
Excerpted from E. Cesàro, Lezioni di geometria intrinseca, from the author-publisher, Naples, 1896. 
“Sull’uso dei numeri di Grassmann,” pp. 250-253. 

 
 

On the use of Grassmann numbers 
 

 The use of alternating numbers confers a very precise and elegant form to the results 
of the intrinsic analysis of surfaces, and in particular, permits one to combine the three 
Codazzi formulas into just one.  From the known conditions (XI, 3), it is necessary and 
sufficient for the immobility of the point (x, y, z) that one can given them the form: 
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We agree than the units i, j, k should have zero squares, and that in addition, they should 
satisfy the conditions: 

i = jk = − kj, j = ki = − ik, k = ij = − ji .   (2) 
 
Now, (1), when summed, can be combined into the single formula: 
 

d

ds

ΩΩΩΩ
 = ωωωω ΩΩΩΩ – i,     (3) 

in which only the vectors: 
 

ΩΩΩΩ = i x + j y + k z, ωωωω = i T + j N + k G 

 
appear.  The derivative with respect to the arc length will then reduce to the simple 
vectorial operation that is represented by the symbol ωωωω.  If is then important to know the 
effect of the operations ωωωω2, ωωωω3, … on the fundamental units. 
 We agree to observe, first of all, that from the conventions (2), the products of the 
three fundamental units is generally zero, except when the second or third factor along is 
equal to the first one, in which two cases, the product will reduce to the remaining 
factors, when taken with a changed sign or the original sign, respectively.  In other 
words: 

iij = − j, iji = j,  …    (4) 
 
More generally, if one considers the vectorial operations: 
 

ωωωω1 = i a1 + j b1 + k c1 , ωωωω2 = i a2 + j b2 + k c2 , 
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it will follow that the operations: 
 
 ωωωω1    ωωωω2 = ii a1 a2  + ij a1 b2 + ik a1 c2  
  + ji b1 a2  + jj b1 b2 + jk b1 c2 
  + ki c1 a2 + kj c1 b2 + kk c1 c2 , 
 
when applied to the unit i, for example, will produce the result: 
 

 iji a1 b2 + iki a1 c2 + jji b1 b2 + kki c1 c2 , 
i.e.: 

ωωωω1    ωωωω2 i = − i (a1 a2 + b1 b2 + c1 c2) + ωωωω2 a1 .    (5) 
 
In particular, ωωωω2 = 0, and: 
 

ωωωω2 i = − i κ2 + ωωωω T, ωωωω2 j = − j κ2 + ωωωω N, ωωωω2 k = − i κ2 + ωωωω G,  (7) 

 
in which, κ represents the modulus of ωωωω. 
 Now, it is easy to find the formulas by which the successive differential quotients of 
x, y, z are expressed linearly in terms of x, y, z.  Indeed, when one omits the variations of 
the curvatures, (3) will give: 

n

n

d

ds

ΩΩΩΩ
 =    ωωωωn ΩΩΩΩ − ωωωωn−1 i, 

 
and everything will reduce to the calculation of the results of the operations ωωωωn on the 
fundamental units, and one will arrive at those results easily by means of the formulas 
(7), and the other obvious ones: 
 

ωωωω    i = j G – k N, ωωωω    j = k T – i G, ωωωω    k = i N – j T.  (8) 

 
(That is why one observes that if the result of more vectorial operations is identical to any 
scalar then it will be zero.)  One will obtain: 
 

ωωωω2n+1 ⋅⋅⋅⋅ i = (−1)n ωωωω i κ2n, ωωωω2n+2 ⋅⋅⋅⋅ i = (−1)n ωωωω2 i κ2n. 
 

In particular, if one wishes to have the formulas that exhibit the second derivatives then 
one will have: 

2

2

d

ds

ΩΩΩΩ
 = ωωωω2 i x + ωωωω2 j y + ωωωω2 k z − ωωωω2 i ; 

 
i.e., by virtue of (7) and (8): 
 

2

2

d

ds

ΩΩΩΩ
 = − ΩΩΩΩ2 κ2 + k N – j G + ωωωω (T x + N y + G z). 
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That equality obviously splits into: 
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2

d x

ds
 = − κ2 x + T (T x + N y + G z), 

 
2

2

d y

ds
 = − κ2 y + N (T x + N y + G z), 

 
2

2

d z

ds
 = − κ2 z + G (T x + N y + G z). 

