CHAPTER XV

THREE-DIMENSIONAL SPACES

1. — Consider a continuous function of the points of adtdimensional space; i.e., a
variableu that takes a prescribed value at each locatloin a triply-infinite system of
points and varies infinitely-little whem passes to an infinitely-close positidn’.
Imposing a constant value updh is equivalent to singling out a double infinitude of
points from the triple infinitude — i.e., a surface — ahdnging the value af will mean
passing from one surface to another. It is then cledrany real function of the points of
a space will be the analytical representation of glstimfinite system of surfaces. The
ratio of the variation that the function suffersemithe point goes fro to M 'to MM ’is
the differential quotientelative to the directioMM’, and it is easy (cf., VIII, &) to see
that when one knows the differential quotients ie¢éhmutually-perpendicular directions,
the quotient relative to the direction that is definedHgycosinesr, 5, ywill result from
the operation:

d 0 0 0

—=g—+f[B—+y—,
ds 0s, '8652 yag
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and yet, if one sets:

then one will have:

in which @ is the angle that the variable direction in questicakes with the fixed
direction that is defined by the cosines:

1 u 1 0u 1
Jouds ' Jauds . Jauods,
That will then always be the direction along whickends to vary most rapidland the

value of the differential quotient in that direction Mak precisely,/ Au. However, if

one setsd = 0 then one will see that tends to remain constamong the infinite
perpendicular that goes throutyhin the direction (1). In other words, a plane passes
through any poinM that is characterized by the property that the vanadiou whenM

is displaced infinitely little in that plane is an mfiesimal of an order that is higher than
one with respect to the magnitude of the displacemeM.o On the other hand, W
traverses any line on the surface that belongs toytera that is defined by the function

u then it will remain constant, and it will also remaonstant, up to higher infinitesimals,
whenM is, on the contrary, displaced infinitely littleoah the tangent to that line, since,
if one neglects the quantities that are higher order ieimals with respect to the arc

(1)
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length that is traversed then the line can coincide wattangent. Therefore, the tangent
to the line necessarily belongs to the preceding platnevds found, i.e.the tangents to
all of the lines that pass through M on the surface are in a plkwen though not all of
the differential quotients (1) are zero. One can dwekhthat the cosines (1) are precisely
the ones that define the direction of tteemalto the surface at the poikt.

2. — One can base a system of curvilinear coordinatefiree families of surfaces
that are defined by the functiogs g, gs, from what was said in 8 of Chapter Eight. A
surface gwill then pass through any poikt in space that is the locus of points at which
the parameteq; keeps the value that it hasMt The surfaceqs, g, gz that pass through
M intersect each other along three lines (viz.,cib@rdinate liney and one says thme
g to mean the line along which only the parameteraries. We shall always suppose
that the coordinate surfaces (and consequently the limes)pair-wise mutually-
perpendicular at any point, and assume that the axeb@atangent®ix;, Mx,, Mxs to
those lines. Now, ik, X, X3 represent the coordinates of a fixed point in spaae \iree
would like to write down the condition of immobility viitrespect to the trihedron that is,
in turn, considered to be the fundamental trihedron ofttlee coordinate surfaces. First,
suppose that the function® that enter into the expression for the square of the
elementary arc-length:

ds = Q7 df + Q@ dd + G dg (2)
are defined and set:
1 0Q
j = . 3
Gi QQ ag (3)

Let ijk denote an even permutation of the indices 123 comgider one of the three
surfaces g, for example. On it, the lineg andq, will be denoted by andg;, resp.,

and the curvatures that are denoted7bgndg in the theory of surfaces (XI,6 will be
denoted byg; andg; , resp. Once more, I8t , Nk, andZ represent the quantitiéé,

N2, and 7 that relate to the surface in question and wribevid the conditions of
immobility (X1, § 9) of the point X =Xi, Yy =%, Z=X):

o0x o0X. 0
—a);'ZMka_ginj_l, _asjzgijxi_lkak, —a);k=7kx,-—/\/ik>q,
ox 0X 0X,

=G; . — T , I = A - Gi ._1, =T X — Ny X .
s Gi X — Tk X« s Nik X = Gii % o DX Ni X

J J J

Having done that, if one writes the first pairfofmulas for the surfacg; and the
second pair fog;, while leaving the third pair intact, then onelwitt:

g—);k=gik>q—7,-x,-:7kx,-—/\/ik>q,
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0
fzgjk)q—'fixi:'kai—/\/]kxj,

J

Z_;k:/\/ijj—gkixi—l=/\/kixi—giji_l;

hence/7 =7, = - 7 for anyi, j, k, and consequently:
7.=0, =0, T3=0. (4)
In addition, for any pair of values oand;:
Nij==Gi. (5)

(4) says immediately that any triply-orthogonal system, any surface wal ¢ut by the
surfaces of the other families along the lines wfvature. That is the very important
Dupin theorem. As for (5), it expresses an obvious fact, namely edpgivalence (up to
sign) of the normal curvature to the lige when it is considered to belong to the surface
g, and the geodetic curvature of that line on the surdacelt will then follow that the

six functions G, which are the only ones that we shall continue tosicer in our

calculations, represent precisely the principal curvaturéseathree coordinate surfaces,
with a change of sign. Finally, the preceding forastdssume the definitive form:

9 9 9

ﬁ = _g12x2 _g13x3_1! % = g32X:~7 ﬁ =g 23X 2

9 9 9

ﬁ ==0,X;—G,.X 1, ﬁ = G1Xy % = GaX, (6)
d 0 0

ﬁ = _g31X1_g32X2_11 % = g21X2, a_X; =g 12%1

These are thaecessary and sufficient conditions for the imniybdf the point that is
defined by the coordinateg, X;, X3 .

3. — If one applies the integrability conditions that telto the surfacegk to the

functionsx, namely:
0 0 0 0
— = —+G. |[—, 7
[63 +gﬂja§ (asj +g“Ja$ ")

then one will find six differential relations betwethe G that are known by the name of
Lamé formulas however, those relations can also be obtained withalculation by
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writing down the Codazzi formulas that relate to thee¢ coordinate surfaces. For
example, when one sefs= 0 and change$,, Go, V1, N2 into Gij , Gii , = Gik, — G , resp.,
the Gauss formula:

ag1+ag2+ 2 4 2:7—2_/\/’/\/’
asz aq g]_ gg 1J/V2
will then become:
99,99 g2y g2y =
ik Gk = 0
asz aq g]_ gg gkgjk

and will give rise to a first triple of relations. nSlarly, the formulas:

Ne s vi-M) G, M-
6§ 0
will become:
ag, oG
6§k +(Gk — Gi) Gi =0, 3 ,k + (G = Gi) Gi =0,

but they will reduce to just one triple, because onelhasirtue of (3):

0G; _ 1 (9°logQ, _dlogQ, dlogQ,
s QQ| aqaq aq ogq |

0G, _ 1 [9°logQ, _dlogQ, dlogQ
ds, QQ| aqaq og odq )

namely:
1 0°logQ, _ 99 9G,
= + Gy Gji = —' + Gki Gij
QQ dgog a5 o
and consequently:
aikJ + (G = Gi) Gi = ag"' + (G = G) Gi - (8)
J

Hence, the Lamé formulas will become:

0G,, , 9G
65322 + 6%22 +g32 +g23+g21g31_ O

aglz +ag31
0s; 0%

+ gl3 + g3l+ g32g12_ O

0G,, , 9G
6%21 + 6; +g21+g12+g12g23_ 0,
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% +(6,-6,96,,=0, %gsf +(G,795) 6:5=0,
aaisjl +(G21=Ga1) G23=0, or aag;g +(03 6,9 G,,=0,
;2 + (gsz _glz) gslz 0, 6_5? + (g31 - g21) g32 =0,

and, as one sees, they establish a necessary cougitmeeln the principal curvatures of
the coordinate surfaces and their variations. Sincedteegasily transformed into:

i[i&}i[_l&}_lga_%zo
0, Q dg ) 0q( Qdqg) daqaq
i(i@}i(i%}_l&ﬂ:o
0\ Qdq,) 0ql Qoq) Gagag
1{&6@} 0 [_16@}_16_@16_@2:0
0\ Qdq) 9q( Qdq) Gogdqg ©)

Q. _10Q9Q  14Q dQ,

00,00, Q00 00, Q0G0

0°Q, _ 19Q0Q,, 19Q0Q

00,0 Q0q 0q Qdqag

0°Q, _10Q0Q , 10Q0Q

00,00, Q0qdq Qdgaq

by means of formula (3), we can also consider theseetohé second-order partial
differential equations that the functio@smust satisfy.

4. — Whereas a pair of orthogonal directions that afiaelk for any point in the plane
can always be considered to be the directions aftigents at that point to two lines in a
doubly-orthogonal system, by contrasste analogous property for an orthogonal triple
in space is not truesven if it is defined at every point. That noteworfdgt results from
the restrictive condition that we will find ourselves mayvto deal with when the triad
that is defined by the elements of the orthogonal detert

a B W
a, B, Vv, =1
a, B Vs
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that relates to the variable triad of tangents tolittess of one triply-orthogonal system
can be the triad of tangents to the lines of anotl@y4orthogonal system. When space
is referred to the new system, one can express thehadée the immobility conditions for
the point ki, X2, X3) can be satisfied by the new coordinates:

X =axi+fBx+)Xs,
while being careful that the formulas:

0 0 6 0
— =g —+ — 10

fori =1, 2, 3 are the ones that pertain to the differeqtiatients that relate to the new
axes. Meanwhile, in order for the conditions (6) tasagsfied, it is necessary that one
must have:
6>ﬂ

gJ' j

6)4 '

05,

identically; i.e., if one considers only the first equalfor now:

{a@fﬁi% Jaas,,j(” Xt A%+ 1) = i (X + fre+ )X

This splits into three:

0,6, =50+ (@) G G2 =K (f Ga=0f G

B = 6'5,’ Y(B Gy— B ) -q (@ G- G), (12)
.oy,

ngji _GS a(y Gs1— IB Gia) — ﬁ(ﬁ Grs~ ¥ G329,

which will give:
Gi == a(8a+ Kk G12— & G13)
- (& + 0k G2z — K G21)
= ) (&c + B Ga1— Ok G32) (13)

when one multiplies them by, 4, y and sums, while setting:

Ja, 20. ay. .
0a; 08 n__[a,% 38 Jaj‘fk“

L+ Lty = +
75, '676@ {Fr ' 05, 'B'asv
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and observing that each element of the orthogonal digiznin

a B ¥
a B y|=1
a, Be Vi

is equal to its own algebraic complement. Similaolye can deduce:

G.= ac(&§1+ ) Gi2— L G1a)
- G(§2+ 0 Goz— i G21)
= K (83 + 3 Ga1— aj G32) (13)

from the three relations that are analogous to (12) winensplits the second equality in
(11). Itis then easy to verify that if (11) is sa@sfthen one will also have:

OX . ,
a_;(ly:_gji X — G )i -

identically; i.e., all of the conditions (6) will aldme satisfied in the new system. Having
said that, the elimination of thg¢’ from (12) or from the analogous relations will lead, in
any case, to the triple of conditions:

&1+ B &+ KE=(G1—G) B Y+ (G2—G) yai+ (Gi1z—G23) O . (15)

5. — Those conditions come from the necessitpradnting the new triad of axes in
such a way that Dupin’s theorem will still be validthe new system. Indeed, if one
applies the fundamental formulas to the directiagn [z, ) then one will find from (12)
that one can give it the form:

and it is clear that any relation that is obtained Ibyieating G; from that equality will

necessarily be contained in (15). Now, if one sumtkeicted equality, after having
multiplied it by ax, A, K, respectively, then one will get the relation:

a o).
- 'BVk

asj ‘03 0 $
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which one can then consider to be a new form of (M¢anwhile, that relation, when
written in the following way:

a, a, o,
B B d3|=0,
Vi oy

expresses precisely [cf., IX, form. (19)] the idea tHa¢ axis X will generate a
developable when the origin displaces along the &xislt will therefore be true thahe

condition(15) in itself shows how much it is necessary and sufficient for thec@ti®n
of Dupin’s theorem.

