
CHAPTER XV 
 

THREE-DIMENSIONAL SPACES  
 
 

 1. – Consider a continuous function of the points of a three-dimensional space; i.e., a 
variable u that takes a prescribed value at each location M in a triply-infinite system of 
points and varies infinitely-little when M passes to an infinitely-close position M′.  
Imposing a constant value upon M is equivalent to singling out a double infinitude of 
points from the triple infinitude – i.e., a surface – and changing the value of u will mean 
passing from one surface to another.  It is then clear that any real function of the points of 
a space will be the analytical representation of a simply-infinite system of surfaces.  The 
ratio of the variation that the function suffers when the point goes from M to M′ to MM′ is 
the differential quotient relative to the direction MM′, and it is easy (cf., VIII, § 2) to see 
that when one knows the differential quotients in three mutually-perpendicular directions, 
the quotient relative to the direction that is defined by the cosines α, β, γ will result from 
the operation: 

d

ds
= 

1 2 3s s s
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, 

and yet, if one sets: 

∆ = 
22 2

1 2 3s s s

    ∂ ∂ ∂+ +     ∂ ∂ ∂     
 

then one will have: 
du

ds
= u∆  ⋅⋅⋅⋅ cos θ, 

 
in which θ is the angle that the variable direction in question makes with the fixed 
direction that is defined by the cosines: 
 

1

1 u
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, 
2
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∂
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, 
3

1 u

su

∂
∂∆

.    (1) 

 
That will then always be the direction along which u tends to vary most rapidly, and the 

value of the differential quotient in that direction will be precisely u∆ .  However, if 

one sets θ = 0 then one will see that u tends to remain constant along the infinite 
perpendicular that goes through M in the direction (1).  In other words, a plane passes 
through any point M that is characterized by the property that the variation of u when M 
is displaced infinitely little in that plane is an infinitesimal of an order that is higher than 
one with respect to the magnitude of the displacement of M.  On the other hand, if M 
traverses any line on the surface that belongs to the system that is defined by the function 
u then it will remain constant, and it will also remain constant, up to higher infinitesimals, 
when M is, on the contrary, displaced infinitely little along the tangent to that line, since, 
if one neglects the quantities that are higher order infinitesimals with respect to the arc 
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length that is traversed then the line can coincide with its tangent.  Therefore, the tangent 
to the line necessarily belongs to the preceding plane that was found, i.e., the tangents to 
all of the lines that pass through M on the surface are in a plane, even though not all of 
the differential quotients (1) are zero.  One can then add that the cosines (1) are precisely 
the ones that define the direction of the normal to the surface at the point M.   
 
 
 2. – One can base a system of curvilinear coordinates on three families of surfaces 
that are defined by the functions q1, q2, q3, from what was said in § 7 of Chapter Eight.  A 
surface qi will then pass through any point M in space that is the locus of points at which 
the parameter qi keeps the value that it has at M.  The surfaces q1, q2, q3 that pass through 
M intersect each other along three lines (viz., the coordinate lines), and one says the line 
qi to mean the line along which only the parameter qi varies.  We shall always suppose 
that the coordinate surfaces (and consequently the lines) are pair-wise mutually-
perpendicular at any point, and assume that the axes are the tangents Mx1, Mx2, Mx3 to 
those lines.  Now, if x1, x2, x3 represent the coordinates of a fixed point in space then we 
would like to write down the condition of immobility with respect to the trihedron that is, 
in turn, considered to be the fundamental trihedron of the three coordinate surfaces.  First, 
suppose that the functions Q that enter into the expression for the square of the 
elementary arc-length: 

ds2 = 2 2 2 2 2 2
1 1 2 2 3 3Q dq Q dq Q dq+ +     (2) 

are defined and set: 

Gij = 
1 i

i j j

Q

Q Q q

∂
∂

.     (3) 

 
Let ijk denote an even permutation of the indices 123 and consider one of the three 
surfaces – qk , for example.  On it, the lines q1 and q2 will be denoted by qi and qj , resp., 
and the curvatures that are denoted by G1 and G2 in the theory of surfaces (XI, § 6) will be 

denoted by Gij and Gji , resp.  Once more, let Nik , Njk , and Tk represent the quantities N1 , 

N2 , and T that relate to the surface in question and write down the conditions of 

immobility (XI, § 9) of the point (x = xi , y = xj , z = xk): 
 

 i
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j

x
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= Gji xj − Tk xk , 
j

j

x

s

∂
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= Njk xk − Gji xi − 1, k

j

x

s

∂
∂

= Tk xi − Njk xj . 

 
 Having done that, if one writes the first pair of formulas for the surface qj and the 
second pair for qi , while leaving the third pair intact, then one will get: 
 

 k

i

x

s

∂
∂

= Gik xi − Tj xj = Tk xj − Nik xi , 



248 Lessons on Intrinsic Geometry 

 k

j

x

s

∂
∂

= Gjk xj − Ti xi = Tk xi − Njk xj , 

 

 k

k

x

s

∂
∂

= Nkj xj − Gki xi – 1 = Nki xi − Gkj xj – 1; 

 
hence, Ti = Tj = − Tk  for any i, j, k, and consequently: 

 
T1 = 0,      T2 = 0,      T3 = 0.    (4) 

 
In addition, for any pair of values of i and j: 
 

Nij = − Gij .     (5) 

 
(4) says immediately that in any triply-orthogonal system, any surface will be cut by the 
surfaces of the other families along the lines of curvature.  That is the very important 
Dupin theorem.  As for (5), it expresses an obvious fact, namely, the equivalence (up to 
sign) of the normal curvature to the line qi , when it is considered to belong to the surface 
qj , and the geodetic curvature of that line on the surface qk .  It will then follow that the 
six functions G, which are the only ones that we shall continue to consider in our 

calculations, represent precisely the principal curvatures of the three coordinate surfaces, 
with a change of sign.  Finally, the preceding formulas assume the definitive form: 
 

31 2
12 2 13 3 32 3 23 2

1 3 2
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23 3 21 1 13 1 31 3

2 1 3

3 1 2
31 1 32 2 21 2 12 1

3 2 1

1, , ,

1, , ,

1, , .

xx x
x x x x

s s s

xx x
x x x x

s s s

x x x
x x x x

s s s

 ∂∂ ∂= − − − = = ∂ ∂ ∂
 ∂∂ ∂= − − − = = ∂ ∂ ∂
 ∂ ∂ ∂= − − − = =

∂ ∂ ∂

G G G G

G G G G

G G G G

  (6) 

 
These are the necessary and sufficient conditions for the immobility of the point that is 
defined by the coordinates x1, x2, x3 . 
 
 
 3. – If one applies the integrability conditions that relate to the surfaces qk to the 
functions x, namely: 

ji
i js s

 ∂ ∂+ ∂ ∂ 
G = ij

j is s

 ∂ ∂+  ∂ ∂ 
G ,   (7) 

 
then one will find six differential relations between the G that are known by the name of 

Lamé formulas; however, those relations can also be obtained without calculation by 
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writing down the Codazzi formulas that relate to the three coordinate surfaces.  For 
example, when one sets T = 0 and changes G1, G2, N1, N2 into Gij , Gji , − Gik , − Gjk , resp., 

the Gauss formula: 
2 21 2

1 2
2 1s s

∂ ∂+ + +
∂ ∂
G G

G G  = T 2 – N1 N2 

will then become: 
2 21 2

1 2
2 1s s

∂ ∂+ + +
∂ ∂
G G

G G + Gik Gjk = 0, 

 
and will give rise to a first triple of relations.  Similarly, the formulas: 
 

2

1s

∂
∂
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 = (N1 − N2) G2 ,  1

2s

∂
∂
N

 = (N2 − N1) G1 

will become: 

jk

is

∂
∂
G

+ (Gjk − Gik) Gji   = 0, ik

js

∂
∂
G

+ (Gik − Gjk) Gij  = 0, 

 
but they will reduce to just one triple, because one has, by virtue of (3): 
 

 kj
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∂
∂
G
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2 loglog log1 jk k

i j i j j i

QQ Q

Q Q q q q q

 ∂∂ ∂−  ∂ ∂ ∂ ∂ 
, 
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∂
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Q Q Q

Q Q q q q q

 ∂ ∂ ∂−  ∂ ∂ ∂ ∂ 
, 
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2 log1 k
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Q
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∂
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G
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∂
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and consequently: 

kj

is

∂
∂
G

+ (Gkj − Gij) Gji = ki

js

∂
∂
G

+ (Gki − Gji) Gij .   (8) 

 
Hence, the Lamé formulas will become: 
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and, as one sees,  they establish a necessary coupling between the principal curvatures of 
the coordinate surfaces and their variations.  Since they are easily transformed into: 
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∂ ∂ ∂ ∂ ∂ ∂

  (9) 

 
by means of formula (3), we can also consider these to be the second-order partial 
differential equations that the functions Q must satisfy. 
 
 
 4. – Whereas a pair of orthogonal directions that are defined for any point in the plane 
can always be considered to be the directions of the tangents at that point to two lines in a 
doubly-orthogonal system, by contrast, the analogous property for an orthogonal triple 
in space is not true, even if it is defined at every point.  That noteworthy fact results from 
the restrictive condition that we will find ourselves having to deal with when the triad 
that is defined by the elements of the orthogonal determinant: 
 

1 1 1

2 2 2

3 3 3

α β γ
α β γ
α β γ

 = 1 
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that relates to the variable triad of tangents to the lines of one triply-orthogonal system 
can be the triad of tangents to the lines of another triply-orthogonal system.  When space 
is referred to the new system, one can express the idea that the immobility conditions for 
the point (x1, x2, x3) can be satisfied by the new coordinates: 
 

ix′  = αi x1 + βi x2 + γi x3 , 

 
while being careful that the formulas: 
 

is

∂
′∂
 = 

1 2 3
i i is s s

α β γ∂ ∂ ∂+ +
∂ ∂ ∂

      (10) 

 
for i = 1, 2, 3 are the ones that pertain to the differential quotients that relate to the new 
axes.  Meanwhile, in order for the conditions (6) to be satisfied, it is necessary that one 
must have: 

i

j

x

s

′∂
′∂

= ji jx′ ′G , i

k

x

s

′∂
′∂

= ki kx′ ′G     (11) 

 
identically; i.e., if one considers only the first equality, for now: 
 

1 2 3
j j js s s

α β γ
 ∂ ∂ ∂+ + ∂ ∂ ∂ 

(αi x1 + βi x2 + γi x3) = ji
′G (αj x1 + βj x2 + γj x3). 

 
This splits into three: 
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 ∂′ = + − − − ′∂
 ∂ ′ = + − − − ′∂
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′∂
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  (12) 

which will give: 
 ji

′G = − αj (εk1 + γk G12 – βk G13) 

 − βj (εk2 + αk G23 – γk G21) 

− γj (εk3 + βk G31 – αk G32)    (13) 

 
when one multiplies them by αj , βj , γj  and sums, while setting: 
 

j j j
i i i

v v vs s s

α β γ
α β γ

∂ ∂ ∂
+ +

∂ ∂ ∂
= − i i i

j j j
v v vs s s

α β γα β γ
 ∂ ∂ ∂+ + ∂ ∂ ∂ 

= εkv , 
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and observing that each element of the orthogonal determinant: 
 

i i i

j j j

k k k

α β γ
α β γ
α β γ

 = 1 

 
is equal to its own algebraic complement.  Similarly, one can deduce: 
 
 ki

′G =  αk (εj1 + γj G12 – βj G13) 

 − βk (εj2 + αj G23 – γj G21) 

− γk (εj3 + βj G31 – αj G32)             (13) 

 
from the three relations that are analogous to (12) when one splits the second equality in 
(11).  It is then easy to verify that if (11) is satisfied then one will also have: 
 

i

i

x

s

′∂
′∂
= − ji j ik kx x′ ′ ′ ′−G G  − 1 

 
identically; i.e., all of the conditions (6) will also be satisfied in the new system.  Having 
said that, the elimination of the G′ from (12) or from the analogous relations will lead, in 

any case, to the triple of conditions: 
 

αi εi1 + βi εi2 + γi εi3 = (G21 – G31) βi γi + (G32 – G12) γi αi + (G13 – G23) αi βi .  (15) 

 
 
 5. – Those conditions come from the necessity of orienting the new triad of axes in 
such a way that Dupin’s theorem will still be valid in the new system.  Indeed, if one 
applies the fundamental formulas to the direction (αi , βi , γi) then one will find from (12) 
that one can give it the form: 
 

j jiα ′G  = i

js

δα
′∂

,  j jiβ ′G  = i

js

δβ
′∂

,  j jiγ ′G  = i

js

δγ
′∂

, 

 
and it is clear that any relation that is obtained by eliminating ji

′G  from that equality will 

necessarily be contained in (15).  Now, if one sums the predicted equality, after having 
multiplied it by αk , βk , γk , respectively, then one will get the relation: 
 

i i i
k k k

j j js s s

δα δβ δγα β γ+ +
′ ′ ′∂ ∂ ∂

= 0, 
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which one can then consider to be a new form of (15).  Meanwhile, that relation, when 
written in the following way: 

i j i

i j i

i j i

α α δα
β β δβ
γ γ δγ

 = 0, 

 
expresses precisely [cf., IX, form. (19)] the idea that the axis ix′  will generate a 

developable when the origin displaces along the axis jx′ .  It will therefore be true that the 

condition (15) in itself shows how much it is necessary and sufficient for the conservation 
of Dupin’s theorem. 
 
 
 6. – Let us turn to (15) in order to find out how we could deduce a single relation that 
each triple of cosines must satisfy by itself.  First, observe that since: 
 

εiv = k
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k
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k
i k

v

k
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v
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s
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∂
∂
∂
∂
∂
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the left-hand side of (15) can be given the form: 
 

− 

1 2 3

1 2 3

1 2 3

k k k
i k i i i

k k k
i k i i i
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i k i i i

s s s
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s s s
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∂ ∂ ∂+ +
∂ ∂ ∂
∂ ∂ ∂+ +
∂ ∂ ∂
∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
It will then follow that if one lets Fk (α, β, γ) represent the quadratic form: 
 

 

1 2 3

21 31
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k
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k
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k

s s s
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∂ ∂ ∂+ +
∂ ∂ ∂
∂ ∂ ∂+ + + −
∂ ∂ ∂
∂ ∂ ∂+ +
∂ ∂ ∂

∑ G G  
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then the triples αi , βi , γi  and αj , βj , γj will be the two solutions of the system: 
 

Fk (α, β, γ) = 0, α αk + β βk + β βk = 0, α2 + β 2 + γ 2 = 1, 
 
which is to say, those triples will define the directions of those generators of the quadric 
cone Fk = 0 that are in the plane perpendicular to the direction (αj , βj , γj).  Note that the 
two directions must prove to be mutually-perpendicular, and the form Fk will not be 
arbitrary then, but must (as is easy to see) reduce to the sum of the coefficients of the 
quadratic terms, which is to say that one must have: 
 

1 1

k k
k ks s

γ ββ γ
 ∂ ∂− ∂ ∂ 

∑  = 21 31( ) k kβ γ−∑ G G ; 

i.e.: 

23 32
3 2

k k ks s
α β γ

    ∂ ∂+ − +    ∂ ∂   
∑ G G  = 0. 

 
However, that condition is satisfied identically, as one will see immediately when one 
observes that if u is the function that defines the system of surfaces that are normal to the 
direction (αk , βk , γk) then one will have: 
 

αk =
1

1 u

su

∂
∂∆

, βk =
2

1 u

su

∂
∂∆

,  γk =
3

1 u

su

∂
∂∆

. 

