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 1. Description of the apparatus. – The balancing foot ABCDE (Fig. 1) is made from a metallic 

wire of around 1.5 mm in diameter. It is composed (more or less) of a vertical semi-circle ABC 

that is equipped at the base with an appendage BDE whose purpose is to make it rest on the 

horizontal plane along the part DE, which is rectilinear and perpendicular to the plane of the circle 

ABC. The wire is doubly hooked at A and C in such a fashion as to form two bearings that receive 

the extremities of the axis of the gyroscopic top. In that position, the mean plane of the torus of 

the top will pass through DE. 

 
Figure 1. 

 

 If the top is not turning then the equilibrium will be unstable and everything will rotate around 

DE. However, if the top turns around itself with a large velocity (around 50 revolutions per second) 

then the system will seem to be in stable equilibrium. The inventor of that toy gave it the name of 

balancing foot. In reality, the foot executes oscillations about the apparent equilibrium position 

that are manifested by a sound that is not further than an octave below the la of the tuning fork 

under normal conditions. 

 Those are the facts that we shall explain theoretically while neglecting friction. 

 

 

 2. Choice of givens and unknowns. – I shall regard all positive rotations to be from right to 

left. The givens are (Fig. 2): 

 

0 initial angular velocity of the top around its axis Gy  
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0 initial angle between the vertical Oz and the perpendicular OG that is based at 

the center G of the top along the axis DE 

 

a length of that perpendicular OG 

 

A, B, C = A,  principal moments of inertia of the top. B is relative to the axis Gy , A and C 

are relative to two lines Gx , Gz , resp., that are perpendicular to Gy . 

 

P weight of the top 

 
Figure 2. 

 

 I shall neglect the weights of the mounting and the base in comparison to that weight, which 

will simplify the writing without compromising the results. 

 The unknowns are: 

 

 the angular velocity of the top relative to its mounting 

 

n = 
d

dt


 velocity of rotation of the balancing foot around ED 

 

r angular velocity of the foot around the vertical Oz 

 

v velocity vector of the point O on the horizontal plane 

 

 

 3. Exhibiting the equations of the problem. – The external forces reduce to the weight P, 

which is applied at G. In order to determine the unknowns, we apply the following principles: 

 

 1. The theorem about the quantity of motion projected onto the horizontal plane. 

 

 2. Euler’s equations for the axis Gy  of the top. 

x (r)  

 
G 

 

P O y 

x (n) 

D 
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 3. The theorem of the moment of quantity of motion with respect to the vertical at the point 

G. 

 

 4. The vis viva theorem. 

 

 I. The first principle tells us that the horizontal projection of the point G is fixed, which 

determines the velocity v of the point O as a function of the other unknowns. However, experiments 

(and calculation, as one will see) shows that  never deviates appreciably from 0 . It then results 

that the point O is reasonably fixed. We shall leave aside that motion, which is most strongly 

perturbed by the friction that was neglected. 

 

 II. The rotation of the top around its axis Gy  is composed of two parts: Its relative rotation  

and the rotation of the mounting, whose component along Gy  is + r sin . 

 On the other hand, the moments of inertia A and C are equal, and the moment of the force P 

with respect to Gy  is zero, moreover. Euler’s equation for the axis Gy  is then: 

 

( sin )
d

B r
dt

 +  = 0 . 

 

 That equation is integrated and gives: 

 

(1)   + r sin  = 0 . 

 

 III. The moment of the force P with respect to the vertical is constantly zero, so the moment of 

the quantities of motion is constant. Now, the rotations are n, r, and , and their components along 

the principal axes of inertia at the point G are: 

 

n, p =  + r sin  , q = r cos  . 

 

 Upon replacing  + r sin  with its value 0 , the principal moments of inertia will then be: 

 

A n, B 0 , C r cos  . 

 

 Upon replacing C with A, which it is equal to, the moment of inertia with respect to the vertical 

at the point G will be: 

B 0 sin  + A r cos2  . 

 

 Upon expressing the idea that this moment should be constant, that will give: 

 

B 0 (sin  − sin 0) + A r cos2   = 0 , 

from which one infers that: 
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(2)  r = − 0 0

2

(sin sin )

cos

B

A

  



−
. 

 

 IV. The increase in the vis viva since the initial state is equal to the work done by gravity, 

namely: 

P a (cos 0 – cos ) . 

 

 That vis viva is composed of that of the point G, which is (1): 

 

2 2 2sin
2

P
a n

g
 , 

and that of the three rotations: 

n, p = 0 , q = r cos  . 

 

The vis viva of the resultant rotation is: 

 
2 2 2 21

02
[ cos ]An B C r + +  . 

