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Abstract. — On a manifold ., with a normal hyperbolic metri¢+ + ... + — ) that is endowed with a
“timelike” congruence G of reference, we define a natural decomposition operation for eatyypector or
tensor. The operation is successively applied to the definifient@nsverse covariant derivative (with
respect to @) that operates on “spacelike” tensor fields and has an invariant charastder any internal
coordinate transformations of (C This natural decomposition and transverse derivative are then
systematically applied to the differential of a timelike coagne.

The purpose of this article is to illustrate in deta#g throperties and geometric
significance of a differential operationtransverse derivatignordinary or covariant —
that was recently introduced in general relativity ([3], [4], [5]), which subsumes all
the geometric operations on which it is based and orgfnicahnects the disparate
notions that pertain to all timelike congruences (KIN{&3 [10], BORN [1], HERGLOTZ
[9], EISENHART [6], LEVI-CIVITA [11], GODEL [8], SALZMANN [16], TAUB [16],
SYNGE [17] [18], LICHNEROWICZ [13)).

In the sequel, we will refer to a Riemannian manifél¢h with a normal hyperbolic
metric and an arbitrary number of dimensions. Such gétyemwhich is adopted in view
of its possible application to penta-dimensional relgtitheory, does not impede the use
of the expressive spatio-temporal terminology of geneedtivity, and which is
systematically adopted.

|. — NATURAL DECOMPOSITION OF VECTORS AND TENSORS.
>2-PROJECTION ANDO-PROJECTION.

1. “Timelike” congruence. Adapted coordinates. Internal coordinate changies.
Vh+1 be an arbitrary Riemannian manifold with a normal hyplerbuoetric, x, any of its
points, Ty , the space of tangent vectorsxaand letX (i = 1, 2...,n, 0) be a typical local
coordinate system. In addition, let:

(1.1) d = gy dX dX’

be the fundamental quadratic form, which is assumed @ thavsignature + + ... +

Conforming to the conventional terminology in generdatnaty, we say that any
vectorV in Ty that has negative normgy(V VK < 0) is“timelike,” whereas any vectds
that has positive norng V' V¥ > 0) is“spacelike.” This manner of speaking — timelike
or spacelike — also applies to tiieectionsof the corresponding vectors, whereas vectors
of null norm @k V' V¢ = 0) and their respective directions will be given tleame of
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vectors and directionsf null length that is, to also borrow from general relativity,
lightlike vectors and directions. _
At any pointx, we refer to the set of all vectai® = (dX) in Ty that have null length:

(1.2) gk dX dX=0

as thelight cone or elementary coneat x. Similarly, a curve invy.1 will be called
timelike if it has a timelike tangent direction at lead its points. A curve, or an arbitrary
submanifold oi,.1, will be called spacelike #ny vector that is tangent to it is spacelike.
Finally, we will call lightlike any line or submanifold df..1 in which sometangent
vector has null length and is therefore tangent toctiveesponding elementary cone at
each of its points.

We immediately recognize that the necessary and cmirfti condition for a
hypersurfacéV, of Vi1 to be spacelike is that its normal must be timelike.

A local system of coordinates will be called adaptedto the normal hyperbolic
character of the metric o¥i,.1 if the coordinate curve® = var. is timelike and the
coordinate manifold® = const. is spacelike. In such a coordinate systenvahablexX’
(which we prefer to consider to be the last one, atst# the first one) will be called the
timelike coordinatewhereas the others, which will be collectively deddigx®, will be
called spacelike coordinateéve agree once and for all that Greek indices alwaysg
from 1 ton, and reserve for the Latin indices the possibility thay may also assume the
value 0). A system of coordinates that are adaptecetortaracter of the metric will thus
be called, in the usual terminology of general relatjvisy physically admissible
coordinate system. The adoption of such a coordinatersysthich we always intend
from now on, notably implies the conditigg, < O and the positive definite character of
the ternary quadratic forrggs dx’ ¢ with all of the algebraic conditions that this
implies:

(1.3) Joo < O, Jap dx dé>0

(thedx® are not simultaneously null). _

If we arbitrarily choose a coordinate systednthat is adapted to the normal
hyperbolic character of the metric then the congru€hiaef the timelike curves® = var.
will be called theprincipal reference congruenci®r that system of coordinates. In
general relativity, the curves of the principal congrueareeinterpreted as the world lines
of as many ideal reference particles, and which cemstéphysical reference framhat
is associated with the chosen coordinate systemMEILLER [14], pp. 233).

Conversely, if one chooses any congrue@geof timelike curves that one pleases
then it is always possible, and in an infinitude of wagsassociate an adapted coordinate
system with it that haG, as its principal congruence.

A coordinate change that leaves the timelike coordifiaes invariant, that is, the
principal reference congruence, will be called iaternal coordinate change of that
congruence. (In general relativity, such a changalied; in a more expressive way,
internal to the physical frame of reference.) Moneegal internal changes of the form:

(1.4) XT = x5, LX), X =x0 (¢ L xX0),
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(0x°18 ¥ > 0) must obviously decompose into the product of a tramsfion of only the
spatial coordinates:

(1.5) XT =X 8 XD, X0 =,

with a transformation that changes only the temparaidinate:
(1.6) X'=x, X =x0 (¢, L., X X0).

In order to facilitate the study of an arbitrary tifkelcongruenc&,, or the study of
the manifoldV,.1 in relation to that congruence, it is simplest to aserdinates that
admitCo as their principal congruence.

If we fix a local coordinate systemiin V.1, or, for that matter, only its principal
reference congruend®, then there is a uniquely defined figkk) of unitary vectors on
Vi+1 that are tangent to all of thé curves and oriented to the future (that is, in the sense
of increasingx’), a field that, in turn, completely characteriz€s . In adapted
coordinates, the componentsyofvhether contravariant or covariant, have the \alue

(1.7) {y":o’ V():l/\/_goo
Vi = giO/\/_goo-

respectively. To the unitary vectpr which will play an essential part in what follows,
we will give the name aimelike reference vectat the poini.

