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PREFACE

This is the first in a series of volumes loigher mathemati¢gan which | propose to
attract the attention of young people to the variousiglises that are freely taught to
students at the University of Naples. What are publistezd are the lectures that | had
the honor of presenting as a substitute for Prof. &I BAGGLINI during the scholastic
year 1892-93. They contain nothing new, nor is there arignse that they constitute a
complete course on the mathematical theory of elgstibut they should only be
considered to be a preparation for the reader who wishegplore the many excellent
treatises and study the papers — especially the Itafias 6 that have been published on
that subject.

Portici, 20 August 1893.

E. CESARO
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CHAPTER |

KINEMATICS OF SMALL MOTIONS

1. — In an initial approximate study of the phenomena ittetifest themselves in an
arbitrary medium, that medium can be compared to @&myst points that are close to
each other. Those who propose to study the defornsatld such a system confine
themselves to the ones that are negligible with &sjgethe mutual distances between
the points, in such a way that if one calls two osthpointO andM and represents their
positions that result from the deformati@iandM’, resp., then it will be legitimate to
treat the displacement®0O’ and MM as infinitesimal with respect the infinitesimal
distanceOM. The displacemer®O’ of an arbitrary point is specified in magnitude and
direction by its projections onto three orthogonalsaxélhose projections, which are
called the displacement®f point O and are represented hy v, w, are obviously
functions of the coordinatesy, z of O. Suppose that those functions, which are already
required to take very small values, are also continuoudoromi and at least once
differentiable, and that all of those properties alstiy to the first and second partial
derivatives. In the kinematical study of small defations, the following combinations
of the first partial derivatives are important:

ou 1(ow ov 1(ow ov
a=—, == —+—, p==| ——-—
X Z(Gy azj Z(Gy azj
ov 1(6u 6Wj 1(6u GWJ
b=—, = —=+—1, g==| ——— |,
oy 2\ 0z 0x 2\ 0z 0x
c= W _1fov du _1fov_ou
0z’ 2lox ay)’ 2{ ox ady

One soon sees why the functioasb, c, f, g, h bear the name ofomponents of
deformation while p, g, r are what one calls theomponents of the rotatioaf the

medium.
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2 Introduction to the Mathematical Theory of Elasticity

2. — When one analyzes a deformation, one is naturallyolestudy, first of allthe
alteration of the distancelsetween neighboring points, and @iéeration of the angles
between two line elements that have a common egtrdin

OM =dg, O'M'=(1+¢do

then the ratias of the increment inlo to do itself is thecoefficient of elongatiom the
directionOM. If the element©M and ON make an anglé& between them before the
deformation and ifd — 2¢ is the angle between those elements after the dafmnm
(which are transferred ©’M”andO’N’, resp.) then one callgpzhe mutuakhearof the
elements in question. In order to calculate those itaportant quantities and ¢, it is
necessary to establish some preliminary formulas tilesay what the variationda, op,

oy will be that are felt by the direction cosines afabitrary line element as a result of
the deformation.

3. — If dx, dy, dz are the projections @M onto the axes then those ©f M will be
dx +du, dy +dv, dz+ dw. Therefore:

_dx _dx+du
a=—, at+tdag=——,
do @+e)do

(L+8(a+da)=a+ Y.
do

Hence, one neglectsda in the left-hand side and writes down two morel@gaus
relations infandy:

du dv dw
-—— —gq, B=—-&B, oy=——— &Y.
do p do P 4 do ¥

In other words, if one observes that:

du _odu dx 6udy Jdu dz
——+t———=+——=aa+h-NB+@Q+
do 6xda 6yda oz h=np+@+ay
then one will have:
oa=-ca+(qy-rp)+(aa+hB+ gy),
B=—-ef+(ra-py)+(ha+bB+ fy), )
oy=-ey+(pB-qa)+(ga+ {4+ ).
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4. — Having said that, consider two elements whose tiwrex are defined by the
triads of cosinesd, S, y) and @', 3, y'). Let@be the angle between them, in such a way
that:

cos@=aa’'+LBp +yy.

If 2¢ is the angle by whic diminishes under the effect of the deformation thes will
also have:

cos - 2¢) = (a+aa)(a’+oa’) + (B+P(B'+ ")+ Y+ N+ ) ;
20sin@= (a’'da+ B B+ y ) + (@ da’+ LB+ ydy).
Now, formulas (1) give:
a'oa+ OB+ y oy
=—¢gcosd+p(By-yp)+a(ya’—ay)+r(@p-pga’)

taaqa’tb 8 +cyy+f(By+ypB)+glya’ray)+h(ap'+Ba’).
Similarly, if one switches the two terms with eachestthen:
ada’+ LB+ yoy
=-¢&'cosf-p(By-yB)+talya-ay)+r(af'-La’)
taaqa’tbf8+cyy+f(By+ypB)+tglya’ray)+h(ap'+Ba’).
If one adds the two together then one will get the igeriermula:

psind+ 3(e+¢’) cosb

=aaa’'tb B +cyy+t(By+yp)+ra(ya’ray)+h(apf'+Ba’).
5. — Suppose that the two directions coincide. One will tteerea = a’, =0, y=
y, €= ¢, 8= 0, and the preceding formula will become:
e=ad’+bp*+cy’+ X Py+ 29 ya+2h ap (2)
If the two directions are mutually-perpendicul&= 77/ 2 then the same formula will

give:

p=aaqa’+bpp'+cyy+t(By+yp)+glya’tay)+h(ap'+pa’).  (3)
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In particular, fora=1,4=0,y=0, one will havee=4a, ... Fora=0,=1,y=0 anda’
=0,6'=1,y=0, one will havep =1, ... Hence:

a, b, c are the coefficients of elongation of the three line elenttesit are parallel to
the axes, and f, g, h are one-half the mutual shears of those elements

6. — If the values that the components of the deformagsume at the poi@ are
not all zero then the equality (2), in which one sets0, will become a homogeneous
equation of degree two i@, S5, ). Hencethe elements that emanate from O that do not
elongate or shorten are located along the generators of a quadricwiine vertex at
O. That surface, which one calls thleear congcan be imaginary or real. If it is real
then the line elements arou@dcan be grouped into two classes: viz., the ones thailare
elongated and the ones that are all shortened. Henabich is a continuous function of
a, B, ¥, cannot change sign without going to zero wheg, yvary continuously; i.e., it
is not possible to pass from the region of elongatothe region of shortening without
crossing the conical surface. If the shear cone aginary then one can say tlauvill
always keep the same sign, and therefore the line etesmeound the point considered
will either all elongate or all shorten.

7.— More generally, the locus of the line elements th#ésa unit elongation will be
a quadric cone, because formula (2) can be written as:

@-9+0-9B*+c-9y +Apy+2Qgya+hap=0. (4)

Any value ofe will correspond to a real or imaginary cone, andoélthose cones will
have the same axes as the shear cone. If one imatpaethe coordinate axes have
already been chosen to be parallels to the axes afotie then the preceding equation
must have the form:

@-9a°+b-9B°+ -9y =0, ®)

which is to say that the sheafisg, h must be zero for a particular choice of axes.
Thereforethere always exists an orthogonal triad of eleméatgl only one, in general)
that remains orthogonal after the deformatiofihe lines along which those elements are
located are called thaincipal lines relative to the point considered.

8. — In order for equation (5) to represent a real congnecessary that—& b —¢, ¢
— £ cannot have the same sign, and therefosdl always be found between the smallest
and largest of the quantiti@s b, c. If, to fix ideas, we suppose that> b > c then the
minimum value ofe will be ¢ and the maximum will be@. For & = a, as fore = c,
equation (5) will not be satisfied for an infinitude odlrgalues ofa, £, y; which is why
one must havg =0, y= 0, a = 1 in the first case and = 0,5=0, y= 1 in the second
one. Hence, around any poitiiere will exist two elements that suffer the minimum and
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maximum elongationsand those elementsill always be mutually-orthogonal As for
the elements that suffer the unit elongatsonb, they will belong to a pair of planes that
intersect along the third principal line € 0, 5= 1, y= 0). One notes that the cone that
corresponds to each of the three coefficients ofgaibon relative to the principal lines
will degenerate. Hence, if one reverts to an arbitreinpice of axes then those
coefficients must annul the discriminant of the quadifarm (4). They will then be the
(always real) roots of the equation:

le.:
e~ @+b+c)e?+ (bc+ca+ab—f?—g>—h?) - (abc+ Xgh—af? - bg® —ch?) = 0.

One also observes that since the coefficients dfehaation are functions of only the
roots, which have a significance that is independentethoice of axes, they will also
be independent of that choice; i.e., they willibeariant. It follows, in particular, that
the sum of the coefficients of elongation of the three orthogonal ekemvéinhot vary
when the elements, which will remain mutually orthogonal, rotate aroundatimenon
extremity. One will soon see that this sum is mechanically ingyar

9. — The variance of can also be discussed more simply by recalling thevirlg
1

&

geometric representation: One carries each ele@®hbver a distanc©P =

The coordinates d (whenO is assumed to be the origin) are:

AN

a B =

Jre 7T Jze e

If one substitutes this in (2) then one will find thia¢ tocus of the pointB is the surface
that is represented by the equation:

X =

aX+by+cZ+Xyz+2gzx+ h xy=+ 1. (6)

One will then see thahe absolute value of the coefficients of elongation will eaoynd
each of those poinia inverse proportion to the square of the diameter of a quadat
has its center at the point considered and is asymptotiee shear cone. If that quadric
is imaginary then the representative surface will bellpsoid. One can also see that by
observing that in this casewill always keep the same sign, in such a way thatsign

of the right-hand side of (6) will necessarily bettbbthe coefficients, b, c. If the shear
cone is real then one will need to take the + sigthénright-hand side of (6) for one
spatial region and the — sign for the other one. rElpeesentative surface will then be
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composed of two hyperboloids with one and two sheets #vwt tommon centers, axes,
and asymptotic cones.

10. — Take gparticle aroundO, and letM be one of its points. If one continues to
take the origin a®© then one knows that during the passage ftbta M the displacement
u will become:

) ou Ou_ _du
U=Zu+x—+y—+z2—.
ox ~o0y 0z
. . . . ou Ou oJu
That equality will be rigorously exact when one givies values toa—, 6_y e that
X z

those functions will assume at a conveniently-chgseint within the segmen®©M.
However, since those functions are assumed to benconis, it is legitimate to take the
values at the poir® and neglect the higher-order infinitesimalsiin One then observes
that:

ou ou ou
—=a, — =h-r, =—= =g+q.
1) 0z g+q

One can also write out the first of the followingrfarlas:

u=(u+qgz-r)+(ax hy gg = u U
V=(v+rx=p+(hx by fp = w v (7)

W =(w+ py- g3+( g% fyr cg= w w

The displacements;, vi, wy refer to the hypothesis of a rigid particle that hasrb
subjected to a translation, (v, w) and a rotationf, g, r). In order to see the character of
the displacements;,, v», W, then it will be enough to orient the axes along thecjpai
lines. One will then have, = ax, v, = by, w» = cz; viz., simple dilatations along the
axes. Those three special motions (translationsiionga triples of dilatations) can also
be regarded asonsecutivef one observes that the displacements and thelvadies
will suffer negligible variations from one part of tparticle to the other. Hencthe
deformation of a particle can always be consida@de the result of three dilatations
along the principal lines.

11. — We shall soon see that the absence of the thirddipaotion in all of the
particle (so that motion can then be callepuae deformation) characterizes the rigidity
of the entire system. The lack of the second typaaifon defines a special deformation
that one calls aotential deformation One should notice here that the vanishing, of r
for all of the system is necessary and sufficiemtualx + v dy + w dzto be an exact
differential. Therefore, the deformation potentidlaacterizes the existence of a
function whose first partial derivatives will yield tligssplacements at any point of the
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system. Ifa, b, ¢, f, g, h are constants, in addition, then one will have tHerd®ation
that Thomson and Tait)(callhomogeneous

12. — Turning to the study of the general deformation ph#dicle, observe that, by
virtue of formulas (7), the coordinates- u’, y + v/, z+ w’of M’ arelinearly coupled to
those ofM, and therefore any planar or rectilinear elementpréicle will remain planar
or rectilinear after deformation, and two parallel edats will remain parallel, etc.
Therefore, if one considers @hementary parallelepiped i.e., a parallelepiped that is
constructed with a vertex & with the edgeslx, dy, dzthat are parallel to the axes — then
it will transform into another (generally oblique) péeiepiped whose edges are
(A+a)dx, (1 +b) dy, (1 +c) dz while the planar angles arou@dwill becomerr/ 2 — 2,

ml 2 -2, 7l 2 — . Among the infinitude of elementary parallelepipgéhat one can
consider, only one of them will remain rectangw@fier the deformation. One can use it
to calculate theoefficient of cubic dilatatio®; i.e., the ratio of the increase in volume
of the particle to the initial volum@S Since it is clear that, from its significan& will

be independent of the form of the particle, one waagine that it is the elementary
parallelepiped that is constructed from the priatimes, in such a way that:

dS=dx dy dz (1+0)dS=(1+a)(1 +b)(1 +c)dx dy dz

and therefore:
1+0=(1+a)(1 +b)(1+c);

i.e., if one neglects higher-order infinitesimalet © = a + b + ¢, and since that
expression is invariant, one can write:

@:a+b+C:@+6_v+6_w 8
ox dy 0z

for any choice of axes. In order to prove thatrfola in a different way, a brief
digression is in order.

13. — We shall take this opportunity to appeal to a theokerh germits one to transform an integral
that is extended over a spa8énto an integral that is extended over only its surigaghich boundss
The proof of the theorem that we shall address isicted in that of a more general theorem that we shall
discuss later. For now, we shall confine ourselvestdting the relation:

oF dx
—dS=- [F-"ds, 9
Iax J dn S ©)

in which F is a finite, continuous, and uniform functionxofy, z. In addition,dx/ dnrepresents the cosine
of the angle that normal to the surfacéwhich is considered to bgositive when it points towards the
interior of § will make with thex-axis. One observes that the conditions that are irdpopen the

() Natural Philosophy§ 190.
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function F, which are indispensible for the proof of the thegrare not strictly necessary, in the sense that
if any of them is absent then it might still be pbkesfor formula (9) to be true. For example, one proves
that this formula will also be valid wheh becomes infinite at a poif@, since ifr denotes the distance
from O to the point at whiclir is calculated angl is a constant between 0 and 2 then the prderfaill
remain finite ag tends to zero.

14.— Let us return to the calculation®f We propose to evaluate the total dilatation
that S experiences when one considers it to be the sumlofmes that surface elements
dsgenerate when one goes to the new sugacéake a poinD inds The volume that
ds generates is measured by the produasofimes the projection of the displacement
OO’ onto the outwardpointing normal to the surfac&  That projection is

—u% dy_ vvi and therefore the total dilatation will be given by:
dn dn dn’

J'(u%+vﬂ/+ vvij ds,
dn dn dn

J» ou 6v ow s

EX 6y 9z
Since that calculation is applicable to any portionhef space considered, it is clear that
the last result includes formula (8). It is enoughmagine that the spa&reduces to the

single particledS More rigorously, we can argue as follows: Sigés a continuous
function, from the nature of the deformations that prvepose to study, we can just as

well say that:
3=0 - @-}-a_v a_W
ox 0y 0z

or, if one adopts (9), by:

Meanwhile, since'[@dS obviously represents the total dilatation, one wilteha

jﬂds:o
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for any portion of the space considered. Now, if oagth> 0, for example, at a point
then one can circumscribe a space a around it, insidénioh one always ha#g > 0, by

virtue of continuity, in such a way th;J[tﬂdS will be positive when it is extended over

all space. That cannot happen. It would then be absigupfmse that the differenég
cannot be zero, even at just one point.




CHAPTER I

THE COMPONENTS OF DEFORMATION ( *)
1. —The conditions:
a=0,b=0,c¢c=0,f=0, g=0, h=0
are necessary and sufficient for rigidity.
If the system moves rigidly thean must be zero at any point, no matter what the

direction @, 5, )), and therefore, b, c, f, g, h must vanish identically. Conversely, one
can show that if the conditions:

ou ow ov
1 —=0, 1 —+—=0
@) 0x ) oy 0z
6v ou ow
2 =0, 2 —+—=0,
@) ay @) 0z 0x
ow ov odu
3 —=0, 3 —+—=0
) 0z ) ox oy

are satisfied then the functionsv, w will necessarily have the characteristic form tisat
well-known in rational mechanics of the displacementsa rigid system. If one
differentiates (3) with respect ty and observes (Pthen one will get:

_ 0% +aav au

ay oxay ay

If one differentiates (9 with respect ta and (2) with respect tg/ then upon summing
and taking (1) into account, one will get:

0=2

dydz ax 0y 9z dyoz

o0u 0 (aw avj 0%u
+— 2
Therefore, if one observes)then:

i%:o i%:o ia_u:
axoy  odydy  azady

() This chapter can be omitted on a first reading.
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It will then follow thatdu / dy is constant. Similarly, one proves tldat/ 0z is constant.
In addition, because of'()1u will not depend upor. Therefore:

u=Il+ry+gz V=m+pz+rx, w=n+gx+py.

The nine constants reduce to six. Indeed, when oneitstdstthe last result in (1), (2),
(3),one willgepp+p' =0,g+qg =0,r +r' = 0. Hence:

u=Il+qz-ry, vV=m+rx-—-pz w=n+py-Qgx

2. —A deformation is determined completely when one knows the componehtd in al
the body and one is given the values at a point of t[le displacements andngaee
relations between the first derivatives of the displacen{ents

Indeed, suppose that the stated conditions can baesitizht only by one systera’(
V', W) of displacements, but also by some other syst€¢mv{, w'), and consider the
residual displacements —u”" =u, v - V' =v, W — W' =w. Sincea, b, ¢, f, g, h have
assigned values at each point, one must have:

%:ﬁ:a_\/\/: 6_W+6_V:@ a_\N: @-}-@:O
ox oy 0z 9y 0z 0z O0x Ox 9y
and therefore, as was proved before:
u=Il+qgz-ry, V=m+rx —pz W =n +py - gx,

in whichl, m, n, p, g, r represent quantities that are constant in all obtgyy. However,
u', v, W andu”, V', w' must take the same values at one point (which one samaso
be the origin); i.e.y, v, w must vanish. Thereforé=m=n = 0. Now, three relations
such as the following ones:

ou’ ow oV oV ou ow ow oV ou _
ta,—+a,—+a ta.—+a,—+a,—+a ta,—+a,=0
0z 0x oy

a_ R PR
' ox dy az  ‘oy 9z °ox

must be satisfied at that point. If one writes doha $ame relation fau”, v*, w' and

subtracts then one will get:

ow ov oJu ow ov ou_
a,—+a,—+a.—+a,—+a,—+a,—=0;
oy 0z 0z 0 X 0 X dy

i.e., with the two analogous relations:

() BETTI, Teoria della elasticitapp. 8.
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(2—as) p+ (d5s—0a6) q + (@ —0a9) r =0,
B=B)p+B=F)ad +(B-L)r =0,
(=p)p +(s—wWa +(—j)r =0.

If, as one supposes, those relations are all digtiect they cannot coexist unlgss 0,q
=0,r =0, and consequently=0,v=0,w=0; i.e.,u =u",V =V, W =wW'.

3. — The preceding theorem can be applied to homogeneousnd&tms. In order to
do that, one must know tlm®nstantvalues ofa, b, c, f, g, h and be given three relations
that define the absence of rotation; viz.:

w_0v_, Ou_ow_, Ov_O0u_, 1)
oy 0z 0z 0x ox oy

If one fixes a point, in addition (which one can assumbd the origin), then one must
haveu=v=w=0 forx =y =z= 0. One can attribute arbitrary expressions,ta w,

and to abandon those expressions would make it impossibgatisfy the imposed
conditions. However, if it happens that those conaditiare satisfied then the expressions
that one will find ar@he only possible onedn the present case, one must have:

ou _ ov _ ow _

—=a, —=h, —=C,

0x oy 0z
a_vv-}-a_V: 2f, %-{—a_vvz 29, @-}-@: 2‘],
oy 0z 0z 0x ox ay

and one will see directly that these conditionshglwith the other onas=v =w = 0 for
x =y =2z=0, can be satisfied if one takes:

u=ax+hy+gz Vv = hx + by +fz, w=gx+fy+cz

in such a way that (1) will also be satisfied, not aatlyhe origin, but in all space. The
linearity of the last formulas shows that the plased the lines in the system will remain
planes and lines. That would not be true for the masergé deformations. However,
one could say that, except for the rigid motions, asfgmmation will be homogeneous
each patrticle and only theonstantsof the deformation will vary from one particle to the
other.

4. — Any deformation is characterized by a particularesysdf functions, b, ¢, f, g,
h. Conversely, if those functions are taken arbitrahin will they correspond to some
possible deformation? One deduces immediately from theireformulas that:
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99, 0h_ 9 +1(azw+ azvj ou_, of
Z

dy 0z oydz 2\0xdy 902z aydz dx
Hence:
o’a _0 o :i[a_gm_ﬂj
0yoz 0x0dydz o0x\dy 0z 0X
Similarly:

0’f _ 1( do’w N o v 1_1 620+62b
dydoz 2\ oy’dz oyoZ) 2\oy* 07°)

Therefore, the conditions:

0’a _ 9 (dg, oh_of 0*f _1(0% 0%
dyoz 9x 0y 0z 9%’ dydz 2\ oy 07Z)
2 2 2 2
(2) 0’b :i %-}-ﬂ_% , 3) o°g :1 4 a+6 ¢ ,
0zox dy\dz 0x 4y 0zox 2\ 07 0X
o°c _0(of  ag_oh 0°h _1(0% 0%
oxdy 0z\ox dy 0z oxdy 2\0X oy

are necessary for the existenceiof, w. Are they sufficient?

5. — This is how Prof. Beltrami') showed thatthe conditions(2) and (3) are
necessary and sufficient for a, b, c, f, g, h to be able to remtrélse components of a
deformation: Suppose that the three components of rotation are,gaeng with the
aforementioned six functions. One must have:

M_ vy W
ox 0x 0X

W Moy W @
oy oy oy

M_ L Mo, W

0z ' 0z 0z

Consider the three equations that refeu.tat is known that in order for a functianto
exist that satisfies those equations, it is necessalhgafficient that one must have:

da_ d(h-r) da_ d(g+0) o(g+q) _ d(h-r)

0z dy 0z

) 5
oy 0x 0z 0x ®)

() “Sulla interpretazione meccanica delle formole dixuell,” Memorie di Bologna, 1885. (Footnote).
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Consider the other two equations that are analogous tasthef (5). One has:

9q,0r_oh_og or dp_of oh odp,dq_og_of.
dy 0z 0z 90y 0z 0x O0x 0z Ox 0y 0y OX

summing will give:

and the last three relations will become:

dp_ dg _dh aq _oh_of or _of g

ox ody 0z dy 0z 0x 0z ox o0y

Hence, if one takes (5) into account then:

op_0g odh o0q_0da dq dr_oh da
0X Oy 0z 0X 0z 0X OX OX Oy
o _of _db 0q_oh_df or_ob_oh ©
dy 0y 0z 0y 0z X 0y X0y
 _dc_df 0q_0g_dc dr_0f_dg
0z 9y 0Z 9z 9z dXx 0zd X9 Yy

Those are necessary and sufficient conditions Herexistence ofi, v, w when one is
givena, b, ¢, f, g, h, p, g, r. Itis then known that in order for (6) to beeigtable, it is
necessary and sufficient (as farpas concerned) that the following relations sholoéd
satisfied:

0(9g _oh)_ofof db 0(0g_oh)_ 0 foc_of
oy\oy 0z) ox\ay 0dz) d0z\ oy 9z) ox\ady 0z)’
Of0c_of ) _ofof ob
oyloy 9z) ox\dy 9z)

which can then be written:
0% a(af oh agj 9% a[af g ahj d°c 0% _ _ 9%f
+—- +—=- +

X0z oy

ox 9z dy) oxdy oz

, =2 .
ox 90y dz) oy° 07  0yoz

With that, one sees that the relations (2) and(@)precisely the necessary and sufficient
conditions for the integrability of (6). When thaye satisfied, there will exist functions
p, g, r that satisfy (6), and therefouev, w will exist, as well.
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6. — Another proof, which is likewise due to Prof. Beltrgn)j is obtained when one
effectively tries to integrate (2) and (3), when theyamesidered to be third-order partial

differential equations im, v, w. One can always find three functiodsV, W, such that
one has:

_ou ov ow
b=—, c= :
x| oy 0z

The first of (2) will become:

2
9[99, 00 of o) @
ox\ 0y 0z 0x 0y z
and the first of (3) will become:
2
O | ¢ LW OVII_g (8)
d0yoz 2 dy 0z
Set:
_1({owW oV .
== —+— |+ f
2{ oy o0z
From (8), one must have:
21 2 A 21/
af_o, ag:O, ah:O, )
0yoz 0z0X oxay

and from (7), one will next observe that:

69 oh of

oy 62 0X
_a_gﬂﬂiiy(a_U Mjiﬂﬁ_\/_ia_%ﬂ/
dy 0z 0x 2|0W0dz 0Xx) 0x0y 0 0 X0y o

_dg' oH _af  au
— -t

ay 0z 0x 0yz
must also give:

o(ag o _af)_ g
ox\ dy 0z O0X

og'  oh . .
In other words,a—y +E_E< is independent of, and therefore one can represent it as

a second derivative of a functidh of y andz with respect toy andz. One then sets:

!

() Rendiconti del Circ. mat. di Palern®(1889). Note fisico-matematiche.
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og’' 6h’ _of GZUX

6y 0z 0x 0y z
o', of' g _ o,

0z 6x 6y 02 X
of’ ag _oh _ o'W,

6x dy 0z 90XV

in whichVy is independent of, andW; is independent af. When the last two relations

are summed, that will give:
of' (62\/ 02\/\/}

x 2\ 9zox 9xdy

of o tfow )]
0x ay 62
Consequently, one can set:

f/__ aW aVy +f",
dy 0z

in whichf”, g”, h”are functions that satisfy the equations:

i_o ai:o, 9 oo, (10)
0x oy 0z
as well as the other ones:
2¢&n 2.1 211
o-f 0, 0°g -0, 0°h
0yoz 0z0X oxay

=0, (11)

which one deduces from (9). The conditions (1@ @rl) show that is the sum of two
functions, one of which is a function of onlywhile the other one is a function of ordy
The former can always be represented as the degvat a functionW, / 2 of onlyy,
while the other one can always be representeddasiative of a functiorv, / 2 of only
z In other words, one can set:

fre dw Lav,
dz dy
Hence, in summary:

= LW, a_v+ oW, OV ), AW, av,
2l oy 0z 6y 9z) 2 dy dz)

or:
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_1fo )
f= 2_@y(\N+V\4+V\¢)+aZ(V+ V+ \0]

b b
Z(U+U +U ) +—(W+W,+ W) |,
U HUHU )+ W W, X)}

0 0
h==—=V+V,+V)+—(U+U,+U)|.
VWU, y)}

Now, if one observes that one must have:
f:E(a_vv+6_\/j’ g:i(@+a_wj, h:&(@+@j

then one will see that one can take:

u=U+Ux +Uy +U,,

v=V +V +V, +V,,

w=W+W, + W, +W,,
since the relations:

will also be satisfied in that way.

