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On manifolds with projective connections

BY E. CARTAN'.

For more than two years, in several Notes toGbmptes rendus de I’Academie des
Scienceg?), | have indicated a very general viewpoint, from whicke may envision the
theory of metric manifolds and its various generaliwet. The fundamental idea is
attached to the notion gfrallelismthat T. Levi-Civita has introduced in a manner that
has proved fruitful 9. For example, if we consider a surface in ordin&yc{idian)
space then one may say that a small piece of thigiceuthat surrounds one of its points
presents all of the character of a two-dimensionan@) Euclidian space, properly
speaking, but it is only thanks to the notion of pariaielthat one mayelate two small
pieces of that surface that surround two infinitely clpsents to points in that same
Euclidian plane. It is the notion of parallelism tleatdows the surface with a Euclidian
connectionto employ a term of H. Weyl.

The numerous authors that have generalized the théametric spaces have all
started with the fundamental idea of Levi-Civita, hwere it seems that they have not
freed it from the idea of sector This is not an inconvenience when one is concerned
with manifolds with anaffine connection, in which the theory plays the role insthe
metric manifolds of affine Geometry with respect to lieimn Geometry. However, it
seems to dash any hope of foundingaatonomougheory of manifolds with conformal
or projective connections. In fact, what is essgmti the idea of Levi-Civita is that one
is given a means of associating between two small iejnglose pieces of a manifold, it
is this idea ofagreementhat proves fruitful. In developing this idea one thoscedes
the possibility of arriving at a general theory of mamiflwith affine, conformal,
projective,etc.,connections.

In a memoir to theAnnals de I'Ecole Normale supérieuf® | have developed the
general theory of manifolds witkffine connections, and in a memoir to #henales de la
Société polonaise de mathématiq(y, the theory of manifolds withconformal
connections?. In that article, | proposed to rapidly indicate flandamental points of
the theory of manifolds witprojectiveconnections. Perhaps the most interesting point
of that theory is the following one:

The geodesicof a manifold with projective connection are defined byadoorder
differential equations of a particular form. Now, ttlass of equations of this form is
identical to that of the equations that give the geodesics of oidsifwith affine

" Translated by D. H. Delphenich.
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connections.  However, whereas it is impossible stirgjuish, by simple intrinsic
properties, one connection among all of #iene connections that endow a manifold
with given geodesics, this is possible if one consigesgectiveconnections. | give that
privileged projective connection the name mdrmal There thus exists a unique
correlation between a differential system of typesidered and a manifold with a
normal projective connection, in such a way that the notion oforojectiveconnection
that permits us to give a geometrically satisfying foiomthe theory of differential
systems in question, in particular, to the theory ofgbedesic representation. One may
say, from another viewpoint, that manifolds with normadjective connections play the
same role with respect to these differential systdrasRiemannian manifolds (with the
Levi-Civita definition of parallelism) with respect to quatic differential forms.

In the case oh = 2 the class of differential equations that are lolgpaf defining the

geodesics of a manifold with an affine connection has ftnen of equations for
2

which% Is an integer polynomial of at most third degre%%:in One may demand this
if one does not generalize the theory in such a marnagrthe integral curves afo
particular second order differential equation might also be regardgeé@desics. In the
second part (8 VII and VIII) of that article, | showdtdht one may achieve this objective
if one introduces the notion ofraanifold of elementwith a projective connection, in
which the preceding manifolds are regardegast-like A manifold of elements with a
normal projective connection is associated in an intringnner (i.e., independently of
any point-like transformation) with any second order d#f¢ial equation, and the point-
like manifolds with normal projective connections reappesaga particular case in these
new manifolds. The notion of projective connectioastitonfers upon the theory of
differential invariants of a second order differentgli@tion a very unintended geometric
aspect vis-a-vis the point-like grouf).( There is no doubt that this geometrization may
be effected for many other analogous questions. For egarhglite the theory of
characteristics of an involutive system of second opdetial differential equations in an
unknown function of two independent variables. In tintory, the general projective
group of the plane is replaced by a certain simple gwaitip14 parameterg)(

|. — THE NOTION OF MANIFOLD WITH PROJECTIVE CONNECTION

1. A manifold (or space) with projective connection is aneucal manifold that
presents all of the character of a projective spdci the immediate neighborhood of
any point and is endowed, moreover, with a law that pemsito associate the two small

(l) This theory has been the object of an important memok. Byresse: Determination des invariants
ponctuels de I'équations de I'équations différenetielle ordindiresecond ordre = w(X, y, 3, a memoir
that was run by I’Academie Jablowski: S. Hirkel, Leipi§96).

(2) The method and its calculations are virtually identioathte ones in my memoites systémes du
Pfaff & cinq variables et les equations aux derives partiellesecond ordre (Ann. Ec. Norr8® series, t.
XXVII, 1910, pp. 109-192).

(3) When | say “projective space,” | refer to a space lmctv the only properties of the figures that one
regards as essential are the ones that are preservedtluadeost general projective (or homographic)
transformations.
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pieces of such a projective space that surround two telfinclose points. In order to
give a precise sense to this definition, it sufficeantagine that one has attached a
projective space to which that point belongs to each mdithe manifold, and that one
has a law that permits us to associate the projeqgbaees that attached to two infinitely
close points of the manifold; this is the law that wedi the projective connection on the
manifold. Analytically, one chooses, in a manner tharbitrary, moreover, fhamein
the projective space that is attached to each poiteaiianifold, which defines a system
of projective coordinates (trilinear in the two-dimensiocasde, tetrahedral in the three-
dimensional case, etc.). The agreement between derpve spaces that are attached to
two infinitely close pointsa and a’ analytically translates into a homographic
transformation that permits us to pass from the coaiesnaf a point’ in the projective
space that is attached to the parihat coincides wittm’ to the coordinates of the point
m in the projective space that is attached to the @oimhen one has defined a way of
relating these two spaces. Naturally, one supposeshibdtomographic transformation
is infinitely close to the identity transformatio.he coefficients of the formulas for that
transformation will define the projective connectiontb@ manifold.

One may take a slightly different viewpoint by interprgt the homographic
transformation in question as the analytical translatiatie projective displacemerthat
permits one to move a frame attached to the @ointone attached to the poaitin the
unique projective space that defines the relationship betwm®nprojective spaces
attached toa anda'. The knowledge of this projective displacement (oaoe has
chosen the frames attached to the various points efnthnifold) determines the
projective connection on this manifold.

It naturally results from the preceding that the proyectionnection of the manifold
may be analytically defined in an infinitude of differevdys according to the choice of
frames that are attached to the various points of Hafatd. Likewise, one may choose
— and there is often an advantage to proceeding this waayrame at each point that
depends upon arbitrary parameters; the analytical commoneitthe projective
connection then depend upon these parameters. If the feachosen in the most general
manner possible then the component functions of thesgire¢ connection that are
independent of these parameters will give iatrinsic analytical definition of the
projective connectiort).