 
So far, we have not taken the third condition in (15) into account, which one can give in 
one or the other of the following forms: 
 

Fi (αk , βk , γk) = 0, Fj (αk , βk , γk) = 0. 
 
If one substitutes the values of αi , βi , γi or αj , βj , γj in one of these relations for the ones 
that the preceding system provides as functions of the cosines αk , βk , γk and their first 
derivatives then one must add a relation that is not an identity in those cosines and their 
first and second derivatives, which is a relation that must obviously be satisfied by the 
other triples of cosines, as well.  If one then sets αk , βk , γk equal to the aforementioned 
values, when written as functions of u, then one will get Bonnet’s relation; viz., an 
equation in the third partial derivatives of u that is necessary and sufficient for u to 
define a system of surfaces that belong to a triply-orthogonal system.  Therefore, while 
any simple infinitude of plane curves, along with its orthogonal trajectories, constitutes a 
double system of curves, it happens very rarely that a system of surfaces in three-
dimensional space will belong to a triply-orthogonal system.  That is always explained by 
Dupin’s theorem, since when one is given a system of surfaces, it is very difficult for its 
lines of curvature to be associated in such a way that they would constitute two other 
systems of surfaces that are orthogonal to the given system.  On the contrary, any surface 
belongs to a triply-orthogonal system, because it is enough, for example, to associate it 
with the infinitude of parallel surfaces (XI, § 27) and to construct the other two systems 
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from the developables of the common normals along the lines of curvature.  In other 
words, any system of parallel surfaces belongs to a triply-orthogonal system.  It is also 
easy to see that any system of planes or spheres belongs to a triply-orthogonal system, 
and that is due precisely (XI, § 2) to the complete freedom that one enjoys in the choice 
of the lines of curvature on the plane and the sphere. 
 
 
 7. – In order to calculate the second differential parameter, we need to consider the 
sum Gi of the G that have their second index equal to i, namely: 

 

Gi = Gji + Gki = 
is

∂
∂

 log Qj Qk .   (16) 

If one observes that the system: 
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then when the formulas (13) and (14) are summed, they will give: 
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Having done that, when one repeats the operation (10), one will get: 
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α β∂ ∂+

∂ ∂
 + … + 

2 2

2 3 3 2
i i s s s s

β γ
 ∂ ∂+ ∂ ∂ ∂ ∂ 

+ … 

+ 
1 2 1 1 1 2 1 2

i i i i i i
i i i i i is s s s s s s s

α α α β β βα β γ α β γ
   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂+ + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 + …, 

so 

i
i is s

 ∂ ∂′+ ′ ′∂ ∂ 
G = 2 2

1 2
1 1 2 2

i is s s s
α β

   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   
G G  + … 
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+ 3 2
3 2 2 3

i i s s s s
β γ

    ∂ ∂ ∂ ∂+ + +    ∂ ∂ ∂ ∂   
G G + … 

+ 2

1 2 3 1

( ) ( ) ( )i i i i is s s s
α α β α γ

 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 
 

+ 2

1 2 3 2

( ) ( ) ( )i i i i is s s s
β α β β γ

 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 
 

+ 2

1 2 3 3

( ) ( ) ( )i i i i is s s s
γ α γ β γ

 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 
, 

and finally: 

i
i is s

 ∂ ∂′+ ′ ′∂ ∂ 
∑ G = i

i is s

 ∂ ∂+ ∂ ∂ 
∑ G . 

 
That exhibits the invariant property of the operation: 
 

∆2 = 1 2 3
1 1 2 2 3 3s s s s s s

    ∂ ∂ ∂ ∂ ∂ ∂+ + + + +    ∂ ∂ ∂ ∂ ∂ ∂     
G G G , 

 
which one can also give the form that Lamé indicated: 
 

∆2 = 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 Q Q Q Q Q Q

Q Q Q q Q q q Q q q Q q

     ∂ ∂ ∂ ∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂      
, 

 
from (16). 
 
 
 8. – The relations (9) warn us that the space that has been considered so far, and in 
which we have previously studied curves and surfaces, is not the most general three-
dimensional space that we can imagine.  Indeed, we envision space to be a triply-infinite 
system of points, each of which is individualized by a triple of values that are attributed 
to the parameters q1, q2, q3 and are connected to the infinitely-close points by the 
condition that their distances are expressed by means of formula (2) for an arbitrary 
triple of given functions Q.  The relations that were found between the Q are therefore an 
obvious clue to a particularization of space, and that is, in fact, true as a consequence of 
the hypothesis that we tacitly introduced that it is legitimate to implant a Cartesian 
coordinate system in the space considered, and consequently, there will exist three 
functions x1, x2, x3 of q1, q2, q3 such that the expression (2) will reduce to the form: 
 

ds2 = 2 2 2
1 2 3dx dx dx+ + .     (17) 

 
It is, moreover, easy to recover the Lamé formula as the necessary and sufficient 
condition for the possibility of making that reduction by a direct process.  Here, it is 
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worth recalling that we already encountered (VIII, § 10) a relation in the plane between 
the curvatures of the lines of any doubly-orthogonal system, which was a relation that 
expressed precisely the possibility of reducing the square of the elementary arc-length to 
the form 2 2

1 2dx dx+ , while on a curved surface, no link will necessarily intercede between 

the functions Q.  The space that we study, and that will be distinguished from now on 
from the other ones by calling it linear, will then be represented amongst all the possible 
three-dimensional spaces in the same way that the plane is distinguished amongst the 
curved surfaces, and we then call the nonlinear spaces curved, while deferring the 
definition of the concept of curvature to later. 
 
 
 9. – Just as in the study of curved lines and surfaces we referred the space that 
contained them to a Cartesian system, it will be useful to suppose that the triple infinitude 
of points that are defined by the triple (q1, q2, q3) and arranged according to the law (2) 
belongs to a linear quadruple infinitude of points, or as one says, it is immersed in a four-
dimensional linear space.  Therefore, imagine a four-times-infinite system of points, each 
of which is distinguished by a quadruple of values that are attributed to the parameters q1, 
q2, q3, q4, and is connected to the infinitely-close points by the condition that its distances 
to them should have a square that is expressed by the form 2 2

1 1Q dq  + … + 2 2
4 4Q dq , which 

is assumed to transform linearly into 21dx + … + 2
4dx .  That will reduce to (17) when one 

of the x is held constant, and since any linear orthogonal transformation that is applied to 
the x will leave that form unaltered, one can generally affirm that in a four-dimensional 
linear space any linear equation between the Cartesian coordinates relative to the 
immobile axes represents a three-dimensional linear space.  That will therefore justify 
the term linear space, and at the same time, one will find a way to rapidly adapt the 
geometric terminology and fundamental principles of the ordinary analytic geometry of 
lines and planes to those spaces.  We shall leave to the reader the task of familiarizing 
himself with that extension and of repeating the considerations of § 1 in order to see how 
obligating a function u of the coordinates of the points in a four-dimensional linear space 
to keep a given value amounts to singling out a (generally curved) three-dimensional 
space from that space that admits a normal line at every point M in the direction of the 
most rapid variation of u and a three-dimensional tangent linear space that is determined 
by the line along which the variation of u is infinitesimal of a higher order than the 
displacement of M. 
 
 
 10 – Consider a point that displaces in a four-dimensional linear space along a curve, 
and let M′, M″, … be the positions that it successively occupies at infinitesimal intervals 
when it starts from an arbitrary position M.  The tangent to the curve at M is always 
defined as the limit of the line MM′ when M′ tends to M, and we shall briefly say that the 
linear element MM′ determines the tangent when we intend to mean passing to the limit 
any time that we employ analogous locutions.  That immediately says that two successive 
elements MM′ and M′M″ determine the osculating plane, and three elements determine 
the osculating linear space, which generally varies from one point to the other along the 
curve.  The perpendicular to the osculating space that goes through M can indeed be 
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called the trinormal, which is perpendicular to the three infinitely-close tangents.  It 
belongs to the binormal plane, which is the locus of the infinitude of binormals, or 
perpendiculars to two successive elements through M, just as the binormal plane belongs 
to the normal space in which one finds all of the normals to the tangents through M in a 
double infinitude.  The perpendicular that is raised at M to the trinormal in the binormal 
plane is the principal binormal and the perpendicular to the binormal plane that is raised 
at M in the normal space is the principal normal.  That then constitutes the fundamental 
quadruple of the curve, namely, the tangent trinormal, principal binormal, and principal 
normal.  If those lines, which are pair-wise mutually-perpendicular, are taken to be the 
axes, and if the Cartesian coordinates of a fixed point with respect to them are 
represented by 1x′ , 2x′ , 3x′  , x′, as usual, then one will see in the next chapter that the 

necessary and sufficient conditions for the immobility of the point are: 
 

1dx

ds

′
= 

x

ρ
′
 − 1,      2dx

ds

′
= 3x

τ
′

,      3dx

ds

′
= 2xx

ρ τ
′′

−  ,      
dx

ds

′
= − 31 xx

rρ
′′

− ,  (18) 

 
in which τ, like ρ and r, is a radius of curvature, which will lead us to consider how to 
measure the tendency that the point M has to leave the osculating space more or less 
rapidly as it traverses the curve. 
 
 
 11. – Take a line in a curved space, whose normal at M is determined in the normal 
space by its cosines α1, β1, γ1 with respect to the axes 2x′ , 3x′  , x′, resp.  The other two 

lines, which are perpendicular to each other and to the first one, are determined in the 
normal space by the cosines α2, β2, γ2 and α3, β3, γ3, such that one will have: 
 

1 1 1

2 2 2

3 3 3

α β γ
α β γ
α β γ

 = 1.     (19)  

 
The coordinates of the fixed point with respect to the three normals that were defined just 
now are x1 = 1x′ , and: 

 
x = 1 1 1 2 1x x xα β γ′ ′ ′+ + , x2 = 3 2 3 3 3x x xα β γ′ ′ ′+ + , x3 = 2 2 2 3 2x x xα β γ′ ′ ′+ + . 

 
Having said that, the conditions (18) easily transform into the following ones: 
 

2
2 2 3 3 1 2 1 2 1 3

31
2 2 3 3 3 1 3 1 2

, ,

1, ,

dxdx
x x x x x x

ds ds
dxdx

x x x x x x
ds ds

= − + − = + − 

= − − + − = − +


T T N G T T

G G N G T T

  (20) 

 
in which one sets: 
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N = 1γ
ρ

, G2 = − 3γ
ρ

, G3 = − 2γ
ρ

, 

and also: 

T1 = 1 1

r

α γ
τ

+ − ε1 , T2 = 2 2

r

α γ
τ

+ − ε2 , T3 = 3 3

r

α γ
τ

+ − ε3 . 

 
One will return to the known (XI, § 3) immobility conditions that relate to the surface 
from formulas (20) when one supposes that the third curvature is zero, in which case the 
determinant (19) will become: 

0 sin cos

0 cos sin

1 0 0

ψ ψ
ψ ψ−

−
, 

 
and T1, T2, G2 will be constantly equal to zero. 

 
 
 12. – Now imagine other curves that are tangent to the axes x2 and x3 at M, and 
distinguish everything that pertains to the tangent curve to Mxi by an index i.  Formulas 
(20) will then give rise to the following relations: 
 

(A)  

1
1 1 12 2 13 3 1 12 2 13 3

1 1

2
21 1 2 2 23 3 21 1 2 23 3

2 2

3
31 1 32 2 3 3 31 1 32 2 3 3

3 3

, 1,

, 1,

, 1,

xx
x x x x x x

s s

xx
x x x x x x

s s

xx
x x x x x x

s s

 ∂∂ = − − + = − − − ∂ ∂ 
 ∂∂ = − − = − + − − ∂ ∂ 
 ∂∂ = − + − = − − + − 

∂ ∂ 

N T T N G G

T N T G N G

T T N G G N

 (B) 

 

(C)        

3 2
23 2 23 22 1 32 3 32 33 1

2 3

1 2
31 3 31 33 2 13 1 13 11 2

3 1

2 1
12 1 12 11 3 21 2 21 22 3

1 2

, ,

, ,

, .

x x
x x x x x x

s s

x x
x x x x x x

s s

x x
x x x x x x

s s

 ∂ ∂= + − = − + ∂ ∂ 
 ∂ ∂= + − = − + ∂ ∂ 
 ∂ ∂= + − = − + 

∂ ∂ 

G T T G T T

G T T G T T

G T T G T T

 (C′ ) 

 
It will follow directly from this that for x = x1 = x2 = x3 = 0, the differential quotients: 
 

2

2
1

x

s

∂
∂

,
2

2
2

x

s

∂
∂

, 
2

2
3

x

s

∂
∂

; 
2

2 3

x

s s

∂
∂ ∂

,
2

3 1

x

s s

∂
∂ ∂

,
2

1 2

x

s s

∂
∂ ∂

; 
2

3 2

x

s s

∂
∂ ∂

,
2

1 3

x

s s

∂
∂ ∂

,
2

2 1

x

s s

∂
∂ ∂

 

 
will take the values: 
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N1 , N2 , N3 ;  T23 , T31 , T12 ;  − T32 , − T13 , − T21 , 

 
and that the analogous values for the functions x1 = x2 = x3 will be: 
 
 0, − G21 − G31 ; − T22 0 G12 ; T33 G13 0 

 − G12 0 − G32 ; G23 − T33 0 ; 0 T11 G21 

 − G13 − G23 0  ; 0 G31 − T11 ; − T33 0 T22 . 

 
Now, when the known condition: 
 

2 2

i j j is s s s

∂ ∂−
∂ ∂ ∂ ∂

= 
log logj i

i j j i

Q Q

s s s s

∂ ∂∂ ∂−
∂ ∂ ∂ ∂

   (21) 

 
is applied to the functions x, it will immediately give Tij + Tji = 0, and one can then set: 

 
T1 = T31 = − T23 , T2 = T13 = − T31 , T3 = T21 = − T12 . 

 
However, when that condition is applied to the functions x1, x2, x3 , one will say that the 
Gij are once more expressed by the formulas (3), and in addition, one has the equalities Tii  

= 0, in which one finds Dupin’s theorem.  With that, the immobility conditions can be put 
into their ultimate form.  (B) will remain unchanged, but (A) will become: 
 

1 1 3 2 2 3
1

3 1 2 2 1 3
2

2 1 1 2 3 3
3

,

,

,

x
x T x T x

s

x
T x x T x

s

x
T x T x x

s

 ∂ = − + + ∂
 ∂ = − + ∂
 ∂ = + −

∂

N

N

N

 

 
while (C) and (C′ ) will reduce to the simple form: 
 

32 1
11 1 2 23 2 1 31 3 2

1 2 3

3 1 2
13 1 2 31 2 3 32 2 1

1 2 3

, , ,

, , .

xx x
x T x x T x x T x

s s s

x x x
x T x x T x x T x

s s s

∂∂ ∂ = − = + = − ∂ ∂ ∂
 ∂ ∂ ∂ = − = − = −
 ∂ ∂ ∂

G G G

G G G

 

 
One notes that one can also give (A) the form: 
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1

x

s

∂
∂

 = − 
1

1

2 x

∂Φ
∂

, 
2

x

s

∂
∂

 = − 
2

1

2 x

∂Φ
∂

, 
3

x

s

∂
∂

 = − 
3

1

2 x

∂Φ
∂

,  (22) 

 
in which Φ represents the quadratic form that is defined by the discriminant: 
 

K = 
1 3 2

3 2 1

2 1 3

T T

T T

T T

− −
− −
− −

N

N

N

, 

 
which has great importance in the study of curvature.  We shall soon see that K can be 
expressed in terms of only the curvatures G.  To that end, we agree to make use of the 

reciprocal determinant, whose elements are represented in the following way: 
 
 K11 = N2 N3 − 2

1T , K23 = K32 = N1 T1 + T 2 T3 , 

 K32 = N3 N1 − 2
2T , K31 = K13 = N2 T2 + T 3 T1 , 

 K33 = N1 N2 − 2
3T , K12 = K21 = N3 T3 + T 1 T2 . 