7. — The first proof is tied in with some elegant siderations of Prof. Beltrami)(
by means of which he could show that the conditi@sand (3) can be combined into a
single equality by setting a certain patequal to zero of the variation that the integral:

J:%Hj(%+ﬂ+a—jdpdqdr (12)

will experience when one attributes arbitrary vidoias da, &, o&, &, &g, chtoa, b, ¢, f,
g, h. First, express in terms of the variables y, z The functional determinant:

() Comptes-rendus de I'’Académie des Sciences de Paris (188902
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d dp 2p
oxX 0y 0z
Jdqg dq 0dq
X .59 0z
or or o
ax 59 0z

is non-zero. Indeed, the functiops g, r are mutually independent, although the
constraint:
9 09, 0r

=0 (13)
ox 0y 0z

exists between the derivative. Having assumed that, aheeg from the relations:
dp:g—i dx+@ dy+ﬂJ dz

dq—g—qd +oa o|y+aq dz

oy
dr-uQ[dx+£E-dy+£I-dz
0x oy 0z
that:
9% Jp 0p
oxX 0y 0z
Amix=| 2 99 99} (14)
ox 0y 0z
ooxox
ox 0y 0z
Since:
dx %dp+a—xdq+a— dr,
ap daq or

upon equating the coefficients @y in the two sides of (14), one will get:

pA9X_090r _oqor.
op 0yodz 0zdy
hence:
A(GX +ﬂ+a_zj: (a_qg_@gj{ga_p_a_ra_p;{@@_@@l_

a_p Jq or oydz 0z0y) \0z0 x 0 X 0 9 yo 9
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Therefore, upon substituting that in (12) and representiagpatial elemerx dy dzby
dS as is usual, one will have:

J’ 9g0r_odqor), ds. (15)
dyoz 0z0y

J=

N

8. — We shall now attempt to transfodhnto a surface integral. One has:

dy 0z 6zay_6_y qa_z 9z 4

0qar _aqoar _ 6( ar_raqj+ : 9°q a°r
oWz 097

Similarly:

090r_9qor_ 0 0q_ 0r, [, o _ 09
dyoz azay oz\ oy 'ay) | 0wz o0y 7

Hence, upon summing:

2 %ﬂ—a_qﬂ :i(qﬂ—ra_qj+i r%—qﬂ .
oyoz 0z0y) oy\ 0z 0z) 02 0y 0V

Therefore, upon substituting that in (15) and collectingéhes that are derivatives with
respect t, one will have:

_ do( or 0dp Jdg _op
J=i||—| p=—-r=—+p—-g— || dS. 16
4j{ax(paz 0z oy qayﬂ (16)

On the other hand, by virtue of (13), one has:

—+
0x qay 0z

o dp, g _ 6p__( o, 9p r@j
Now, if one letsdo denote the line element that is located along theisatdtaxis p, g,
r), in such a way that:
dx_ dy_ dz_ do

p q r [p2+q2+r2’

then one can also give the preceding expression the for

- (@%+ﬂ)ﬂ+a—p—dz}l PP+ +ri=- dpJ pi+ P +r?,

xdo dydw 0z do
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and then if one substitutes this in (16) and makes usermiifa (10) in the preceding
chapter then one will get:

dp d dg d dr d
[ e NCET T

9. — The last result has no importance for us. We akeinterested in the possibility
of transformingJ into a surface integral; i.e., we must confirm tha only apparentlya
triple integral, while in reality it is a double integrdt will then follow that the part of its
variationdJ that does not reduce to a surface integral must netgdsazero identically.
Meanwhile, one sees that if one assumes the existépce, r, along witha, b, ¢, f, g, h,
then the relations (6) will be necessary and sufficienthe existence af, v, w. In that
way, the expression inside the integral sign in (15)bb@tome:

2252 A

0z 0x){dx dy) \0x 0y/ldy 0 0y o 2\0 zd

_(5_9_6_0 ob_oh)_(oh dajoc of) fof obfoad
oz axj(ax ayj (ax ayj[ay ag {a a_;(a_za_i'

Now, suppose that one gives arbitrary variations, tg c, f, g, h and attempts to put the
resulting variation of into the form:

A= j(A5a+35b+cac+f5f+gag+H5n ds,
up to surface integrals. If one varies oalthen one will get:
m=f[(%-or)a0a, (ab_of)ooal,
oy 0z)dy \0dz 0y/ 0z

and upon integrating by parts:

&=1 L%{(g—;—g—fzj 5a}+aiz{%’z—g_f)) 5aH ds

d(ac af) o(ab of
_aflojoc_or), 0/0b ot 4s.
ZILy[ay 62} 02[62 6% 2

The first part is reducible to a double integralrbgans of formula (10) in the preceding
chapter, and the second part is the expressidn4oda dS Hence:
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A=Y 0fof oc) afof ob)|_o°f 1fo% o)
2|oy\oz ay) 020y a7 ayoz 2ay2 T97

If one operates analogously bthen one will first get:

B=1f| 22201 (29 onest (@ @zjaaf oh_ 0205 f]
2 dy ax |dy dz) ax ax az ay

and then, upon integrating by parts:

A=

1 26(‘” 5fj+i 99 oM 5l 9 (@ a—jaf +9)(9h 985 1 1ys
ox\ 0x ox|\ 0y 0z oy|l\dx 0 0 z\0 x0

2
- 3f| 22t 2%, 0h), ai@ @Zj 9[0h 93l z4s,
ox® o0x\dy 0z) oWwodx 0 010 x0
If one neglects the first part (which is, in reglia double integral) and compares the
second part thF & dSthen one will get:

Fo0f _109(dg oh 1ai@ @Zj ,19(ah da
X’ 20x ay 9z) 20y ax 0 2020 x 0

_9%a_0(dg oh_of)
oyoz ox 0y 0z 0

One will then have:

_0°f 1({0%c 0% _0d%’a 1(dg oh of
= -= + , F= - —=+t———
dyoz 2\oy 97 0z 2y adzo y
_0°g _1(0%a 0°c) ._9%b_1fah af _dag
“0zax 2\ 07 o%) 09 x20z0dx0y
_h _1(9% %) , _ 0% 1(af ag dh
oxay 2(0xX ay ) 0@y 2(0x dy 02

and one will see that the function§ B, C, F, G, H, whose simultaneous vanishing is

sufficient and (given the arbitrarinessda, b, oc, &, &g, ) necessary for the identical
vanishing of &, are precisely the ones that will yield the neapssand sufficient
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conditions fora, b, c, f, g, h to be the components of a possible deformation whegn the
are set equal to zero.



CHAPTER IlI

THE ELASTIC FORCE POTENTIAL

1. — Experiments indicate that when bodies in nature @gedaed to suitably-small
forces, they will deform, but return to their origirfiatm as soon as the deforming forces
cease to act. One expresses that notion by sayinghthaleformation gives rise to
elastic forceghat tend to lead the points of the body back to thdipositions. Only the
elastic forces will intervene in that return to aestatstable equilibriumand it is known
from rational mechanics that in an equilibrated systbat ts subject to forces that
depend upon the relative positions of the points of theesyand which are the elastic
forces, thepotential or work done by the forces will be maximumor a minimum
according to whether that equilibriumsgbleor unstable One sees, in addition, that the
work does not depend upon the infinitude of configurationsttieasystem can take on
by reason of equilibrium, but only upon the initial and finahfigurations. Ifl1 dS
represents the potential that relates to the padiSigen one can assert tHatdepends
upon only the quantities that characterize the extremégurations of the particle; i.e.,
if one computes the work done when one starts fronedjodibrium configuration then
M wil be a function of the quantitiea, b, c, f, g, h that characterizes the pure
deformation, since the elastic force will do no work uraeigid motion. One adopts a
known formula and generally let)s represent what the functighof a, b, c, f, g, h will
become when the variables are multiplied by the positivaberd, which is less than
unity, so one can express the unit potefliah the following way:

M=o+ a(a—nj +b(a—nj + ... +h(a—nj
da ), \ab), oh J,

2 2 2
+ El:a{a nj +2ab[a—nj oot hz[a nj }
2 0a’ ), dadb), or ),
By convention,lly, = 0. In addition, since the functidi has its maximum value for
vanishinga, b, c, f, g, h, its first variation must be zero and its secoadation must be
negative Finally, wheng is continuous, one can substitgtefor any ¢y, and neglect the
very small quantities that have the same ordes, ds c, f, g, h. Therefore[1 is an

essentially-negative quadratic form in the compaseri the deformation.Let us point
out the importance that the unit potenfiahas had in all of the theory up to now:

“It has the distinguished property of representing energyper unit
volume that the elastic body possesses arounddim gonsidered, and
that energy is equivalent to the work done by & wolume of the body
when it returns from its present state to the rststate, which is the work
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done by the external forces that took the unit volumen fiiee natural state
to the present state of elastic coactigri (

2. — If one groups together the terms in the expressiofl fitrat contain only, b, ¢
and the ones that contain o)y, h then one can write:

N =-1(Aa +Bb* + Cc + 2Abc + 2B'ca + 2C”ab)
-2 Ff?+Gg* + Hh? + 2F'gh + 2G'hf + 2H’fg)
-2a(F1f+Gig+Hih) =D (Faf+Gyg+Hoh) — X (Fsf +Gg g +Hsh).

If the medium is homogeneous then the coefficidn®, ..., Hs will be constant in all of
the body, as long as they have no temperature vasatidnch has been tacitly assumed
up to now, and which we shall continue to assume. Obgsbat in the most general case
there ardwenty-oneof those constants efastic coefficients Rankine () distinguished
them with the following terminology:

A, B, C: direct elasticity
F, G, H: tangential or rigidelasticity,
A,B,C" lateral elasticity,

F’, G, H’; Fy, Gy, Hi; Fo, Gy, Ha; F3, Gs, Hs; asymmetrielasticity.

If the medium is endowed withsymmetry plandas far as elasticity is concerned) then
one can say thdll does not vary in form when one takes that plane éyziplane and
changexinto —x. That exchange implies changiagnto —u, and therg andh into —g
and -h, resp., while, b, ¢, f remain unaltered. One must then have:

=G =G, =G3 =0, H'=H;=H,=H3=0.
If the medium is endowed with two orthogonal symmepignes thenall of the
asymmetric elasticity coefficients will be zero. Thaveals the necessary existence of a

third symmetry plane that is perpendicular to the fingt. In that case, the unit potential
will assume the simple form:

N =-1(Ad +Bb + C& + 2A'bc+ 2B'ca+ 2C’ab) - 2 (Ff 2+ Gg* + Hh?) . (1)

3. — If one has aymmetry axisinstead of a plane, then the medium will be said to be
endowed withisotropy around that axis. It is known () that if one displaces three

0) BELTRAMI, “Sulle condizioni di resistenza dei corpi dlas” Rend. dell'lst. Lombardo, 11 June
1885.

Hok

(") “On axes of Elasticity and crystalline forms,” R&oc. London, 21 June 1855.

Hokk

(") Inorderto prove that, it is sufficient to obserhattif the orthogonality condition:

AN+’ +ww'=0
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orthogonal axes around their origin infinitely littleen the direction cosines of the new
axes can be represented in the following way:

| X y Z
x|1 y -8
yi-y 1 a«a
z| f -a 1

The anglesz, §, yare infinitesimal, and one supposes that one oegtbe higher-order
infinitesimals. Meanwhile, the formulas (2) and 3 the first chapter will yield the new
values ofa, b, ¢, f, g, h. They show that the variations that those guestixperience
are:

ca=2@gp-hy, d=b-9a-hB+gy,

db=2hy-fa), ag=ha+ (-39 p-fy,

ax=2Fa-gp), h=-ga+ff+b-9y.

If one adopts (1) then it will follow that:

1d1=-(gpB-h)) (Aa+C’b+Bc) —2[b-9 a-hB+g) Ff
-(hy-fa)(C'a+Bb +Ac)—-2ha-(c-38 -4 Gg
-fa-gp (Ba +Ab+Cc —2Fga+ff+(@-b uyHh,

or, if one orders this with respectdo g, y:
1d1=- Z{[(B’—C’) at(A-Bbt(C- A e2(brF #2(G M g}ha.

If one takes the isotropy axes to be xh&xis thenl will remain invariant when thgz
plane turns within itself around the origin. Onil then need to haveéTll = 0 identically
for f=y=0;1.e.:

B=C, G=H, B-A=C-A=2F

In the case of two orthogonal isotropy axes, oriehave:
A=B=C, A =B'=C, F=G=H, A-A=2F
However,oT1 will be identically zero then, no matter what kipf values one attributes

to a, B, . The medium will then be completabotropic, i.e., its elastic properties will
manifest themselves with equal intensity in alkedtions. Meanwhile, if one introduces

is preserved when the cosingsl’, ... vary bydl, 1" ... then one will have:
2AN+XAA=0, or 2AA+NA)+ XA (A+N) =0;

that is to say, coxy) =— cos {'y), ...
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the usual notations that were proposed by Green (sclamged- into B and observes
thatA' = A —2B) then formula (1) will become:

N=-1A@+b+c’-B(Ff*+g°—bc—ca—ap

or ():
MN=-1(A-2B) (@+b+c)*—B (& +b° +c* + X%+ 2¢° + 27).

The coefficientsA and B are theisotropy constantswhich vary from one medium to
another.

4. — A more elegant way of finding the special form tHanhust assume in the case of
incomplete isotropy, or elastic symmetry with respeciah axis, was given by Prof.
Beltrami in hisNote fisico-matematicheOne saw in 8 of Chapter | that the functions:

a+b+c, bc+ca+ab—f2—g°—h?> abc+ Agh—af?—bg —ch?

have a significance that is independent of the choiexe@$. Now, take theaxis to be
the symmetry axis. If one rotates §meplane within itself around the origin thanwill
remain invariant, but always arbitrary, and thereforeptdm of it that containa and the
one that does not contaancan remain separately invariant in any invariant funcbiba,

b, c, f, g, h. Therefore, if one observes that the invariant eggas that were obtained
before can be written in the following way:

a+(b+c), a+c)+bc-—FFP-g’=h?), a(bc-7F)+ (Fgh—bg—ch)
then one will see that the expressions:

a, b+, bc — 2 —g? —h?, bc — f2, 2fgh—bg? —clt,
or
a’>, a(b+c), (b +c)?, f2—bc, o’ +h?,

will remain invariant, if one ignores the last one, ethcannot enter into the expression
for M. I is, in fact, of degree two, so one might try to viitthus:

-N=AZ+Ba(b+c)+C(b+c)?>+D (f?—bc) +E (g% + ). (2)

This can then be considered to be the general expressibh) as long as one observes
that it containdive arbitrary coefficients and that the other part of ékpression foil
cannot include more than five coefficients, in the cesesidered. Indeed, th@ne
coefficients that were found in the case where theiuneds endowed with three
orthogonal symmetry planes will already reducsitowhen one supposes only that one
can switch two of the axes with each other. It Ww#l clear then that any ultimate

() See the mechanical interpretationadf+ b? + ¢ + 2 2 + 29> + 21 at the end of Chapter Two in
BETT!'s Teoria della elasticita
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specialization must bring about some reduction in thebeurof elasticity coefficients,
which is a number that cannot be greater than five, l@sult. One can then pass on to
the expression for the potential in the case of cot@lylésotropic media that renders the
expression (2) symmetric with respeciid, ¢, and tof, g, h. One will get:

A=C, D = E, B=2C-D
and one will get back to the formulas of the precedinggraph withA andC changed
into A/ 2,D andE changed into B, andB changed inté\ — 2B.

5. — The elasticity coefficients are subject to sometditions that are imposed by the
essentially positive character of the forml— Since the discriminant of that form is:

B8 0 0 O 0 0
0 48 0 0 0 0

110 0 4 o0 0 0

640 0 0O A A-28 A 28|
O 0 0 A-2B A A-2B
0 0 0 A-2B A-2B A

from a known theorem of algebra, the necessary affidisat conditions for any system
of values of the variables to correspond to a positive \@lud1 are:

A A-2B A-2B
> 0, A-2B A A-2B| >0;
A-2B A-2B A

A A-2B

B>0, A>0,
A-2B A

B>0,A>0,A-2B>0, 3A-4B>0,

which will reduce to the first and last one, since ddt two are satisfied then the other
ones will be satisfied fortiori. Therefore:

The isotropy constants A and B are necessarily positive, and thergsis greater
than four-thirds of the second one, in addition

Those limitations, which are important in some rededic were given by Green'§ in
another form and proved by Beltrami J in the very simple way that is presented here.

0) BELTRAMI, “Sull'interpretazione meccanica delle forfaai Maxwell.”
(") Mathematical Papersp. 245, 330.
(") “Sulle condizioni di resistenza dei corpi elasticigrigl. Inst Lombardo, 1885.



28 Introduction to the Mathematical Theory of Elasticity

6. — Any system otonstantvalues fora, b, c, f, g, h corresponds (Chap. 1l,4 to a
possible deformation. Suppose thatg = h = 0, so the unit potential reduces t8{a’
+ b’ +¢®) whena+b +c=0and to 2(3A—4B) whena=b=c=1. One will then
recover the conditions:

B>0, A-48>0 (3)

asnecessary In order to show that they are alsafficient it is enough to exhibit the
essentially negative character [af and one can accomplish that by means of a very
simple algebraic transformation. One proposes to métera real numbek such that
one will have:

M=-B[(a—ko)’ + (b —kO)? + (c- kO)* + & ? + 2% + 2n7).

If one compares this to:
MN=-1(A-2B)0*+B* (& +b*+c*+ 2> + 2" + 2n?)
then one will see that one must have:
3(A-2B) =B (3 - X),

and one will deduce from this that:

When the conditions (3) are satisfiédwill be real, and 1 will still be expressed as a
sum of squares. In addition, it will exhibit thact that in order fofl to vanish, it is
necessary and sufficient that b, ¢, f, g, h should vanish simultaneously, since one
successively deduces from the facts thak® =b — K@ =c¢ — K@ = 0 that:

©-3%0=0, =0, a=b=c=0,
resp.




CHAPTER IV

ELASTIC EQUILIBRIUM

1. — When one applies a system of forces to an elastlg,lithe points of the body
will displace, and consequently the internal actioils alhange; namely, they will then
cease to be in equilibrium and will then tend to elpate with the external forces. Due
to the new equilibrium, the body will take on a defirf@gem that it will not deviate from,
except when one suppresses the external forces, sotéheal forces will then tend to
equilibrate with each other. Having said that, if onewsthe deforming actions that the
given body is subjected to then one can propose to detertine new distribution of
internal actions and then final configuration of the body

2. Equations of elastic equilibrium.— Let X, Y, Z be the components along three
orthogonal axes of the forgeer unit volumehat is applied to the partic#S In other
words, letX dS Y dS Z dSbe the components of the force that is applied torthes that
is contained idS Other than those forces, which one chbtisly forcesone can have
pressureson the surface of the body. Letds M ds N dsbe the components of the
pressure that is applied to the surface elerdentWhen the deformed body has attained
a definite configuration, its points will be found to beemuilibrium under the action of
three groups of forces:

1. Body forces.
2. Surface pressures.
3. Elastic forces.

By virtue ofLagrange’s principlethe work done by all of those forces under the virtual
motion that the system can perform while in its equuim configuration must be zero.
Thus, whenever a point goes from the positigry(2z) to the positionX+u,y +v, z +

w), under the virtual passage to the positwrrUu + A, y + v + dv, z+ w + dw), an
elementary work will be performed that is expressed By + 7 v + {ow if &, n, {are

the components of the force that is applied to thetpmnsidered. As for the elastic
forces, the work that they do will be the variatitiatttheir potential experiences during
that virtual motion. The principle of virtual work withen lead to the equation:

j(x5u+Y5v+ zawdsj( bu M ¥ N)Ndsajn = 0. (1)

Now, eliminate the constraints on the arbitraryrgiies du, dv, dw in the third integral
in such a way that they will behave linearly, asytldo in the first two integrals. Then
observe that those quantities are mutually indepetnédnd vary arbitrarily from point to
point. Next, equating their coefficients in thexsal integral and the surface integral to
zero separately. One will then arrive at the negiequations. If one recalls tHatis a
function ofa, b, ¢, f, g, h then one will first have:
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s[nds = [d1ds= j( sa+2 sp+ .. +a—n§hde
ab an

Meanwhile:
or or 9o 9 (0 9 an
Ia dads = j——” :J&(a de j——a uds

- [I dgs [0 00 5y g
da dn

oxda
Similarly:

j 5t ds= [LO1[00W, 00V g
20f\ dy 0z

—j 019 s ]+9(91 5, dsj 00N 599N 5 g
2| oyl of 0z\ of 2\ dyaf 9zof

= Ea_n(ﬂg dzajd J' aanév\ﬁia—név d.
2 0f \ dn dn 2\0yof 0zof

Therefore, if one collects the terms that multiply dv, ow into three analogous groups

then:
s[nds=-| gMdx 10ndy 1oM dz) o .
dadn 20dh dn 20gd

dom 199 19 an
- [| =5 +> =2+ |suds
dx da 2dydh 20zdg

One finally substitutes this into the relations (1), eiahwill split into the following six
equations, due to the arbitrarinesun ov, ow :

_oon 1o00n 1001 L= ondx 10N dy 10N dz
ox da 20yoh 20z0g dadn 20h dn 209 dn
@yl y=2on 100n 190n | _10ndx ondy 10 dz
ox dh 20ydb 20dzodf 2ohdn  ab dn 20f dn
_oon 1000 1000 nolomdc 1ondy  on dz
oxdg 20yof 20dzdc 20dg dn 20f dn dc dn

3. Observations.— The relations (3 are called thendefinite equationsbecause they
are valid at any point of the body. The relati¢1{9, which are valid only on the surface,



Chapter 1V — Elastic equilibrium 31

are called thdoundary conditions.The boundary conditions can actually be imposed in
an infinitude of ways. They are expressed by the relt(d) when thepressuresare
given on the surface. However, if one assigns theegathat thelisplacementsnust
assume on the surface then the boundary conditiohdeviprecisely the equalities by
means of which one fixes those values. How can we usadéénite equations and the

boundary conditions? Observe th%ll?— ?;; , ... are linear functions &, b, c, ..., and

that they will then contain the first derivatives thfe displacements linearly. The

ultimate differentiation of%—rI ?;; ... that was mentioned in equations) (@an then

include the second derivativesfv, w. Therefore, the indefinite equations are second-
order partial differential systems. When one integgdhem, one will get the expressions
for u, v, w that contain arbitrary quantities that can be detemnibg means of
substitution in the boundary conditions. However, tinakes one doubtful. Are the
indefinite equations always enough to individuate a systegiispfacements, and are the
boundary equations sufficient to complete the determination?

4. — We shall answer that question directly by showing tha

The indefinite equations and the boundary equations are sufficient to deteh@ine
displacements up to rigid motions.

Suppose that there exist two systems of displacements;, (W) and (", V', w"), that
satisfy equations (), and consider the displacements:

u-u=u VvV-V=v, WwW-wW=w

It is clear thab’— d' =a, b’ — ' =D, ... In addition, observe tha%ﬂ %E ... contain
a, b, c, ... linearly, so one will havé?ﬂ—a—rI = 6_I'I ... If one writes equations'{Ifor
oa’ o0a oOa

each system of displacements then upon subtractienyilrget:

oaaJn 166I'I 166I'I

x da 26y6h 26269
166I‘I g9on 140

T2 onh dydb 2029f
_190M 19010, 44N

20xdg  20yof . dzoc

Those are precisely the indefinite equations oflégwm, under the hypothesis that the
body forces are zero. If one operates analogauslihe boundary conditions then one
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will find equations (1), in whichL =L" — L", ... Thereforey, v, wcan be considered to
be displacements that are due to the forces:

X=Y=2Z=0, L=L -L", M=M"-—M" N=N"—N"
Now, if one takeu = u, dv =v, ow = w in the equality (1) then it will become:

j@u+Mw+MMd§2ﬁ1d$O, 2)

because by virtue of Euler’'s theorem on homogenémeions:

al :a—n@+ :6_I'Ia+ ... =71.
da 0x oJa

If one assignpressuredor the boundary conditions then that will imphatL' =L", ...;
i.e.,L=M =N=0. However, if one gives thdisplacement®n the surfaces then that
will say that one must have =u", ... ons; i.e.,u=v=w= 0. Hence, the first integral
of the equality (2) will be zero in any case, anill then reduce to:

jnds:o.

The left-hand side is a sum of quantities thatessentially-negative or zero. It will then
be necessary for each of those quantities to lme zer, one must have = 0 in all of the
body. However, it has already been observed fhatannot be annulled unless it is
annulled wherm=b=c=f=g=h =0, and it is known that in that case, the redati
displacements will take the form:

u=l+qgz-ry V=m+rx—p3 w=n-+py—Qgx

in which I, m, n, p, g, r are constant over all of the body. If one is giute
displacement®sn the surface then one must haveqz — ry= 0, ... for an infinitude of
values ofx, y, z That cannot happen unless one hasm=n=p=q=r =0, and
consequentlyy =v=w=0; i.e.,u =u", v =Vv', W =w' in all of the body. However, if
one is given th@ressureghen there will exist an infinitude of systemsdidplacements
that satisfy (1) and (1); however, the final configuration of the body Médlways be the
same. After all, it is enough to prescribe thadrighotions of an arbitrary particle,
because the equations)(and (1) determine the displacements completely. Indéded,
one takes the origin to be in the particle congidehen will have:

W oV _ oaw oV

u =u", ~ T i T
oy 0z oy 0z
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forx=y=z=0;ie.,u=0, ...,Z—W—g—vzo, ... It will then follow that =m=n=p=q
y 0z

=r =0; one will then have' =u", v =Vv', w =w" in all of the body.

5. Case of isotropic media= One knows (Chap. lll, §) that in the case of isotropy,
the unit potential has the form:

M=—(A-B)a+b+c)’—B(@®+b%+c®+ &%+ 29° + 20).
It will then follow that:

N A-Byo-ma <9
da 2 of

and then the first of equations) Will become:

X+(A—2|3)a—@+28 %+%+@ =0. 3)
0x ox 0y 0z

Now, one has:
da oh dg)_ .0°u 0 (du ov az(au avg
2 —+—+ 2 = 2—+—| —+— |[+—| —+—
ox dy 0z x> odyloy dx) 020z 0

d°u 0°u  d%u ax{au v awj_
+ + + +—+ =

x> 9dy> 07 0X0x 0y 0z

Substitute that in (3) and suppose the preceditguledion has been repeated for the
other two equations. One will see that h@efinite equationgor the equilibrium of an
isotropic body are:

X+ (A- B)a—@+ BA? u=0,
0x

Y +(A- B)a—@+ BA” v=0,
oy

Z+(A- B)%—@+ BA* w=0.
X

One can give another form to those equations shaseful for integration by introducing
four functions that are of paramount importanthis theory, namely, theubic dilatation
© andtwice the rotational components of the partickehich will be denoted in the
following way from now on:
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’]1 = 6_W_6_v, ’]'2 =
oy 0z
One has:
AU+
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au_ow
0z 0x’

00 _ 0’u 0°u 0%
+

ox ay’

66_u6_v+6
oy\dy 0x) 0z

and the equations that were obtained before will become:

07

ou_ow)_ 07, 77,
62 0

S 0xy 092

x+n% g % 0T
16)4 0z 0y
Y+A— B{aT 1, =0,
Z+Aa—@+B %, 07, =0.
0z oy 9x

As for theboundary conditiongthe first of (1) will become:

L+(A-2B)O 2(+ZB( Q(+ hﬂ/+ g—dj: 0.
dn dn dn " d

Now, one has:

ay 0x) dn

_dx(a_v_va_ I C
dnld xo ¢

Z(a%+hdy gdzj ,du, Tsdy 7,9 dz
dn dn dn dn dn dn’

0z 0% d

B( dx+hdy gdzj 26u dx_ (0u dv)| dy, (6_u Low d.
dn dn dn axdn

_ofdudx dudy duda (3
oxdn dydn 0zd 0 X

If one substitutes this in (4) then one will ge thist equation of the triple:

(4)
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L+(A- 2B)e_+2|3ﬂ’+ 5(73 dy_ T—dj:o,
dn dn d

M +(a-2B)0 Y + 288V, B(Tiz—Tg—dj: 0,
dn dn dn d

N +(A- 2B)e—+23ﬂ"+ E{Tzi"—z—dﬁ:o.
dn dn ' d

6. — One can thank Borchard) for an ingeniouslecomposition of the expression for
I into two parts, one of which makes no contribution to the indefinite equatiResall
the process that led to the equations of equilibriutrwill become clear that when one
has only the formation of the indefinite equations in mind;ll be legitimate to neglect
all terms inM that give rise i JM dSto spatial integrals that are identically zero or to
surface integrals. Now, if one observes that:

RO I
2\ 0oy o0z 0z

and consequently:
ow ov)av (av) ow ov
f221’112+(_ _j (_j = %’Z12+__

! dy 0z)dz \dz dy 0z’
then one can give the fority + 1 to the potential:
1 :—i;(a+b+c)2—2B(f2+gz+h2—bc—ca—ab),

if one takes:

_ 1 _ owov _ovow
ﬂo— §|:A62+ B(’];Z+']'22+/]’32):| |_|1— ZBZ(a—yE a—ya—zj

In order to insure thafl; has no influence on the indefinite equations, obsenaé t
j ol,dS splits into three parts that are analogous to theviadig one:

Ja_vv65v+ﬂladw_ﬂv65v_a_v65 ds
oy 0z 0z0y 0zdy 0Vy0 z

-j 5 ——5 9 (awa —a—éwj ds
0x oy 020z 0z

() “Ueber die Transformation der Elasticitatsgleichunt@nelle’s Journal (1873), pp. 45.
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2 2 2 2
_J 6w_6w5v_ av—avcfwds.
0yoz 020y oyzoa

The first integral transforms into a surface integaat] the second one is identically zero.
Therefore, the elastic potential (to the extent thatfluences the indefinite equations of
equilibrium) can be regarded as a linear combination afghare of the cubic dilatation
with thesquare of the rotationf the medium, and the coefficients of the combaratire
proportional to the isotropy constants.




CHAPTER V

BETTI'S THEOREM

1. — That important theorem)(establishes a relation between two systems of $orce
and the associated systems of displacements in dic ddady. Let @, v, w) and (/, V,
w) be the displacements that define the configuratiorisatfgataken by the body under
the action of the systemX,(Y, Z, L, M, N) and ', Y, Z, L', M’, N'), respectively. For
the first configuration, the equilibrium conditions dasm summarized (Chap. 1V,§ by
the relation:

jands+j(x5u+ Yo w zawd$j( &4 M~ 8)w-=0,

which must be true for arbitrary variatiods, ov, dw, and in particular, fobu = u’, ov =
V', ow =W, in which case, the preceding relation will become

J(a—rl,a+“-+a—n,hjd8+J(X u Y v Z )rvdsj( 'Ly M+ 'N)w=0.
oa oh

Therefore, from a known property of quadratic forms

a_na'+a_nb’+...+a_n H= a_na+a_nb+ +6I‘I

et R,
da ob oh da’ ob o

one will also have:
j(Xu’+Y\'/+ ZW) dsj( Lur Mw Ny

:j(x'u+Yv+2vde~j(Ltr M¥ Nwc (1)

That isBetti’s theorem.

2.— We shall make a first application of that theoigy taking:

u=l+qgz-ry V =m+rx—pz W =n+py —gx

() BETTI, Teoria della elasticitaChap. VI. See also a communication of M. LEVY to fwadémie
des Sciences in Paris (Comptes-rendus, 13 August 1888).
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in whichl, m, n, p, g, r are constant in all of the body. One has:

a=p=c=f=g=n=0;

hence[1' = 0. If one substitutes this in the equilibrium equatites one will get:

X'=Y'=Z2'=L"=M"=N"=0,

and the relation (1) will become:

[[X(1+az= ) +-1dS+[[ L gz ry+-] d=0.

Due to the arbitrariness inm, n, p, g, r, the last equation will split into the followings
jx ds+j L ds=0, j(vz 2y dsj( Mz Ny d9,
jvds+j M ds=0, j( Zx XX dsj( Nx )z d9,
jzas+j N ds=0, j( Xy YX dsj( Ly Nix &,

which say that the external forces are in equuitri Hence:

In order for an elastic body to be in equil*ibriuﬁn,is necessary and sufficient that
one should insure its equilibrium as a rigid bddy

3. — Now, take:

U =ax+hy+dz Vv =hx+by+f'z w=ax+f'y+cz

witha', b, ¢, f’, ¢, h" constant in all of the body. Hen%la_IT %—E ... are constant, and
a

therefore the indefinite equations will gi¥e¢ =Y’=2Z"= 0. If one determines, b, ...
by means of the six first-order equations:

orn’ _ar’ _or’ 6I'I':6I'I':6I'I'

] (J J = 1’ ] ] (] = O (2)
da’ db" oc of' 09 oh
then the boundary conditions will give:
=g Yy otz
dn dn dn

() BETTI, loc. cit. See also CLEBSCH;héorie de I'élasticitépp. 2.
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and the left-hand side of (1) will become:

dx  dy du v o
j(ud—;‘wdn jd, —j(—” + Y —Wde— [ous.

Therefore:
j@ds:—j(Xu'+Y\'/+ ZW) dsj( L Mw Ny « (3)

That noteworthy formula yields the total dilatatiohan elastic body when the external
forces are given.