6. — Let us turn to (15) in order to find out how we could dedusigle relation that
each triple of cosines must satisfy by itself. Fiodtserve that since:

oa,
a a —
0s,
oa, 35,
&=)a—=-|8 -,
Y,
i W 35,
the left-hand side of (15) can be given the form:
a a 6a'k N ,B 6ak

s 0% s

s 4 aaﬁk+ﬁaﬁk+y6ﬁ§

Y, Y Y,
. a +8 +y

It will then follow that if one let$ (a, £, )) represent the quadratic form:

6ak 6ak

T A Ty +ﬁ SQ &r
0 0

B B 'gk+/)’ ﬁk+y6ﬁ% + (G~ Ga) By
ayk Y, )

Y W aa§+ﬁa%+y6%
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thenthe triplesa;, &, ¥ anda;, 5, y will be the two solutions of the system:
Fe(a, B ) =0, aat BB +B6=0, a+piryi=1,

which is to say, those triples will define the direos of those generators of the quadric
coneFy = 0 that are in the plane perpendicular to the doadd , 3, )). Note that the
two directions must prove to be mutually-perpendicular, tedform Fy will not be
arbitrary then, but must (as is easy to see) reducketsum of the coefficients of the
guadratic terms, which is to say that one must have:

Vi _ . 96| _ _ .
Z(ﬁk% Y« a%j Z(gn ) BV

d d B
zak {{g*‘gzgjﬁk _(E-Fgazj Vk} =0.

However, that condition is satisfied identically, @se will see immediately when one
observes that ifi is the function that defines the system of surfakbasare normal to the
direction @«, L, k) then one will have:

1 du 1 odu 1 ou

“imos  PTymos ¥ Tmuos

So far, we have not taken the third condition in (15) extcount, which one can give in
one or the other of the following forms:

Fi(ak, G, W =0, Fj(ak, B, k) =0.

If one substitutes the values @f, &, yor a;, 3, ) in one of these relations for the ones
that the preceding system provides as functions ofdbmesax, A, i and their first
derivatives then one must add a relation that is natlentity in those cosines and their
first and second derivatives, which is a relation thast obviously be satisfied by the
other triples of cosines, as well. If one then setsf, i equal to the aforementioned
values, when written as functions of then one will getBonnet’'srelation; viz., an
equation in the third partial derivatives of u thist necessary and sufficient for u to
define a system of surfaces that belong to a tgptliogonal system.Therefore, while
any simple infinitude of plane curves, along with itdiogonal trajectories, constitutes a
double system of curves, it happens very rarely that sermysf surfaces in three-
dimensional space will belong to a triply-orthogosydtem. That is always explained by
Dupin’s theorem, since when one is given a system ddes, it is very difficult for its
lines of curvature to be associated in such a way tlegt would constitute two other
systems of surfaces that are orthogonal to the giystem. On the contrary, any surface
belongs to a triply-orthogonal system, because @nough, for example, to associate it
with the infinitude of parallel surfaces (XI,%&) and to construct the other two systems
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from the developables of the common normals along ittes lof curvature. In other
words, any system of parallel surfaces belongs to a triply-orthogonal system.also
easy to see thatny system of planes or spheres belongs to a triply-orthogonal system
and that is due precisely (XI,3 to the complete freedom that one enjoys in the ehoic
of the lines of curvature on the plane and the sphere.

7. — In order to calculatthe second differential parameteve need to consider the
sumg; of thegG that have their second index equal, toamely:

G=Gj+0i= % log Q; Qx - (16)

If one observes that the system:

implies that:

then when the formulas (13) and (14) are summed, theygwdl

) 0 0 0
gi = (£+gljai +(g+g2jﬂl +{a—%+g3jyi.

Having done that, when one repeats the operation (10yyid rgget:

9’ 9° 9° 9’ 9°
=a’—+f°— + ..+ By + + ..
0s? 0s’ 0s ds,0s, 0s0sS

da, ,0a  9da )0 ( 08, .08, 080
+(a‘ 0s, A 6%“" 6%%5(“‘ 0 §+ﬁ6 §+J'/6 Fja ;+”'

0 o) @510 0, )0
[as,+gija$ a [a;glja;ﬂ. [a;gzja% b

SO
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0 0 0 0
el

{ai(a) 9 (apg)+ ( y)}

S

B

{681,30) —(,3) —(,ﬁﬂ’)}a§
B
{g(%m”g(%ﬁ”a—%(k’z)}a—

and finally:
0 o) oy(2,0)2
I

That exhibits the invariant property of the operation:

0 0 0
N = —+G, |—,
[0% %}65[5% GJ6§ [6§+%j6§

which one can also give the form thatmeé indicated:

NN
QQ,Q|dql Q dq) dgl Qdg) dg QI g

from (16).

8. — The relations (9) warn us that the space thatbleen considered so far, and in
which we have previously studied curves and susfate not the most general three-
dimensional space that we can imagine. Indeedrwesion space to be a triply-infinite
system of points, each of which is individualizedabtriple of values that are attributed
to the parameters, b, Oz and are connected to the infinitely-close poinysthe
condition that their distances are expressed bynmed formula (2) for ararbitrary
triple of given function®. The relations that were found between@nare therefore an
obvious clue to a particularization of space, amat ts, in fact, true as a consequence of
the hypothesis that we tacitly introduced thatsitlegitimate to implant a Cartesian
coordinate system in the space considered, andegoestly, there will exist three
functionsxy, X2, X3 of qi1, 02, g3 such that the expression (2) will reduce to thienfo

ds =dx¢ + dx¥ + dt. (17)

It is, moreover, easy to recover the Lamé formudatlze necessary and sufficient
condition for the possibility of making that redoct by a direct process. Here, it is
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worth recalling that we already encountered (VIIL@ a relation in the plane between
the curvatures of the lines of any doubly-orthogonal systeghich was a relation that
expressed precisely the possibility of reducing the squattleecglementary arc-length to
the form dx° + dx, while on a curved surface, no link will necessarilgioede between

the functionsQ. The space that we study, and that will be distirigedsfrom now on
from the other ones by callinglinear, will then be represented amongst all the possible
three-dimensional spaces in the same way that the pdadistinguished amongst the
curved surfaces, and we then call the nonlinear spawgased while deferring the
definition of the concept of curvature to later.

9. — Just as in the study of curved lines and surfaces wee@feéhe space that
contained them to a Cartesian system, it will bdul$e suppose that the triple infinitude
of points that are defined by the triplg,(gz, gs) and arranged according to the law (2)
belongs to a linear quadruple infinitude of points, or assays, it is immersed infaur-
dimensional linear spaceTherefore, imagine a four-times-infinite system ohpx) each
of which is distinguished by a quadruple of values that#ributed to the parameteys
Oz, O3, 4, @and is connected to the infinitely-close points bydtedition that its distances

to them should have a square that is expressed by theJbdg + ... + Q7 dg?, which

is assumed to transform linearly intb¢+ ... + dx;. That will reduce to (17) when one

of thex is held constant, and since any linear orthogonalfbemation that is applied to
the x will leave that form unaltered, one can generaffyra that in a four-dimensional
linear spaceany linear equation between the Cartesian coordinates relative to the
immobile axes represents a three-dimensional linear spddeat will therefore justify
the termlinear space, and at the same time, one will find a way padisa adapt the
geometric terminology and fundamental principles ofdhdinary analytic geometry of
lines and planes to those spaces. We shall leavee teedlder the task of familiarizing
himself with that extension and of repeating the comatdms of 81 in order to see how
obligating a functioru of the coordinates of the points in a four-dimendidinaar space
to keep a given value amounts to singling out a (genecallyed) three-dimensional
space from that space that admitsoamal line at every poinM in the direction of the
most rapid variation ofi and a three-dimensiontngentlinear space that is determined
by the line along which the variation ofis infinitesimal of a higher order than the
displacement offl.

10— Consider a point that displaces in a four-dimensibmadr space along a curve,
and letM’, M” ... be the positions that it successively occupies atitesimal intervals
when it starts from an arbitrary positidh. Thetangentto the curve aM is always
defined as the limit of the linklM “whenM "tends toM, and we shall briefly say that the
linear elementMM’ determines the tangent when we intend to mean passthg tonit
any time that we employ analogous locutions. That inimely says thatwo successive
elementsMM”andM ‘M ” determine thesculatingplane andthree elements determine
the osculating linear spacewhich generally varies from one point to the othenglthe
curve. The perpendicular to the osculating space thes gooughM can indeed be
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called thetrinormal, which is perpendicular to the three infinitely-clasmgents. It
belongs to thebinormal plane which is the locus of the infinitude dinormals or
perpendiculars to two successive elements thrddigjast as the binormal plane belongs
to thenormal spacen which one finds all of theaormalsto the tangents throug¥l in a
double infinitude. The perpendicular that is raisetdb the trinormal in the binormal
plane is theprincipal binormaland the perpendicular to the binormal plane that sedai
at M in the normal space is tipgincipal normal. That then constitutes the fundamental
quadruple of the curve, namely, the tangent trinormal, pahdinormal, and principal
normal. If those lines, which are pair-wise mutuallypeedicular, are taken to be the
axes, and if the Cartesian coordinates of a fixed puwoith respect to them are

represented by, X,, X , X, as usual, then one will see in the next chapter Heat t
necessary and sufficient conditions for the immaopdit the point are:

d _ x ax, _ x ax, X X dX _ x X
—t=— -1, : ———= -——L1-= (18)
ds p ds 1 ds p 1 ds Yo

in which 7, like p andr, is a radius of curvature, which will lead us to cdesihow to
measure the tendency that the pdvhthas to leave the osculating space more or less
rapidly as it traverses the curve.

11.— Take a line in a curved space, whose normil & determined in the normal
space by its cosines:, £, 4 with respect to the axes,, X, , X, resp. The other two

lines, which are perpendicular to each other and to teedne, are determined in the
normal space by the cosines [, )» andas, 5, )4, such that one will have:

al ﬁl yl
a B vl =1 (19)
a3 ﬁ3 y3

The coordinates of the fixed point with respect to thed normals that were defined just
now arex; = x , and:

X:alXi+,81)(2+yl)(, X2:0'3X'2+,33)(3+y3)(, x'%:alez’*'ﬁz)(s*'yzx-

Having said that, the conditions (18) easily transform the following ones:

dx d

dS:_22X2+23X3_NX1’ ;<ZS: 2 XF T, x=T X%

dx dx, (20)
—ds:—gzxz—g3x3+/\/' x-1, Tszggxi—TsﬁTlxz,

in which one sets:
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N=4 G=-8, g=-L
P P P
and also:

a. a. a.
Tl:—l‘*ﬁ—fl, 7'2:_2+ﬁ_£2, 75,:—3‘*&—53-
r 4 r 4 r 4

One will return to the known (XI, 8) immobility conditions that relate to the surface
from formulas (20) when one supposes that the third awevas zero, in which case the
determinant (19) will become:

0 sing cog
0 cogy -siw|,
-1 0 0

and7i, 72, G> will be constantly equal to zero.

