact, what is essential in the idea of Levi-Civita is that one 
is given a means of associating between two small infinitely close pieces of a manifold, it 
is this idea of agreement that proves fruitful.  In developing this idea one thus concedes 
the possibility of arriving at a general theory of manifolds with affine, conformal, 
projective, etc., connections. 

In a memoir to the Annals de l’École Normale supérieure (3) I have developed the 
general theory of manifolds with affine connections, and in a memoir to the Annales de la 
Société polonaise de mathématique (4), the theory of manifolds with conformal 
connections (5).  In that article, I proposed to rapidly indicate the fundamental points of 
the theory of manifolds with projective connections.  Perhaps the most interesting point 
of that theory is the following one: 

The geodesics of a manifold with projective connection are defined by second order 
differential equations of a particular form.  Now, the class of equations of this form is 
identical to that of the equations that give the geodesics of manifolds with affine 

                                                
 † Translated by D. H. Delphenich. 
 (1) C. R. Acad. Sc., t. 174, 1922, pp. 437, 593, 734, 857, 1104. 
 (2) Rendiconti del Circ. Matem. di Palermo, t. 42, 1917, pp. 173-205. 
 (3) Ann. Éc. Norm., 3rd series, t. XL, 1923, pp. 325-412; t. XLI, 192, pp. 1-25. 
 (4) Ann. Soc. pol. Math., t. II, 1923, pp. 171-221. 
 (5) This memoir is a development of the Note that was cited above (C. R. Acad. Sc., t. 174, 1922, pp. 
857-860). 
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connections.   However, whereas it is impossible to distinguish, by simple intrinsic 
properties, one connection among all of the affine connections that endow a manifold 
with given geodesics, this is possible if one considers projective connections.  I give that 
privileged projective connection the name of normal.  There thus exists a unique 
correlation between a differential system of type considered and a manifold with a 
normal projective connection, in such a way that it is the notion of projective connection 
that permits us to give a geometrically satisfying form to the theory of differential 
systems in question, in particular, to the theory of the geodesic representation.  One may 
say, from another viewpoint, that manifolds with normal projective connections play the 
same role with respect to these differential systems that Riemannian manifolds (with the 
Levi-Civita definition of parallelism) with respect to quadratic differential forms. 

In the case of n = 2 the class of differential equations that are capable of defining the 
geodesics of a manifold with an affine connection has the form of equations for 

which
d2y
dx2  is an integer polynomial of at most third degree in

dy
dx

.  One may demand this 

if one does not generalize the theory in such a manner that the integral curves of no 
particular second order differential equation might also be regarded as geodesics.  In the 
second part (§ VII and VIII) of that article, I showed that one may achieve this objective 
if one introduces the notion of a manifold of elements with a projective connection, in 
which the preceding manifolds are regarded as point-like.  A manifold of elements with a 
normal projective connection is associated in an intrinsic manner (i.e., independently of 
any point-like transformation) with any second order differential equation, and the point-
like manifolds with normal projective connections reappear as a particular case in these 
new manifolds.  The notion of projective connection thus confers upon the theory of 
differential invariants of a second order differential equation a very unintended geometric 
aspect vis-à-vis the point-like group (1).  There is no doubt that this geometrization may 
be effected for many other analogous questions.  For example, I cite the theory of 
characteristics of an involutive system of second order partial differential equations in an 
unknown function of two independent variables.  In that theory, the general projective 
group of the plane is replaced by a certain simple group with 14 parameters (2). 

 
 
I. – THE NOTION OF MANIFOLD WITH PROJECTIVE CONNECTION . 
 
1.  A manifold (or space) with projective connection is a numerical manifold that 

presents all of the character of a projective space (3) in the immediate neighborhood of 
any point and is endowed, moreover, with a law that permits us to associate the two small 

                                                
 (1) This theory has been the object of an important memoir by A. Tresse:  Determination des invariants 
ponctuels de l’équations de l’équations différenetielle ordinaire du second ordre y′′ = ω (x, y, z), a memoir 
that was run by l’Academie Jablowski: S. Hirkel, Leipzig (1896). 
 (2) The method and its calculations are virtually identical to the ones in my memoir: Les systèmes du 
Pfaff à cinq variables et les equations aux derives partielles du second ordre (Ann. Ec. Norm., 3rd series, t. 
XXVII, 1910, pp. 109-192). 
 (3) When I say “projective space,” I refer to a space in which the only properties of the figures that one 
regards as essential are the ones that are preserved under the most general projective (or homographic) 
transformations. 
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pieces of such a projective space that surround two infinitely close points.  In order to 
give a precise sense to this definition, it suffices to imagine that one has attached a 
projective space to which that point belongs to each point of the manifold, and that one 
has a law that permits us to associate the projective spaces that attached to two infinitely 
close points of the manifold; this is the law that defines the projective connection on the 
manifold.  Analytically, one chooses, in a manner that is arbitrary, moreover, a frame in 
the projective space that is attached to each point of the manifold, which defines a system 
of projective coordinates (trilinear in the two-dimensional case, tetrahedral in the three-
dimensional case, etc.).  The agreement between the projective spaces that are attached to 
two infinitely close points a and a′ analytically translates into a homographic 
transformation that permits us to pass from the coordinates of a point m′ in the projective 
space that is attached to the point a that coincides with m′ to the coordinates of the point 
m in the projective space that is attached to the point a when one has defined a way of 
relating these two spaces.  Naturally, one supposes that this homographic transformation 
is infinitely close to the identity transformation.  The coefficients of the formulas for that 
transformation will define the projective connection on the manifold. 

One may take a slightly different viewpoint by interpreting the homographic 
transformation in question as the analytical translation of the projective displacement that 
permits one to move a frame attached to the point a to one attached to the point a′ in the 
unique projective space that defines the relationship between the projective spaces 
attached to a and a′.  The knowledge of this projective displacement (once one has 
chosen the frames attached to the various points of the manifold) determines the 
projective connection on this manifold. 

It naturally results from the preceding that the projective connection of the manifold 
may be analytically defined in an infinitude of different ways according to the choice of 
frames that are attached to the various points of the manifold.  Likewise, one may choose 
– and there is often an advantage to proceeding this way – a frame at each point that 
depends upon arbitrary parameters; the analytical components of the projective 
connection then depend upon these parameters.  If the frame is chosen in the most general 
manner possible then the component functions of the projective connection that are 
independent of these parameters will give an intrinsic analytical definition of the 
projective connection (1). 

 
2.  Before going further, it is useful to indicate what we mean by a projective frame 

in a precise manner.  We adopt a system of homogeneous coordinates (Cartesian, for 
example) in an n-dimensional space.  We agree to denote the set of n+1 coordinates (x1, 
x2, …, xn+1) by the letter m, in such a way that a geometric point will be just as well 
denoted by the symbol tm, where t is an arbitrary numerical coefficient, as by the symbol 
m.  We nevertheless agree to speak of the point m, which we regard as distinct form the 
point 2m, the point 3m, etc. (2). 

Having said this, take n+1 points: 

                                                
 (1) This is similar to the way that the Euclidian connection of a Riemannian manifold is defined by 
starting with the notion of parallelism of Levi-Civita, which implies that this connection is completely 
defined by the ds2 of the manifold. 
 (2) In a sense, the symbol m denotes a point that is given a mass. 
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a1, a2, …, an+1 

 
such that the determinant of their coordinates is non-null.  Any point m may, in one and 
only one way, and upon adopting a notation that is self-explanatory, be put into the form: 
 

m = y1 a1 + y2 a2 + …+ yn an + yn+1 an+1. 
 

The numerical coefficients y1, y2, …, yn+1 constitute the coordinates of the point m 
with respect the frame formed from the n+1 points a1, a2, …, an+1.  A projective frame is 
therefore a set of n+1 points that are not situated in the same n−1-dimensional 
hyperplane; we call them the vertices of the reference (n+1)-hedron. 

If one chooses two different frames: 
a1, a2, …, an+1, 
b1, b2, …, bn+1 

 
then one obviously has formulas of the form: 
 
(1)   bi =αi

1a1 +αi
2a2 + … +α i

n+1an+1  (i = 1, 2, …, n+1) 
 
that analytically define the position of the second frame with respect to the first one, or 
furthermore, the projective displacement that makes the first one coincide with the 
second one.  The formulas: 
 
(2)  xi =α1

iy1 +αi
2y1 + … +α i

n+1yn+1  (i = 1, 2, …, n+1), 
 
which analytically translate into the geometric equality: 
 

x1 a1 + x2 a2 + …+ xn+1 an+1 = y1 b1 + y2 b2 + …+ yn+1 bn+1, 
 
defines the passage from the coordinates yi of a point with resoect to the second frame to 
the coordinates xi of the same point with respect to first frame.  The (n+1)2 
coefficientsα i

j  are the same in formulas (1) and (2). 
However, it is important to remark that the homographic transformation (2) does not 

change if one multiplies all of the coefficientsα i
j by the same factor.  In reality, all that is 

geometrically essential is the mutual ratios of theα i
j , or, furthermore, the ratios of 

theα i
j by their determinant (1). 