4. — Apply formula (3) to the case of an isotropidio Since one has:
N=-1(A-2B)(@a+b+c)*-B @ +0b°+c*+ X%+ 29 + 2),

equations (2) will become:

-(A-2B)(d+ B+ ¢)-2Ba=1,
-(A-2B)(d+ B+ ¢)-2Bb=1,
-(A-2B)(d+ B+ ¢)-2B¢t=1,

oo -
1
© © o

One deduces from the equations on the left, upomsng them, that:
-BA-B)(@+b +c)=3

hence, if one substitutes this in those equatibes:t

a=pb=c=- ! :
3A-4B
Finally:
Xy z 3A-4B
If one substitutes this in (3) then one will get:
j@ds_SA_ U(XX+Yy+ Zy dS[( Lx My Mz @ (4)

5. — Suppose, for example, that a uniform pressusxested upon the surface of an
isotropic body and that the body forces are zerpegligible, and ask what the variation
of the volume of the body will be. In the presease:
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dx dy dz
X=Y=Z=0; L=p—, M=p—=, N=p—.
IOdn IOdn IDdn

Formula (4) will then give:
j@dSz P j(x%+yﬂ+ zij de=- P I3dS;

3A-4B dn dn d 3A-4B
ie.:
[eds  3p
S  3A-4B

The left-hand side represents the dilatation pér wolume. For a given body, it will
then be proportional to the pressure. In practices gives the name cbefficient of
cubic compressibilityo it and represents the reduction per unit voltina¢ follows from
a unit pressure by. One deduces from the preceding formula that:

3
3A-4B°

q:

In practice, one considers another coefficiEnthat is called théfoung’s modulur
coefficient of elastic tractionln what follows, one will see that:

3B
Eq= —,
1T AB

and one will know the means by which one can deterid andq experimentally, and
consequently, to calculate the isotropy constaraedB for any body. According to the
old theory of Navier and Poisson, one must alway@A = 3B, and thereforé&q = 3/2;
however, more recent experiments have shown tit&q ifas that value for certain types
of crystals then its value might be very far froM2 3n other bodies, and especially
metals.

6. — We further propose to determine the alteratiowdlume that a homogeneous
elastic body will experiencender the action of its own weighThe body is supposed to
be supported by means of forces that are appligicaly to the points of a horizontal
plane. Place the origin at the barycenter andtitez-axis in the opposite sense to that
of gravity, and letz = h be the equation of the support plane. By hypahesie haX =
Y=L =M =0, while the ratio oZ to p is a constant that is equal and opposite in gign t
the acceleration of gravity. Formula (3) becomes:

j@ds:-zj(gx+f'y+¢a dsj N'gx 'y '9z.

However, in order to have external equilibriumsihecessary that one must have:
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jN ds=P, ijds :jNydsz 0,

in which P represents the weight of the body. In additionnftbe choice of origin, one
will have:
jxds: jyds: jzds: 0.

Hence:
j@ds: - c'j Nz ds= — c'hj N ds= - ¢ hP.

If the body is isotropic then:

[ods = hP

3A-4B

oo

In general, one can say that for a fixed orientatiba,total variation in volume will be
proportional to the weight and the distance from teeter of gravity to the support
plane. For example, the variations in volume obanbgeneous, isotropic sphere that is
suspended from a rigid wire or supported by a rigid planeegtal opposite and
proportional to the fourth power of the radiu$. ( Observe that for any body, if the
support plane contains the center of gravity then the yggrémwill reduce or increase by
the amount that the lower part increases or reduesp,,rin such a way that the total
volume will remain invariant.

;
34

() BETTI, Teoria della elasticitaChap. VII.



CHAPTER VI

DISTRIBUTION OF THE INTERNAL ACTIONS

1. — Up to now, we have studied elastic deformations watltancern for the forces
that they develop inside the bodies as an effect aktdeformations. We shall now take
a different viewpoint, because we would like to infer tledamental formulas for the
study of elastic equilibrium from a direct consideratiminthose internal forces. A
comparison of the formulas that were obtained befacethe ones that we will get will
provide the means for us to study the distribution of titermal actions in deformed
elastic bodies. First, let us make an observatioms@er a surface elemeds inside of
an elastic body that has already deformed and equilibrated, and imabatete plane
that contains it is prolonged in such a way that iid#ig S into two partsS” and S”.
Among all of the forces that are directed from the ooftS’ to those ofS”, consider
only the ones whose lines of action crdss They will have a certain resultant that one
can denote bp ds Similarly, the actions that the points®fexert upon the points &
and that crosdswill have a resultant that it equal and opposite im sggthe first one if
the body is in equilibrium, as we have supposed. Thetiimp will represent () the
pressureonds per unit area.

C B’

A/

|
!
0-—-f-—

7
7

B Cc’

() See the excellertours de physique mathématigoy P. DUHEM (Paris, A. Hermann, 1891, pp.
257) for the various ways of definimpgessure.
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2. Indefinite equations.— Having said that, decompose the body into parallelepiped
elements by means of three systems of planes tegtaaallel to the coordinate planes.
Consider one of those parallelepipeds and write downittigin equilibrium under the
action of the internal forces and the body forcesie planeOYZ divides the body into
two parts. Lefp, denote the unit pressure that is exerted addi3SA by the part that
does not contain the parallelepiped onto the one tles, do such a way tha dy dzwill
be the pressure ddBCA, which will be considered to be positive when it is cliegl into
the interior of the parallelepiped. Similarly, fgtdz dx p, dx dybe the pressures that act
upon the face©CAB, OABC; resp. Lepu, Pxy, Pxz be the components pf alongOx,
Oy, Oz resp., and so on. When one passes from thedJ&¢eA to the opposite face
O'B'C'A, the functiongx, Pxy, PxWill become:

:
P i, Py + o dx Pt 252

0Xx 0x 0

Pxx +

Hence, the pressure @dB'C'A, when considered to be something thats upon the

parallelepiped will have the components (pxx + a;’;x

internal pressures, when measured along-doas, will give rise to the sum:

dxj dy dz ..., and therefore, the

op 0P, , Py , 0P
«dy dz+pydz dx+ ...— | p, +—2dx|dydz— ... =— | =X+ X+ |dS
Dot BBy (p 0x j 4 (ax dy 0z

If one writes down that the sum of the forces tlztugpon the parallelepiped along each
axis is equal to zero then one will get the indefinite #qaos for equilibrium:

x - apxx + apyx + apzx,
ox 0y 0z
ox 0y 0z

Z - apxz + apyz + apzz )
ox dy 0z

3. — We further need to write down the equations of the mtsneWe first assume
that the external forces are third-order infinitesimats they will give rise to moments
that are negligible with respect to those of theerimal pressures. For simplicity, we
compose them around the center of the parallelepiped cdnserve that from the
continuity that we assume the pressoute be endowed with (in direction and intensity),
it would be legitimate to assume that their resttaare applied to the centers of the
respective faces. Recall that the moments that aréodaidorce X, Y, Z) that is applied
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to the point X, y, 2 areZy — Yz Xx — Zx YX — Xy Having said that, if we neglect the
infinitesimals of order higher than two in the fortlkesn we will have:

a force whose components arep,, dy dz p,dy dz py,dy dz atthe point (-1dx, 0, 0)
" " pyxdz dx pyydz dx py,dz dx g (0,—3dy, 0)
" " Pxdx dy p;ydxdy pgdxdy " (0,0,-3d2

The resulting moment of the couple, which acts paraléheyzplane, will then be:

- dy [y, dz dx+ dz [,y dx dy= (py— P2 dS

and therefore the equations of the moments are:

Pyz = Pyz, Pzx = Pxz; Pxy = Pyx-

Consequently, thaeine functionsp will always reduce tsix distinct ones. Once we have
introduced the concept of elasticity, we shall seettiet will reduce tdhree

z

4. Boundary conditions.— On the surface, the triple family of planes wiltetenine
tetrahedral elements, such @aBC If one represents the areasABC, OBC, OCA
OABbyds ds, ds, ds;, resp., then one must have:

L ds+ pwds +py,ds + pxds =0,
for equilibrium. Now, observe that:

dx dy dz
ds, =——d dg =-—d dg =—-—ds.
3 dn S % dn S 88 dn

It will then follow that the boundary equations are:
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dx dy dz
L=p. —+p —2+p —,
P dn P dn Pax dn

. dx dy dz
M = pxy%-i_ pyya‘-*_ pzyE‘]’

dx d dz
N = pxz%-i_ pyzF?,‘/-i_ pzzE,]'

(2)

5. — We now pass on to a study of thaiations in the pressurearound each point.
Take a tetrahedral element lIKRABC inside ofthe body, letp, ds be the action that is
exerted acrosds by the part of the body that contains the tetrahedmto the part that
does not. The pressure is computed like somethingttatupon the tetrahedrpand is
—pn ds and for equilibrium, we must have:

—Pn ds+ P ds + pyxds + pxdss = 0,

If a, B, yare the direction cosines of the perpendiculakB&, which is based &, then
we will haveds, = a ds ds, = fds ds; = yds; hence:

pnx :apxx+ﬁ pyx+ypz>€
Py =Q Pyt B Pyt Y Py (3)
pnz:apxz+ﬁ pyz+ypzz

Those relations, which are independent of the d#oss of the tetrahedron, will
obviously persist when the elemehBC, displaces parallel to itself and concludes by
containing the poinD. One will then have four intersecting elementfatand the
relations (3) will show that if one knows the prgsson the three elements then the
pressure on a fourth element will be determinethtensity and direction.How do the
direction and intensity of the pressure vary whiea surface element that it acts upon
rotates around O?

6. — First of all, we ask whether there exist elera¢hat are subject to only tangential
pressures. For brevity, we set:

P(a,B. 1) =& Pt B Py + ¥’ Pazt 2BYPyat 20 P+ 208y,
call the discriminant of that fordy, represent the reciprocal Afoy:
qxx qyx qzx

qu q yy q zy |
qxz q yz q 7z
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and letQ (a, B, )) be the reciprocal form t®. Now, from (3), the orthogonality
condition:

aprxt Bpry+ Vpnz =0

will becomeP = 0, and that equation will represent a quadric cone shdtei locus of
perpendiculars to the surface elements that are actedombotangentially. It is known
that the equation of the envelope of the planes thathgough the vertex ofP
perpendicular to the generators will be precisgly 0. That second cone, when it is real,
divides the angular space around the point consideredwntoetgions, and whereas the
surface elements that are immersed in one regiosudnject to onlypressuresproperly
speaking, the other ones will supptamsions. If the coneQ is imaginary then that would
say that the surface elements that intersect gidimt considered are either all subject to
pressures or all subject to tensions. In that casewmuld consider the surfaGe=+ A
and choose the sign on the right-hand side in suchyathe one would have a real
surface (which would necessarily be an ellipsoid). him first case, however, one takes
the + sign in one region and the — sign in the othesuch a way that the equatiQ +

A will represent a pair of real surfaces; viz., two hypérids with one and two sheets
that have the asymptotic co@e= 0 in common. In any case, the surf@ce + A will be
called () the directrix surface because if one wishes to know the direction of the
pressure on each element then it will be enough to knloat that surface is. Indeed, if
one observes that one has, by virtue of (3):

an qXX + pny qu+ pnz qxz: aAl
pnx qyx + pny qyy+ pnz qyz: ﬁA, (4)
pnx qzx+ pny qzy+ pnz qzz: yA

then one will see immediately that:

The plane conjugate to the direction @fipa x + By + yz = 0;viz., the plane of that
element.

As for the intensity, i, y, z are the coordinates of the extremity of the regmestive
segment op, then when one squares and sums (4), it will give:

(X Gty Gy +Z 0"+ (X G+ Y Oy +Z G)° + (X G+ Y Gy +Z 0)° = A%,
Therefore:

The absolute values of the pressures or tensiowsinak a point vary like the
diameters of an ellipsoidlt is called theellipsoid of elasticity.

If one displaces the coordinate axes parallel ¢oatkes oP, in such a way that one will
havepy, = px = py = 0 then the equations of the directrix surfacd e ellipsoid of
elasticity will become:

() LAME, Lecons sur les coordonées curvilign@CXLI.
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2 2
X z
_+L+_: + 1,
w, w, w;

2 2
X ¥, Z_

and one will then see more easily that those surfaaes the same axes. In addition,
two particular mutually-perpendicular surface elements support the minimum and
maximum tension and will belong to the (generally uniqup)etiof elements that are not
subject to oblique pressures. It will then be clear t#hgéndless of the orientations of the
axes, the valuesn, ap, ax of theprincipal pressuresvill be the roots of the equation:

pxx - pxy pxz
pyx pyy /s pyz =0
pzx pzy p z T

7.— A comparison of the equations of equilibrium (indeéirahd boundary) that were
obtained in Chapter IV with equations (1) and (2) wibwhthatin elastic bodiesthe
functionsp will depend upon onlyhreefunctionsu, v, w, by means of the relations:

or or _14n

Pz oar P g o PeTPeT oo

I.e., if we adopt the notations of Chapter IlI:

-p=Aa+Cb+ Bc+2(E f+ Ggr H I
-p,=Ca+Bb + Ac+2(E T+ G g H I
~p,=Bat+ Ab+ Cc+2(F f+ G g H N
-p,=FRa+tFEb+Fc+t2(F f+ Hg+ G I,
“Px=GatGb+rGer2(H f+ Ggr F i
—py = H,a+ H,b+ H;c+2(G f+ F g+ HB.

Those are the formulas that yield the distributadrthe internal forces at any point in a
deformed elastic medium. If the medium is endowét a symmetry plane at the point
considered then the asymmetry will disappear, aredvall have simply:

“pPo=Aat+Cb+t B¢ - p,=2 Ff
-p, =Ca+Bb+ A¢c - p=2GCg
-p,=Ba+ Ab+ C¢ - p,=2Hh
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With those formulas, it is easy) (to explain the terminology that Rankine proposed in
order to distinguish the various coefficients of elatstic

() CLEBSCH,Théorie de I'élasticitgpp. 38.



CHAPTER VII

ELASTIC MOTIONS

1. Equations of elastic motion— Suppose that the points of a body, rather than being
in equilibrium, vibrate around a certain fixed positio) ¥, 2 and are found at the
positions X + u, y +v, z + w) at the end of the time interval In that case, the
displacements, v, w will be certain functions af, y, z t that will determine the series of
configurations that the system assumes as time vafigs. determination of, v, w is
provided by the equations of motion, which one deduces fronntedinite equations
(Chap. IV, 82) of equilibrium by making use af’Alembert’s principle as usual, which
says that everything happens as if the body were iniequih at any instant under the
action of the forces, properly speaking, and the fictgiforces, which are equal and of
opposite sign to the ones that produced the effectiveemat each point. The latter are
measured by the product of the mas#Shby the acceleration, whose components are, as
is known:

O*(x+u) _ 9°u O*(y+v)_ 9% O*(z+w) _ d*w
ot? ot?’ ot? ot?’ ot? ot?

One will then see that the indefinite equationsnotion are deduced from the indefinite
2

equations of equilibrium by substituting dS— %p ds... for X dS ... It will be

obvious then that the boundary conditions will af&zaemain the same. The problem of

elastic motion will then be solved by the followiaguations:

0°u _ 0 oM 14 4Mn 10 o
+ +

Po? = oxoa 20yoh 20209
9% 104 a4 10 ar
o want st sa o (1)
o2 20x0oh dyab 20zdf
w_109M,1090 3N

“Pa "20x0g  20yaf 9zdc

when completed by the equations (Chap. 1\2).8

2.—Theorem.

If the external forces do not vary with time thiea general problem of elastic motion
can always be decomposed into two special problems:

1. A problem of simple equilibrium.
2. A problem of motion under the action of only tresgt forces.
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Indeed, lets', v, W be the displacements that one needs to give todimspof the
body in order for it to remain in equilibrium under thetion of the external forces and
the elastic forces. The functions v’ W, which are independent ¢f must satisfy
equations (3 and (I) of Chapter IV. If one subtracts those of equatidisand (1)
that relate to the system of displacemenis,(w) then one will get the relations:

v _oom 1o 10 o
ot? oxoa 20yoH 20zo0dg’

_on" dx 100" dy 100" dz 2
oa" dn 2 0H dn 20¢ dr

which must be satisfied by the residual displacdsier U =u",v—-Vv=Vv',w—-w=w"
The relations (2) are precisely the equations astel motion in the case where external
forces are absent. It is necessary to supposahbatxternal forces are independent of
time, because X, for example, is a function othen since th& that appear in equations
(1) are only particular values of that functione thfference between the twowill not
always be zero, but will vary with time. Obsertattthe theorem that was just proved
can take on the following noteworthy interpretation

The points of an elastic body that is subject tods that are independent of time will
vibrate around their corresponding equilibrium plosns in the same way that they will
vibrate around their natural positions in the abserof external forceg).

3. — What is the nature of the motion of the poinita wibrating elastic body? By
virtue of the last theorem, if one would like todenstand theharacterof the elastic
vibrations then it would be legitimate to suppdsa the body is completely free. Under
that hypothesis, the equations of motion will beeom

LPu_ oon 190n 1900 _ ondx,10n dx, 10N dx

ot>  odxda 20ydh 20zdg "~ dadn 2dhdn 2dg dn

, v _ 10 or oon 1o00M ., 1on dx —on dx, 10M dx
) o=t o, (1) 0= ——— T
ot 20x oh ayab 2020 f 2ohdn’ dbdn 20f dn
Ow_1090m_ 190N 00N g=1oMdx 10Mm dx = oM dx

o 20x0g 20yof dzoc 20g dn 24f dn dc dn

Let us attempt to satisfy them by taking:

u=ug(), v'=ve(), w=wg(l),

() See CLEBSCHThéorie de I'Elasticitépp. 58.
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in whichu', v, w are independent of time. If we denote everything tHate® tou', v/,

w by a prime then we will have, after derivatians a’g (t), b=b" ¢ (t), ..., h=h" @ (1),
and consequently:

orn _ o’ o _ o’ on _ ort’
— @ (), — =), ey —=— @ (1),
Pa 6a’¢() b ab'¢() h 6h’¢()
in which — on or 6_I'I Is expressed linearly i b, ..., h. Having said that, the first
da’ ob’ oh

of (1) will become:
_pu d’ _ 0 ar’ 1 0 ar’ 16 o’

5 df oxod  20yoH 20209

and since the right-hand side is independent od,timwill be necessary that the same
thing will be true for the left-hand side, as walhd one will have, consequently:

d%p _
dt> ¢

in which - I is intended to represent an arbitrary constartterdfore, the most general
form possible for the functios is:

@ (t) = A cos kt) + i sin kt),

and equations (Land (I) will become:

oy =00 1900 19 () on'dx 19M dy, 10n’ dz
ox 9a 20ydH 20zd4 22 dn 2 0H dn 2944 dn

(2) pkz\/ :iia_rll+ia_r|'+£ia_w (2")4 0= ial% 6I'I dy i'aliz
20x0oh o0dyodb 20zof 20h dn 9B dn 20f dn

pkew =100 180 8 om o=ldMdx 1om'dy om' dz
20x0g 20dyof 0zadc¢ 209' dn 20f dn 0¢ dn

Suppose that one succeeds in integrating equaf®ny some meansu’, v/, W will
then be certain functions &fy, z, and alsdé, and when they are substituted itf)(and
one eliminates, y, z from (2) and the surface equation, that will yiald equation i

that admits all possible valuég, k2, kZ, ... of k* as roots. A special solutien=u; , V
=v;, W =w of the equations (Rand (2) will correspond to ank?, and consequently, a

particular solution of equations'fland (1), from which one will get} the general
solution by linearly combining all possible solut) i.e., by writing that:

() See POINCARELecons sur la théorie de I'élasticjtBaris, G. Carré, 1892, pp. 112.
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USYUAM,  VEDVA®, w=Ywdo, @

in which: =
@i (t) = Ai cos k 1) + 44 sin ( t).

In addition, one will see how to determine the ¢ansA;, A2, ..., 14, t&, ... by means
of theinitial circumstance®f the motion.

4. — Leti andj distinguish two solutions of equations’)(2hat correspond to the
valuesk; andk; of k. In order to account for the nature of the vilorad (2), it would be
appropriate to demonstrate an important properth@integral:

Ki=[(uu+yy+wwp ds

(2') and (2) relate to the displacements, vi, w;, SO one can consider them to be the
equations of equilibrium, in which one has set:

X=pku, Y=pkvi, Z=pkw, L=M=N=0.

Hence, forau =y, ov =v;, ow =w; , the equality (1) in Chapter IV will become:

ort, on, ort,
6, == [ oen Ty T s ®

Since the right-hand side a#g will not vary when one switchasandj, it is necessary
that one must havé’K; = k7K, , and therefore, by hypothesik?# k® wheni # j, so
one will also havé<; = 0. However, if =] then the right-hand side of (3) will reduce to
~2[N;dS. Insummary, one sees that:

ﬂéjmdSith
Kij = K : (4)

0 if i # .

5. — We shall use the last result in order to shaatttie constantsikks, ks, ... are all
real. From the process that is followed in order toagbthe equation that admits the

rootsk?, k2, kZ, ..., it would seem obvious that this equati@s real coefficients Any
imaginary root will then correspond to its conjugabot. Letk?, ka be such a pair of
roots. It is clear that when equations (2) arétemiin terms ok?, in one case, and then
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in terms ofka, that will yield conjugate expressions farandu;, vi andv;, w andw ,

and thereforey uj, vi vi, w w will be sums of squares. Hendg§; is composed of
essentially non-negative elements. However, om&adjr known that one must hakig =
0. That cannot happen unless onethas0,u; = 0, ...,w; = 0. Therefore, it will only be

possible fork?, k>, kZ, ... to be all real. The fact that those numbersatse positive
will result immediately from the equaliti’ Kii = —ZJI‘Ii dS, sincefll; is an essentially

negative quantity, an&; is a sum of squares. Therefoke, ko, ks, ... will be real
numbers.

6. — Return to the formulas (2). They say that tbheations of the points of an elastic
body can be considered to be resultants of thergapions of simpler vibrations, which
will be the vibrationsu =u ¢ (t), v=v’' @ (t), w=wW ¢ (t) for each value ok. If k is
imaginary theru, v, w will be expressed exponentially thand they can decrease or
increase indefinitely in time. However, from tleality ofk, that cannot happen, singe

for example, is never greater than the quarmit\)//l2+,u2 in absolute value, and the
latter is independent of time. In addition, if oimereases by 277/ k in the preceding
expression for, v, w then they will return to their original values. hély will then
represent a pendulum motion whose peried R will be the same for all points of the

body and vary only in the amplitude of oscillatisam point to point. One will then
arrive at the following noteworthy conclusion: (

The internal motions of an elastic body cannot @ase or decrease in time. On the
contrary, all of thepartial motions, which evolve between invariable limitequal time
intervals, will prove to be periodic. Formulé3) show that the vibrations of each point
will result from the superposition of an infinitudépendulum motions that have different
periods.

7.—Saint-Venant's theorem:

The vis viva of a vibratinglastic body is equal to the sum of the vis vivas that are
due to the individual pendulum motigng.

The totalvis vivaof the vibrating body:

o325 s

Now, from (2), one will have:

() CLEBSCH,Théorie de I'élasticitgpp. 130.
(") See Comptes-rendus®®em., 1872, pp. 1176, 1425, 1567.
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ou) (ov) (ow) dg dg.
— |t = =] = u u + + w)— =1L
(6tj (6tj (6tj LUV W W

if one multiplies this by dSand integrates over &@lthen one will get:

dg, dg,
d=1L) K A1
22, "odt dt

By virtue of (4), the right-hand side will then reduoeothly the terms for which one has

=j. Hence:
00 d¢ 2
b = Ko | —-1| .
Z I ( dt j

N

i=1

On the other hand, thes vivathat is due to only the pendulum motions with the index
will be precisely:

=1 2 %2 —1 %2
q)'_z.[(ui +V|2+sz)( dtj ,OdS zKii(dtj-

It will then be true that one haB = ®; + ®, + d3 + ... In other words, everything
happens as if the body were animated by an infinitude of pemdonotions that coexist
with perfect independence of each other.

8. — Now, returning to the integration of')lall that remains is to see how the
constants:

Al, Az, A3, o M Loy L,

will prove to be determined completely when one fixesitlitéal circumstances of the
motion — i.e., when one supposes that displacement(up, Vo, Wo) and thevelocity
(ug, v, W,) of each point are known at a given instant, which omeataays assume to

be the time origin. Fdr= 0, one has:
d¢
= Al —= )
¢ ot kyt

and consequently)(if one setg = 0 in formulas (2) and differentiates once with respe
to t then:

UOZZ/M, EZZKM”-
i=1 i=1

() See POINCAREloc. cit, pp. 113.
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One multiplies the first equality hyu, dS and after doing the same thing withandwy,
one sums and integrates. Obviously, one will get:

Kon ZZ/]i Kin = An Knn;
i=1

that is:
oy v+ v w)p ds
T J@+v+wpds

If one wishes to fings, then it will be enough to changg into k, 4, andup, Vo, Wy into
Ups Voo Wp:

Wy v+ g wp ds
T [ pas |

Here, one should observe that the constants, thostatdd, are the ones that determine
the amplitudesof the infinitude of component pendulum motions, while plriods of
those motions can be determined fr&m, k» , ks, ... It will then result from the
preceding analysis that:

Whereas the amplitudes of the oscillations depegyah uhe initial circumstances of
the motion, their periods will depend upon the getim form and dimensions of the
body.

In other words, varying the initial circumstances of thmotion in a given body will
influence only the amplitudes of the oscillations, white time over which it was
measured will always remain unaltered for any compoosgitiation (*).

9. — Some doubt remains in all of the preceding analysiselyammat the equations
that provide the values of themight not admit an infinitude of roots, and also thmstyt
might not admit any, in which case, there would existalot®ns to equations {(Rand
(2") that have the form considered. Now, we can show thatthose equations admit
an infinitude of distinct solutions Among that infinitude of displacements, which are
constrained by the condition:

j(uz +V2+ W) p dS= 1, (5)

we seek the one that will give a minimum value-th M dS Everything leads us to
believe that such a minimum exists, and it willgmesitive or zero, because the function
in question (which is essentially positive) is aoabus, by virtue of the hypothesis that

Hok

() CLEBSCH,Théorie de I'€lasticit¢.pp. 104.
(") POINCARE,loc. cit, pp. 104. In reality, that proof leaves much to be ddsin regard to
confirming the existence of the minimum-of M dS
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was made on the displacements from the outset.cdloalus of variationsvill then lead
one to set:

jands+/1j(u5u+ Vw w W d=0, (6)

in which A represents a constant adg Jdv, dw represent the arbitrary variationsiofv,
w. In particular, if one set@ = u, dov =v, dw =w then one will also have:

= gou_dou_ou_ -
ox o0x Ox h
hence:
5I‘I:a—rI +...—a—na+ =11,
oa oa
and (6) will become:
-[nds =42, ()

by virtue of (5). Therefore) will be a positive number or zero that is représerby k; .

If one compares (6) with the equation that is otgdiby applying Lagrange’s principle
and from which one gets (Chap. IV 28 all of the equations of elastic equilibrium then
one will see that due to the arbitrarinessin dv, dw, the six equations into which (6)
splits can be comfortably deduced from those egnsatdf equilibrium by settingk =
PAU, Y = pAv, Z=pAw, L =M =N = 0. In that way, one will recover equation§ @nd
(2") precisely, which must then admit a solutian, {1, wi) for k = k; that constitutes
precisely the functions that will satisfy (5) anglega minimum to—jl‘l dS. In order to

establish the existence of those particular saistithen, consider from among the
infinitude of solutions that satisfy (5), the ornbat also satisfy the condition:

[y +w+ ww) p ds=0, (8)

and from them, one determines the ones that yigtdnamum for—jl‘l dS. For those
functions, one must have:

on ds+ Aj(u5u+v5v+ WO W) o dsmlj( Wu v W W =0, 9)

no matter what the variatiord®, dv, ow are, and for convenient valuesdfndA; . In
particular, fordu=u;, v =vi, W=wj :

jan dS+ A, =0,

in which:

ol = a—I_Ia'a+ :a—na1+
oa oa
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On the other hand, (6), which is satisfied by the funstia, vi, wi, will become:

[ands=o, nwhich  on=ga+ . =gy
03, oa

whendu =u, & =v, ow =w; hence A, = 0. With that, (9) will assume the form of (6),
A must then be a numbég that isnot less thank?, since the new functions, v, w,,

which satisfy (2) fok =k, are required to verify the relation (8), in addition(5). One
succeeds in determining the functiomg vs, ws in an analogous way, and for them

—jl‘l dS will attain a valueik?, which is the minimum of all of the ones that can be
assumed for functions v, wthat satisfy conditions (5), (8), and the new condition

j(uuZ+V\é+ ww) o dE=0.

It is obvious thatk? is not less thak?, ...

10.— One then obtains numbeks$ < k> < ki< ..., and one needs to show that they

are all truly distinct, and in order to do that, begin by removing all doubt as to whether
they can all be zero. If that were the case th®mpuld give| M dS= 0, and the
functionsus, vi, w; would necessarily have the characteristic formgyd displacements.
The same thing would be true for the successipéetriof functions, but the seventh triple
could be expressed linearly in terms of the firgt But we shall show that this cannot
happen, becauséhe infinitude of displacement&s, vi, w) are mutually linearly
independent.Indeed, if one had:

n-1 n-1 n-1
Un :z/]i U, Vn :z/]ivi , Wh :z/]i W,
i=1 i=1 i=1
in which A4, A5, As, ... are constants, then one would also have:
n-1
[ ++w)pds=) AK, =0,
i=1

but the left-hand side must be equal to unity, esitite functionsi,, va, W, must satisfy

().



CHAPTER VI

APPLICATION TO THE SPHERE

1. — The considerations that were developed in the precetagger make it possible
for one to solve completely the general problem thas mased at the beginning of
Chapter 1V, as long as one knows how to integrataicedifferential equations. As a
result, one must address the means to facilitate fectethat integration in general.
However, in certain special cases, the very sintglai what is given can make the form
that one must attribute to the displacements inwjitibecause they must satisfy the
equations of equilibrium or motion. For example, taledphere, with the sole purpose
of making an immediate application of the results tate obtained before.