2. Before going further, it is useful to indicate wiat mean by a projectivieame
in a precise manner. We adopt a system of homogeneouwinades (Cartesian, for
example) in am-dimensional space. We agree to denote the setlotoordinatesx,
X2, ..., %+1) by the letterm, in such a way that a geometric point will be just adl we
denoted by the symbtrin, wheret is an arbitrary numerical coefficient, as by the sgimb
m. We nevertheless agree to speak of the pojnvhich we regard as distinct form the
point 2m, the point &n, etc. ).

Having said this, take+1 points:

(l) This is similar to the way that the Euclidian connecttad a Riemannian manifold is defined by
starting with the notion of parallelism of Levi-Ciait which implies that this connection is completely
defined by thels of the manifold.

(2) In a sense, the symbiwl denotes a point that is given a mass.
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all aZl ---,an+1

such that the determinant of their coordinates is non-uy pointm may, in one and
only one way, and upon adopting a notation that is selia@atory, be put into the form:

m=y'a; +yay + ...+Y'a, + Y an1.

The numerical coefficientg', V2, ..., Y constitute the coordinates of the point
with respect thérameformed from then+1 pointsay, a, ..., a.+1. A projective frame is
therefore a set oh+1 points that are not situated in the samel-dimensional
hyperplane; we call them thverticesof the referencenf1)-hedron.

If one chooses two different frames:

all aZl ey an+1,
bll b21 ey bn+1

then one obviously has formulas of the form:
(1) bi =aia; +a’ax + ... +a ann (i=1,2, ..n+l)

that analytically define the position of the secorairfe with respect to the first one, or
furthermore, the projective displacement that makesfitise one coincide with the
second one. The formulas:

(2) X =ayt +a’yt + ... +a"y"! (=12, ..nt+1),
which analytically translate into the geometric equality
Xtag +Xay+ ...+ X an =y by +yPbo + .+ Y b,

defines the passage from the coordingtex a point with resoect to the second frame to
the coordinatesxi of the same point with respect to first frame. T(me1)
coefficientsy! are the same in formulas (1) and (2).

However, it is important to remark that the homograpfainsformation (2§loes not
changeif one multiplies all of the coefﬁcientﬁj by the same factor. In reality, all that is
geometrically essential is the mutual ratios ofqh;e or, furthermore, the ratios of
thea by their determinant').

3. We now return to manifolds with projective connectidnis natural to take each
point a if the manifold to be one of the vertices of thenfeaattached to this point; we
shall do so from now on. We denote the otihgertices bya,, ..., a,. Now, leta anda’
be two infinitely close points of the manifold, anddlgt...,a’ ,, denote the last vertices

n+l

of the frame attached . When one has defined a relationshigtween the projective

(l) One may further say that one has essentially the §ame when one multiplies all of the vertices
by the same numerical factor.
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spaces attached wanda’, one will have formulas analogous to (1), but in whicé
coefficientsaqj will be very close to unity, and the coefficienm$' @i #j) will be very
small. We write:

a=0+af)a+wa + - +da,

- d=afarradarvofa,

a, =chatwa +--+(1+af)a,,

or, symbolically:
da' =dfa+wa +---+aa,,

- oo =afa vl -+ afe

da. =wfa+wa, +---+aa

n

The infinitesimal quantitiesf,«f,),«d define the infinitesimal projective
displacement that brings the frame attached t@oh& a into coincidence with the frame
attached to the poirt, once one has defined a relationship betweenrtijeqtive spaces
attached to these two points. However, in realityy agreement between these two
spaces is analytically defined by the mutual rabbshe coefficients (3), i.e., by the

guantities: _ _ _
o d-of, & (#50,i=1,2,..0);

these are the components of the projective cororeofithe manifold.

If one an arbitrary system of coordinatésu?, ..., u” on the given manifold, and if
the frame attached to each point of the manifoloedds upon the parametefsV?, ...,
V', then the components of the projective connectidh naturally be assumed to be
linear with respect tdu anddV, since the coefficients are functions (which wsuase to
be differentiable) of the' andv.

It is important to remark that thecomponentsd, o, ..., & depend linearly only
upon thedu', di?, ... du’, because if one fixes the coordinatethen thegeometric point
a does not varya is of the form (1€) a, and then expressionsa are annulled.
Converselydu!, di, ... du' may be linearly expressed by means ofdheds, ..., o,
because if these last expressions are annulled then one reaches the gaomsetric
point of the manifold and thdu are annulled.

4. One may always choose the frames attached teatii@us points of the manifold
in such a way that the sum of theomponentsd— ¢} is identically null. Indeed, chose
the frame attached to one point of the manifolc&marbitrary, but well-defined, way
(thus, there are no parameteérs Let:

o, of, df-af, o
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be the corresponding components of the projectiveemdimm. Now replace the vertices:

al all ey an,
by:
a, ait+ Mya, ..., ap+ Mya,

in which we letmy, ..., m, denote functions of the' that are temporarily arbitrary. As
one easily sees, the new componEhtscT)oo of the projective connection will be:

k=n
of —af+ma+ maf.
k=1

We only have to determine the functionsby the identity:

i=n

> (@ -af) + O + DL ma=0

i=1

if we are to satisfy the demanded condition: teipossible since the Pfaff expression
> —af, which is linear irdu', ..., du", may be linearly expressed, ..., J.
On the other hand, we remark that one may alwhgese the frame | such a way that

one has:
o =dut, F =dif, ..., J =du.

for this, it suffices, and without changing thetegra (which depends, as one knows, on
an arbitrary factor), to put the expression:

a}a1+a}a1+ +a5‘an
into the form:
du'a+ dufa,+ ... +dd'a,.

Finally, the two preceding conditions may be realizsimultaneously. Indeed, we
may first realize the second one, i.e., supposeegmn with, that:

W=du.
We may then realize the first condition by replaca with & + m & , with the

coefficientsm conveniently chosen, which does not change theevail thecw .
If we now suppose that the two are conditions ardized:

G=dd, Iia)f:nag,
i=1
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then the components), o, (J-af, «' of the affine connection are well defined.
Indeed, suppose that one has made a particular choied that satisfies the indicated
conditions. For any other choice, one will have:

da = (maf+dm) a+mdda + ... +m dd a,.
From this, it results that one must take:

a —ma+ma i=1,2,...n).

One then finds, by a simple calculation:
> @ -a)=0+1)) mdd.
i=1 i=1

One must therefore have that the coefficiemts ..., m, are null, and the new
components of the projective connection are idahtdth the old ones.

