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Abstract. – On a manifold Vn+1 with a normal hyperbolic metric (+ + … + − ) that is endowed with a 
“timelike” congruence C0 of reference, we define a natural decomposition operation for a typical vector or 
tensor.  The operation is successively applied to the definition of a transverse covariant derivative (with 
respect to C0) that operates on “spacelike” tensor fields and has an invariant character under any internal 
coordinate transformations of C0.  This natural decomposition and transverse derivative are then 
systematically applied to the differential of a timelike congruence. 
 
 
 The purpose of this article is to illustrate in detail the properties and geometric 
significance of a differential operation – transverse derivation, ordinary or covariant – 
that was recently introduced in general relativity ([2], [3], [4], [5]), which subsumes all 
the geometric operations on which it is based and organically connects the disparate 
notions that pertain to all timelike congruences (KILLING [10], BORN [1], HERGLOTZ 
[9], EISENHART [6], LEVI-CIVITA [11], GÖDEL [8], SALZMANN [16], TAUB [16], 
SYNGE [17] [18], LICHNEROWICZ [13]). 
 In the sequel, we will refer to a Riemannian manifold Vn+1 with a normal hyperbolic 
metric and an arbitrary number of dimensions.  Such generality, which is adopted in view 
of its possible application to penta-dimensional relativity theory, does not impede the use 
of the expressive spatio-temporal terminology of general relativity, and which is 
systematically adopted. 
 

I. – NATURAL DECOMPOSITION OF VECTORS AND TENSORS. 
Σ-PROJECTION AND Θ-PROJECTION. 

 
 1. “Timelike” congruence.  Adapted coordinates.  Internal coordinate changes.  Let 
Vn+1 be an arbitrary Riemannian manifold with a normal hyperbolic metric, x, any of its 
points, Tx , the space of tangent vectors at x, and let xi (i = 1, 2…, n, 0) be a typical local 
coordinate system.  In addition, let: 
 
(1.1)     ds2 = gik dxi dxk 
 
be the fundamental quadratic form, which is assumed to have the signature + + … + −. 
 Conforming to the conventional terminology in general relativity, we say that any 
vector V in Tx that has negative norm (gik V

i Vk < 0) is “timelike,”  whereas any vector V 
that has positive norm (gik V

i Vk > 0) is “spacelike.”  This manner of speaking – timelike 
or spacelike – also applies to the directions of the corresponding vectors, whereas vectors 
of null norm (gik Vi Vk = 0) and their respective directions will be given the name of 
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vectors and directions of null length, that is, to also borrow from general relativity, 
lightlike vectors and directions. 
 At any point x, we refer to the set of all vectors dP ≡ (dxi) in Tx that have null length: 
 
(1.2)     gik dxi dxk = 0 
 
as the light cone, or elementary cone, at x.  Similarly, a curve in Vn+1 will be called 
timelike if it has a timelike tangent direction at each of its points.  A curve, or an arbitrary 
submanifold of Vn+1, will be called spacelike if any vector that is tangent to it is spacelike.  
Finally, we will call lightlike any line or submanifold of Vn+1 in which some tangent 
vector has null length and is therefore tangent to the corresponding elementary cone at 
each of its points. 
 We immediately recognize that the necessary and sufficient condition for a 
hypersurface Wn of Vn+1 to be spacelike is that its normal must be timelike. 
 A local system of coordinates xi will be called adapted to the normal hyperbolic 
character of the metric on Vn+1 if the coordinate curve x0 = var. is timelike and the 
coordinate manifold x0 = const. is spacelike.  In such a coordinate system the variable x0 
(which we prefer to consider to be the last one, instead of the first one) will be called the 
timelike coordinate, whereas the others, which will be collectively denoted by xα, will be 
called spacelike coordinates (we agree once and for all that Greek indices always vary 
from 1 to n, and reserve for the Latin indices the possibility that they may also assume the 
value 0).  A system of coordinates that are adapted to the character of the metric will thus 
be called, in the usual terminology of general relativity, a physically admissible 
coordinate system.  The adoption of such a coordinate system, which we always intend 
from now on, notably implies the condition g00 < 0 and the positive definite character of 
the ternary quadratic form gαβ dxα dxβ, with all of the algebraic conditions that this 
implies: 
(1.3)    g00 < 0,  gαβ dxα dxβ > 0 
 
(the dxα are not simultaneously null). 
 If we arbitrarily choose a coordinate system xi that is adapted to the normal 
hyperbolic character of the metric then the congruence C0 of the timelike curves x0 = var. 
will be called the principal reference congruence for that system of coordinates.  In 
general relativity, the curves of the principal congruence are interpreted as the world lines 
of as many ideal reference particles, and which constitute a physical reference frame that 
is associated with the chosen coordinate system (cf., MØLLER [14], pp. 233). 
 Conversely, if one chooses any congruence C0 of timelike curves that one pleases 
then it is always possible, and in an infinitude of ways, to associate an adapted coordinate 
system with it that has C0 as its principal congruence. 
 A coordinate change that leaves the timelike coordinate lines invariant, that is, the 
principal reference congruence, will be called an internal coordinate change of that 
congruence.  (In general relativity, such a change is called, in a more expressive way, 
internal to the physical frame of reference.)  More general internal changes of the form: 
 
(1.4)  xα′ = xα′ (x1, x2, …, xn),  x0′ = x0′ (x1, x2, …, xn, x0), 
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(∂x0′/∂ x0 > 0) must obviously decompose into the product of a transformation of only the 
spatial coordinates: 
 
(1.5)   xα′ = xα′ (x1, x2, …, xn),  x0′ = x0, 
 
 
with a transformation that changes only the temporal coordinate: 
 
(1.6)   xα′ = xα,  x0′ = x0′ (x1, x2, …, xn, x0). 
 
 In order to facilitate the study of an arbitrary timelike congruence C0, or the study of 
the manifold Vn+1 in relation to that congruence, it is simplest to use coordinates that 
admit C0 as their principal congruence. 
 If we fix a local coordinate system xi in Vn+1, or, for that matter, only its principal 
reference congruence C0, then there is a uniquely defined field γ(x) of unitary vectors on 
Vn+1 that are tangent to all of the x0 curves and oriented to the future (that is, in the sense 
of increasing x0), a field that, in turn, completely characterizes C0 .  In adapted 
coordinates, the components of γ, whether contravariant or covariant, have the values: 
 

(1.7)   
0

00

0 00

0, 1/

/ .i i

g

g g

αγ γ
γ

 = = −


= −

 

 
respectively.  To the unitary vector γ, which will play an essential part in what follows, 
we will give the name of timelike reference vector at the point x. 
 In Tx, the space of vectors tangent to Vn+1 at the point x, we let Θx denote the one-
dimensional subspace of vectors that are collinear with γ and let Σx denote the three-
dimensional † subspace that is supplementary to the latter one and orthogonal to γ.  By 
analogy with the case of general relativity, in which Tx has the structure of MINKOWSKI 
space, to the two subspaces Θx and Σx, which are mutually orthogonal and supplementary, 
we give the names of associated timelike axis and spatial platform, respectively.  Often, 
the suffix x will be understood for both of them. 
 In conformity with the current definition, in order to avoid confusion with the more 
general terminology that was introduced in the preceding discussion, we call the vectors 
of Θx  purely timelike and the vectors of Σx purely spacelike. 
 In adapted coordinates, the purely timelike vectors are characterized by having their 
first n contravariant components null (cf., for example, (1.7)); by contrast, the purely 
spatial vectors are characterized by having their (n+1)th covariant component null.  In an 
analogous way, for a tensor of order ≥ 2 an index will be called purely timelike if not one 
(nulle tutte) of the contravariant components of the tensor that have that index are 
different from 0.  By contrast, an index will be called purely spatial if not one of the 
covariant components of the tensor that have that index are equal to 0.  Such terminology 
relative to tensors of order higher than one will be justified in what follows. 