2. Equilibrium. — Considers a homogeneous, isotropic, spherical shdil isha
subjected to a pressure @f per unit area internally and a pressurgoéxternally. Let
ro be the inner radius and lef be the outer radius. If the pressures are distributed
uniformly then one knows that the displacement at @t ofr from the center must
depend upon only and can take place only in the direction of that radiusuch a way
that if one calls the unit elongati@rand letsu = £x, v = €y, w = £ zthen one will have:

ou _ deor _  x*de ou__degor _ xyde
— T EtX—— =+ ——, —=X—— ==
0x dr ox r dx dy drady r dx
Hence:
_ de = =

and the indefinite equations will become:

a_G:a_G—ae— 0
ox oy o0z

Hence,© will be a constant, which one calld.30ne deduces from:

3+ rE:3/1
dr
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upon integration, that:

g:)l+rﬁ. 1)

w

One now addresses the determination of the conslaausl . The first boundary
equation, which can relate to either of the two sphesindaces, will become:

03X 2894, (a-2B)0- X< 0,
dn dn dn

except for the indices 0 and 1 that distinguish the twaasesf from each other; i.e., if
one observes that one needs tonsagual tor or —r then:

p5+2|3(gl(+ XEJ+3JI (A- 2B = 0.
r r dr r

If one divides this by /r and adopts (1) then it will follow that:

p—% +1(3A—4B) = 0.

One can arrive at the same result by means ofttier bwo boundary conditions. One
will then have the equations:

P 1S =4uB—A (3A-B)ry, prl=4B-ABA-B)r’,

from which, one can deduce that:

3

A=- plrls_poro Iu:_(pl_po)rfrogl (2)
(BA-4B)(r -15)’ 4B(r’ - 15)

If one substitutes this in (1) then one will hahe tmeans to know the deformation at
each point, as well as the variations of the thedsn volume, etc. For example, the total
increase in volume will be:

4 4Arr(p, r>=p,rd)
OdS=3AF (r2-r3) = 0 0 117
j 3”(l o) 3A-4B
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3. — In the case of a solid sphere or an indefinite nmedioat is provided with a
spherical cavity, one will have only one surface to consided therefore only one
equation for the determination afandx. However, in that case, one can determine one
constant directly by observing that the displacenganinust remain finite, and therefore
one must haver = 0 in the former case and= 0 in the latter. Observe that formulas (2)
also persist in those extreme cases, since one 13 tise

P
A=-——1 =0
3A-4B a

for ro = 0, and whem; is infinite, when one supposes tipat= 0, in addition:

2
A=0, u= F:‘;éo

It is known that the penultimate formulas are ususllfed to the case of an arbitrary
spherical shell that is subject to pressures that are @ad@pposite per unit area.

4. Pressures and tensions: For an isotropic body, one has:

p, =(A-2B)@+2BM  —p = g W, V]
0x dy 0z

0z O0X

ow ov du
-p,.=(A-2B)O+2B—, -
P, =( ) % Ry = %}X ayj

~p,, = (A- ZB)G)+ZB? ~p. = E(@ﬁ_""j
y

In the present case, those formulas will become:

+z —2x2
r°

=A(3A- 4B)+2yB

z zZX X
:6,UBL5, Pzx = 6B —, pxyZG,UB—g/
r r r

If one passes theaxis through the point around which one would ltkestudy the
distribution of internal actions then when one t&akey = 0,z =r, the last formula will
give:

2,uB 4,uB

w=ap=-ABA-4B) -
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In particular, fory = 0, one will haveo = a» = ag = p1 , and the ellipsoid of elasticity at
any point will become a sphere. Hence, in a solid gptiet is subjected to a uniform
pressure, one can say that the pressure will be traadmibrmally to all internal surface
elements with equal intensity, as in fluids. Howeifesne sets1 = 0 then one will have:

3

i po[roj
M =Wp=—30B="—_>—|,
2 20

and the ellipsoid of rotation will be one of rotatiaround the radius. Therefore, in an
indefinite medium that is homogeneous and isotramd provided with a spherical
cavity, any pressure that is distributed uniforrolyer the wall of the cavity will be
transmitted to the surface elements that are pdipdar to the radii with an intensity
that fades away in the region inversely to the onfoine distance from the center of the
cavity and will produce tensions in all of the etts that contain the radius. In other
words, if one imagines that the medium is subdidideo very thin spherical strata that
are concentric to the cavity then one can sayvw&treas any stratum tendstéar with
equal intensity along all of its great circleswill also be subjected to @ushingof its
thickness that is twice as intense.

5. Vibrations. — For the study of vibrations, one confines orfesetonsidering the
case of a solid sphere of radias One will always havel = e X, v =€y, W= £2;
however,e will be a function of andt. Therefore:

@:35+r%, ’]1:’]'2:’]5:0,

and the indefinite equations will become:

2 2 2
ou_ ,00 0V _ Aa@ 0w _ A6®

a2 ox P "oy Pa ™ "oz

The first equation can also be written:

9’ _ , 00 x . 9’ _A0O
A—— e.

X__ ) N, T T T
ot? orr 'Oat2 r or

and the other one will lead to the same result:

9% _ [62£+46£j. 3)

P Mo v

In addition, on the sphere of radiaisone must have:
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Bg—u+(A 28)@— 0;

25(5 Xy x%j+ (A—ZB)($+ r%j— 0,
r or o jr
or, when one divides by/ r and reduces:

r%+(% 4B) £= 0. (4)
or

One now addresses the integration of equatiom(8uch a way that equation (4) will be
satisfied for = a.

6. — In order to find a particular solution of (3¢ts
£="R [A cos kt) + i sin kb)], (5)

in whichR is a function of only andk is a constant. If one substitutes this (3) and (4

and takesok’ = AR, for simplicity, then one will easily find thak must satisfy the
equation:

+——+hR =0, (6)

in such a way that far=a, one will have:

Arz—?+(3A B)R = 0. 7)

The integration (6) is based upon the propertyBes$sel transcendentsrhich do not
differ substantially from the functions:

2 4 6

X X X
2n+1) 2040+ Do+ 3) 2460+ Do+ 30 &

If one differentiates that equality twice then aviét easily observe the relation:
Fr(X)+< F(X) +Fn (%) =0. (®)
X

Having said that, sé® =r" F, (hr). Equation (6) will become:
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Ry (hr) +2

e hr )+(1+"(" 4)jF (hr) =
h?r?

and that cannot coincide with (8) unless one has:
v(v+3)=0,n=2v+4.

One must then have = 0,n =4 orv =- 3, n = - 2, and therefore one will have the
following two particular solutions of equation (6):

R =F4(hr), R=r2F(hr).

That equation will then be linear and second-order, sgeheral solution will be:

R =aF,(hr) +r—'83 F-, (hr). (9

Meanwhile, the functioiRr must remain finite. It will then be necessaryudsrto havex

= 0 in the case of an infinite medium that is endowed wispherical cavity an8= 0 in
the case of a solid sphere. We confine ourselvesetdatter case and take into account
the fact we can omit the index 4 in the first termha expression (9), since it will now
be useless, and if we take= 1 then we can write:

i 2i
R=F(n=1+>__ CDOD (10)
~ 2[4 - A[B- (2+ 3
7. — Setha = x, and substitute the last result in equation (7). Oheet:
AXF'(X)+(BA-4B)F(x) =0
e., if one adopts the development (10):

S5A-4B 2+ 7TA- 4B o — 9A- 4B
2[5 204517 2141615179

+...=0.

(3A— 4B) -

This transcendental equation has roots thaalneal, and they will provide the values

ki, ko, ks, ... of k. If one substitutes a well-definédin the expression (5) then one will

get a particular solution, and if one linearly combirtesdolutions that correspond to the
infinite values of the indexthen one will find that:

£= iM cosk t)+u sink t)]F (hir). (11)
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All that remains for us to do now is to determine ¢bastantsiy, Ay, ..., (4, b, ...
that fix the initial conditions of the motion. Suppdbkat at the initial time, an arbitrary
point that is situated at a distancer dfom the center in the case of equilibrium is found
to be displaced by (r) and animated with the velocity (r), in such a way that fdr= 0,
one will have:

pO=er ==
e., if one uses (11):
£ - ZA F(hn), £o-5 >k F(h ). (12)

Observe that the functiong of the penultimate chapter are the ones thategreesented
byr F (hi r), and therefore, if one refers to what was prowetthat chapter then one can
write:

TF(h nF(h ryr'dr =0

fori # j. Having said that, multiply equations (12)Byh r) r* dr and integrate from =
0 andr =a. If one takes the last observation into accobaehtone will see that the terms
in the right-hand side will go to zero (except ioe n™ terms), and one will get:

[F(h, 1) p(ryrdr [Fh, ner)rir
n=-2 3 , tn = 0 3 .
JF2(h, r)rér k] F2(h, rdr

8. — To conclude, observe that the functign(x) that was considered in@can be
expressed in finite form by means of trigopnometunctions for any even value of
One will first have:

2 4
SLLETIT S PR X o =Fn2 ().
X 2(n+3) 2040n+ 3)(+ 5)

When one knowd=, (x), the preceding formula will permit one to caldeld,., .
Conversely, if one knows,.:, (X) then one will have:

Fn(x)=1- —jx 2(%) dx.

Having said that, one knows that:



Chapter VIII — Application to the sphere 65

2
Fo(X)=1- Ral X — ... = COSX.
12 1P
Therefore:
Fo(X)=1+ Ixcosx dx= X sinX + COSX.
0
However:
Fo () == 2F/ ()= 20X Fa(®) == SFI(X)= — (sinx- xcosx |
X X X X

Now, formula (10) will become:

R = % (sinhr —hr coshr),
and the transcendental equation:
AXF (X) + (3A-4B) F (x) =0,

which must admit an infinitude of real roots andimaginary ones, will transform into:

1 AX
——cotx=—.
X 4B

The roots are the abscissas of the points at wh&kurvey = cotx meets the hyperbola:

Ax

T

x |~

The graphical representation of that will show wedaly how one and only one root will
fall in each intervaligz— 7z i7). As the integer increases, the formula:

ah:iﬂ—ﬂ

177A

will tend to become exact, and the periods of ttimitude of component vibrations will

tend to assume the fon%él\/g for infinitely-largei.
[




CHAPTER IX

THE DIRICHLET PROBLEM

1. —Theorem:

If a function U that is finite, continuous, and uniform in all of the epg&gn which it
satisfies the equatiod®U = ¢ takes on prescribed surface values then it will be
determined completely.

In other words, no solutiod of the differential equation considered can have fall o
the stated properties without coinciding with Indeed, consider the functidh= U —
U” which takes zero values on the surface and has itsdseifferential parameter’y
equal to zero in all 5. One has:

jAVds_ZJ(an ds=. [+ ( de ZJV— ds;

[avds=- ZIVG\; j’;d ZJV— ds

—jv ds— IVAZVdC

The last integral is zero becaus®/ = 0 at any point 0§ the penultimate one will then
be zero becausé= 0 at any point o$. Therefore:

j AV dS= 0,

and since\V, which is the sum of squares, has no negative valmesydl necessarily
haveAV = 0 at any point 0§, and therefore:

a_V:0 6V ov _
0Xx

Therefore,V will be constant, and since it has the value zero erstinface, it will need
to keep that value in all & viz.,U =U".

(" Translator: i.e., its Laplacian. The first diffatial parameter amounts tajy |f.
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2. Observations.—

a) One gives the name &frichlet problem(’) to the determination of the function
U that satisfies all of the conditions that were iisgubin the statement of the preceding
theorem. Up to now, it has not been possible to pr@marously that such a function
always exists, and one can assert only that if ons drist then no other one can exist
that differs from the first one. One first needs bserve that this would no longer be
true if one were to drop one of the conditions. Fangxe, if the function were not
required to bdinite then one would quickly see that it would cease to be unique.

b) Among all of the functions that assume the sameeglon the surface, the
functionU, which satisfies the stated conditions, will be the that gives a minimum to

the integranAU dS. Indeed, when one attributes arbitrary variationdJfoone will

have:
15]aU ds= ja—g% s_—jdu

oU dS—jAzuau ds,
and since one will havdJ = 0 on the surface, becauﬁAU dS is a minimum, one must
have:

j AU &U dS=0

for any system of variations, and consequedfyy = 0 at any point ofS. That
observation will be enough to prove the existence efuhnctionU in any space, as long
as one can assume the existence ofrttemumconsidered. Unfortunately, one knows

only how to prove that the integréIAU dS, which is essentially positive, hadaaver
limit, but not that this limit can be necessarily attained.

c) If one gives the values of the first derivative ofuaction with respect to the
normal of a surface on that surface, instead of theegabf the function itself, then the
preceding theorem will still be true, becawalé/ dn will be equal to zero over all of the
surface.

d) The same theorem can be applied more generally thiffaeential equation:

Za,

provided that the quadratic form:

0x a>g

() Some of the more recent works on this celebratedeproére:
PICARD, Traité d’AnalyseParis, Gauthier-Villars, 1891, t. |, pp. 141.
DUHEM, Leconssur I'électricité et le magnétismParis, Gauthier-Villars, 1891, t. |, pp. 159.
One can glean some valuable indications from therlatiurce on the history of the problem and the
interesting and incisive research (which is still ongotegyhich it gave rise.
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Z ouU ouU
o %oy ox,
is essentially positive.

3. Green’s theorem.— One is given two functiond andV that are continuous and
uniform in all ofS and one then considers the integral:

o0V ., 0%U oV _ 6U
U A% -VA®U) dS = U ds= j ds.
J( ) ZJ.( ox? j ZJ()X( ax 6x
It transforms into the surface integral:
ov dV
— |—dS= ds.
ZJ ( ox j ZJ ( dn dnj
Green’s theoreneconsists of precisely the equality:

dv
J'(UAZV VA) dS = ZJ(VE—UEJd.

4. — Now, in order to obtain the solution 81U = 0 that will assume a given system
of values on the surface, one applies Green’s &mdo the functiont) andV =1 /r.
Letr represent the distance from the variable poimhath one calculateg to the fixed,
but otherwise arbitrary, point at which one woukk|to calculateU. In order for
Green’s theorem to be applicable, it is necessamgxtlude the latter point, because the
function V will become infinite at it. One can draw a sphefanfinitesimal radiusR
with its center at the point considered. In thmaming spac&— S, one can write:

J 22 [0 G2 s

r dn r dn
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)

J(U d(l/r)__lduj J¢—d8- }dU _I Ud(llr)ds—j ¢_dS.
s dn r dn 1 dn % n $

Let us see what limits the integrals in the right-hade svill tend to when the sphere
vanishes. Lel denote a convenient mean value of the funcgiaver all ofS, and let
1’ denote the mean valuedi) / dn over all ofsy ; one will have:

I¢ds I = 2R, .[%%((jj—Lr:ds— ds_ = 4mu’'R.

These two integrals will each have a limit of zererth However, if one letg denote the
mean value thdt) assumes on the surfagethen one will have:

— _ 7 = - VY 7ds= — =4 .
J. U ds ,UJ.SO . ds ,UJ. 2 T

By virtue of the properties that one assumes the fumttido possessy will exist and
tend to the particular valué that the function has at the point considered. Thesefn

the limit, (1) will give:
U= J(U d(l/r) 1de s——lj¢ds. B
iyrs dn r dn Vibrg r

That formula contains more than is necessary, sineenoll knowU when one is given
its values on the surface and those of its first daveatith respect to the normal, while
one sees that it is enough to prescribe one or thex et of values in order fat to be
determined completely. One then needs to find out howlitoinate one system of
values or the other.

5. — One can arrive at an analogous result when ones dtarh the more general
equation that was contemplated i& &nd substitutes the form:

>80 -€)(x ~§)

for r? ; viz., a quadratic form in the differences betwée coordinates that fisciprocal
to the form considered.

6. — One calls a finite, continuous, uniform functiwat is characterized among the
infinitude of harmonic functiongi.e., ones that satisfy the equatiéh= 0, orLaplace
equatior) by the condition that it must take the values 11 dn the surface &reen
function and one represents it B Note here that if the function is not requiredoe
finite then one can take I /which satisfies all of the other conditions. Whbe Green
function is known for a given spaé&e the solution to the Dirichlet problem will always



70 Introduction to the Mathematical Theory of Elasticity

be possible in that space. Indeed, if one applies Grésosem to the functionsd and

G then one will have:
jGAzu ds:j( d—G—Eﬂjds
dn r dn

or

_ 1 (_w_u_ dG
r dn dn

1
=— U— |ds+— ds<.
ar j 477J <
If one adds this to (2) then one will get:

U= i U (M_d_ejds+_l (G__lj¢ ds.
iyrs dn dn 4T r

That is the formula that answers the questionwaat posed.
(@) T

l 7(5’710
/

|
!

T

y

|
|
|
|
*/
7. Examples:

a) Inthe case of an infinite space that is bourtoled plane, the Green function will

obviously be obtained by taking the distancéo the pointO;, which is symmetric to the
point O with respect to the plane. One las=1 /r;, and

==+ -mN*+@2-0° 1I=x-9+y-n*+@+d*

Meanwhile:
d(l/r):6(1/r): z—-¢ d(l/rl)za(llrl):_z+i
dn il ré dn i1 4 re

and therefore, one will have:
dr) _dG_ z
dn dn r3

on the surface; i.e., faf = 0. Hence, if one requires a function thatngtdi, continuous,
and uniform in the space considered then one camesx the second differential
parameter in terms of the functignand have it take prescribed value at the pointeef
boundary plane, and one will have:
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z +Uds 1 1 1
4T

u=2=2 ~-2|gds
2’ r? r rj¢

for any point §, v, 2).

b) In particular, a harmonic function that is finimgntinuous, and uniform in that
space will be known from the formula:

_Z U ds
2rd

when its values are given in all of the plane. K observes that:

0 ;Uds o(1/r) z—¢ Uds
— | —=-|U—=-"“ZLds=-|U ds=-z
0z r J ol ~[ r3 ~[ r3
then one can also write:
2770z r

That result will be very useful in what follows.

c) Suppose, more generally, that one is given theatimn A°U = @, with ¢
harmonic. What will the value df be at an arbitrary pointx(y, 2? If thatU is
harmonic then its value will be given by (3). Thstvhy if one sets:

W= _1 U_ds then one will have ¢ = %_l/’
z

2’ r
in which ¢, which is a potential function)(on the surface, is also harmonic. However,

one can always set:

U:—ii U_(jS+U"

2oz r
and the functiotJ “must satisfy the conditions:
NU'= ¢, U’= 0 (on the surface),

which will be verified if one takes the valdezy for U’, becausey is always finite, and
in addition, from a known formula:

Ny =zNy+yh’z+ 2%—42’: 29.

() We shall discuss those functions at the end ofliapter.



72 Introduction to the Mathematical Theory of Elasticity

Hence, by virtue of the theorem that was proved Iy §ne will necessarily havid =
lzy;ie.:
2 7

d) The Green function also has a simple form for theesplaat is contained within a
sphere. The poir® from which one measures the distance that servestioefvalues of
the function on the surface is at a distabdeom the center. If one takes the reciprocal
O: with respect to that sphere and considers an arbitramy [doon the surface. Call the
radius of the sphera, so by construction, one will hav€0 OCO; = a2 It will then
follow that the triangle€MO, CMO; are similar; hence; : r =a:b. Consequently:

because that function, which is obviously finite insithe sphere, is also harmonic,

: : . a 1 :
continuous, and uniform, and it will assume the valabes— on the surface. Having
Lor

said that, the formula that serves to determine thaesabf any other function that
satisfies the same conditions, but takes different gadumethe surface that are prescribed

arbitrarily, will become:
U= iju (_d(l/r)+§ d(llrl)jds

CAmr dR b dR

in the present case, in whi€represents the distance to the center of the ephmresuch
a way that:

r> =R?+Db?— 2DRcosé,

4 2
2 =R+ %— Z%Rcose.
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Now one has:
aZ
d(L/r) __R-bcosd dr) _ R cosf
drR r* drR 2 ’
and on the surface (i.d»,= a):
_a2 S@
d(/r)_ _a-bcosd ad@/r)_ 27 (v*/a)-boosd
dR r* b dR a) re ’
o)
so:
_d@/n), ad@/r)_ a-(t/2)
dR b dR r*
Hence:

U = az—bZJUds

4rma rs

That is the desired formula. It will tend to caohe with the one that is obtained in the
case of the plane whemandb increase to infinity while the difference — bis kept
constantly equal ta One can then deduce various interesting conseggefrom the
formula that was found. For examplebit O thenr will always be equal ta, and one
will get the value:

1

471a?

IUds

for U. Therefore, the value that assumes at the center of the sphere istitemetic
meanof the infinitude of arbitrary values that aregmebed on the surface.

8. — A rapid outline of the subject gfotential functionsis indispensible. One
imagines that a mass dSor p ds has been concentrated at any partit3of a well-
defined space and at each elemdstof a given surface, resp., and that it exerts a
Newtonian action upon a unit mass that is conctadrat the poinM — i.e., one that is
proportional to the masses and inversely propaatitomthe square of the distance. If one
takes the repulsion that is exerted by a unit nass unit distance to be unity then the
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attraction of the particldSto the pointM will be — p dS/ r? and the entire body will
exert an attraction ol whose component along tkeaxis will be:

_(x=&_pdS_ (oIr) .._ 0 [pdS
= [T eds= o [P,

if X, y, z represent the coordinates of the pdvhtand ¢, 7, { represent the integration
variables. Therefore, the first partial derivativeshef functions:
_ rpdS _pds
V= |/—, V=|——,
5= veIs

will represent the components of the attraction tha&xperienced by the poiM and is
produced by the mass that is concentratéflandistributed oves. One gives the names
of thespatial or surface potential functioii9, resp., to those functions. Those functions
are harmonig although the former acts only in the space that csiped by the mass.
Indeed, as long ad is outside that space, one will have:

Y :IAZ%uodS: 0,

sinceA?(1 /r) = 0 at any point o8, however, ifM were inside oS then it would not be
legitimate to say that, because f Will become infinite under the integration sign. In
that case, it will necessary to first prove an impdrfarmula that includes formula (9) in
Chap. | as a limiting case.

M

9. — LetU be a finite, continuous, and uniform function on a wlelined spac&.
Locate a poléM outside ofS, letr denote the radius vector, and consider the integral:

() See BETTI'sTeorica delle forze newtoniarend PICARD’sTraité d’Analysefor discussions of
these and other potential functions.
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du ds
dr r?’

Circumscribe the surfacethat bounds by a cone whose vertex isit and which will
determine two regions, ands; ons. Now draw a cone with its vertex Bt and an
infinitesimal aperturedo that cuts out the elementlsy andds;, resp., from those two
regions. The integral considered can then be wrisen

j—drd J‘daj‘(fj—LrJdr = [(U,~U,)do = Lu da—j%u do.

Since one obviously has:
r’do =ds [kos (o, o), r’do =-ds [kos (u, r1),
one can also give the following form to the intégra

ds ds _ ds_ ¢,,d@/r)
_LU cos@,r)r—z—J‘%U cos | )= ——LU cosfr )I’_Z_ IUTds.

!
Hence:

ds.

Id_Ud_s_IU d(l/r)

If M is inside ofS (and that is the case that is of interest to unsl) @ne represents the
value ofU at the poinM by U, then one will have immediately that:

jj‘jj drdo = jdaj—dr_j(u -U,)do= [ U do-4ny,

du as, fu d(l”)ds 4rUs . (4)
dr r?

Here, one should observe that this formula can bésaleduced from (2) by adopting
formula (9) from Chapter I, which is also appli@bihen the function under the
integration sign becomes infinite like 1./ Therefore, it is legitimate to write:

dU dS_ <~ 10U 0@/r) 4o 19U 10U
Idr r2 ZJ()E o0& Zjag(r agj r 02 a
oy lUdE 10U (o 1dU AU
_ZIr 0& an % r 9&? I an % +I as

If one substitutes this in (4) then one will gex (2
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10. - Now take the potential function:

which is calculated at the poirnt, (y, 2) inside ofS and observe that one will have, in
turn:

ov _ a(l/r)pdS:—ja(l/r)pdS: 0 'OdS Jlap de= defds Jlap "
x 0X 0¢ oér r o r dn roé
Therefore:
az\/zja(ﬂr)df japa(llr) ja(llr)gpderJa_pgd_ZS’
ox dn 0§ 0x ox dn of dr r

and finally, if one applies (4) then one will g&aisson’s formula:

d@/r) do dS_
APV = - ds+ [—£ 2= - 4mp.
I dn P J‘dr r e

It will follow from this that when one is given thifferential equatiot\*U = ¢, one will
directly have a solution by taking to be a potential function in space and suppoiiag
the density is equal tog/ 47z In other words, a solution of the preceding ¢iguas:

1 ¢ (.n,{)dédydf
VXV,2=—-— )
“’Tm\/(x—<‘)2+(y—f7)2+(z—i)2

It will then follow that the integration of the afamentioned equation can always be
reduced to the determination oharmonicfunction that takes prescribed values on the
surface, because if one séts= V + U’ then it will be clear thatl " will be a harmonic
function whose values on the surface are the ammdmntwhich thegiven values ofU
exceed th&nownvalues ofV.




CHAPTER X

SOME PROPERTIES OF ELASTIC DEFORMATIONS

1. — The general deformation of an elastic body can always be decomposed into two

simpler deformations — viz., a deformation that characterizes the absératation and
a deformation that characterizes the absencdilatation at each point of the body — and
such that it will always remain bounded by the same surface.

Let u, v, w be the displacements that define tiieen deformation, and consider a
function ¢ that satisfies the equation:
N p=0

in all of § along with the usual properties, while its derivativehwespect to the normal
takes the values:

do_  Ox, dy, 2

dn dn dn dn

on the surface. Those conditions are not incompasbiee the relation:
d¢ —_ [ a2
j ds= ju—ds_ j—ds_ [eds =- [a%pds

is satisfied. Having said that, one can always set:

0¢

u=—"—-+u, v:%ﬂ/’, W—a¢+V\/

1
0x oy 0z )

and one will see immediately that one has:

a_u ﬂ+M =0 (2)

ox dy 0z
in all of § while:

u’%+\/ﬂ+vv£z=0 3)

dn dn dn

at any point of the surface. The relations (2) and §8)psecisely that the deformation
that is defined by the displacementsv', W produced no dilatations at any point of the
body and that the displacement of any point of the sainfatl take place tangentially to
that surface. It will be obvious then that the othengonents of the deformation, which
are defined by the displacements that admit a functicenpiatg, produce no rotation.
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2. — The decomposition that was indicated in (1) is indepenuletite mechanical
significance ofu, v, w. They can be three arbitrary functions that amgefj continuous,
and uniform. Now, one sets:

v dS W= 1 wdS

_u’dS
4 r 4 r a? r

in such a way that from Poisson’s formula, one haie:
ANU=u, AV=V NW=w.

Meanwhile, if one repeats a transformation that waopadd in 810 of the preceding
chapter then one will have:

ou _ 6(1/r) gs=_1 ii : j—la—”d':;
o0X 477 0¢ 4’ 0 r 4t r o0&

U __1udf, 110U

x4 r dn 4ty r 0

Hence, if one takes (2) and (3) into account then:

u oV aw_

ox dy 0z
It will then follow that:

poy = U000V oW a(au avj a(au GWJ

o2 07 0xdy 0¥z dyldy ox) 029z 9 x
Therefore, if one sets:

_ow _av U W oV _9u

=, ==-=, R=—_—-—= (@)
oy 0z 0z o0x ' ox oy
then one can write:
4= 92 _0R_ 0Q
ox oy 0z
v= R, 09 _0P (5)
ox dy 0z
w=-9Q,0P 3¢
ox 0y 0z
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3. — In other words, if one is given three functiany, w that are endowed with the
usual properties then one can find four other afeR, Q, R such that one can put the
former three given functions into the form (5). Initidd, one knows that once one first
observes that by virtue of (4), one will have:

a_F)+a_Q+£2 0,

one will easily deduce from (5) that:

pig= 2,3V, oW

ox oy 0z
o BBV o U W e 0v_0u
oy 0z’ 0z 0x’ ox oy

In particular, ifu, v, w are the components of a displacement of an arbitr@fgrmation
then the functionsp, P, Q, R will be the ones that provide the values of the cubic
dilatation and twice the components of the rotatibthe particle by way of their second
differential parameter.

4. — Now, by contrast, the decomposition (5) applies tdotdy forces. We would
like to say that there exist four functiors F, G, H such that one can write:

X = 0P oH 6G
X ay 9z’

V= oH 6CD _OF (©)
ox 6y Fra
_ 0G  0F 09
Z=—"+—+—,
ox dy 0z

Therefore, any system of forcex, (Y, Z) can be decomposed into two other ones. The
forces in the first component system admit the pi@k function ®: Betti called them
forces of dilatation without rotation However, the forces of the second system are the
forces of rotation without dilatatiof), which have the components:

0G_H oM _oF  OF_dG
0z dy  ox 0z dy ox

() BETTI justified this terminology in hi$eoria..., pp. 29.
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5. —The problem of elastic equilibrium of an isotropic body is always redutaoihe
case in which the forces act only upon the surface.

By virtue of (6), the indefinite equations:

X+ A—+B
0Xx

0, o9, 0% _,
0z 0y

will become:

0 0 0
&(®+A®)—a—y(H + BTB,)+6—Z(G+ BT,)

0
H+B7,)+—(®+ AOQ) -
9 ( + 3)+ay( + )

01

(F+B7)

i Ol
0z
9

0.

9

X

0 0
&(G+ BTZ)+6_y( F+BT,)+—(®+ AD)

0z

They will be satisfied when one takes the functidns A ©, F + B 73, ... to be equal to
zero; i.e., when one sets:

D +ANP=0, F+BA%P=0, H+BA’R=0.

The theory of potential functions yields the follogy particular solutions:

. 1 ddS

4A° r ]
_ 1 (Fds o 1 (GdS _ 1 (Hds
4mBY r 4B r 4mBY r

One then gets the displacements:

gL 2[ods, 1(0:GdS 0 Hd
4Aox? r  4mB\az! r oyl r )77

which must satisfy the same indefinite equationthasunknown displacementisv, w.
Set:

u=u +u", v=v'+V', w=w +w'.

The question will then reduce to the determinatibthe residual displacements§, v",
w’, which will satisfy the equations:

(A-B 99 gy = 0, ..,
0X
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as one wishes to prove, and additionally assume thesmald u', v —v’, w— w on the
surface when one knows the valuesiof, w at any point of the surface. However, if the
forcesL, M, N are given then the displacement§ v’, w' must satisfy the usual

boundary equations on the surface when one supposebkdl®ttérnal forces ate — L,
M-M’,N —N~.