It results form this that when one chooses a sysfernordinatesu’, ..., u" ) on the
manifold then the projective connection is uniquidiermined by the Pfaff expressions:

o, d-df, o',

once one has arranged to reduce theto the dij and to annul the sum of the
expressionga}—«f. The projective connection thus dependsiom n — 1 arbitrary Pfaff
expressions; in other words, ofn? + n — 1) arbitrary functions of the', ..., u".

In the sequel, we will suppose, unless stated ¢octimtrary, that the frames are
chosen arbitrarily, in such a way that the compteh o, oJ-af, « are arbitrary
Pfaff expressions.

Il. - THE STRUCTURE OF A MANIFOLD WITH A
PROJECTIVE CONNECTION.

5. One arrives at the notion of the structure omanifold with a projective
connection by considering what happens when oneesswvely relates each projective
space attached to a point of a curve traced otlhidmmanifold with the infinitely close
ones. If one first considers two infinitely clogeintsa anda’ of the manifold, each of
which has a frame attached to it, then the podnt ¢f the projective space attached to the
point a will coincide with the poink' + dX of the projective space attached to the paint
when one has defined their relationship if one $asbolically, upon accounting for
equations (3:

dixa+xa; +... +x"a,)=0.

This equation decomposes ima- 1 other ones:
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dx +wpx +a'x +--- + X" =0,

@ dxX +wx+ afx +--- + af X" =0,

dxX" + "X+ @ X+ + X" =0.

If the pointa describes a closed curve on the manifold then the cocedinfat .., u"
may be expressed as functions of the same parametez expressionsy take the
form p'dt, and the equations (4) become linear differential equaitiothe n+1 unknown
functionsx, X, ..., X" of the independent variabte Their integration permits us to
successively analytically define the relationship betvtberprojective space attached to
the starting point and the projective space attachetthiagdinal point along the curve
considered.

In particular, suppose that the curve is closed. Undsetbaccessive relationships,
the projective space that is attached to the startingt plmies not coincide, in general,
with the projective space that is attached to thd poant, which will obviously be the
case only if the manifold constitutes a projective spacis own right. Under these
successive relationships the poirt €, ..., X) of the projective space attached to the
starting point will coincide with the poiny,(y', ..., y" ) of the same space, and the
expressions for thg will be once more obtained by the integration of equmti(4) with
the initial valuesx ) of the unknowns. _

In addition, if the closed contour is infinitely smeien they' will be infinitely close
to thex, and if one sets: o _

y =X +AX,
one will have formulas such as:

AX+Qox + Q)X +---+Q'x" =0,

5) A+ QX+ QX+ + QX" =0,

AX"+Q "X+ QX +---+ QX" = 0.

in which theQij are doubly-extended integral elements on the areassthaunded by
the contour. One may provd that one has:

(l) The proof is analogous to the one that we indicated icdke of manifolds with affine connection
(Ann. Ec. Norm.39 series, t. XL, 1923, pp. 369-373).
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Q' = (@) ~[f] - 3. [fed]
Q= (@fy - > ['af],

(6)
Q= (@) -[afaf] - 2 [wlaf]

Q! = (W) - [wfw'] —i_‘,[chwk"]-

6. Formulas (5) define an infinitesimal projectivisglacement whose components
are:
Q, Q°, Q-Q) Q/,

in such a manner that formulas (4) define the it@gimal projective displacement of the
components:

& of, df-af, of.

One may remark, moreover, that the former compenarg constructed uniquely
from means of the latter ones and their bilineaacants.

To any infinitely small closed contour that is &dcin the manifold there is
associated an infinitesimal projective displacemahbse components are the double
integral elements of the forl gy du du‘ . These components analytically define the
structureof the manifold; they generalize the Riemann-QGbfisl tensor. One may also
say that they define theurvature of the manifold, in the sense that they manifést t
divergence that exists between the given manifalil & (flat) projective space, properly
speaking, when one traverses an infinitesimal dasstour in that manifold.

As in the case of manifolds with affine connectiotigere exists éheorem of the
conservation of curvaturewhich one obtains analytically upon exterior eliéintiating
both sides of formulas (6) and taking into accdbase formulas themselves:

@'y =-{0%w] (6] - Y [0'] + [,
(@) =[Q'f] + [

(7) - _
(@) =-[Q0af] + [w'Q] - X [Qfef] + D [w/Q]]

@]y =-[0%'] (6] - Y 0ta] + Y [6f0)].
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This theorem admits a geometric formulation that involaesinfinitesimal three-
dimensional domain in the manifold, but it would prove dest to discuss it in detail
here )

lll. = MANIFOLDS WITH PROJECTIVE CONNECTIONS
WITH VANISHING TORSION.

7. A manifold with projective connection is said to bdéhaut torsion if the
infinitesimal projective displacement associated wath arbitrary infinitesimal closed
contour that starts from an arbitrary point of thatniftdd and returns to it leaves the
(geometric) pointa invariant. In order for this to be true, it is necegsand sufficient

n

that formulas (5) give null values fa*, A, ..., AX" when the coordinateg, X, ..., X
are null. In other wordsnanifolds without torsion are characterized by the equalities:

(8) ot=0, 0*=0, .., Q"=0.

The components of the projective connection thus gatisfidentities:

(9) @) =[d (& =)+ Dlfd] .

k#i

In addition, formulas (7) show that the non-null compatsQ', Q°, Q'-Q2, Q!, of
the curvature are not arbitrary, because they are ed gyl then relations:

(10) [&(Q -]+ D [wQ] =0 i=1,2, ..n).

k#i

In particular, one sees that if one has taklendu, and if one sets:

W -af=3 ridd, =S ridd,
r=1

r=1

then the coefficient§ i'].‘ will satisfy the symmetry law:

r=r;

ij ji

One may further say that there exigjuadratic formsp*, ®? ..., ®"indd', ..., du,
such that one has: _ _
o 1 00 100
@ = =55 =53 Au)

N

As for the identities (10), they show that if one sets

(*) SeeAnn. Ec. Normloc. cit, pp. 373-375.
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Q-=SANJIS], Q=S AT,

then one has the identities: _ _ _
(11) N, Ny + N

ay

yap= 0-

8. One obtains an important category of manifoldheuit torsion by remarking that
the projective group leaves a point fixed admitsirarariant subgroup. In deed, this
group is the dual of the group that leaves a hypaepfixed, i.e., it is a sum @fffine
groups that admit invariants subgroup of affin@$farmations that preserve the volumes
(Mdbius group). Now, the dual of the projectivarisformation (5) is:

A& = Q,
A& = QUE+QE ++QIE,
D& = QE+QE ++ Q.
If we useinhomogeneousoordinates then it becomes the affine transfaomat

A& =Q+(Q -Qg)&+ D Q& (=12 ...n).

k#i

It belongs to the Mdbius group if one has:

(12) 2 Q-2 =0.