12. — Now imagine other curves that are tangent to the sxesid X3 at M, and
distinguish everything that pertains to the tangent ctowdx by an index. Formulas
(20) will then give rise to the following relations:

0x 4
gz— X =T X+ T 15Xy 6);1: le_glzxz_g X5l
ox oX
(A) gz Ty % =Ny X, =T 5 Xq 6%2 == GauXit N %G X5 1, (B)
ox 4
g:—Tslxl+732x2—/\/’3x3p 6);3 ==G X G X+ N X5,
0 0
ﬁ :g23 X2+7123X_,Z'22XI _ax%z :g32X3_732X+733XU.
9 0 ’
(C) 62 =Gy X+ Ty X—=T 35X, 6);2 =G X~ T 33+ T X, C)
0%, _ 0% _
E =G, X+ T, Xx=T,; X, 95 =G 1 X5 T X+ T pXg

It will follow directly from this that forx = x; = %2 = x3 = 0, the differential quotients:

9°x 9°x 9°X. 0°x  0°%x 9% . °x  9°x 0%
0’ 08 oS’ 0s,0s 0s,05 0S50S 0s,0s, 0s0s, 0s,0S

will take the values:
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N1, Na N3 Tr3, 131, T12; -T32,— Tz, — To1,

and that the analogous values for the functiarsx, = xs will be:

0, -0n - Ga1; -1 0 G12; Tz Gis 0
-0 0 - Ga2; Goz —Ts3 0; 0 Ti1 G
- 013 -Gz 0; 0 Ga1 —Tin;, -7z O T2s.

Now, when the known condition:

0> _ 9° _0logQ; 9 dlogQ 9
0sds 0s0s s 05 ds 0ds

(21)

is applied to the functions it will immediately giveZ; + 7; = 0, and one can then set:
T1 =751 =~ Tzs, T2 =Tz =~ Tz, Ts=To1=-"Th>.

However, when that condition is applied to the funttigy, X, X3 , one will say that the
Gj are once more expressed by the formulas (3), and inaddine has the equalitids

= 0, in which one find®upin’s theorem With that, the immobility conditions can be put
into their ultimate form. B) will remain unchanged, buf) will become:

0X
_:_N1X1+T3 X2+T2 Xy

s

o0X
S, = T3)<1_N2X2+T1X3

0s,
oxX _
oS TX+T %-N; %

while (C) and C”) will reduce to the simple form:

oX. 0 0
a_;:gllxl_-rzx’ £:g23X2+ Tlx a_);:gslxs_ sz
0 0 0
ﬁzglgxl_-rzx’ ézgslxz_nx a_X;:gszxz_ T X

One notes that one can also gi¥é the form:
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ox _ 109 ox _ 100 ox _ 100

(22)

05 20x'  0s, 20% 0s  20%

in which @ represents the quadratic form that is definechbydiscriminant:

N 1 _T3 _Tz
K = _T3 N 2 _Tl )
_Tz _Tl N 3

which has great importance in the study of cunatuwe shall soon see thatcan be
expressed in terms of only the curvatugesTo that end, we agree to make use of the
reciprocal determinant, whose elements are repiesémthe following way:

Kit = N2 N3 - T7, Koz =Ko = N1 Ty + T2 T3,
Ka2 = N3 N1 - T, K1 =Kiz=NoTo + T3y,
Kaz= N1 N2 - T, Ki2=Koa1 = N3T3+T1To.

13. — Before we go further, we shall take advantagthefpreceding results in order
to show how one extend&uler's theorem(XI, § 10) to three-dimensional spaces. The
curvature of the planar normal section whose tangetietermined in the tangent linear
space by the direction cosinesp, yis always measured lix / ds for x = x; = X» = X3
=0, in which:

It is then given by:
2 2 2 2
azax+’826x+m+ﬁy[ax axj*_m

o " og 35,05 0305

for X =x; =x2 =x3 = 0, namely:

lovw@pay.
0

The discussion of that formula will prove to be @ately analogous to the discussion of
the one the theory of surfaces, and in particutawyill lead one to consider three
principal curvatures which correspond to the axes of the quadric sbre 0, which is
the locus of the tangents to the infinitude of agiotics (real or imaginary) that pass
through any point. The product of the principaivaiures is preciselll and can serve to
measure theotal curvature while the orthogonal invariants:

TN+ N2+ N3),  2(Ku+ Koz +Ka)
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measure twanean curvature®f the space around the point considered. If one would
wish that the normal to the space should generateeogeble then that would lead one
to express the idea that the major determinants of &texm

9% 9® 0
da o0 OJy
0O a p y

1 O 0O O

should all be zero, which is to say that one masth

0, o0 o 20
aa “ )] oy 4

and one would then find the axesd®@f The systems of curvature are then characterized
by the constant vanishing @i, T», T3 . The relationsA), (C), and C’) reduce to the
exceedingly simple forms for them:

ox 6x
== M ‘] - I
— X _55 = Gij %

14. — We now return to the condition (21), which cawrbe put into the form (7),
and apply it to the functioxt

0 0
[EﬁLgnj(—Nij +TiX+ TX) = (a—s‘ijgi;j(—/\/iK + T + Tj %)

That equality will reduce to a linear relation beem thex by means of the immobility
conditions, and by the arbitrariness in those W& that will give rise to the following
groups of formulas:

6T oT.
652 6%3 +T. g32 T g32_ 1(g21 3)’
0T, 0T,

(a) g a§ —+T, g13 T, g31_ Tz(g32 1)’
6T oT
651 65: +T, g21 Tng_TS‘(ng 23’
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oN, aT,
6523 +a_%l+2T1g23+T3g31: (Nz_Na)gsz

0 oT.
05) ﬂ+a_§2+2T2g31+T1g12:(Ns_NJ)gla

0s;

oN, 0T,
a%2 +a_%3+2T3g12+T2(]23: N =N )G,

oN, 0T
ass2 +a_%1+2Tlg32+T2(_321: N 3=N )G 5,

0 oT.
B) &+a_%2+2ng13+T3g32:(Nl_Na)gsz

s

oN, 0T
6521 +a_;+2T3g21+T1g13: (NZ_N])ng

Similarly, if one applies the condition (7) to the maftes x; then one will get the
following formulas:

0G,, 0G
65322 * 6%23 +g222 +g223+g21g31: K4,
0 0
(y) ai;'*' ag;l+g123+ge.21+g3zgu: K
0G,, 0G
6%21 * a; +0n+05+0130:5= Ky
oG oG
a_sf+(g13_g23)g12:a_st‘z'*'(glz_gs;gls: K 28
0 0
(5) agsil+(g21_g31)g23:ai;+(g23_g19g21:K 31
oG 0G
6;2 +(g32_g12)g31:a_§1+(g31_g2)g 3= K 12

Here, one should note that, thanks poand ), the total curvature can be expressed in
terms of onlyg, since one has:
Kll K12 K13
2 _
K - K21 K22 K23 !
K31 K32 K33

namely, if one recalls the observation that was nadbe end of 8, K is a function of
only Q and its first and second partial derivatives. Whentbaa applies the condition
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(7) to any otherx, one will get back to the formulas that were obtairdeady.
Meanwhile, the formulasa) reduce to just two distinct ones, adl Will constitute just
one triple, in substance, by virtue of the identity (80Dne therefore hafourteen
formulas, in all, which will take the place of tHaee Codazzi formulas in the study of
surfaces for the study of the three-dimensional curpedes that are immersed in a four-
dimensional linear space.

15. — Consider, for example, spherical space- i.e., the locus of points in a four-
dimensional linear space that are equidistant froireal fpoint. The coordinates of that
point must constantly satisfy the relation:

K+ =R

and the immobility conditions. If one differentiatést relation with respect to the three
coordinate arcs, in turn, then one will get= x; = x3 = 0, and consequently= R. If one
substitutes those results into the immobility condgiohen one will find that one must
have:

Ni=No=Nz ==, T1=T,=T3=0.

Pl

One will then see that the formulag)( (£), and (3’) are satisfied identically, in such a
way that only the conditiong)and ©) will remain, in which:

1
Ki1 =Ko =Kgzz = = K2z = Kz1 = K2 = 0. (23)

The six relations thus-obtained then characterizespinerical spaces. They are due to
Beltrami, and wherR increases to infinity, they will become the siamé [form. (9)]
characteristics of the linear space. Naturally, iha¢ possible to define a Cartesian
coordinate system in a spherical space, but one can alestablish a curvilinear
coordinate system in which the triple of functidpseduces to a single functi@p as it
does in the Cartesian system. In order for that fgpéra then, it is necessary and
sufficient that the conditions (23) should be satisfidtemvone sets th€ equal to the
values that they get from formulag and @), namely:

1 02 (1/Q) 0(1/Q) . 0*(1/Q)
Ki =- : Kj=—- ——=.
Q o QZZ [ o j ' 0g0q

An easy integration will lead one to take:
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and one will arrive at a coordinate system in which tementary arc-length is given by
the formula:

2
dg = d‘1’ﬂ+dcf+d‘f .
(14 @ v )]

It is the system ofstereographic coordinateshat Riemann pointed out and that
Beltrami utilized for the study of spaces of constant cture




CHAPTER XVI

CURVES IN HYPERSPACE

1. — Consider the successive positidvis M”, ... of a point along a curve (viz., a
continuous simple infinitude of points in ardimensional linear space) that are infinitely
close to the arbitrary initial positiav. As in 810 of the preceding chapter, say that the
elementMM " determines théangent which will always be assumed to tkeaxis. Take
the ( — 1)nhormalto be thew-axis; i.e., the line throughl that is perpendicular to thme
— 1 consecutive elemendM’;, MM ... Obviously, that line is in the plane that is
determined by all of the perpendiculars throdgho then — 2 consecutive elements,
among which one selects thegaxis to be the one that one can very well call(the 2)-
principal normal since it is perpendicular to tha £ 1)nhormal Thex, andx; axes,
along with all of therf — 3)normalsare in a three-dimensional linear space, in which one
agrees to take thes-axis to be the perpendicular to tkexs-plane. If one always
proceeds in the same way then one will eventually @htwex,-;-axis to be therincipal
binormal which is determined in then ~ 2-dimensional) binormal linear space by the
demand that it must be perpendicular to the precedweg. a Finally, in ther( — 1-
dimensional) normal linear space that includes alhefriormals, one distinguishes the
principal normal from among them and chooses it to be theaxis, which is
perpendicular to the binormal space. bet ..., diz, ..., ain be the direction cosines of
the x-axis with respect to any system mfpair-wise mutually-perpendicular axes, and
note that the definition that was given of that arasslates into the relations:

> a,da,=0 for 1<jsn-1, (1)
v=1
da,a,=0 for 1<j<i-1. (2)

v=l
In particular, if one differentiates the equality:

2 2 2 2 _
apraztast .ot a, =1 (3)

n

then one will get:

> a,da, =0 for 1<i<i-1 (4)
v=1

from (1) withj = 1. Meanwhile, the relations (2) and (3) say that therdenant that is
defined by the general elememi is orthogonal: If one so desires, its value canduak
to unity, and each element is equal to its own algelmamplement. Having done that,
one will get from (4) that:

dawy = & Gy (5)
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for all values ofv, in which & represents the angle between two infinitely-closgeats.
More generally, if one sets:

zajv da’lv = g'l '
v=1
in such a way that:
& =0, =&, (6)
then one will have:
dml = zgiv avi ' (7)
v=1
One gets from (5) for= 1 and:
En1=&2=&3= ... =&n1=0, &n=&, (8)
from which, it will result that:
f1=&1=&1= ... =&11=0, E&1=—&, 9)

by virtue of (6).