 

 The increase in the total vis viva since the initial state is then: 

 

2 2 2 2 2 21
sin cos

2

P
a n An C r

g
 

 
+ + 

 
 , 

 

and after replacing C with A, which is equal to it, the vis viva theorem will give: 

 

2 2 2 2 2 2sin cos
P

a n A n A r
g

 
 

+ + 
 

 = 2P a (cos 0 – cos ) . 

 

 If I replace r with its value (2) in that equation then I will get the formula: 

 

(3)    n = 

2 2 2

0 0
0 2

2 2

(sin sin )
2 (cos cos )

cos

sin

B
P a

A
P

A a
g

  
 





−
− −



+

 

for determining n. 

 Formulas (1), (2), (3) solve the problem. 

 

 

 
 (1) The horizontal projection of the center of gravity is fixed, so the velocity will reduce to its vertical component.  
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 4. Consequences of formula (3). – It can be shown that  can never differ from 0 by more 

than a very small quantity. That is because if one attributes a value to  that is noticeably different 

from 0 then the second term in the numerator will become dominant, due to the magnitude of the 

coefficient 2 2

0 /B A , which will be around 7000 times the coefficient 2Pa for a normal velocity 

of 50 revolutions per second. It would then result that n would have an imaginary value, which is 

inadmissible. One can then account for the motion as follows: At the beginning, n and r are zero, 

and gravity tends to increase . n = d / dt will then take positive values until  attains the value 

1 that annuls the radical.  will no longer increase then. It will decrease with n taking negative 

values until  takes the value 0 once more, and so on. The top will then oscillate between the 

initial azimuth 0 and a very close azimuth 1 = 0 + 1 . 

 

 

 5. Approximate integration of equations (2) and (3). – Those predictions lead one to look 

for approximate formulas by taking the unknown to be (1): 

 

 =  – 0 , 

from which one infers that: 

 = 0 +  , 

  cos 0 – cos  =  sin 0 + … , 

  sin    – sin 0  =  cos 0 + … 

 

 Upon substituting those values in formula (3), one can put them into the form: 

 

n = 
2 2

0
0 2

0

cos
( sin )

cos

 
   



+
 + −  , 

in which one sets: 

 = 0

2 2sin

B

P
A A a

g




 

+ 
 

 ,   = 
2 2

0

2P a A

B 
 . 

 

 That formula exhibits the fact that the value 1 of  that annuls the radical has the same order 

of smallness as  sin 0 , and from what we said,  is around 1 / 7000. If one limits oneself to the 

first terms in the development in increasing powers of  then that will give: 

 

1 =  sin 0 ,   n = 
d

dt


 = 1( )    −  . 

 

 
 (1) I borrowed this transformation from the course that Resal taught at l’École Polytechnique.  
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 That formula is easily integrated if one remarks that since  varies only slightly,  can be 

regarded as constant. Upon determining the constant of integration in such a fashion that  is zero 

at the origin, one will get: 

 = 1 1 cos
2 2

t
 

−  = 2

1 sin
2

t
 . 

 

 From this,  will oscillate with a pendulum motion between 0 and 0 + 1 . Its mean value is 

0 + 1 / 2 . 

 Let us see what the rotation r around Oz will become. With the same approximation, the 

formula (2) will give: 

r = − 0

0cos

B

A





 =   , 

in which one sets: 

 = − 0

0cos

B

A




. 

 

 Upon replacing r with d / dt, one will find that: 

 

 = dt   = 1 1 sin
2 2

t
t

 
 



 
− 

 
 . 

 

 That angular motion is composed of a uniform term and a periodic term. The velocity of 

uniform velocity is: 

1

2

 
 = − 0 0

2 2

0 0

sin

cos

B P a A

A B

 

 
 = − 0

0

tan
P a

B



 . 

 

 Under the normal conditions that I have spoken of, P a / B 0 will have a value around 0.1. 

When the balancing foot is placed almost vertically, the second factor tan 0 will also be small, in 

such a way that the angular velocity  1 / 2 will be minor. For example, if 0 is 1o then that rotation 

 1 / 2 will be 0.1o per second, which will not be appreciable. It will become noticeable for smaller 

values of 0 and larger values of 0. As for the periodic term in , it will have the same period as 

. The phase will change by only 1/4. 

 

 

 6. Conclusions. – In summary, the apparent motion is a rotation around the vertical. That 

rotation, which is unnoticeable when the foot is almost vertical, is accompanied by two vibrations, 

one of which is around the vertical, while the other is around DE. They are vibrations that maintain 

the apparent equilibrium by the composite centrifugal forces that come into play. 

 One can verify that experimentally by placing DE in a groove in the floor. That will make it 

impossible for the angle  to vary, and the system will rotate about DE. 

_________ 