In Ty, the space of vectors tangentMg at the pointx, we let®, denote the one-
dimensional subspace of vectors that are collinetln wand letZ, denote the three-
dimensional’ subspace that is supplementary to the latter one ahdgonal toy, By
analogy with the case of general relativity, in whighnhas the structure of MINKOWSKI
space, to the two subspa&@sandz,, which are mutually orthogonal and supplementary,
we give the names of associatedelike axisandspatial platform respectively. Often,
the suffixx will be understood for both of them.

In conformity with the current definition, in order &void confusion with the more
general terminology that was introduced in the precedisgussion, we call the vectors
of O purely timelikeand the vectors di, purely spacelike.

In adapted coordinates, the purely timelike vectors aaeacterized by having their
first n contravariant components null (cf., for example, (1.By contrast, the purely
spatial vectors are characterized by having theifl" covariant component null. In an
analogous way, for a tensor of orde? an index will be called purely timelike if not one
(nulle tutte) of the contravariant components of tbesor that have that index are
different from 0. By contrast, an index will be ledl purely spatial if not one of the
covariant components of the tensor that have that iaderqual to 0. Such terminology
relative to tensors of order higher than one wiljustified in what follows.

"{DHD: apparently, he is assuming that 3]
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It is somewhat superfluous to add that all of the pregediefinitions and
terminology areelative to the chosen reference frame, or better, its pral@ongruence
Co.

2. Natural decomposition of a generic vect@-projection andx-projection. As we
pointed out, an arbitrary vector in a vector spgcis uniquely decomposable into the
sum of vectors that belong to assigned complementdaspsices dE. In particular, any
vector V in Ty, the space of vectors tangent g, at the pointx, has a uniquely
determined decomposition:

(2.1) V=A+N,

in which A belongs to©, andN to 2. More precisely, one has, as one immediately
verifies:
(2.2) A=-(NV01yy, N=V+VD)y

or, in terms of natural components (that is, subotdita the basis induced iy by the
coordinate system; cf., the following section no. 3):

(2.3) A==y N = @i + 0 ) V= ) VS

in which we have set:
(2.4) Wk =0k + U K.

In the sequel, this decomposition\ointo the sum of a purely timelike vector (parallel to
y) and a purely spacelike vector (orthogonahtwill be called thenatural decomposition
of V.

The two component vectofs andN will be called theemporalprojectionand the
spatial projectionof V, respectively. Moreover, extending to a generic mahi¥pl; a
terminology that is already in use in general relatiby some (cf., LICHNEROWICZ
[13], pp. 7), we will define the spacetime norms of theaesA andN by:

IV =g N'N = VV 6 0)

the temporal normand spatial norm of the vectorV, with respect to the timelike
reference vectow, respectively. In (2.5), as in (2.3), there systemiiappear two
symmetric double tensorgy i and i (defined in (2.4), that the vectdf provides, the
temporal content and the spatial content, respectiieéach of the terms in (2.3) plays a
different role from those in (2.5): in the latter, ylf@ay a metric role, whereas in (2.3),
when they operate by simple composition, they havefteet ofprojectingthe vectoV
onto ©x andZ. In relation to this dual role, we cally k thetemporal metric tensoror

temporal projectorat the pointx, while reserving fory the name ofspatial metric
tensor or spatial projector The effect of the two tensorgs i and i in the case of
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simple vectors extends to the case of tensors of ater,owhich ultimately justifies the
terminology. We then briefly examine their structang their principal properties.

3. Natural basis in Tand naturally induced basis @, and%,. We now apply the
operations of spatial and temporal projection to théendiein of natural bases by and
Ox. _

As one notes, the coordinate systérinduces anatural basisin the tangent vector
spaceTy , and its vectorsn(spacelike and one timelike, which is tangent to thglsin
curve coordinate) are denoteddl. The contravariant and covariant componeng;f
are:

(3.1) eP)"=3"  @Ph =0k d*=gn,

respectively, wher@" extends the usual KRONECKER symbol. The precedingioatat
justifies the observation that if, as is the custom, demotes the generic vector of the
tangent spacé, by dP = (dX) it then results thadP = 9;P dX, in whichd; andd denote
partial differentiation and total differentiation, pestively.

In conformity with the preceding definition of a natukasis inTy, we call the
contravariant or covariant components of a vectoreosdr relative to the natural basis
thenatural componentsf one type or the other.

Having said that, it is reasonable that we call th@&etorthogonal projections axy

— which we denote bﬁaP - the natural basis for the spatial platfo¥Xm which are also

the firstn vectorso, P of the natural basis falk. Due to (3.1), and what was said in no.
2, we immediately recover time+ 1 components od, P in the natural basis fofy:

0,P), =y 0=y
(32) {(~a ): J/lll(k a J/Ia' .
0,P) =9V =0 +V Ve
In vector form then vectors of the natural basis i can be expressed by means of
then + 1 vectors of the natural basisTinin the following way:

(3.3) 0,P=0,P+ sy doP.

To anticipate slightly, we say that the expresdioat appears in the right hand side
formally coincides with that of a differential operatorttehall be introduced later on (no.
6).

As for the one-dimensional temporal subsp@ge we call the vectody P its natural
basis; that is, the unique timelike vector in taéunal basis foffk. This vector, in turn, is
connected with the unitary vectgrthat was previously introduced (principal referenc
vector) by the simple relation:

(3.4) y=)P doP.
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Having said this, let be a generic purely spatial vectdf, and V;, its natural
components iy , andV?, V. its natural components & ; its purely spatial character
implies:

(3.5) VOy=V,y=V y=0.

From a significant simplification of the covariargnsponents and from (3.3), it follows
that:

(3.6) V.=V ,P=VD,P+ppyVBP=V,.