CHAPTER Xl

THE CANONICAL EQUATION OF SMALL MOTIONS

1. — Recall (Chap. VII, §; Chap. 1V, 85) the equations of motion in the absence of
body forces in the form:

0z 0y

2
PUATNCN Lr A A
ot 0x
From now on, seAA = pa’, B = p b% for brevity, and employ the following operator

symbols:

_62 2 p2 - 2 2 a2
Da——_aA, Db_ﬁ_b A

The equations of motion will become:

P20 (521
ot? ay ox 0z)
w_ 00, (0T, 0T,
ot? 0z dy 0x

If one differentiates these equations with respedt 10 z and sums the results then one
will get: D,© = 0. However, if one differentiates the second eqnawith respect t@

and the third one with respect yoand subtracts then one will find thB 7; = 0, and
analogousiyDy 7, = 0, Dy 73 = 0. Therefore:

The dilatation and components of rotation satisfy a differential equatisrd.

2. — Letfo represent the value of any functibfx, y, z t) for t =t and agree to let
of,/dt represent the value of /ot fort =t, . One will have, in turn:

t
0% f of of ¢ pocf of 0
dt= 2 -Zo dt[ L dt =f —fo— (t —tg) =2 = —f°,
J o ot o J J o’ o- -ty

to

if one sets:
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of
fO=fy+ (t—to)a—to.

Now, if one integrates the equations of motion twigeoger time between the limits
andt and then sets:

¢'= azjdtjG dt, P’= szdthl dt, Q’= szdth2 dt,
tp t t t

to to

then one will get:

U_UD:6¢’+6Q’_6R"
ox 0z o0y
_0g R 0P W
dy O0x 0z
_ZD:a_¢,+a_P,—ﬂ
0z 0y 0x

Having said that, imagine that one applies therdmahat was proved in Chap. X (88
ou, 0v, 0w,
ot ' ot ot
four functionsg”, P”, Q", R" that arelinear with respect to timeand are such that one
can write:

3) to the triples of functionsp, Vo, Wo and . It is clear that one will get

UD: a¢" + aQ" _aRI |
ox 0z 0y

VD:6¢"+6R"_6P",
dy O0x 0z

ZD: a¢" +6P" _an |
0z 0y O0Xx

in which:
A2¢" = e’ AZP" = IZZ_D, AZQ" = fz'zD, AZR" = IZ;D.

Now, if one sets:
¢:¢I+¢", P:PI+P"’ Q:QI+Q", R:RI+R"

then (1) will become:

() This procedure was pointed out by SOMIGLIANA (Rend.’dett. dei Lincei, in various places.)
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,=99,9Q_0R
ox 0z 0y

V:%+%_6_P’ (2)
dy 0x 0z

,_ 00 P _0Q
0z 0y O0X

and it is easy to show that the functigh<d?, Q, R satisfy all of the differential equations
of the formD = 0. Indeed, if one takes into account the obseratidrthe preceding

paragraphs then one will have:

Dadp = 7Y -’ N p=a’O- a“jdtjAZG dt
ot? i

t t
=a’0 + azj dtjDaG dt=a’ @,
ot

and analogously:

Db P/: bZ/];D, Db Q/: bZ/]'ZD, Db R/: bZ/];D.
Hence:
2 41
Da ¢" - aag — a2 AZ Ui - — a2 AZ Ui - _aZG*,
and
Db P//:_bZZD, Db Q//:_bZIZ'ZD, Db Rr :_bZIZ;D.
Finally:

Da¢:0, DbPZO, DbQZO, DbRZO. (3)

Hence, one can always give the form (2) to the vibnatof an isotropic elastic body as
long as one supposes that the furlcti¢n§, Q, R are subject to the conditions (3). That
is an importanfheorem of Clebsch).

3. — That theorem shows that if one ignores the boefthen any vibratory motion
of an elastic bodwill decompose into two particular motigrane of which characterizes
the variation of the volume of the particle and degeamgon only the consta&t and the
other of which (thevorticial motion), by contrast, characterizes the rotatiorhefgarticle
and depends upon only the constBntThe first one has no rotation, and the vibrations
will admit a potential functiorp whose second differential parameters will provide the

() See P. DUHEM'Cours de physique mathématigues!, pp. 267.
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values of the unit cubic dilatation at any time and anytpoiFor the second motion,
which has no dilatation, the vibrations have the form:

Q OR R AP 0P 0Q

0z dy’ ox 0z’ dy ox’

and A?P, A’Q, AR are precisely two times the components of rotati¢iar the first
motion, the vibrations satisfy the differential eqoatD, = 0, whereas they will satisfy

Dy = 0 for the second one. Therefore:

The integration of the equations of elastic motion isotropic bodies will always
reduce to the integration of a single equatrr 0,

which one callshe canonical equation of small motions.

4. — Therefore, suppose that one must integriite (

oV

e 2NV = 0. (4)

Draw a sphere of radius= at with the point X, y, 2) for its center, and consider the
integral:

= 2[F@En.Q)cs, (5)

which is extended over the surface of that sphere. weld like to prove that this
expression folV is an integral of equation (4). We first calculAf&/. Varying onlyx
signifies that one is rigidly-displacing the spheredigyalong thex-axis. F will then vary

by a—Fdx, and consequently will vary by EJG—F dxds. Therefore:
o0X rJoé

ov _1.0F

—=—|—=ds.

ox r<of
Analogously:

62V_£ 0°F

ox* rJoé?
Hence:

1

() See H. POINCARE'Théorie mathématique de la lumigpp. 88.
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r = at). Let do denote the aperture of the

2 1 oy

infinitesimal cone with its vertex at the centersphere from which the elemeas gets
projected, so one hak= rJF do; hence:

2
Q: 2i Fdo+ ra—szdU: Ei( ja—Fdaj
or or or ror or

Meanwhile, it is known from Green'’s theorem that:
jAZFds:—j ds=r j—da

in which the first integration extends over alltbé space that is contained by the sphere

s. Therefore:
oV 10

==— | A’F [dIS.
o ror ~[

Now, it is clear that when one varies onJ\the center of the sphere will not displace, but
one will have only a dilatation of the sphere alibetcenter, and its radius will become

+ dr. The variation thayf A’F dS experiences will be represented by that sameriateg

when it is extended over the space that is fourddEn the spherical surfaces of radii
andr + dr. One will then have:

HAZF dsdr :erAZF ds.
It will then follow that:
o _1

or?
Equation (4) is therefore satisfied.

jAZF [dls.

5. — The fact that formula (5) does not provide tkaeagal integral of (4) will result
immediately from the fact that it includesly onearbitrary function, rather than two.
However, one will find another particular integraimediately by observing that W
satisfies (4) then one can say the same thing abholdr. The general integral will then

be:
V:?ldeS+airGJGdsj'

The arbitrary function& andG can be determined by means of the initial condgjo.e.,
by prescribing the valueg andoV, / ot thatV andoV / ot assume fot = 0. Let:
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Vo=® (XY, 2), %:w %y, 2.

In order to see which initial conditions correspondhe first particular that was found,
observe that one will have:

oV
or?

V=r[Fdo, ‘Z_\r’szdm%jAszs,

=r[p%F do

for that integral. Then observe that tar O (and consequently, for= 0), the integral:
Flj.AZF @S :,uJ.dTS: 2 r?

will have zero for its limit, whnej F do will tend toF (x, Y, 2) j do, so one will have:

v=0 Y- anr oV _

0.
or or?

However, it follows directly that one will hawé = 47 G, oV / dr = O for the other
particular integral (viz.gV / or). Therefore, for the general integral:

Vo=41G (X, Y, 2), ?9_\:: 4rra F (X, Y, 2),

and one will then need to take=Y / 4rra, G =® / 4 The general integral, which can
be given the form:
1 1 1.0G
V==|Fds+=| Gdst—|— d,
r~[ rZJ‘ r I a
will finally become:

_Eararr

That result is due to Poisso.

() DUHEM, loc. cit, t. I, pp. 167. KIRCHHOFF did some important research iheodifferential
equation (4) in the Sitzungsberichte of the Berlin &tfie Society (1882). See also the paper by G. A.
MAGGI “Sulle propagazione libera e perturbata della dodgnose in una mezzo isotropo,” Ann. di Mat.
(2) 16, (1888-89), 21-48 and one by prof. BELTRAMI “Sul principio di Huygé Rend. dell’lst.
Lombardo (222 (1889), 428-438.



88 Introduction to the Mathematical Theory of Elasticity

6. — Suppose that represents gibration, and consequently thaV / ot represents a
velocity. If only the points that are contained in an infinites particle that surrounds
the point &, Yo, z) vibrate at the origin of time then one would like day that the
functions® andW¥ have the value 0 at any point in space, except for thspahose
coordinates differ fromxo, Yo, Zo only infinitely-little. Under that hypothesis, fornau(6)
will generally yield a zero value fov, except at the points,(y, 2 for which the
differences¢ — %, 7— W, {— % are simultaneously infinitesimal. Since:

X=&°+ -’ +@z-9’
is the square af=at, those points will belong to the sphere:
(X—0)°+(—W’+@z-28°=at

or be infinitely close to it. In other words, if a pebation that satisfies the canonical
equation of small motions emanates from a point theimeaend of the time intervabne
will find that it has been communicated to only thosenf®that are at a distance atf
from the starting point, and therefore one can sawetls thepropagation velocityf the
perturbation considered. If one now refers to whas gaid in 8 then one will see that:

Any elastic perturbation that is produced at a point in an isotropic medilingphit
into two particular perturbations, one of which has no rotation and propagatisawi

velocity of a= ,/ A/ p, while the other one, which is purely vorticial, will propagate with
a velocity of b= \/ B/ p.




CHAPTER XIlI

CALCULATING THE DILATATION AND ROTATION

1. — The most noteworthy application of Betti's theorgdhdp. V) consists of the
determination of the coefficient of cubic dilatation and twice the cormp®é rotation
of the particleat any point of a homogeneous, isotropic, elastic meditake:

= |k

: v'=0, w =0, (2)

in which r represents the distance from the poiét 4, {), which experiences the
displacement/, v, W, to a fixed pointO with coordinates, y, z that is taken arbitrarily
inside of the body. Since the functiohbecomes infinite at that point, Betti's theorem
will not be applicable in the spa& However, if one draws an arbitrarily-small sphere
with its center aD and then excludes the spa&ethat is inside that sphere frogthen
Betti's theorem will be applicable in the remaining sp8ees, because’ will be finite,
continuous, and uniform there. Since the si&e& is bounded by the surfaceands,
one will have:

j (XU +YV+ ZW) dS- j( Lur Mw Ny
s°s 5

(2)
= [ (Xu+Yw+ Zy ds [ (L My Nw
’s s

S

in which X’ Y, Z, L, M, N” are calculated by means of the equilibrium equations. To
that end, first note that under the hypothesis (1), otidawe:

_9(/r)
0§

_aqir) oo -9l

) , .
¢ on

’ ,111 — 0’ ,1-21

and it will then result from the indefinite equat®that when one observes that one will
haveA? (1 /r) = 0 at any point, except f@, one will have:

x':—<A—aa§rﬁ”, Y=-(A-B

9%(L/r) )

PN ¢V]))
ocon Z'=-(A-B ——~

0807

while the boundary equations will give:
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L= (A=) QLN GE oW A dir)

0¢ dn 0 dn dn
M= (A 252U 07 _ o) dE

9 dn  on dn
N,:_(A_ZB)a(l/r)%—Ba(llr)ﬁ

o dn 0 dn

2. — Having said thain the space S wupon integrating by parts, one will have:

, - (n_ 0°(/r), 9*@ir),  9°(LK)
j(Xu+Y’v+ ZWy ds=-(A aj(u 27 +Vaga/7 afazjds

~(a-8 | i[ua(l/r)J+i[va(1/r)J+i[ o (L )J ds+( A Bjea(llr )
of\ o0& ) onl o ) o¢\  9& 0

hence, if one transforms the first integral intsugface integral then:

'[(X’u+ Yv+ Z W dS

d¢, a7, d7)o@/m) oalr)
=(A- B)j( oV an \NEJ 07 ds+( A- Bje 5 ds. (3)

Similarly, on the surface

[(Lu+Mv+ Nw ds=- (A~ zs)j( d‘; ‘i’:} W%Ja(al:rr)d‘

(4)

_BIud(llr)dS_ q[ Q) aar),  aat )Jg d
dn o0& on a¢

If one observes that:

d@/ry__1 o(LIry__10ordé__1ldpor _dyo(/r)
dn r2’ on r’dndn  r?dnaé dr 9¢&

then the previous formula will reduce to:

a(L/ 1)
¢

ds+ % (5)

j(Lu+Mv+NV\)d<— (A — aj(u—+v%+v\£j
dn dn dn
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91
on the surface; .

If one sums (3) with (4) and (5) then one will get:

j (Xu+Yv+ 2 dS j( L My NWw
s-$ &

-(A- aj[ 9, 9, wij"’(l”)d, (A- aj[ 9, 9, w%j—"’(l”)d
dn dn dn) 0¢ dn dn dn) 0¢

- (A- ZB)j(u_ﬂ/% W%ja(l/r)m (A- B)j(u—+v% W%ja(l/r)
dn dn dn) 0¢ dn

dn dn) o0&
: o@r/r) Ia(lll’) 6(1/r)d5 o@r/r)
o[ e L - 5075

dg

- Budlin) oo, guds.
dn r

When one makes the reductions, one will see tleatatation (2) will become

X ds Lds
| =—+]
-9

s 8

_Bj(u—+ —+vv£ja(1/r)d+(A B j o (1”)ds
dn dn dn) o0& 0¢

_Bj[ua(l/r)wa(l/r) 6(1/r)jd5ds f
0¢ on o )dn

d
= 2% : (6)
r

3. — Now make the spa® go to a point.

Letls be the aperture of the infinitesimal
cone with its vertex aD from which one projects the contour of a surfaadiple ds
R — 2

Obviously,ds = r* dg;, and therefore if one letg denote a convenient value that the
finite functionu assumes on the surfagghen one will have

J‘uroi% = judaz,ujda: 4 .

When the sphere tends to disappeawill tend to the value that takes at the cent@,
because one also supposes th& a continuous and uniform function. Therefdoe
vanishings, :

=4y,
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in which u represents simply the value vfat the pointX, y, zZ). One further observes
that sincedS§ = r? dr dg; if R is the radius 0% then one will have:

deS‘):jjrdrdU:ZNRz, J‘O:—‘?):Hdrda:4ﬂR .[dT%:jl’dO':mTR,

and therefore those integrals will tend to zero alwityg R, and any other integral will
tend to zero that is obtained by multiplying the quaniitger the integral by functions
that remairfinite in all of the integration domain, which axeL, ©, ..., by hypothesis.

Consequently:

XdSJ:O, ||m.[£:o,
r r

j@a(l”)dsb j@ﬁd—%_o

Therefore, formula (6) will finally become:

XdS L ds
+

4mBu= j ;

+Bj[u6(1/r)+va(1/r) LDk )jdch BI d(l/r) ds

¢ on o )dn
_ d&, dp . dZ)o(/r) a(L/r)
Bj(udn+vdn+vaJ 07 de— (A — B)j@ Y ds, (7)

and one can deduce two more analogous formulagddg permutation.

4. — It is useful to give a more concise form to thoslations. Set:

®=(A- Qj@dS+Bj( _n”dir:* W%J ‘:‘ (8)

Since the functiom is the only one under the integral signs that @iosi, y, z, one can
write:

a/r) W34ho@rr)
= (A= B)J@ ds+ Bj(u_n”% dnj 0 X

a(L/r) dé, dn, 40w
- (A- B)j@ ds- q(u%+val+ Wgnj =
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If one substitutes that result in (7) and sets:

XdR+IL_ds+BJ[ua(1/ LY r)+Wa(1/r)jg ds+ Ej d@/ ds
r 0¢ on o )d dn
YdR, ( Mds oo 0@/ ), 0@y, 0@/0)d d/ r
@ V=] BJ( 9F an Y jdnd § v o
W= J»ZdR Nds, Bj( Loary, eary, o r)jg de @wd(l”)ds
¢ on 0 )dn dn

for brevity, then one will finally arrive at the foutas:

arBu=U+%% .  amBv=v+2® 4B w= W+%£ (10)
Z

0x oy

which one would like to prove.

5. Calculating ©, 71, T2, 73 . — One deduces immediately from (10) by means of
suitable differentiations that:

4,7571_6_\/\/_6_\/ arr B,TZ_G_U_M’ arr ijs_é;_v_a_u_ (11)

oy 0z 0z 0Xx X 0y

However, if one differentiates (10) with respecktq, z respectively, and then adds the
results together then one will get:

amBo =9 sV W, p2g
ox dy 0z

However, (8) shows thab is the sum of two potential functions, one of whichais
function on space and the other of which is a functanthe surface, and from the
properties of those functiong,(one can assert that:

arn@ =99 4V OV (12)
ox dy 0z

Formulas (11) and (12), which are due to Betjj (il yield the values 06, T3, 5, Ts at
any point of space when one knows the external forcdstlan displacements on the

() See BETTITeoria delle forze newtonianpp. 32.
(") Teoria della elasticita§§ 8, 9. See also CERRUTI, Memorie dell’Accademia dei LineeiXIll,

pp. 83.
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surface. It will therefore contain too many elemersisice it must be possible to
determine® and theZ when one is given only the pressures or only the displants on

the surface, in addition to the body force. Howeasra result, one will see how one can
proceed to eliminate either the displacements on thacgudr the pressures.

6. Calculating u, v, w. — Formula (10) cannot serve, as they are, to cadculat w,
because the right-hand sides contain the fundBoim ®, and the calculation of that
function requires that one must knawv, w in all of S and according to (9), only the
functionsU, V, W depend exclusively upon the external forces and surfapiadements.
Nevertheless, one can produce them by substituting thesstpn for® that is provided
by (12) in (8). However, one will obtain quintuple and api integrals in that way,
which one would prefer to avoid. Rather, one seeks to &sgpre, w in a different way
that starts fron®, which contain®. To that end, set:

@’:Azr:_, ’]1':’]'2':’];'20’

so the indefinite equations will give:

x':—zsa(l”), Y':—ZBa(l/r), z':—zsa(l”),
oé on ¢
and the boundary equations will give:
=-2(A- ZB)1 de ZBiﬂ :
r dn dnoé
_o(A-2B)r Y _ g d Or
r dn dnan
=-2(A- ZB)le ZBiﬂ.
dnad

Therefore, if one adopts the usual transformatams recalls that formula (9) of Chap. |
is also valid when the function under the integmratbecomes infinite like 11" at that
point, as long as < 2, then:

j(xU+Y'v+ Z\y d&=-2B j(

o@/r), o@r), Ak )J ds
& omg ol )
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C
:—ZBJ ig+iy+il\, dS+2E>:{ ﬂ" ﬂ/ ﬂv ds
ofr onr 9olr o0& on 9dd)r
C
= ZBJ(UE+V%+ dfjis 25{ © ds
n dn dn) r r
Similarly:
[(Lu+Myv+ N ds
=—-2A-2B) j(u£+v%+\/\/_d‘(jis—2sj uiﬂ d 6r+Wiar
dn dn) r dnoé dn6/7 dnod

jdc

Therefore, the right-hand side of formula (1) aff freceding chapter will become:

d or

B j(u——

dnoé

u—-+ Vﬂ*‘ Wij dc -2
dn dn r

d or
+
dnan

2Aj@d5+ 4Bj(

Consequently:

xﬂ+Ya—r+ Zi ds
o6 odn  0o¢

La—r M ijds

+i'|’(|_al’
2A\ "o Tan  a¢

- ZEJ(UE+V
A dn

+_j[

When one finally substitutes that result into (8)e will get:

%Hﬁjﬂs
dn dn/ r

d ar
dnaf

dar
+

d or
w—— | ds.
dnan

dnod

:A—B Xﬁ 6r+ 4<
2A o0& 6/7
L] I RVE A R
2A o0& dn 0

—(A ZB)j(u—+ v—L+ w—j—‘
dn

d or

Vv_
dnad

j ds.

95
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= (A B[ -2l e SO0 2 9 g (13)
dnoé dnag - dnag

One now sees that when one expredde¥, W, and ® by means of (9) and (13),
formulas (10) will represent the displacements at angtpaf the body by means of
external forces and the values that those displatsni@ke on the surface. The effective
substitution will then lead to thBomigliana formulag ), which solve the same problem
for u, v, w by means of double and triple integrations that&éti formulassolve for®,

() Annali di Matematica, 1889, pp. 41.



CHAPTER Xl

INTEGRATING THE EQUATIONS OF EQUILIBRIUM
FOR ISOTROPIC ELASTIC BODIES

1. — When thedisplacements are giveon the surface, the problem of elastic
equilibrium consists of the search for three findentinuous, and uniform functions v,
w that satisfy the equations:

X +(A- B)a—@+ BA®u=0,
ox

Y +(A- B)%—@+ B v=0 (1)
y

Z+(A- B)%—@+ BA*w=0
4

in all of a given space and assume prescribed values suarfexe. From a formula by
Betti that was proved before, one has:

CATAG = I(X 6(1/r)+Y6(1/r)+ Za(1/r )J ds
& on al

N J»(La(llr)+M o@lr), o@r )jds
o¢ on ¢

+ZBI[UE—6(1”)+vi—a(llr)+ Wi_@(l/r)j ds. (2)
dn 0d¢ dn an dn da¢

The second integral is the only one that is unknowthenpresent problem. In order to
calculate it, one supposes that one comes to know,npyeapedient, three finite,
continuous, and uniform functions, v/, w that will satisfy (1) when one sets the body
forces equal to the zero, and that they are such teatvdl have:

g2 o) 8@ L aWr)
oé on 0l

on the surface. When Betti's theorem is appliethése and the unknown displacements,
it will give:

[(xu+yv+ zw dsj[ f%gh n?(;,’]r)+ r?glzlr )j o
= (3)
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j(L’u+ Mv+ N ds,

in whichL, M, N are calculated by means of the known boundary equations:

- (A-2p)0 3 g0 g 7 I T;i)
dn dn dn

- —(A-2) 0 I gV _ E{ ——T CEnj 4)
dn dn

——(A-2B)@ 9 g™ _ & d7j
dn dn dn dn

Now © can be considered to be known by means of forif)lavhen one replaces the
second integral in it with the value that is praddoy (3). If one substitutes the value of
© in (1) then that will yieldA?u, A%, A%w, and the functions, v, w (whose values are

known on the surface) can then be determined bgllmeg the considerations of Chap.
IX.

2. — When theexternal forces were giveon the surface, we previously needed to

know, not one, but four systems of auxiliary displments that were produced by only
the surface forces, and which had the followingreggions:

L=-2892 M=-2892 N‘=-2892
0x oy 0z

L= wo=g[%9 98]\, =g[%8,00)
0x dy 0z 0z 0y’

s 2) wpl g%
ox 0z oy 0z O0X

L3:B %—% M3 B a¢3+a¢ N Ba¢
ox ody) dy 0Ox 0z
respectively.

In these equations, one has get d(lér) and

oWr)dz_o@indy , _o@rydx_d@/rydz , _o@ir)dy d(L/r)dx

= dn oz dr 9z dn  ox dr x dn  ay dn




99 Chapter Xlll — Integrating the equations of equilibrium $atriopic elastic bodies

for brevity. If one applies Betti's theorem to thispdacementsr, v, w and to the
unknown displacements then one will get:

j(Xu’+Y\’/+ ZW) dsj( Lur Mw Ny

= —ZBI(U%+ v%+ vv%j d
o adn  o¢
(2) will then become:

4TTA© = I{X(u’—a(;g)j+Y(\7—ag,/7r )j+ z( W——aglzlr )ﬂ de
+j{ ( : a(l”)j M[\/—a(al,/;)j+ N(V\?——aglzlr )ﬂ de.

Now, © can be regarded as known. Analogously, one has:

[(Xu+Yy+ zw) dS( Lk M N ¢
_Bj( 6¢1+V ¢1+V" ¢1j dst q’( \A?z— j d,
and since, from some other known formulas, one has:

on  9¢ oy
@ ANBT = I( S 0@Ur) _ 0(nr )j ds+j[ Par)_oark )J
an a7 on ¢

NNy

+ j(w%—v%Jd% q( ua—¢l+ v%+ \A?ﬁj d,
on 9{
and also:

Therefore7;, and analogously; and7Z;, will also be known.

3. — Having said that, in order to determineone will have the conditions:
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X+A-B 9, Ba%u=0
1)
in all of S, and on the surface, one will have:

L+(A— 23)93‘+2B@+B(T dy_ z—dj:o,
dn dn dn d

which will tell one the value oA?u at any point of space and thatdif / dn on the
surface, in such a way thatwill prove to be well-defined, as long as it stis the
condition:

J.%ds— jAzu ds.
dn
In order to verify that equality, observe that bmeindary equations give:

J.Lds+28—d< j{(A—zs)g—?+ [‘;7,7’ ‘Zﬂds

By virtue of the known identity:

poy= 99 9%, 0T,
ox 0dy 0z
one can also write:

J.Lds+2 Bj— ds= J’{(A—ZB)(’;—?— BAZU} ds

:—jx ds-2 qAZ uds.
Therefore:
j%ds- XY dS—z—g(j X ds- | Ld)s: -[p?uds.

This method of integration is due to Befi: (The details of its application are largely
presented by prof. Cerruti in his “Ricerche intoratfequilibrio dei corpi elastici
isotropic” ().

4. — It is easy to imagine other integration proceduhat are always based upon a
preliminary knowledge of displacements that alisfat(1) in the absence of body forces,

() Teoria della elasticita.
(") Accademia dei Lince(1882), pp. 83, 87, 105. See also two communications bySEINESQ to
the Paris Academy in Comptes-rendus 9 and 16 April 1888.
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and are characterized by the values that they assaortte surface. For example, if one
starts from the formulas:

4ITBUZU+a£, 4nBv:V+a£, 471B w= W+a£
0x oy 0z

in which:

U deS LdS Bj (ﬂl/

[ Lary, eay, o r)jg d
d

on o¢
V= J»YdS Mds J» @l/ 6(1/D 6(1/ |)+ 6(1/r);d7d,
on 0 )dn

W IZdS Nds, BIW @) 4o %’[ Lary, eay,  aal r)ji d
on 0 )dn

D =(A- 3j@dS+Bj(u—+vﬂ+ Wij d

dn dn dn) r’

then one will be immediately presented with two inte’gramethods: If you can obtain a

or
system of displacements that assume the v&ﬁ&e —, — on the surface then the

o0& 6/7 0¢
function ® will be known thanks to Betti's theorem, because sees elsewhere that it
can also be given the form:

_A-B [xar L arjdc

2A o0& on ¢
S ATBILT M N s
2A o0& on (014

_Bia-g[udEOr, 1 0r, & or)ds
A dnoé dnon dnod ) r

Now U, V, W must satisfy the equations:
AU = - 471X, A = - ATy, AW =-477Z
in all of Sand assume the values:

477Bu —%ﬁ , 4ITBV—a£ , 4ITBW—a£

X oy 0z
on the surface.



102 Introduction to the Mathematical Theory of Elasticity

5. — However, one can begin the determinatiordpo¥, W when one succeeds in
determining three systems of displacements that takealnes:

u zi, v’ =0, w =0,
r
u" =0, A :E, w' =0,
r
u"l = 0’ \/II = 0’ WII = %

on the surface and verify (1) fof =Y = Z = 0 in all of space. Betti's theorem will
immediately give:

Las = [(L'u+ M+ N ds-[( Xt Y ZWv d,
r

Mds = [(L'u+Mv+ N'W) ds-[( X+ Yir Z d
r

N ds

= [(L"u+M"v+ N"w) ds-[( XU+ Yo+ ZW d
r

One can then regard the functidhsV, W, and als®, as known, since one has:

ampne=9Y OV  OW
ox dy 0z

The function® is known then. It can also be determined by olisgrthat it satisfies the
equation:
N =-471(A-B O,

while its first derivative with respect to the n@hassumes the value:
(4rBu-U) —+ (4rBv— V) + (4mBw— \N) —

on the surface. However, the method that was testin 81 is incontestably the
simplest of them all.




CHAPTER XIV

APPLICATIONS TO ISOTROPIC ELASTIC FLOORS

1. - In order to clarify the preceding integration process gireater extent in the case
where the displacements are given on the surfaceshak apply it to a homogeneous,
isotropic, elastidloor; i.e., to an indefinite solid that is bounded by a plafiée first
guestion that presents itselftise determination of the auxiliary displacemeritsvg w.
They must satisfy the equations:

(A- B)aa£+ BA%U =0,

X
(A- B)%—?+ BA%vV =0, (1)
(A- B)aa£+ BA*wW =0.

z

If one letsry represent the distance from the symmetric pointh(wéspect to the
bounding plane) from which one starts to the point th&und at the distancethen one
will have:

P=x-8°+y-nN’+z-9> 2=x=8°+y+n’+ @2+
and therefore one will have:

a(1/r) _ a(/r) a(L/r) _ a(/r) a(1/r) _ a(/r)
o0& Y on on ¢ ¢

on the surface — i.e., faf= 0. It will then follow that if the functiong’, v, W must be
harmonic, rather than satisfying (1), then they el equal to:

AL/, AL/, AL/,
Y

on o{

because they are harmonic, finite, continuous,uanidrm in all of the space considered.
Having said that, take one of equations (1) undasicleration — for example, the first
one. Since the cubic dilatation in the absendaodiy forces is a harmonic function, from
the observations that were made in Chap. IX, oneset

99

O =—,
¢

in which & is also harmonic. The equation considered witbioee:
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AZU' —

_A-B 39 _ 03 _A—Byj
B 060 o\ B 9¢

at the point §, 77, {), and therefore, from the same observations, ordaik:

ol/r) A-B 09

) 0¢ 2B Zaf'
Analogously:
, 6(1/r1)_A—BZ@’ W:a(llrl)_A—BZ@.
on 2B dn ¢ 2B " 0¢

In order to determiné’, observe that when one differentiates the lagtethelations with
respect taf, 77, ¢, one can deduce that:

o = a(1/r) A-BdJd _[_26(1/r1)_A—Bz9j.
0{? 2B 97 ¢ 14 2B

One can then set:
o(l/r) A-B

d=-2 4
od 2B
and get:
__ 4B 0d(l/r)
" A+B ¢

since that function is harmonic. Hence:

_ 2
U = o@/r), ,A-B9 (1/r1)’
0é A+B 9&dn
_ 2
y=oam) A-Bo (1/r1)’
on A+B dnal
W= a@/r,) +oA-B 62(1/r1)_
al A+B 072

(2)

2.— The second question to resolve isdbgermination of the cubic dilatatiorfirst,
calculateL’, M’, N by means of formulas (4) of the preceding chaptéone observes

d¢ _ d—/7 =0 andOIZ
dn dn dn

L=—g[ U W) o gL s —ZB%—(A 2B) O ;
a7 aF YT il4

that — = 1 then those equations will assume the form:
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so when one substitutes that in (2) and takes the valuélse surface (viz4 = 0), that
will give:

— 2 _ 2
L’=—ZBA Bo (1/rl):28A Bo2(1/ r)’
A+B 9&d¢ A+ B 0&a¢
— 2 _ 2
M’=—ZBA Bo (1/rl):28A Bo2(1/ r)’
A+B 0nod A+ B adnad
— 2 _ 2
N'=—ZBA Bo (1/rl):28A Bo*(1/ r)_
A+B 077 A+ B 072

One will then have:
j(L'u+ Mv+ N'v) ds

_ 2 2 2
_ oA BJ~ LA 9%, o0 (1£r) d
A+BI " afa¢ T anac 0f

Analogously, the last integral in formula (2) oétpreceding chapter will reduce to:

2Bj[uaz(l/r) .\ v02(1/r ), Waz(lir )j ds
080  anal I

and therefore, when one substitutes the resuin(8)at same chapter, that formula will

become:
ATTA® = J{X(u’—Mjﬂ([\;_M}L Z( w9 @r )H 4
¢ on 07

_ 4AB f{” 62(1/r)+V62(1/r)+Waz(llr )j ds

A+BI\~ 0fa¢  anac  al?