 
3.  We now return to manifolds with projective connection.  It is natural to take each 

point a if the manifold to be one of the vertices of the frame attached to this point; we 
shall do so from now on.  We denote the other n vertices by a1, …, an.  Now, let a and a′  
be two infinitely close points of the manifold, and let′ a 1 , …, ′ a n +1 denote the last n vertices 
of the frame attached to a′.  When one has defined a relationship between the projective 

                                                
 (1) One may further say that one has essentially the same frame when one multiplies all of the vertices 
by the same numerical factor. 
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spaces attached to a and a′, one will have formulas analogous to (1), but in which the 
coefficientsα i

j will be very close to unity, and the coefficients α i
j (i ≠ j) will be very 

small.  We write: 

(3)   

  

′ a = (1+ ω0
0)a +ω1a1 +⋯ + ωnan,

′ a 1 = ω1
0a + (1+ω1

1)a1 +⋯ + ω1
nan,

⋯

′ a n = ωn
0a +ω1a1 +⋯ + (1+ ωn

n)an,

 

 
 
 

 
 
 

 

 
or, symbolically: 

(3′)   

  

d ′ a = ω0
0a +ω1a1 +⋯ + ωnan ,

d ′ a 1 = ω1
0a +ω1

1a1 +⋯ + ω1
nan ,

⋯

d ′ a n = ωn
0a + ω1a1 +⋯+ωn

nan.

 

 
 
 

 
 
 

 

 
The infinitesimal quantitiesω0

0 ,ωi
0 ,ωi,ωi

j  define the infinitesimal projective 
displacement that brings the frame attached to the point a into coincidence with the frame 
attached to the point a′, once one has defined a relationship between the projective spaces 
attached to these two points.  However, in reality, the agreement between these two 
spaces is analytically defined by the mutual ratios of the coefficients (3), i.e., by the 
quantities: 

ωi, ωi
0 , ωi

i −ω0
0 , ωi

j   (i ≠ j; i, j = 1, 2, …, n); 
 
these are the components of the projective connection of the manifold. 

If one an arbitrary system of coordinates u1, u2, …, un on the given manifold, and if 
the frame attached to each point of the manifold depends upon the parameters v1, v2, …, 
vr, then the components of the projective connection will naturally be assumed to be 
linear with respect to dui and dvi, since the coefficients are functions (which we assume to 
be differentiable) of the ui and vi. 

It is important to remark that the n components ω1, ω2, …, ωn depend linearly only 
upon the du1, du2, … dun, because if one fixes the coordinates ui then the geometric point 
a does not vary, a′ is of the form (1+ε) a, and the n expressions ωi are annulled.  
Conversely, du1, du2, … dun may be linearly expressed by means of the ω1, ω2, …, ωn, 
because if these last n expressions are annulled then one reaches the same geometric 
point of the manifold and the dui are annulled. 
 

4.  One may always choose the frames attached to the various points of the manifold 
in such a way that the sum of the n components ωi

i −ω0
0  is identically null.  Indeed, chose 

the frame attached to one point of the manifold in an arbitrary, but well-defined, way 
(thus, there are no parameters vi ).  Let: 

 
ωi, ωi

0 , ωi
i −ω0

0 , ωi
j  
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be the corresponding components of the projective connection.  Now replace the vertices: 
 

a, a1, …, an , 
by: 

a, a1+ m1a, …, an+ m1a, 
 
in which we let m1, …, mn denote functions of the ui that are temporarily arbitrary.  As 
one easily sees, the new componentsω i

i −ω 0
0  of the projective connection will be: 

 

ωi
i  −ω0

0+ mi ωi + mkω
k

k=1

k=n

∑ . 

 
We only have to determine the functions mi by the identity: 
 

(ω i
i

i=1

i= n

∑ −ω0
0) + (ni  + 1) mkω

k

k=1

k=n

∑ = 0 

 
if we are to satisfy the demanded condition: this is possible since the Pfaff expression 
∑ωi

i  −ω0
0
, which is linear in du1, …, dun, may be linearly expressed ω1, …, ωn. 

 On the other hand, we remark that one may always choose the frame I such a way that 
one has: 

ω1 = du1, ω2 = du2, …, ωn = dun. 
 
for this, it suffices, and without changing the vertex a (which depends, as one knows, on 
an arbitrary factor), to put the expression: 
 

ω1a1 + ω1a1 + … + ωn an 
into the form: 

du1a 1+ du2a 2+ … + dun a n . 
 

Finally, the two preceding conditions may be realized simultaneously.  Indeed, we 
may first realize the second one, i.e., suppose, to begin with, that:  

 
ωi = dui . 

 
We may then realize the first condition by replacing ai with ai + mi ai , with the 
coefficients mi conveniently chosen, which does not change the value of the ωi . 

If we now suppose that the two are conditions are realized: 
 

ωi = dui ,  ω i
i

i=1

i= n

∑ = nω0
0 , 
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then the components ωi, ωi
0 , ωi

i −ω0
0 , ωi

j  of the affine connection are well defined.  
Indeed, suppose that one has made a particular choice of frame that satisfies the indicated 
conditions.  For any other choice, one will have: 
 

da  = (mω0
0+ dm) a + m du1a1 + … + m dun an . 

 
From this, it results that one must take: 
 

a i  = m a1 + mi a   (i = 1, 2, …, n ) . 
 
One then finds, by a simple calculation: 
 

(ω i
i

i=1

i= n

∑ −ω 0
0) = (n  + 1) midui

i=1

i= n

∑ . 

 
One must therefore have that the coefficients m1, …, mn are null, and the new 
components of the projective connection are identical with the old ones. 

It results form this that when one chooses a system of coordinates (u1, …, un ) on the 
manifold then the projective connection is uniquely determined by the Pfaff expressions: 

 
ωi

0 , ωi
i −ω0

0 , ωi
j , 

 
once one has arranged to reduce the ωi to the dui, and to annul the sum of the n 
expressionsωi

i −ω0
0 .  The projective connection thus depends on n2 + n – 1 arbitrary Pfaff 

expressions; in other words, on n(n2 + n – 1) arbitrary functions of the u1, …, un. 
In the sequel, we will suppose, unless stated to the contrary, that the frames are 

chosen arbitrarily, in such a way that the components ωi, ωi
0 , ωi

i −ω0
0 , ωi

j  are arbitrary 
Pfaff expressions. 

 
 

II. – THE STRUCTURE OF A MANIFOLD WITH A  
PROJECTIVE CONNECTION.  

 
5.  One arrives at the notion of the structure of a manifold with a projective 

connection by considering what happens when one successively relates each projective 
space attached to a point of a curve traced out in the manifold with the infinitely close 
ones.  If one first considers two infinitely close points a and a′ of the manifold, each of 
which has a frame attached to it, then the point (xi ) of the projective space attached to the 
point a will coincide with the point xi + dxi of the projective space attached to the point a′ 
when one has defined their relationship if one has symbolically, upon accounting for 
equations (3′): 

d(x a + x1a1 + … + xn an ) = 0 . 
 

This equation decomposes into n + 1 other ones: 
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(4)   

  

dx +ω0
0x +ω1

0x1 +⋯ + ωn
0xn = 0,

dx1 + ω1x + ω1
1x1 +⋯ + ωn

1 xn = 0,

⋯

dxn +ω nx + ωn
1 x1 +⋯ +ωn

nxn = 0.

 

 
 
 

 
 
 

 

 
If the point a describes a closed curve on the manifold then the coordinates u1, …, un 

may be expressed as functions of the same parameter t, the expressions ωi
j  take the 

form pi
jdt, and the equations (4) become linear differential equations in the n+1 unknown 

functions x, x1, …, xn of the independent variable t.  Their integration permits us to 
successively analytically define the relationship between the projective space attached to 
the starting point and the projective space attached to the final point along the curve 
considered. 

In particular, suppose that the curve is closed.  Under these successive relationships, 
the projective space that is attached to the starting point does not coincide, in general, 
with the projective space that is attached to the final point, which will obviously be the 
case only if the manifold constitutes a projective space in its own right.  Under these 
successive relationships the point (x, x1, …, xn) of the projective space attached to the 
starting point will coincide with the point (y, y1, …, yn ) of the same space, and the 
expressions for the yi will be once more obtained by the integration of equations (4) with 
the initial values (xi ) of the unknowns. 