This is the identity that, along with (8), defirthe category of manifolds in question.
From (6), it may also be described by:

> (- ahy =- (w1) 3 W]

In particular, and one may always realize this.(d¢cone has:

then one will have:

in which® is a quadratic form idu*, di, ..., du".
From (7), one will also have:
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or furthermore, if we employ a self-explanatory miota
Ny *Npa ¥ Nop=0 @A y=1,2,...0)

9. A last category of manifolds without torsion, whigh more restricted, is
composed of ones for which the infinitesmal projectiispldcement that is associated
with an infinitesimal closed contour that start@.@nd returns to it leaves fixed, not only
the pointa, but also all of the lines through In order for this to be true, it is necessary
and sufficient thaf\x*, AX,..., AX” be proportional tod, X2,..., X" in (5); in other words,
that one have the identities:

Q=Q:=..=Q", Q=0 0 #]).
If this is true then formulas (10) show, upon supposingrtkag, that one has:

Q -Q)=0.
Formulas (7) give:
[Qlw']1 =0 ,j=1, 2, ...n),
from which we have:

All of the components of the curvature are therefoull, and the manifold reduces
to the self-same projective space.

Thus, if n> 2 then there is only the projective space, properly speaking, fothwhic
the infinitesimal projective displacement that is associated wittosed contour that
starts ata leaves the poird invariant, along with all of the lines that pass throwgh

This conclusion is naturally invalid wher= 2 ¢).

IV. — THE GEODESICS OF MANIFOLDS WITH
PROJECTIVE CONNECTIONS.

10. A curve C) that is traced out in a manifold with a projeetzonnection is called
a geodesicof that manifold if, when one successively relatbe projective spaces
attached to each of the points of the curve, athese points define a straight line. One
expresses the fact a curve is a geodesic by s#tyatgby virtue of formulas (B which
define the projective connection on the manifotie, pointd?a is situated on the line that
joins the pointa to the pointda. One is thus led to the second order differential
equations:

(l) There exists an analogous theorem in the theory of oldnifith conformal connection, but it is true
only whenn is greater than threéiin. Soc. Pol. Mat., loc. cipp. 185).
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did - daf + 3 ol def - + 3 waf def - dfaf + > e
i=1 — i=1 — i=1

1 2

7 7 a”

In particular, suppose that one has chosen the fraswema manner thab reduces
to du. The equations are of the form:

d’u' +PY(du) _d*® + P*(du) _ _d"u'+ P"(du)
dd du? I T !

in which theP' (du) are quadratic forms idu!, di?, ..., dUi’. One sees that if, for
example, one expresse’s U?, ..., u™" as functions of" then one obtains the equations:

d'u_ :_P{ du:j Rl Pn(duij
(du') du du du

2,,n-1 i n-1 i
d<u _ :—P”‘{ dunj N du Pn(dunj’
(du) du du’ du

in which theP' are nown (not necessarily homogeneous) integer polynonaiiecond
du'™
g

(13)

degree in the% with coefficients that are given functions of tfe U?, ...,

un-l (l)

One sees from this that if one is given a familycafves in ann-dimensional
numerical manifold by a system of1l second order differential equations thers
generally impossible to associate a projective @mtion with the manifold in such a way
that these curves become its geodesitsis is true only if the differential equatiocan
be put into the form (13).

Conversely, if one is given an arbitrary systendifferential equations of the form
(13) then it will be possible to regard them as gle@desic equations of the manifold
when one endows it with a conveniently chosen ptije connection. Indeed, one may
always suppose that one has= du. It then suffices to take the componedts «f , &’
in such a way that one has:

duf (of - af) +2_du'ed =P (du,
k#i

and, more generally:

(14) du (¢f - of) +D du‘e) =P (du) + ddki‘:ckdu" ,

k#i

(l) In the case oh = 2 these equations reduce to just one, which, upon cliptiggmotations, has the
form:

d’y _ dy 4 a~(dY)* 4 pldy)’
Y —a+ 3B +3c/dY) +pldy)
dx? dx Udx/ Udx/

in which the coefficient#, B, C, D are functions of, y.
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in which thecy are arbitrary functions.

11. In particular, we seek all of the projective conimed without torsionthat are
compatible with the identities. As one has seen ong m#h no loss of generality,
suppose that:

(15) S @-ah=o.

Now, since the manifold is without torsion the esgsionsd — «f,«w’ are the partial
semi-derivatives of the right-hand side of the tdgn(14), which one regards as a
quadratic form irdu*, di?, ..., du’. One thus has:

i k=n

o1 1
o - :E(_ z duk+§cidd,

1 6P 1 i
ai 26(d k) —ZdeU'.

Condition (15) gives:

i=n ) 1 i=n apl

2,50 =5 2. 5y
It unambiguously determines the coefficiems, and, as a result, the components
o) - of ,) of the desired projective connection. One seatthle integral curveC) of
the system(13) may always be regarded as the geodesics of thefadnwhich is
assumed to have no torsion, and the projective eciion that one must necessarily

attribute to this manifold depends upon n arbitr&faff expressions’, as ..., &

V. —MANIFOLDS WITH NORMAL PROJECTIVE CONNECTIONS.

12. It is interesting to inquire whether, amongddlthe projective connections that
endow a given numerical manifold with the same gsad, there exists one of them that
is endowed with particularly simple intrinsic propes. It is natural to suppose that the
projective connection is without torsion. We jsstw that under that hypothesis there
remainn arbitrary Pfaff expressiomqO . We may now arrange that one have:

i=n

Z(Q - Q) Z(af wo)+(n+1)2[cdw]—

When one is given the preceding choice, satisfytng condition amounts to taking
theaf equal to the partial semi-derivatives of a quadr@aim® in du', di?, ..., du™
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CL{O: Fikduk (Fi,- =T ).
i=1
. nn+1) . .
What remains arez— arbitrary coefficient§’; . One has:

0] - 08 = (@ - af) - 2 [wled] + [wef] + Llaf]
Q) = @) - X [wad] + W],

We let g, a;, the coefficients of the forn@; — Q7,Q’ when one annuls thg. In the
general case, these coefficients become:

A\In :ail_l +T
Azd, K1#)

A;il :alj_n + ril )

Ay =a, (k, 1 #1).