The cubic dilatation is known then.

3. — In order to continue with simple formulas, waage the body forces. The last
formula will become:

o-__B I(uaz(l/r)+vaz(1/r)+Waz(lir)jds_
A+B’\  9fac ana¢ ¢

Set:
_ruds _rvds _ rwds
P=lmm =T RE[E
and
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¢ a_F)+a_Q+£2

Those integrals, which are all known, all satisfy tteplace equation, since they are
surface potential functions. Meanwhile, one has:

- [u o) juaZ(l/r)OIS
6x6y X0z 0fac

and therefore:

2
7O = — B 0-P +6Q aR
A+ Bl oxdy ayaz 02
ie.:
e =- B %
A+Boz

4. — We shall now pass on to the third and final part ofpttedlem:Determine the
displacementsThey must satisfy the equations:

_ 2

Ay LA Ba¢’
mTA+Boydz
A= LA B 0’p
nA+Baxaz
ry=1AZBOS
mTA+BI7Z

If one is to havel = 0,v = 0,w = 0 on the surface then the values of those functioall
of the space considered will be:

1 _¢ 1 A- Bza¢ 1 A- Bza¢
277A+B 0Xx 27 A+B oy 27 A+B 9z

However, ifu, v, w must satisfy the Laplace equation and assumenressigalues on the
surface then their values in all space will be:

_1oP 100 1R
2oz’ 2/ 0z’ 210z
Hence, one finally has:
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1P, 1A-B 0
2mdz 2m A+ B 9x
109, 1AB0p

2mdz 2T A+B 0y
1R, 1AB
2mroz 2mrA+B 0z

3)

5. — Prof. Cerruti has treated the preceding problem “inraxlgive a rather simple
illustration of the general method” that Betti propos®&dhen one does not have that goal
in mind, but one would only like to arrive at the solutiortlie problem of elastic floors,
it is quite easy to reach the general formulas thatu@eobtained by a more rapid and
direct process that does not abandon “solving the proliesnah a way that it will shed
some light upon the treatment of analogous problems imghbodies of more
complicated forms” . In fact, it is enough to temporarily regard the cutiiatation®
as known, then calculate the displacemenis/,(w), and deduce the expression @r
That function will then be found to be singled out bglkation that serves to determine it.
Meanwhile, all of the difficulties in the problem résiin the determination @, but they
are no more serious than the ones that must be overgorarder to determine the
auxiliary displacements by Betti's method. The difies disappeared from the
particular problem that Cerruti treated precisely becausdunction® figured linearly
in the relations that one had to determine.

6. — The difficulties in integration also disappear fromeay favorable situation that
continually presents itself in the problem considered; that any harmonic function can
be derived from another harmonic function by an arbitranpber of successive partial
differentiations with respect ta when one supposes that thexis is taken to be
perpendicular to the bounding plane. Indeed, it was shiov@hap. IX that ifA’¢ = 0
then one will have:

L% i g Lpods
¢—E, with ¢1— 2]7'.[ . )

Meanwhile, observe that:

for =0 one has iIog (z+7) :E,
0z r
and consequently:

¢1:% with ¢2=—%T.|.¢Iog(z+r)ds.

Analogously, one will get:

() CERRUTI, loc. cit, pp. 81. The problem of elastic floors has been weatace 1878 by
BOUSSINESQ. See CLEBSCHThéorie pp. 375.
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> = aa_ with  @s=— %T.[¢[zlog(z+ -1l ds,

Recall, once more, that in order to satisfy Mg = ¢, wheng is harmonic, one needs to
take:

—+-79 (4)

2moz
and prescribe the valuesdfon the surface — i.e., far= 0. Now suppose that the values
of 0U / 0z are assigned instead. Ufis harmonic then since the derivative of the integral

—Zij.v—dswith respect tais equal tov, in order to geU, it will be enough to replacée
T

with the values that are prescribed df / 0z. In any case, one can set:

U:—i a_Ud_S + U’

27T 0Z r

and the functior ’ will satisfy A2U” = ¢, while the values odU’/ dz will vanish on the
surface. It will then follow that if one sets= (z ¢ — ¢) theny will be harmonic, and
one must have:

0 : oy
—(z¢1—¢) =0, i.e., =X,
62( =9 Tz
Thereforey = ¢, and consequently:
1 oUdsl
Us-——[—==Z(z¢1— ). 5
27T 0z r 2( h=¢2) ®)

7.— Having said that, suppose that the problem has alresmyrbduced (as it always
can be) to the case in which the external force adisupon the surface, in such a way
that forz=> 0, one must have:

(A- B)6_®+ BA*u=0,
0x

(A- B)a_@+ BA%v=0,
oy

(A- B)a—@+ BA*w=0,
0z

and consequently:
_ 00, _9%°0, _

A% =0, C) 2 =
0z 0z

If one gives the form:
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— 2 _ 2 _ 2
puo_ A-BO®, o A-BO®, o A-BY'O,
B 0xdz B dydz B 97

to the preceding equations then one will see immedidtaly by virtue of (4), one will
have:

1 0P  A-B_0d0,
=- +

" 2z 2B ax’
_14Q, A-B 00,
270z 2B dy

1 R A-B_00,
W=————+——7

27T 0Z 2B 0z

When one differentiates these formulas with respesgt y, z resp., and sums, one will
deduce that:

__10p A-B_00,

=t -——7

2iroz 2B 0y

hence:
__ B 099 ___Bo
" (A+B)dz’ YT o mA+B)

If one substitutes these results in the precedingdilas then one will arrive at formulas
(3), which Cerruti obtained in the case where tbpldcements were given on the surface

().

8. — What if one is given the surface forces ¥, N)? One will then need to recall
formula (5). Forz= 0 andz = 0, the componemn of the displacement must satisfy the
equations:

_A—BG_@ ow

Nw=-""=""2 N+(A-B)O+2B — =0,
B o0z 0z

respectively. One deduces from (5) that:

W= 1 INds+ A_ZB.[G ds+ A E(@l—z@);
418 r 418 r 2B
ie.:
W= iﬂ-}-}@l—ﬂze’ (6)

after one sets:

() CERRUTI,loc. cit, form. (41).
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£:jLIog(z+r)ds, M:jMIog(z+r)ds, /\/:jNIog(z+ r)ds

and observes that:
Nds_ oN Ods _

—_—= ——=-2710; .
r 0z r

Now the functioru must satisfy the equation:

A2y = A-BO’S,

B 0x0z

in all of the space considered, while one must have

L+ B(a_qua_wj: 0

0z 0xX
on the surface. Therefore, if one adopts formb)al{en:
U= 1 Lds+_1 a_vvis+ A Bo (©,-20).

2nmBY r 2irY o0& r B o0x
On the other hand, if one gives (6) the form:

W= ﬂ—ﬂz@
0z 2B

then one can set:

f= i-{-E@z’
4B 2

and one will also have:
owds_ ¢ 9°f ds _ of

of r Joagac r ox

so (7) will become:

1 9L__1 9N _100, A-B3

u= —
2B 0z 4mBox 20X 2B 0 X
Analogously, one will have:

1 IM_ 1 aN _100, A-B3d

:277862 4B 0y 20y 2Bady

and one can finally write (6) as:

—(@2 - Zel) .

o (@2 - 291) )

(7)

(8)



111 Chapter XIV — Applications to elastic, isotropic fleor

:16/\/'_16/\/' 100, ABa
2B 0z 4mB 0z 262 2B0 z

(@ —z@l) +0;.

If one sets:

and differentiates the last three formulas thenwilieleduce that:

_ 1 0y _A-B 12(20,) + 1 0y _A-2Bg
2B 0z 2B ! "~ 271B 0z B
ie.:
;aw’ @l:L’ GZ:L’
2m(A-B) 0z 2m(A-B) 2rm(A-B)

as long as one sets:
£ :jL[zIog(z+ N —r] ds,

:jM [zlog (z+ 1) - 1] ds,

N = jN[zIog(z+ -1 ds,
and then takes:

Now, the equality (6) changes into the known foranQ):

1 6/\/ W oz oy
" 471B 9z 477(A— B 41Bdz
However, (8) will become:

(9)

__ 1o 1 oN 1 6_)( —()( 20).
2B 0z 4mB oXx  4ir( A B)az 41 B X
or
_ 1o 1 ox__z oy, 0L 0N 6)(1
4B 0z 4rr(A- B) 0 X 4iTBax 477 0z 0 x 0

If one then observes that:

0L _ON  ox_o°¢, a(as azmj _o%e o'

0z E ax 072 oxlax ay ay> oxoy

() CERRUTI,loc. cit, form. (58).
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then one will finally get the formulas)(

1 9L 1 oxy_ z 6¢/+ 1 0(oMm a£
4B 0z 4m(A- B)dx 47 Bo X 41 B

“am 0 7x 3y
(10)

yo L OM_ 1 oy z 3y, 1 9(om a¢
4B 0z 4m(A- B0y 4TBOy 4TBI X0 X 0y

and together with (9), that will solve completely thelgem of elastic floors that are
subject to a known, but arbitrary, system of surface pressur

(@) X

it

Zl

W

9. — Suppose, for example, that a horizontal floor is supdoat a pointO by a
vertical pressure that is assumed to be unity. This brisinderstood in the sense that
when a very small particle is taken at the surfadd@floor aroundd, the pressure on it
will be distributed in such a way that when its valueyet area is calculated, it will be
very large at the central points of the particle, itl wecome very small, but vary
continuously, in the vicinity of the contour, and it lvoe zero on that contour. Hence,
the continuity of surface pressures that was requireth® application of the preceding
theory will be respected. However, since we do not suppleest the particle is very
small, but in fact infinitesimal, our results will nbé valid at the poinD, and one must

also consider them to be approximate in the pointsigghborO. Having said that, one
has:

L=£L=£=0, M=M=M=0,
deszl, N=log @Z+7), M=zlog (z+r) -,
1,[/:}, x=log @+r), P=xX+y+7.

Formulas (9) and (10), in which one sets:

() CERRUTI,loc. cit, form. (63).
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W= XtV JX+y*=rsing z=rcoséd (O<6’<§j

will become:

W= 1 ( A +co§€j,
4mBr\ A—-B

sind( B 1
= —Ccosd |.
4rBr\ A- B 1+ cod

Therefore, at any poildl, the floor will experience drop wand a contractiow that are
inversely proportional to the distance frdvinto the point of application of the pressure.
Actually, one has a@ontractionin the direction of the force only at the pointsitt are
external to the cone that is defined by the valu@for which one has:

B 1

= coséb,

A-B1+cos¥d

that is to say:

I
I
I
I
I
“
In particular, for those bodies that obey the lafvslavier and Poisson, casis roughly
1/ 3. The cone that corresponds to the value that is found will only deform
downward and tend to eject — so to speak — thenak@articles, while at the same time,

the external particles will tend to fill the voidat is left by the latter ones. Finally, on the
surface of the floor, except for the po@t one will have:

w__ 1
B 4m(A-B)Br’

and therefore its surface will take the hyperb@dion that is indicated in the first figure

().

() Other interesting special cases are discussed by BOES§N1 CLEBSCH'STraité, pp. 390.



CHAPTER XV

THERMAL DEFORMATIONS

1. — One communicates a very small quantity of heat toraolgeneous, isotropic
body in such a way that the temperature of the padBleill be raised byr dS wherer
is a finite, continuous, and uniform function of the cboates of the center of the
particle. It is known that K is the coefficient of linear dilatation then any lineeement
will experience an elongatidar per unit length in such a way that one will have:

ad’+bpB?+cy’+XBy+2gya+2haB=kr
in all directions &, 5, )); i.e.:
a=b=c=kr, f=g=h=0.

Therefore, the deformation that is produced by the etmvaif temperature, when it is
considered by itself (i.e., independently of the elastiton that it produces), cannot
produce shears, but only dilatatidasin all directions.

2. — However, it is clear that, in general, the heat-tmmmunicated will vary the
relative positions of the particles and excite elastmsions everywhere, and therefore the
deformation that is produced (which is characterized byshal functions, b, c, f, g, h)
can be regarded as the result ofpghesly-thermaldeformation:

kr, kr, kr, 0, 0, O
and another purelglasticone:
a-kr, b-kr, c-kr, f, g, f
Looking for the equilibrium conditions for the latterfolenation amounts to determining

the values of the displacements, and consequently tesupes, dilatations, ... in all of
the space considered.

3. — Suppose that the body is devoid of all external ®hssides that of heat, so the
equilibrium conditions will be:

x-2on 1oon 1oon @

" dxda 20yoh 20zdg
in space and:
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__ondx,1andy 1o dz o

“dadn 2dhdn 29gdr’’

on the surface, in which:
X=Y=Z=L=M=N=0, (3)

as long as one is careful to redacé, c byk 7. Consider only the first equations of each
triple. It is known that in the case of isotropyly oI / 0a will containa, b, ¢, and one
will have precisely:

on

—=-A0 + 2B (b +0).
oda

Thereforedll / da will change into:

—A(G)—Skr)+23+23(b+c—2kr):%—2+k(3A—4B) r

If one substitutes this in (1) and (2) then ond arntive at the same results that one would
obtain if one left the right-hand sides of thosaat®mns intact and took:

X :—k(3A—4B)ﬂ, L=- k(BA- 4B)r%
0X dn

4)

Y=—k(3A—4B)ﬂ, M=- k(3 A 4B)rﬂ
oy dn

Z =—k(3A—4B)ﬂ, N=- k(83 A 4B)r$
0z dn

instead of (3). Therefore, the elevation in terapge that is defined by the functian
produces effects in a homogeneous, isotropic,ielasty that is devoid of the action of
any other external forces that are identical todhes that the forces (4) would produce
by acting upon the body when it is supposed tankeguilibrium. One will then see that
the temperature behaves like a potential functmmaf body force in the body and a
normal pressure on the surface.

4. - We can now write down the equilibrium conditiomsnediately. They are:

k(3A—4B)ﬂ= (A- B)a_@+ BA? y
o0Xx o0X

k(3A- 4B)ﬂ =(A- B)a—e + BA%y (5)
oy oy

k(3A—4B)ﬂ= (A- B)a—e+ BAZ w
0z 0z
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in all of the space considered, and:
k(3A- 4B)T% =(A- B)@%r:+ E{Ta%z—'fz—jj )
k(3A—4B)T%= (A- B)@%r:+ E{Tl%r:—’fg—jj (6)

k@A-2B)r X = (a- B X4 E(Tzﬂ’—fl_dj
dn dn dn d

on the surface. These equations were found by Bahand then by F. Neumani.(

5. — From what was said in3 any question that is concerned with deformatibias
are due to heat is equivalent to a problem of ielasjuilibrium for which the external
forces have the expression (4). One can thenrobthof the results that were obtained
before in order to deduce some other consequehetsrelate to equivalent thermal
deformations. For example, if one takes the foamul

1
3A-4B

[ods = > ([ xxds+ [ Lxd

then the preceding will yield some of the simpleradlaries to Betti's theorem. If one
adopts (4) then one will have:

j@ds——szx ds+jr %

Moreover:
J. dS IaTXdS—Ir dS:—J.rx%ds—J'r ds;
ie.:
jx dS+'[TX— d=-[rds.
Therefore:

[eds=3«|rds.
In other words:
The variation of the volume does not depend upon the form of the body or the

coefficients of elasticity. It is equal to the total increaséemperature, multiplied by
three times the coefficient of linear dilatation.

() BETTI, loc. cit, pp. 102.
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6. — We now need to know whether it would be possible ler e¢levationr in
temperature to not provoke elastic forces. For thaettrue, it would be necessary and
sufficient that the potenti&l of those forces should be zero; i.e., that oneldhave:

a=b=c=kry, f=g=h=0. (7)

The known conditions, which are necessary and sufficEdausea, b, c, f, g, h
represent the components of a possible deformatidh,reduce to the simultaneous
vanishing of the second derivativesmh the present case. Thereforemust be a linear
function of the coordinates: Let=a x+ gy + yz+ o If one integrates the first of (7)
then one will get:

u= k%xz +kx(T—axX) + @y, 2)
or

u:er+ga(x2+y2+zz)+uo,

in whichup is independent of. v andw will assume analogous forms. Obviously:

Oy - Mo _ OV _
ox oy 0z
and in addition, the substitution of the preceding exprasduoru, v, w in the remaining
equalities (7) will give:

%-}-%—auo +6W0 :%.}.auo:

dy 9z 9z 0x ox dy

Hence,uy, Vo, Wo represents (Chap. Il, B a rigid displacement, which one ignores. It
will then follow that when the displacements do ra¢dathe form:

u=er—k7a(>8+ ¢+ ?),

vekry-SE 02+ 4 2)

w= krz—l%y(x"+ ¥+ 2),

i.e., whenr does not depend linearly upon the coordinates, one camdéhat an elastic
deformation will counteract the purely-thermal deformaticand that the elastic
equilibrium will be established under conditions theg different from the ones that
existed before communicating the heat.
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7. — Let us treat the problem in the case abhad spherewhile supposing that the
elevation in temperature at each point depends upon ondiidizerce from that point to
the center of the sphere. If we call the unit eloogatlong the radius then we will
haveu = £x v = ¢y, w= £z and consequently:

2 2
Nu=xpe+ 2980 =4[ 208, dE), o XE_X 4E+rd_f ,
0Xx rdr dr? rdr r{ dr dr

On the other hand, one has:

2
@:35+rE, d_®_4E E
dr dr dr dr2

Equations (5) will then reduce to the single one:

k (3A—4B) E— Ad—e
dr dr

which one can integrate directly by writing dowatth

k(BA-4B)
T

0=31+

Since® r? is obviously the derivative afr®, another integration will give:

,u k(3A 4B)
r3 Ar?

e= A+ jrr dr . (8)

In order to determing, it is enough to observe that as longuadiffers from zero, the
displacement r will become infinite at the center of the sphdmat that cannot happen.
Meanwhile, it is necessary that one should havwe 0. In order to determing, one
recalls (6), which will reduce to the single eqoati

k(BGA-—4B)=A- ZB)@+23(£+r$j (BA - 4B)£+Ar%
r

which must be satisfied whenis equal to the radius of the sphere. Meanwhile, one

deduces from (8) that:
de _ k(3A 4B) j
dr

0
Therefore, one must have:
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forr=a;i.e.,:

7 r—MsA—_f'B).[rrzdrzélkE.[rrzdr,
0 Aa 0

and finally, with the substitution (8), one will arria the formula of F. Neumann and
Borchardt {):

:3—5 rrdr +2KB —13.[rr2dr——13J'rr?dr .
r’s Alay r’=

8. — To conclude, suppose that one varies the temperatuee lafmogeneous,
isotropic, elastic floorvery slightly, while keeping the surface in contacthvatconstant
source of heat, in such a way that one will hA%e= 0 in all of the body. In order to
look for one of the infinitude of possible systems opldisements, one sets:

u’:—k(3A—4B)%, v':—k(3A—4B)%, W:—k(3A—4B)%.
0x oy 0z

The indefinite equations of equilibrium are satisfied when

r+ANP=0.
One can then set:
-_ 4L
¢ 2A 1

after one sets:
2 3
or, _0°7, _0°T; _

T= =
0z 0z¢ 07
It will then follow that:
u = k(3A-4B) z%, Vv = k(3A-4B) z%, W = k(3A_4B)(zr+rl). )
2A 0x 2A oy 2A

Those displacements will provoke the pressures:

L’:—@(3A—4B)%, M’:—@(3A—4B)%, N'=-k(3A-4B) r
A 0x A oy

on the surface. Therefore, the displacements:

() BETTI, loc. cit, pp. 108.
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=u-u, VvV =v-Vv, WwW=w-w

will be due to the action of the following forces theg anly applied to the surface:
L' =XB3a-48)2h m-=KB3a-48)%a N’ = 0.
A 0X A oy

Obviously, one has:

L"ds _kB 0°r, ds kB or
=22 (3A-4B)[—2 —=-27"= (3A- 4B)—2,
A | 00 1 Al Fox
and therefore:
o =-2¥8 (3a- 48y0%2. Mo = 2758 (3a- 4BY0%2 |
A 0x A oy
and A" = 0. Analogously:
o =—27%8 3a- 4) 0% o = - 2778 9% N"=0;
A X A ody

hence (while always adopting the notation of thexpding chapter):
Y= ZHK—E BA-B)n, x'= 2nk—:’ (BA-B) 1.

Now, formulas (9) and (10) of that same chaptee:giv

v =- X (3a- 45)3( AT, zrlj,
2A x| A-B

v =- X (3a- 45)1( AT, zrlj,
2A oyl A-B

w =K (3a- 45)(
2A A

Ar, j
-7 |.
-B
Therefore, if one takes (9) into account and sets:

« = K(BA-4B)
471(A-B)
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for brevity, then one will finally arrive at the foutas:

0 0 rds
u=K—|rlog(z+r)ds, =K—|rlog(z+r)ds, w=-K|—.
57109 (z+ 1) v ayj g(z+r) =

For the bodies that behave close to the laws ofiddand Poisson, the constdfitis
taken to be less than one-fifthlof




CHAPTER XVI

THE SAINT-VENANT PROBLEM

1. — The study of the deformations of a cylindrical body untleraction of a force
that is applied to just its base is particularly impatrten practice. Since the general
theory encounters difficulties in calculation thae @resently insuperable, one might
think of simplifying the question by first treating it inparticular case. The passage to
the general case is largely justified by means of theoretical and experimental
considerations then. Each element of the base ibabe of an infinitely-thin cylinder
that belongs to the given body and is calledib&r. The cylindrical body is then
composed of an infinitude of longitudinal fibers, and we wdikle to confine ourselves
to the study of the deformation that do not provoke dhtéensions between the
contiguous fibers, in such a way that they will defornf #sey were independent of each
other. In addition, suppose that the body is endowed imdgitmplete isotropy, and that
the isotropy axis is parallel to the generators of Wleder (which will be essentially
true for the bodies that one deals with in experimeprdtice).

2. — Assume that thgy-plane is one of the bases, and suppose that they@ss-
sections of the cylinder. Hence, thaxis will be parallel to the generators. One has the
following formula for expressing the elastic potential:

~MN=1(A-2B)&*+B @+ +c*+ A%+ 2° + ") +C + 24 (f* + )
+ 2B' (W* —ab),

in whichA, B, C, A', B' are constant quantities. In order to annul the latersions, it is
necessary and sufficient that one must have:

Pxx = 0, Pyy = 0, Py =0 (1)
in all of the body, i.e.:
a_rl: O, a_rl: O, a_rl: 0.
oa db oh

The following relations must then be true:
(A -2B) © + 2Ba= 2B'b, A-2B)©0+2Bb=28B'a, h=0.
The first one implies that:

a=b=-7c (2)
in which one sets:

() See CLEBSCH'Sraité, pp. 175.
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__A-2B
d 2(A-B-B)

The conditionsh = 0 anda = b say that two surface elements that are parallehe¢o
generators and mutually perpendicular will alsopkependicular after the deformation
and that any element that is perpendicular to @megators will experience a dilatation or
contraction around each point that is the samdlidir@ctions. The constartt, which
measures the ratio of the transverse contractiotingounit longitudinal elongation, is
called thecoefficient of transverse contractionlts value is 1/4 in those completely
isotropic bodies for which one has= 3B.

3. — As a result of that, one needs to determineptiessures that develop in the
elements of the transverse sections of the cylinddrat is an important path of study,
because the components, py. p.; of those pressures, with the opposite signs, will
clearly serve to tell us the forces that one néedpply to the bases in order to produce a
given deformation when one sets 0 andz equal to the lengthof the cylinder (). One
will then immediately have:

—pZZ:—%—ZZ(A—ZB)@+2(B+C)C:EC,
in which one sets:
E=A-B)(1-29)+2B+0C).

Hence, for a given unit elongation in the directminthe generators of the cylinder, a
tension will develop in that direction that is posfional to the constari, and for that
reason, it is called thepefficient of longitudinal elasticityOne then calls the constaat
=B + A’ thecoefficient of transverse elastigityecause one has:

Z:—Ea_rl: ZGg’ —pyzz—éa_rl: ZGf’
209 2 of

that is to say, for given shears (along the isgti@ps) of the line elements perpendicular

to the axis, the tangential components of the tensiill be proportional t&s. Note that
one will haveG = ZE for isotropic crystalline solidsA(= 3B).

4. - We have seen thatandv necessarily satisfy the conditions:

wu_ o ou__ov
ox oy’ dy  ox

() One can also see that by writing out the boundary emsathat relate to the bases and observing

dx dy dz
that one has— =0, — =0, — = 1 for the free base=1.

dn dn dn
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It will then follow thatu + iv is a function of the complex variab{e= x + iy, that is to
say, only the first of the two of the independent afalesx, y, z can enter into the
functionu + iv of those variables, and only in the combinatfoim such a way that one
will have:

u+iv=¢(q 2,

and the determination af andv can be accomplished at once when one has determined
the functiong. Meanwhile, the indefinite equations of equilibrium viedicome:

0N _, 99N_, 100,100 00_, 3)

9z 0g | 9z of ' 20x g 20y of dz ac

The first one allows one to write, in succession:

ox?’

622:&

0°u  9°w _ o°u_ 0 ( 6wj _ 0%
_2+ = O /7_ —_—
0z° 0x0z 0z

Therefore, one can give the first two equationS)rthe forms:

Multiply the second one hbiyand add it to the first one; that will give:

Fu, 0 7 s
x> ay° 07

u+ivi=n—=.
( )/7azz

The left-hand side is conjugate to:

0°u . 0% _ 0°u . 0°v_ 07

i—= —+i—= 0’¢
x> ay* ox2  oax* ox

ac*

(u+iv)=

Hence, if one generally represents the numberishednjugate ta” by ¢ then one will
see thatp must satisfy the equation:

9%¢
ZZ

_p2¢
=0 @

(3]

Now, note that the left-hand side does not depgruh, but upon , while the right-
hand side cannot depend updn Hence, they must both reduce to functions oy anl
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0%p

It will then follow that —

does not contaig, and for that to be true, it is necessary that

@ must have the form:

P=P’+2Q{+R

in whichP,Q, R are functions of onlg. If one substitutes this in (4) then one will get:

=_ (d°P,, . dQ, fE)
ZP_”[de Tt dij’
hence:
d’P _ d’Q _ d?E

= 2P.

0,

iz z 0 T2

With a convenient representation of the constanwsived, one can then set:

P:—%[(al +512) —i (a2 + £ 2)],

Q:—%mwﬁa—%am+&a.

As for the functiorR, it must satisfy the equation:

d’R

e =—(+fH2-i(:+ /2,

and upon integrating this, one will then have:
v z
R=(a’+ia”)+ (B +if")z- (v + iafz)z - L+ iﬁz)g :

Hence, one will finally obtain the expressions toandv by taking the real part and the
coefficient ofi, respectively, in the expression:

~nl(an+Bi2) i (0’2+,322)][X2;y2+iXYJ

-nl(a+B2+i(a+ K 2)(x+iy) +R

In that way, one will arrive at the following forhas:

2 2

SV

N
2

2
Y +:32ny

X
u=-n3 (ax+al
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2 3

+(@+ay)+ B+ Ly z- al— ,6’1—
2 _y? 2 — ¥
v=—f7(ay+alxy+azy > j—OZ[ﬂy+ﬁ1Xy+ﬁzy > j

2 3

@+ ax) + (B~ fhx)z- 0'2— ,32—

5. —We now need to determime If we integrate (2) then we will get:

2

w:F(x,y)+(a+a1x+azy)z+<ﬁ+ﬁ1x+ﬁzy)27 (5)

In addition, we must also satisfy the third indéérequation — i.e., the last of (3), which
takes the form:

ag of Tk oc _ -0

ax 6y 0z

in which k represents the constat/ 2G, which will reduce to 1 +7 in completely
isotropic bodies. If one observes that:

ag of 6(6W auj d(ow dv) _0d°w d*w 0 ou_ dv
2 =+— |= —| —+— t—| —+— | =ttt —| —+—
ox 0dy) ox\ox 0z) ooy 0z ox° dy* 0z ax ay
_0°'w d*w _ 0°w

SOPF

= + —
x> oy’
then the last equation will become:

0’w  9%w 02w
+ 2+ 2(k - = 0.
X’ oy’ (k=) 07

Hence, if one takes to have the expression in (5) then:

0°F 62F
ax2 oy’

+2K=n) (B+Lx+By) =0. (6)

In particular, one can taketo be equal to:

X2+y2

:_(k_ﬂ) (,3 +,81xy2+,82x2yj,
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and it is clear that one can add any linear functiog pto ®. Hence, if one sets:
F=Q+®+y-f'x-L"y

then one will see tha® is aharmonic function of the variables x, whose value at a
given point can also be assigned arbitrarily, due t@tesence of the arbitrary constant

in the expression fd¥f. If one knowsQ then one will havev=Q + ® + ¥, in which one
sets:

2
W=py-B'X=-L"y+(@+@mX+dy)z+(@+ax+ azy)%.

Finally, one will know the pressures on the elemehte@transverse sections, since one
found in 83 that:

ou ow ov ow ow
—P=G “Pyz=G| —+—|, —Pzz= E—,
P (az axj P (az 6yj P 0z

and consequently, if one setsv, w equal to the preceding expressions then:

- D= G| —kBx+ 3, y—nﬁ%—(z k—anﬁliz—(zk—n)ﬁz xw%—ﬂ,

~ P = G| -kBY+ B, X—Oﬁzy?—(Z k—w»’ziz— (2k-17)B, xw%—Q]
Yy

-pz=Ef[(a+mx+mxmy)+(@+mx+ay) 2.