In addition, if the closed contour is infinitely small then the yi will be infinitely close 
to the xi, and if one sets: 

yi = xi + ∆xi, 
one will have formulas such as: 
 

(5)   

  

∆x + Ω0
0x + Ω1

0x1 +⋯ + Ωn
0xn = 0,

∆x1 + Ω1x + Ω1
1x1 +⋯ + Ωn

1 xn = 0,

⋯

∆x n + Ωnx + Ωn
1 x1 +⋯ + Ωn

nxn = 0.

 

 
 
 

 
 
 

 

 
in which the Ω i

j  are doubly-extended integral elements on the areas that is bounded by 
the contour.  One may prove (1) that one has: 

                                                
 (1) The proof is analogous to the one that we indicated in the case of manifolds with affine connection 
(Ann. Éc. Norm., 3rd series, t. XL, 1923, pp. 369-373). 
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(6)   

Ω i = (ω i ′ ) − [ω0
0ω i ] − [ω kωk

i ]
k=1

k= n

∑ ,

Ω0
0 = (ω0

0 ′ ) − [ω kωk
0 ]

k=1

k=n

∑ ,

Ωi
0 = (ω i

0 ′ ) − [ω i
0ω0

0] − [ω i
kωk

0 ]
k=1

k= n

∑ ,

Ω i
j = (ω i

j ′ ) − [ω i
0ω j ] − [ω i

kωk
j ]

k=1

k= n

∑ .

 

 

 
 
 
  

 

 
 
 
 
 

 

 
 

6.  Formulas (5) define an infinitesimal projective displacement whose components 
are: 

Ωi, Ω i
0, Ω i

i −Ω0
0, Ω i

j , 
 
in such a manner that formulas (4) define the infinitesimal projective displacement of the 
components: 

ωi, ωi
0 , ωi

i −ω0
0 , ωi

j . 
 

One may remark, moreover, that the former components are constructed uniquely 
from means of the latter ones and their bilinear covariants. 

To any infinitely small closed contour that is traced in the manifold there is 
associated an infinitesimal projective displacement whose components are the double 
integral elements of the form ∑ gik dui duk .  These components analytically define the 
structure of the manifold; they generalize the Riemann-Christoffel tensor.  One may also 
say that they define the curvature of the manifold, in the sense that they manifest the 
divergence that exists between the given manifold and a (flat) projective space, properly 
speaking, when one traverses an infinitesimal closed contour in that manifold. 

As in the case of manifolds with affine connections, there exists a theorem of the 
conservation of curvature, which one obtains analytically upon exterior differentiating 
both sides of formulas (6) and taking into account these formulas themselves: 

 

(7)   

(Ω i ′ ) = −[Ω0
0ω i ] + [ω0

0Ωi ] − [Ωkωk
i ]

k=1

k= n

∑ + [ωkΩk
i ]

k=1

k= n

∑ ,

(Ω0
0 ′ ) = [Ωkωk

0] + [ωkΩk
0 ]

k=1

k=n

∑ ,

(Ωi
0 ′ ) = −[Ωi

0ω i
0] + [ω i

0Ω0
0] − [Ω i

kωk
0 ]

k=1

k= n

∑ + [ω i
kΩk

0]
k=1

k=n

∑ ,

(Ω i
j ′ ) = −[Ωi

0ω j ] + [ω i
0Ω j ] − [Ω i

kωk
j ]

k=1

k= n

∑ + [ω i
kΩk

j ]
k=1

k= n

∑ .

 

 

 
 
 
  

 

 
 
 
 
 
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This theorem admits a geometric formulation that involves an infinitesimal three-
dimensional domain in the manifold, but it would prove pointless to discuss it in detail 
here (1) 
 
 

III. – MANIFOLDS WITH PROJECTIVE CONNECTIONS  
WITH VANISHING TORSION. 

 
7.  A manifold with projective connection is said to be without torsion if the 

infinitesimal projective displacement associated with an arbitrary infinitesimal closed 
contour that starts from an arbitrary point of that manifold and returns to it leaves the 
(geometric) point a invariant.  In order for this to be true, it is necessary and sufficient 
that formulas (5) give null values for ∆x1, ∆x2, …, ∆xn when the coordinates x1, x2, …, xn 
are null.  In other words, manifolds without torsion are characterized by the equalities: 

 
(8)   Ω1 = 0,   Ω2 = 0, …,   Ωn = 0 . 
 

The components of the projective connection thus satisfy the identities: 
 

(9)   (ωi )′ = [ ωi (ωi
j − ω0

0)] + [ω kωk
i ]

k≠i
∑  . 

 
In addition, formulas (7) show that the non-null components Ωi, Ω i

0, Ω i
i −Ω0

0, Ω i
j , of 

the curvature are not arbitrary, because they are coupled by the n relations: 
 

(10)  [ ωi (Ω i
j − Ω0

0)] + [ω kΩk
i ]

k≠i
∑  = 0  (i = 1, 2, …, n) . 

 
In particular, one sees that if one has taken ωi = dui, and if one sets: 
 

ωi
i − ω0

0= Γir
i dur

r =1

r =n

∑ ,  ωi
j = Γir

j dur

r =1

r =n

∑ , 

 
then the coefficients Γij

k  will satisfy the symmetry law: 

 
Γij

k  = Γ ji
k . 

 
One may further say that there exist n quadratic forms Φ1, Φ2, …, Φn in du1, …, dur, 

such that one has: 

ωi
i − ω0

0=
1
2

∂Φ i

∂(dui )
, ωi

j =
1
2

∂Φ j

∂(dui )
. 

 
As for the identities (10), they show that if one sets: 

                                                
 (1) See Ann. Éc. Norm., loc. cit., pp. 373-375. 
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Ω i
i − Ω0

0=
  

Λ ihk
i [ωhωk ]

h,k

1,…,n

∑ ,  Ω i
j =
  

Λ ihk
j [ωhωk ]

h,k

1,…,n

∑ , 

 
then one has the identities: 
(11)     Λαβγ

i + Λβγα
i + Λγαβ

i = 0. 

 
8.  One obtains an important category of manifolds without torsion by remarking that 

the projective group leaves a point fixed admits an invariant subgroup.  In deed, this 
group is the dual of the group that leaves a hyperplane fixed, i.e., it is a sum of affine 
groups that admit invariants subgroup of affine transformations that preserve the volumes 
(Möbius group).  Now, the dual of the projective transformation (5) is: 

 
    ∆ξ  = Ω0

0ξ , 
    ∆ξ  = 

  
Ω1

0ξ + Ω1
1ξ1 +⋯+ Ω1

nξn , 
    …………………………….., 
    ∆ξn  = 

  
Ωn

0ξ + Ωn
1ξ1 +⋯+ Ωn

nξn . 
 
If we use inhomogeneous coordinates then it becomes the affine transformation: 
 

∆ξi  = Ω i
i + (Ωi

i − Ω0
0)ξi + Ωi

kξ k
k≠ i
∑ ,  (i = 1, 2, …, n). 

 
It belongs to the Möbius group if one has: 
 

(12)    (Ω i
i − Ω0

0)
i=1

i= n

∑  = 0 . 

 
This is the identity that, along with (8), defines the category of manifolds in question.  

From (6), it may also be described by: 
 

(ω i
i − ω0

0 ′ ) 
i=1

i= n

∑  = − (n+1) [ω iω i
0]

i=1

i= n

∑ . 

 
In particular, and one may always realize this (sec. 4), one has: 
 

ωi = dui,   (ω i
i − ω0

0)
i=1

i= n

∑ = 0, 

then one will have: 

ωi
0=

1
2

∂Φ
∂(dui )

, 

 
in which Φ is a quadratic form in du1, du2, …, dun. 

From (7), one will also have: 
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[ω iω i
0]

i=1

i= n

∑  = 0, 

 
or furthermore, if we employ a self-explanatory notation: 
 

Λαβγ
0 + Λβγα

0 + Λγαβ
0 = 0  (α, β, γ = 1, 2, …, n). 

 
9.  A last category of manifolds without torsion, which is more restricted, is 

composed of ones for which the infinitesmal projective displacement that is associated 
with an infinitesimal closed contour that starts at a and returns to it leaves fixed, not only 
the point a, but also all of the lines through a.  In order for this to be true, it is necessary 
and sufficient that ∆x1, ∆x2,…, ∆xn be proportional to x1, x2,…, xn in (5); in other words, 
that one have the identities: 

 
Ω1

1 = Ω2
2 = … = Ωn

n ,  Ω i
j  = 0  (i ≠ j). 