 
One needs to add terms to the right-hand sides that are provided by the variation of the 
curvatures, i.e.: 

d d
z y

ds ds
−N G

, 
d d

x z
ds ds

−G T
, 

d d
y x

ds ds
−T N

. 

 
 Another noteworthy consequence can be derived from formula (5) if one observes 
that in the first place: 

(ωωωω1 ωωωω2 − ωωωω2 ωωωω1) i = ωωωω2 a1 − ωωωω1 a2 .    (9) 
 
Let i a + j b + k c be the vectorial operation that is equivalent to ωωωω1 ωωωω2 − ωωωω2 ωωωω1, i.e., let: 
 

(i a + j b + k c) ΩΩΩΩ = (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) ΩΩΩΩ. 
 
By virtue of (4), one will have: 
 

i (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) i = i (i a + j b + k c) i = j b + k c. 
 
Hence, if one observes (9) then: 
 

1 2

1 2

1 2

,

,

;

b c a a

c a b b

a b c c

2 1

2 1

2 1

+ = −
 + = −
 + = −

j k i i

k i j j

i j k k

ω ωω ωω ωω ω
ω ωω ωω ωω ω
ω ωω ωω ωω ω

 

 
hence, summing these equations will give: 
 

i a + j b + k c = 1
2 (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) = ωωωω1 ωωωω2 .    (10) 

Therefore: 
 
 The operation ωωωω1 ωωωω2 − ωωωω2 ωωωω1, which is equivalent to 2 ωωωω1 ωωωω2 when it is applied to 
scalar quantities, will, however, reduce to ωωωω1 ωωωω2 when it is applied to a vector. 
 
 Assuming that, consider another curve on the surface that is tangent to the origin of 
the y-axis and distinguish everything that refers to the first or second curve with the 
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indices 1 or 2, respectively.  Let q1 and q2 be parameters that define the two curves in a 
double orthogonal system that is traced on the surface and set: 
 

ωωωω1 = i T1 + j N1 + k G1 , ωωωω2 = i N2 − j T2 + k G2 . 

 
The conditions (3), when written for the curve in one or the other system, become: 
 

1s

∂
∂
ΩΩΩΩ

 = ωωωω1 ΩΩΩΩ − i , 
2s

∂
∂
ΩΩΩΩ

 = − ωωωω2 ΩΩΩΩ − j ,    (11) 

 
and in order for ΩΩΩΩ to exist, it is enough that one should have: 
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Meanwhile, one deduces from (11) that: 
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and in particular, for Ω = 0, (12) will become: 
 

j ωωωω1 + i ωωωω2 = i 1
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The left-hand side has the value i G1 – j G2 – k(T1 + T2); hence: 

 

G1 = 1

2

logQ

s

∂
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,  G2 = 2

1

logQ

s

∂
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,  T1 + T2 = 0, 

 
and one can then set T1 = − T2 = T.  After that, the formula (12) will reduce immediately 

to: 

1 2
1 1 2 2

2 1s s

 ∂ ∂+ + + ∂ ∂ 
T G

ω ωω ωω ωω ω ω ωω ωω ωω ω ΩΩΩΩ = (ωωωω1 ωωωω2 − ωωωω2 ωωωω1) ΩΩΩΩ    . 

 
Hence, if one takes the theorem (10) into account: 
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That is the equality that is contained in the three Codazzi formulas, to which one can 
arrive (cf., XI, 9) if one observes that by virtue of (6), the right-hand side will have the 
value: 

1 1

2 2

i j k

T N G

N T G

 . 

 
 We invite the reader to try performing an analogous calculation in hyperspace, while 
imagining a system of units (ij) with two indices that are endowed, first of all, with the 
property that that they will change sign when one transposes the indices.  One then needs 
to suppose that one has (ij)(kl) = 0 when i, j, k, l are all different from each other, and that 
one has (ij)(jk) = (ik), in such a way that one has (ij)2 = − (ji)(ij) = − (jj) = 0, in particular, 
while the unit (ij) will not change when it is multiplied on the left by (ii) or on the right 
by (jj); etc.  When the calculations are based upon these conventions, one will get a clear 
geometric image by supposing that, after having enumerated the vertices of an (n − 1)-
tuple n-hedron from 1 to n, one represents the operation that consists of traversing the 
edge that goes from the vertex i to the vertex j by (ij).  The numbers that were previously 
adopted refer to the case of n = 3, in which the units are: 
 

i = (32), j = (13), k = (21). 
 

________ 
 