                                                
† {DHD:  apparently, he is assuming that n = 3.] 
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 It is somewhat superfluous to add that all of the preceding definitions and 
terminology are relative to the chosen reference frame, or better, its principal congruence 
C0. 
 
 2.  Natural decomposition of a generic vector.  Θ-projection and Σ-projection.  As we 
pointed out, an arbitrary vector in a vector space E is uniquely decomposable into the 
sum of vectors that belong to assigned complementary subspaces of E.  In particular, any 
vector V in Tx, the space of vectors tangent to Vn+1 at the point x, has a uniquely 
determined decomposition: 
 
(2.1)    V = A + N, 
 
in which A belongs to Θx and N to Σx .  More precisely, one has, as one immediately 
verifies: 
(2.2)   A = − (V ⋅ γ) γ , N = V + (V ⋅ γ) γ, 
 
or, in terms of natural components (that is, subordinate to the basis induced in Tx by the 
coordinate system xi; cf., the following section no. 3): 
 
(2.3)   Ai = − γi γk V

k,  Ni = (gik + γi γk ) V
k = γik V

k, 
 
in which we have set: 
(2.4)    γik = gik + γi γk . 
 
In the sequel, this decomposition of V into the sum of a purely timelike vector (parallel to 
γ) and a purely spacelike vector (orthogonal to γ) will be called the natural decomposition 
of V. 
 The two component vectors A and N will be called the temporal projection and the 
spatial projection of V, respectively.  Moreover, extending to a generic manifold Vn+1 a 
terminology that is already in use in general relativity by some (cf., LICHNEROWICZ 
[13], pp. 7), we will define the spacetime norms of the vectors A and N by: 
 

(2.5)   
|| || ( 0)

|| || ( 0).

i k i k
ik i k

i k i k
ik ik

g A A V V

g N N V V

γ γ
γ

Θ

Σ

 = = − <
 = = >

V

V
 

 
the temporal norm and spatial norm of the vector V, with respect to the timelike 
reference vector γ, respectively.  In (2.5), as in (2.3), there systematically appear two 
symmetric double tensors −γi γk and γik (defined in (2.4), that the vector V provides, the 
temporal content and the spatial content, respectively.  Each of the terms in (2.3) plays a 
different role from those in (2.5): in the latter, they play a metric role, whereas in (2.3), 
when they operate by simple composition, they have the effect of projecting the vector V 
onto Θx and Σx .  In relation to this dual role, we call −γi γk the temporal metric tensor, or 
temporal projector at the point x, while reserving for γik the name of spatial metric 
tensor, or spatial projector.  The effect of the two tensors −γi γk and γik in the case of 
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simple vectors extends to the case of tensors of any order, which ultimately justifies the 
terminology.  We then briefly examine their structure and their principal properties. 
 
 3.  Natural basis in Tx and naturally induced basis in Θx and Σx .  We now apply the 
operations of spatial and temporal projection to the definition of natural bases in Σx and 
Θx . 
 As one notes, the coordinate system xi induces a natural basis in the tangent vector 
space Tx , and its vectors (n spacelike and one timelike, which is tangent to the single 
curve coordinate) are denoted by ∂iP.  The contravariant and covariant components of ∂iP 
are: 
(3.1)   (∂iP)h = δi 

h, (∂iP)h = ghk δi 
k = ghi , 

 
respectively, where δi

h extends the usual KRONECKER symbol.  The preceding notation 
justifies the observation that if, as is the custom, one denotes the generic vector of the 
tangent space Tx by dP ≡ (dxi) it then results that dP ≡ ∂iP dxi, in which ∂i and d denote 
partial differentiation and total differentiation, respectively. 
 In conformity with the preceding definition of a natural basis in Tx, we call the 
contravariant or covariant components of a vector or tensor relative to the natural basis 
the natural components of one type or the other. 
 Having said that, it is reasonable that we call the set of n orthogonal projections on Σx 

– which we denote by Pα∂ɶ  − the natural basis for the spatial platform Σx , which are also 

the first n vectors ∂α P of the natural basis for Tx .  Due to (3.1), and what was said in no. 
2, we immediately recover the n + 1 components of i P∂ in the natural basis for Tx: 

 

(3.2)   
( )

( ) .

k
i ik i

i ik i i
h

P

P g
α α α

α α α α

γ δ γ
γ δ γ γ

 ∂ = =


∂ = = +

ɶ

ɶ
 

 
 In vector form the n vectors of the natural basis in Σx can be expressed by means of 
the n + 1 vectors of the natural basis in Tx in the following way: 
 

(3.3)    Pα∂ɶ = ∂α P + γa γ0 ∂0 P . 

 
To anticipate slightly, we say that the expression that appears in the right hand side 
formally coincides with that of a differential operator that shall be introduced later on (no. 
6). 
 As for the one-dimensional temporal subspace Θx , we call the vector ∂0 P its natural 
basis; that is, the unique timelike vector in the natural basis for Tx .  This vector, in turn, is 
connected with the unitary vector γ that was previously introduced (principal reference 
vector) by the simple relation: 
(3.4)     γ = γ0 ∂0 P. 
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 Having said this, let V be a generic purely spatial vector, Vi and Vi, its natural 
components in Tx , and Vαɶ , Vαɶ  its natural components in Σx ; its purely spatial character 

implies: 
(3.5)    V ⋅ γ ≡ Vi γi ≡ Vi γi = 0 . 
 
From a significant simplification of the covariant components and from (3.3), it follows 
that: 

(3.6)   Vαɶ = V ⋅ Pα∂ɶ = V ⋅ ∂α P + γa γ0 V ⋅ ∂0 P = Vα . 

 

 Analogous to the pair of identities V = V Pα
α∂ɶ ɶ , V = Vi∂iP and from (3.3), while 

taking into account (3.6), we deduce that: 
 
(3.7)     Vαɶ = Vα . 
 
(3.6) and (3.7) may be summarized in the following observation, which is of practical 
use: the covariant or contravariant components of a purely spatial vector relative to the 
natural basis for Σx can be identified with the first n covariant or contravariant 
components, respectively, relative to the natural basis for Tx . 
 One immediately checks that the covariant natural components of the metric tensor in 

Σx , which are given by the n2 scalar products P Pα β∂ ⋅∂ɶ ɶ , can be identified with the γαβ . 

 As for the metric tensor in Θx , which does not seem to present any great interest, it 
has the unique covariant component given by the scalar product ∂0 P ⋅ ∂0 P, and it is 
therefore identified with the component g00 of the fundamental tensor on Vn+1 .  Its only 
contravariant component has the value 1/g00 . 
 