 
If this is true then formulas (10) show, upon supposing that n > 2, that one has: 
 

Ω i
i − Ω0

0= 0. 
Formulas (7) give: 

[Ω i
0ω j ]  = 0  (i, j = 1, 2, …, n), 

from which we have: 
Ω i

0= 0. 
 

All of the components of the curvature are therefore null, and the manifold reduces 
to the self-same projective space. 

Thus, if n > 2 then there is only the projective space, properly speaking, for which 
the infinitesimal projective displacement that is associated with a closed contour that 
starts at a leaves the point a invariant, along with all of the lines that pass through a. 

This conclusion is naturally invalid when n = 2 (1). 
 
 

IV. – THE GEODESICS OF MANIFOLDS WITH  
PROJECTIVE CONNECTIONS. 

 
10.  A curve (C) that is traced out in a manifold with a projective connection is called 

a geodesic of that manifold if, when one successively relates the projective spaces 
attached to each of the points of the curve, all of these points define a straight line.  One 
expresses the fact a curve is a geodesic by saying that, by virtue of formulas (3′), which 
define the projective connection on the manifold, the point d2a is situated on the line that 
joins the point a to the point da.  One is thus led to the second order differential 
equations: 

                                                
 (1) There exists an analogous theorem in the theory of manifold with conformal connection, but it is true 
only when n is greater than three (Ann. Soc. Pol. Mat., loc. cit, pp. 185). 
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dω1 − ω1ω0
0 + ω iω i

1

i=1

i= n

∑
ω1  = 

dω2 − ω 2ω0
0 + ω iω i

2

i=1

i= n

∑
ω2  = … = 

dωn − ωnω0
0 + ω iω i

n

i=1

i= n

∑
ω n . 

 
In particular, suppose that one has chosen the frame in such a manner that ωi reduces 

to dui.  The equations are of the form: 
 

d2u1 + P1(du)
du1 =

d2u2 + P2(du)
du2 = … =

dnu1 + Pn(du)
dun , 

 
in which the Pi (du) are quadratic forms in du1, du2, …, dun.  One sees that if, for 
example, one expresses u1, u2, …, un-1 as functions of un then one obtains the equations: 
 

(13)   

  

d2u1

(dun)2 = −P1 du1

dun

 
  

 
  

+
du1

dun Pn du1

dun

 
  

 
  

⋯

d2un−1

(dun)2 = −Pn −1 dui

dun

 
  

 
  

+
dun−1

dun Pn dui

dun

 
  

 
  
,

 

 

 
  

 

 
 
 

 

 
in which the Pi are now n (not necessarily homogeneous) integer polynomials of second 

degree in the 
du1

dun , …,
dun−1

dun , with coefficients that are given functions of the u1, u2, …, 

un-1 (1). 
One sees from this that if one is given a family of curves in an n-dimensional 

numerical manifold by a system of n−1 second order differential equations then it is 
generally impossible to associate a projective connection with the manifold in such a way 
that these curves become its geodesics.  This is true only if the differential equations can 
be put into the form (13). 

Conversely, if one is given an arbitrary system of differential equations of the form 
(13) then it will be possible to regard them as the geodesic equations of the manifold 
when one endows it with a conveniently chosen projective connection.  Indeed, one may 
always suppose that one has ωi = dui.  It then suffices to take the componentsωi

i − ω0
0 ,ωi

j  
in such a way that one has: 

dui (ωi
i − ω0

0) + dukωk
i

k≠i
∑  = Pi (du), 

and, more generally: 

(14)  dui (ωi
i − ω0

0) + dukωk
i

k≠i
∑  = Pi (du) + dui ckduk

k=1

k=n

∑ , 

                                                
 (1) In the case of n = 2 these equations reduce to just one, which, upon changing the notations, has the 
form: 

d2y
dx2

 = A + 3B dy
dx

 + 3C dy
dx
 
 

 
 

2

 + D dy
dx
 
 

 
 

3

, 

 
in which the coefficients A, B, C, D are functions of x, y. 
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in which the ck are arbitrary functions. 
 

11.  In particular, we seek all of the projective connections without torsion that are 
compatible with the identities.  As one has seen one may, with no loss of generality, 
suppose that: 

(15)    (ω i
i − ω0

0)
i=1

i= n

∑ = 0. 

 
Now, since the manifold is without torsion the expressionsωi

i − ω0
0 ,ωi

j  are the partial 
semi-derivatives of the right-hand side of the identity (14), which one regards as a 
quadratic form in du1, du2, …, dun.  One thus has: 

 

ωi
i − ω0

0=
1
2

∂P i

∂(dui )
+ ckduk +

k=1

k= n

∑
1
2

cidui , 

ωk
i  =

1
2

∂Pi

∂(duk)
+

1
2

ckdui . 

 
Condition (15) gives: 

ci dui

i=1

i= n

∑ = −
1

n +1
∂Pi

∂(dui )i =1

i =n

∑ . 

 
It unambiguously determines the coefficients ci , and, as a result, the components 
ωi

i − ω0
0 ,ωi

j  of the desired projective connection.  One sees that the integral curves (C) of 
the system (13) may always be regarded as the geodesics of the manifold, which is 
assumed to have no torsion, and the projective connection that one must necessarily 
attribute to this manifold depends upon n arbitrary Pfaff expressionsω1

0 ,ω2
0 ,…, ωn

0 . 
 
 

V. – MANIFOLDS WITH NORMAL PROJECTIVE CONNECTIONS. 
 

12.  It is interesting to inquire whether, among all of the projective connections that 
endow a given numerical manifold with the same geodesics, there exists one of them that 
is endowed with particularly simple intrinsic properties.  It is natural to suppose that the 
projective connection is without torsion.  We just saw that under that hypothesis there 
remain n arbitrary Pfaff expressionsωi

0 .  We may now arrange that one have: 
 

(Ω i
i − Ω0

0)
i=1

i= n

∑  = (ω i
i − ω0

0 ′ ) + (n +1)
i=1

i= n

∑ [
i=1

i= n

∑ ω iω i
0 ]= 0. 

 
When one is given the preceding choice, satisfying this condition amounts to taking 
theωi

0equal to the partial semi-derivatives of a quadratic form Φ in du1, du2, …, dun: 
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ωi
0= Γikduk

i=1

i= n

∑    (Γij = Γji  ). 

 

What remains are
n(n +1)

2
arbitrary coefficients Γij .  One has: 

 

Ω i
i − Ω0

0  = (ω i
i − ω0

0 ′ ) − [ω i
kωk

i ] + [ω iω i
0] +

i =1

i =n

∑ [
k=1

k=n

∑ ωkωk
0]  , 

Ω j
i  = (ω j

i ′ ) − [
k=1

k=n

∑ ω j
kωk

i ] + [ω iω i
0] . 

 
We let aikl

i ,a jkl
i  the coefficients of the formsΩ i

i − Ω0
0 ,Ω j

i  when one annuls theωi
0 .  In the 

general case, these coefficients become: 
 

   Aiil
l =aill

i + Γil  , 
   Aikl

i =aikl
i  (k, l ≠ i), 

   A jil
i =a jil

i + Γjl  , 

   A jkl
i =a jkl

i  (k, l ≠ i). 
 

One may assign the coefficients Γij in one and only one manner that makes: 
 

   Ajik
k

k=1

k=n

∑  = 0  (i, j = 1, 2, …, n ); 

it will suffice to take: 

Γij  =
1

n−1
aijk

k

k=1

k=n

∑ . 

 
By virtue of formulas (11) the two values obtained for Γij are equal (sec. 7) when one 
replaces i with γ and sums over γ. 

By definition, with the (unique) choice of frame that reduces ωi to dui and ∑ωi
i − ω0

0) 
to zero.  There exists one and only one projective connection that makes the integral 
curves of (13) into geodesics and satisfies the conditions: 

 

(16) Ωi = 0,  (Ω i
i − Ω0

0)
i=1

i= n

∑  = 0, Aijk
k

k=1

k=n

∑  = 0  (i, j = 1, 2, …, n ). 

 
13.  We shall now show that the conditions (16) are independent of any choice of 

frame.  This is obvious from the relations: 
 

Ωi = 0,  (Ω i
i − Ω0

0)
i=1

i= n

∑  = 0, 
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which have, as we saw in (sec. 8), an invariant significance.  If we suppose that these 
conditions are already then the quantities: 
 

Bij = Aijk
k

k=1

k=n

∑   (i, j = 1, 2, …, n ) 

 
satisfy the symmetry law Bij = Bji .   We shall now show that under an infinitesimal 
change of frame they transform among themselves by a linear homogeneous substitution. 