Analogous to the pair of identitieg = VﬁéaP, V = V3P and from (3.3), while
taking into account (3.6), we deduce that:

(3.7) V=V

(3.6) and (3.7) may be summarized in the following observatdnch is of practical
use:the covariant or contravariant components of a pyspatial vector relative to the
natural basis forX; can be identified with the first n covariant or ta@variant
components, respectively, relative to the natuasivfor T, .

One immediately checks that the covariant naturadpoments of the metric tensor in

>«, which are given by the? scalar productd,P[d ;P, can be identified with thg.
As for the metric tensor i@, which does not seem to present any great interest, it
has the unique covariant component given by the scalar grdgBcllo,P, and it is

therefore identified with the componeg, of the fundamental tensor &f.1. Its only
contravariant component has the valugl/

4. Natural decomposition of an arbitrary tenso-projection and®-projection.
Purely spatial or temporal character of an index.

The symbolic decomposition %

induces a decomposition oy 1 Tx into a sum of four mutually orthogonal and
completely supplementary subspaces:

(4.2) T O Tx=2x 0 2+ 2, 0 O+ O, U 24 + O L] Ox.

It follows that a general double tensgris uniquely decomposable into a sum of four
tensors that are pairwise orthogonal and belong tofdhe subspaces that were just
defined, respectively. Such a decomposition will be dalenatural decompositiof
the tensot; and the individual component tensors will be calledrikeiral projections
of the tensott; onto its respective subspaces. Such a projectionbeibymbolically
indicated as followsPss(ti), Bso(tij), Poes(tj), Poo(ti), in which’B generically denotes a

projection operator.
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The formal procedure for obtaining the various naturalegt@ns from a given
tensor is much simpler. One operates on each index bysmefamhe convenient
projector, ) or - K, according to whether that index transforms as a $patiex or a
temporal index:

4.3) P O) =V W™ Bro) =k 11",
Por (6) ==V U Wt Poolt) =Ky ¥ 11"

An interesting, if somewhat banal, example is the d¢atlon of the various natural
projections of the fundamental tenggr

(4.4) PBes(G5) =V, Po(g)=0,
. Pos(95) =0, Poo (9 )="KV) -

This confirms that the spatial and temporal projectiongjofoincide with the metric

tensors ork and®, respectively, and that the result of inducing a mein a subspace

that is defined by the basis induced by the projection dfifdten vectors of the basis for

Tx and successively calculating the various scalar procﬁﬁtﬁ) ;P coincides with the

result of the direct projection of; .

An index, regardless of its contravariance or cewereé, of a generic tensor will be
said to have aurely spatialcharacter if that tensor does not change when onatege
on each index with the spatial projecyar. By contrast, an index will be said to have a
purely temporalkcharacter if the tensor is not modified when one dpsran each index
with the temporal projectory-) . In accord with what was already said in no. 1péll
the components of a tensor in which a purely spatialxindea covariant position
assumes the value 0 are null. Likewise, all of tamonents of a tensor that correspond
to a purely temporal index in a contravariant positiarsthassume an arbitrary non-zero
value.

A double tensor will be callettally spatialif it belongs toz [I Z; that is, if both of
its indices are purely spatial. On the other hand,ilithe calledtotally temporalif it
belongs td® O ©; i.e., if both of its indices are purely temporal.

The preceding may be extended in a rigorous way to ten$arbitrary order. For
them, one speaks of a projection of tyPes._s(t;...r) with as many indices equal koor

© as are indices of that tensor.
5. Some algebraic properties of the projection operati

a) When thez-projector operates on a purely temporal index the result is thie nul
tensor.

b) When the®-projector operates on a purely spatial index the result is the nul
tensor.

¢) When a complete projection operation, that is, tha operates on all of the
indices, operates on the product of two or more ter{gothe sense of contraction), it is
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divided between the factors, according to the correspgnailationship between their
indices:‘Bz@z(A;Bjr) = ‘BZ(Al) ‘BOZ(Bjr) .

d) When the natural decomposition is applied to a getengorA; one may write it
as:
(5.1) A=A+ Ay Ty K+ Ay
in which we have set:
A=yy A5, A=- AC,
(5.3) VIURE ATHK
A=VVs A ASVKA.

A generic double tensok; therefore produces, in particular, a totally spatialael\ﬁ

two purely spatial vecton@» andA’, and a scalaA, which corresponds to exactly 16
independent numerical quantities, in all.

If the tensorA; is symmetric, so is the tensé]r, whereas, the two vectohs andA
coincide. For a symmetric tens&;,= §;, one may write:

(5.4) Sj:Sj+$J/j +K~§+ ¥y (Sj:Sji)'

In the event that the tensor being decomposed issamtmetric,Q; = — Q;, the
resulting tenso@ij is antisymmetric, the two resulting spatial vectorsarposite to each

other, and the scalar is null. The natural decompaositfaan antisymmetric tens€x; =
- Q; may then be written:
(5.5) Qi =Q; +Q ¥ —KQ (©;=9Q;).

€) The saturation of a purely spatial index with a purelygoral index (which is
expected to imply two indices in opposite positions ofarare) has zero for its result,
regardless of the number and character of the otlikcelm that are involved in the
saturation.

Il. - TRANSVERSE DERIVATION.