 4.  Natural decomposition of an arbitrary tensor.  Σ-projection and Θ-projection.  
Purely spatial or temporal character of an index. 
 
 The symbolic decomposition of Tx: 
 
(4.1)    Tx = Σx + Θx  
 
induces a decomposition of Tx ⊗ Tx into a sum of four mutually orthogonal and 
completely supplementary subspaces: 
 
(4.2)  Tx ⊗ Tx = Σx ⊗ Σx + Σx ⊗ Θx + Θx ⊗ Σx + Θx ⊗ Θx . 
 
It follows that a general double tensor tij is uniquely decomposable into a sum of four 
tensors that are pairwise orthogonal and belong to the four subspaces that were just 
defined, respectively.  Such a decomposition will be called the natural decomposition of 
the tensor tij and the individual component tensors will be called the natural projections 
of the tensor tij onto its respective subspaces.  Such a projection will be symbolically 
indicated as follows: PΣΣ(tij), PΣΘ(tij), PΘΣ(tij), PΘΘ(tij), in which P generically denotes a 

projection operator. 
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 The formal procedure for obtaining the various natural projections from a given 
tensor is much simpler: One operates on each index by means of the convenient 
projector, γij or –γi γk , according to whether that index transforms as a spatial index or a 
temporal index: 

(4.3)   
( ) , ( ) ,

( ) , ( ) .

rs rs
ij ir js ij ir j s

rs rs
ij i r js ij i j r s

t t t t

t t t t

γ γ γ γ γ
γ γ γ γ γ γ γ

ΣΣ ΣΘ

ΘΣ ΘΘ

= = −
= − =

P P

P P
 

 
An interesting, if somewhat banal, example is the calculation of the various natural 
projections of the fundamental tensor gij: 
 

(4.4)   
( ) , ( ) 0,

( ) 0, ( ) .
ij ij ij

ij ij i j

g g

g g

γ
γ γ

ΣΣ ΣΘ

ΘΣ ΘΘ

= =
= = −

P P

P P
 

 
This confirms that the spatial and temporal projections of gij coincide with the metric 
tensors on Σ and Θ, respectively, and that the result of inducing a metric on a subspace 
that is defined by the basis induced by the projection of the first n vectors of the basis for 

Tx and successively calculating the various scalar products P Pα β∂ ⋅∂ɶ ɶ  coincides with the 

result of the direct projection of gij . 
 An index, regardless of its contravariance or covariance, of a generic tensor will be 
said to have a purely spatial character if that tensor does not change when one operates 
on each index with the spatial projector γik .  By contrast, an index will be said to have a 
purely temporal character if the tensor is not modified when one operates on each index 
with the temporal projector –γi γk .  In accord with what was already said in no. 1, all of 
the components of a tensor in which a purely spatial index in a covariant position 
assumes the value 0 are null.  Likewise, all of the components of a tensor that correspond 
to a purely temporal index in a contravariant position must assume an arbitrary non-zero 
value. 
 A double tensor will be called totally spatial if it belongs to Σ ⊗ Σ; that is, if both of 
its indices are purely spatial.  On the other hand, it will be called totally temporal if it 
belongs to Θ ⊗ Θ; i.e., if both of its indices are purely temporal. 
 The preceding may be extended in a rigorous way to tensors of arbitrary order.  For 
them, one speaks of a projection of type PΣΘ…Σ(tij…r) with as many indices equal to Σ or 

Θ as are indices of that tensor. 
 
 5.  Some algebraic properties of the projection operation. 
 
 a)  When the Σ-projector operates on a purely temporal index the result is the null 
tensor. 
 
 b)  When the Θ-projector operates on a purely spatial index the result is the null 
tensor. 
 
 c)  When a complete projection operation, that is, one that operates on all of the 
indices, operates on the product of two or more tensors (in the sense of contraction), it is 
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divided between the factors, according to the corresponding relationship between their 
indices: PΣΘΣ(AiBjr) = PΣ(Ai ) PΘΣ(Bjr) . 

 
 d)  When the natural decomposition is applied to a generic tensor Aij one may write it 
as: 

(5.1)    Aij = ij i j i j i jA A A Aγ γ γ γ′+ + +ɶ ɶ ɶ  

in which we have set: 

(5.3)    
, ,

, .

rs rs
ij ir js i ir s

rs rs
ij r js r s

A A A A

A A A A

γ γ γ γ
γ γ γ γ

= = −
′ = − =

ɶ ɶ

ɶ
 

 

A generic double tensor Aij therefore produces, in particular, a totally spatial tensor ijAɶ , 

two purely spatial vectorsiAɶ  and iA′ɶ , and a scalar A, which corresponds to exactly 16 

independent numerical quantities, in all. 

 If the tensor Aij is symmetric, so is the tensorijAɶ , whereas, the two vectorsiAɶ  and iA′ɶ  

coincide.  For a symmetric tensor, Sij = Sji, one may write: 
 

(5.4)    Sij = ij i j i j i jS S S Sγ γ γ γ+ + +ɶ ɶ ɶ    ( ijSɶ = jiSɶ ) . 

 
 In the event that the tensor being decomposed is anti-symmetric, Ωij = − Ωji, the 
resulting tensor ijΩɶ is antisymmetric, the two resulting spatial vectors are opposite to each 

other, and the scalar is null.  The natural decomposition of an antisymmetric tensor Ωij = 
− Ωji may then be written: 
(5.5)     Ωij = ij i j i jγ γΩ + Ω − Ωɶ ɶ ɶ    ( ijΩɶ = jiΩɶ ) . 

 
 e)  The saturation of a purely spatial index with a purely temporal index (which is 
expected to imply two indices in opposite positions of variance) has zero for its result, 
regardless of the number and character of the other indices that are involved in the 
saturation. 
 
 

II. – TRANSVERSE DERIVATION. 
 
 6.  Ordinary transverse derivation.  Assign to the domain D in the manifold Vn+1 a 
generic scalar field f(xi) and consider its gradient grad f, whose covariant components are 
∂i f.  Furthermore, let dP = (dxi) be a generic vector field, subject to only the condition 
that it be, moreover, perpendicular to the vector γ, which then implies that γi dxi = 0, so: 
 

(6.1)    dx0 = − 
0

1

γ
γα dxα = γ0γα dxα. 
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Having said that, the total differential of f relative to the vector dP is expressed as: df = ∂if 
dxi.  Therefore, taking condition (6.1) into account, one can express it in either of the 
following ways: 

(6.2)   df = (∂α f −
0

αγ
γ

∂0 f) dxα ≡ (∂α f + γ0γα ∂0 f) dxα , 

 
in which the summation is only from 1 to n.  We introduce, in a natural way, the 

differential operator, which we denote simply byi∂ɶ , by means of the following definition: 

 

(6.3)    i∂ɶ = ∂i −
0

iγ
γ

∂0 ≡ ∂i + γi γ0 ∂0 , 

 
an operator that will play an important role in what follows.  By means of such operators, 
which are significant only when i ≠ 0, the total differential of f relative to a vector dP that 
is normal to γ, may thus be expressed by the formula: 
 

(6.3′)    df = i
i f dx∂ɶ ≡ f dxα

α∂ ⋅ɶ  

 
which uses the fact that there is only one non-zero contravariant spatial component of dP.  