 
 
 13. – Before we go further, we shall take advantage of the preceding results in order 
to show how one extends Euler’s theorem (XI, § 10) to three-dimensional spaces.  The 
curvature of the planar normal section whose tangent is determined in the tangent linear 
space by the direction cosines α, β, γ is always measured by d 2x / ds2 for x = x1 = x2 = x3 
= 0, in which: 

d

ds
= 

1 2 3s s s
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
. 

It is then given by: 
2 2

2 2
2 2
1 2

x x

s s
α β∂ ∂+

∂ ∂
+ … + 

2 2

2 3 3 2

x x

s s s s
βγ

 ∂ ∂+ ∂ ∂ ∂ ∂ 
 + … 

 
for x = x1 = x2 = x3 = 0, namely: 

1

ρ
= Φ (α, β, γ). 

 
The discussion of that formula will prove to be completely analogous to the discussion of 
the one the theory of surfaces, and in particular, it will lead one to consider three 
principal curvatures, which correspond to the axes of the quadric cone Φ = 0, which is 
the locus of the tangents to the infinitude of asymptotics (real or imaginary) that pass 
through any point.  The product of the principal curvatures is precisely K and can serve to 
measure the total curvature, while the orthogonal invariants: 
 

1
3 (N1 + N2 + N3), 1

3 (K11 + K22 + K33) 
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measure two mean curvatures of the space around the point considered.  If one would 
wish that the normal to the space should generate a developable then that would lead one 
to express the idea that the major determinants of the matrix: 
 

0

0

1 0 0 0

α β γ
α β γ

∂Φ ∂Φ ∂Φ
∂ ∂ ∂

 

 
should all be zero, which is to say that one must have 
 

α
∂Φ
∂

: α = 
β

∂Φ
∂

: β = 
γ

∂Φ
∂

: γ , 

 
and one would then find the axes of Φ.  The systems of curvature are then characterized 
by the constant vanishing of T1 , T2 , T3 .  The relations (A), (C), and (C′ ) reduce to the 
exceedingly simple forms for them: 
 

i

x

s

∂
∂

= − Ni xi ,  j

i

x

s

∂
∂

= Gij xi . 

 
 
 14. – We now return to the condition (21), which can now be put into the form (7), 
and apply it to the function x: 
 

ji
is

 ∂ + ∂ 
G (− Nj xj + Ti xk + Tk xi) = ij

js

 ∂ +  ∂ 
G (− Ni xi + Tk xj + Tj xk). 

 
That equality will reduce to a linear relation between the x by means of the immobility 
conditions, and by the arbitrariness in those variables, that will give rise to the following 
groups of formulas: 

(α)    

32
2 32 3 32 1 21 31

2 3

3 1
3 13 1 31 2 32 12

3 1

1 2
1 21 2 12 3 13 23

1 2

( ),

( ),

( ),

TT
T T T

s s

T T
T T T

s s

T T
T T T

s s

 ∂∂ − + − = − ∂ ∂
 ∂ ∂− + − = − ∂ ∂
 ∂ ∂− + − = −

∂ ∂

G G G G

G G G G

G G G G
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(β)    

3 1
1 23 3 31 2 3 32

2 3

1 2
2 31 1 12 3 1 13

3 1

32
3 12 2 23 1 2 21

1 2

2 ( ) ,

2 ( ) ,

2 ( ) ,

T
T T

s s

T
T T

s s

T
T T

s s

 ∂ ∂+ + + = − ∂ ∂
 ∂ ∂+ + + = − ∂ ∂
 ∂∂ + + + = −

∂ ∂

N
G G N N G

N
G G N N G

N
G G N N G

 

 

(β′ )   

2 1
1 32 2 21 3 2 23

3 2

3 2
2 13 3 32 1 3 31

1 3

31
3 21 1 13 2 1 12

2 1

2 ( ) ,

2 ( ) ,

2 ( ) .

T
T T

s s

T
T T

s s

T
T T

s s

 ∂ ∂+ + + = − ∂ ∂
 ∂ ∂+ + + = − ∂ ∂
 ∂∂ + + + = −

∂ ∂

N
G G N N G

N
G G N N G

N
G G N N G

 

 
Similarly, if one applies the condition (7) to the variables xi then one will get the 
following formulas: 

(γ )    

2 232 23
22 23 21 31 11

2 3

2 213 31
13 31 32 12 22

3 1

2 221 12
21 12 13 23 33

1 2

,

,

,

K
s s

K
s s

K
s s

 ∂ ∂+ + + + = − ∂ ∂
 ∂ ∂+ + + + = − ∂ ∂
 ∂ ∂+ + + + = −

∂ ∂

G G
G G G G

G G
G G G G

G G
G G G G

 

 

(δ )    

13 12
13 23 12 12 32 13 23

3 3

31 23
21 31 23 23 13 21 31

3 1

32 31
32 12 31 31 21 32 12

1 2

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

K
s s

K
s s

K
s s

 ∂ ∂+ − = + − = ∂ ∂
 ∂ ∂+ − = + − = ∂ ∂
 ∂ ∂+ − = + − =

∂ ∂

G G
G G G G G G

G G
G G G G G G

G G
G G G G G G

 

 
Here, one should note that, thanks to (γ) and (δ), the total curvature can be expressed in 
terms of only G, since one has: 

K2 = 
11 12 13

21 22 23

31 32 33

K K K

K K K

K K K

, 

 
namely, if one recalls the observation that was made at the end of § 3, K is a function of 
only Q and its first and second partial derivatives.  When one then applies the condition 
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(7) to any other x, one will get back to the formulas that were obtained already.  
Meanwhile, the formulas (α) reduce to just two distinct ones, and (δ) will constitute just 
one triple, in substance, by virtue of the identity (8).  One therefore has fourteen 
formulas, in all, which will take the place of the three Codazzi formulas in the study of 
surfaces for the study of the three-dimensional curved spaces that are immersed in a four-
dimensional linear space. 
 
 
 15. – Consider, for example, a spherical space – i.e., the locus of points in a four-
dimensional linear space that are equidistant from a fixed point.  The coordinates of that 
point must constantly satisfy the relation: 
 

2 2 2 2
1 2 3x x x x+ + + = R2 

 
and the immobility conditions.  If one differentiates that relation with respect to the three 
coordinate arcs, in turn, then one will get x1 = x2 = x3 = 0, and consequently x = R.  If one 
substitutes those results into the immobility conditions then one will find that one must 
have: 

N1 = N2 = N3 = 
1

R
,  T1 = T2 = T3 = 0. 

 
One will then see that the formulas (α), (β), and (β′ ) are satisfied identically, in such a 
way that only the conditions (γ) and (δ) will remain, in which: 
 

K11 = K22 = K33 = 
2

1

R
,  K23 = K31 = K12 = 0.   (23) 

 
The six relations thus-obtained then characterize the spherical spaces.  They are due to 
Beltrami , and when R increases to infinity, they will become the six Lamé [form. (9)] 
characteristics of the linear space.  Naturally, it is not possible to define a Cartesian 
coordinate system in a spherical space, but one can always establish a curvilinear 
coordinate system in which the triple of functions Q reduces to a single function Q, as it 
does in the Cartesian system.  In order for that to happen then, it is necessary and 
sufficient that the conditions (23) should be satisfied when one sets the K equal to the 
values that they get from formulas (γ) and (δ), namely: 
 

Kii = − 
2

2 2

1 (1/ ) 1 (1/ )

i i i

Q Q
Q

Q q Q q q

 ∂ ∂ ∂+  ∂ ∂ ∂ 
∑ ,  Kij = − 

2(1/ )

i j

Q

q q

∂
∂ ∂

. 

 
An easy integration will lead one to take: 
 

1

Q
= 1 + 

2 2 2
1 2 3

24

q q q

R

+ +
, 
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and one will arrive at a coordinate system in which the elementary arc-length is given by 
the formula: 

ds2 = 
2 2 2
1 2 3

2
2 2 2
1 2 32

1
1 ( )

4

dq dq dq

q q q
R

+ +
 + + + 
 

. 

 
It is the system of stereographic coordinates that Riemann pointed out and that 
Beltrami  utilized for the study of spaces of constant curvature. 
 
 

__________ 
 



CHAPTER XVI 
 

CURVES IN HYPERSPACE 
 
 

 1. – Consider the successive positions M′, M″, … of a point along a curve (viz., a 
continuous simple infinitude of points in an n-dimensional linear space) that are infinitely 
close to the arbitrary initial position M.  As in § 10 of the preceding chapter, say that the 
element MM′ determines the tangent, which will always be assumed to the x1-axis.  Take 
the (n – 1)-normal to be the x2-axis; i.e., the line through M that is perpendicular to the n 
– 1 consecutive elements MM′, M′M″, …  Obviously, that line is in the plane that is 
determined by all of the perpendiculars through M to the n – 2 consecutive elements, 
among which one selects the x3-axis to be the one that one can very well call the (n – 2)-
principal normal, since it is perpendicular to the (n – 1)-normal.  The x2 and x3 axes, 
along with all of the (n – 3)-normals are in a three-dimensional linear space, in which one 
agrees to take the x4-axis to be the perpendicular to the x2 x3-plane.  If one always 
proceeds in the same way then one will eventually choose the xn−1-axis to be the principal 
binormal, which is determined in the (n – 2-dimensional) binormal linear space by the 
demand that it must be perpendicular to the preceding axes.  Finally, in the (n – 1-
dimensional) normal linear space that includes all of the normals, one distinguishes the 
principal normal from among them and chooses it to be the xn-axis, which is 
perpendicular to the binormal space.  Let αi1, …, αi2, …, αin be the direction cosines of 
the xi-axis with respect to any system of n pair-wise mutually-perpendicular axes, and 
note that the definition that was given of that axis translates into the relations: 
 

1

n
j

iv iv
v

dα α
=
∑ = 0  for 1 ≤ j ≤ n – 1,   (1) 

 

1

n

iv jv
v

α α
=
∑ = 0   for 1 ≤ j ≤ i – 1.   (2) 

 
In particular, if one differentiates the equality: 
 

2 2 2
1 2 3i i iα α α+ + + … + 2

inα  = 1     (3) 

then one will get: 

1

n

iv jv
v

dα α
=
∑ = 0  for 1 ≤ i ≤ i – 1    (4) 

 
from (1) with j = 1.  Meanwhile, the relations (2) and (3) say that the determinant that is 
defined by the general element αij is orthogonal: If one so desires, its value can be equal 
to unity, and each element is equal to its own algebraic complement.  Having done that, 
one will get from (4) that: 

dα1v = ε1 αnv       (5) 
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for all values of v, in which ε1 represents the angle between two infinitely-close tangents.  
More generally, if one sets: 

1

n

jv iv
v

dα α
=
∑ = εij , 

in such a way that: 
εij = 0,  εij = − εji ,    (6) 

then one will have: 

dαij = 
1

n

iv vi
v

ε α
=
∑ .     (7) 

One gets from (5) for i = 1 and: 
 

ε11 = ε12 = ε13 = … = ε1,n−1 = 0, ε1n = ε1 ,   (8) 
 
from which, it will result that: 
 

ε11 = ε21 = ε31 = … = εn−1,1 = 0, εn1 = − ε1 ,   (9) 
by virtue of (6). 
 
 
 2. – Thanks to (7), one succeeds in expressing the successive differentials of the 
direction cosines as linear functions of those cosines.  If one starts with the angle εij and 
temporarily represents it by (1)

ijε , and one then calculates a succession of quantities (2)
ijε , 

(3)
ijε , … according to the rule: 

( 1)k
ijε +  = ( ) ( )

1

n
k k

ij iv vj
v

dε ε ε
=

+∑     (10) 

 
then one will find upon successively differentiating (7) and repeatedly employing that 
formula that: 

d k αij =
( )

1

n
k

iv vj
v

ε α
=
∑ . 

Now, (1) will become: 

( )
1

, 1

n
k
i vj ij

i j

ε α α
=
∑ = 0, 

 
which is to say, if one observes (3) and (4), that: 
 

( )k
ivε = 0  for 2 ≤ v ≤ n – k. 

 
If one successively sets k = 1, 2, 3, … and substitutes the ultimate result in (10) then one 
will get: 

1 1 2 2 3

1 2, , ,
k

k

n

ii i i i i i v
i i i

ε ε ε ε∑
⋯

⋯ = 0 2 ≤ v ≤ n – k − 1.  (11) 
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If one sets k = 1, for example, then one will find that: 
 

1

n

ii iv
i

ε ε
=
∑ = 0; 

i.e., by virtue of (8): 
εnv = 0  for 2 ≤ v ≤ n − 2. 

 
Similarly, for k = 2, the relation (11) will become: 
 

1
1

n

i ij jv
i

ε ε ε
=
∑ = 0, 

 
and from that, if one takes the preceding result into account then one will get: 
 

εn−1,v = 0 for 2 ≤ v ≤ n − 3. 
 
If one proceeds in that way then one will expect that in general one will have: 
 

εn−k+1,v = 0 for 2 ≤ v ≤ n − k − 1.   (12) 
 
Suppose that this equality is true, along with the ones that preceded it, and prove that it 
will still be true when one changes k into k + 1.  Set ik+1 = j, so the relation (11) will give: 
 

1 1 2 2 3

1 21 , , ,

( )
k

k

n n

jv ii i i i i i j
j i i i

ε ε ε ε ε
=
∑ ∑

⋯

⋯ = 0 for 2 ≤ v ≤ n − k − 2. 

 
The sum over k is zero for j = 2, 3, 4, …, n – k – 1.  On the other hand, by virtue of (12) 
and the preceding equality, εjv will be zero for j = n – k + 1, n – k + 2, …, n − 1, n.  All 
that remain then will be the terms that correspond to the values j = 1 and j = n − k: The 
first one is zero by virtue of (8), and one will then have: 
 

εn−k,v = 0 for 2 ≤ v ≤ n − k − 2 ; 
 
i.e., one will come back to (12), in which one will find that k has changed into k + 1. 
 