6. Ordinary transverse derivationAssign to the domai® in the manifoldVy.1 a
generic scalar fielf(x) and consider its gradient grgdvhose covariant components are
0; f. Furthermore, letlP = (dX) be a generic vector field, subject to only the coodit
that it be, moreover, perpendicular to the vegtavhich then implies thag dX = 0, so:

(6.1) bl =- yiya dX’ =Yy, dxX’.
0
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Having said that, the total differential fofelative to the vectodP is expressed adf = 0if
dX. Therefore, taking condition (6.1) into account, oma express it in either of the
following ways:

(6.2) df = @af =22 0of) dX = (@uf + Py Bof) X,

0

in which the summation is only from 1 tm We introduce, in a natural way, the
differential operator, which we denote simplyapyby means of the following definition:

(6.3) 5i:6i —Laofai + Ky 0o,
Yo

an operator that will play an important role in wratdws. By means of such operators,
which are significant only when# 0, the total differential off relative to a vectodP that
is normal toy; may thus be expressed by the formula:

(6.3) df =0, f dx =0, f &x"

which uses the fact that there is only one non-zentravariant spatial componentdf.
(6.3) shows that tha + 1 quantitieséi f , of which the last ona € 0) is always null, are
the covariant components of a vector that, forféxy; always remains perpendicularjto
(50f = 0). For this reason, we call it th@nsverse gradientin the direction of) of the
scalar fieldf; in symbolsgradf =(9, f).

It is important to point out that the transversadient that was just defined is just the
projection of the ordinary gradient onto the sgdatlatform. One has, in factf)if =
(3" + i ) and therefore:

(6.4) 0, f =Ps(d ).

All of this justifies the name dfansverse partial derivatioffor the operatioaithat
was defined by (6.3). The term is ultimately jfistl by the following interpretation: If
one presents the formal definition (6.3) at the esaime as (3.2) then one immediately
recognizes thaﬁa is just the operation of total differentiation witdspect to thé" vector
of the natural basis inducedi.

It is almost obvious that the operatﬁqeatisfies most of the formal properties that are

true for ordinary partial differentiation; in pamtilar, the rules for the differentiation of a
sum, product, quotient, etc.

The operation of transverse partial derivation lbarsuccessively applied, in turn, to
arbitrary values of the index, as well as thatasfrig transverse derivatives of second and
higher orders. Nevertheless, as one immediatelygrazes, the order of the successive
derivatives is generally not permutable. We contamselves with this negative result
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for now, and reserve until later the examinationhef $pecial case in which the product
0,0, is commutative and the conditions that such commutgtiviplies for the principal
congruence,.

For now, we simply recognize that the operagdss not even commutable with the
operatody, in general.

7. Longitudinal derivationd,. Once more, consider the vector field gfadnd

project it orthogonally ont®y at each point of the domaih The algebraic components
of the projected vector relative to the vector basisGuidoP) will be called the
longitudinal derivative(in the direction of)) of the scalar field and will be denoted by

0,f:
(7.1) 0,f =y’ dof .

This differs from the simple partial derivative with pest to X’ by the factory’.
Naturally, one also has that the operatds not generally commutable with eitlgror
0o

It is not pointless to add that the operégquike the operata?
any internal coordinate change of the congrué€hice

is invariant under

a!

8. Transverse covariant derivation of a purely spatial vector fidlde operation of
transverse derivation that was introduced in the pregexkction can be extended in an
equally natural way from the case of a scalar fieldhad of apurely spatialvector field.

Let s(X) be a generic purely spatial vector field that satighesconditions (which are
equivalent):

(8.1) ==y, LI1Y=y §=0.

Consider the covariant derivatives s of (x) in Vi,.1 and effect the total projection onto
2x at any point o¥y+1. The purely spatial double tensof3=(LJi 5) — that is so obtained
at each point oW1 will be called thetransverse covariant derivativef the purely

spatial fields(x). Applying the projection procedure that defined in the priegesection
(no. 4) and carrying out the calculations, which we avhit, one obtains:

- 1 - - -
(8.2) Ps=(Ui 5) = 0,5, _5(6‘ Vi +0; Wi =0, ¥ ),

which systematically involves the spatial metric tengand the transverse derivatﬁlle

The expression that appears in the right-hand side 2)f §8ggests that we introduce
a new type of CHRISTOFFEL symbol, of the first or st type, which is formally
constructed like the ordinary symbol, but with the esaksubstitution of the spatial
metric tensory; for the spacetime metric tensgy and the partial transverse derivation

0, for the ordinary derivatiod; :
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B
[ij,h |:§(aiyjh +0 Wi —0nV;)

(8.3) = B B
{ }=9hrlii,r =y it .

i

With this definition, (8.2) takes the form:
< h ..
(8.4) Pss=(Ui g) = aiSj - i $=Us,

and may be interpreted as a new type of covariant diegyavhich we denote by the

symbolﬁfsj , and we are justified in calling it tHeansverse covariant derivativef the

spatial vector fields , which we previously denoted Byss(Li ) . With the adopted
notation, which is perhaps excessive, the sign * hapuhgose of reminding one to use
¥ and the ~ sign, that of using the derivafipn

In the CHRISTOFFEL symbols (8.3), as well as in tbengonents of the transverse
covariant derivative (8.4), one immediately recognizesttiey reduce to zero identically
whenever one of their lower indices assumes the \@lwehich conforms to the totally
spatial character of the transverse covariant dére/at

We conclude by saying that, just as the operation ofteas®s ordinary derivation on
a scalar field produces a purely spatial vector field tft@resverse gradient o, likewise
the operation of transverse covariant derivation paraly spatial vector field produces a
totally spatial double tensor field. Formally, the trarse covariant derivative of a field
of purely spatial vectors may be calculated like an argicovariant derivative using the
CHRISTOFFEL symbols of the first and second type thatf@med by starting with the

spatial metric tensog; with the systematic use of t&e in place of the; .

9. Transverse covariant derivation of a totally spatial tensor of arbitader. The
operation of transverse covariant derivation is gasitended to the case of a tensor of
arbitrary order, on the condition that it is purely sgatFor example, leg; be a totally
spatial double tensor fields{ = 0, ssi = 0). Proceeding in a manner that is perfectly
analogous to the one that was described in the precedatgpn, consider the covariant
derivativeJ; sm of that field and totally project it onto the spaceat each point. By
calculations that are very simple, though somewhagtiign and which we omit, we
recognize that the desired projection may put into theviatlg form:

h
m

(9.1) Prz=(Ti §m) =0,S,, ‘{ir} } Sim _{i } 5.=0s,, .