(6.3′) shows that the n + 1 quantities i f∂ɶ , of which the last one (i = 0) is always null, are 

the covariant components of a vector that, for any f(xi), always remains perpendicular to γ 

( 0 f∂ɶ = 0).  For this reason, we call it the transverse gradient (in the direction of γ) of the 

scalar field f; in symbols,grad fɶ = ( )i f∂ɶ . 
 It is important to point out that the transverse gradient that was just defined is just the 
projection of the ordinary gradient onto the spatial platform Σ.  One has, in fact: i f∂ɶ = 

(δi
h + γi γh) and therefore: 

 

(6.4)    i f∂ɶ = PΣ(∂i f). 
 

 All of this justifies the name of transverse partial derivation for the operationi∂ɶ that 
was defined by (6.3).  The term is ultimately justified by the following interpretation:  If 
one presents the formal definition (6.3) at the same time as (3.2) then one immediately 
recognizes that α∂ɶ is just the operation of total differentiation with respect to the l th vector 

of the natural basis induced in Σx. 

 It is almost obvious that the operationi∂ɶ satisfies most of the formal properties that are 
true for ordinary partial differentiation; in particular, the rules for the differentiation of a 
sum, product, quotient, etc. 
 The operation of transverse partial derivation can be successively applied, in turn, to 
arbitrary values of the index, as well as that of taking transverse derivatives of second and 
higher orders.  Nevertheless, as one immediately recognizes, the order of the successive 
derivatives is generally not permutable.  We content ourselves with this negative result 
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for now, and reserve until later the examination of the special case in which the product 

β α∂ ∂ɶ ɶ is commutative and the conditions that such commutativity implies for the principal 

congruence C0 . 

 For now, we simply recognize that the operatorα∂ɶ is not even commutable with the 

operator ∂0 , in general. 
 

 7.  Longitudinal derivation 0∂ɶ .  Once more, consider the vector field grad f and 

project it orthogonally onto Θx at each point of the domain D.  The algebraic components 
of the projected vector relative to the vector basis in Θx(∂0P) will be called the 
longitudinal derivative (in the direction of γ) of the scalar field f and will be denoted by 

0 f∂ɶ : 

(7.1)     0 f∂ɶ = γ0 ∂0 f . 

 
This differs from the simple partial derivative with respect to x0 by the factor γ0.  

Naturally, one also has that the operator0∂ɶ is not generally commutable with eitherα∂ɶ or 

∂0 . 

 It is not pointless to add that the operator0∂ɶ , like the operatorα∂ɶ , is invariant under 

any internal coordinate change of the congruence C0. 
 
 8.   Transverse covariant derivation of a purely spatial vector field.  The operation of 
transverse derivation that was introduced in the preceding section can be extended in an 
equally natural way from the case of a scalar field to that of a purely spatial vector field. 
 Let s(x) be a generic purely spatial vector field that satisfies the conditions (which are 
equivalent): 
(8.1)   s0 = − γα sα / γ0 ≡ γ0 γα sα ;  sα = 0 . 
 
Consider the covariant derivatives ∇h s

k of s(x) in Vn+1 and effect the total projection onto 
Σx at any point of Vn+1 .  The purely spatial double tensor – PΣΣ(∇i sj) − that is so obtained 

at each point of Vn+1 will be called the transverse covariant derivative of the purely 
spatial field s(x).  Applying the projection procedure that defined in the preceding section 
(no. 4) and carrying out the calculations, which we will omit, one obtains: 
 

(8.2)   PΣΣ(∇i sj) = 
1

( )
2

h
i j i jh j hi h ijs sγ γ γ∂ − ∂ + ∂ − ∂ɶ ɶ ɶ ɶ , 

 

which systematically involves the spatial metric tensor γij and the transverse derivativei∂ɶ . 

 The expression that appears in the right-hand side of (8.2) suggests that we introduce 
a new type of CHRISTOFFEL symbol, of the first or second type, which is formally 
constructed like the ordinary symbol, but with the essential substitution of the spatial 
metric tensor γij for the spacetime metric tensor gij and the partial transverse derivation 

i∂ɶ for the ordinary derivation ∂i : 
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(8.3)   

�

�
� �

1
| , | ( )

2

| , | | , | .

i jh j hi h ij

hr hr

ij h

h
g ij r ij r

i j

γ γ γ

γ

= ∂ + ∂ − ∂

   = = 
  

ɶ ɶ ɶ

 

 
 With this definition, (8.2) takes the form: 
 

(8.4)   PΣΣ(∇i sj) = 
�

i j h

h
s s

i j

  ∂ −  
  

ɶ ≡ *
i js∇ɶ , 

 
and may be interpreted as a new type of covariant derivative, which we denote by the 
symbol *

i js∇ɶ , and we are justified in calling it the transverse covariant derivative of the 

spatial vector field sj , which we previously denoted by PΣΣ(∇i sj) .  With the adopted 

notation, which is perhaps excessive, the sign * has the purpose of reminding one to use 

γij and the ~ sign, that of using the derivationi∂ɶ . 

 In the CHRISTOFFEL symbols (8.3), as well as in the components of the transverse 
covariant derivative (8.4), one immediately recognizes that they reduce to zero identically 
whenever one of their lower indices assumes the value 0, which conforms to the totally 
spatial character of the transverse covariant derivative. 
 We conclude by saying that, just as the operation of transverse ordinary derivation on 
a scalar field produces a purely spatial vector field (the transverse gradient of f), likewise 
the operation of transverse covariant derivation on a purely spatial vector field produces a 
totally spatial double tensor field.  Formally, the transverse covariant derivative of a field 
of purely spatial vectors may be calculated like an ordinary covariant derivative using the 
CHRISTOFFEL symbols of the first and second type that are formed by starting with the 

spatial metric tensor γij with the systematic use of thei∂ɶ , in place of the ∂i . 

 
 9.  Transverse covariant derivation of a totally spatial tensor of arbitrary order.  The 
operation of transverse covariant derivation is easily extended to the case of a tensor of 
arbitrary order, on the condition that it is purely spatial.  For example, let sij be a totally 
spatial double tensor field (si0 = 0, s0i = 0).  Proceeding in a manner that is perfectly 
analogous to the one that was described in the preceding section, consider the covariant 
derivative ∇i sjm of that field and totally project it onto the space Σx at each point.  By 
calculations that are very simple, though somewhat lengthy, and which we omit, we 
recognize that the desired projection may put into the following form: 
 

(9.1)   PΣΣΣ(∇i sjm) =
� �

i jm hm jh

h h
s s s

i j i m

      ∂ − −   
      

ɶ ≡ *
i jms∇ɶ . 

 
Once again, we recognize a type of covariant derivative in the right-hand side of (9.1), 
which we denote by*

i jms∇ɶ , which obeys the ordinary formal rules, but with the systematic 
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use of the derivationi∂ɶ  in place of the ∂i and the CHRISTOFFEL symbols (8.3) in place 

of the ordinary symbols. 
 We regard the treatment of the more general case, which would suffice to assure the 
complete generality of the operation of transverse covariant derivation, as superfluous.  It 
operates on a totally spatial tensor field and results in a new totally spatial tensor field 
with one more index.   
  