One may assign the coefficierfitgin one and only one manner that makes:

k=n
Ay =0 (,i=1,2,..n);
k=1
it will suffice to take:

I —Lkiri k
] _n_lk:laijk'

By virtue of formulas (11) the two values obtairfed I'; are equal (sec. 7) when one
replaces with yand sums ovey. _ _

By definition, with the (unique) choice of frame that reducéso du andY of - f)
to zero. There exists one and only one projective connection that thakegegral
curves of(13) into geodesics and satisfies the conditions:

i=n

(16) Q'=0, ZQ:—Qg):o, ki/sﬁjkk:o (,j=1,2 ...n).

13. We shall now show that the conditions (16) imeependent of any choice of
frame. This is obvious from the relations:
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which have, as we saw in (sec. 8), an invariant sgamfie. If we suppose that these
conditions are already then the quantities:

k=n
Bi =Y Al (,j=1,2, ...n)
k=1

satisfy the symmetry la; = B;j . We shall now show that under an infinitesimal
change of frame they transform among themselves ingarlhomogeneous substitution.
Indeed, imagine that the frames depend upon a variable garana¢ each point of
the manifold and use the symhdfor a variation of that parameter while theremain
fixed. The symbodl will be reserved for an arbitrary variation of th@ndv. Formulas

(7):
(@ - Qq) =2 [Q] + 2 [ Q] ~[4Q] - 2 [ Q]],

) k=n ) k=n _ _
(@) =2 [Qed] + X [ Q] - [w Q]
k=1 k=1
show that for an infinitesimal variation wbne has:

Q- Q) =2 €Q, -89,

k#i

. k:n . .
Q) = ;(e?fz'k -0,

in which €,€, denote the expressions that «f, ' become for the differentiation

symbolo.
On the one hand, the formulas:
(D) = [w(e] - ap)] + D[] (=12 ..n)
k#i

give:

k=n
dad=-Y e (=12, ..n),

k=1

One easily deduces from this that:
. p:n . . . .
Ry =D (A~ A TN, +elAL), (ki 1=1,2,...0).
p=1

and, as a result:
p=n
B =) (€'B, +€/B,);
p=1
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this what we had to proveé)(

From this, it results that if the coefficierBg are null for a particular choice of frame
then they are null for any other choice.

We say that a projective connection that satisfieglitions (16) isnormal We then
see thaif we are given a family of curves in a numerical manifold thatdefined by a
system of differential equations of the fqd8) then one may endow the manifold with a
normal projective connection such that the curves in question becongedtesics of
that manifold, and in one and only one way.

An important consequence of the preceding theorem itleving: The analytical
study of the invariants of the systddB) vis-a-vis an arbitrary change of variables
identical with the study of the geometrical properties of manifolfsnermal projective
connectiong®). One sees the importance of the notion of normgegtise connection
from either the viewpoint of Analysis or that of Gesiny.

One may remark that manifolds with normal projectiwarections are characterized
by the property that the infinitesimal projective displaent that is associated with an
infinitesimal closed contour that starts from a parnkaves the poina andall of the
lines througla invariant.

Remark— Given a system of differential equations of the f¢i®), it is easy to see
that one may, and in an infinitude of way, endow the falhwith anaffine connection
such that the integral curves (13) become the geodesitseofanifold. One may
likewise do this in such a way that there existalagolute unit of volumia the manifold.
However, also with this supplementary condition, theives an infinitude of solutions
(which depend upon an arbitrary function mfvariablesu' ), and none of them is
distinguished from the others by simple intrinsic propsrfl). It is therefore the notion
of normal projective connection alone that permits usottstruct ayeometrictheory that
satisfies equations of the form (13).

(l) One may show in a more elegant manner that the quafinatic

S5 %% =38 & o

k=1 i=1 aa)

(in which we have writte! in place ofQ!-QJ) isinvariantunder an arbitrary frame change.

(2) Manifolds with normal projective connections play thensarole, vis-a-vis systems of differential
equations (13), as Riemannian manifolds, vis-a-vis quadtdfiszential forms, and manifolds with normal
conformal connectionséethe Note cited irComptes rendys. 174, pp. 857), vis-a-vis Monge’s quadratic
equations.

(3) The indicated supplementary condition makes the teBs,or:ZA:fk symmetric. See L.-P.
k

EISENHART, Spaces with correspondent Paffsoc. Nat. Acad. of Scienges 8, 1922, pp. 336). In the
“Geometry of Paths” by L.-P. EISENHART and O. VEBLERroceed. Nat. Acad. of Sciences8, 1922,
pp. 19), geodesics are taken as the point of departure foe ainnections.
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VI. — THE NORMAL PROJECTIVE CONNECTION ATTACHED TOTH E
GEODESICS OF A GIVEN d<.

14. The problem of thgeodesic representatiasf two ds’ is cast in a new light if
one takes the preceding viewpoint. To eafsh there corresponds a well-defined
manifold with normal projective connection. Twl& admit a geodesic representation in
terms of each other if the two manifolds with nornmbjective connection are
isomorphig i.e., if it is possible to establish a point-like @spondence between the two
manifolds that preserves the components of the pregectonnection. We shall not
occupy ourselves with the general problem, which may laetleby exactly the same
methods as one uses for the problem of the isomorpfsnmappability) of two
Riemannian manifold }{.  We shall content ourselves with indicating how one
determines the normal projective connection correspomas givends’, and to see in
which cases thids’ is geodesically representable on a Euclidian spstce

Consider a< that one may always express as a sumsafuares:

ds’ = () + (F)* + ... + (J)?*;

the Riemannian manifold that is defined by tHg admits a Euclidian connection
(without torsion) whose components are tdeand certain Pfaff expressian= —aij.

This connection may be regarded as a projective one biugittg the value zero to
thea/ .

We use the lettewwto denote the components of thermal projective connection
that gives the same geodesics. We have the right to take

@=¢, a-wf=a=0, T=a.

SinceY. (@ - &) = 0, the argument that we made above shows thaf'treve the
form:

k=n
=) I M =Tj).
k=1
Set: _ _
Q=) ay[wd].
kI
We have:

1 k=n . hj
M =—— Y af =——.
! n—lkzzl:a"k n-1

The first problem is thus solved, and one has:

M -ny=[d i]:—kznqk[afa)k] (=12 ..n),
=

(l) See my memoirSur les equations de la gravitation d’Einstéinde Math. 1922, fasc. 1).
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N'=Q! +[w'a] :Za,.jkl[wkdhkfbik[ijk] (,i=12, ...
kI k=1

15. If one wishes that a givad¥ be geodesically representable by a Euclidign
then it is necessary and sufficient that the coreptsTl; -y, M/, N? of the curvature
of the manifold with normal projective connectidrat we just determined are identically
null. If we first suppose that> 2 then we know (sec. 9) that for this to be ftsiffices
that theM| - N2 and thel! be null. One first sees that theare null fori #j. One then
sees that one has:

Ql =-bi[d d].