Once again, we recognize a type of covariant derivati@drright-hand side of (9.1),
which we denote Uﬁfsim, which obeys the ordinary formal rules, but with thstematic
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use of the derivatiodﬁ in place of thed; and the CHRISTOFFEL symbols (8.3) in place

of the ordinary symbols.

We regard the treatment of the more general casehwoald suffice to assure the
complete generality of the operation of transversagant derivation, as superfluous. It
operates on a totally spatial tensor field and resali@ new totally spatial tensor field
with one more index.

10. Immediate formal properties of the transverse covariant derivatddfe almost
immediately recognize that the transverse covarianvaten enjoys all of the formal
properties of the covariant derivation that are trueHerordinary derivation, such as the
term-by-term derivation of a sum of totally spatialders, and likewise the ordinary rule
for the derivation of a product of more than one totgiigtial tensors remains valid. One
also naturally extends to the transverse covariamivatere the property of being
commutable with the operation of saturatipmvided that it operates on two indices that
are both purely spatial.

A theorem that is completely analogous to the RIGEbtem subsists, so we give it
the same name:

RICCI THEOREM. —The transverse covariant derivative of the spatial metric tensor
¥ is identically null.

The proof follows in a manner that is formally simila the usual proof.

Since this theorem concerns the spatial metric tehaois naturally induced By, it
points out a characteristic of the differential operabf transverse covariant derivative
that underlines the character of the fundamental $patisor.

It is somewhat superfluous to add that the invertibilityveo successive transverse
covariant derivatives does not persist, in general.

11. —Formal projection of the CHRISTOFFEL symbols ohfo The technique of
spatial projection that was applied in the preceding@edtt tensorial entities may also
be more formally applied to other geometrical entitiegt are non-tensorial, such as the
Riemannian connection oW,.; , which is represented in local coordinates by the
CHRISTOFFEL symbols of the first and second type.is Itruly noteworthy that the
result of such a formal projection is, as one eashfies, the following properties of the
modified CHRISTOFFEL symbols, as defined by formula (8.3):

Poos (0 D=1 0 |

w{l7]-40)

Beyond its noteworthy geometric content, (11.19 ha obvious utility in everyday
practice when one is performing calculations.
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. - “TIMELIKE” CONGRUENCES AND THEIR FIRST ORDER
DIFFERENTIAL ELEMENTS.

As we said at the beginning of the present work (no.h&)téchnique of spatial or
temporal projection and the systematic use of the ordimar covariant transverse
derivative finds useful application in the study of congogs inVn.1. We fix our
attention on timelike congruences, which have considernamp@rtance in a manifold
with a normal hyperbolic metric. The adaptation of¢bhesiderations that follow to the
case of a generic congruence does not present any kigfscu

Let Co be an arbitrary “timelike” congruence .1 that assumes the same sense as
the principal reference congruence and is adapted to adooedinate system that is
also adapted to the same congruence, such that the glrvear. are identified with the
curves ofCy . We again make available, if needed, an internal caatedicthange of the
same congruence.

The congruenc€, uniquely determines the unitary vector fig{a) that is tangent to
all of its curves. We therefore begin the local rekxation of Cy with the local
examination of the tensors that one obtains fgxnby derivations of first order, that is,
the following three tensors: the antisymmetric ter@pr=0; y—-0, ¥ = Ui y -0 K,
which we define as theorticity tensorof the congruence, the asymmetric tenspy ,
which is the covariant derivative ¢f and the symmetric tensiy = Ui i + [; i, which
is called theKilling tensorof Cy .

We now perform the natural decomposition and considen ef its four projections
Pss, Pso, Pos, Poo . We then examine the geometrical significance of.each

12. —The four natural projections of the vorticity tenserDefine thevorticity tensor
of a spacetime congruen€®, which then defines a unitary vector figkk), to be the
antisymmetric double tensor:

(12.1) Qijzai}{—aj}{EDi}{—DjM.

It has a well-known fundamental importance in tHatnastic dynamics of fluids (cf.,
LICHNEROWICZ [13], SYNGE [17], [18]), and, more generalip, the geometry of
congruences. We now examine the four natural projectiansl will see their
noteworthy geometrical significance later on.

>2 projection — One has:

(12.2) P=x(Qy) = O

% y y -
=y, 7’—6,-14 +7'60M +J./yoy°ao7j—w°6,- yo+w°7‘6 Vo
0

0 0 0

Taking into account thag ) = — 1, the association of the second term with the fifth
one and the third one with the sixth gives:
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- Y, Y, 7 i
(12.3) ‘BZZ(QH) = Qij :V()ai_J_yiyoao_]_yiao_J'*'yjaoL-
Yo 0 Yo 0

Finally, associating the first term with the secam® and the third one with the fourth
one, one finds:

~ =V x ¥
(12.4) P==(Qi) = Q; =y, [d —-0, Lj-
Yo Yo

The spatial tensor thus obtained (one immediately chi&ekannihilation of the covariant
components in which the index figures at least once) snéisymmetric tensor, lik@;,

which is formally obtained when one substitu!{bﬁ)r ¥ and the operatioi}] for 9;, and
Yo

multiplies the result by . This tensor is called tispatial vorticity tensor, or transverse
rotation, of the congruenc€, (or the vector field(x)).

20 projection — One has:
Pro(Qi) == 4" KV Qs =Y’ Qoi ¥,
or furthermore, observing that:
YQui=yQi =y O y-0Oiy)=y 0 y=c,
in whichc; indicates theurvature vectoof the curved:
(12.5) Pro(Qi) =Ci j.

Put into this form, one recognizes that the spatiadtore together with the spatial
tenso@ij that was previously considered, specifies the vortigtysorQ; and can be

identified with the curvature vector of the curleand is obviously normal to that curve.