Indeed, imagine that the frames depend upon a variable parameter v at each point of 
the manifold and use the symbol δ for a variation of that parameter while the ui remain 
fixed.  The symbol d will be reserved for an arbitrary variation of the u and v.  Formulas 
(7): 

(Ωi
i − Ω0

0 ′ ) = [Ωl
kωk

i ]
k=1

k=n

∑ + [ω l
kΩk

i ]
k=1

k=n

∑ − [ω iΩ i
0] − [ω kΩk

0]
k=1

k= n

∑ , 

(Ω j
i ′ )  = − [Ω j

kωk
i ]

k=1

k=n

∑ + [ω j
kΩk

i ]
k=1

k= n

∑ − [ω iΩ j
0 ]  

 
show that for an infinitesimal variation of v one has: 
 

δ(Ω i
i − Ω0

0) = (ei
kΩk

i − ek
i Ωi

k )
k≠i
∑ , 

δ(Ω j
i ) = (ej

kΩk
i − ek

i Ω j
k )

k=1

k=n

∑ , 

 
in which ei

i ,ej
i  denote the expressions thatωi

i − ω0
0 ,ωi

j  become for the differentiation 

symbol δ. 
On the one hand, the formulas: 
 

(ωi )′ = [ω i (ω i
i − ω0

0)] + [ω kωk
i ]

k≠ i
∑   (i = 1, 2, …, n) 

give: 

δωi = − ek
iωk

k=1

k=n

∑   (i = 1, 2, …, n), 

 
One easily deduces from this that: 
 

δAikl
j  = (e j

ρAρkl
i − eρ

j Aikl
ρ + ek

ρAiρl
i + ei

ρ Aikρ
j )

ρ =1

ρ =n

∑ , (i, j, k, l = 1, 2, …, n). 

 
and, as a result: 

δBij = (ei
ρBρj + ej

ρBiρ)
ρ =1

ρ =n

∑ ; 
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this what we had to prove (1). 
From this, it results that if the coefficients Bij are null for a particular choice of frame 

then they are null for any other choice. 
We say that a projective connection that satisfies conditions (16) is normal.  We then 

see that if we are given a family of curves in a numerical manifold that are defined by a 
system of differential equations of the form (13) then one may endow the manifold with a 
normal projective connection such that the curves in question become the geodesics of 
that manifold, and in one and only one way. 

An important consequence of the preceding theorem is the following: The analytical 
study of the invariants of the system (13) vis-à-vis an arbitrary change of variables 
identical with the study of the geometrical properties of manifolds with normal projective 
connections (2).  One sees the importance of the notion of normal projective connection 
from either the viewpoint of Analysis or that of Geometry. 

One may remark that manifolds with normal projective connections are characterized 
by the property that the infinitesimal projective displacement that is associated with an 
infinitesimal closed contour that starts from a point a leaves the point a and all of the 
lines through a invariant. 

 
Remark. – Given a system of differential equations of the form (13), it is easy to see 

that one may, and in an infinitude of way, endow the manifold with an affine connection 
such that the integral curves (13) become the geodesics of the manifold.  One may 
likewise do this in such a way that there exists an absolute unit of volume in the manifold.  
However, also with this supplementary condition, the involves an infinitude of solutions 
(which depend upon an arbitrary function of n variables ui ), and none of them is 
distinguished from the others by simple intrinsic properties (3).  It is therefore the notion 
of normal projective connection alone that permits us to construct a geometric theory that 
satisfies equations of the form (13). 

 
 

 
 

 

                                                
 (1) One may show in a more elegant manner that the quadratic form: 
 

ωk ∂Ωk
i

∂ω i
i =1

i =n

∑
k=1

k=n

∑  = ∑ Bij ωi ωj 

 
(in which we have written Ω i

i  in place of Ω i
i −Ω0

0) is invariant under an arbitrary frame change. 

 (2) Manifolds with normal projective connections play the same role, vis-à-vis systems of differential 
equations (13), as Riemannian manifolds, vis-à-vis quadratic differential forms, and manifolds with normal 
conformal connections (see the Note cited in Comptes rendus, t. 174, pp. 857), vis-à-vis Monge’s quadratic 
equations. 
 (3) The indicated supplementary condition makes the tensor Bij = Aijk

k

k
∑  symmetric.  See L.-P. 

EISENHART, Spaces with correspondent Paths (Proc. Nat. Acad. of Sciences, t. 8, 1922, pp. 336).  In the 
“Geometry of Paths” by L.-P. EISENHART and O. VEBLEN (Proceed. Nat. Acad. of Sciences, t. 8, 1922, 
pp. 19), geodesics are taken as the point of departure for affine connections. 
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VI. – THE NORMAL PROJECTIVE CONNECTION ATTACHED TO TH E 
GEODESICS OF A GIVEN ds2. 

 
14.  The problem of the geodesic representation of two ds2 is cast in a new light if 

one takes the preceding viewpoint.  To each ds2 there corresponds a well-defined 
manifold with normal projective connection.  Two ds2 admit a geodesic representation in 
terms of each other if the two manifolds with normal projective connection are 
isomorphic, i.e., if it is possible to establish a point-like correspondence between the two 
manifolds that preserves the components of the projective connection.  We shall not 
occupy ourselves with the general problem, which may be treated by exactly the same 
methods as one uses for the problem of the isomorphism (or mappability) of two 
Riemannian manifold (1).  We shall content ourselves with indicating how one 
determines the normal projective connection corresponds to a given ds2, and to see in 
which cases this ds2 is geodesically representable on a Euclidian space ds2. 

Consider a ds2 that one may always express as a sum of n squares: 
 

ds2 = (ω1)2 + (ω2)2 + … + (ωn)2 ; 
 
 the Riemannian manifold that is defined by this ds2 admits a Euclidian connection 
(without torsion) whose components are the ωi and certain Pfaff expressionωi

j = −ω j
i .  

This connection may be regarded as a projective one by attributing the value zero to 
theωi

0 . 
We use the letter ϖ to denote the components of the normal projective connection 

that gives the same geodesics.  We have the right to take: 
 

ϖi = ωi,  ϖ i
i − ϖ0

0=ωi
i = 0, ϖ i

j =ωi
j . 

 
Since ∑ (ϖ i

i − ϖ0
0) = 0, the argument that we made above shows that theϖ i

0have the 
form: 

ϖ i
0= Γikω

k

k=1

k=n

∑    (Γij = Γji ). 

Set: 
Ω i

j = aikl
j [ω kω l ]

k,l
∑ . 

We have: 

Γij =
1

n−1
aijk

k

k=1

k=n

∑ =
bij

n−1
. 

 
The first problem is thus solved, and one has: 
 

Π i
i − Π0

0=[ω iϖ i
0 ]=

1
n−1

bik[ω
iω k]

k=1

k=n

∑    (i = 1, 2, …, n), 

                                                
 (1) See my memoir: Sur les equations de la gravitation d’Einstein (J. de Math., 1922, fasc. 1). 
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Π i
j =Ω i

j + [ω jϖ i
0 ]  = aikl

j [ω kω l ]
k,l
∑ + bik[ω

jω k]
k=1

k= n

∑  (i, j = 1, 2, …, n). 

 
15.  If one wishes that a given ds2 be geodesically representable by a Euclidian ds2 

then it is necessary and sufficient that the components Π i
i − Π0

0 , Π i
j , Π i

0 of the curvature 
of the manifold with normal projective connection that we just determined are identically 
null.  If we first suppose that n > 2 then we know (sec. 9) that for this to be true it suffices 
that the Π i

i − Π0
0  and the Π i

j  be null.  One first sees that the bij are null for i ≠ j.  One then 
sees that one has: 

Ω i
j  = − bii [ωi ωj ]. 

 
However, the relation Ω i

j +Ω i
j  = 0 shows that the n coefficients bii  are all equal, in such a 

way that one has: 
Ω i

j  = − c[ωi ωj ]. 
 

From a classical theorem, which is easy to prove moreover, c is a constant, in such a 
way that the Riemannian manifold in question has constant curvature. 

This conclusion is also true if n = 2, but to show this, it is necessary to take into 
account the expressions forΠ1

0andΠ2
0: 

 
 Π1

0=(ω1
0 ′ ) − [ω1

2ω2
0]  = c{( ω1)′ −[ω1

2ω 2]} + [ dc ω1] = [dc ω1], 
  Π2

0=(ω2
0 ′ ) − [ω2

1ω1
0 ]  = c{( ω2)′ −[ω2

1ω1]} + [ dc ω2] = [dc ω2]. 
 
These two expressions are null only when dc = 0. 