2. — Thanks to (7), one succeeds in expressing the succed$arentials of the
direction cosines as linear functions of those cosinkéene starts with the anglg and

temporarily represents it bgl”, and one then calculates a succession of quangfies

&, ... according to the rule:
n

— k k

iv
v=1

then one will find upon successively differentiating (7§l aepeatedly employing that
formula that:

d" oy :z&f,k)a’vj :
=1
Now, (1) will become:
> ea,a; =0,
ij=1
which is to say, if one observes (3) and (4), that:

e¥=0 for 2<v<n-k

If one successively seks= 1, 2, 3, ... and substitutes the ultimate result in (1) tme
will get:
> &6, 6, =0 2svsn-k-1. (11)

ipdg ek
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If one setk = 1, for example, then one will find that:

n

e &, =0;

i=1
i.e., by virtue of (8):
&v=0 for 2<v<sn-2.

Similarly, fork = 2, the relation (11) will become:
z‘gli & & =0,
i=1

and from that, if one takes the preceding result intowacthen one will get:
&-1v=0 for 2<sv<n-3.
If one proceeds in that way then one will expect imgeneral one will have:
Enkriy =0 for 2<v<sn-k-1. (12)

Suppose that this equality is true, along with the orsispgreceded it, and prove that it
will still be true when one changksnto k + 1. Seiy.1 =], so the relation (11) will give:

D, D &8.6,-6)=0 for 2<vsn-k-2.

j=1 CYPE

The sum ovek is zero forj = 2, 3, 4, ...n — k =1. On the other hand, by virtue of (12)
and the preceding equalitgyy will be zero forj =n—-k+ 1,n-k+ 2, ...,n-1,n. All
that remain then will be the terms that corresponthéovalueg = 1 andj =n - k: The
first one is zero by virtue of (8), and one will thewéra

&-kv =0 for 2<svsn-k-2;
i.e., one will come back to (12), in which one will fittthtk has changed into+ 1.
3. — Now, take tha principal lines to be the axes and consider the positi@ighey

will occupy when the origitM moves taM". It is clear that; represents the cosine of the
angle that the new axi§ makes withg wheni # j. With that, formulas (12) will take on

a geometric interpretation that one can easily utifize the direct proof of those
formulas. Meanwhile, if one sets:

En=&, &n-1 = &3, éan1=&, ..., &-13= &1
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then formulas (12), (8), and (9) will say that the dimt cosines of the principal lines
that have their origins @1’ with respect to the ones that go throwdtare given by the
following table:

X % 5 0 X X X
x | 1 0 o - O 0 g
X | O 1 &, - O 0O O
| 0 -¢&, 1 - 0 0 O
X_,| O 0 0 1 & O
X, | O 0 0 -& 1 &
X |- O 0 0 -¢ 1

Having done that, lex;, xo, ..., X, be the coordinates of a poiRtwith respect to the
moving axes. Letx be the absolute variation of artoordinate in space whé&h passes
to M”and P simultaneously passes BY. Let dx be the variation that the coordinate

experiences with respect to the moving axes. If one qisdy¢’ P’ onto the axes through
M then one will get:

K1 =dxg — & (X +dx,) +ds Ko =dxo —&-1 (Xn +dX), etc,,
or
%:%—ﬁ+l %:%— % 5)§‘ = d)ﬁ +_)S+£
ds ds p ds ds o, ds dsp p, (13)
OX M, X _ X (j234.. n-1)
dS dS lon—i+2 lon—i+1 Y , ’
after having set:
ds=a o= =80=..=10 1. (14)

4. — (13) are théundamental formulas for the intrinsic analysis of the cuthes are
contained in am-dimensional linear space. Those curves can thensoeiated witm —
1 curvaturesthat one can measure by means ofrtdtki p. When the poinM deviates
from the tangent as it traverses the curve, it witldoice the first curvature. One has a
second curvature for the greater or lesser tendendyeopointM to deviate from the
osculating plane, and then a third one that is dueetdeihdency tha¥l has to leave the
osculating space that is determined by the three comgecelementsMM’, MM,
M"™”, and one continues in that way until the deviationMbffrom the 6 — 1-
dimensional linear) osculating space that is perpenditalde 6 — 1)-normal implies an
(n—1)" and final, curvature for the line. Formulas (13) ase &hlid when one replaces
thex with the cosines that define an arbitrary directasjong as one removes the 1 from
the first one. In particular, when the given forasiare applied to the-i.;-axis, one will
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easily find that theangle e between two infinitely-close i-normais given by the
formula:

which will also be true for=n-— 1 if one agrees to lgt = 0, as one must suppose if one
briefly thinks of the space considered as being immerseal linear space of higher
dimension. If, in addition, one calls the angle £ between two infinitely-close
tangentsy then it will be interesting to note the followitigeorem of Lancret:

@-¢+6é- .. +e,=0.

5. — The proof of formula (13) can be facilitated by soveey simple mechanical
considerations that have the advantage of showing whatatheis that one must follow
in order to obtain more general analogous formulas #fat to nonlinear spaces. When
one attributes arbitrary variatior® to the coordinates in ann-dimensional space in
which one has:

ds = dx¢ + dx +---+ d¥,

the last relations will give:

00X
dsdjs:%z{%+ X’jd)g dx,

| OX 0X%

J

and from this, one will deduce that the conditions:

9% 00X,
il Bpe TR
ox, 0%

=0

will be necessaryand when taken altogethesyfficient for rigidity. If one integrates
them then one will get:

XK=a+anXi+arX+t ... +ah X,

in which as + ap = 0. Therefore, any infinitesimal rigid motion wiksult from a
translation (as, a, ..., a,) and arotation that decomposes into (n — 1) / 2 rotations
parallel to the coordinate planes, in such a way thlaeéch component rotation, any
point of the system will move in a plane that is datdab a coordinate plane, and will
submit to a rotationy; in it that is computed fromg with respect to . Having said that,
the system oh principal lines will be considered to be rigid, and oni tiven study the
passage from the position that it occupies at a pdirib the one that it takes at an
infinitely-close pointM’. The (1 —i + 1)-principal normak; will remain perpendicular to
n — i consecutive elements, and it must therefore moveeirspace that is normal to the
dimensions X3, ..., X Xi+1, which are perpendicular to the remaining a%es, X3, ...,

Xn . It will then follow thateay = O for:
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i>1, j=i+2,i+3,..,n
If one then observes thay = - « then one can add thay = O for:
j>1, i=j+2,j+3,...n
Therefore, in summary, one will havg = 0O for:
i>1, j=2,3,..i-3,i-2,i,i+2,i+3,..,n-1,n

As for xg, it is clear that since it must remain perpendictdaall of the multinormals, it
cannot leave the osculating spagex, ; let & be the angle through which it is rotated
towardsx,. One will have:

W= &, Wi=wn=...=ah11=0,
Wn=—§&, W2=W3=...=wp1=0.

One then letsy-1, &2, ..., & be the angles through which, X3, ..., X,-1 are rotated
towardsxs, X4, ..., X, respectively, in such a way that:

W+ =~ Wi+1 = én-i+1 -

The rigid system that is individuated by theprincipal lines is then subjected to the
rotations that are defined by the angleshat were just determined, along with the
translationds along x;, in its passage frorM to M’. As for the point Xi, X, ..., Xn),
instead of being invariably coupled to thénes, it suffers the displacemenlx{, dx, ...,
dx,) with respect to them, while the components of theohibe displacement in space
will be:

ox =dx—gx+ds 0%=dx-€,_,% 0 x= dxre, xe, X
Ox =dx+¢&_ X, —&. .. X (i=3,4,...,n—1),

n-i+114

by virtue of the formula that was proved to begin with amel last results that were
obtained. If this is divided by (14) then that will giveetfundamental formulas
precisely.

6. — Let us pass on to see how we might easily extengriheiples of barycentric
analysis (VII, 81) to linear spaces of more than two dimensions. FixpthetsAg, Ay,
..., Ans1 in @ann-dimensional linear space, which one can consider theébedrtices of the
simplestn-dimensional polyhedral entity, to which, followirgtringham, we give the
name of-tuple(n + 1)-hedron Letxg, X, ..., Xin be the coordinates @& with respect
to the moving axes. An arbitrary poidt can always be assumed to be defined in space
as the barycenter of a certain system ef 1 masses (vizharycentric coordinatgsthat
are applied to the vertices of the fundamental ()-hedroid and satisfy the relation:
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Mt o+ B+ L e =1

in such a way that its Cartesian coordinates relatven arbitrary system of orthogonal
axes will be given by the formula:

Xh = 1 Xah + Lo Xon + s Xon + ... F Unt1 Xnsrh
Meanwhile, one has:

n+l n+l n+1

z()(lk _Xjk)2d1u| = szﬂ @Xz dy - Z[Z X ql{j

identically. By virtue of the preceding equalithe right-hand side reduces +02dx’,
and therefore if one sets= 1, 2, 3, ...nthen when one sums, one will get:

n+l

—%Zaﬂz dy dy |
1]
in whicha; represents the length of the edgéy, which is to say that one has set:
2 _ 2 2 2
g = (61 —X2)" + (X2 —X2)" + ... + Kin —Xn)".

If the coordinateg: are given, for example, as functions of one patantewhich might
represent time, if one so desires, then the pragddrmula will immediately give rise to
the square of the velocity:

n+l d |
R as)

i

7.— Consider the Wronskian determinant:

o 9 A Ay

Y ds dé ds
W I A
W=| " ds dg d8
P . 2 O

" ds dé ds

and multiply it by the constant:
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1 % X

Xy
a" = 1 X Xop o Xn

1 Xn+1,1 )ﬂq+1,2 )ﬂwln

which can be made to depend upon @jlysince one finds that:

0 1 1 1

1 a121 a122 a12n+ 1
(- 2a2)n =-|1 a§1 a'§2 a;ml

1 a1f+1,1 a§+l,2 6\1 1n+1

by using simple transformations that are not necessamgproduce, since it is pointless
to prove thata” : n! measures the volume of the fundamental + 1)-hedroid.
Meanwhile, the aforementioned multiplication will ylethe value of"W in the form of

a determinant of orderwhose general element is:

3 n+l dI,U
OI-J' - ;ij dgk :

Having done that, if one applies the fundamental formtgathe point# then one will
get:

% I X d%:_[i_xﬁ,n_lj
ds p ds o, ds (o P,
d>§; _ )I(,j +1 )l(j -1

= (j=3,4,...n— 1),
dS pn—j+1 pn—j+2
which will yield some other equations:
do, 0, _dg, g _dg, G oG
0-i+1,1:_l__’ i+1,2 -2, Oy __+—l__l'
ds p ds P ds p, p, (16)
doy G,, G, .
g, =—+—1=-— (j=3,4,...n-1),

i+1,j —
dS pn—j+2 pn—j+1

by means of which, if one knows the first columntieé determinana”W then one can
calculate all of the other ones. Moreover, a filstivation of the defining equality:
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n+l

zlui)gjzo 021, 2,3...,n)
i=1
will show that:
o011 =1, O12=013=...=01n=0.
(16) will then give:
1
1= 002=03= ... =hp1=0, Gop=—,
2
SO
1 1
B1=——, Op=03=..=0Bp2=0, Gp1=- :
j2) PP,

etc. One expects that one must have:
g =0 for 2<j<n-i+1,
such that if one observes (17) then one will have:
G+1;=0 for 2<j<n-1,

and that is precisely (17) when one substitute4 fori. Therefore:

1 0 0 0 0 0
O 0 O 0 0 a,,
O3 0 0 0 O3n1 O3
a'w=|og, 0 O Oun-z  Oapnt  Oap
Ona1 0 Or13 " Onip2 Opip1 O
nl Onh2 Ons Onn2 nm1 n,n

aW=(1)""0"205, gsn1 Ganz ... Gha.
On the other hand, formula (18) will give:

g

i,n=i+2

P,

O+ip-iv1 = —

forj =n—i+ 1, and one will deduce from this that:

(_1 i-1
O+ip-it1 =——.