©Z projection — In an analogous manner, one recognizes that, in harmbmywyat
was said in no. 5 for a generic antisymmetric tensog, has:

(12.6) Pos(Qi) =- K G.

©0O projection — For an arbitrary antisymmetric tensor, such a projaci®
identically null:

(12.7) ‘B@@(Qij) =0.

Summarizing the preceding natural decomposition of theeipae vorticity tensor
Qj, we have:
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(12.8) Qij:Qij TG Y-KG,

in which f)ij andc; indicate the spatial vorticity tensor and the curvauaetor of the
congruencé&,, respectively.

13. —The four natural projections of the tensbfy . — We commence with the
observation that the second index of the tensgris a purely spatial index. In fact,
taking into account that goo = J6°, one has (for any value of the indgx

(13.1) Oie =06 — (0, 1)) =0i )6 — (0, O)
=6iy)—6iy): 0.

(Moreover, it is quicker if one observes that whehas a constant norm the resulting
vector Uiy dX is orthogonal toy for any d% it follows that the index in question is
purely spatial). From this observation, it followsttla order to obtain th&Z or ©Z
projections of the tensafi), it suffices to operate on its first index (with th@jpctors

K or — K WK, respectively) to show that the resultidgp and @@ projections are
automatically null.

32 —projection Operating, as we explained, only on the first indew, then has:

(13.2) Prx(Oiy) = W'Ony = Oiyy + ¥ Py,
=0i ) — @, O + ¥ Yook — ¥ (0, 0) Y.

Associating the first and third terms, which colleety defineéiyj , and developing the

CHRISTOFFEL symbols, while also taking into account #93f = — 1, gio = — ¥ }, Goo
= - 6%, one finds:

= 1
Pex(Diy) =015 +5 (60 )+ 0116+ 160 ¥ + 0005 = 401 6) y.

Compare the terms in parentheses with the three @&mg) — ¥ do )y — ) 0o it , Whose
sum is obviously null. The first of them combines wviltk fourth one in parentheses to

give simplydo) . What then remains is:
x 1
Prx(Ci) =0, +25 0601+ Y0116 +169i 4 ~ WOy~ YO0 = K0 )6 +00 k) Y.

Between the parentheses, the first and the fourttstgivey,0, ¥;, the third and the fifth
ones giv%éjyi, and finally, the second one and the sixth one )gi&i%—%éj Yo (in

fact, )y (8 yo + ¥ Y30 )6) = K@ W6 + ) YO0 }6) = 10 16 — ¥ 0 ). One needs only to
remove the parentheses:
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1

1+ 1+
Oy)==0y —=0.y—
g'BZZ( yJ) 2 |y] 2 Jyl 2y0

< 1 = 1
yjaiyo-*-i}{aj yo+_2Van|j .
0

Thus, combining the first term with the third onedahe second one with the fourth one,
one finally arrives at:

21 (s V), 1 1 1
(13.3) Pes(Uivi) —EVO[GJV_ai —Jj+§y°60yij _EQij +§w5hw,

0 0

an expression in which one sees the antisymmeﬁrisdlf)u that we called the spatial

vorticity tensor in the preceding section, and e etric spatial tensc% Y 9o ¥ = % %a

oh )i , that we will examine a little later on (no. 14).
Simply as a check, observe that (13.3) allows tonenmediately calculate thez
projection of the tensd®;; =0 yy — 9; ¥ = Ui y — I; ), and one obtains:

in accord with (12.4).

>O-projection As we already said, this tensor is null, duethhe purely spatial
character of the second index:

(13.4) Pso(Tiy) =0 .

©Z-projection Operating only on the first index, given theglyrspatial character of
the second one, one obtains:

Pox(Tiy) == kY O ¥ == ¥ ¥ [0 - @, h) V']

== ¥V [00 ) —0i o]
By definition, this results in:
(13.5) Pos(Diy) =— Ky Qj
== KG,

which coincides with th®Z-projection of the tensdp;;.

©0O-projection As we already said, this tensor will also bel,ndiie to the purely
spatial character of the second indeX;jn.
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The natural decomposition of the ten8py may then be summarized as:

~ 1
(13.6) Oip =S+ V o= 0P Q.

1
2
1 -
=§(Qij+ wahyj)_yq .

14. —Natural projection of the Killing tensor: K= Uiy + Ui . — Another tensor of
note that relates to a general congrue@ge and which is more important, is the
symmetric double tensad€; = iy + Uj )y, to which it seems quite appropriate to give the
name ofKilling tensor(cf., [10], [6]). As is well known, the identical anrdtion of the
tensorKj is the necessary and sufficient condition for thiegruenceC, to define a (one-
parameter) group of isometries\ip:; .

The natural projections of this tensor are obtained idnely like the analogous
projections of the tensat;) (cf., the preceding section). Here is what oneinta

>2-projection If we apply the results of the preceding sectiotheotwo indices of
Kj; then the formal rules of projection orkagive:

(14.1) Pes(Oiy+ Oiy) = Ky = @ + ¢ p) Oy + @ + V) Oy =
=Oiy+ iy + ¥ YOy + Y ¥) Oni,

and in the last expression one recognizes the symme#ttialstensor that was introduced
in relativity by BORN at the end of 1909 (cf., BORN [1], S8N [17], SALZMANN
and TAUB [6], and many other authors). Conforming to owmega convention we also

denote that tensor tb§1” and now call it thé8orn spatial tensor.lts vanishing identically,

which is less restrictive than the vanishing of the erKitling tensor, expresses that the
motion of the individual fluid of the congruen@e along thed curves isigid, according
to BORN ([1]), therefore the the spatial distance leemtwo arbitrary infinitely closg’
lines is constant (cf., SYNGE [17], pp. 36). Inthe caserelit is not identically null, it
can be interpreted as the deformation tensor of tiet @y and we should say that such a
tensor rests on tentative foundations (HERGLOTZ [9]NS¥E [18], BENVENUTI ¢))
for a relativistic theory of elasticity.