 
 3. – Now, take the n principal lines to be the axes and consider the positions that they 
will occupy when the origin M moves to M′.  It is clear that εij represents the cosine of the 
angle that the new axis ix′  makes with xi when i ≠ j.  With that, formulas (12) will take on 

a geometric interpretation that one can easily utilize for the direct proof of those 
formulas.  Meanwhile, if one sets: 
 

ε2,n = ε2 , ε3,n−1 = ε3 , ε4,n−1 = ε4 , …, εn−1,3 = εn−1 
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then formulas (12), (8), and (9) will say that the direction cosines of the principal lines 
that have their origins at M′ with respect to the ones that go through M are given by the 
following table: 

1 2 3 2 1

1 1

2 1

3 1

2 2

1 3 2

1 2

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 1

0 0 0 1

n n n

n

n

n

n

n

x x x x x x

x

x

x

x

x

x

ε
ε

ε

ε
ε ε

ε ε

− −

−

−

−

−

′
′
′ −

′
′ −
′ − −

⋯

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

⋯

 

 
Having done that, let x1, x2, …, xn be the coordinates of a point P with respect to the 
moving axes.  Let δx be the absolute variation of an x coordinate in space when M passes 
to M′ and P simultaneously passes to P′.  Let dx be the variation that the coordinate 
experiences with respect to the moving axes.  If one projects M′ P′ onto the axes through 
M then one will get: 
 

δx1 = dx1 – ε1 (xn + dxn) + ds,  δx2 = dx2 – εn−1 (xn + dxn), etc., 
or 

3 11 1 2 2

1 1 1 2

1 1

2 1

1, , ,

( 3,4, , 1),

n n n n n

n

i i i i

n i n i

x x x dx x xx dx x dx

ds ds ds ds ds ds

x dx x x
i n

ds ds

δδ δ
ρ ρ ρ ρ

δ
ρ ρ

−

−

− +

− + − +

 = − + = − = + +


 = + − = −


…

 (13) 

 
after having set: 

ds = ε1 ρ1 = ε2 ρ2 = ε3 ρ3 = … = εn−1 ρn−1 .   (14) 
 
 
 4. – (13) are the fundamental formulas for the intrinsic analysis of the curves that are 
contained in an n-dimensional linear space.  Those curves can then be associated with n – 
1 curvatures that one can measure by means of the radii ρ.  When the point M deviates 
from the tangent as it traverses the curve, it will produce the first curvature.  One has a 
second curvature for the greater or lesser tendency of the point M to deviate from the 
osculating plane, and then a third one that is due to the tendency that M has to leave the 
osculating space that is determined by the three consecutive elements MM′, M′M″, 
M″M″′, and one continues in that way until the deviation of M from the (n – 1-
dimensional linear) osculating space that is perpendicular to the (n – 1)-normal implies an 
(n − 1)th, and final, curvature for the line.  Formulas (13) are also valid when one replaces 
the x with the cosines that define an arbitrary direction, as long as one removes the 1 from 
the first one.  In particular, when the given formulas are applied to the xn−i+1-axis, one will 
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easily find that the angle ei between two infinitely-close i-normals is given by the 
formula: 

2
ie = 2 2

1i iε ε ++ , 

  
which will also be true for i = n – 1 if one agrees to let εn = 0, as one must suppose if one 
briefly thinks of the space considered as being immersed in a linear space of higher 
dimension.  If, in addition, one calls the angle (= ε1) between two infinitely-close 
tangents e0 then it will be interesting to note the following theorem of Lancret: 
 

2 2 2
0 1 2e e e− + − … ± 2

1ne − = 0. 

 
 

 5. – The proof of formula (13) can be facilitated by some very simple mechanical 
considerations that have the advantage of showing what the path is that one must follow 
in order to obtain more general analogous formulas that refer to nonlinear spaces.  When 
one attributes arbitrary variations δx to the coordinates x in an n-dimensional space in 
which one has: 

ds2 = 2 2 2
1 2 ndx dx dx+ + +⋯ , 

the last relations will give: 

ds δds = 1
2

,

ji
i j

i j j i

xx
dx dx

x x

δδ ∂∂ +  ∂ ∂ 
∑ , 

 
and from this, one will deduce that the conditions: 
 

ji

j i

xx

x x

δδ ∂∂ +
∂ ∂

= 0 

 
will be necessary, and when taken altogether, sufficient for rigidity.  If one integrates 
them then one will get: 

δxi = ai + ωi1 x1 + ωi2 x2 + … + ωin xn , 
 
in which ωij + ωji = 0.  Therefore, any infinitesimal rigid motion will result from a 
translation (a1, a2, …, an) and a rotation that decomposes into n (n – 1) / 2 rotations 
parallel to the coordinate planes, in such a way that for each component rotation, any 
point of the system will move in a plane that is parallel to a coordinate plane, and will 
submit to a rotation ωij in it that is computed from xj with respect to xi .  Having said that, 
the system of n principal lines will be considered to be rigid, and one will then study the 
passage from the position that it occupies at a point M to the one that it takes at an 
infinitely-close point M′.  The (n – i + 1)-principal normal xi will remain perpendicular to 
n – i consecutive elements, and it must therefore move in the space that is normal to the i 
dimensions x2 x3 , …, xi xi+1 , which are perpendicular to the remaining axes xi+2 , xi+3, …, 
xn .  It will then follow that ωij = 0 for: 
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i > 1, j = i + 2, i + 3, …, n. 
 

If one then observes that ωij = − ωji then one can add that ωij = 0 for: 
 

j > 1, i = j + 2, j + 3, …, n. 
 

Therefore, in summary, one will have ωij = 0 for: 
 

i > 1, j = 2, 3, …, i – 3, i – 2, i, i + 2, i + 3, …, n – 1, n. 
 

As for x1, it is clear that since it must remain perpendicular to all of the multinormals, it 
cannot leave the osculating space x1 xn ; let ε1 be the angle through which it is rotated 
towards xn .  One will have: 
 
 ωn1 =    ε1 , ωn1 = ω31 = … = ωn−1,1 = 0, 
 ω1n = − ε1 , ω12 = ω13 = … = ω1,n−1 = 0. 
 
One then lets εn−1,  εn−2, …, ε2 be the angles through which x2, x3, …, xn−1 are rotated 
towards x3, x4, …, xn, respectively, in such a way that: 
 

ωi+1,i = − ωi,i+1 = εn−i+1 . 
 

The rigid system that is individuated by the n principal lines is then subjected to the 
rotations that are defined by the angles ω that were just determined, along with the 
translation ds along x1, in its passage from M to M′.  As for the point (x1, x2, …, xn), 
instead of being invariably coupled to the n lines, it suffers the displacement (dx1, dx2, …, 
dxn) with respect to them, while the components of the absolute displacement in space 
will be: 

1 1 1 2 2 1 3 1 1 2 1

1 1 1

, , ,

( 3,4, , 1),
n n n n n

i i n i n i i

x dx x ds x dx x x dx x x

x dx x x i n

δ ε δ ε δ ε ε
δ ε ε

− −

− − − +

= − + = − = + +
 = + − = − …

 

 
by virtue of the formula that was proved to begin with and the last results that were 
obtained.  If this is divided by (14) then that will give the fundamental formulas 
precisely. 
 
 
 6. – Let us pass on to see how we might easily extend the principles of barycentric 
analysis (VII, § 1) to linear spaces of more than two dimensions.  Fix the points A1, A2, 
…, An+1 in an n-dimensional linear space, which one can consider to be the vertices of the 
simplest n-dimensional polyhedral entity, to which, following Stringham, we give the 
name of n-tuple (n + 1)-hedron.  Let xi1, x i2, …, x in be the coordinates of Ai with respect 
to the moving axes.  An arbitrary point M can always be assumed to be defined in space 
as the barycenter of a certain system of n + 1 masses (viz., barycentric coordinates) that 
are applied to the vertices of the fundamental (n + 1)-hedroid and satisfy the relation: 
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µ1 + µ2 + µ3 + … + µn+1 = 1, 
 
in such a way that its Cartesian coordinates relative to an arbitrary system of orthogonal 
axes will be given by the formula: 
 

xh = µ1 x1h + µ2 x2h + µ3 x2h + … + µn+1 xn+1,h . 
Meanwhile, one has: 
 

1
2

,

( )
n

ik jk i j
i j

x x d dµ µ
+

−∑ = 
21 1 1

2

1 1 1

2 2
n n n

i ik i ik i
i i i

d x d x dµ µ µ
+ + +

= = =

 ⋅ −  
 

∑ ∑ ∑  

 
identically.  By virtue of the preceding equality, the right-hand side reduces to − 22 kdx , 

and therefore if one sets k = 1, 2, 3, …, n then when one sums, one will get: 
 

ds2 = −
1

21
2

,

n

ij i j
i j

a d dµ µ
+

∑ , 

 
in which aij represents the length of the edge Ai Aj , which is to say that one has set: 
 

2
ija  = (xi1 – xj1)

2 + (xi2 – xj2)
2 + … + (xin – xjn)

2. 

 
If the coordinates µ are given, for example, as functions of one parameter t, which might 
represent time, if one so desires, then the preceding formula will immediately give rise to 
the square of the velocity: 

κ 2 = −
1

21
2

,

n
ji

ij
i j

dd
a

dt dt

µµ+

∑ .    (15) 

 
 
 7. – Consider the Wronskian determinant: 
 

W = 

2
1 1 1

1 2

2
2 2 2

2 2

2
1 1 1

1 2

n

n

n

n

n
n n n

n n

d d d

ds ds ds

d d d

ds ds ds

d d d

ds ds ds

µ µ µµ

µ µ µµ

µ µ µµ + + +
+

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

 

 
and multiply it by the constant: 
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an = 

11 11 1

21 22 2

1,1 1,2 1,

1

1

1

n

n

n n n n

x x x

x x x

x x x+ + +

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

, 

 
which can be made to depend upon only aij, since one finds that: 
 

(− 2a2)n = − 

2 2 2
11 12 1, 1
2 2 2
21 22 2, 1

2 2 2
1,1 1,2 1, 1

0 1 1 1

1

1

1

n

n

n n n n

a a a

a a a

a a a

+

+

+ + + +

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

 

 
by using simple transformations that are not necessary to reproduce, since it is pointless 
to prove that an : n! measures the volume of the fundamental (n + 1)-hedroid.  
Meanwhile, the aforementioned multiplication will yield the value of anW in the form of 
a determinant of order n whose general element is: 
 

σij = 
1

1

in
k

kj i
k

d
x

ds

µ+

=
∑ . 

 
Having done that, if one applies the fundamental formulas to the points A then one will 
get: 

, 11 2 3 1

1 1 1 2

, 1 , 1

1 2

1, , ,

( 3,4, , 1),

i ni in i i in i

n

ij i j i j

n j n j

xdx x dx x dx x

ds ds ds

dx x x
j n

ds

ρ ρ ρ ρ

ρ ρ

−

−

+ −

− + − +

  
= − = = − +  

  

 = − = −



…

 

 
which will yield some other equations: 
 

, 11 2 3 1
1,1 1,2 1,

1 1 2 1

, 1 , 1
1,

2 1

, , ,

( 3,4, , 1),

i ni in i i in i
i i i n

n

ij i j i j
i j

n j n j

d d d

ds ds ds

d
j n

ds

σσ σ σ σ σ σσ σ σ
ρ ρ ρ ρ

σ σ σ
σ

ρ ρ

−
+ + +

−

− +
+

− + − +


= − = − = + −



 = + − = −



…

  (16) 

 
by means of which, if one knows the first column of the determinant anW then one can 
calculate all of the other ones.  Moreover, a first derivation of the defining equality: 
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1

1

n

i ij
i

xµ
+

=
∑ = 0  (j = 1, 2, 3…, n) 

will show that: 
σ11 = 1, σ12 = σ13 = … = σ1n = 0 . 

(16) will then give: 

σ21 = σ22 = σ23 = … = σ2,n−1 = 0, σ2,n = 
1

1

ρ
, 

 so 

σ31 = −
2
1

1

ρ
, σ32 = σ33 = … = σ3,n−2 = 0, σ3,n−1 = −

1 2

1

ρ ρ
, σ3,n = −

1

1d

ds ρ
, 

 
etc.  One expects that one must have: 
 

σij = 0  for 2 ≤ j ≤ n – i + 1,   (18) 
 
such that if one observes (17) then one will have: 
 

σi+1,j = 0 for 2 ≤ j ≤ n – 1, 
 
and that is precisely (17) when one substitutes i + 1 for i.  Therefore: 
 

a nW = 

2,

31 3, 1 3,

41 4, 2 4, 1 4,

1,1 1,3 1, 2 1, 1 1,

,1 ,2 ,3 , 2 , 1 ,

1 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0

0

n

n n

n n n

n n n n n n n n

n n n n n n n n n

σ
σ σ σ
σ σ σ σ

σ σ σ σ σ
σ σ σ σ σ σ

−

− −

− − − − − − −

− −

⋯

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

, 

i.e.: 
anW = (− 1)(n – 1)(n – 2)/2 ⋅⋅⋅⋅ σ2,n σ3,n−1 σ4,n−2 … σn,2 .   (19) 

 
On the other hand, formula (18) will give: 
 

σi+1,n−i+1 = − , 2i n i

i

σ
ρ

− +  

 
for j = n – i + 1, and one will deduce from this that: 
 

σi+1,n−i+1 =
1

1 2 3

( 1)i

iρ ρ ρ ρ

−−
⋯

. 
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Finally, if one substitutes that result in (19) then one will arrive at the following 
noteworthy formula: 

1 2 3
1 2 3

n n n na ρ ρ ρ− − − … ρn−1 W = 1.    (20) 

 
 
 8. – The last formula always gives one relation between the n − 1 curvatures of a 
given curve, and one will need n – 2 more in order to be able to establish the intrinsic 
equations of that curve.  It is clear that the relation (20) will suffice in the case of a plane 
curve: The required intrinsic equation will then be obtained by eliminating t from the 
equalities: 

a2 ρ W = 1, s = dtκ∫ , 

 
in which one first thinks of replacing κ and W as functions of t by means of formula (15), 
as well as: 

κn(n + 1)/2 W = 

2
1 1 1

1 2

2
2 2 2

2 2

2
1 1 1

1 2

n

n

n

n

n
n n n

n n

d d d

dt dt dt

d d d

dt dt dt

d d d

dt dt dt

µ µ µµ

µ µ µµ

µ µ µµ + + +
+

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

, 

 
which is a simple consequence of the definition of W.  One will get the relation: 
 

a3 ρ2 r W = 1,     (21) 
 
and one needs one more.  In order to find it, consider the Wronskian matrix: 
 

2 3 4
1 1 1 1

1 2 3 4

2 4 4
4 4 4 4

4 2 3 4

d d d d

ds ds ds ds

d d d d

ds ds ds ds

µ µ µ µµ

µ µ µ µµ

⋯ ⋯ ⋯ ⋯ ⋯  ,    (22) 

 
which will become W when one suppresses the last column, and dW / ds when one 
suppresses the penultimate one.  Furthermore, let W′ be the determinant that is obtained 
by suppressing the second column instead, which is a determinant that can be calculated 
easily as a function of t, since one will have: 
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κ10 W′ = 

2 3 4

2 3 4

2 3 4
1 1 1 1

1 2 3 4

2 4 4
4 4 4 4

4 2 3 4

0
ds d s d s d s

dt dt dt dt

d d d d

dt dt dt dt

d d d d

dt dt dt dt

µ µ µ µµ

µ µ µ µµ

⋯ ⋯ ⋯ ⋯ ⋯

, 

 
by virtue of a general property of the Wronskian.  In order for the equalities: 
 

1i ixµ∑ = 0,  1
i

i

d
x

ds

µ
∑ = 1,  

2

1 2
i

i

d
x

ds

µ
∑ = 0,  

3

1 3
i

i

d
x

ds

µ
∑ = − 2

1

ρ
,  

4

1 4
i

i

d
x

ds

µ
∑ = 3

3 d

ds

ρ
ρ

, 

 
in which i goes from 1 to 4, to coexist, it is necessary that the determinant that is formed 
by adding the row: 

0, 1, 0,     − 2

1

ρ
,     3

3 d

ds

ρ
ρ

 

 
to the matrix (22) should be zero – i.e., that one should have: 
 

ρ3 W′ = 
d

ds
(ρ3 W),     (23) 

from which, one infers that: 

2

1

ρ
= − 2/3 3/22

3W W W dtκ−′∫ ,    (24) 

 
as long as W and W′ are non-zero.  When one replaces κ, W, W′ with their expressions as 
functions of t, the last formula will make ρ known, and one will then get r from (21).  
Moreover, one will also arrive at the equation that gave us (21) from (24) by an 
analogous procedure.  Indeed, if one multiplies the determinants a3 and W′ together then 
one will get: 

a3 ρ5 W′ = 
d

ds r

ρ
, 

 
and one will get back to (23) from this formula by eliminating r by means of (21).  In 
addition, one will see that W′ = 0 is the necessary and sufficient condition for the curve to 
be a helix, while W = 0 is the condition for the curve to be planar.  The reader can apply 
the preceding formulas to the study of the tetrahedral potential (cf., VII, § 20) as an 
exercise. 
 