6. — The question is then reduced to the determinati®@. For now, we know only
that the function must satisfy Laplace’s equatibmalbpoints of the cross-section of the
cylinder. However, in order to be able to deteenih we also need to see what
conditions it must satisfy on the contour of thett®n. In order to do that, consider the
boundary equations that relate to the lateral sarfaf the cylinder, and first of all
observe that, by virtue of (1) and the fact thhat dn has the value zero on that surface,
the first two equations will be satisfied identlgaivhile the third one will reduce to:

(aw aujax ow, 0v)oy_ 0
ox 0z)on (dy dzor

dw_ _(auE_@( av[ﬂj

dn 0z 0dn 6_zan

and one will get:
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Hence,dw/ dn can be regarded as known, and therefore the value of:

dQ d_vdeD ow
dn dn dn dn

will be known at any point of the contour. It will théollow that the functiof2 can be
considered to be determined completely for a given cred#s (up to an arbitrary
additive constant), provided that there is no incompagbitietween the indefinite
equationA?Q = 0 and the set of values that are assigneif)té dn on the contour. It is
known that in order for that to be true it is necesHaay one must have:
jd—Qda_ [p*Qds=o,
dn

where the first integral extends over the entire cantmd the second one extends over
the area that it encloses. Having said that, obshaie t

dQ ou dx avdy 9°w
—“do=- P B = - d
an ¢ J(az an’ 9z er I(axaz ayazj s=- 2|3z

= 2,7'[(,3+,31x+,32 y) ds.

Similarly, if one recalls that satisfies (6) then:

j‘jj_“’da— [A2wds=2 k-n) =27 (B+Bx+B,y)ds.

Finally, observe thad is linear inx andy, so:

J.d_wda'— —jAZWdS: 0.
dn
Hence:
dQ
J[Godo=-2k[(B+ B x+ B, Y) ds =~ &S (B+ B0 + B Yo,

in whichxo andyp represent the coordinates of the center of grafithe section. It will
then follow that one must have the relation:

B+bixo+BY=0

between the constanfs 1, 5, in order for the functiof to exist.
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7. — The solution that was obtained previously contaiastnstants:

a,a’,a’, am, a, a2, BB B o, B B Vi

which will reduce totwelvetruly arbitrary ones, by virtue of (7). Six of them bk
determined if one prevents the rigid motion of a partidter example, if one supposes
that the center of gravity of a base is kept fixed andwihan a surface element is taken
from inside of the base, it will remain in the basenplan such a way that one of its line
elements does not vary in direction, then one williraly ask what the conditions would
be under which no motion of the body would be allowed vere rigid. If they are
satisfied then one will first need to have that O,v=0,w=0whenx=0,y=0,z=0,

if the origin is located at the fixed point. Meanwhi@e knows that this choice of origin
will reduce the condition (7) t@@ = 0. If one then directs theaxis along that line
element (which has been required to not displace Iatethén the displacementof the

point dx, O, 0), i.e.,(?j dx, like the displacements of all the pointsdx, dy, 0), i.e.,
X

0

[awj dx+(awj dy, must be zero, and one must then have:
Yo

0x
(@j =0, (a_vvj =0, a_VV =0.
0x J, ox J, ay J,

Finally, in order for the functio® to be determined completely, one must impose the
value O at the origin. Our formulas will not suffer apgcalization as a result of that, as
was observed in 8. All of those conditions demand that one must have:

a’'= 0, a”’= 0, o= O, ﬁ: O’ y= 0, ﬁ/: (G_Qj , ﬁ”: a_Q ,
0X Jo oy ),

so only thesix arbitrary constantg, o1, a», (o, [, £ will remain in the expressions for
the displacements, tensions, etc. The displaceraesits

:—q(ax+al +a2 ij Z(ﬂl +,32 X)a'*',&)yz

2
ag-ag( 5

V:_n(ay+alxy+a2 y % j—/ﬂ(ﬁl XWﬁz yz; ij_,&)xz

0Q
w225,
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2

=~ (k=) BxY +BXCY) + (@+ mx+ my) 2+ (B X+ BoY) %m
X J, ay Oy

8. — The functionQ, which depends upon the form of the section, terd@ned for
any particular form by means of the indefinite @mmA?Q = 0 and the boundary
conditions — viz.Q =0 forx =0,y = 0, and:

on the contour — in whick andV are two known functions of andy, for which, it is
useful to recall the expressions for them from whatsaw in :

azaxax Ea_ya_y

Hence, when one substitutes the preceding expres$iw u, v and the ones that were
found to be pointed out in§ one will get:

-—ﬁ)y+%[/7x2+(2<—3/7)y2] + (k=) By,

V= &X+%[nf+(2<—3f7)x2]+(2k—/7),6’1xy-

9. — In order to determine functions that depend umay the form of the section and
not on thes coefficients, one sets:

Q=LQ+5 U +5Q,.
The function®o, Q1, Q> must be harmonic, zero at the origin, and satisfyconditions:

dQO:_y9§ dy
dn dn dn

dQ

an ——+=3[nx* +(2k- 3/7)y?]—+(2k /7)XY—
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dQ,
dn

=(2k—n)xyj—x+%[n V +(2k-37) ) 2
n dn

on the contour.

It is important to observe that if the section is sytric with respect to the-axis
thenQ; will be anevenfunction ofy. Indeed, the equation that relates to the boundary
and the indefinite equations will not be altered when @drengesy into —vy, since the
values ofdy/ dn at two points of the contour that are symmetridwéspect to the-axis
will clearly differ only in sign. Since the functidhat satisfies those conditions will be
unique, it will beQ; . However, that function will b@dd in x when the section is
symmetric with respect to theaxis, since changinginto —x will change only the sign
of dQ, / dn, and the function €1 will certainly satisfy the new conditions. Hencego
will have:

Q1 (% =y) =Q1 (% Y), Q1 (=%xYy) =—QXY).

One shows analogously th&, will be odd iny and even inx under the stated
hypothesis:

Qo (% —y) =—Q2(x,Y), Q2 (=% Y) =Q2 (X Y).

It will then follow thataa—Ql andaa—Qz are odd functions of andx, respectively; therefore:
y X
a_fll =0, (G_sz =0.
ay ), X J,

Finally, if the section is symmetric with respect to twe axes the®, will be odd inx,
as well as iry, and consequently, one will have:

(6_%):0 (%J:o (mj:o (azﬂoj:o
ox ), Loy ), Lo ) Loy )

while the mixed second derivative is everyjras well as irx, and it will therefore not

. . L . 0
necessarily be zero at the center of the sectione st is not necessarily true thaét%
X

09,

and —= will be zero.
oy
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APPLICATIONS TO PRACTICAL PROBLEMS

1. — We shall now pass from the particular problems thahawe treated so far to the
practical problems that rest upon the hypothesis that dysbems of forces that are
statically equivalent will not produce different defotioas. In reality, that is not the
case, because the manner by which the deforming foreedistributed over the surface
of the body will also influence the deformation. Hoeewbservations have shown that
the difference that is due to that cause will becoote@able only in the vicinity of the
points of applications when they occupy a small pathe surface. Meanwhile, we can
recall that if we make an exception for two regionat thre close to the bases then a
cylindrical body whose length is much larger than thmedisions of the transversal
sections will behave like a collection of fibers thag¢ independent of each other. Having
said that, we suppose that the forces that are applibe@ tioee bases consist of the force

(X,Y, Z) and the coupled, M, N) and examine whether we will find that the forcest th
act to produce the deformations that were studied up to nibeowsist of the same force
and the same couple. In order to do that, we seelptesX, Y, Z, £, M, Nin terms of
the constants, ;, o, [, 1, > . We then suppose that the first six quantities arengive
so the formulas that we obtain will serve to deterntives latter constants inversely and

will consequently characterize a deformation that idigide in comparison to the one
that is produced effectively in almost all of the cylinde

2.— One then calculates the integrals:

X:des, L :j[Ny—M(z—D] ds = jNyds,
Y:jMds, M:j[L(z—D—N)q ds :—ijds,
Z:des, N =j(Mx—Ly)ds,

which extend over all of the free base. With tioae will have:

L:_pxz, M:_pyz, N:_pzz,
and consequently:

x:G_—%”szds—%(z k—en)j ¥ ds (2 kq)ﬁlj xydsj%—i %

_ B B, 0Q
Y=G —72’7jy2ds—7(2 k—en)j % ds (2 kq)ﬁlj xydsja—y %
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In order to simplify the calculations, refer to tigure whose axes are the principal axes
of inertia and letl and represent the radii of inertia, in such a way that:

sz ds= A°s, jyz ds=/Fs, sz ds=0.

The preceding expressions will become:

X= —C%S,[;’l[/])l2 +(2k-3)u ]+GJ.— ds,

=—%Sﬁ2[/7ﬂ2+(2k—3f7)/12]+Gj %2 gs.

One directly findsZ = Esa for the longitudinal component of the resultarfdne also
needs to calculate the two integrals that apperandyY, and it is noteworthy that their
values can be obtained with knowif)g First of all, from Green’s theorem, one has:

j(xd—Q dxj do=0.
dn d

Hence:
I—ds— IQ -—jx—da
or
Ia—st—— j(u X v W) o= I(E+des,
0X dn dn ox oy
and finally:
ou oV
j—ds—ju ds+| &Jra_yj ds
ou oV
j—ds_jv ds+ | &+a—yj y ds.

On the other hand, if one adopts the expressiatsatére found in the preceding88hen
one will have immediately that:

WLV k(B + ),
ox oy

and consequently:

'[a_U+a_V xds= z<,31)|23, '[a—U-f'a—V de:z(ﬁz,UzS.
ox oy ox 0y
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In addition:
fuds= %[/7)!2 +(2k=37)p71,
Jv ds= P2t + 2k -3,
Hence:
[ ds= A (ak e + (2k-3e,
and finally:

X =E A?sB, Y=E (£ sB.
Thus, we already know that if we are given the tastithen the constants:

X Y v
A= EA%s’ pe= E/’s’ Es

will be determined. In order to determine the other ooleserve that:
ijds: EAs(a+ B 2), jNyds: Efs(an+ B 2).

However, if one setd® + 1/ = ¢/ then one will get:

[ (mx~ Ly)ds-—szs,&ﬁGJ( “ Yo

+ S2L[[(2k-37)y? + (4ken) €] y s

Q an de

- GT’BZJ.[(ZK—%)XZ +(4k+n) Y] xds.

If the figure is symmetric with respect to the gx@s is ordinarily the case, the integrals
that are multiplied by3 andf will obviously be zero, and the last formula veiinplify.
The observations that were made at the end of tbeeding chapter in regard to the
parity of the function€ permit us to say, in addition, that the integrals:

) 00, 90,
J’(xa—y ades J(xa—y yaxjds
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are zero, because their elements can be grouped intaviairsqual values and opposite
signs. It follows that:

I(XGQ - ya—Qj ds= ﬁoj(xaQ‘) - yaQ"j ds.

a_y 0x a_y 0x

Therefore, the formulas that serve to deternamer,, & are:

L -N
al+ﬁl|:_—, 02+ﬁ2|:_—, ﬁ): :
EA? =g
S S G pzs—J' XaQO_ 0Q, d
oy ’ax

3. — The formulas that were established in the precedinggmph enable us to
analyze an arbitrary deformation and show that itaterays be made to result from four
special deformations:

a) Traction: Of the six arbitrary constants, one supposes thatamrdynon-zero.

Since theS will always be zero then, one will hage= 0. The final formulas in  will
then become:
u=-nax, v=-nay, w=aqz

and characterizes tmaction, under which the cylinder will contract transversallyd an
elongate by:

However, in the case whereis negative, one will have compression. The tranalers
sections will remain planar and the fibers will remaiectilinear under those
deformations. They are produced by only the facgince the formulas in the preceding

paragraph will show tha, Y, £, M, N are zero.

b) Torsion: One annuls all of the constants exc&pt so the functiorf2 will reduce
to % Qo, and the usual formulas will give:

enfr ) rafe(B]] walo2 )

Apart fromw, one studies the projection of the motion onto astrarse section, and one

90,

transports the origin to the poi@ of that section that has the coordina{e%—j :
Y Jo
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_(690
0x
both axes, in which case, one will also hawe % Qo . One will then see directly that
the displacementu( v) consists of a very small rotationyz aroundO’ in the opposite
sense to the one in which the hand of a clock will mdsmce the point®’are all along
one fiber, one can say that all of the sections ratadand that fiber, and the angles will
rotate such that they will vary from O at one extresh¢he other cylinder te- 41 the

other one. One will then haveaa@sionthat is produced by only the couplé which acts
in the plane of the extreme section and makes iteotebugh an angle of:

j and coincides with the center when the section is stnerwith respect to
0

N
) 0 0Q, '
Ao

The transverse sections do not remain planar. Indedle ivicinity of the central fiber,

one will have:
2 2 2,
W= &{(a %Oj XZ +2(ﬂj Xy+[a QOJ y’&},
2|\ o ) oxay ), oy

and since the coefficients of the extreme termiddnly in sign, one will see that the
section is curved into the form of a hyperbolicataloid. However, from what was said
at the end of the preceding chapter, if the seasosymmetric with respect to the axes

then one will have:
62
W=&[ %jxm
0

w=- Kl =

oxoy

and therefore those axes will divide the sectida four regions, such that two opposite
regions will be below the original plane, while tlwher two will be above it.
Nonetheless, i€, is zero then the section will deform while remagnin its own plane.
In that case, the preceding value of the anglersidn will reduce to:

N
w=—7,
Gp's

and one will then get the formula that is adoptedgractice,” and which is established
precisely by freely making the hypothesis thatdéetions will remain planar.

c) Simple flexureOne keeps only the constant so one once more h&s= 0, and:

u=- L[y +Z), vE-naxy w=aixz
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In order to see how one deforms a fiber, one keegsdy. v is then constant, and the
elimination ofz fromu andw will show that all of the fibers curve parabolicallyplanes
that are parallel t©xy (viz., the planes of flexuje In particular, for the central fiber, one
hasu = - (a1/2) Z, v=0,w= 0. That fiber will then bend into a parabola in thlane of
flexure, and the maximum deflectiosagtta di flessioneof the old position will be:

u=

ATE M |2
2 2EA%s

As one sees, that deformation is produced by just oneedl@l acts in the plane of
flexure. It is known that the transverse sections rginain planar. If one keeps,
instead ofai, then one will still have a flexure, but this timewill be parallel to the
planeOyz

d) Complex flexureThe deformations that are characterized by theteoks and
[ are more complicated and are consequently prodbgeal tangential forc& or Y.
Consider the one that corresponds #9 and in order for the forc&X to not be

accompanied by the coupl, seta; + 511 =0, instead of;, = 0. Recall the formulas of

8 7 in the preceding chapter then, and suppose thatlo® constantg, andar = - 4 |
are non-zero. In the case of a symmetric sectian,will give:

u= ﬁl{ﬂ Xz_y2 ( _Z)+£2_é+(a—§21j Z},

2 2 6 ox
v=p5nxy (=X,
_ { XZ (anj }
w= S| Ixz+—-(k-n)xy +Q,-| —2 | X.
2 X J,

It is noteworthy that the hypothesis= | will make u andv independent ok andy.
Hence, if one leaves aside the longitudinal diggiaents then one can say that the free
base will displace laterally as if it were rigidNot only will the transverse sections not
remain planar then, but they will assume variousnfo (viz., third-order surfaces)
according to their position in the cylinder. Inde@s in the case of torsiow, will no
longer be a function of only the variableandy. In addition, the fibers will be bent only
slightly, except the ones that are situated orptaeeOXZ (viz., the plane of flexure). In
particular, forx = 0,y = 0, one will haver = 0,w = 0. Therefore, the central fiber will
bend in that plane into the form of a cubic parabeince one also has:

u_ﬁ{z 6+(6xjoz}
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For z =1, one will get the value of the maximum deflection, am& will recover the
practical formula, which neglects the last term andcivhs the only one that depends
upon the form of the section and which assumes valhesawratios td¢* are negligible,
like the ratio of the area of that sectiod?o The approximate value of the maximum will
then be:

u:ﬁ|3— X1®

3 3EA%s

4. — Let us apply the preceding results to the cacaylinder. First of all, we must
determine the functio®. The first of the boundary conditions that wagtem down in
89 (Chap. XVI) will become:

Xa_QO+ ya_Qoz 0.

0x oy

That must be true fof + y* = R2. However, it and the Laplace equation can besfidi
for any pair of values of andy by takingQ, to be constant, and since one must Haye

= 0 at a point, one must hatk = 0 over the entire section. Therefore, if onfenseto
what was said in the preceding paragraph then aneassert that under the torsion of
cylinders with circular transverse sections, thesetions will remain planar. It is
precisely that special case that has induced therawenters to assume hypothetically
that the latter fact was true for all forms, whilewill already cease to be true for the
elliptic forms. Indeed, for an ellipse with serxiesa andb, one will get:

_at-p

_—3_2+b2 XY,

0

one will havew = £ Qo : All of the sections change into equal pieces dfyperbolic
paraboloid. Let us turn to the circular sectiond determineéo. Forx® +y? = R, that
function must satisfy the condition:

Q. 0Q, ,
X—2+y—21 =1px3+(3k-3 .
16)4 y oy 27X ( 2,7) el

It is natural that one would try to verify this taking Qi to be a function of degree three
in x andy. Meanwhile, one will see (Chap. XVI, B thatQ; is evenin y andodd in X,
and one will then need to have:

Qi =ax+ BxX + yy + xy.

In order to satisfy the Laplace equation, it wél hecessary for one to hay8»%+ 2 (y+
o) = 0 identically; i.e.)y=0,0=- 38. Consequently:

Q1= ax+ B¢ - 3.
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Now, the boundary conditions will become:
ax+B(x* - 3xy) = 1nx*+(3k-5n) xy,

and it can be satisfied identically on the contouaffer multiplyingx? + y* by the term
a x and the other terms I, one takes:

a+ 3R = %RZ, a-9BR = (3k-31) R,
ie.:
a=(k-n R, B=-1(k=n),
and finally:

Q1 =$[(Bk—7) R x—(k=7) (X = XY)].

One will then deduce that:

Q) _ oy R 09 ) _
(axjo =0 (ayl >

On the other hand:
[x*ds=[y*ds=1[rds :njoRrSdr :gR“:%RZS,

and consequentlyl = 4= IR, p= R/\/E. It follows from all of this that the angle of
torsion, the maximum of simple flexure, that of qex flexure, etc., will have the
values:

2N 2M|? 2X 17

GR R 3ER ¢

The last maximum is, more precisely:

4X I3 {14,%(3«/7)(—?} }

3nER

In the case of elliptic sections, the radiend ¢ have the valuea / 2 andb / 2. The
formula that is adopted in practice in order toresp the angle of torsion is:

e AN
nGab(& + 1)’

When the section is strongly eccentric, that wittice serious errors. In order to correct
them, one first needs to calculate the integral:
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00, 00, VR o P
j(Xay axjd“ +th(X V) 0= g H0)s:

The denominator in the exact formula then changtsthe product o&Gs with:

;12)— (bzf 224 = 20

22+

+ - -

'uz a’ +b2
Hence, the true angle of torsion is:

_ (@+P)N |

nGaly’

This value, which is always greater than the emgirione, has been confirmed
sufficiently by all of the experiments)( The mathematical theory of elasticity has been
accused of not being in agreement with experimesispne must then address the
various theoretical claims that have been contrivedrder to justifya posterioriand
generalize beyond measure some empirical formulascdmbining contradictory
hypotheses that are unjustified and unjustifiabks Clebsch said”(), the differences

that one finds:

“get one in the habit of attributing imperfectiaiasthe theory, rather than
to the irregularities that are committed in the lmgpions. Is that perhaps
why, too often, the misconception is created thattheory itselhas been

greatly discredited in certain circles?”

() See a note in CLEBSCHFraité, pp. 209, and to some other notes of SAINT-VENANT pn10,

et seq.
(") One should read the interesting § 39inité.



CHAPTER XVIII

SOME NOTIONS RELATING TO
CURVILINEAR COORDINATES

1. — Letxy, X, X3 be the Cartesian coordinates of a point. The equitianx;, xs) =
g represents a surface for each valug.ofif one considerg to be aparameterthat is
capable of taking on all real values then that equatibmepresent a simple infinitude of
surfaces. One now considers three families of susface

f1 (X1, X2, X3) = Q1, f2 (X1, X2, X3) = 02, f3 (X1, X2, X3) = 0z,

such that three surfaces that are taken from the faned#ies in any way will generally
have just one common point. That point will thenifdividuated by the special values
that the parameters, gz, gshave on the three surfaces that contain it. Thezedp, Oz,

gs can be assumed to be twordinatesof the point. The three surfaces and their lines
of intersection will be called theoordinate surfaceand thecoordinate linesresp., of
the point, and will take the name adrresponding parametersTherefore, thdéine g is
that coordinate line along which only the paramegeraries, while thesurfaceq; is the
coordinate surface upon which the paramejeremains constant. That system of
coordinates is calledrthogonalif the coordinate surfaces are mutually-perpendicular at
every point. If that were the case then it would learcthat the coordinate lines would
also prove to be mutually-perpendicular.

Os
o)1 0z

(0%}
O
(o7]

2. — The derivatives af;, X, X3 with respect taj;, gz, s are obviously proportional to
the direction cosines of the tangent to the linaigthe point considered, since when one
moves that point along that ling,will vary like a function ofonly the arctraversed. Its
cosines will therefore be:

Qaq’ Qoq’ Qoq’

L 6_)(12 6_x22 a_X32
° '(c’mij +(6qj +[6qj | ?

1og 1oy 1 0

if one takes:
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If one then letsy; represent the contact arc length along thedinghen one starts from
an arbitrarily-fixed origin, and if one observes that ¢tbsines (1) are also equal to the
derivatives ofxy, X2, X3 with respect taz then one will see immediately thdw; = Q; dg .

In other words,Q; is the coefficient that one needs to give in ordeolitain the line
element along the ling. That observation serves precisely to expeditioaghibit the
functionsQs, Q2, Qs, which have great significance in that theory, inaasi particular
cases. As for the general expression for the linmeatg, it is obviously given by the

formula:
do’ = QP dgf + ¢ df + G dd

in orthogonal systems, sin@kr measures the diagonal of a rectangular parallelpiped
whose sides are measuredday, do», dos, up to higher infinitesimals.

3. — The first partial derivatives a@f are proportional to thdirection cosines of the
normal to the surface;q Those cosines are therefore equal to those derigatirnaded

by +,/Aq . Since the normal to the surfagés not that of the tangent to the lige one

will have:
1 0qg _ 10x 1 0q _ 10x 1 0q

JAq ox, Qoq’ JAq dx, Qaq’ JAqdx Qaq

when one fixes the positive senses of the direstioging varied conveniently. When

those formulas are multiplied bgﬂ ﬂ ﬂ respectively, and summed, that will
X 0% 0%
give:
1
AQi = (3)
Q
Therefore:
ox, Qoq

4. — Recall that the determinant of the cosines ef @hgles that one line of an
orthogonal triad makes with those of another ortimagjtriad is equal t& 1, and that can
always be done in such a way that it is equal g i1 which case, one will merely have
that any element of the determinant is equal tows algebraic complement. Since the
determinant:
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0x 0% 0%
dg, 0Jg, 0dq;
g% % 0%
dg, 0q, 0q,
0%, 0% 0%
dg, 0Jg, g

is deduced from the determinant of the cosines, divided dwehicals toQ;, Q», Qs,
respectively, one will see immediately that= Q; Q. Qs . In addition, the elements of
each vertical td] are proportional to their own algebraic complemen®n the other
hand, let us take:
_0x 0% 0% 0°% 0% 0°X
oo, 0g0q 0g oqdg 0qgo@ g

for the moment, in whicl, j, k represent an arbitrary assignment of the indices 3, 2,
The orthogonality condition between the limpandg; amounts to saying that when:

a_xla_xl+a_x26_xz+a_x36_x3: 0
dg 0q dqoq 0¢gaq

is differentiated with respect m , that will gives + s = 0. It will then follow thats; =
s =s3 = 0, and by virtue of the aforementioned property, onegoanthe equalitys = 0
the form:

oy 0% _0°%
dg 0q 0qaq
» o 9%
dq 0q dqdq
% 0% 0%

= 0. (5)

dq 0q 0dqdq
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5. — Having assumed that, we seek the lines of curvatutedurfacey . Displace
the point on that surfadd in such a way that the positidvh (g1, g2, g3) will go to the
position:

M’(QL + A1, Qo+ A2, Gz + Aa),

in which &g = 0. SinceMM ' is along a line of curvature, it will be necessary that

normals aM andM ’to the surface; must meet. Lex; — A a—xl, X2 — axz 6x3
aqi aq| aql

be the Cartesian coordinates of a point on the fiosimal. Since it will belong to the
second normal, one will need to have that the vanatiof the coordinates under the
passage frorivl to M“must be zero; i.e., that one must have:

X3 —A

ox-152 - 5o
dg  0q

ox, - 1622 %% 5 -, (6)
dg  0q

ox, 162 %% 51 -0
dq dq

The elimination ol andoA will lead immediately to the condition:

oo, 9q
a_xz 5)(2 a_X2 :0,
oc; aq
oo aq
which is equivalent to:
0 0 0 9° 9°
a_x1 6)(15’ aXléq“ G a)€L 265 axl °4
4 Q, q qoq ao g
2 2
oq; aq, aq 0qdq oqog
2 2
% %% g+ %850, 2% 5q+0 % 5q
og  0q 0q dqaq 0q0g

If one decomposes the columns then one will get a quadoat in &g and A& in the

left-hand side in which the coefficients 86 and dg; will be:
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o 0% 9°x ox  0x  0°x
dq g 0qdq 0q 0q  9qaq
0 0% 0°% 0% 0% 0°%
dq 0q 0qoq |’ dq dq  0qoq |
0% 0% 0’ 0 0% 9%
aq dq 9qdq dg 0q 0qdq

resp., which will therefore be equal to zero, by virtu¢>f What will remain are the
terms indg; Ak , whose coefficients cannot be zédentically, since all of the lines that

emanate fronM would alwaysbe lines of curvature. Thereford; = 0 ordgk = 0. One
then has Dupin’s theorem:

In any triply-orthogonal system, the surfaces of two familiestisitie out all of the
lines of curvature on any surface of the third farQily

6. — In order to find the principal radii of curvature oétburfaceg at the pointV,
one needs to displace that point along the coordinatedjrada. . If rj andri are the
radii that are defined in those two directions therr thaliues will obviously be given by
the expression®; A, in which A is calculated by means of equations (6). Suppose that
one would like to calculatg; , for example. In that caség = 0, &g« = 0, and one will

haved= ai Xq;, and therefore equations (6) will become:
i

ox _ ) 0°x 0% 04 _o,
aq; dqgdq dqagq
axz_)l 0%X, _a_xzﬂzo
aq; dqgdq 0qagq
0% _ 0°% 0% 04 0.
aq; dqgdq 0dqaq

If one multiplies this bya—xl, g—:;z ZTXS respectively, then sums, and takes into account

i i i
the orthogonality of the lineg andg; then one will get:

2 A a 2 aQ
= —Q ' =AQ —.
N 20q, ° ? aq,

() See LAME:Lecons sur les coordonnée§88 XXVIII, XXIV; or BIANCHI: Lezioni di Geometria
differenziale (Pisa, Nistri, 1885-86, § 122). Another interesting proot tkabased upon kinematic
considerations is due to Beltrami (Rendiconti delkigt lombardo, 1872, pp. 483)
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Therefore:

7. — Formula (7) can be proved geometrically in ayv@mple way by taking an
infinitesimal arcMM “along the lineg; and considering the alN’into whichMM “ will
change when; becomeg) + dg . One will then have:

00.
MN=dg, MM’=dg, NN'=dg +6—Q’dq dg,
q
and the obvious relation:
NN'- MM’ _ MN
MM’ r.

ij

will transform into formula (7) directly. That nmy serves to exhibit the idiosyncrasy
that Lamé adopted in his clasdiecons Constantly preoccupied with giving the
geometric form of the results of his calculatiotigt illustrious inventor of curvilinear
coordinates always introduced the curvatures ofcth@rdinate arcs and the derivatives
with respect to those arcs in the final formulaghat serves to exhibit the true
significance of the formula “inasmuch as” (as Laplasaid) it is interesting that the
results of the analysis will apply to space, andwveosely, one can read of the
modifications to lines and surfaces and the vamatiof the motions of bodies in the
equations that express them. That rapprochemegeahetry and analysis sheds a new
light upon the two sciences: The intellectual opers of the second one, which are
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made sensible by the images in the first one, areretsieomprehend and more
interesting to follow, and when observations realizes¢honages and transform the
geometric results into natural laws, one’s view ot gublime spectacle will embody the
noblest of all the pleasures that are reserved for hurature.




CHAPTER XIX

DIGRESSION ON DIFFERENTIAL PARAMETERS

1.—If one is given a functio¥ of the orthogonal Cartesian coordinatgs<, Xs then
the functions:

2 2 2 2 2
AVza_v +a_v +a_v | sz:az\/+av+av,

ox ) \0x%) (0% o5 0% 0%
which one calls the first-order and second-oditerential parameterg§) of V, have the
property that they do not depend upon the system of axbgesgpect to which they are
calculated. Indeed, it is easy to prove that if onetestthe orthogonal triad of axes
arbitrarily then the values of the differential pasders at each point will remain
invariant (). That will give the geometric and mechanical signifa of those
parameters, which imdependent of the orientations of the axésr example, le¥; be
the mean of the values that the functi¥hassumes over a spherical surfaces of

infinitesimal radiusr, and letVy be the value oV at the center of the sphere. If one
ignores infinitesimals of order higher than the sedbed one will have:

ov 1 o0’V 0%V
V=Vog+ X —+...+=— +...+2 +.n ],
™ Z(Xfaxlz 2 a0 j

when one supposes that all of the derivatives arelatdcliat the center of the sphere. If
one multiplies bydsand integrates over the entire spherical surface, whderving that:

j)g ds=0, szxgds:...:O, jxfds:...:%jrzdszésrz,

then upon dividing bgr?, one will get:

() Considered for the first ime by LAME. See hiscons sur les coordonnées curviligngslil.
Whoever wants to learn about the general theory of diffeal parameters, when it is established upon a
purely analytical basis, should read a paper by Prof. TBEMI that was published in th&ccademia di
Bologna(vol. VIII of series 2, pp. 549) and another one by PréE@ in theAnnali di Matematicgvol.