One now comes to a more precise explanation'fef(K;) if one immediately

recognizes, on the basis of (13.3), and the antisymméthespatial vorticity tensa®;
the simple expression:

(14.2) Ps=(Kij) =K, = Y on .

In that expression, one observes how the identmaishing of the BORN tensor is
substantially equivalent to the independence of the spagitric tensor; from X’ (which
is not the same thing as stationarity, which givesitidependence of the spacetime
metricg; fromx°).

() P. BENVENUTO, laurea thesis (1956).
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As for the other natural projections, one has:

>©-projection
(14.3) Pro(Kiy) =—¢i ).

©X-projection
(14.4) Pos(Kij) ==K .

©O-projection
(14.5) ‘B@@(Kij) =0.

As in the preceding section, represents the curvature vector (which is orthogong@ to
of thex’ curves.

The natural decomposition of the KILLING tensor maydpecified definitively like
this:
(14.6) Kij=K;=C ) —xug.

15. Some differential properties of the congruencg CThe tensors that were
considered in the preceding section, or some of theiuralaprojections, contain
noteworthy properties of the congruer@ethat concern the way thatvaries from one
point to the other V1 . We treat the properties in question, but it seenus tiat the
actual formulation gives them a more organic systematizand establishes a natural
connection between them.

Normal congruence. A necessary and sufficient condition 8¢ to be anormal
congruence is the identical annihilation of its spatatigity:

(15.1) Ps(Qi) =Q; =y, [ai ﬁ—ai £j= 0.
Yo Yo
This theorem, in an essentially equivalent form, is dUW&/EYSSENHOFF (cf., [19]
and [14], pp. 250). To understand its validity, remember tiaaltionally (cf., LEVI-
CIVITA, [11], pp. 281) thenormality of a congruence is expressed by means of the
identical annihilation of the triple tensor:

(15.2) UQik + YQui + kQ;; =0,
with the usual meanings for and Q; . It is now simple to recognize the complete

equivalence of the conditions (15.1) and (15.2). In faané finally decomposes the
tensorQ; in (15.2) into its natural components (cf., (12.8)) thee obtains:

W (Q+ Gs— K + 4 (Qy + Gt = KG) + 4 (Q+ Gy = KG) =0,
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and thus (15.2) appears to be completely equivalent to tlotioon
(15.3) yQ, +y,Q + 18, =0.

If one multiplies both sides of this by() or ¥, resp.) and saturates the mutual indi§x
or k, resp.) then it follows thaf)jk = 0, which establishes (15.1). Conversely, from (15.1)

it follows immediately that we have (15.3) and thus,dlassical condition (15.2).

Geodetic congruenceA necessary and sufficient condition for the congce€, to
be a geodetic congruence, that is, for the curvescthatitute it to be geodetic, is the
nullity of the Z©-projection (and thus th®-projection, as well) of its vorticity tensor
Qij .

(15.4) ‘BZO(Qij) =0.

In fact, from (12.5), it follows thafBse(Q;) is annulled when and only whem is
annulled, which is the curvature vector of fleurve.

Normal geodetic congruencdf we combine the preceding two observations then we
deduce that the necessary and sufficient conditiontifercongruencé&, to be both
normal and geodetic is that one identically annihiksteorticity vector:

(15.5) Qij =0.

On the other hand, this condition is satisfied whernlitfeefield yis a gradient fieldy =
gradf. We are obviously treating a very particular gradiexitif one for which any two
arbitrary equipotential surfaces gparallel surfaces (that is, that the geodetics that are
normal to one of them are also normal to the otlmer, the connecting curve segments
between the two surfaces all being geodetics of the Eagth).

Congruence defining rigid motionlt follows from what was said in no. 14 that,
following BORN, the necessary and sufficient comditfor the continuous motion that is
defined by the congruendg, to be rigid is that the distance between two arbijrari
infinitely closex’ curves, as measured along a common normal, remainsobasing
those same curves and that the BORN tensor must be nul

(15.6) Pos(Ki) = Ky =y 80 )= 0.

The identical annihilation of the©-projection (or the©Z-projection) of K;
characterizes the geodetic congruence, just like théigaéannihilation of)i]. :

Rigid geodetic congruenceéOdn the basis of the preceding remarks, these congrsienc
are characterized by the identical annihilation ofethigre KILLING tensor:
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(15.7) Ki=0Oiy+Uy=0.

On the other hand, as is well known, the condition/)l&haracterizes those congruences
that define a group of isometries\f.1 (cf., EISENHART [6], LICHNEROWICZ [13]).
We say that the identical annihilation of the KILLIN@sor characterizes rigid geodetic
motions.

Rigid uniform translatory motion.If we combine the preceding considerations then
we see that the identical annihilation of the tenSpy , which implies both the
annihilation ofK; and Q; , characterizes those motions that are, at thee Sime,
irrotational, rigid, and geodetic:

(15.8) Oy=0.

One calls themuniform translatory motions.

The preceding seems, to me, to show that the onitexfithe natural decomposition of
the principal differential tensors that are assedawith a timelike congruence suffice to
provide a systematic classification of the possibledfionotions. Although | have not
arrived at any new results, this more organic systenatizaoes not seem devoid of
interest to me.

IV. — ORDINARY AND COVARIANT TRANSVERSE DERIVATIONOF THE
PARTICULAR TENSOR FIELDS THAT INVOLVE THE DIFFERENRL TENSORS
THAT CHARACTERIZE THE CONGRUENCE OF REFERENCE.