PP Ps B

- 1n

(18)

(19)
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Finally, if one substitutes that result in (19) then om# arrive at the following
noteworthy formula:

' P ey W1 (20)

8. — The last formula always gives one relation betw#em — 1 curvatures of a
given curve, and one will nead— 2 more in order to be able to establish the intrinsic
equations of that curve. It is clear that the rela() will suffice in the case of a plane
curve: The required intrinsic equation will then beamtd by eliminating from the
equalities:

a2 pW=1, s:j/(dt,

in which one first thinks of replacingandW as functions of by means of formula (15),
as well as:

p 94 A '

Yooodt dt? dt”

o | W S A
RODPW=| 72 T Tge dt’
P 2 O

" dt dt? dt”

which is a simple consequence of the definitiol\bfOne will get the relation:

afrw=1, (21)
and one needs one more. In order to find it, considaitlomskian matrix:
P d’y, Py, dyy
Yds  dg dd d$
e (22)
L O d’y, d'u, d'u,
* ds  dg ds ds

which will becomeW when one suppresses the last column, @/ ds when one
suppresses the penultimate one. Furthermor&ylée the determinant that is obtained
by suppressing the second column instead, which is a detetrttiaamcan be calculated
easily as a function df since one will have:
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ds s ds d4s
dt dt dt dt*

) p dy,  dyy &y dyy
KW= gt df dé dft |,

dy, d°p, d'u, dy,
dt dt dft dt’

Hy

by virtue of a general property of the Wronskian. In ofdethe equalities:

du d*u d*u 1 du 3 dp
. = 1 =1 ¢ L= = ¢ = - "
LAX=0 XX o=l XX =0 2K et = T DT e

in whichi goes from 1 to 4, to coexist, it is necessary thatdeterminant that is formed
by adding the row:
0’ 1’ 0, _i’ %M
p° ds

2

to the matrix (22) should be zero —i.e., that simeuld have:

,_d
from which, one infers that:

Lo fww*% d, (24)
P

as long a® andW'’are non-zero. When one replaege®V, W’ with their expressions as
functions oft, the last formula will make known, and one will then getfrom (21).
Moreover, one will also arrive at the equation tigaive us (21) from (24) by an
analogous procedure. Indeed, if one multipliesdéerminants® andW’ together then
one will get:

a’ o W= EB,
dsr

and one will get back to (23) from this formula &yminatingr by means of (21). In
addition, one will see th&W’= 0 is the necessary and sufficient condition f@r ¢urve to
be ahelix, while W= 0 is the condition for the curve to pnar. The reader can apply
the preceding formulas to the study of the tetreddepotential (cf., VII, 820) as an
exercise.




CHAPTER XVII

HYPERSPACES

1. — Consider a line in an-dimensional curved space that is immersed in a linear
space and recall that by virtue of the fundamental forgntiat were established in the
preceding chapter, the coordinates of a fixed point witheetsto then + 1 principal lines
of the curve are functions of the arc length whosevdByes can be expressed linearly in
those coordinates. It is clear that this property valpbeserved when timenormal lines,
which are regarded as concurrent, rotate in their spadena of them becomes normal
to the curved space in question. If one imagmesl curves in it that are tangents to the
othern — 1 lines then if one calls the coordinates of the fixadtpg, xi, ..., X, , one can
write:

n
K=Y A% g, (1)
0s. =

]

in which g; is equal to 1 or 0 according to whetherj ori # j, resp. We shall soon see
that then (n + 1) coefficientsA reduce to jush (3n — 1) / 2 linearly-independent ones
and thatn (n — 1)(5h — 1) / 4 substantially-diverse relations exist amongithed their
derivatives that are analogous to the formulas@oatazzi established for the surface.

2. Dupin’s theorem.— First of all, note that formulas (1) will still heue wheng; is
always zero if thex have the significance of the direction cosines, inciwlgase, one
must have:

0% . 0% . 9% 0%, _
—2+X—+x—2+...+x —"=0
©os tes tas "o
identically; hence:
AT+ A= @

and in particular,A* = 0. On the other hand, if one differentiates (1) tes will get:

0sds 1= Os m
and then, foxkg =X = ... =%, = 0:
N __ g 0% __ p0.
ds, ' 05 05 )

Having done that, the integrability conditions:
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0%, 0°X, _ 0logQ; 9% _dlogQ 0%

4
0sds 0s0s s 0s ds 0ps )
will become:
AD - D=6 dlogQ; | dlogQ |
7 0 ' 0s
and in particular, fok =1i:
i dlogQ
()= 90994 5
Al asj ( )
However, if one supposes thais different from andj then one will get:
A = AD (6)
i j -
Finally, when formulas (2) and (6) are adoptedraalternative, that will give:
A,-(k) =AW =-AD= AD= A= _ AD= —Afk)
ji { i .
It will then result that:
A‘."‘) =0 (7)

whenevelt, |, k are all different and non-zero. That equalitthes generalized expression
for Dupin’s theoremin hyperspace, because we saw before (XV128 that the
aforementioned theorem is due precisely to thepeddence of the quotiends; / 0s;
from thex with non-zero indices that are different fromndj, and we will soon see that
the geometrical significance of the equality (7)iso the natural extension of the one
that is already found in three-dimensional space.

3.—If one set& = 0 and A = 7; then one can only assert that= 7; , by virtue of

(6). In addition, we represeff by —\; and A" by —G; , in such a way that we will
have:

_ 0logQ
~ 0s

J

Gi , (8)

according to (5). The only coefficients that remain will then be the ones that are

denoted byVi1, N2, N, ..., Gi2, Ga1, Gi3, Gs1, G23, G32, ... Or T12, T13, o3, ..., and

which we call normal curvatures geodetic curvatures, and geodetic torsions
respectively. Therefore, in summary, we do notseeto keep in mind that any
coefficientA will change sign when one transposes the lowaca@sdand that the normal
curvatures and geodetic torsions and curvaturesxg@messed in the following ways:
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Ni=AY, Ty =7 = (') Gi :AJ-(ii).

In any caseA = 0. In addition, we feel that allows us to writd , instead ofV;, and
Gi , instead of O, for ease of writing.

4. Codazzi formulas.— Now, if one observes (8) then the conditions (4) ahange

into:
O o |% -9 Lo |9%
[asw“jaﬁ (0Sj+g‘ij6$’

and thanks to (3) this can be transformed into a lirgation in thex that splits into the
following conditions:

0 (i — (J) = Y M A — A Al
(as |JJA§< [$ |j'$l mz:o( mAm A<m m)’ (9)

which are necessary and sufficient for the exisesfcthe functions xXWhen each of the
numberg, j, k, | is assumed to be positive and different from tieothree, the left-hand
side will be zero, by virtue of (7), and one widtg

Tk Ty =Ty Tx = 0. (10)

That equality permits one to exprasgn — 3) / 2 of the coefficient in terms of the

othern, and the number of coefficienésto which one can arbitrarily assign a value at a
point will then be found to reduce to(n + 1) forn > 2. (9) is theuniversal Codazzi
formula so to speak, from which one deduces other grotifimulas according to the
various meanings of the coefficieds When one of the indicds | is supposed to be
zero and the other one is different froandj, formula (9) will give:

o7, 0Ty
os. 0s

]

+ Tk gu Tk gjl + IZI'J (glk g]k) - (0')

However, if the non-zero indices are set equalig then one will get:

oN, aT i
—L+27, G +Zf,kg,k+27,kg,k WNi=N) G . 1)
as a% k=i+1

Now setk =i, | =j. Under that hypothesis, formula (9) will become:
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oG ag, B B
a_;+a_;+gf+gj$+;gk gjk _,ij_MNJT- V%

J

If one finally supposes that just one of the positive Inenrsk, | is equal ta orj then one
will find that:

0G.
agsjk + Gk = GK) Gi =N Tk +T T, @)
J
as well as:
0G.
a—iﬂL (Gi = G) Gk =Ni T + T T

However, the last formula is no different from greceding one, since (cf., XV,3 one
sees the identity between their left-hand sides, byevidf (8). The formulas of the
group ©), like those of the groupaf, are distributed inton (n — 1)(h — 2) / 4 triples;
however, any triple ind) contains only two substantially different formula&he groups
(B and () obviously contaim (n— 1) andn (n— 1) / 2 formulas, in such a way that one
will have:

2n(n-1)(n-2)+2 n(n-1)= in(n-1)(5n-1)

relations, in all, which are the analogues of the Cod&xrmulas for curvedn-
dimensional spaces.

5. — The quadratic form:
o= /\/’1Xf+/\/'2x§ +...=2T12% X ...

is fundamental to the intrinsic study of these spaapd, its first partial derivatives are
proportional to the derivatives &§ , by virtue of (1). It is useful to observe the simple
form that these relations will assume as a consequehdhe determination of the
coefficientsA that was carried out in& One will have:

0X n oX.
=N —E L X — 1, — =T X+ i X
0s % j:lgu : 0s 6 g] :

The discussion ofp leads toEuler's theoremand the notion ofystems of curvatuye
which are characterized by the conditidirs 0. If one then supposes that the immobility

conditions have been written down in an- 1-dimensional space that belongs to the
system that is defined in the given curved space by a d&umncii then one will

immediately realize that tHgy that relate to the aforementioned spgcare no different
from the coefficientsAl”, in such a way that when thespacesy are associated in such
a manner as to constitute the curved space in questioaqtiadity (7) will say that all of
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the 7 are zero — i.e.those spaces will necessarily intersect along their systems of

curvature. Finally, the discussion of also leads us one to considerprincipal
curvatures, whose produ&t, which is equal to the discriminant df, can serve to
measure théotal curvature Formulas g) and ), along with (10), then provide values
to all of the quadratic minors i§, and one can then say thhaeé total curvature depends
uniquely upon the geodetic curvature and its variatio@ne should also notice that in
the case of a linear space, the functfonwill vanish identically, and the Codazzi
formulas will reduce (cf., XV, 85) ton (n— 1F / 2 necessary and sufficient conditions
for the linearity of that n-dimensional space.

6. — Let us now apply the preceding formulas to the studyhefinfinitesimal
deformationsof hypersurfaces. A poif¥l in a curvedn-dimensional space that is
immersed in a linear space of one higher dimension adisd infinitely little in that
space. Letl, Ui, Uy, ..., Uy be its coordinates at the new positMriwith respect to the
moving axes whose origin M and which are chosen in the previously-described way,
and set:

ou &,
uj=—-> Alu,. 11
175 N (11)

The fundamental formulas show immediately that whernraverses the infinitesimal
segments along tha-axis, the coordinates of the poit will vary by:

Uids, uyds, uyds, ..., (Ui +1)ds, ...,unds.