We thus recover the classical theorem that says the only Riemannian manifolds that 
are geodesically representable in Euclidian space are manifolds with constant curvature. 

 
16.  The preceding considerations lead us quite naturally to the projective definition, 

which is due to Cayley, of manifolds with constant curvature.  The simplest analytical 
manner of presenting this definition consists of taking an (absolutely) non-degenerate 
quadratic form in a projective space.  Let: 

 
Φ(X, X1, …, Xn) = 0 

 
be such an equation.  If one agrees to endow each point of the space with coordinates that 
satisfy the relation Φ = k, where k is a give constant, then the desired ds2 is, quite simply: 
 

ds2 = Φ(dX, dX1, …, dXn). 
 

Now consider, in a Riemannian manifold of constant curvature, the normal 
projective connection that makes this manifold into a projective space, properly speaking, 
and whose components are: 

 
ϖi = ωi, ϖ i

i − ϖ0
0  = 0, ϖ i

j  = ωi
j ,    ϖ i

0  = c ωi . 
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We likewise suppose − as is permissible − that ϖ0
0= 0.  Having said this, one easily 

verifies that if one considers the coordinates (x, x1, …, xn ), in different frames, of a fixed 
point of projective space then the quantity: 
 

(x1)2 + (x2)2  + … + (xn )2 –
1
c

(x)2 . 

 
This results from formulas (4), which give the variation of the xi when one passes from 
one frame to a neighboring one, formulas in which one naturally replaces the letter ω 
with the letter ϖ.  Thus, if one chooses one of the frames to be a fixed frame (with 
coordinates Xi ) then one will have the following coordinates (xi ) of a point when referred 
to the frame attached to a given point a: 
 

(17)  (x1)2 + (x2)2  + … + (xn )2 – 
1
c

(x)2 = (X1)2 + (X2)2 + … −
1
c

(X)2. 

 
In particular, the coordinates (Xi ) of the point a itself satisfy the relation: 
 

(X1)2 + … + (Xn )2 −
1
c

(X)2 = −
1
c

. 

 
On the other hand, the relation (17) entails the following relation for two infinitely 

close points in the space: 
 

(dx1)2 + (dx2)2  + … + (dxn )2 – 
1
c

(dx)2 = (dX1)2 + (dX2)2 + … −
1
c

(dX)2. 

 
We apply this to the point a and the infinitely close point a′.  We have: 
 

ds2 = (ω1)2 + (ω2)2  + … + (ωn )2 = (dX1)2 + (dX2)2 + … −
1
c

(dX)2. 

 
We recover Cayley’s projective definition, with the equation: 
 

Φ(X, X1, …, Xn) = (X1)2 + (X2)2 + … −
1
c

(X)2 = 0 

 

for the absolute, and the value
1
c

 for the constant k that corresponds to the given constant 

curvature. 
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VII. – THE NOTION OF A MANIFOLD OF ELEMENTS WITH A  
PROJECTIVE CONNECTION. 

 
 

17.  The system of differential equations (13) is not the most general system of 
second order ordinary differential equations in n – 1 unknown functions.  The curves of 
an n-dimensional numerical manifold that are defined by a system that is not of the form 
(13) may not be regarded as the geodesics of a manifold with projective connection.  One 
may demand that one exists by a generalization that permits us to regard them, among 
others, as geodesics.  We shall not occupy ourselves with the general problem, but only 
content ourselves with the simplest case n = 2, i.e., the case of integral curves of a second 
order differential equation: 

F x,y,
dy
dx

,
d2y
dx2

 
  

 
  

= 0, 

 
which we may always suppose to be written in the form: 
 

(18)     
d2y
dx2 = f x, y,

dy
dx

 
 

 
 . 

 
The theory of differential invariants of that equation, vis-à-vis the group of point-like 

transformations at (x, y), have been the object of an important memoir of Tresse (1).  We 
shall see that the notion of projective connection permits us to give that theory a simple 
geometric form. 

We start with the notion of element, which we regard as the set of a point and a 
direction through that point, and analytically let (x, y) define the point and the value y that 
dy
dx

 takes on when it is displaced in the given direction.  The set of all such elements (x, 

y, y′) constitutes a three-dimensional manifold of elements. 
Having said this, imagine that each element (x, y, y′) is attached to a projective plane 

that contains this element.  We will have endowed the manifold of elements in question 
with a projective connection if we give it a law that permits us to associate the projective 
planes attached to two infinitely close elements.  This law will be arbitrary, but it must 
nevertheless satisfy the following conditions: 

 
a.  If one considers a multiplicity (in the sense of S. Lie) in the manifold of elements, 

i.e., a continuous one-parameter family of elements that satisfy the equation: 
 

dy – y′ dx = 0, 
 

                                                
 (1) See the introduction. 



On manifolds with projective connections.                                        22 

then this multiplicity remains a multiplicity when one successively associates the 
projective planes attached to the various elements of the given multiplicity (1). 
 

b.  We choose the frame attached to an element e of the manifold in the following 
manner:  Since the element e belongs to the projective plane that is attached to it, we take 
the vertex a of the frame to be the point of the element e, and we restrict ourselves to 
taking the vertex a1 on the line that, along with the point a, constitutes the element in 
question of the projective plane.  Then let: 

 
    da =ω0

0a + ω1a1 + ω2a2, 
    da1 =ω1

0a +ω1
1a1 + ω1

2a2, 
    da2 =ω2

0a +ω2
1a1 + ω2

2a2 , 
 
be the equations that define the projective connection on the manifold.  The 
componentsωk

j  are linear in dx, dy, dy′ (and also contain the differentials of the 
parameters that the frame attached to each element of the manifold might possibly 
depend upon). 

We now express the fact that the conditions a and b are verified.  If one displaces 
along an arbitrary multiplicity of the manifold then it is necessary that the point da be on 
the line aa1, in other words, that the expression ω2 be null.  As a result, ω2 is annulled 
along with dy – y′dx. 

Now, if the point a of the manifold remains fixed then it is necessary that the point 
da agrees with a geometrically.  In other words, ω1 and ω2 are linear combinations of the 
dx and dy.  Therefore, the form ω1 depends linearly only on dx and dy. 

We add the following remark:  If the element e remains fixed then the point a and the 
line aa1 must remain fixed.  In other words ω1, ω2, andω1

2  are annulled with dx, dy, dy′, 
or finally, the formω1

2depends linearly upon only the dx, dy, dy′.  Moreover, this remark 
is interesting only if the frame attached to an element of the manifold depends on variable 
parameters.  If this is not true then the forms ω1 and ω2 satisfy the conditions that were 
stated above, and the three forms ω1, ω2, andω1

2are linearly independent. 
 
 

VIII. – MANIFOLDS OF ELEMENTS WITH 
NORMAL PROJECTIVE CONNECTIONS.  

 
19.  We use the term geodesics of a manifold of elements with a projective 

connection to refer to the curves in the manifold that develop onto a projective plane 
along straight lines.  These curves are naturally regarded as the point-like supports of 
multiplicities.  If a is a point of the curve and aa1, its tangent, then the curve will be a 
geodesic if da and da1 are both one the line aa1, which gives: 

 

                                                
 (1) One may express this in a more intuitive manner by saying that any multiplicity in the manifold is 
developed onto a projective plane along a multiplicity of that plane.  Naturally, one may not speak of 
developing a figure in the manifold that has two parameters. 
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ω2 = 0, ω1
2= 0. 

These equations are reducible to: 
 

dy – y′ dx = 0,  dy′ − f(x, y, y′) = 0, 
 
and the geodesics are the integral curves of the differential equations: 
 

(18)    
d2y
dx2  = f x, y,

dy
dx

 
 

 
 . 

 
Conversely, the integral curves of an arbitrary second order ordinary differential 

equation may be regarded as the geodesics of the manifold endowed with a convenient 
projective connection; indeed, it suffices to take: 

 
ω1 = α dx + β dy,  ω2 = α dy − y′ dx, 

ω1
2= λ dy − y′ dx + µ dy′ − f dx, 

 
with the other ω being arbitrary. 

Among all of the projective connections that are defined by a two-parameter family 
of curves (C), might one distinguish one of them by intrinsic properties?  WE shall see 
that this is effectively true, which will lead us to the notion of a manifold of elements with 
a normal projective connection. 

First, we make a remark.  No matter what projective connection is on the manifold, 
one may always suppose that one has: 

 
(19)   ω1 = dx, ω2 = dy − y′ dx, ω1

2= k dy′  − f dx . 
 