 10.  Immediate formal properties of the transverse covariant derivation.  We almost 
immediately recognize that the transverse covariant derivation enjoys all of the formal 
properties of the covariant derivation that are true for the ordinary derivation, such as the 
term-by-term derivation of a sum of totally spatial tensors, and likewise the ordinary rule 
for the derivation of a product of more than one totally spatial tensors remains valid.  One 
also naturally extends to the transverse covariant derivative the property of being 
commutable with the operation of saturation, provided that it operates on two indices that 
are both purely spatial. 
 A theorem that is completely analogous to the RICCI theorem subsists, so we give it 
the same name: 
 
 RICCI THEOREM. – The transverse covariant derivative of the spatial metric tensor 
γij is identically null. 
 
 The proof follows in a manner that is formally similar to the usual proof. 
 Since this theorem concerns the spatial metric tensor that is naturally induced in Σx , it 
points out a characteristic of the differential operation of transverse covariant derivative 
that underlines the character of the fundamental spatial tensor. 
 It is somewhat superfluous to add that the invertibility of two successive transverse 
covariant derivatives does not persist, in general. 
 
 11. – Formal projection of the CHRISTOFFEL symbols onto Σx .  The technique of 
spatial projection that was applied in the preceding section to tensorial entities may also 
be more formally applied to other geometrical entities that are non-tensorial, such as the 
Riemannian connection on Vn+1 , which is represented in local coordinates by the 
CHRISTOFFEL symbols of the first and second type.  It is truly noteworthy that the 
result of such a formal projection is, as one easily verifies, the following properties of the 
modified CHRISTOFFEL symbols, as defined by formula (8.3): 
 

(11.1)    

�

� �

(| , |) | , |

.

ij h ij h

h h

i j i j

ΣΣΣ

ΣΣΣ

=

       
  =           

P

P
 

 
 Beyond its noteworthy geometric content, (11.1) has an obvious utility in everyday 
practice when one is performing calculations. 
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 III. – “TIMELIKE” CONGRUENCES AND THEIR FIRST ORDER 
DIFFERENTIAL ELEMENTS. 
 
 As we said at the beginning of the present work (no. 1), the technique of spatial or 
temporal projection and the systematic use of the ordinary or covariant transverse 
derivative finds useful application in the study of congruences in Vn+1.  We fix our 
attention on timelike congruences, which have considerable importance in a manifold 
with a normal hyperbolic metric.  The adaptation of the considerations that follow to the 
case of a generic congruence does not present any difficulties. 
 Let C0 be an arbitrary “timelike” congruence in Vn+1 that assumes the same sense as 
the principal reference congruence and is adapted to a local coordinate system xi that is 
also adapted to the same congruence, such that the curves x0 = var. are identified with the 
curves of C0 .  We again make available, if needed, an internal coordinate change of the 
same congruence. 
 The congruence C0 uniquely determines the unitary vector field γ(x) that is tangent to 
all of its curves.  We therefore begin the local examination of C0 with the local 
examination of the tensors that one obtains from γ(x) by derivations of first order, that is, 
the following three tensors: the antisymmetric tensor Ωij = ∂i γj − ∂j γi  ≡ ∇i γj − ∇j γi , 
which we define as the vorticity tensor of the congruence, the asymmetric tensor ∇i γj , 
which is the covariant derivative of γ, and the symmetric tensor Kij = ∇i γj + ∇j γi , which 
is called the Killing tensor of C0 . 
 We now perform the natural decomposition and consider each of its four projections 
PΣΣ , PΣΘ , PΘΣ , PΘΘ .  We then examine the geometrical significance of each. 

 
 12. – The four natural projections of the vorticity tensor. – Define the vorticity tensor 
of a spacetime congruence C0, which then defines a unitary vector field γ(x), to be the 
antisymmetric double tensor: 
 
(12.1)    Ωij = ∂i γj − ∂j γi  ≡ ∇i γj − ∇j γi . 
 
 It has a well-known fundamental importance in the relativistic dynamics of fluids (cf., 
LICHNEROWICZ [13], SYNGE [17], [18]), and, more generally, in the geometry of 
congruences.  We now examine the four natural projections, and will see their 
noteworthy geometrical significance later on. 
 ΣΣ projection. – One has: 
 
(12.2)  PΣΣ(Ωij) ≡ ijΩɶ  

= 0 0 0 0
0 0 0 0 0 0

0 0 0 0

j j j j
i j i i i i j i

γ γ γ γ
γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ
∂ − ∂ + ∂ + ∂ − ∂ + ∂ . 

 
 Taking into account that γ0 γ0 = − 1, the association of the second term with the fifth 
one and the third one with the sixth gives: 
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(12.3)  PΣΣ(Ωij) ≡ ijΩɶ = 0 0
0 0 0

0 0 0 0

j j j i
i i i j

γ γ γ γγ γ γ γ γ
γ γ γ γ

∂ − ∂ − ∂ + ∂ . 

 
Finally, associating the first term with the second one and the third one with the fourth 
one, one finds: 

(12.4)   PΣΣ(Ωij) ≡ ijΩɶ = 0
0 0

j i
i j

γ γγ
γ γ

 
∂ − ∂ 
 

ɶ ɶ . 

 
The spatial tensor thus obtained (one immediately checks the annihilation of the covariant 
components in which the index figures at least once) is an antisymmetric tensor, like Ωij , 

which is formally obtained when one substitutes
0

iγ
γ

for γi and the operationi∂ɶ for ∂i, and 

multiplies the result by γ0 .  This tensor is called the spatial vorticity tensor, or transverse 
rotation, of the congruence C0 (or the vector field γ(x)). 
 
 ΣΘ projection. − One has: 
 

PΣΘ(Ωij) = − γi 
r γj γs Ωrs = γ0 Ω0i γj , 

 
or furthermore, observing that: 
 

γ0 Ω0i = γr Ωri  = γr (∇r γi − ∇i γr ) = γr ∇r γi = ci , 
 
in which ci indicates the curvature vector of the curve x0: 
 
(12.5)    PΣΘ(Ωij) = ci γj . 

 
Put into this form, one recognizes that the spatial vector, together with the spatial 
tensor ijΩɶ  that was previously considered, specifies the vorticity tensor Ωij and can be 

identified with the curvature vector of the curve x0, and is obviously normal to that curve. 
 
 ΘΣ projection. −  In an analogous manner, one recognizes that, in harmony with what 
was said in no. 5 for a generic antisymmetric tensor, one has: 
 
(12.6)    PΘΣ(Ωij) = − γi  cj . 

 
 ΘΘ projection. − For an arbitrary antisymmetric tensor, such a projection is 
identically null: 
(12.7)    PΘΘ(Ωij) = 0 . 

 
 Summarizing the preceding natural decomposition of the spacetime vorticity tensor 
Ωij, we have: 
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(12.8)    Ωij = ijΩɶ  + ci γj − γi  cj , 

 
in which ijΩɶ  and ci indicate the spatial vorticity tensor and the curvature vector of the 

congruence C0, respectively. 
 
 13. – The four natural projections of the tensor ∇iγj . – We commence with the 
observation that the second index of the tensor ∇iγj is a purely spatial index.  In fact, 
taking into account that – g00 = γ0

2, one has (for any value of the index i): 
 
(13.1)   ∇iγ0  = ∂i γ0 – (i0, l)γl = ∂i γ0 – (i0, 0)γ0 
     = ∂i γ0 – ∂i γ0 = 0 . 
 