Therefore, more generally, if the poit moves in the direction that is defined by the
cosinesm, a», ..., a, in the tangent linear space and describes the seglaémen the
coordinates oM’ will submit to the variations:

(@ +3 ) ds, (12)

and therefore if one squares and sums this thermahénd that the segment that is
traversed by isds = (1 +Q) ds and when one omits higher-order infinitesimalse o
will have:

Q :Zafi au .
)

In particular, they; represent the unit elongations along the axestt@donsideration of
the solid element that is constructed from the sedgg ds, ..., ds, will show thatu; + u;
is the mutual angular displacement betweenitlaed | axes, and that the unit solid
dilatation is:

O=Up1+Up+U+ ... +Unn;
i.e., by virtue of (11):
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ez[%gjuuozN (13)

in which G; represents the sum of all tGehat have their second index equai.to

7. — The direction cosines of the tangents to the drajg of M’ are obviously
obtained by multiplying the quantity (12) by 1Q-and dividing byds They will then
have the values:

n
a-Qa+ay. (14)
j=1
At the same time, one can give the form:
daa (ol —au) = et ot ..t O Gh
jk
to the increment that; gives directly by setting:
n
j :zak(ajuik _aiujk) '
k=1

and sincea; = — aj , one will see that the directiomr( >, ..., an) will submit to the
rotation in the tangent linear space that is defipescisely (XVI, 85) by the semi-
symmetric matrix:

0 w, w;, - w
W, 0 wy - w,
Wy @, Wg -+ 0

In particular, theé andj axes rotate in their plane throughy—andu; , and one will then
see, once again, thej + u; represents the mutual angular displacement oktloss.
Meanwhile, sinc& is generally reducible to its canonical form istjone way, one will
generally have that just one orthogonal systenxe$ avill remain orthogonal under the
deformation, in such a way that any paij) of those axes will rotate rigidly in its plane
through an angle af; = —u; = (Uj — u;) / 2 . Since the quantityj = u; — u; is an
orthogonal invariant of the formy , one will easily see that th&; then represent twice
the components of the geodetic rotation, in ang.cdsom (11), one now has:

aZeah (o

Here, one should note that by virtue of the intbijitst condition:
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d d (o d
R

the & are all annulled in the potential deformations of spat@nsically — i.e., when the
displacement is tangential and has the differentialiguist of a functioru with respect to
the tangent axes for its components. One will thea hhve® = A%u from (13), since
with our symbols, theeamé formula which serves to express the second differential
parameter, can be written (cf., XV 78in the following way:

N = i(%+gji

= 6§ .

8. — We shall now go on to the choice of those axedhendeformed space. We
always take the 0 axis to be the normal to that sawkchoose the other ones to have
positions that differ infinitely little from the one thihe original tangent axes will occupy
as a result of the deformation. Therefore, assdarethe moment, that the axis is
allowed to assume the line that is defined in the origiaage¢nt linear space by the

cosines:
1 for j=i,
ag={ _ (17)

u, for j#i,

when considered in the position it occupies after therdeftion. If one observes the

expressions (13) then one will find that the directiosimes of the new tangent axes will
be given by the table:

and the direction cosines of the new normal axeshé&h be:
1 -Uo — U2 ... — Uon -

It will then follow that under the passage from the sydtem to the new one, the
coordinates will submit to the variations:

DX == U; + Ugi %o (18)
fori > 0, and:

DXo == Up = U X - (19)
i=1

It is now easy to express the new differential quésiemterms of the old ones, since one
obviously has:
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9 9
Z-1-9 YYa -,
il )Z;, 9

and in particular, if one makes the hypothesis (17) theretit-hand side will become the
symbol for the differential quotient with respect te thewi axis, while the right-hand

side will reduce to:
0 0 < 0
1 —u; —+u..——§ u — |.
( ) {as ii ji j

ds = " 0$
Hence:
0 0 4 0
_ = - U, —,
o5 0s ,21 ' 03

and therefore the variations of the original difféi@nquotients that are produced by the
deformation will be given in the form:

9
p2-9p-y, L (20)
05 05 ,Z—l“

9. — Having said that, in order to calculate the variatitmst the curvatures
experience as a result of the deformation, it is endagpply the last formula to the
relations (1). One will immediately get:

3 (A" D, + % DA") = 2 Dx - ium
k=0 05 o5

so if one supposes that 0 and invokes formulas (18) and (19) then:

n . au n . n . . n

ékaA‘k” = 5 AU A W) |t (A u- A g R (2D

i k=0 k=0 =1

Upon equating the coefficients gf and supposing that=j, in addition, it will follow
that:

D = 2 2G5 + T y) .
os =

However, forn # j, one will get:

au, ”

GSOI +G; Uy ‘27% Y -

i k=1

DT, = -
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However, it is clear that one can also write:

ou,. n
6301 +gij U _;ﬂj Ui -

DT, = -

If one equates the coefficientsxbetween them then one will find that:

DG = Gj Uj — Gjj Ui — 7 Ugi — N U .

10. — The identity between the two expressions that viemed for DG; can be

established directly by applying the condition (16)uto. When it is applied, more
generally, tau , that will give:

0 0 LR ,
— +G. |lu. -| —+G. |u = Dy - AD , 22
(asj gljjukl [a$ gjleJq ;( I uI| | LII) ( )
if one takes the relations (9) into account. ker0, one will get:

0 0 n
{G_Sj+gjjuu _{a_$+gjijuq zé(/fkj Ug =7y ukj)-
However, fork =1 :

0 0 .
{a_sj'*'gijj% _[a_$+gji j'-r] =Gi Ui = Ty Uoi = Ni Ug + égik Uy -

Finally, wheni, j, k are supposed to be different from each other asitipe, one will
find the relations:

0 0
£_+gjkjuij _£_8+ i | Yk =gki U _gji Y +7a W _IZiI( Y,

0s, Js
i+g. u, — i+g u =G y -G ¢ +7. y -7. | (23)
as ki jk a§ ik ji 1j j i jk ji ’

[i_+guJ”f[%+gj. Y=Y TG Y TR T
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11. — Meanwhile, the consequences of the identity (21) haveb@en exhausted,
since we still need to express the idea that the zextfi@ents must remain zero, and we
will then arrive at the triple of relations:

gkj Ui _gjk Uj +7i’j W — 7y W, =0,
Gy Uj =G U +Tjk U _7} W =0, (24)
gji Uy _g{j W +7I:i Uy _7;1 Y =0

for any triplei, j, k of distinct positive numbers. These relationsiciwlwe can consider
to be the conditions for thpermanence of Dupin’s theorem the deformed space,
constrain the displacements by means of first-ophetial differential equations, and
with them, one will discover thahe deformation that has been studied so far is not the
most general one possibier n > 2. The previously-established formulas are telid

in full generalityonly for surfacesand it is easy to verify that far = 2 they will
effectively reduce to the ones that we proved iytér Xlll.  The specialization that
was found fom > 2 came about as a consequence of the choiceesf since (cf., XV, 8§
4) the totality of all axes that are tangent to the space cannot always biele@asto
constitute the tangents to a n-fold orthogonal system of cuessn though the
orientation of the aforementioned axes varies@or@inuous manner with the position of
the origin.

12. — Other restrictive conditions can give rise te permanence of the universal
Codazzi formulabut since that formula is obtained by applying tondition (16) to the
coordinates of a fixed point, it is enough to irmgete whether there is any constraint
that one can subject the displacements to in dodehe stated condition to persist in the
deformed space. Now, one easily deduces fromt(d)

2 2 n n 2 2
D 4 = 4 D- %i—z Ui 4 +ukj 4 .
0505 0505 2 0$0s il 080s "0,9,S

Hence, if one switcheswith j and then subtracts one equality from the other whéde
keeping relations (16), (22), (24) in mind, alonighw

Gij Uik + Gk Ui + Gki U = Gik Uj + Gji Ui + Gy Wi,

which is a consequence of any triple (24), thenwitlearrive at an identity. Therefore,
other than (24), there exist no other restrictidhat one must impose upon the
displacements. One would arrive at the same ceiaridess rapidly by the direct route;
i.e., by calculating the variations that the defation brings to the Codazzi formulas, and
in order to exhibit the final identity, one mustpoptunely employ integration by parts
and some other artifice, in addition.
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13.— We shall turn to the study of the general deformati®he pseudo-symmetric
matrix:

1 VlO V20 no0
VOl 1 21 nl
VOn Vln V2n 1

is the one that defines the orientation of the arethe deformed space with respect to
the original axes. If one continues to assume tl@Otaxis is normal to the space then
one will havevyg = ug , and the othen (n — 1) / 2 infinitesimal quantitieg must satisfy
conditions that would validate and insure the existen@noffold orthogonal system of
curves in the deformed space that are tangent to thelax@®s3, ...,n at any of their
points. We shall leave thearbitrary, for now, since the desired conditions wilk@
spontaneously from the calculations that one musadad,one will note that they will be
precisely the ones that insure the permanence of Dupiedsem in the deformed space.
First, observe that the direction that is defined leydbsines:

{ 1 for j=i
a; =
_uJI

+y, for j#i

is carried by the deformation in such a way that it wdlincide with that of the new
axis. Indeed, one will see from the expressions (14) ithaorder to effect the
deformation, the aforementioned cosines must acquireaibes:

1 for j-=i,

v, for j#i.

(1 —ui) g +u; = {

Therefore, the new differential quotients relativethe i axis will be expressed in the
following way:

a0 =) L Loy -y )
(1—Uii);aj£—(l Uu){as T a$ z(uji \{')a§j

] =

Therefore, one needs to replace (20) with:

n

0 0 0
D—_=—D- =V ) —. 25

Similarly, instead of (18) and (19), one will have:
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14. — If one takes advantage of the preceding formulas anelsvall of immobility
conditions then one will get a linear relation betw#®e coordinates that will split into

DAY = a‘;k—i (U -y) - Z(ﬁ”u -, (26)

given their arbitrariness. If one recalls that &y triplei, j, k of distinct positive
numbers, one must have:

A&(j) =0, D f(” -0
then one will find the conditions:

K +(gij _glq')vki _(gjk _gk)\{j +g<j U _gjk Y +ZI W _Z; Y =0,
%*’(gjk_gik)vij _(gki _gji)vjk +gk Y _gd W +,Zj’k Y -
M 4 (Go=G,)v ~(G ~Gy)

E ki i) Vik i Q(:j Vi

7, ¢ =0, (27)

TG Y G R FTL 4T 8 =0,

which can also be given the remarkably simple form:

%+gjk |kj( ) ( % Q: —Q} j(l"!( _M),
9 0

by virtue of (23). The latter equations are alsteworthy since, thanks to the identity

2 oo o[ 2
(£+g1kjgij = (631. +gk1}gik’

they will be satisfied when one substituggsfor anyu; —v; . By some straightforward

but tedious, calculations, one can then verify ({23t are integrable, and on the other
hand, if one takes advantage of the formula:

62 o a(uk|_\/k|)i ! _ 62 62
Dasaﬁ 656§D kZ;, ds Z|:(Uki Vki)a—ks S (l.{< \{q) J,

~ 3 2.9,
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which is an easy consequence of (25), one will seethkaintegrability conditions (16),
and consequently, the universal Codazzi formula, wilkiserin deformed space when
(27) are satisfiedT'he choice of the v is therefore subordinate to only those conditibns.
one finds an arbitrary system of functionshat satisfy (27) then the formula (26) will
lead rapidly to the knowledge of the alternating produétthe deformations of the
varied curvatures:

ou, & .
DA = a“; DG Uy Ly )+ 2D Ty
j=1 j=1

ou,, n n
4Gty — > T Y D (T e + T W)

DT, = -
asj k=1 k=1

a n
DG; :gji U; _gj Y _Z; W _N Y +[£+g jijv_kz_:g W

These formulas can be transformed in various wengks to (22), and the following
transformation of the last one is particular notdiwa

oy, [0 VENER | _
s [a$+gjij(qj v) kzzi,gk (4 —¥)- (29)

]

DG =

15. Beez's theorem— When space is assumed toiextensible the formQ will
then become identically zero, the functiendike thev, will enjoy the property; = — uj,
and consequently, i > 2 then one can take = u, since when (28) is satisfied, the
conditions (27) will necessarily reduce to (23f.ome chooses thein that way then one
will see directly for the situation that was dissed in 813 that the new axes are found in
the positions that the (arbitrary) old ones occapya result of the deformation, and one

can then substitut® for the signD (cf., Xlll, 8 6). Therefore, as in the deformations of

inextensible surfaces, any orthogonal system o$ axli remain orthogonal; however,
for n > 2, that is nothing peculiar, since in realityaspis not deformed.Indeed, from

(29), one will have immediately th&g; = 0, which is to say that the geodetic curvature

does not vary, and then, by virtue of the groypsd ©) of Codazzi formulas, one will
see that if one observes (25) then the normal tures and geodetic torsions will also
remain unaltered, since for any triple of valuest hre attributed tq j, k, six functions,
which are (generally) independent, will remain iriaat and they will depend upon the

six curvatures\i, N, ..., T, M T + Ty T, Nj Nk — T, and the other analogous ones.