Recall the explicit calculation that we began in greceding section 8 of the
transverse covariant derivative of the various purpétial tensor fields, whose explicit
expressions acquired (snellezza?) an expressiveness bg ofetde intervention of the
differential tensors that characterize principal rafeeecongruence. In fact, such an
explicit intervention allows one to distinguish thepeessions that are due to the
reference congruence from the ones that are due tebkerial fields that are derived
from it.

As one can show, the purely formal rules that rdlatihe transverse derivation are
therefore subordinate to the choice of principal refeeecongruence. We give an
immediate example.

16. Conditions for the invertibility of two successive (ordinary) tkeanse
derivations. We said at the end of no. 7 that two successive trasesderivations are not
generally invertible. We now establish under what canultinvertibility exists.

Given an arbitrary numerical functidifx) (which may or may not be a scalar),

consider — formally — the second transverse derivatj, f that it defines:

(16.1) 5,3, :[aﬂ —ﬁaoj[aaf —ﬁaofj =
Yo :
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=0,0, f —%aoaaf —[aﬂﬁ—ﬁaoﬁjaof Yag o+ 78V 52 |

b Yo Yo Vo Yo Yo
Analogously, we invert the order of the two derivationd abtain:
(16.2) 0,0,f =

=0,0,f 229,01 —[a

0

aﬁ—ﬁaoﬁjaof Yoy g8+ e s
Yo Vo Vo Yo Yo

From the difference of the two expressions, one oétai

16.3) 4,3,-3.3,)f :[éaﬁao —aﬁﬁjaof |
Yo Yo

From this, one concludes that the order of the $uccessive transverse derivations will
not influence the resuif either the reference motion is (spatially) irrotatioral elseif
f(X) does not depend upofi (k is stationary along any reference cux¥e var.).

17. Condition for the invertibility ofé,,and Jo . If one successively apply the two
operatorsd,, anddo to a functiorf(X) one has:

(17.1) 3,0,f=0,0,f -Ya92f .

0

Applying the two operators in the reverse ordeg bas instead:

(17.2) 3,0,f=0,0,f —a{ﬁjaof —Yagog
0 yO

One obtains the difference:

(17.3) 3.0,f-00,f= ao[ﬁjaof .

0

We conclude that the differential operatdgsandd,, are commutable only if eithdris

stationary alongC, (that is, it does not depend upaf), or else the “gravitational
Yo
Yo

potential vector’~% is stationary.

18. Natural projections ot]iz (7; U ©,). Let 7 = 1)y be a generic purely temporal
vector field. We consider the covariant derivatiyg of it and calculate the four natural
projections.
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> -projection:

(18.1) Pss(Dity) =V v 0T Os + 7PBss(Tiy;) =
=7 Ps=(Uiy;) -

From this, taking into account (13.3), it follows that:

1 .
(18.2) Pes(Uig) = ET(Vhao G TQ)=
1~ =
ZET(Kij +Qij )-
We observe how the projection that we just calculatedridispenly on the vector field
for the reference congruence. If it is, for exampleth rigid and irrotational then the
projection (18.2) is annulled identically, no matter witegt purely temporal vector field

.
> ©-projection:

(18.2) Pro(Ti) = -V V¥ 0rTOps + 7Pse(liy;) =
= air-yj +T‘Bz@(Di yj) .

If we take (13.4) into account then we conclude:
(18.4) Pro(Ti5j) =07+, .
©Z-projection:

(18.5) Pos(Ti) =y ¥ 0Tk + 1Poas(Ti ) =

=7 Pes(Ui yy)
and, recalling (13.5):
(18.6) Pos(Li) =-1ViG .

Such a projection is annulled identically for any putelyporal vector field; whenCy
is a geodetic congruence.

©0O-projection:
(18.7) Poo(lihy) =W ¥ ¥y 0Tk + TPoos(Ti i) -

This permits us to conclude:

(18.8) Poo(i7}) == Yooy yy =~ Yo,y y.
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PBoo(Lliz;) is then annulled when the fielglis stationary, that is, when has constant
modulus along any curve @f .

19. Natural projection oflism (Sm U 2x O Zx ). We next give the natural
decomposition of the triple tensfsmn, wheresm is a generic purely spatial vector field
(So = 0,5m = 0). For brevity, we omit the lengthy calculations.

Here are the eight natural projectiong p$m :

o h h
(201) ‘BZZZ(Di Sm) :Di S]-m :aisjm _{I J} Sm _{I } %h'
1 = Kk 1 k
(20.2) Przo(Ci §m) =5 Qs ym+51/°60 «S V-
1., 1
(20.3) Pros(Ui sm) = EQikij m +EV060 ik g(myj'
(20.4) Porz(Ti §m) == ¥ ¥ 0 Sm + 3 Y CnS'm + Y hn G S +

1 1 ) )
+§Vi thshm+§yi Kmksjk +Vith gqm +Y Q. %k-

(20.5) Poes(Ti §m) == MV ¥ Qi Sm==} }f Cn S'm .
(20.6) Poso(Ti §m) == Hcn S Hn.

(20.7) Proo(T: §m) =0 .

(20.8) Pooo(Ti Sm) = 0.

21. —Concluding considerations- The preceding systematic calculations had the
objective of carrying out, in an almost automatic wag, following operations:

a) Decomposing an arbitrary vector or tensor in a cano(nealiral) way.

b) Calculating the natural projections of the covaridativative of an arbitrary
vector or double tensor field, and then applying the samengazsition to the starting
vector or tensor. In fact, this (preventiva?) operapermits one to always (ricondursi?)
in the case in which the covariant derivative operatesaqurely spatial or purely
temporal vector, or a purely spatial double tensor.

The reader will have no difficulty in extending the paing calculations to the case
in which the operation of covariant derivation operatesensors of order higher than the
second.
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One may regard the foregoing as an illustration adcanique that, by virtue of its

invariant character under more general internal coordicasnges and its formal
simplicity, can be of service either to Riemannian getoyn or, more specifically, to
general relativity.
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