(Moreover, it is quicker if one observes that when γ has a constant norm the resulting 
vector ∇iγj dxi is orthogonal to γ for any dxi; it follows that the index j in question is 
purely spatial).  From this observation, it follows that in order to obtain the ΣΣ or ΘΣ 
projections of the tensor ∇iγj , it suffices to operate on its first index (with the projectors 
γir or – γi γr, respectively) to show that the resulting ΣΘ and ΘΘ projections are 
automatically null. 
 
 ΣΣ – projection.  Operating, as we explained, only on the first index, one then has: 
 
(13.2)   PΣΣ(∇iγj ) = γi

h∇hγj = ∇iγj + γi γ0∇0γj , 

     = ∂i γj – (ij , 0)γ0 + γi γ0∂0γj – γi γ0 (0j, 0) γ0 . 
 

Associating the first and third terms, which collectively define i jγ∂ɶ , and developing the 

CHRISTOFFEL symbols, while also taking into account that γ0
 γ0 = − 1, gi0 = − γi

 γ0
 , g00 

= − γ0
2, one finds: 

 

PΣΣ(∇iγj ) = i jγ∂ɶ  +
1

2
(γ0 ∂i γj + γj ∂i γ0 + γ0 ∂j γi + ∂0 gij − γi ∂j γ0 ) γ0. 

 
Compare the terms in parentheses with the three terms ∂0(γi γj) − γi ∂0 γj − γj ∂0 γi , whose 
sum is obviously null.  The first of them combines with the fourth one in parentheses to 
give simply ∂0γij .  What then remains is: 

PΣΣ(∇iγj ) = i jγ∂ɶ  +
1

2
(γ0 ∂i γj + γj ∂i γ0 + γ0 ∂j γi  − γi ∂0 γj − γj ∂0 γi − γi ∂j γ0 + ∂0 γij ) γ0. 

Between the parentheses, the first and the fourth terms give 0 i jγ γ∂ɶ , the third and the fifth 

ones give 0 j iγ γ∂ɶ , and finally, the second one and the sixth one give0 0j i i jγ γ γ γ∂ − ∂ɶ  (in 

fact, γj (∂i γ0 + γi γ0∂0 γ0 ) − γi (∂j γ0  + γj γ0∂0 γ0 ) ≡ γj ∂i γ0 − γi ∂j γ0 ).  One needs only to 
remove the parentheses: 
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PΣΣ(∇iγj ) =
1

2 i jγ∂ɶ  − 
1

2
0

0 0 0
0 0

1 1 1

2 2 2j i j i i j ijγ γ γ γ γ γ γ
γ γ

∂ − ∂ + ∂ + ∂ɶ ɶ ɶ . 

Thus, combining the first term with the third one and the second one with the fourth one, 
one finally arrives at: 

(13.3)  PΣΣ(∇iγj ) =
0

0 0
0 0

1 1

2 2
ji

j i ij

γγγ γ γ
γ γ

 
∂ − ∂ + ∂ 
 

ɶ ɶ =
1

2 ijΩɶ +
1

2
γh ∂h γij , 

 
an expression in which one sees the antisymmetric tensor ijΩɶ  that we called the spatial 

vorticity tensor in the preceding section, and a symmetric spatial tensor 
1

2
γ0 ∂0 γij ≡ 

1

2
γh 

∂h γij , that we will examine a little later on (no. 14). 
 Simply as a check, observe that (13.3) allows one to immediately calculate the ΣΣ 
projection of the tensor Ωij = ∂i γj − ∂j γi = ∇i γj − ∇j γi , and one obtains: 
 

PΣΣ(Ωij) = 
1

( )
2 ij jiΩ − Ωɶ ɶ = ijΩɶ , 

in accord with (12.4). 
  
 ΣΘ-projection.  As we already said, this tensor is null, due to the purely spatial 
character of the second index: 
 
(13.4)    PΣΘ(∇iγj ) = 0 . 

 
 ΘΣ-projection.  Operating only on the first index, given the purely spatial character of 
the second one, one obtains: 
 
  PΘΣ(∇iγj ) = − γi γr

 ∇r γi
  = − γi γ0 [∂0 γj – (0j, h) γh ] 

     = − γi γ0 [∂0 γj – ∂i γ0 ] 

     = − γi γr Ωrj . 
 
By definition, this results in: 
 
(13.5) PΘΣ(∇iγj )  = − γi γr Ωrj 

      = − γi cj , 
 
which coincides with the ΘΣ-projection of the tensor Ωij. 
 
 ΘΘ-projection.  As we already said, this tensor will also be null, due to the purely 
spatial character of the second index in∇iγj . 
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 The natural decomposition of the tensor ∇iγj may then be summarized as: 
 

(13.6) ∇iγj = 
1

2 ijΩɶ +
1

2
γh ∂h γij − γi γr Ωrj . 

     =
1

2
( ijΩɶ + γh ∂h γij ) − γi cj . 

 
 14. – Natural projection of the Killing tensor:  Kij  ≡ ∇iγj + ∇jγi . – Another tensor of 
note that relates to a general congruence C0, and which is more important, is the 
symmetric double tensor Kij = ∇iγj + ∇jγi , to which it seems quite appropriate to give the 
name of Killing tensor (cf., [10], [6]).  As is well known, the identical annihilation of the 
tensor Kij is the necessary and sufficient condition for the congruence C0 to define a (one-
parameter) group of isometries in Vn+1 . 
 The natural projections of this tensor are obtained immediately like the analogous 
projections of the tensor ∇iγj (cf., the preceding section).  Here is what one obtains: 
 
 ΣΣ-projection.  If we apply the results of the preceding section to the two indices of 
Kij then the formal rules of projection onto Σ give: 
 
(14.1)  PΣΣ(∇iγj + ∇jγi ) ≡ ijKɶ = (∂i

h + γi γh) ∇hγj + (∂j
h + γj γh) ∇hγi = 

     = ∇iγj + ∇jγi + γi γh∇hγj + γj γh) ∇hγi , 
 
and in the last expression one recognizes the symmetric spatial tensor that was introduced 
in relativity by BORN at the end of 1909 (cf., BORN [1], SYNGE [17], SALZMANN 
and TAUB [6], and many other authors).  Conforming to our general convention we also 
denote that tensor byijKɶ and now call it the Born spatial tensor.  Its vanishing  identically, 

which is less restrictive than the vanishing of the entire Killing tensor, expresses that the 
motion of the individual fluid of the congruence C0 along the x0 curves is rigid, according 
to BORN ([1]), therefore the the spatial distance between two arbitrary infinitely close x0 
lines is constant (cf., SYNGE [17], pp. 36).  In the case where it is not identically null, it 
can be interpreted as the deformation tensor of the fluid C0, and we should say that such a 
tensor rests on tentative foundations (HERGLOTZ [9], SYNGE [18], BENVENUTI (1)) 
for a relativistic theory of elasticity. 
 One now comes to a more precise explanation for PΣΣ(Kij) if one immediately 

recognizes, on the basis of (13.3), and the antisymmetry of the spatial vorticity tensor Ωij 
the simple expression: 
(14.2)    PΣΣ(Kij) ≡ ijKɶ = γh ∂h γij . 