Therefore,all of the curvatures will remain invariant, and ondl when discover an
important fact that was pointed out Bgez and then exhibited mostly R®icci, i.e.,the
impossibility of deforming an inextensible spafenore than two dimensions. Whereas
an inextensible filament can be flexed until igigen an arbitrary form, one has already
seen (XI, 825) that an inextensible surface cannot assume atraagbform when it is
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flexed, and Beez’'s theorem will then say that it isuggh to make a space of dimension
three or higher inextensible in order to determine itaglete rigidity, that is to say, to
impede any change of form, and everything will then happeftlas increasing number

of dimensions tends to destroy the flexibility of thgace. In addition, the preceding
analysis reveals that the impossibility that was disoed byBeezis due, for the most
part, to the demand (vizDA!” = 0) that space has to deform in such a way that the

lower-dimensional spaces that constitute it do not ceaggersect in the manner that is
prescribed by Dupin’s theorem, as one that would lead to auigidity in the geometric

structure of the space that it would not be possible toogra deformation without the
spaces that constitute it extending or contracting. egbx@nally, that rigidity will cease

when all of the third-order principal minors in the detimant K are zero when they
include one or two given principal elements, so one or morenal curvatures and
geodetic torsions can vary, and that restitution of iy is properly due to the greater
liberty by which the space can satisfy Dupin’s theorem, bgae of the partial or total

indeterminacy in its system of curvatures.

16.— In order for no doubt to remain about the preceding prioBéez’s theorem, we
would also like to show thagpace can only move rigidly when the curvatures do not
vary. Assume that we have an orthogonal system of immabxes: Leixo, a1, ..., &
be the direction cosines of thexis, and leko, X, ..., X, be the coordinates of the origin.
We notice from &7 that under the hypothesis of inextensibility, thewill be precisely
the components of thetation, just as theay are the components of thanslation. Let
u;j and u be the analogous quantities with respect to the moving, el in order to
calculate them, observe that the variations of dwedinates:

§=-2.0;%

of M with respect to the immobile axes obviously have theamZa” u; , and on the
other hand, we must be able to express them in terthe ofand ¢ in the following way:

ANV (30)
It is enough to the switch the two systems of axek eatch other in order to see that one
also has:
Ui+ DU % =2 a0y
and to deduce the first of the formulas:
U :Zaii U, +qu Ye % Ui :Zaik a, u, . (31)

As for the second one, one substituteis (30) and compares the coefficientsépf after
observing that:
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== a;&.

Having said that, we differentiate the second formul@1i), while taking the immobility
condition:

an- _ ou v v
6_5\:_ zaik a a_stl+z(ﬁém) T @+ Ay T @) Ug

into account. If one switchdswith min the first part of the second sum dnaith min
the second part then one can also write:

oy, au, <
| — ai a. KL ( ('\1/1) U, — (V) ,
ds, ; k 4 35, mZ:O Am Uy = Ay Ug)

and since (20) implies that one can express tharisility of all the curvatures by:

aukl % (v) (V)
—< = u. - u.),
65\, mz:O(Am km m In‘)
one will see that:
ay, U, U,
_1:0, _':0’___’_' =0;
0s 0s, 0s,

i.e.: all of the ¢y are constants.Similarly, if one keeps (11) in mind then onelWiihd
that:

0 v

A aij uj:zaij ujv+zp}(k)(aikq+a€j Q)a

0s, 5 ] i

and it is clear that the last sum is zero, since ¢lements that correspond to the
permutationgk andkj in the indices are equal and have opposite sigaanwhile, one
has:

0
Ezuij § = Zaivuij +Zaij Uy -
i I J

Therefore, the derivation of (30) will give:

%:O, %:O, e %:O,

s 0s, 0s,

and one will also have th#te ¢ are all constantshen. It is therefore true that space can
displace only rigidly, in such a way that all of goints will submit to the translationn,
Ui, ..., Un) and the rotation that was defined by the constant
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ON THE USE OF GRASSMANN NUMBERS

The use oé&lternating numbergonfers a very precise and elegant form to the esult
of the intrinsic analysis of surfaces, and in particutermits one to combine the three
Codazzi formulasnto just one. From known conditions (XI,3, it is necessary and
sufficient for the immobility of the poinix(y, z) that one can given them the form:

i%s‘:ifmmk GilyH Nkl z+ ,
Ldy _ . .
Jd—s—kngﬂNDw 7K z 1)

kg—z=j/\/'mx+k THyk GKl z
s

We agree than thanitsi, j, k should have zero squares, and that in addition, treyicdh
satisfy the conditions:
i=jk ==kj, j=ki=-ik, k=ij =-ji. (2)

Now, (1), when summed, can be combined into the siogfeula:

d—Q =wQ —i, 3)
ds

in which only the vectors:
Q=ix+jy+kz w=i7+jN+kg

appear. The derivative with respect to the arc lengthtlen reduce to the simple
vectorial operation that is represented by the symbdk will then be important to know
the effect of the operationd, o, ... on the fundamental units.

We agree to observe, first of all, that from thenamtions (2), the products of the
three fundamental units is generally zero, except whesahond or third factor along is
equal to the first one, in which two cases, the produlitreduce to the remaining
factors, when taken with a changed sign or the origsig, respectively. In other
words:

ij =-7j, iji =j, 4)
More generally, if one considers the vectorial operation
w=ia+jb +kec, w=iat+tjk+tke

then it will follow that the operation:
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Www =liara tijagb+ik ag ¢
+ji b a, +jj bi b, +jk b1 c
+kic1a2+kj ci by +kk ¢c1 ¢,

when applied to the unit for example, will produce the result:
iji @by +iki a3 ¢y + jji by by +kki ¢; ¢z,
wpi=—i(aa+tbiby+cic) +was. (5)
In particular,«f = 0, and:

Fi=-i+wT, Fj=-j+oN, dk=-i K+, (7)

in which, x represents the modulus @f
Now, it is easy to find the formulas by which the sussesdifferential quotients of
X, Y, zare expressed linearly in termsx¥, z. Indeed, when one omits the variations of
the curvatures, (3) will give:
d"Q
ds

=o'Q - ',

and everything will reduce to the calculation of thsuies of the operation& on the
fundamental units, and one will arrive at those resatsly by means of the formulas (7)
and the other obvious ones:

wi=jG-kN, wj =k7-ig, Wk=iN-jT. 8)

(That is why one observes that if the result of maetorial operations is identical to any
scalar then it will be zero.) One will obtain:

oY = (-1)" wi £, oY = ()" o i K.

In particular, if one wishes to have the formulaat texhibit the second derivatives then
one will have:

12 - Fixrdiyr k@i

i.e., by virtue of (7) and (8):

d’Q

e =-Q*K+KN-] G+ (Tx+Ny+G2).

That equality obviously splits into:
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3—2‘:—;2x+7(7x+/\/y+gz),
i;y == Ky+N(Tx+Ny+G2),
3—;2 =-Kz+G(Tx+Ny+G2).

One needs to add terms to the right-hand sides thatraveled by the variation of the
curvatures, i.e.:
dN  dg dg _d7T d7 _dN
z - X——=12 - X

ds Yds' Tds ds ds ~ ds’

Another noteworthy consequence can be derived fanmula (5) if one observes
that in the first place:

(o —Gpoy)i=6par-—wa. )
Letia+j b+k cbe the vectorial operation that is equivaleniot@y, — oy w, i.e., let:
(fa+jb+kc)Q = (wx k- opw)Q.
By virtue of (4), one will have:
i(xupx-ww)i=i(latjb+kci=jb+kec

Hence, if one observes (9) then:

jb+k c=i w,a- wa,
kc+ia=j w,h—j wh,
ia+jb=k w,q Kk wc,;

hence, summing these equations will give:

ia+jb+kc=1(uwox—op o) =woy. (10)
Therefore:

The operationuy «» — wy w;, Which is equivalent t@ wy w, when it is applied to
scalar quantities, will, however, reduced® w, when it is applied to a vector.

Assuming that, consider another curve on the surfacasthangent to the origin of
the y-axis and distinguish everything that refers to the finstsecond curve with the
indices 1 or 2, respectively. Lgt andg, be parameters that define the two curves in a
double orthogonal system that is traced on the surfatset:
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w=iT+j Ni+kGi, Ww=iN2-]T+kG,.

The conditions (3), when written for the curve in on¢he other system, become:
—— —wQ-i, — =—wQ-j, (11)
0s,

and in order fof to exist, it is enough that one should have:

0°Q ,0logQ 9Q _ 0°Q . 0logQ, 9Q

. (12)
0sds, Ods 0s 0s0g Ods Os

Meanwhile, one deduces from (11) that:

Q (awl _

_ 0°Q _ (0w,
0sds | 0s,

= + Q-juy,
ds, 05 ds wzwlj e

u)lwzj Q+j o,

and in particular, fo© = 0, (12) will become:

]CQ]_+| (,02:| aIOng _J aIOgQZ
0s, 05

The left-hand side has the vaiug, —j G, — k(71 + 73); hence:
gl:M, QZ:M, ’11+'Z'2:0’
0s, 0s,
and one can then sé&t = -7, = 7. After that, the formula (12) will reduce immetdily

to:

0 ow

Hence, if one takes the theorem (10) into account:

0w, 0w,
—+—2+w7 +wG, = :
5, s W7, +wG, =0 0y

That is the equality that is contained in the three Codazzi formtdaghich one can
arrive (cf., XI, 89) if one observes that by virtue of (6), the ridpatad side will have the
value:
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i ]k
7 N, G
Nz T gz

We invite the reader to try performing an analogousutaion in hyperspace, while
imagining a system of unitg Y with two indices that are endowed, first of allthwihe
property that that they will change sign when onespases the indices. One then needs
to suppose that one hag(kl) = 0 when, j, k, | are all different from each other, and that
one hasi{)(jk) = (ik), in such a way that one hag?{ = - (ji)(ij) = - (jj) = 0, in particular,
while the unit {j) will not change when it is multiplied on the left by) or on the right
by (j); etc. When the calculations are based upon these maomng one will get a clear
geometric image by supposing that after having enumeratecettiees of anr{ — 1)-
tuple n-hedron from 1 tan one represents the operation that consists of sigethe
edge that goes from the vertieto the vertex by (ij). The numbers that were previously
adopted refer to the caserof 3, in which the units are:

i = (32), i =(13), k = (21).