However, the relatio®2! +Q/ = 0 shows that the coefficientsb; are all equal, in such a
way that one has: _ o
Ql =-dd d].

From a classical theorem, which is easy to proveeower,c is a constant, in such a
way that theRiemannian manifold in question has constant curvature

This conclusion is also true if = 2, but to show this, it is necessary to take int
account the expressions fandr?:

Ny=(a) -[efay] = c{( o) —[afw?]} + [dec of] = [de o],
N5=(w)) -[abaf] = c{( ) —[abed]} + [de o] = [de ).

These two expressions are null only widers 0.

We thus recover the classical theorem that Hagyonly Riemannian manifolds that
are geodesically representable in Euclidian space are manifolds withecmsirvature.

16. The preceding considerations lead us quite abyuo the projective definition,
which is due to Cayley, of manifolds with constantvature. The simplestnalytical

manner of presenting this definition consists i@ an @bsolutely non-degenerate
guadratic form in a projective space. Let:

(X, X, ..., XY =0

be such an equation. If one agrees to endow ezinhgf the space with coordinates that
satisfy the relatio =k, wherek is a give constant, then the desidstlis, quite simply:

ds® = d(dX, dx?, ..., dx").
Now consider, in a Riemannian manifold of constanfrvature, the normal

projective connection that makes this manifold iatprojective space, properly speaking,
and whose components are:

d=¢, @-d =0, @=«, o =cd.
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We likewise suppose as is permissible- that wgz 0. Having said this, one easily
verifies that if one considers the coordinates{, ..., x"), in different frames, of a fixed
point of projective space then the quantity:

(2 + 60 + ..+ 60 = (0

This results from formulas (4), which give the aaidn of theX when one passes from
one frame to a neighboring one, formulas in whicle maturally replaces the letter
with the letterca Thus, if one chooses one of the frames to liixesl frame (with
coordinates< ) then one will have the following coordinates) (of a point when referred
to the frame attached to a given pant

an 62+ 007 + .+ 60 2 (0 = 0+ 04 + .. =Z(X)
In particular, the coordinateX'() of the pointa itself satisfy the relation:
1 1
X2+ L+ X2 -=(X)P ==,
( ") =097 ==

On the other hand, the relation (17) entails th®wong relation for two infinitely
close points in the space:

()2 + (@) + ... + [dX')? - %(dx)2 = @dXH)? + (dX®) + ... —%(dX)Z.
We apply this to the poirgt and the infinitely close poirt. We have:
ds’ = () + (F)* + ... + (8)? = [dXH? + @XP)? + ... —%(dX)Z.
We recover Cayley’s projective definition, with teguation:

DX, XY LX) = 02+ (XA + —%(X)2 =0

for the absolute, and the val(%de‘or the constark that corresponds to the given constant

curvature.
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VII. = THE NOTION OF A MANIFOLD OF ELEMENTS WITH A
PROJECTIVE CONNECTION.

17. The system of differential equations (13) is not mmast general system of
second order ordinary differential equationsiir 1 unknown functions. The curves of
ann-dimensional numerical manifold that are defined by @esyghat is not of the form
(13) may not be regarded as the geodesics of a manifdidovajective connection. One
may demand that one exists by a generalization that geusito regard them, among
others, as geodesics. We shall not occupy ourselvasthatgeneral problem, but only
content ourselves with the simplest case?, i.e., the case of integral curves of a second

order differential equation:
2
F(x y d_iﬂzlj =0,

which we may always suppose to be written in tlienfo

d’y_ [ dy)

(18) W_ ka,y,dxj.
The theory of differential invariants of that eqaat vis-a-vis the group of point-like
transformations atx( y), have been the object of an important memoir of§erés). We
shall see that the notion of projective connecpenmits us to give that theory a simple
geometric form.

We start with the notion oélement which we regard as the set of a point and a
direction through that poinand analytically letx, y) define the point and the valyehat
% takes on when it is displaced in the given digatti The set of all such elemenks (
Yy, ¥') constitutes a three-dimensiomanifold of elements

Having said this, imagine that each elemeny(y') is attached to a projective plane
that contains this element. We will have endowes rhanifold of elements in question
with a projective connection if we give it a lawatipermits us to associate the projective
planes attached to two infinitely close elementis law will be arbitrary, but it must
nevertheless satisfy the following conditions:

a. If one considers multiplicity (in the sense of S. Lie) in the manifold of eletsen
I.e., a continuous one-parameter family of elemé#rds satisfy the equation:

dy—-y dx=0,

(*) Seethe introduction.
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then this multiplicity remains a multiplicity when ormiccessively associates the
projective planes attached to the various elementseajiven multiplicity {).

b. We choose the frame attached to an elera@itthe manifold in the following
manner: Since the elemenbelongs to the projective plane that is attached teettake
the vertexa of the frame to be thpoint of the elemeng, and we restrict ourselves to
taking the vertexa; on the line that, along with the poiat constitutes the element in
guestion of the projective plane. Then let:

da=cfa + dJay + dfay,

das =afa+aja, + afa,,
da; =aba +wia, +wia,,

be the equations that define the projective connectionthen manifold. The
componentwK" are linear indx, dy, dy (and also contain the differentials of the
parameters that the frame attached to each elemetiteomanifold might possibly
depend upon).

We now express the fact that the conditiarasndb are verified. If one displaces
along an arbitrary multiplicity of the manifold thenstnecessary that the pouia be on
the lineaa, in other words, that the expressiahbe null. As a resultef is annulled
along with dy-y'dx

Now, if the pointa of the manifold remains fixed then it is necessary tha point
da agrees witla geometrically. In other wordg} and ¢ are linear combinations of the
dxanddy. Thereforethe forme} depends linearly only on dx and.dy

We add the following remark: If the elema@&remains fixed then the poiatand the
line aa, must remain fixed. In other wordd, f, andef are annulled withix, dy, dy,
or finally, the forrmfdepends linearly upon only the dx, dy,.dioreover, this remark
is interesting only if the frame attached to an eldméthe manifold depends on variable
parameters. If this is not true then the foraisand f satisfy the conditions that were
stated above, and the three forads «f, andaf are linearly independent.

VIIl. = MANIFOLDS OF ELEMENTS WITH
NORMAL PROJECTIVE CONNECTIONS.

19. We use the terngeodesicsof a manifold of elements with a projective
connection to refer to the curves in the manifold dheseloponto a projective plane
along straight lines. These curves are naturally redaadethe point-like supports of
multiplicities. Ifais a point of the curve analy, its tangent, then the curve will be a
geodesic idla andda; are both one the lings;, which gives:

(l) One may express this in a more intuitive manner by sayiatgainy multiplicity in the manifold is
developedonto a projective plane along a multiplicity of that ganNaturally, one may not speak of
developing a figure in the manifold that has two parameters.
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=0, of=0.