 
 In that expression, one observes how the identical vanishing of the BORN tensor is 
substantially equivalent to the independence of the spatial metric tensor γij from x0 (which 
is not the same thing as stationarity, which gives the independence of the spacetime 
metric gij from x0). 

                                                
 (1) P. BENVENUTO, laurea thesis (1956). 
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 As for the other natural projections, one has: 
 
 ΣΘ-projection: 
(14.3)    PΣΘ(Kij) = − ci γj . 

 
 ΘΣ-projection: 
(14.4)    PΘΣ(Kij) = −γi cj . 

 
 ΘΘ-projection: 
(14.5)    PΘΘ(Kij) = 0 . 

 
As in the preceding section, ci represents the curvature vector (which is orthogonal to γ) 
of the x0 curves. 
 The natural decomposition of the KILLING tensor may be specified definitively like 
this: 
(14.6)    Kij = ijKɶ − ci γj  − γi cj . 

 
 
 15. Some differential properties of the congruence C0.  The tensors that were 
considered in the preceding section, or some of their natural projections, contain 
noteworthy properties of the congruence C0 that concern the way that γ varies from one 
point to the other in Vn+1 .  We treat the properties in question, but it seems to us that the 
actual formulation gives them a more organic systematization and establishes a natural 
connection between them. 
 
 Normal congruence.  A necessary and sufficient condition for C0 to be a normal 
congruence is the identical annihilation of its spatial vorticity: 
 

(15.1)   PΣΣ(Ωij) ≡ ijΩɶ ≡ 0
0 0

j i
i j

γ γγ
γ γ

 
∂ − ∂ 
 

ɶ ɶ = 0 . 

 
 This theorem, in an essentially equivalent form, is due to WEYSSENHOFF (cf., [19] 
and [14], pp. 250).  To understand its validity, remember that traditionally (cf., LEVI-
CIVITA, [11], pp. 281) the normality of a congruence is expressed by means of the 
identical annihilation of the triple tensor: 
 
(15.2)    γi Ωjk + γj Ωki + γk Ωij = 0 , 
 
with the usual meanings for γi and Ωij .  It is now simple to recognize the complete 
equivalence of the conditions (15.1) and (15.2).  In fact, if one finally decomposes the 
tensor Ωij in (15.2) into its natural components (cf., (12.8)) then one obtains: 
 

γi ( jkΩɶ + cjγk − γj ck) + γj ( kiΩɶ + ckγi − γk ci) + γk ( ijΩɶ + ciγj − γi cj) = 0, 
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and thus (15.2) appears to be completely equivalent to the condition: 
 
(15.3)    i jk j ki k ijγ γ γΩ + Ω + Ωɶ ɶ ɶ = 0 . 

 
If one multiplies both sides of this by γi (γj or γk , resp.) and saturates the mutual index i (j 
or k, resp.) then it follows that jkΩɶ = 0, which establishes (15.1).  Conversely, from (15.1) 

it follows immediately that we have (15.3) and thus, the classical condition (15.2). 
 
 Geodetic congruence.  A necessary and sufficient condition for the congruence C0 to 
be a geodetic congruence, that is, for the curves that constitute it to be geodetic, is the 
nullity of the ΣΘ-projection (and thus the ΘΣ-projection, as well) of its vorticity tensor 
Ωij : 
(15.4)     PΣΘ(Ωij) = 0 . 

 
In fact, from (12.5), it follows that PΣΘ(Ωij) is annulled when and only when ci is 

annulled, which is the curvature vector of the x0 curve. 
 
 Normal geodetic congruence.  If we combine the preceding two observations then we 
deduce that the necessary and sufficient condition for the congruence C0 to be both 
normal and geodetic is that one identically annihilate its vorticity vector: 
 
(15.5)     Ωij = 0 . 
 
On the other hand, this condition is satisfied when the line field γ is a gradient field: γ = 
grad f.  We are obviously treating a very particular gradient field, one for which any two 
arbitrary equipotential surfaces are parallel surfaces (that is, that the geodetics that are 
normal to one of them are also normal to the other one, the connecting curve segments 
between the two surfaces all being geodetics of the same length). 
 
 Congruence defining rigid motion.  It follows from what was said in no. 14 that, 
following BORN, the necessary and sufficient condition for the continuous motion that is 
defined by the congruence C0 to be rigid is that the distance between two arbitrarily 
infinitely close x0 curves, as measured along a common normal, remains constant along 
those same curves and that the BORN tensor must be null: 
 
(15.6)    PΣΣ(Kij) ≡ ijKɶ ≡ γ0 ∂0 γij = 0 . 

 
 The identical annihilation of the ΣΘ-projection (or the ΘΣ-projection) of Kij 
characterizes the geodetic congruence, just like the identical annihilation of ijΩɶ . 

 
 Rigid geodetic congruence.  On the basis of the preceding remarks, these congruences 
are characterized by the identical annihilation of the entire KILLING tensor: 
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(15.7)    Kij ≡ ∇iγj + ∇jγi = 0 . 
 
On the other hand, as is well known, the condition (15.7) characterizes those congruences 
that define a group of isometries in Vn+1 (cf., EISENHART [6], LICHNEROWICZ [13]).  
We say that the identical annihilation of the KILLING tensor characterizes rigid geodetic 
motions. 
 
 Rigid uniform translatory motion.  If we combine the preceding considerations then 
we see that the identical annihilation of the tensor ∇iγj , which implies both the 
annihilation of Kij and Ωij , characterizes those motions that are, at the same time, 
irrotational, rigid, and geodetic: 
(15.8)     ∇iγj = 0 . 
 
One calls them uniform translatory motions. 
 The preceding seems, to me, to show that the criterion of the natural decomposition of 
the principal differential tensors that are associated with a timelike congruence suffice to 
provide a systematic classification of the possible fluid motions.  Although I have not 
arrived at any new results, this more organic systematization does not seem devoid of 
interest to me. 
 
 IV. – ORDINARY AND COVARIANT TRANSVERSE DERIVATION OF THE 
PARTICULAR TENSOR FIELDS THAT INVOLVE THE DIFFERENTIAL TENSORS 
THAT CHARACTERIZE THE CONGRUENCE OF REFERENCE. 
 
 Recall the explicit calculation that we began in the preceding section 8 of the 
transverse covariant derivative of the various purely spatial tensor fields, whose explicit 
expressions acquired (snellezza?) an expressiveness by means of the intervention of the 
differential tensors that characterize principal reference congruence.  In fact, such an 
explicit intervention allows one to distinguish the expressions that are due to the 
reference congruence from the ones that are due to the tensorial fields that are derived 
from it. 
 As one can show, the purely formal rules that relate to the transverse derivation are 
therefore subordinate to the choice of principal reference congruence.  We give an 
immediate example. 
 
 16.  Conditions for the invertibility of two successive (ordinary) transverse 
derivations.  We said at the end of no. 7 that two successive transverse derivations are not 
generally invertible.  We now establish under what conditions invertibility exists. 
 Given an arbitrary numerical function f(xi) (which may or may not be a scalar), 

consider – formally – the second transverse derivative fβ α∂ ∂ɶ ɶ that it defines: 

 

(16.1)  fβ α∂ ∂ɶ ɶ = 0 0
0 0

f fβ α
β α

γ γ
γ γ

  
∂ − ∂ ∂ − ∂  
  

 = 
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= 2
0 0 0 0 02

0 0 0 0 0 0

f f f f fβ β β αα α α
β α α β β

γ γ γ γγ γ γ
γ γ γ γ γ γ

 
∂ ∂ − ∂ ∂ − ∂ − ∂ ∂ − ∂ ∂ + ∂ 

 
. 