NOTE Il

ON THE EQUILIBRIUM OF
FLEXIBLE, INEXTENSIBLE FILAMENTS

Given a filament that is completely deformable imatimensional linear space, take
the axes to be the tangent,« 1)-normal, ..., principal normal at a moving point of the
filament. It is assumed to be infinitely thin, butsoch a way that each elemet#
nevertheless has a certairass q ds Let X; be the components along thexis of the
force per unit mass that acts upprls and letu; be the projection of the displacement
onto that axis. The direction cosines of the eleroétite filament after deformation will
obviously be proportional tds + dui, du,, Aus, ..., AUy, and therefore if one calls the
tension per unit length then one will have:

quwé(Tﬂj =0
ds

for the equilibrium of the external force, if one talaare to appent ds andT Js wheni
= 1. At the same time, it is important to note tlt tundamental formulas (XVI, 4
that relate to the directiom, a>, ..., an), when written in the form:

dS dS pn—i+2 pn—i+1 ,
and if one agrees to set:

1
ai+n:_ai ,Q+n:,a, _:O1
Po

can, as always, still persist when one considergtbgctions of an arbitrary variable
segment onto the axes, insteadrofindeed:

opai = a dp+p dai =d pa; + [_p”i—l _ pamj ds.
lon—i+2 lon—i+1
One can then write:
5( ﬂj = d(T%j.*_Téq—l _ T5u+1 ,
dS dS lon—i+2 pn—i+1

and the equations of equilibrium will become, imgeal:

qX+£(T5u‘j+ T oy, T dy, _
ds pn—i+2 ds pn—i+1 ds

Finally, after totally eliminating thé sign:
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q)q+£ T d_q+ Yo _ Yo + T dy, T duy,
dS dS lon—i+2 pn—i+1 pn—i+2 dS ,On_i+1 dS

+ Tu., + T4, —Tq( 21 +—21 j:o.
pn—i+310n—i+2 pn—i+110n—i pn—i+2 pn—i+1

Hence, fori = 1, 2, 3, ...,n, if one takes into account all of the conventions thate
made, one will arrive at thmtrinsic fundamental equations for the equilibriush a
filamentin ann-dimensional linear space:

ax+ 9 T(d_ul_ﬁﬂj _l(d_%,iJ,hj — o,
ds| { ds p p\ ds p P,

g+ 3|7 9% _ usj_ T (dus+ L _ W),
ds ds p. Poa\ US Oy Py

g+ T A, Y _ ulj+ T (duz_ u | _T [du4+ U _ usjzo
ds ds p,1 Pne Pral dS pry) P\ dS P, Prs

VL T[%+ﬁ_ij _l(%+&+ﬁj +L(dun-z J s uﬂj _ o
ds ds o P, )| P\ ds p, p,) P\ ds p, P

an+i T(%-}-ﬁ.{-hj +l(%_i+1j +l{%+h_ij =0.
ds ds o p, )| P\ ds p, P\ ds  p; P,

In particular, forn = 3, if one letsX, Y, Z, u, v, w denote the components of the
accelerating force and displacement, resp., amdoleindr be the radii of flexion and
torsion, resp., then one will get the equations:

qx+£ T Ej_lv.ﬂl_ _I EN+_U+_ =0,
ds ds p plds p 71

qvsd T(d_v_xvj _T(dw, u, ¥
ds ds r r,ds p r

d dw u Vv|| T du w :[dv _
QZ+—|T| —+—+— | |+—| ———+1|+—| ———[=0,
ds ds p r)| plds p ds r
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which were pointed out biylaggi. If the filament is inextensible then it will be enough
to observe that the variation of the elemgsitesults from the relation:

(ds+ 5d9? = (ds+ dU)® + (A) + ... + ()

from which it will follow that 0 ds= du; in the case of infinitesimal displacements, in
order for one to see thatextensibilityis always expressed by the equality:

du _ u,
ds o

When one omits the displacements, the equationsara found will reduce to the
simpler form:

T T
le+%:0, qX +— =0, Xo=Xg= ... =Xy =0,

P

and one will see that the filament is always arrangeslich a way that the osculating
plane contains the accelerating force at any pointe &duilibrium curve will then be
planar in the case of forces that emanate frommgece If the accelerating forcéhas an
invariable direction then what was expressed in (1) &n be written:

dp _ 1
ds p’

in which ¢ is the inclination of the tangent to the filamevith respect to the direction of
X. The first two equations of equilibrium, whicheahe only ones that we agree to take
into account, become:

g Xcos¢ +d—T: 0, gXsing :I :
ds P

and when one eliminates and integrates, it will be easy to deduce thain ¢ keeps a
constantvalueTy all along the filament, in such a way that one has

T= Ty X= _ L :

sing qosin’ ¢
That presents two noteworthy special cases: Ifflaenent ishomogeneousi.e., q is
constant) then the last equation will give:

a

= X ds=-acot g,
osin’ ¢ J ¢

X
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after one set3, = ag. It will then follow that the intrinsic equation tfie equilibrium
curve will be:
1 1 2
p= Y[{HE(JX ds) }

Hence, if the filament is inhomogeneous (but one sl vary the density from one
extreme to the other in such a way that one é@sal resistanceio the action of
deformation everywhere) then one will need toTsetaq, with a constant, in which case,
one can deduce from the second equation of equitibthat:

X= Ff‘ : Jde:angtanf;
psing 2
hence:
_a %J.de —;J.dej
=—I|e +e :
P ZX(

For example, wheK is constant (and one can always supposeXhbal then), as one has
for a ponderous filament that is fixed at two psianhd is in equilibrium under the action
of gravity, the two preceding intrinsic equatiohattwere obtained will become:

p:a+§’ ,0: %(es/a_i_e—ga)’

which represent the ordinary catenary and the eayeof equal resistance, resp. That
explains the reason for the names that are givémose curves (I, §, b, ¢).

One can treat other known questions of mechanitsagual speed and simplicity of
means, and we encourage the reader to attempply the method that was discussed to
the study of the deformations of fibers or matelireds that run through an elastic body
and consider, in place of tension, the internatdsrthat act on each element of the fiber
in all directions. The formulas that one obtainghat way can offer advantages in the
treatment of special problems that are analogotisotge of curvilinear coordinates.

Additional note:

The theorem that was stated above (viz., the @l@ms always arranged in such a
way that the osculating plane contains the acaabgréorce at any point) is another way
of explaining (XI, 88) why a filament that is stretched on a surfacé takke the form of
a geodetic. Indeed, the surface tends to opp@s¢etidency of the filament to rectify
with anormal reactionF, which must also lie in the osculating plane & dguilibrium
curve. It is then such that the osculating plarneaah point will be normal to the surface,
and therefore a geodetic. In addition, one wii Heat:
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£ g F=T = constant,;

i.e., thereaction when computed per unit lengtl, proportional to the curvature of the
filament and that will also explain why the reaction is nmgsirom the points of contact
between the filament and the asymptotes of the surface.




NOTE Il

ON THE EQUATIONS OF ELASTICITY
IN HYPERSPACES

The calculations thaBeltrami carried out in the paper “Sulle equazioni generali
dell'elasticita” can also be done with a certain expealieand without loss of elegance,
for a curved space of as many dimensions as one desiraakiyg use of the notations
that we adopted in the first chapter. First, recéYI(, 88 6, 7) that if up = 1 then the
coefficients of elongation and unitary solid dilatatwii be given by the formulas:

ou _ _ 0
ﬂzuii=£+zgu'uj’ =246 _Z[£+g‘jui'

In addition, one has to consider the mutual slidéh@f the linear coordinate elements,
and twice the component$ of the rotation of the medium. Their expressioas be
obtained from the formulas:

ou, ou;
HEFA UG HE- =Gy, @

]

which will reduce to just one [XVII, form. (15)], in subsice, if one observes that:
8=, Ji=-5 .
Given that, when one assumes that:
- i(ae?+BY.5?) )

is the only effective part of the potential in the forimatof the indefinite equations, one
will arrive at the equations

00 0
xi+AE+BZ{E+gj_g'j}% +2Ba=0 (3)

by the usual process, which are free of the last terth@rneft-hand side. That term is
the one that one needs to calculate in order folo(Betthe general equations of elasticity
for isotropic media in any curved space or hyperspace ibarits the variations of the
isotropy constants. Meanwhile, if one follows the psscthatBeltrami used to find
formula (4) in his paper then one will obtain the equmstio
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-9, +3 | —+G +
Xi—[g g.j 247 Z{q G QJT (4)

)
in place of our (3), in whicfl; andT; are the tensions in the (linear and surface, resp.)
coordinate elements. The indexhat is placed in the final summation sign serves to
remind one that one needs to exclude terms with distimicies ofi andj from that
corresponding sum. Formulas (4) are independent of theeggo nature of the space,
as well as the physical constitution of the medium. eWthat peculiarity is introduced
with the isotropy hypothesis, one will have:

:—(A—Z_D))@—ZBQ, Tij:—Baj,
and equations (4) will become:
x.+A—— 29 +2BY G (@ -9 )+ Bz{—;g +G jq
$0 )
Now, a comparison with (3) will give immediatelypan observing (1):
0 ou,
'-——29 +2.G(6 -9)+ 24 ——Ql} 3 os =Y a_$_gu'q NG

® 0]

Meanwhile:

0
Z Zas 95 a—$Z(GJ NOLE

0]

On the other hand, by virtue of the integrabilipnditions [XVII, form. (16)], one also
has:

o’u, 0 ou, _ou au, oy
%asja$ ‘%{T%*gjja—wﬁ*g.g Z%a—? (G gl)a_ls
hence:

au,

0 _ 0 ou ai i B

If one substitutes this in (5) then one will get:

a=g ( j 2.5 (6? ‘—qj‘uz‘,{%“ﬁ%j
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0
- Z{E(QJ ~G)+GG }q
That proves thag; is a linear form in the:

a=23au.

If one collects the terms that are multipliedupyhen one will get:

0
aj = (G —Gi) Gi —E(Qj =Gi) =2 GuGy ©)
fori #j. Moreover:
oG ag 2
i - 1 . . 7

Now, we can express the coefficieatby means of the functior§3. However, it is more
convenient to introduce thermal curvature\' andgeodetic torsiorZ; while bearing in

mind the groups)j and @) of general Codazzi formulas (XVII,4. Formula (7) can be
written in the following way:

i 0G,
& == Z( 5t 9t j—Z(g,-—g,)q.
The second sum is equal to:

229G = 229G =22 9T -
i h() h() ] i) "h
Hence:
0G, 9gG,
i :_%“(GS] t— 3s +g.,2 gj.z zgh th
or, from ()):
= 2NN =T (8)

Similarly, one can give (6) the form:

a'J:gijzghi _%z ghj_zghighj :_Z{aghj (th gu)gu}

(1 ) (i.1)

i.e., by virtue of §):
- Z(NhTu +,]i-h,]’jh) . (9)
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This formula shows thatj = g . One is then led to consider the quadratic form:

U=3>a4y, (10)

whose first partial derivatives are precisely éheln order to understand the significance
of U, note that one can also arrive at equations (3) synaimg that the effective part of
the potential is the expression (2), augmentedBly. 2That can be expressed by saying
that the curvature of space producdess of elastic energyas if one part of that energy
were expended by the body to overcome the difficulty thancountered by deforming
in anonlinearspace. However, it can happen that 0, and then the elastic energy will
be, by contrast, more intense than what one haslimear space, as if the form of the
space is such that it tends to facilitate the eladiformation rather than oppose it. In
other words, if one imagines the space to be non-mgis$ igeometric essence, and on the
other hand, one supposes that the matter is endowed wige afinertia, by virtue of
which it will always tend to deforras if it were found in a linear spacthen one can say
that the space reacts to that tendency with a fbeteatdmits the potentiaB2J.

For example, in the case of a two-dimensional spawe hasy; = ax = K, az2 = 0.

Hence,U = 1K (u/ +U5), and equations (3) will become:

X1+Aa—@—8% + 2BKu, = 0, X2+Aa—@+Bg+ZBKu2:O,

05 0s os, 0§

and will remain unchanged under deformations of the surfelcsieh one assumes to be
flexible, but inextensible. Hence, for a surface, tiss lof elastic energy is proportional
to the square of the displacement and to the curvatutedurface at the point that one
considers. One will have an analogous state of affair an arbitrary space. Indeed,
imagine that the space is referred tosgstem of curvaturesAll of the torsions7 will
then be zero, and from (9), one will have that 0, while from (8), one will see thag

is the sum of the total curvatures of all coordinateasad that contain the limg. Now,

if one represents the projections of the displacemgrgsonto the surface by; , and
represents its total curvature Ky then the equality (10) will become:

U=1> K, .

The loss of elastic energy in ardimensional curved space is then equal to the sum of
the losses that are due to the (n — 1) surfaces of curvature.