___________ 
 



CHAPTER XVII 
 

HYPERSPACES 
 
 

 1. – Consider a line in an n-dimensional curved space that is immersed in a linear 
space and recall that by virtue of the fundamental formulas that were established in the 
preceding chapter, the coordinates of a fixed point with respect to the n + 1 principal lines 
of the curve are functions of the arc length whose derivatives can be expressed linearly in 
those coordinates.  It is clear that this property will be preserved when the n normal lines, 
which are regarded as concurrent, rotate in their space until one of them becomes normal 
to the curved space in question.  If one imagines n – 1 curves in it that are tangents to the 
other n – 1 lines then if one calls the coordinates of the fixed point x0, x1, …, xn , one can 
write: 

i

j

x

s

∂
∂

= ( )

0

n
j

ik k ij
k

A x e
=

−∑ ,     (1) 

 
in which eij is equal to 1 or 0 according to whether i = j or i ≠ j, resp.  We shall soon see 
that the n (n + 1)2 coefficients A reduce to just n (3n – 1) / 2 linearly-independent ones 
and that n (n – 1)(5n – 1) / 4  substantially-diverse relations exist among them and their 
derivatives that are analogous to the formulas that Codazzi established for the surface. 
 
 
 2. Dupin’s theorem. – First of all, note that formulas (1) will still be true when eij is 
always zero if the x have the significance of the direction cosines, in which case, one 
must have: 

0 1 2
0 1 2

k k k

x x x
x x x

s s s

∂ ∂ ∂+ +
∂ ∂ ∂

+ … + n
n

k

x
x

s

∂
∂

= 0 

identically; hence: 
( ) ( )k k
ij jiA A+ = 0,      (2) 

 
and in particular, ( )k

iiA = 0.  On the other hand, if one differentiates (1) then one will get: 

 
2

k

i j

x

s s

∂
∂ ∂

= 
( )

( ) ( ) ( )

0 ,

in
i j ikl

l kl lm m kj
l l mj

A
x A A x A

s=

∂ + −
∂∑ ∑ ,   (3) 

 
and then, for x0 = x1 = … = xn = 0: 
 

i

j

x

s

∂
∂

= − eij ,  
2

k

i j

x

s s

∂
∂ ∂

= − ( )i
kjA . 

 
Having done that, the integrability conditions: 



278 Lessons on Intrinsic Geometry 

2 2
k k

i j j i

x x

s s s s

∂ ∂−
∂ ∂ ∂ ∂

 = 
log logj k i k

i j j i

Q x Q x

s s s s

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

  (4) 

will become: 

( ) ( )j i
ki kjA A− = 

log logj j
ki kj

i i

Q Q
e e

s s

∂ ∂
−

∂ ∂
, 

and in particular, for k = i: 
( )i
ijA = − log i

j

Q

s

∂
∂

.     (5) 

 
However, if one supposes that k is different from i and j then one will get: 
 

( )j
kiA = ( )i

kjA .      (6) 

 
Finally, when formulas (2) and (6) are adopted as an alternative, that will give: 
 

( )k
ijA = − ( )k

jiA = − ( )i
kA = ( )i

kjA = ( )j
kiA = − ( )j

ikA = − ( )k
ijA . 

 
It will then result that: 

( )k
ijA  = 0     (7) 

 
whenever i, j, k are all different and non-zero.  That equality is the generalized expression 
for Dupin’s theorem in hyperspace, because we saw before (XV, § 12) that the 
aforementioned theorem is due precisely to the independence of the quotients ∂xi / ∂sj 
from the x with non-zero indices that are different from i and j, and we will soon see that 
the geometrical significance of the equality (7) is also the natural extension of the one 
that is already found in three-dimensional space. 
 
 
 3. – If one sets k = 0 and ( )

0
i
jA  = Tij then one can only assert that Tij = Tji , by virtue of 

(6).  In addition, we represent Tii  by – Ni and ( )i
ijA  by – Gij , in such a way that we will 

have: 

Gij = 
log i

j

Q

s

∂
∂

,      (8)  

 
according to (5).  The only coefficients A that remain will then be the ones that are 
denoted by N1 , N2 , N3 , …, G12 , G21 , G13 , G31 , G23 , G32 , … or T12 , T13 , T23 , …, and 

which we call normal curvatures, geodetic curvatures, and geodetic torsions, 
respectively.  Therefore, in summary, we do not cease to keep in mind that any 
coefficient A will change sign when one transposes the lower indices and that the normal 
curvatures and geodetic torsions and curvatures are expressed in the following ways: 
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Ni = ( )
0
i

iA , Tij = Tji = ( )
0
i
jA ,  Gij =

( )i
jiA . 

 
In any case, A = 0.  In addition, we feel that allows us to write − Tii , instead of Ni , and  

Gii , instead of 0, for ease of writing. 

 
 
 4. Codazzi formulas. – Now, if one observes (8) then the conditions (4) will change 
into: 

k
ji

i j

x

s s

  ∂∂ + ∂ ∂ 
G = k

ij
j i

x

s s

  ∂∂ +  ∂ ∂ 
G , 

 
and thanks to (3) this can be transformed into a linear relation in the x that splits into the 
following conditions: 
 

( ) ( )i j
ij kl ji kl

j i

A A
s s

   ∂ ∂+ − +    ∂ ∂  
G G = ( ) ( ) ( ) ( )

0

( )
n

i j j i
km lm km lm

m

A A A A
=

−∑ ,  (9) 

 
which are necessary and sufficient for the existence of the functions x.  When each of the 
numbers i, j, k, l is assumed to be positive and different from the other three, the left-hand 
side will be zero, by virtue of (7), and one will get: 
 

Tik Tjl − Til Tjk = 0.     (10) 

 
That equality permits one to express n (n – 3) / 2 of the coefficients T in terms of the 

other n, and the number of coefficients A to which one can arbitrarily assign a value at a 
point will then be found to reduce to n (n + 1) for n > 2.  (9) is the universal Codazzi 
formula, so to speak, from which one deduces other groups of formulas according to the 
various meanings of the coefficients A.  When one of the indices k, l is supposed to be 
zero and the other one is different from i and j, formula (9) will give: 
 

jkik

j is s

∂∂ −
∂ ∂

TT
+ Tik Gij − Tjk Gji + Tij (Gik − Gjk) = 0.   (α) 

 
However, if the non-zero indices are set equal to i or j then one will get: 
 

1 1

1 1

2
i i

j ij
ij ij ik jk ik jk

k k ii js s

− −

= = +

∂ ∂
+ + + +

∂ ∂ ∑ ∑
N T

T G T G T G = (Ni − Nj) Gji . (β) 

 
Now set k = i, l = j.  Under that hypothesis, formula (9) will become: 
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1
2 2

1

i
ij ji

ij ji ik jk
kj is s

−

=

∂ ∂
+ + + +

∂ ∂ ∑
G G

G G G G = 2
ijT − Ni Nj .  (γ) 

 
If one finally supposes that just one of the positive numbers k, l is equal to i or j then one 
will find that: 

jk

js

∂
∂
G

+ (Gik − Gjk) Gij = Ni Tjk  + Tik Tji ,   (δ) 

as well as: 

ij

ks

∂
∂
G

+ (Gij − Gkj) Gik = Ni Tjk  + Tik Tji . 

 
However, the last formula is no different from the preceding one, since (cf., XV, § 3) one 
sees the identity between their left-hand sides, by virtue of (8).  The formulas of the 
group (δ), like those of the group (α), are distributed into n (n – 1)(n – 2) / 4 triples; 
however, any triple in (α) contains only two substantially different formulas.  The groups 
(β) and (γ) obviously contain n (n – 1) and n (n – 1) / 2 formulas, in such a way that one 
will have: 

5 3
6 2( 1)( 2) ( 1)n n n n n− − + − = 1

6 ( 1)(5 1)n n n− −  

 
relations, in all, which are the analogues of the Codazzi formulas for curved n-
dimensional spaces. 
 
 
 5. – The quadratic form: 
 

Φ = 2 2
1 1 2 2x x+N N  + … − 2 T12 x1 x2 … 

 
is fundamental to the intrinsic study of these spaces, and its first partial derivatives are 
proportional to the derivatives of x0 , by virtue of (1).  It is useful to observe the simple 
form that these relations will assume as a consequence of the determination of the 
coefficients A that was carried out in § 3.  One will have: 
 

i

i

x

s

∂
∂

= Ni x0 −
1

n

ij j
j

x
=
∑G − 1,  j

i

x

s

∂
∂

= − Tij x0 + ij jxG . 

 
The discussion of Φ leads to Euler’s theorem and the notion of systems of curvature, 
which are characterized by the conditions T = 0.  If one then supposes that the immobility 

conditions have been written down in an n – 1-dimensional space that belongs to the 
system that is defined in the given curved space by a function qi then one will 
immediately realize that the Tjk that relate to the aforementioned space qi are no different 

from the coefficients ( )j
ikA , in such a way that when the n spaces qi are associated in such 

a manner as to constitute the curved space in question, the equality (7) will say that all of 
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the T are zero – i.e., those spaces will necessarily intersect along their systems of 

curvature.  Finally, the discussion of Φ also leads us one to consider n principal 
curvatures, whose product K, which is equal to the discriminant of Φ, can serve to 
measure the total curvature.  Formulas (γ) and (δ), along with (10), then provide values 
to all of the quadratic minors in K, and one can then say that the total curvature depends 
uniquely upon the geodetic curvature and its variations.  One should also notice that in 
the case of a linear space, the function Φ will vanish identically, and the Codazzi 
formulas will reduce (cf., XV, § 15) to n (n – 1)2 / 2 necessary and sufficient conditions 
for the linearity of that n-dimensional space. 
 
 
 6. – Let us now apply the preceding formulas to the study of the infinitesimal 
deformations of hypersurfaces.  A point M in a curved n-dimensional space that is 
immersed in a linear space of one higher dimension is displaced infinitely little in that 
space.  Let u0, u1, u2, …, un be its coordinates at the new position M′ with respect to the 
moving axes whose origin is M and which are chosen in the previously-described way, 
and set: 

uij = ( )

0

n
ji

ik k
kj

u
A u

s =

∂ −
∂ ∑ .     (11) 

 
The fundamental formulas show immediately that when M traverses the infinitesimal 
segment dsi along the i-axis, the coordinates of the point M′ will vary by: 
 

u0i dsi ,      u1i dsi ,      u2i dsi , …, (uii + 1) dsi , …, uni dsi . 
 
Therefore, more generally, if the point M moves in the direction that is defined by the 
cosines α1, α2, …, αn in the tangent linear space and describes the segment ds then the 
coordinates of M′ will submit to the variations: 
 

1

( )
n

i j ij
j

u dsα α
=

+∑ ,     (12) 

 
and therefore if one squares and sums this then one will find that the segment that is 
traversed by M is ds′ = (1 + Ω) ds, and when one omits higher-order infinitesimals, one 
will have: 

Ω =
,

i j ij
i j

uα α∑ . 

 
In particular, the uii represent the unit elongations along the axes, and the consideration of 
the solid element that is constructed from the edges ds1, ds2, …, dsn will show that uij + uji  
is the mutual angular displacement between the i and j axes, and that the unit solid 
dilatation is: 
 Θ = u11 + u22 + u33 + … + unn ; 
i.e., by virtue of (11): 
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Θ = 0
1 1

n n

i i i
i ii

u u
s= =

 ∂ + − ∂ 
∑ ∑G N ,    (13) 

 
in which Gi represents the sum of all the G that have their second index equal to i. 

 
 
 7. – The direction cosines of the tangents to the trajectory of M′ are obviously 
obtained by multiplying the quantity (12) by 1 – Ω and dividing by ds.  They will then 
have the values: 

αi – Ω αi + 
1

n

j ij
j

uα
=
∑ .     (14) 

 
At the same time, one can give the form: 
 

,

( )j k k ij i kj
j k

u uα α α α−∑  = α1 ωi1 + α2 ωi2 + … + αn ωin 

 
to the increment that αi gives directly by setting: 
 

ωij =
1

( )
n

k j ik i jk
k

u uα α α
=

−∑ , 

 
and since ωji  = − ωij , one will see that the direction (α1, α2, …, αn) will submit to the 
rotation in the tangent linear space that is defined precisely (XVI, § 5) by the semi-
symmetric matrix: 

12 13 1

21 23 2

1 2 3

0

0

0

n

n

n n n

ω ω ω
ω ω ω

ω ω ω

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

. 

 
In particular, the i and j axes rotate in their plane through – uji and uij , and one will then 
see, once again, that uij + uji represents the mutual angular displacement of those axes.  
Meanwhile, since Ω is generally reducible to its canonical form in just one way, one will 
generally have that just one orthogonal system of axes will remain orthogonal under the 
deformation, in such a way that any pair (i, j) of those axes will rotate rigidly in its plane 
through an angle of uij = – uji = (uij − uji) / 2 .  Since the quantity ϑij = uij − uji is an 
orthogonal invariant of the form ωij , one will easily see that the ϑij then represent twice 
the components of the geodetic rotation, in any case.  From (11), one now has: 
 

ϑij = ij i ji j
j i

u u
s s

   ∂ ∂+ − +    ∂ ∂  
G G .    (15) 

Here, one should note that by virtue of the integrability condition: 
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ij
j is s

 ∂ ∂+  ∂ ∂ 
G = ji

i js s

 ∂ ∂+ ∂ ∂ 
G ,   (16) 

 
the ϑ are all annulled in the potential deformations of space intrinsically – i.e., when the 
displacement is tangential and has the differential quotients of a function u with respect to 
the tangent axes for its components.  One will then also have Θ = ∆2u from (13), since 
with our symbols, the Lamé formula, which serves to express the second differential 
parameter, can be written (cf., XV, § 7) in the following way: 
 

∆2 = 
1

n

i
i i js s=

 ∂ ∂+ ∂ ∂ 
∑ G . 

 
 
 8. – We shall now go on to the choice of those axes in the deformed space.  We 
always take the 0 axis to be the normal to that space, and choose the other ones to have 
positions that differ infinitely little from the one that the original tangent axes will occupy 
as a result of the deformation.  Therefore, assume, for the moment, that the i axis is 
allowed to assume the line that is defined in the original tangent linear space by the 
cosines: 

αj = 
1 for ,

for ,ji

j i

u j i

=
 − ≠

     (17) 

 
when considered in the position it occupies after the deformation.  If one observes the 
expressions (13) then one will find that the direction cosines of the new tangent axes will 
be given by the table: 
 u01 1 0 … 0 
 u02 0 1 … 0 
 ………………… 
 u0n 0 0 … 1 
 
and the direction cosines of the new normal axes will then be: 
 

1 − u01 − u02 … − u0n . 
 