Indeed, the multiplication of a, a1, a2 by the same factor does not change the 

components of the projective connection so any change in the frame may be realized by 
preserving a.  If we order da according to dy′, dx, dy – y′dx then it suffices to take a to be 
the coefficient of dx and a1 to be the coefficient of dy – y′dx, and one thus reduces ω1 to 
dx and ω2 to dy – y′dx.  One likewise see that one may further add arbitrary multiples of a 
to a1 and a2. 

One may now obviously dispose of λ in such a manner that the coefficient of a2 in d 
(a1 + λ a), a coefficient that is: 

ω1
2+ λω2, 

 
must be proportional to dy – y′dx.  The proposition is thus proved. 

One sees that the frame is no longer completely determined, since one may replace 
a2 with a2 + h a, in which h is an arbitrary coefficient.  This coefficient h has no influence 
onω1

1, but it modifiesω0
0by the quantity hω2.  One may thus arrange things so that one 

modifies the components ω1
1−ω0

0  by a quantity of the form hω2. 
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20.  We shall now proceed in the following manner to normalize the projective 
connection of the manifold.  First, we calculate the component Ω2 of the curvature: 

 
             Ω2  = (ω2)′ −[ω1ω1

2 ] − [ω 2(ω2
2 −ω0

0)] 
    = (1 – k) [dx dy′] – [(dy – y′ dx) (ω2

2 − ω0
0)]. 

 
It is always possible to specialize the projective connection in such a manner that one 
annuls Ω2.  In order to do this, it is necessary to take k = 1 and: 
 

ω2
2 − ω0

0 = u (dy – y′ dx). 
 

We may likewise annul Ω1: 
 

Ω1 = (ω2)′ −[ω2ω2
1 ] − [ω1(ω1

1 −ω0
0)] = −[ dx(ω1

1 −ω0
0)] − [(dy− ′ y dx)ω2

1 ] . 
 
Since one may, from the remark made above, modifyω1

1 − ω0
0  by an arbitrary multiple of 

dy – y′ dx we may suppose that: 
ω1

1 − ω0
0= v dx, 

ω2
1= w (dy – y′ dx). 

 
From now one, the frame is chosen unambiguously (except that one must be given a 
projective connection that annuls Ω2 and Ω1). 

One now has: 
 

     Ω1
2 =(ω1

2 ′ ) + [ω 2ω1
0] − [ω1

2(ω2
2 −ω1

1)] 
  = [dx df] – u[(dy′ − f dx)(dy – y′ dx)] – v [dx dy] + [(dy – y′ dx)ω1

0 ]. 
 
One may further annul the componentΩ1

2of the curvature with the condition that one 
take: 

v =
∂f
∂ ′ y 

, 

ω1
0=

∂f
∂y

dx – u (dy′ − f dx) + λ (dy – y′ dx). 

One likewise has: 
 
 Ω1

1 + Ω1
2 − 2Ω0

0  =(ω1
1 + ω2

2 − 2ω0
0 ′ ) + 3[ω1ω1

0] + 3[ω 2ω2
0]  

   = d
∂f
∂ ′ y 

dx
 

 
 

 

 
  + [du(dy – y′ dx)] – 2u [dx dy′]  

    + 3λ[dx (dy – y′ dx)] + 3[(dy – y′ dx)ω2
0 ], 

 
and one may annul the right-hand side by taking: 
 



On manifolds with projective connections.                                        25 

u = −
1
2

∂2 f
∂ ′ y 2  

ω2
0  = λ dx −

1
3

∂2 f
∂y∂ ′ y 

dx −
1
6

d
∂2 f
∂ ′ y 2  + u (dy – y′ dx). 

 
Finally, one has: 
 
          Ω1

1 − Ω0
0  =(ω1

1 − ω0
0 ′ ) + [ω1

2ω2
1 ] + 2[ω1ω1

0] + [ω2ω2
0]  

    = d
∂f
∂ ′ y 

dx
 

 
 

 

 
  − w[(dy′ – f dx) (dy – y′ dx)]  

    + 3λ[dx (dy – y′ dx)] + 3[(dy – y′ dx)ω2
0 ], 

    +
1
3

∂2 f
∂y∂ ′ y 

[dx (dy – y′ dx)] +
1
6

d
∂2 f
∂ ′ y 2 (dy− ′ y dx)

 

 
 

 

 
 . 

 
One may further annul this expression by taking: 
 

w =
1
6

d
∂2 f
∂ ′ y 2 , 

λ =
2
3

∂2 f
∂y∂ ′ y 

−
d
dx

∂2 f
∂ ′ y 2

 
  

 
  

. 

 
In summation, we have obtained the following expressions for the components of the 

projective connection: 
 

(20) 

ω1 = dx, ω2 = dy− ′ y dx,

ω1
1 − ω0

0 =
∂f
∂ ′ y 

dx, ω2
2 − ω0

0 = −
1
2

∂2 f
∂ ′ y 2 (dy− ′ y dx),

ω1
2 = dy− ′ y dx, ω2

1 =
1

6

∂2 f

∂ ′ y 2
(dy− ′ y dx)

ω1
0 =

∂f

∂y
dx +

1

2

∂2 f

∂ ′ y 2 (d ′ y − fdx) +
2

3

∂2 f

∂y∂ ′ y 
−

1

6

d

dx

∂2 f

∂ ′ y 2

 
  

 
  
(dy− ′ y dx),

ω2
0 =

1

3

∂ 2 f

∂y∂ ′ y 
−

1

6

d

dx

∂2 f

∂ ′ y 2

 
  

 
  

dx−
1

6
d

∂2 f

∂ ′ y 2 + µ(dy− ′ y dx),

 

 

 
 
 
 
  

 

 
 
 
 
 
 

 

 
with an arbitrary coefficient µ, when one realizes the conditions: 
 
(21) Ω2 = 0,  Ω1 = 0,  Ω1

2= 0,  Ω1
1 − Ω0

0= 0, Ω2
2 − Ω0

0
≠ 0. 

 
21.  Before going further, note that relations (21) permit us to foresee the sort of 

expressions we should expect for the remaining componentsΩ2
1 ,Ω1

0,Ω2
0 of the curvature 

of the manifold.  The identities (7) immediately give us: 
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     [ω2Ω2
1 ]  = 0,     [ω2Ω1

0 ]  = 0, 
  [ω1Ω1

0]+[ω2Ω2
0 ]  = 0, [ω1

2Ω2
1 ]  −[ω1Ω1

0]  = 0, 
 
from which, one deduces the general expressions: 
 

   Ω2
1  = a[ω2ω1

2]+ r[ω1ω2] 
   Ω1

0 = b[ω1ω2] + r [ω2ω1
2]  

   Ω2
0 = h[ω1ω2] + k[ω2ω1

2]  + r [ω1ω1
2 ] . 

 
We shall se that one may dispose of the arbitrary coefficient µ by annulling r.  

Indeed, one has: 
 
 Ω2

1  = (ω2
1 ′ ) + [ω1ω1

2 ] + [ω2
1(ω2

2 − ω0
0)] 

  = 
1
6

∂3 f
∂ ′ y 3 [dx d ′ y ] +

1
6

d
∂ 3 f
∂ ′ y 3 (dy− ′ y dx)

 

 
 

 

 
 −

1
6

dx d
∂2 f
∂ ′ y 2

 

 
 

 

 
  

      + µ[dx (dy – y′ dx)] +
1
6

∂f
∂ ′ y 

∂3 f
∂ ′ y 3 [dx (dy – y′dx)]. 

 
First of all, one indeed verifies that the right-hand side is annulled with dy – y′dx, 

i.e., with ω2.  As for the coefficient denoted by r, it is the coefficient of [dx dy] in the 
right-hand side when one replaces dy′ with f dx: 

 

r = µ −
1
6

∂3 f
∂y∂ ′ y 2 +

1
6

∂f
∂ ′ y 

∂3 f
∂ ′ y 3 +

1
6

d
dx

∂3 f
∂ ′ y 3 . 

 
We can take the following value for µ: 
 

(22)    µ =
1
6

∂3 f
∂y∂ ′ y 2 −

1
6

∂f
∂ ′ y 

∂3 f
∂ ′ y 3 −

1
6

d
dx

∂3 f
∂ ′ y 3 . 

 
The projective connection of the manifold is thus unambiguously determined, with 

expressions of the form: 
 

Ω2
1  = a[ω2ω1

2] , Ω1
0 = b[ω1ω2],  Ω2

0 = h[ω1ω2] + k[ω2ω1
2]  

 
for Ω2

1 ,Ω1
0,Ω2

0. 
Moreover, one immediately finds: 
 

(23)     a = −
1
6

∂4 f
∂ ′ y 4 , 

 
and it would serve no useful purpose to calculate b, h, k explicitly. 
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22.  An important question remains to be answered.  We have specialized the 
projective connection of the manifold by starting with a particular choice of frame.  Is the 
result obtained independent of the choice of frame?  In other words, do the properties of 
the projective connection expressed by the relations (21), combined with the condition r = 
0, have an invariant character?  (under any change of the coordinates x, y). 