These equations are reducible to:
dy—-y dx=0, dy —f(x,y,y) =0,
and the geodesics are the integral curves of the difiafrequations:

(18) % = f(x, y%} :

Conversely, the integral curves of an arbitrary second order ordindfgrdntial
equation may be regarded as the geodesics of the manifold endowed with @erdnve
projective connectignindeed, it suffices to take:

o} = adx+ Bdy, of = ady-y dx
of = Ady-y dx+pdy —fdx

with the otherwbeing arbitrary.

Among all of the projective connections that are define@ byo-parameter family
of curves C), might one distinguish one of them by intrinsic props? WE shall see
that this is effectively true, which will lead us to tih&ion of amanifold of elements with
a normal projective connection.

First, we make a remark. No matter what projective eotion is on the manifold,
one may always suppose that one has:

(19) o = dx o =dy-y dx of=kdy —fdx.

Indeed, the multiplication o&, a;, a; by the same factor does not change the
components of the projective connection so any changeiframe may be realized by
preservinga. If we orderda according tady, dx, dy—y dxthen it suffices to taka to be
the coefficient ofix anda; to be the coefficient ofly —y'dx, and one thus reduces to
dxanddf tody—ydx One likewise see that one may further add arbitrariiples ofa
to a; anday.

One may now obviously dispose Ain such a manner that the coefficientagin d
(a1 + A @), a coefficient that is:

af + A3,

must be proportional tdy—ydx. The proposition is thus proved.

One sees that the frame is no longer completely mi@ted, since one may replace
ax with az + h a, in whichh is an arbitrary coefficient. This coefficiemhas no influence
ona}, but it modifiesaﬁby the quantityhef. One may thus arrange things so that one

modifies the componentg—«} by a quantity of the forigJ.
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20. We shall now proceed in the following mannernmrmalize the projective
connection of the manifold. First, we calculate chenponen? of the curvature:

Q= () -[df]-[w (] - wp)]
= (1K) [dx dy] — [(dy -y dX) (& - &f)].

It is always possible to specialize the projectemnection in such a manner that one
annulsQ? In order to do this, it is necessary to tikel and:

& —af =u(dy—y dy.
We may likewise annu™:
Q' = () -[fad]- [ (] - )] = {dx(ad - )] —[(dy - y'd¥ad].

Since one may, from the remark made above, maijﬁyag by an arbitrary multiple of
dy -y dxwe may suppose that:

af ~af=v dx
b= w (dy—y dx).

From now one, the frame is chosen unambiguo(estgept that one must be given a
projective connection that annX¥ andQ?).
One now has:

Q=) +[w'af] - [@(e ~ )]
= [dx df — ul(dy ~f dx(dy—y d¥] - v [dx dy + [(dy~y d¥)af].

One may further annul the compon@rﬁbf the curvature with the condition that one

take:
_of

v oy
af:g—;dx—u dy —fdX + A (dy—y dy.
One likewise has:
Q;+ Q7 - 200 =(@f + o, — 2a)’ + W] + Y]
:{dg—; dx} + [du(dy—y dx)] — 2u [dx dy]
+ 3[dx (dy—y dX)] + 3[(dy—y daf],

and one may annul the right-hand side by taking:
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10°f
_26y
1 9°f 1, 0°f
30y0y’ 6 0y

+u (dy-vy dx).

Finally, one has:

Q- Q) =(af - ap) +[afeh] + 2[afef] +[af )
{dg—;, dx} —w(dy —f dx) (dy—y dx)]
+ 3[dx (dy -y dX)] + 3[(dy—Y dx)af],
9% f 1| #°f
+3ayay LOX (@/— 9] +—{ % " (ay- ydx)}

One may further annul this expression by taking:

o f
ayIZ ’

EYUNNTET)
“30ydy’  dx\oy'2)”

In summation, we have obtained the following expigass for the components of the
projective connection:

w==d

ol

a)l—dx o =dy-y'dx

2

10f
o - w‘—ydx W, —ah=- (dy-y'dx),

2a 2
(20) of =dy-y'dx, @—66,2(dy y'd)
of 1 9%f [2 #?f 1d aij
= dx+ dy' = fd)+| - —— -=— dy-y'dx),
o ay 26’2( N+ 3oyy axay?) VYW

30ydy' 6dxoy'’

dx-—=d
6 ayrZ

1 9%f 1.d 9%f 1 0°f
b ( j +u(dy—y'dx),

with an arbitrary coefficientz, when one realizes the conditions:
(21) Q*=0, Q'=0, Q/=0, Q-Q=0, Q2-Q#0.

21. Before going further, note that relations (21) permas to foresee the sort of
expressions we should expect for the remaining compt€},Q;,Q? of the curvature
of the manifold. The identities (7) immediatelygius:
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[(fQ}] =0, Q] =

0,
[ +[fQ;] =0, [fQ}] ~[afQ)] =0,

from which, one deduces the general expressions:

Q; = a[afaf]+ r[ ot ]
Q! = bt df] + rafaf]
QY =hddf] + K[fef] + r[ddaf].

We shall se that one may dispose of the arbitraryficeat ¢ by annullingr.
Indeed, one has:

Q, = (@) +Hdof] +[d(@f - af)]
_10°f I AU I A
—gay,s[dxw1+6{day,3(dy de)} 6{dxdw}
10f o°f

4 (dy —y ] 4532

[dx (dy —y'dX)].

First of all, one indeed verifies that the rightalaside is annulled witdy — y'dx,
i.e., with «f. As for the coefficient denoted by it is the coefficient ofdx dy in the
right-hand side when one repladsswith f dx

°f

1 0°f 19f9°f 1d
dxoy'®’

MG aiy "oy o7

1
+_
6

We can take the following value fpr

1 0°f 10f 0°f 1d 9°f

6 oyoy'> 60y ay'® 6dxay*’

(22) U

The projective connection of the manifold is thaambiguously determined, with
expressions of the form:

Q; =alafaf], Q! =[], QY = hdf] + K[cfaf]

for Q;,Q/,Q).
Moreover, one immediately finds:

(23) a=--

and it would serve no useful purpose to calcutate k explicitly.



On manifolds with projective connections. 27

22.  An important question remains to be answered. We bpeeialized the
projective connection of the manifold by starting witbeaticular choice of frame. Is the
result obtained independent of the choice of frame®thar wordsdo the properties of
the projective connection expressed by the relatiah} combined with the condition=
0, have an invariant characterfunder any change of the coordinateg).

First, as one easily verifies, the prope®y= 0 signifies that under the infinitesimal
projective displacement that is associated with amiie§imal closed contour of
elements starting with an elemest the element, which is the transform oé, is
identical with e; this is obviously amvariant property.