It will then follow that under the passage from the old system to the new one, the x 
coordinates will submit to the variations: 
 

Dxi = − ui + u0i x0      (18) 
for i > 0, and: 

Dx0 = − u0 − 0
1

n

i i
i

u x
=
∑ .     (19) 

It is now easy to express the new differential quotients in terms of the old ones, since one 
obviously has: 
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s

∂
′∂
= (1 – Ω) 

1

n

i
i is

α
=

∂
∂∑ , 

 
and in particular, if one makes the hypothesis (17) then the left-hand side will become the 
symbol for the differential quotient with respect to the new i axis, while the right-hand 
side will reduce to: 

(1 – uii) 
1

n

ii ji
ji i j

u u
s s s=

 ∂ ∂ ∂+ −  ∂ ∂ ∂ 
∑ . 

Hence: 

is

∂
′∂
=

1

n

ji
ji j

u
s s=

∂ ∂−
∂ ∂∑ , 

 
and therefore the variations of the original differential quotients that are produced by the 
deformation will be given in the form: 
 

i

D
s

∂
′∂
=

1

n

ji
ji j

D u
s s=

∂ ∂−
∂ ∂∑ .    (20) 

 
 
 9. – Having said that, in order to calculate the variations that the curvatures 
experience as a result of the deformation, it is enough to apply the last formula to the 
relations (1).  One will immediately get: 
 

( ) ( )

0

( )
n

j j
ik k k ik

k

A Dx x DA
=

+∑  = 
1

n
i

i ki
ki k

x
Dx u

s s=

∂∂ −
∂ ∂∑ , 

 
so if one supposes that i > 0 and invokes formulas (18) and (19) then: 
 

( )

0

n
j

k ik
k

x DA
=
∑ = ( ) ( ) ( ) ( ) ( )0

0 0 0 0 0 0 0
0 0 1

( ) ( )
n n n

k j j j li
i kj ik k k i i k ik ij k

k k lj

u
A u A u x A u A u A u x

s = = =

 ∂ + − + − − ∂  
∑ ∑ ∑ .  (21) 

 
Upon equating the coefficients of x0 and supposing that i = j, in addition, it will follow 
that: 

DNi = 0
0

1

( )
n

i
ij j ij ji

ji

u
u u

s =

∂ + +
∂ ∑ G T . 

 
However, for i ≠ j, one will get: 
 

DTij = − 0
0

1

n
i

ji j ki kj
kj

u
u u

s =

∂ + −
∂ ∑G T . 
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However, it is clear that one can also write: 
 

DTij = − 0
0

1

n
j

ij i kj ki
ki

u
u u

s =

∂
+ −

∂ ∑G T . 

 
If one equates the coefficients of xj between them then one will find that: 

DGij = Gji uji − Gij uii − Tji u0i − Ni u0j . 

 
 
 10. – The identity between the two expressions that were found for DGij can be 

established directly by applying the condition (16) to u0 .  When it is applied, more 
generally, to uk , that will give: 
 

ij ki ji kj
j i

u u
s s

   ∂ ∂+ − +    ∂ ∂  
G G  = ( ) ( )

0

( )
n

j i
kl li kl lj

l

A u A u
=

−∑ ,  (22) 

 
if one takes the relations (9) into account.  For k = 0, one will get: 
 

0 0ij i ji j
j i

u u
s s

   ∂ ∂+ − +    ∂ ∂  
G G  = 

0

( )
n

kj ki ki kj
k

u u
=

−∑ T T . 

 
However, for k = i : 
 

ij ii ji ij
j i

u u
s s

   ∂ ∂+ − +    ∂ ∂  
G G  = Gji uji − Tij u0i − Ni u0j + 

0

n

ik kj
k

u
=
∑G . 

 
Finally, when i, j, k are supposed to be different from each other and positive, one will 
find the relations: 
 

0 0

0 0

0 0

,

,

.

jk ij kj ik ki kj ji jk ij k ik j
k j

ki jk ik ji ij ik kj ki jk i ji k
i k

ij ki ji kj jk ji ik ij ki j kj i
j i

u u u u u u
s s

u u u u u u
s s

u u u u u u
s s

  ∂ ∂+ − + = − + −     ∂ ∂    

   ∂ ∂+ − + = − + −    ∂ ∂   

   ∂ ∂+ − + = − + −    ∂ ∂  

G G G G T T

G G G G T T

G G G G T T










      (23) 
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 11. – Meanwhile, the consequences of the identity (21) have not been exhausted, 
since we still need to express the idea that the zero coefficients must remain zero, and we 
will then arrive at the triple of relations: 
 

0 0

0 0

0 0

0,

0,

0

kj ki jk ji ij k ik j

ik ij ki kj jk i ji k

ji jk ij ik ki j kj i

u u u u

u u u u

u u u u

− + − =
− + − = 
− + − = 

G G T T

G G T T

G G T T

   (24) 

 
for any triple i, j, k of distinct positive numbers.  These relations, which we can consider 
to be the conditions for the permanence of Dupin’s theorem in the deformed space, 
constrain the displacements by means of first-order partial differential equations, and 
with them, one will discover that the deformation that has been studied so far is not the 
most general one possible for n > 2.  The previously-established formulas are then valid 
in full generality only for surfaces, and it is easy to verify that for n = 2 they will 
effectively reduce to the ones that we proved in Chapter XIII.    The specialization that 
was found for n > 2 came about as a consequence of the choice of axes, since (cf., XV, § 
4) the totality of all axes that are tangent to the space cannot always be considered to 
constitute the tangents to a n-fold orthogonal system of curves, even though the 
orientation of the aforementioned axes varies in a continuous manner with the position of 
the origin. 
 
 
 12. – Other restrictive conditions can give rise to the permanence of the universal 
Codazzi formula, but since that formula is obtained by applying the condition (16) to the 
coordinates of a fixed point, it is enough to investigate whether there is any constraint 
that one can subject the displacements to in order for the stated condition to persist in the 
deformed space.  Now, one easily deduces from (20) that: 
 

2

i j

D
s s

∂
∂ ∂

= 
2 2 2

1 1

n n
ki

ki kj
k ki j j k k j i k

u
D u u

s s s s s s s s= =

 ∂∂ ∂ ∂ ∂− − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∑ ∑ . 

 
Hence, if one switches i with j and then subtracts one equality from the other one, while 
keeping relations (16), (22), (24) in mind, along with: 
 

Gij uik + Gjk uji + Gki ukj = Gik uij + Gji ujk + Gkj uki , 

 
which is a consequence of any triple (24), then one will arrive at an identity.  Therefore, 
other than (24), there exist no other restrictions that one must impose upon the 
displacements.  One would arrive at the same conclusion less rapidly by the direct route; 
i.e., by calculating the variations that the deformation brings to the Codazzi formulas, and 
in order to exhibit the final identity, one must opportunely employ integration by parts 
and some other artifice, in addition. 
 
 



Chapter XVII – Hyperspaces 287 

 13. – We shall turn to the study of the general deformation.  The pseudo-symmetric 
matrix: 

10 20 0

01 21 1

0 1 2

1

1

1

n

n

n n n

v v v

v v v

v v v

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

 

 
is the one that defines the orientation of the axes in the deformed space with respect to 
the original axes.  If one continues to assume that the 0 axis is normal to the space then 
one will have v0i = u0i , and the other n (n – 1) / 2 infinitesimal quantities v must satisfy 
conditions that would validate and insure the existence of an n-fold orthogonal system of 
curves in the deformed space that are tangent to the axes 1, 2, 3, …, n at any of their 
points.  We shall leave the v arbitrary, for now, since the desired conditions will arise 
spontaneously from the calculations that one must do, and one will note that they will be 
precisely the ones that insure the permanence of Dupin’s theorem in the deformed space.  
First, observe that the direction that is defined by the cosines: 
 

αj = 
1 for

forji ji

j i

u v j i

=
 − + ≠

 

 
is carried by the deformation in such a way that it will coincide with that of the new i 
axis.  Indeed, one will see from the expressions (14) that in order to effect the 
deformation, the aforementioned cosines must acquire the values: 
 

(1 – uii) αj + uji = 
1 for ,

for .ji

j i

v j i

=
 ≠

 

 
Therefore, the new differential quotients relative to the i axis will be expressed in the 
following way: 

(1 – uii)
1

n

j
j js

α
=

∂
∂∑ = (1 – uii)

1

( )
n

ii ji ji
ji i j

u u v
s s s=

 ∂ ∂ ∂+ − −  ∂ ∂ ∂ 
∑  . 

 
Therefore, one needs to replace (20) with: 
 

i

D
s

∂
∂

=
1

( )
n

ji ji
ji j

D u v
s s=

∂ ∂− −
∂ ∂∑ .   (25) 

 
Similarly, instead of (18) and (19), one will have: 
 

Dxi = − ui −
0

n

ij j
j

v x
=
∑ . 
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 14. – If one takes advantage of the preceding formulas and varies all of immobility 
conditions then one will get a linear relation between the coordinates x that will split into: 
 

( )j
ikDA  = − ( ) ( ) ( )

1 0

( ) ( )
n n

l j jik
ik lj lj li lk lk li

l lj

v
A u v A u A v

s = =

∂ − − − −
∂ ∑ ∑ ,  (26) 

 
given their arbitrariness.  If one recalls that for any triple i, j, k of distinct positive 
numbers, one must have: 

( )j
ikA  = 0, ( )j

ikDA  = 0 

then one will find the conditions: 
 

0 0

0 0

0 0

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

jk
ij kj ki jk ik ij kj ki jk ji ij k ik j

i

ki
jk ik ij ki ji jk ik ij ki kj jk i ji k

j

ij
ki ji jk ij kj ki ji jk ij ik ki j kj i

k

v
v v u u u u

s

v
v v u u u u

s

v
v v u u u u

s

∂
+ − − − + − + − = 

∂ 
∂ + − − − + − + − = ∂ 

∂
+ − − − + − + − =

∂ 

G G G G G G T T

G G G G G G T T

G G G G G G T T




  (27) 

 
which can also be given the remarkably simple form: 
 

( ) ( ),

( ) ( ),

( ) ( ),

jk ik ij ij kj ij ik ik

k j

ki ji jk jk ik jk ji ji
i k

ij kj ki ki ji ki kj kj
j i

u v u v
s s

u v u v
s s

u v u v
s s

  ∂ ∂+ − − = + − −     ∂ ∂    


   ∂ ∂ + − − = + − −    ∂ ∂    
   ∂ ∂ + − − = + − −     ∂ ∂   

G G G G

G G G G

G G G G

   (28) 

 
by virtue of (23).  The latter equations are also noteworthy since, thanks to the identity: 
 

jk ij
ks

 ∂ + ∂ 
G G  = kj ik

js

 ∂ +  ∂ 
G G , 

 
they will be satisfied when one substitutes Gij for any uij – vij .  By some straightforward, 

but tedious, calculations, one can then verify that (27) are integrable, and on the other 
hand, if one takes advantage of the formula: 
 

2

i j

D
s s

∂
∂ ∂

= 
2 2 2

1 1

( )
( ) ( )

n n
ki ki

ki ki kj kj
k ki j j k k j i k

u v
D u v u v

s s s s s s s s= =

 ∂ −∂ ∂ ∂ ∂− − − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∑ ∑ , 
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which is an easy consequence of (25), one will see that the integrability conditions (16), 
and consequently, the universal Codazzi formula, will persist in deformed space when 
(27) are satisfied: The choice of the v is therefore subordinate to only those conditions.  If 
one finds an arbitrary system of functions v that satisfy (27) then the formula (26) will 
lead rapidly to the knowledge of the alternating products of the deformations of the 
varied curvatures: 

 DNi = 0
0

1 1

( ) 2
n n

i
ij j ij ji ij ij

j ji

u
u u v

s = =

∂ + + +
∂ ∑ ∑G T T , 

 

 DTij = − 0
0

1 1

( )
n n

i
ji j ki kj ik jk jk ik

k kj

u
u u v v

s = =

∂ + − − +
∂ ∑ ∑G T T T , 

 

 DGij = 0 0
1

n

ji ji ij ii ij i i j ji ij ik jk
ki

u u u u v v
s =

 ∂− − − + + − ∂ 
∑G G T N G G . 

 
These formulas can be transformed in various ways, thanks to (22), and the following 
transformation of the last one is particular noteworthy: 
 

DGij = 
1

( ) ( )
n

ii
ji ij ij ik jk kj

kj i

u
u v u v

s s =

 ∂ ∂− + − − − ∂ ∂ 
∑G G .   (29) 

 
 
 15. Beez’s theorem. – When space is assumed to be inextensible, the form Ω will 
then become identically zero, the functions u, like the v, will enjoy the property uji = − uij, 
and consequently, if n > 2 then one can take v = u, since when (28) is satisfied, the 
conditions (27) will necessarily reduce to (23).  If one chooses the v in that way then one 
will see directly for the situation that was discussed in § 13 that the new axes are found in 
the positions that the (arbitrary) old ones occupy as a result of the deformation, and one 
can then substitute D for the sign D (cf., XIII, § 6).  Therefore, as in the deformations of 

inextensible surfaces, any orthogonal system of axes will remain orthogonal; however, 
for n > 2, that is nothing peculiar, since in reality space is not deformed.  Indeed, from 
(29), one will have immediately that DGij = 0, which is to say that the geodetic curvature 

does not vary, and then, by virtue of the groups (γ) and (δ) of Codazzi formulas, one will 
see that if one observes (25) then the normal curvatures and geodetic torsions will also 
remain unaltered, since for any triple of values that are attributed to i, j, k, six functions, 
which are (generally) independent, will remain invariant, and they will depend upon the 
six curvatures Ni , Nj , …, Tij , Ni Tjk + Tij Tik , Nj Nk − 2

jkT , and the other analogous ones.  

Therefore, all of the curvatures will remain invariant, and one will then discover an 
important fact that was pointed out by Beez, and then exhibited mostly by Ricci, i.e., the 
impossibility of deforming an inextensible space of more than two dimensions.  Whereas 
an inextensible filament can be flexed until it is given an arbitrary form, one has already 
seen (XI, § 25) that an inextensible surface cannot assume an arbitrary form when it is 
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flexed, and Beez’s theorem will then say that it is enough to make a space of dimension 
three or higher inextensible in order to determine its complete rigidity, that is to say, to 
impede any change of form, and everything will then happen as if the increasing number 
of dimensions tends to destroy the flexibility of the space.  In addition, the preceding 
analysis reveals that the impossibility that was discovered by Beez is due, for the most 
part, to the demand (viz., ( )j

ikDA  = 0) that space has to deform in such a way that the 

lower-dimensional spaces that constitute it do not cease to intersect in the manner that is 
prescribed by Dupin’s theorem, as one that would lead to such a rigidity in the geometric 
structure of the space that it would not be possible to provoke a deformation without the 
spaces that constitute it extending or contracting.  Exceptionally, that rigidity will cease 
when all of the third-order principal minors in the determinant K are zero when they 
include one or two given principal elements, so one or more normal curvatures and 
geodetic torsions can vary, and that restitution of flexibility is properly due to the greater 
liberty by which the space can satisfy Dupin’s theorem, by reason of the partial or total 
indeterminacy in its system of curvatures. 
 