First, as one easily verifies, the property Ω2 = 0 signifies that under the infinitesimal 
projective displacement that is associated with an infinitesimal closed contour of 
elements starting with an element e, the element e′, which is the transform of e, is 
identical with e; this is obviously an invariant property. 

In the second place, the conditions: 
 

Ω1 = 0, Ω2 = 0,     Ω1
2= 0 

 
express the fact the element e remains invariant under the infinitesimal displacement that 
we just considered (i.e., there is no torsion); this is an invariant property.  The condition 
Ω1

1− Ω0
0= 0 then expresses the fact that there exists no invariant isolated point outside of 

the point a on the line aa1.  The condition Ω2
2− Ω0

0= 0 then expresses the fact that there 
exists no invariant isolated point outside of the line aa1. 

The relations (21) thus have essentially an invariant character that is independent of 
any choice of frame. 

The same is true for the relation r = 0.  One confirms the following geometric 
significance that one may attribute to it:  If one considers an infinitesimal (open) linear 
family of elements and one closes that family by demanding that at the point (x, y) the 
same path is traversed in the opposite sense so that the direction y′ of the element goes 
from its final value to its initial value without repeating the same intermediary values, 
then this closed contour of elements is associated with an infinitesimal projective 
displacement (in the projective space attached to the initial element).  The relation r = 0 
signifies that all of the points of the line aa1 are invariant under this displacement.  Thus 
has an invariant significance indeed. 

In conclusion, we thus see that to any second ordinary differential 

equationF x,y,
dy
dx

,
d2y
dx2

 
  

 
  

= 0 there is associated, in an invariant manner, a manifold of 

elements with projective connection such that the integral curves of the differential 
equations are geodesics.  We say that the unique projective connection thus obtained is 
normal.  We have previously indicated the geometric properties that characterize normal 
projective connections. 

The problem that was treated by Tresse may thus be stated geometrically as follows: 
To study the geometric properties of the manifold of elements with normal projective 
connection. 

 
23.  In projective geometry, the notion of an element is its own proper dual, as well 

as the notion of multiplicity.  As a result, any manifold of elements with a projective 
connection is transformed by duality into another manifold of elements with a projective 
connection such that the points of the former coincide with the geodesics of the latter, and 
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conversely.  If one denotes the components of the latter projective connection by the 
letter ϖ then one has, as is easily seen to be true: 

 
    ϖ0

0=ω2
2 , ϖ1 =ω1

2 , ϖ2 = ω2, 
    ϖ1

0=ω2
1 , ϖ1

1=ω1
1, ϖ1

2= ω1, 
    ϖ2

0=ω2
0 , ϖ2

1=ω1
0 , ϖ2

2=ω0
0 . 

 
Relations (21), which relate to a normal projective connection, are thus transformed 

under duality into: 
 

Π2 = 0, Π1
2= 0,  Π1 = 0,  Π1

1 − Π2
2= 0, Π0

0 − Π2
2= 0; 

 
they preserve the same form.  As for the condition that the coefficient r of [ω1ω2] inΩ2

1 is 
null, it becomes the condition that the coefficient of[ϖ 2ϖ1

2]  in Π1
0be null.  In other words, 

the dual of a manifold of elements with a normal projective connection is again a 
manifold of elements with a normal projective connection. 

The relation that exists between the two families of geodesics of two dual normal 
manifolds is obvious.  If: 

F(x, y, a, b) = 0 
 
is the general equation of the geodesics on the former manifold when on regards x and y 
as point-like variables and a, b as arbitrary constants, then it is also the equation of the 
latter manifold, with the condition that one regard a and b as the point-like variables and 
x and y as the arbitrary constants.  Thus, the relation between dual normal manifolds 
analytically translates into a certain correspondence between two second order ordinary 
differential equations (or rather, between two classes of differential equations that one 
obtains by transforms each of them by an arbitrary point-like transformation).  This 
correspondence has already been studied by A. Koppisch (1) in its purely analytical 
aspect. 
 

24.  A particularly remarkable case is the one in which the coefficient a in the form 
Ω2

1 is identically null.  The identities (7) then give: 
 

[ω1Ω2
0]  = k[ω1ω 2ω1

2 ]  = 0. 
 

In other words, the only non-null componentsΩ1
0,Ω2

0 of the curvature of the manifold are 
of the form: 

Ω1
0 = b[ω1ω2],  Ω2

0 = h[ω1ω2]. 
 
They do not involveω1

2 ; they are simply proportional to [dx dy].  This result may be 
geometrically interpreted by saying that the relationship between two projective planes 

                                                
 (1) A. KOPPISCH, Zur Invariantentheorie der gewöhnlichen Differentialgleichungen zweiter Ordnung.  
Inaugural Dissertation.  Leipzig, B.-G. Teubner, 1905.  See also the Inaugural Dissertation of A. KAISER; 
Leipzig, B.-G. Teubner, 1913. 
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that are attached to two given elements e and e′ of the manifold depends only on the 
initial element, the final element, and the intermediary path that is followed by the point 
of the moving element, but they do not depend on law that determines the change in the 
direction of that element.  In other words, the manifold of elements is based on a point-
like manifold with a projective connection, in the sense of the first part of this memoir 
[with the accessory condition that one has taken a frame at each point (x, y) that depends 
on a parameter y′].  The geodesics of the given manifold are then the geodesics of a 
point-like manifold with a projective connection.  Indeed, this also results immediately 
from the preceding expression that we found for the coefficient a.  If the coefficient is 
null then the geodesic equation has the form: 
 

d2y
dx2  = A +3B

dy
dx

+ 3C
dy
dx
 
 

 
 

2

+ D
dy
dx
 
 

 
 

3

, 

 
which characterizes the curves that are susceptible to being geodesics of a point-like 
manifold with a projective connection.  One may add that the projective connection that 
was determined is, moreover, normal, in the old sense of the word, since Ωi, Ω i

i − Ω0
0 , and 

Ω i
j  are all null expressions.  In other words, in the case of Ω2

1= 0, a manifold with a 
normal projective connection reduces to a point-like manifold with a normal projective 
connection. 

If one has both a = 0, b = 0, i.e.: 
Ω2

1= 0, Ω1
0= 0, 

 
then the identities (7) show that the two coefficients h and k are null, and the manifold 
reduces to the projective plane.  In other words, the differentiation of the geodesics (as 
well as the dual equation) will be reducible to: 
 

d2y
dx2  = 0. 

 
Formulas (20) and (22), which give the components of the projective connection, 

permit us to calculate b, which gives, in the particular case where a is null: 
 

  b = 2
∂2C

∂x∂y
−

∂2B
∂y2 −

∂2D
∂x2 + 2D

∂A
∂y

+ A
∂D
∂y

 
  

 

    −3D
∂B
∂x

− 3B
∂D
∂x

− 3C
∂B
∂y

+ 6C
∂C
∂x

 
  

 

   + 2
∂2B

∂x∂y
−

∂2C
∂x 2 −

∂2A
∂y2 − 2A

∂D
∂x

− D
∂A
∂x

 
  

 

    +3A
∂C
∂y

+ 3C
∂A
∂y

+ 3B
∂C
∂x

− 6B
∂B
∂y

 
  

′ y . 

 



On manifolds with projective connections.                                        30 

One immediately derives the two conditions that the coefficients A, B, C, D in the given 

differential equation must satisfy in order for it to be reducible to the equation
d2y
dx2  = 0 

(1). 
 

25.  We return to the general case.  We leave to the reader the task of verifying the 
existence of the integral invariants: 

 

ab4∫ ω2 , abω1ω 2ω1
2∫∫∫ , a

1
8b

5
8ω1ω2∫∫ , a

5
8b

1
8ω2ω1

2∫∫ . 

 
We also content ourselves with pointing out that in a manifold of elements with a normal 
projective connection, one may, as one does in the projective plane, construct a theory of 
(projective) differential invariants of curves, determine the fifth order differential 
equation of the curves that are developed onto the projective plane along a cone; i.e., in 
summary, it plays the role, vis-à-vis the given two-parameter family of curves, that is 
played by cones vis-à-vis lines, etc.  We also content ourselves by indicating that there is 
a possible generalization of the preceding theory for an arbitrary number of dimensions. 

                                                
 (1) The conditions are due to A. Tresse, on page 56 of his memoir cited above.  See also, A. KOPPISCH, 
loc. cit., pp. 17. 