In the second place, the conditions:

Q'=0, Q*=0, Q=0

express the fact the elementemains invariant under the infinitesimal displacentbat

we just considered (i.e., there is tawsion); this is an invariant property. The condition
Q;- Qo= 0 then expresses the fact that there exists no antasolatedpoint outside of
the pointa on the lineaa;. The conditionQ3- Q2= 0 then expresses the fact that there
exists no invarianisolatedpoint outside of the linaa.

The relations (21) thus have essentially an invariantacher that is independent of
any choice of frame.

The same is true for the relation= 0. One confirms the following geometric
significance that one may attribute to it: If onensiders an infinitesimal (open) linear
family of elements and one closes that family by deingy that at the pointx(y) the
samepath is traversed in the opposite sense so that thetioivg’ of the element goes
from its final value to its initial valuevithout repeating the same intermediary values
then this closed contour of elements is associated wait infinitesimal projective
displacement (in the projective space attached tanthal element). The relation= 0
signifies that all of the points of the li@y, are invariant under this displacement. Thus
has an invariant significance indeed.

In conclusion, we thus see thato any second ordinary differential

2
xy%ﬁ%} = O there is associated, in an invariant manner, a rfadiof
elements with projective connection such that thtegral curves of the differential
equations are geodesic3Ne say that the unique projective connection thtsined is
normal We have previously indicated the geometric priogeethat characterize normal
projective connections.

The problem that was treated by Tresse may thistdbed geometrically as follows:
To study the geometric properties of the manifdicelements with normal projective
connection

equatiorF (

23. In projective geometry, the notion of alements its own proper dual, as well
as the notion omultiplicity. As a result, any manifold of elements with ajgctve
connection is transformed by duality into anoth@mifold of elements with a projective
connection such that tipmintsof the former coincide with thgeodesic®f the latter, and
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conversely. If one denotes the components of therlgtrojective connection by the
letter wthen one has, as is easily seen to be true:

d=f, d=df, F=d
@=d, d=df, @’'= o,
&=, @=af, @=af.

Relations (21), which relate to a normal projective cotiom, are thus transformed
under duality into:

n =0, n’=o, nt=o, ni-n=o, n°-n=o;

they preserve the same form. As for the conditionttrecoefficient of [¢}af] in leis
null, it becomes the condition that the coefficiefizo’a’] in Mybe null. In other words,
the dual of a manifold of elements with a normal projective connecti@gasm a
manifold of elements with a normal projective connection
The relation that exists between the two familiég@odesics of two dual normal
manifolds is obvious. If:
F(x,y,ab)=0

is the general equation of the geodesics on thredomanifold when on regaradsandy

as point-like variables ana b as arbitrary constants, then it is also the eqoatf the
latter manifold, with the condition that one regardndb as the point-like variables and
x andy as the arbitrary constants. Thus, the relatiomvdéen dual normal manifolds
analytically translates into a certain correspowdepetween two second order ordinary
differential equations (or rather, between two s#ssof differential equations that one
obtains by transforms each of them by an arbitgaoint-like transformation). This
correspondence has already been studied by A. Koppd) in its purely analytical
aspect.

24. A particularly remarkable case is the one inchithe coefficient in the form
leis identically null. The identities (7) then give:

[Q)] =Kwwaf] = 0.
In other words, the only non-null componemfng of the curvature of the manifold are
of the form:
Q! =b[f o], Q) =h[dJ o]

They do not involvaf; they are simply proportional talx dy. This result may be
geometrically interpreted by saying that the relaship between two projective planes

(l) A. KOPPISCH,Zur Invariantentheorie der gewdhnlichen Differentialgleichungen zwéitdnung.
Inaugural Dissertation.Leipzig, B.-G. Teubner, 1905 eealso thdnaugural Dissertatiorof A. KAISER;
Leipzig, B.-G. Teubner, 1913.
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that are attached to two given elemeatand € of the manifold depends only on the
initial element, the final element, and the interraeglpath that is followed by thaoint

of the moving element, but they do not dependaw that determines the change in the
direction of that element. In other words, the manifold of edats is based on@oint-
like manifold with a projective connection, in the senseheffirst part of this memoir
[with the accessory condition that one has takemamdrat each poink,(y) that depends
on a parametey']. The geodesics of the given manifold are then the gexsdes a
point-like manifold with a projective connection. Indedds talso results immediately
from the preceding expression that we found for the woeft a. If the coefficient is
null then the geodesic equation has the form:

2 2
4y - a+mY +3C(dy\

dy dy)”
a2 dx dx/

(
+DKdX) ,

which characterizes the curves that are susceptibleeing geodesics of a point-like
manifold with a projective connection. One may &loak the projective connection that
was determined is, moreovegrmal in the old sense of the word, siré Q| - Q°, and
Q! are all null expressions. In other worifs,the case ofQ}= 0, a manifold with a
normal projective connection reduces to a poinglikanifold with a normal projective
connection.
If one has botla =0,b =0, i.e.:
Q;=0, Q’=0,

then the identities (7) show that the two coeffitgh andk are null, and the manifold
reduces to the projective plane. In other worls, differentiation of the geodesics (as
well as the dual equation) will be reducible to:

d?y _
o7 =0,

Formulas (20) and (22), which give the componeritthe projective connection,
permit us to calculatk, which gives, in the particular case whans null:

0°C 090’B 9°D 0A dD
_(Zaxay Toy? ox +2D ay tA ay

0B oD 0B oC
-3D I - 3B I -3C dy +6C axj

+(,,aZB °C 9°A _ dD _0A

“oxay ox2 ay? 2A6_x - D&

dC . 0A _ oC __oB) .
+3A6y+3Cay+3BaX—686yjy
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One immediately derives theo conditionsthat the coefficienté, B, C, D in the given
2

differential equation must satisfy in order for it to feelucible to the equatie(djﬁ)% =0
).

25. We return to the general case. We leave to tiderdhe task of verifying the
existence of thentegral invariants:

[Wabet, [[[Vabwiarat, [[aibiate?, [[abietaf.

We also content ourselves with pointing out that in aifoll of elements with a normal
projective connection, one may, as one does in thegtnggeplane, construct a theory of
(projective) differential invariants of curves, determitiee fifth order differential
equation of the curves that atevelopeddnto the projective plane along a cone; i.e., in
summary, it plays the role, vis-a-vis the given twoapaater family of curves, that is
played by cones vis-a-vis lines, etc. We also contergetves by indicating that there is
a possible generalization of the preceding theory farhitrary number of dimensions.

(l) The conditions are due to A. Tresse, on page 56 of émsain cited above Seealso, A. KOPPISCH,
loc. cit, pp. 17.