 
 16. – In order for no doubt to remain about the preceding proof of Beez’s theorem, we 
would also like to show that space can only move rigidly when the curvatures do not 
vary.  Assume that we have an orthogonal system of immobile axes: Let αi0 , αi1 , …, αin 
be the direction cosines of the i axis, and let x0, x1, …, xn be the coordinates of the origin.  
We notice from § 7 that under the hypothesis of inextensibility, the uij will be precisely 
the components of the rotation, just as the ui are the components of the translation.  Let 
υij and υi be the analogous quantities with respect to the moving axes, and in order to 
calculate them, observe that the variations of the coordinates: 
 

ξi = − ij jxα∑  

 
of M with respect to the immobile axes obviously have the values ij juα∑ , and on the 

other hand, we must be able to express them in terms of the υ and ξ in the following way: 
 

υi + ij jυ ξ∑ = ij juα∑ .    (30) 

 
It is enough to the switch the two systems of axes with each other in order to see that one 
also has: 

ui + ij ju x∑ = ji jα υ∑ , 

 
and to deduce the first of the formulas: 
 

υi = ij j ij jk ku u xα α+∑ ∑ ,  υij = ik jl kluα α∑ .  (31) 

 
As for the second one, one substitutes υi in (30) and compares the coefficients of ξj , after 
observing that: 
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xi = − ji jα ξ∑ . 

 
Having said that, we differentiate the second formula in (31), while taking the immobility 
condition: 

ij

vs

υ∂
∂

= ( ) ( )( )v vkl
ik jl km im jl lm jm ik kl

v

u
A A u

s
α α α α α α∂ + +

∂∑ ∑  

 
into account.  If one switches k with m in the first part of the second sum and l with m in 
the second part then one can also write: 
 

ij

vs

υ∂
∂

= ( ) ( )

, 0

( )
n

v vkl
ik jl km lm lm km

k l mv

u
A u A u

s
α α

=

 ∂ + − ∂ 
∑ ∑ , 

 
and since (20) implies that one can express the invariability of all the curvatures by: 
 

kl

v

u

s

∂
∂

= ( ) ( )

0

( )
n

v v
lm km km lm

m

A u A u
=

−∑ , 

one will see that: 

1

ij

s

υ∂
∂

 = 0, 
2

ij

s

υ∂
∂

 = 0, …, ij

ns

υ∂
∂

 = 0; 

 
i.e.: all of the υij are constants.  Similarly, if one keeps (11) in mind then one will find 
that: 

ij j
jv

u
s

α∂
∂ ∑ = ( )

,

( )v
ij jv jk ik j ij k

j j k

u A u uα α α+ +∑ ∑ , 

 
and it is clear that the last sum is zero, since the elements that correspond to the 
permutations jk and kj in the indices are equal and have opposite sign.  Meanwhile, one 
has: 
 

ij j
jvs

υ ξ∂
∂ ∑ = iv ij ij jv

j j

uα υ α+∑ ∑ . 

 
Therefore, the derivation of (30) will give: 
 

1

i

s

υ∂
∂

= 0, 
2

i

s

υ∂
∂

= 0, …, i

ns

υ∂
∂

= 0, 

 
and one will also have that the υi are all constants then.  It is therefore true that space can 
displace only rigidly, in such a way that all of its points will submit to the translation (υ0 , 
υ1 , …, υn) and the rotation that was defined by the constants υij . 

__________



 
NOTE I 

 
ON THE USE OF GRASSMANN NUMBERS 

 
 The use of alternating numbers confers a very precise and elegant form to the results 
of the intrinsic analysis of surfaces, and in particular, permits one to combine the three 
Codazzi formulas into just one.  From known conditions (XI, § 3), it is necessary and 
sufficient for the immobility of the point (x, y, z) that one can given them the form: 
 

,

,

.

dx
x y z

ds
dy

x y z
ds
dz

x y z
ds

= ⋅ + ⋅ + ⋅ − 

= ⋅ + ⋅ + ⋅ 

= ⋅ + ⋅ + ⋅ 


i i i k j j k i

j k i j j i k

k j i k j k k

T G N

G N T

N T G

   (1) 

 
We agree than the units i, j , k should have zero squares, and that in addition, they should 
satisfy the conditions: 

i = jk  = − kj , j  = ki  = − ik , k = ij  = − ji .   (2) 
 
Now, (1), when summed, can be combined into the single formula: 
 

d

ds

ΩΩΩΩ
 = ωωωω ΩΩΩΩ – i,     (3) 

in which only the vectors: 
 

ΩΩΩΩ = i x + j  y + k z, ωωωω = i T + j  N + k G 

 
appear.  The derivative with respect to the arc length will then reduce to the simple 
vectorial operation that is represented by the symbol ωωωω.  It will then be important to know 
the effect of the operations ωωωω2, ωωωω3, … on the fundamental units. 
 We agree to observe, first of all, that from the conventions (2), the products of the 
three fundamental units is generally zero, except when the second or third factor along is 
equal to the first one, in which two cases, the product will reduce to the remaining 
factors, when taken with a changed sign or the original sign, respectively.  In other 
words: 

iij = − j , iji  = j ,  …    (4) 
 
More generally, if one considers the vectorial operations: 
 

ωωωω1 = i a1 + j  b1 + k c1 , ωωωω2 = i a2 + j  b2 + k c2 
 
then it will follow that the operation: 
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 ωωωω1    ωωωω2 = ii  a1 a2  + ij  a1 b2 + ik  a1 c2  
  + ji  b1 a2  + jj  b1 b2 + jk  b1 c2 
  + ki c1 a2 + kj  c1 b2 + kk  c1 c2 , 
 
when applied to the unit i, for example, will produce the result: 
 

 iji  a1 b2 + iki  a1 c2 + jji  b1 b2 + kki  c1 c2 , 
i.e.: 

ωωωω1    ωωωω2 i = − i (a1 a2 + b1 b2 + c1 c2) + ωωωω2 a1 .    (5) 
 
In particular, ωωωω2 = 0, and: 
 

ωωωω2 i = − i κ2 + ωωωω T, ωωωω2 j  = − j  κ2 + ωωωω N, ωωωω2 k = − i κ2 + ωωωω G,  (7) 

 
in which, κ represents the modulus of ωωωω. 
 Now, it is easy to find the formulas by which the successive differential quotients of 
x, y, z are expressed linearly in terms of x, y, z.  Indeed, when one omits the variations of 
the curvatures, (3) will give: 

n

n

d

ds

ΩΩΩΩ
 =    ωωωωn ΩΩΩΩ − ωωωωn−1 i, 

 
and everything will reduce to the calculation of the results of the operations ωωωωn on the 
fundamental units, and one will arrive at those results easily by means of the formulas (7) 
and the other obvious ones: 
 

ωωωω    i = j G – k N, ωωωω    j  = k T – i G, ωωωω    k = i N – j T.  (8) 

 
(That is why one observes that if the result of more vectorial operations is identical to any 
scalar then it will be zero.)  One will obtain: 
 

ωωωω2n+1 ⋅⋅⋅⋅ i = (−1)n ωωωω i κ2n, ωωωω2n+2 ⋅⋅⋅⋅ i = (−1)n ωωωω2 i κ2n. 
 

In particular, if one wishes to have the formulas that exhibit the second derivatives then 
one will have: 

2

2

d

ds

ΩΩΩΩ
 = ωωωω2 i x + ωωωω2 j y + ωωωω2 k z − ωωωω2 i ; 

 
i.e., by virtue of (7) and (8): 
 

2

2

d

ds

ΩΩΩΩ
 = − ΩΩΩΩ2 κ2 + k N – j  G + ωωωω (T x + N y + G z). 

 
That equality obviously splits into: 
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2

2

d x

ds
 = − κ2 x + T (T x + N y + G z), 

 
2

2

d y

ds
 = − κ2 y + N (T x + N y + G z), 

 
2

2

d z

ds
 = − κ2 z + G (T x + N y + G z). 

 
One needs to add terms to the right-hand sides that are provided by the variation of the 
curvatures, i.e.: 

d d
z y

ds ds
−N G

, 
d d

x z
ds ds

−G T
, 

d d
y x

ds ds
−T N

. 

 
 Another noteworthy consequence can be derived from formula (5) if one observes 
that in the first place: 

(ωωωω1 ωωωω2 − ωωωω2 ωωωω1) i = ωωωω2 a1 − ωωωω1 a2 .    (9) 
 
Let i a + j  b + k c be the vectorial operation that is equivalent to ωωωω1 ωωωω2 − ωωωω2 ωωωω1, i.e., let: 
 

(i a + j  b + k c) ΩΩΩΩ = (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) ΩΩΩΩ. 
 
By virtue of (4), one will have: 
 

i (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) i = i (i a + j  b + k c) i = j  b + k c. 
 
Hence, if one observes (9) then: 
 

1 2

1 2

1 2

,

,

;

b c a a

c a b b

a b c c

2 1

2 1

2 1

+ = −
 + = −
 + = −

j k i i

k i j j

i j k k

ω ωω ωω ωω ω
ω ωω ωω ωω ω
ω ωω ωω ωω ω

 

 
hence, summing these equations will give: 
 

i a + j  b + k c = 1
2 (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) = ωωωω1 ωωωω2 .    (10) 

Therefore: 
 
 The operation ωωωω1 ωωωω2 − ωωωω2 ωωωω1, which is equivalent to 2 ωωωω1 ωωωω2 when it is applied to 
scalar quantities, will, however, reduce to ωωωω1 ωωωω2 when it is applied to a vector. 
 
 Assuming that, consider another curve on the surface that is tangent to the origin of 
the y-axis and distinguish everything that refers to the first or second curve with the 
indices 1 or 2, respectively.  Let q1 and q2 be parameters that define the two curves in a 
double orthogonal system that is traced on the surface and set: 
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ωωωω1 = i T1 + j N1 + k G1 , ωωωω2 = i N2 − j T2 + k G2 . 

 
The conditions (3), when written for the curve in one or the other system, become: 
 

1s

∂
∂
ΩΩΩΩ

 = ωωωω1 ΩΩΩΩ − i , 
2s

∂
∂
ΩΩΩΩ

 = − ωωωω2 ΩΩΩΩ − j  ,    (11) 

 
and in order for ΩΩΩΩ to exist, it is enough that one should have: 
 

2
1

1 2 2 1

logQ

s s s s

∂∂ ∂+
∂ ∂ ∂ ∂

Ω ΩΩ ΩΩ ΩΩ Ω
 = 

2
2

2 1 1 2

logQ

s s s s

∂∂ ∂+
∂ ∂ ∂ ∂

Ω ΩΩ ΩΩ ΩΩ Ω
.  (12) 

 
Meanwhile, one deduces from (11) that: 
 

2

1 2s s

∂
∂ ∂

ΩΩΩΩ
 = 1

1 2
2s

 ∂ − ∂ 

ωωωω ω ωω ωω ωω ω  ΩΩΩΩ + j  ωωωω1 , 
2

2 1s s

∂
∂ ∂

ΩΩΩΩ
 = − 2

2 1
1s

 ∂
 ∂ 

ωωωω + ω ω+ ω ω+ ω ω+ ω ω  ΩΩΩΩ − j  ωωωω2 , 

 
and in particular, for Ω = 0, (12) will become: 
 

j  ωωωω1 + i ωωωω2 = i 1

2

logQ

s

∂
∂

 – j  2

1

logQ

s

∂
∂

. 

 
The left-hand side has the value i G1 – j G2 – k(T1 + T2); hence: 

 

G1 = 1

2

logQ

s

∂
∂

,  G2 = 2

1

logQ

s

∂
∂

,  T1 + T2 = 0, 

 
and one can then set T1 = − T2 = T.  After that, the formula (12) will reduce immediately 

to: 

1 2
1 1 2 2

2 1s s

 ∂ ∂+ + + ∂ ∂ 
T G

ω ωω ωω ωω ω ω ωω ωω ωω ω ΩΩΩΩ = (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) ΩΩΩΩ    . 

 
Hence, if one takes the theorem (10) into account: 
 

1 2
1 1 2 2

2 1s s

∂ ∂+ + +
∂ ∂

T G
ω ωω ωω ωω ω ω ωω ωω ωω ω  = ωωωω1 ωωωω2 . 

 
That is the equality that is contained in the three Codazzi formulas, to which one can 
arrive (cf., XI, § 9) if one observes that by virtue of (6), the right-hand side will have the 
value: 
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1 1

2 2

i j k

T N G

N T G

 . 

 
 We invite the reader to try performing an analogous calculation in hyperspace, while 
imagining a system of units (ij ) with two indices that are endowed, first of all, with the 
property that that they will change sign when one transposes the indices.  One then needs 
to suppose that one has (ij )(kl) = 0 when i, j, k, l are all different from each other, and that 
one has (ij )(jk) = (ik), in such a way that one has (ij )2 = − (ji )(ij) = − (jj ) = 0, in particular, 
while the unit (ij ) will not change when it is multiplied on the left by (ii ) or on the right 
by (jj ); etc.  When the calculations are based upon these conventions, one will get a clear 
geometric image by supposing that after having enumerated the vertices of an (n − 1)-
tuple n-hedron from 1 to n one represents the operation that consists of traversing the 
edge that goes from the vertex i to the vertex j by (ij ).  The numbers that were previously 
adopted refer to the case of n = 3, in which the units are: 
 

i = (32), j  = (13), k = (21). 
 

________ 
 



NOTE II 
 

ON THE EQUILIBRIUM OF  
FLEXIBLE, INEXTENSIBLE FILAMENTS  

 
 Given a filament that is completely deformable in an n-dimensional linear space, take 
the axes to be the tangent, (n – 1)-normal, …, principal normal at a moving point of the 
filament.  It is assumed to be infinitely thin, but in such a way that each element ds 
nevertheless has a certain mass q ds.  Let Xi be the components along the i axis of the 
force per unit mass that acts upon q ds, and let ui be the projection of the displacement 
onto that axis.  The direction cosines of the element of the filament after deformation will 
obviously be proportional to ds + δu1, δu2, δu3, …, δun , and therefore if one calls the 
tension per unit length T then one will have: 
 

q Xi ds + δ iu
T

ds

δ 
 
 

 = 0 

 
for the equilibrium of the external force, if one takes care to append T δs and T δsi when i 
= 1.  At the same time, it is important to note that the fundamental formulas (XVI, § 4) 
that relate to the direction (α1, α2, …, αn), when written in the form: 
 

i

ds

δα
 = 1 1

2 1

i i i

n i n i

d

ds

α α α
ρ ρ

− +

− + − +

+ − , 

and if one agrees to set: 

αi+n = − αi , ρi+n = ρi, 
0

1

ρ
= 0, 

 
can, as always, still persist when one considers the projections of an arbitrary variable 
segment onto the axes, instead of α.  Indeed: 
 

δ pαi = αi dp + p dαi = d pαi + 1 1

2 1

i i

n i n i

p pα α
ρ ρ

− +

− + − +

 
− 

 
 ds . 

One can then write: 

iu
T

ds

δδ  
 
 

 = 1 1

2 1

i i i

n i n i

u T u T u
d T

ds

δ δ δ
ρ ρ

− +

− + − +

 + − 
 

, 

 
and the equations of equilibrium will become, in general: 
 

q Xi + 1 1

2 1

i i i

n i n i

u u ud T T
T

ds ds ds ds

δ δ δ
ρ ρ

− +

− + − +

 + − 
 

 = 0. 