 
Analogously, we invert the order of the two derivations and obtain: 
 

(16.2)  fα β∂ ∂ɶ ɶ = 

= 2
0 0 0 0 02

0 0 0 0 0 0

f f f f fβ β β β αα α
α β β α α

γ γ γ γ γγ γ
γ γ γ γ γ γ

 
∂ ∂ − ∂ ∂ − ∂ − ∂ ∂ − ∂ ∂ + ∂ 

 
. 

 
From the difference of the two expressions, one obtains: 
 

(16.3)   ( ) fβ α α β∂ ∂ − ∂ ∂ɶ ɶ ɶ ɶ = 0 0
0 0

fβ α
α β

γ γ
γ γ

 
∂ ∂ − ∂ ∂ 
 

ɶ ɶ . 

 
From this, one concludes that the order of the two successive transverse derivations will 
not influence the result if either the reference motion is (spatially) irrotational or else if 
f(x) does not depend upon x0 (f is stationary along any reference curve x0 = var.). 
 

 17.  Condition for the invertibility of α∂ɶ and ∂0 .  If one successively apply the two 

operators α∂ɶ and ∂0 to a function f(xi) one has: 

 

(17.1)    0 fα∂ ∂ɶ = 2
0 0

0

f fα
α

γ
γ

∂ ∂ − ∂ . 

 
Applying the two operators in the reverse order, one has instead: 
 

(17.2)    0 fα∂ ∂ɶ = 2
0 0 0 0

0 0

f f fα α
α

γ γ
γ γ

 
∂ ∂ − ∂ ∂ − ∂ 

 
. 

One obtains the difference: 

(17.3)    0 fα∂ ∂ɶ − 0 fα∂ ∂ɶ = 0 0
0

fαγ
γ

 
∂ ∂ 
 

. 

 

We conclude that the differential operators ∂0 and α∂ɶ are commutable only if either f is 
stationary along C0 (that is, it does not depend upon x0), or else the “gravitational 

potential vector” 
0

αγ
γ

is stationary. 

 
 18.  Natural projections of ∇iτj (τj ∈ Θx).  Let τj = τγj be a generic purely temporal 
vector field.  We consider the covariant derivative ∇iτj of it and calculate the four natural 
projections. 
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 ΣΣ-projection: 
 
(18.1)   PΣΣ(∇iτj ) = γi

r γj
s ∂rτ ⋅ γs + τ PΣΣ(∇i γj )  = 

     = τ PΣΣ(∇i γj ) . 

 
From this, taking into account (13.3), it follows that: 
 

(18.2)   PΣΣ(∇iτj ) = 0

1
( )

2
h

ij ijτ γ γ∂ + Ωɶ = 

     =
1

( )
2 ij ijKτ + Ωɶ ɶ . 

 
We observe how the projection that we just calculated depends only on the vector field τi 
for the reference congruence.  If it is, for example, both rigid and irrotational then the 
projection (18.2) is annulled identically, no matter what the purely temporal vector field 
τj . 
  ΣΘ-projection: 
 
(18.2)   PΣΘ(∇iτj ) = − γi

r γj γs ∂rτ ⋅ γs + τ PΣΘ(∇i γj )  = 

     = i jτ γ∂ɶ i +τ PΣΘ(∇i γj ) . 

 
If we take (13.4) into account then we conclude: 
 

(18.4)    PΣΘ(∇iτj ) = i jτ γ∂ɶ i . 

 
  ΘΣ-projection: 
 
(18.5)   PΘΣ(∇iτj ) = γi γr γj

s ∂rτ ⋅ γs + τ PΘΣ(∇i γj )  = 

     = τ PΘΣ(∇i γj ) , 

and, recalling (13.5): 
(18.6)    PΘΣ(∇iτj ) = − τ γi cj . 

 
Such a projection is annulled identically for any purely temporal vector field τj when C0 
is a geodetic congruence. 
 
 ΘΘ-projection: 
(18.7)   PΘΘ(∇iτj ) = γi γr γj

 γs ∂rτ ⋅ γs + τ PΘΘ(∇i γj ) . 

 
This permits us to conclude: 
 
(18.8)   PΘΘ(∇iτj ) = − γ0∂0τ ⋅ γj γj = − γr∂rτ ⋅ γj γj . 
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PΘΘ(∇iτj ) is then annulled when the field τj is stationary, that is, when τj has constant 

modulus along any curve of C0 . 
 
 19.  Natural projection of ∇isjm (sjm ∈ Σx ⊗ Σx ).  We next give the natural 
decomposition of the triple tensor ∇isjm , where sjm is a generic purely spatial vector field 
(sj0 = 0, s0m = 0).  For brevity, we omit the lengthy calculations. 
 Here are the eight natural projections of ∇i sjm : 
 

(20.1)   PΣΣΣ(∇i sjm) = *
i jms∇ɶ = i jm hm jh

h h
s s s

i j i m

   
∂ − −   

   

ɶ . 

(20.2)   PΣΣΘ(∇i sjm) = 0
0

1 1

2 2
k k

ik j m ik j ms sγ γ γ γΩ + ∂ɶ . 

 

(20.3)   PΣΘΣ(∇i sjm) = 0
0

1 1

2 2
k k

ik j m ik m js sγ γ γ γΩ + ∂ɶ . 

 
(20.4)   PΘΣΣ(∇i sjm) = − γi γ0 ∂0 sjm + 3γi γj ch s

h
m + 3γi γm ck sj

k + 

      +
1

2
h

i jh mK sγ ɶ +
1

2
k h k

i mk j i hj m i km jK s s sγ + γ Ω + γ Ωɶ ɶ ɶ . 

 
(20.5)   PΘΘΣ(∇i sjm) = − γi γj γr Ωrh s

h
m = − γi γj  ch s

h
m . 

 
(20.6)   PΘΣΘ(∇i sjm) = − γi ch sj

h γm . 

 
(20.7)   PΣΘΘ(∇i sjm) = 0 . 

 
(20.8)   PΘΘΘ(∇i sjm) = 0 . 

 
 
 21. – Concluding considerations. – The preceding systematic calculations had the 
objective of carrying out, in an almost automatic way, the following operations: 
 
 a) Decomposing an arbitrary vector or tensor in a canonical (natural) way. 
 
 b) Calculating the natural projections of the covariant derivative of an arbitrary 
vector or double tensor field, and then applying the same decomposition to the starting 
vector or tensor.  In fact, this (preventiva?) operation permits one to always (ricondursi?) 
in the case in which the covariant derivative operates on a purely spatial or purely 
temporal vector, or a purely spatial double tensor. 
 The reader will have no difficulty in extending the preceding calculations to the case 
in which the operation of covariant derivation operates on tensors of order higher than the 
second. 
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 One may regard the foregoing as an illustration of a technique that, by virtue of its 
invariant character under more general internal coordinate changes and its formal 
simplicity, can be of service either to Riemannian geometry, or, more specifically, to 
general relativity. 
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