 
Finally, after totally eliminating the δ sign: 
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q Xi + 1 1 1 1

2 1 2 1

i i i i i

n i n i n i n i

du u u du dud T T
T

ds ds ds dsρ ρ ρ ρ
− + − +

− + − + − + − +

  
+ − + −  

  
 

 

+ 2 2
2 2

3 2 1 2 1

1 1i i
i

n i n i n i n i n i n i

T u T u
Tu

ρ ρ ρ ρ ρ ρ
− +

− + − + − + − − + − +

 
+ − + 

 
 = 0. 

 
Hence, for i = 1, 2, 3, …, n, if one takes into account all of the conventions that were 
made, one will arrive at the intrinsic fundamental equations for the equilibrium of a 
filament in an n-dimensional linear space: 
 

q X1 + 21 1

1 1 1 2

1n n nu du udu ud T
T

ds ds dsρ ρ ρ ρ
−

    
− + − + +    

    
 = 0, 

 

q X2 + 3 32 2 4

1 1 1 2n n n n

u dudu u ud T
T

ds ds dsρ ρ ρ ρ− − − −

    
− − + −    

    
 = 0, 

 

q X3 + 3 32 1 2

1 2 1 1n n n n

du uu u dud T
T

ds ds dsρ ρ ρ ρ− − − −

    
+ − + −    

    
 − 3 54

2 2 3n n n

u uduT

dsρ ρ ρ− − −

 
+ − 

 
 = 0, 

………………………………………………………………………………………….. 
 

q Xn−1 + 1 2 11

3 2 2 1 2

n n n n ndu u u du uud T
T

ds ds dsρ ρ ρ ρ ρ
− − −

    
+ − − + +    

   
 + 2 3 1

3 4 3

n n ndu u uT

dsρ ρ ρ
− − − 

+ − 
 

 = 0, 

 

q Xn + 11 1

1 2 1 1

1n n ndu u uu dud T
T

ds ds dsρ ρ ρ ρ
−

    
+ + + − +    

    
 + 1 2

2 3 2

n n ndu u uT

dsρ ρ ρ
− − 

+ − 
 

 = 0 . 

 
In particular, for n = 3, if one lets X, Y, Z, u, v, w denote the components of the 
accelerating force and displacement, resp., and lets ρ and r be the radii of flexion and 
torsion, resp., then one will get the equations: 
 

1 0,

0,

1 0,

d du w T dw u v
q X T

ds ds ds r

d dv w T dw u v
qY T

ds ds r r ds r

d dw u v T du w T dv w
q Z T

ds ds r ds r ds r

ρ ρ ρ

ρ

ρ ρ ρ

     + − + − + + =     
    

     + − − + + =     
    

        + + + + − + + − =      
      
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which were pointed out by Maggi.  If the filament is inextensible then it will be enough 
to observe that the variation of the element ds results from the relation: 
 

(ds + δ ds)2 = (ds + δu1)
2 + (δu2)

2 + … + (δun)
2, 

 
from which it will follow that δ ds = δu1 in the case of infinitesimal displacements, in 
order for one to see that inextensibility is always expressed by the equality: 
 

1du

ds
= 

1

nu

ρ
. 

 
 When one omits the displacements, the equations that were found will reduce to the 
simpler form: 
 

q X1 + 
dT

ds
 = 0, q Xn + 

1

T

ρ
 = 0, X2 = X3 = … = Xn−1 = 0, 

 
and one will see that the filament is always arranged in such a way that the osculating 
plane contains the accelerating force at any point.  The equilibrium curve will then be 
planar in the case of forces that emanate from a center.  If the accelerating force X has an 
invariable direction then what was expressed in (II, § 1) can be written: 
 

d

ds

ϕ
 = 

1

ρ
, 

 
in which ϕ is the inclination of the tangent to the filament with respect to the direction of 
X.  The first two equations of equilibrium, which are the only ones that we agree to take 
into account, become: 

q X cos ϕ +
dT

ds
= 0, q X sin ϕ =

T

ρ
, 

 
and when one eliminates X and integrates, it will be easy to deduce that T sin ϕ keeps a 
constant value T0 all along the filament, in such a way that one has: 
 

T = 0

sin

T

ϕ
, X = 0

2sin

T

qρ ϕ
. 

 
That presents two noteworthy special cases: If the filament is homogeneous (i.e., q is 
constant) then the last equation will give: 
 

X = 2sin

a

ρ ϕ
,  ∫ X ds = − a cot ϕ, 
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after one sets T0 = aq.  It will then follow that the intrinsic equation of the equilibrium 
curve will be: 

ρ = ( )21 1
a X ds

X a
 +  

∫ . 

 
Hence, if the filament is inhomogeneous (but one can still vary the density from one 
extreme to the other in such a way that one has equal resistance to the action of 
deformation everywhere) then one will need to set T = aq, with a constant, in which case, 
one can deduce from the second equation of equilibrium that: 
 

X = 
sin

a

ρ ϕ
,  ∫ X ds = a log tan 

2

ϕ
; 

hence: 

ρ = 
1 1

2
a aX ds X dsa

e e
X

− ∫ ∫+ 
 

. 

 
For example, when X is constant (and one can always suppose that X = 1 then), as one has 
for a ponderous filament that is fixed at two points and is in equilibrium under the action 
of gravity, the two preceding intrinsic equations that were obtained will become: 
 

ρ = a +
2s

a
, ρ = ( )/ /

2
s a s aa

e e−+ , 

 
which represent the ordinary catenary and the catenary of equal resistance, resp.  That 
explains the reason for the names that are given to those curves (I, § 5, b, c). 
 One can treat other known questions of mechanics with equal speed and simplicity of 
means, and we encourage the reader to attempt to apply the method that was discussed to 
the study of the deformations of fibers or material lines that run through an elastic body 
and consider, in place of tension, the internal forces that act on each element of the fiber 
in all directions.  The formulas that one obtains in that way can offer advantages in the 
treatment of special problems that are analogous to those of curvilinear coordinates. 
 
 

__________ 
 
 

Additional note: 
 

 The theorem that was stated above (viz., the filament is always arranged in such a 
way that the osculating plane contains the accelerating force at any point) is another way 
of explaining (XI, § 8) why a filament that is stretched on a surface will take the form of 
a geodetic.  Indeed, the surface tends to oppose the tendency of the filament to rectify 
with a normal reaction F, which must also lie in the osculating plane of the equilibrium 
curve.  It is then such that the osculating plane at each point will be normal to the surface, 
and therefore a geodetic.  In addition, one will see that: 
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ρ q F = T = constant; 
 

i.e., the reaction, when computed per unit length, is proportional to the curvature of the 
filament, and that will also explain why the reaction is missing from the points of contact 
between the filament and the asymptotes of the surface. 
 

_____________ 
 



NOTE III 
 

ON THE EQUATIONS OF ELASTICITY  
IN HYPERSPACES 

 
 The calculations that Beltrami  carried out in the paper “Sulle equazioni generali 
dell’elasticità” can also be done with a certain expediency, and without loss of elegance, 
for a curved space of as many dimensions as one desires by making use of the notations 
that we adopted in the first chapter.  First, recall (XVII, §§ 6, 7) that if u0 = 1 then the 
coefficients of elongation and unitary solid dilatation will be given by the formulas: 
 

θi = uii = i
ij j

i

u
u

s

∂ +
∂ ∑ G , Θ = iiθ∑  = i j

i

u
s

 ∂ + ∂ 
∑ G . 

 
In addition, one has to consider the mutual sliding θij of the linear coordinate elements, 
and twice the components ϑij of the rotation of the medium.  Their expressions can be 
obtained from the formulas: 
 

1
2 (θij + ϑij) = uij = i

ji j
j

u
u

s

∂ −
∂

G , 1
2 (θij − ϑij) = uji = j

ij j
i

u
u

s

∂
−

∂
G , (1) 

 
which will reduce to just one [XVII, form. (15)], in substance, if one observes that: 
 

θij = θji , ϑij = −ϑji . 

 
Given that, when one assumes that: 
 

− ( )2 21
2 ijA B ϑΘ + ∑      (2) 

 
is the only effective part of the potential in the formation of the indefinite equations, one 
will arrive at the equations 
 

Xi + j ij ij
i j

A B
s s

ϑ
 ∂Θ ∂+ + −  ∂ ∂ 

∑ G G  + 2B ai = 0   (3) 

 
by the usual process, which are free of the last term on the left-hand side.  That term is 
the one that one needs to calculate in order for (3) to be the general equations of elasticity 
for isotropic media in any curved space or hyperspace if one omits the variations of the 
isotropy constants.  Meanwhile, if one follows the process that Beltrami  used to find 
formula (4) in his paper then one will obtain the equations: 
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Xi = 
( )

i i ij j i ij ij
ii j

T T T
s s

  ∂ ∂+ − + + +    ∂ ∂   
∑ ∑G G G G ,   (4) 

 
in place of our (3), in which Ti and Tij are the tensions in the (linear and surface, resp.) 
coordinate elements.  The index i that is placed in the final summation sign serves to 
remind one that one needs to exclude terms with distinct values of i and j from that 
corresponding sum.  Formulas (4) are independent of the geometric nature of the space, 
as well as the physical constitution of the medium.  When that peculiarity is introduced 
with the isotropy hypothesis, one will have: 
 

Ti = − (A – 2B) Θ – 2B θi , Tij = − B θij , 
 
and equations (4) will become: 
 

Xi + 
( ) ( )

2 2 ( )j ij j j j ij ij
i ii i j

A B B B
s s s

θ θ ϑ θ
 ∂Θ ∂ ∂− + − + + +  ∂ ∂ ∂ 

∑ ∑ ∑G G G  = 0. 

 
Now, a comparison with (3) will give immediately, upon observing (1): 
 

ai = −
( )

( ) i
j ij j j ij ij j

ii j

u
u

s s
θ θ ϑ

 ∂∂ + − + −  ∂ ∂ 
∑ ∑ ∑G G G + 

( )

j
j ij i

i j i

u
u

s s

  ∂ ∂ + −   ∂ ∂  
∑ G G .     (5) 

 
Meanwhile: 

( )
j

iis
θ∂

∂ ∑ = 
2

( )

( )j
j ij j

i j i i

u
u

s s s

∂ ∂+ −
∂ ∂ ∂∑ ∑ G G . 

 
On the other hand, by virtue of the integrability conditions [XVII, form. (16)], one also 
has: 

2

( )

j

i j i

u

s s

∂
∂ ∂∑  = 

( )

( )j j ji
j i ji i ij

i j i i j i

u u uu

s s s s s

  ∂ ∂ ∂∂∂ + + − − −  ∂ ∂ ∂ ∂ ∂ 
∑ ∑ ∑G G G G G ; 

hence: 

( )
j

iis
θ∂

∂ ∑  = 
( )

( )j ji
j i ji j j ij

i j i i j i

u uu
u

s s s s s

  ∂ ∂∂∂ ∂+ + − + −  ∂ ∂ ∂ ∂ ∂ 
∑ ∑ ∑G G G G G . 

 
If one substitutes this in (5) then one will get: 
 

ai = j j ij
j i ji j i j ij

j j j

u u
u

s s s
θ θ
     ∂ ∂ ∂

− − − − +          ∂ ∂ ∂     
∑ ∑

G
G G G G  
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− ( )j ij ij ji j
i

u
s

 ∂ − + ∂ 
∑ G G G G . 

 
That proves that ai is a linear form in the u: 
 

ai = ij ja u∑ . 

 
If one collects the terms that are multiplied by uj then one will get: 
 

aij = (Gj – Gij) Gij  −
is

∂
∂

(Gj – Gij) − hi hj∑ G G     (6) 

for i ≠ j.  Moreover: 

aii = − 2i i
j ij ij

i js s

 ∂ ∂− + +  ∂ ∂ 
∑

G G
G G G .     (7) 

 
Now, we can express the coefficients a by means of the functions Q.  However, it is more 
convenient to introduce the normal curvature N and geodetic torsion T, while bearing in 

mind the groups (γ) and (δ) of general Codazzi formulas (XVII, § 4).  Formula (7) can be 
written in the following way: 
 

aii = − 2 2 ( )ij ji
ij ji j ij ij

j is s

 ∂ ∂
+ + + − −  ∂ ∂ 

∑ ∑
G G

G G G G G . 

 
The second sum is equal to: 
 

,( )
hj ij

j h i
∑∑G G  = 

,( )
hj ij

h i j
∑∑G G  = 

,( )
ih jk

j i h
∑∑G G . 

Hence: 

aii = − 2 2

( )

ij ji
ij ji ih jh

i j is s

 ∂ ∂
+ + + +  ∂ ∂ 

∑ ∑
G G

G G G G , 

or, from (γ): 
aii = 2( )i j ij−∑ N N T .     (8) 

 
Similarly, one can give (6) the form: 
 

aij = 
( ) ( )

ij hi hj hi hj
j iis

∂− −
∂∑ ∑ ∑G G G G G  = − 

( , )

( )hj
hj ij hj

i j is

∂ 
+ − ∂ 

∑
G

G G G , 

 
i.e., by virtue of (δ): 

aij = − ( )h ij ih jh+∑ N T T T  .    (9) 
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This formula shows that aij = aji .  One is then led to consider the quadratic form: 
 

U = 1
2 ij i ja u u∑ ,     (10) 

 
whose first partial derivatives are precisely the ai.  In order to understand the significance 
of U, note that one can also arrive at equations (3) by assuming that the effective part of 
the potential is the expression (2), augmented by 2BU.  That can be expressed by saying 
that the curvature of space produces a loss of elastic energy, as if one part of that energy 
were expended by the body to overcome the difficulty that it encountered by deforming 
in a nonlinear space.  However, it can happen that U < 0, and then the elastic energy will 
be, by contrast, more intense than what one has in a linear space, as if the form of the 
space is such that it tends to facilitate the elastic deformation rather than oppose it.  In 
other words, if one imagines the space to be non-rigid in its geometric essence, and on the 
other hand, one supposes that the matter is endowed with a type of inertia, by virtue of 
which it will always tend to deform as if it were found in a linear space, then one can say 
that the space reacts to that tendency with a force that admits the potential 2BU. 
 For example, in the case of a two-dimensional space, one has a11 = a22 = K, a12 = 0.  
Hence, U = 2 21

1 22 ( )K u u+ , and equations (3) will become: 

 

X1 + 
1 2

A B
s s

ϑ∂Θ ∂−
∂ ∂

 + 2BKu1 = 0, X2 + 
2 1

A B
s s

ϑ∂Θ ∂+
∂ ∂

 + 2BKu2 = 0, 

 
and will remain unchanged under deformations of the surface, which one assumes to be 
flexible, but inextensible.  Hence, for a surface, the loss of elastic energy is proportional 
to the square of the displacement and to the curvature of the surface at the point that one 
considers.  One will have an analogous state of affairs for an arbitrary space.  Indeed, 
imagine that the space is referred to its system of curvatures.  All of the torsions T will 

then be zero, and from (9), one will have that aij = 0, while from (8), one will see that aii  
is the sum of the total curvatures of all coordinate surfaces that contain the line qi .  Now, 
if one represents the projections of the displacements qi qj onto the surface by uij , and 
represents its total curvature by Kij then the equality (10) will become: 
 

U = 21
2 ij ijK u∑ . 

 
The loss of elastic energy in an n-dimensional curved space is then equal to the sum of 
the losses that are due to the 1

2 n (n – 1) surfaces of curvature. 

 
___________ 

 