XIV, series 2, pp. 1).

(") For an infinitesimal rotation of the axes (cf., Chdp § 3), the first and second derivatives\bf

with respect to; will change by:

a267V_a367V’ Z(a oV oV ]
0x, 0x,

26x16x3_ 0%0%

resp., and therefore the means of the variationd/afndA?V will bee:

v __av)ov o0V Y
T ey |— =0, I{ays o —a.. o |=0,
(a"’dxs asdxz]axl { “0x,0% a‘“’axlaxz]

resp.
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One can establish an analogous equalityfgr when one considers the mean of the
values o2 That equality will make the invariance property\fandA?V obvious.

2. — Letm, ar, as be the cosines that define an arbitrary directiohe iftegral ofo;
a; ds when extended over a spherical surface of radiuslllhavie the value #/ 3 or 0,
according to whethar=j ori #j, resp. Indeed, in the first case, one can write:

jaﬁ ds = ﬁ”cos?e singdé dy = 2nfco§e sirgdé = %’7,
00 0

and in the second:

man

ja’i a dszj I sin® @ cos¥ cog dddy = 0.
00

Given the above, the derivative 6in the direction considered will be:

dv_ dVv ov oV
—=a—+a,—+a,—. Q)
do 0% 0%, 0%

If one squares this, multiplies s and integrates over the whole sphere then it will

follow that:
2
j (d—vj ds =27 v,
do 3

Similarly, if one observes that:

2 2 2
AV _ 2V 2OV o, O s (2)
do X d 0%0%

and multiplies bydsand integrates then one will get:

2
| IV 4s =47 2y,
do 3

Therefore, the values @V andAV are proportional to the mean values of the second
derivatives and the squares of the first derivativesp.rever all directions that can be
considered around each point (

() BOUSSINESQCours d'Analyse infinitesimalé. 1, 2% fasc., pp. 57, 71.
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3. — The invariant significance @V can also be deduced immediately from formula
(1) when one considers the direction that is definethbycosines to be proportional to
the first derivative ol. Let 8 be the angle that the direction makes with the obimer
(1, a2, a3). One can then give (1) the form:

d—V: AV [Tosé

do

Themaximumvalue ofdV/ dsis then attained fof= 0, and is precisely/ AV . In other

words, / AV is the derivative oY in the direction along which the function variasst

rapidly. Note that this direction is precisely that of themal to the surfac® = const.
Similarly to formula (2), one deduces that the diretior which the second derivative
is zero will constitute a quadric cone, and it is obvid it cannot depend upon the
axes. The discriminant of the quadratic form (2), wiscthe Hessian of the function

is theninvariant, and the sum of its principal minors of first andessetorder also enjoys
the invariant property, as well A8V, in particular. Other interesting interpretations ca
be given for the differential parameters. They &ltve to show that “the second
differential parameter is, so to speak, tlezivative par excellencenamely, a derivative
that expresses how much more generality one has imtige of variation of the
function.” (). That is why that parameter has the highest importzna# branches of
mathematical physics.

“When a class of physical phenomena depends upon theosmsiaf a
certain function, almost always that will come abdwyt means of its
second differential parameters, as if it wengagural derivative which is
more essential, simpler, and at the same time, carglete in all of the
partial derivatives (which are chosen more or less ariyty than the
derivatives that one is used to considering)’ (

4. — The differential parameters also present therasetite naturally when one makes use of
quaternions(” ), or complex numbers that result from the combinatidrth@e additive kind) of acalar
(viz., a real number, with no sense of direction) amdctor, which is a rectilinear segment in space whose
magnitude and direction are defined by its projections dnee arbitrary orthogonal axes. Therefore, the
displacementy, v, w) of a point is a vectow = iu + jv + kw, and the double rotation of the medium is
another vecto =i 7; +j 7; + k 73 , in which theunits i, j, k, which are linearly-independent, are subject to

only the conditions that:
iZ=j?=Kkt=-1, jk=—kj =i, ki=-ik=j, ij=-ji=k

The dilatation® is, however, scalar. When one applies the Hamilpemaior ( ):

() BOUSSINESQ]oc. cit, pp. 72.
(") LAME, Lecons sur les coordonnées curvilign@V.
(") I highly recommend that the reader should study the clsafkénematics” and “Physical
Applications”in TAIT's Elementary treatise on quaternions.
(

okkk

) TAIT, loc. cit, part two, pp. 35.
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.0 .0 0
O=1—+]—+k—
ox 0y 0z

to the displacement, which is meant to preserve the girepef the usual algebraic calculations (except for
the commutative property of multiplication, if neces3aope will get:

Ow=-0+17,

which is to say: Thdilatation and twice theotation of the medium are the scalar and vectorial paltaf
respectively. However, when the operdibis applied to a scalar, one can only say that thersgiahe
modulus of the result is equal to precisely the first-odiféerential parameter of that scalar, namély £
A. If one repeats the first result of the operafibance more then one will get:

and that will obviously remain true when one operatea wector in such a way that the second differential
parameter is not the result of two operation8l,oépplied in succession, up to sign. It is useful to pmint

the great simplicity that the problems of elasticityl assume when one makes use of the symbols that
were just defined. The three indefinite equations of ielagilibrium in isotropic media (Chap. 1V, § 5)

can be summarized in otfé= ¢, in which F is the vector that represents the volume forces -Xé&.jY
+ kZ — and¢ represents the quaterniorA© + B 7, which is a slight modification dficw. Moreover, the

introduction of the vectoR =iU +jV + kW, which was considered in Chap. Xl (88 4, 5), will pernmieo
to write, first of all,0Q = 477¢, and finally0?Q = 477F. That makes it obvious that it is possible to always

reduce the questions of elasticity to the Dirichlebjgm. Those considerable simplifications should not
appear marvelous, when one reflects that:

“In physics, in order to reason, and not calculates bften desirable to avoid the
explicit introduction of Cartesian coordinates, and to acggauusly fix one’s attention
upon a point in space, taken by itself, and not upon ieethoordinates, such as when
one fixes one’s attention upon the magnitude and direofi@nforce, and not upon its
three components. That way of considering geometric andcphypiestions is more
natural then the other one, and it is the first toetonmind. Nevertheless, the ideas that
result from it were not developed completely up to the fimehich Hamilton made a
second great leap in the study of space thanks to thatioweof the calculus of
quaternions.” ()

5. Expression forAV in curvilinear coordinates. — One has:

ov — ava_q1+a_V%+a—Va&

i=1,273).
ox 09, 0x 000X 0@GOJX

If one then squares this and sums, while taking int@wdcthe orthogonality of the
coordinate surfaces and formula (3) of the preceding chapen one will get:

() MAXWELL expressed this in the preliminaries (§ 10) of hsnortal Treatise on Electricity and
Magnetism Here, one should also be careful to consult théenfeat of these precioyseliminaries.
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1(avY 1(ovY) 1(ovY
Av= — | 2OV 2OV 3
Qf(aqu +Q§(60J ' @[Mj ©

6. Expression forA?V in curvilinear coordinates. — We first treat the special case of
V=g . One deduces from formula (4) of the previousptér that:

152

o°q _ .
o dgox @ Goxog

J

setting] = 1, 2, 3 and summing will then give:
01,1500

ox, Q@ Q450x0q

Now, if one observes the predicted formula (4) amderts the orders of certain
differentiations then one will have:

A2qi =

0 9% _0q 0 0% 0g 0 9% g 9 9%
0x, 0q 0x,0q0q 0x0g0¢g 0x09gd(
_10x 00x 10% 00x 10X 90X
Q*0q0q0q QGo0gogdg G0 gow ¢

2

jaxj aq 1
i(axliaxuaxziax“axsiaxgj
Q00,090 0q0qdq 0gdgd g

+i(6_>&ia_>ﬁ+a_xzia_xz+a_xsia_>%j

Qi\0g,0q0q, 0g0gdqg 0qdadg)

Summing will give:
a 0x, _ :L(axlaaxl ax, 0 0, 6x366x3j

In the meantime, if one takes into account thenitefn of Qx [form. (2) of the preceding
chapter] then one will have:

0% 0 0% 0% 9 0% 0% 0 0% _10 H _q0Q
0g,0q g 09 0qoq 0go@dqg 20g - Og

Therefore:
a9 0x, _ 1 6Q1+_1&+_1%:1I09Q1Q2Q3

70X, 09 Qoq Qadq Qaog Oq
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and consequently:

Aza

2 4)

:D||—\
+

Q)

QO

0

[

7.— We now pass on to the general case. One has:

2
oV _ 6V6qi+26q a oV

0x; 4 a_qiasz i aaﬁ

Settingj = 1, 2, 3 and summing will then give:

0x 0x0q 0%0%0¢@ 0Xx0x%0(

szzza_vAzqi@[ﬂia_v L0900V, a_qia_vj
The expression that is found in the second summaign can also be written as:
i[a_&ia_vﬁ_xzia_ha_xsi 6vj 100V
Q

2\0q ox0q dgdxog 900 %0, Q?dqag’
Therefore:

2 2 16V
AV = —A°qg 5
Z[ gV qo qzj ©

hence, by virtue of (4):

) )

RV P(quga_VJ ( Qlan
QQQ[oql Q 29/ dgl Qog

That is the very importaritamé formulg)).

0) _Lecons.., § XIV. The proof that is given there does notdliffin substance, from the one that
LAME carried out in 88 XII, XIII, XIV of hisLecons A more general formula that relates to the case of
variables can be found in Prof. BRIOSCHT'sorica dei determinantpp. 93).
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X2

8. — Apply this to the system @olar coordinates= In that system, one has a family
of concentric spheres, a family of cones of rotajowith their vertices at the center of
the sphere and a common axis, and finally, a pencilasfes with the same axis. The
parameters are the radiu®f each sphere, the angkthat the generator of one of the
cones makes with the axis of rotation, and the aggleat each plane makes with a fixed
plane. At any point, aadius ameridian and aparallel cross at right angles. Along
those lines, which are tlewordinate linesthe line elements ag, r dg, r sin 8dy. On
the other hand, one knows that these elements aressgdréyQ; dr, Q. d&, Qs di.
Therefore:

Qi=1, Q=r, Qs=rsing O=r’sing,

and Lamé’s formula will become:

or sing 06 00

or

r2

2
AZV:i{i(rza—vj+ 1 9 sinHa—Vj+ L av}

sirgay?

9. Second proof (). — Lamé’s formula presents itself in a rather simplenfwhen
one seeks to establish the general equation of the yth@brheat in curvilinear
coordinates. LeY represent the temperature at the various points ofre@eneous and
isotropic medium, and seek to express the quantity dfthatcrosses a planar element
ds during the timedt. Take an infinitesimally-close element that is patab the first
one, with the temperatué + dV, and imagine that they formwall of infinitesimal
thicknessdn. Note (') that the differenc& — (V + dV) of the temperatures on the two

() Also due to LAME Lecons.., § XVI.
(") See, for example, JAMINGours de physique™ ed., t. Il, pp. 335.
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faces of the wall, divided by the thickness and muéglby a coefficient, which is
called the coefficient ofalorific conductivity will give the quantity of heat that passes
through a unit area on the surface per unit time. Theflueathat traversedsduring the
time dt will be:
V-V - VY s g

dn dn

c ds dt

Given that, consider the parallelepiped that is constluoben the line elementdg; = Q;
dg (i =1, 2, 3). It will receive a quantity of heat thaeigpressed by ECZ_V ds dt upon

crossing the facds, and will lose the quantity:

10V d( 10V
| = dg+—| 2L ds| dg| c dt
RRCr

in such a way that the quantity of heat:

0( 1oV 0 ( 0oV
C—|———4ds |dgdt= c—[——j do dop dosdt
[ q j g | Q 9g

will remain in the spatial element. The total qutgnof heat the elemendS acquires

during the timedt is therefore:
cdetZi bov (6)
0 ““oq(Q adq .

On the other hand, one should note that this qamtiheat must be proportional to the

rise in temperatur% dt, and to the massdS and that the coefficient of proportionality

must be the specific he@t Hence, the expression (6) is equivalent to:

oV
c 5ds dt.
al

If one letsk denote the consta@lp/ c then a comparison will give:

1 0 ( 0O oV ov
Rl S AN YA
Dzaqi[qzaqj ot

The right-hand side of this cannot depend uporctimce of system of coordinates, on
the strength of its physical significance. Therefdhe left-hand side must preserve the
proper heat unaltered when one specializes thedowte system. In the case of
Cartesian coordinates, it will becom@V, since one hag =x, Q = 1,0 = 1. It will



156 Introduction to the Mathematical Theory of Elasticity

then remain to prove the Lamé formula, and at the samme one will see that the
propagation of heat in the homogeneous and isotropic madiuvegulated by-ourier’'s

equationA®V = k %—\t/ In particular, one observes that if a body is ertial equilibrium

then it must satisfy the equatiddV = 0 [viz., theLaplace equatiorf)] at all points.

10. Transformation of integrals.— LetV be a finite function that is continuous and
uniform, and consider the triple integral:

av ds
dg, O
1/
O /
~_0
[

For a lineq; , take the surfacep andgs and consider the two infinitely-close surfacgs

+ dgp andgs + dgz. Those four surfaces cut outhannelfrom space. Decompose the
body into an infinitude of similar channels, which osswanes are being traversed in the
sense by which one computes the and let 0 and 1 distinguish everything that refers to
the points ofentranceandexit of the channels on the surface of the body, respegtivel
Given that, the integral considered can be written as:

ov B o B
mad% dg, dg = [[dq, dq;ja dg= [[(v,~V,) dg, dg.

Each channel cuts out an elemdst or ds; from the surface whose projection onto the
tangent plane to the surfage at the point considered will give a right sectminthe
channel — i.e., a rectangle that the dimensi@nda,, Qs dgs . Since the angle between
the lineq; and the normal to the surface of the body is aatithe entrance and obtuse at
the exit, one will have:

Q@ Qsdp dgs = ds cos (o, 0r) at the entrance,

Q Q3 dgp dgs = — ds cos (o, h) at the exit,
and therefore:

[[V.dg dg -]V dg dg

() Mécanique célest.iv. IIl, XI.
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_ Jvlcos 0 ql)dg _jVo cos q)d% __ jvlcos Mq)ys.
QQ QQ QQ
oV ds

EE:—J‘Qchos(nq)dES. (7)

Hence:

(9) of Chap. I is included in that formula.

11. Third proof (*). — The transformation (7) puts us in a positioptesent another
beautiful proof of Lamé’s formula. Consider theegral:
J=[av s

and varyV. By virtue of (3), one can write:

EEE R Hil

If one takes the variation and integrates by pads:

2 Q’ dq, dq Qzaqzaog Gogog)O
I
aq | QF 9q 0 Qg g\ Gogq O

_jiEG_V ,o0(Hovi), 0 0oV s A
oq(QFaq) dogl\ Goqg) agl Gog O

If one adopts (7) then one will see that the fingggral transforms into:

159 = J-{D 0V 9oV , 0 9V 3oV [ avaavj ds

.[[Qila—vcosﬂﬂq )+—26—V cos(ig, )*ag—v COS'(‘Q}

i.e., into— jé\/ %ds. Hence:

() Due to JACOBI (vol. 2 of hisath. Werkg.
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%m:—ja\/adids— fov 9 [Hov )l ds
dn 0g\Q oq )| O
In particular, if one takes Cartesian coordinates:then

153=-[ov v ds- [ 6VIA* VOds.
dn

If one equates the two expressions fdrand observes that thd/ that relate to the
various points of the body are completely independenadt ether then one will see that
Lamé’s formula must be true at any point in space.




CHAPTER XX

ISOTHERMAL SYSTEMS

1. Level, equipotential, isothermal, isostatic surfaces: Although not everything
that we are going to present has direct importantkeiory of elasticity, we nonetheless
believe that is useful to discuss those things in ordeithe@r exhibit more evidence of
the theory of curvilinear coordinates or to shed sogt bn the laws that exist between
the various branches of mathematical physics. lrofathe mathematical theories of
natural phenomena, one is led to the notion of a ceftmiction and the study of the
surfaces upon which that function remains constant. Hneythelevel surfaces of
hydrostatics, theequipotentialsurfaces of the theory of universal attraction, arg th
isothermal surfaces in the theory of heat. From the geometswpoint, there is no
essential difference between all of those familiesusfaces. Therefore, it is enough to
speak of isothermal surfaces.

2. — If a body is in thermal equilibrium then it candmnsidered to be the geometric
locus of an infinitude of surfaces, upon each of whichi¢heperature/ is constant. 1§
is the parameter of that family of surfaces — whichcaledisothermal— thenV cannot
vary wheng does not vary, and therefoves a function of onlyg. One will then have, in
succession:

oV _ dv aq 0V _ dv d*q, &V aq| .
, 9V i=1,2 3),
ox  dqox x> dqg a>§ def ( 9 x

so when one sums, one will get:

d2
ag

We have seen that in order to have thermal equilibrivenmust havé\®v = 0. It then
follows that:

dV

AV = Azq +—

A% __d?V/dqf "
Aq  dvidg

If we observes that the right-hand side is a fumctof only g then we will reach the
following conclusion:

In order for a family of surfaces with parametgto be isothermal, it is necessary
that the ratio of the differential parameters oslopuld be a function of only(g). This
condition is alsasufficient.

() This important proposition is due to LAMEgcons §§ XX, XXI.
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In fact, suppose that the ratio of the differentialapagters ofj has been found to be
expressed by (g), and seek to determine Equation (1) will become:

d, _dv
—log— =~ ¢ (q),
aq gdq )

and with two successive integrations, one will dedthatV = A7 + 1, with A and y
arbitrary constants, and:

= .fe_w(q)dqdq.

The functionr depends upoq alone. One can then assume thistthe parameter of the
family of surfaces, which is distinguished frogqnby the name of théhermometric
parameter since it verifies the stationary temperature &qona\’r = 0. One observes
that adopting the thermometric parameter will léadhoteworthy simplifications to the
calculations in curvilinear coordinates. In parla, if g1, 2, gs are the thermometric
parameters of a triple family of coordinate surfatteen Lamé’s formula will become:

o, 10V 10V 109%V
AV= ——+———+—— :
Qo Qadg Qog

In order to insure this, it is enough to supposa fifg = 0 in formula (5) of the
preceding chapter.

3. — It is useful to know some families of isothernsakfaces. In the first place,
observe that the families that constitute the systépolar coordinates are all isothermal.

Indeed, for the concentric sphere, one will hage X2 + x> =r ? ; hence:

, Ar=1, Nr =2, -

o _ x r _1 % 2 Ar_ 2
rord r Ar r

If one wants to find the thermometric parametentbee will have:

- fowar _pdr_ 1
: j¢(r)dr =2 logr, Ie dr= Irz o

2
r

g(r)=

and one can take= 1 /r. With that, one can know the distribution of teenperature in
a spherical shell whose terminal surfaces are mamed at constant temperatukgsand
V1. Indeed, one hags=A/r + 1, and the constantsandy are determined by means of

the equationsi+ M =\No, d+ K4 =Vi1. One shows in an analogous manner that the
r0 1
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families of cones and planes upon which the thermomptarameters are log tay 2
and ¢, respectively, are isothermal.

4. — Three interesting families of isothermal surfaces @en provided by the
homofocal surfaces of order two. They are representéaebgquation:

2 2 2

X . % . % )
7o P e b )

in which one must suppose that = 0, a2 = b, as = c. One hallipsoidswhenq is
greater thanb and c, hyperboloids of one sheethen q is betweenb and c, and
hyperboloids of two sheetghenq is less tharb andc. One then hathree families of
surfaces, and it is known from analytic geometry ttietse families are pair-wise
orthogonal to each other. We shall now prove, by me&rnsamé’s rule, that any of
those families is isothermal. If we partially-diféatiate (2) and set:

2 2 2

D S -
(@®-a7)® (a°-a)® (9°-a))?

then we will get:

= fa? = ng_)‘: i=1,273), 3)

and upon squaring and summing this, we will get:

1

AQ = :
q M

After a new differentiation, one will similarly get:

1 1 1 )
7-a? + q2—a22+ qz—a'32_ M Aq + Mg A“q + Z{

2X +6Mj aq

(qz _a,iz)z 6)§ qa_X : (4)

Now, if we set:
2 2 2

- X % X3
N = + +
(@*-a’)® (a°-a))’ (a°-a5)’

then we will have:
oM 2%,

ox (o -af)? 0%

and therefore:
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x 94

2x oM ) oq _ ' O »

+ =49y —— - AN?Aq.

Z{(qZ—af)z aquax 2 (mapy N
Ultimately, by virtue of (3):

. %
3 ox _ 1 3 x _ N
~(0*-a’)* Mg5(q’-a’)® Mg

Consequently:

(qz _a,lz)z a)g aX M

Z{ 2x +6qua_q:ﬂ_4Nq2Aq:0,

and the equality (4) will become:

1 1 1 1
2 2+ 2 2+ =
q —-a; q-a, Qq-da, q

Finally, one then has:

A%q q q
= + = , etc.
i et A0

5. — What is quite interesting, from the viewpointmfre analysis, as well, are the
families of coordinate surfaces that are composefliows: A family of parallel planes
and two families of cylinders that are perpendicuitathose planes and orthogonal to
each other. We would like to show that if a fanolfycylinders is isothermal then the
family that is orthogonal to it will also be isoth@al. We will haveQs; = 1 for it, while
Q1 andQ; will be functions ofg; andgp, but notgs =z Note that [Chap. XVII, form. (3),
Chap. XVIII, form. (4)]:

1 > 10 O
T YThn g
hence:
Ag_0,.0
A dg Q'
ie..
Az_qlz i]og&’ ﬁ: i]og& (5)
Ag 0 Q  Ag, dg, T Q
Consequently:

0 Mg, 007
0d, Aq, 0, Ag,
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2

If the family g, is isothermal then Lamé’s rule (8 2) will say th%ti does not depend
G

2
upon g, and the last equation shows th%tiwill not depend uporg; in that case.

Aq
Therefore, the familyg, is isothermal. If one take and g to be the thermometric
parameters then formulas (5) will show ti@f / Q. is constant. It is clear that a
thermometric parameter can always be multiplied bgoastant without losing its
characteristic property. By virtue of a known form{€@hap. XVII, form. (3)], the
corresponding functio® will then prove to have been multiplied by a constadhe can
then do that in such a way that the r&io/ Q. is equal to unity. In that case, taRe=
Q2 = 1h, and Lamé’s formula will assume the simple form:

2
A = h? 62\£+62V 2V
¢ 0¢p ) o7

6. — One can construct an infinitude of pairs of familiésodhogonal isothermal
cylinders by taking the parametegs and g, to be equal to the real part and the
coefficient of\/—_l, respectively, of a function of the complex variahle xz\/—_l. It is
known that one has:

99 _ 09 09 __09

ox,  0x,  Ox, 0x

and one will see immediately thatg; = 0,A%q, = 0. That proves that the two families of
cylinders are isothermal and, at the same time, shbats; andq, are precisely the
thermometric parameters of the two families. In &oddj one will see that:

99,09, , 0906, _
0% 0% 0%0%
and that is precisely the orthogonality conditionon@ersely, it is easy to see that the

preceding construction will provall of the possible families of orthogonal isothermal
cylinders. Indeed, one will see that one can always segpa); = Q- ; i.e.:

SERaNEY
SEEaNE

On the other hand, in order to express the orthogonatiey will have the equivalence:

or
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99, 99, _ 99, 9,
0x, 0% 0%, 0%

If one multiplies this by2,/—1, adds it to the preceding equivalence, and takes the
square root then one will get:

0q, , 0, _.[99, 0Jq .
A+ 2 [-1=+ 22— /-1
¥ \/_ +[ax2 6)(2\/_j

0% 0%
i.e., one will simultaneously have:

0% _,9% 09 __00
ox,  0x, Ox, O

Therefore g, + 24/ —1 will be is a function ok; +x, / —1.

7. — “While hydrostatics and potential theory haveaduced families of level or
equipotential surfaces, resp., and the theory af has introduced families of isothermal
surfaces, it is the mathematical theory of elasgigilibrium in solid bodies that has given
rise to the consideration of three conjugate ominad families. Indeed, it results from
that theory that there will always exist three ogbnal planar elements that are subjected
to elastic forces normally at any point of a sahdelastic equilibrium. If one then
considers, at the same time, that triad of elemenary continuously with position at all
points of the body then that will defing ¢hree families of orthogonal surfaces that one
calls anisostatic systemand they are endowed with the fundamental propertyeing
the only surfaces that are subjected to elasticebmormally... One knows that any
orthogonal system can occasionally become isostditén those of its surfaces that form
the walls of the solid are subject to normal pressult is enough that the signs and the
intensities of those pressures vary convenientdynfone point of the surface to another.
The property of being isostatic therefore has & ifferent nature from that of being
isothermal, which belongs to only a certain familf surfaces. However, the true
fundamental property of any isostatic system is ¢hé#gatory meeting of the three
families of surfaces and their necessary orthoggnallt is that property, so neatly
characterized, that gave birth to the idea of d¢wme@r coordinates... Its use is
indispensible when one would like to treat bodiés avell-defined form in the various

() Unfortunately, that surface does not exist, in gdnéecause a pair of orthogonal directions in a
plane that are defined at any point can always be coesidie be those of the tangents at that point to two
lines of a doubly-orthogonal system in space, but thivgoias property is not true for an orthogonal triad
of planar elements that are also defined at any poina gaper “Zur Theorie der isostatischen Flachen,”
[Crelle’s Journal (1881), pp. 18], WEINGARTEN has carried awgearch for the restrictive conditions
under which one can verify the existence of an isostgitem. The question can also be treated by means
of the “Formole par lo studio delle linee e delle superfioithogonalii” that was developed by Prof.
BELTRAMI in the Rendiconti dell’lstituto Lombardo (1872).474.
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branches of mathematical physics, in which one indeedyslweals with integrating,
that is to say, to determine one or more functions ringst verify one or more second-
order partial differential equations that express thesighy laws that those functions
must obey. In addition, those functions or their gainetegrals must verify other first-
order partial differential equations for all points dketsurface of the body that is
considered. Now, that problem of double integration woulddmepletely inaccessible if
one did not refer the points of the body to a coordisgstem such that the surfaces are
represented by equating one of the coordinates to a consfBme idea of curvilinear
coordinates came out of the mathematical theory stieiy, and it is also in that theory
that the new tool leads to laws that are more completemeet up with a larger number
of applications. The equations of elasticity, whemgfarmed by means of the various
parameters of the orthogonal system, will be presemntédei form that is best suited to
the integrations... Coordinate systems characterize t@ses or stages of science.
Without the invention of rectilinear coordinates, algelrould perhaps still be at the
point at which Diophantus and his commentators lefaint would not have arrived at
either the infinitesimal calculus or analytical mewia. Celestial mechanics would be
absolutely impossible without the introduction of sptedricoordinates. Without
elliptical coordinates, famous geometers would not hawn @ble to solve several
important questions of that theory that were left nagngand the full scope of those three
types of special coordinates has merely been touched udowever, whereas it will
transform and complete all of the solutions of ced¢stiechanics, we need to address
mathematical physics or terrestrial mechanics sesiouslwill then necessarily be only
in the realm of arbitrary curvilinear coordinates thatoar address the new questions in
full generality.” ()

() LAME, Lecons sur les coord. curviligneBiscours préliminaire and §§ CXLVIII, CC.



CHAPTER XXI

GENERAL EQUATIONS OF ELASTICITY
IN CURVILINEAR COORDINATES ( )

1. — We have seen that the line element is given by tieufa:
do* = Fdgf+ Q¢ df + ¢ dd

in orthogonal curvilinear coordinates. If one varies pbsition at each point then it will
follow that:
dodo= Q’dgddg+ @G dqo dg+ @ dgp di

+ Q15Q1Edcf+ QZdQDd@+ Qo QDdé.
If a1, a», a5 are the direction cosines of an element then alhdave:

dg, dg, dg,
a=Q1—, =Q—, a3=0Q3——,
! Qlda 2 dea 3 3da

and the preceding equality can then be written:
odo chql

od od o o o
G = @At Q a0 b ra S vt 22

One now observes that:

ag =dag = —idql dg +——= 0dg dg, +——=2 oda, dg.

do do
Therefore:
odo - 2,0, ﬂédq1+ﬂ5dql+&5dq +a125—
do Q dq Q dg Q dg

+a,Q, 2.2%% +ﬂ5d%+&5doﬂj+a§

Q dqg Q dg Q dg
ﬂ5d08+ﬂ5dq+ﬂ5dqj+a§5
Q dqg Q dg Q dq

Q
Q
9Q

Q
2Q
3"

+a3 Q3

As a consequence, if one sets:

() See the paper “Sulle equazioni generali dell’elasticii”Prof. BELTRAMI in theAnnali di
Matematica(1881).
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5gl:m+5_Q1, 50{:&5&]”%6503,
Jq Q Q 0g Qadqg

056,=99% 02 = 5, 200G Q006G
aq, Q, Q dq Q dqg

50,=99% 0% 5, Q035G Qg
Jg, Q Qdg Qaq

(1)

one will get:

odg_ al 0, +a500,+a’d0,+ mamd+ o+ a2 day . (2)
o

2. General equations.— Take a body thahas already been deformed and
equilibratedunder the action of the volume forcés (S F, dS F3; dS, surface pressures
(g1 ds ¢, ds @3 d9), and internal forces. Imagine a virtual motion arouhdt
equilibrium position that takes each poigt, (02, gs) to the positiond; + A1 , O + A,
gs + AOz), where the variations aw®; , &), , s . The work done by the external forces
per unit volume is:

QiFi o +QFdyp + Qs F3 A3

for each point of the body, and the work done per uea at each point of the surface is:

Q11+ Q22 A+ Qs P3 A3 -

As for the work done by internal forces, it is soldlye to the alteration of the relative
distances between the points of the body, and by virty&)oft will therefore depend
upon the variationsd8, 06, o6, o, day, ows . Since they are very small, by
hypothesis, the aforementioned work per unit volume afpainyt will be represented by
an expression:

O1 06+ 0,06 + 0306 + Q1 0 + Q2 oy + Q3 oy

in which the® andQ are certain functions af, gz, gs. An application olagrange’s
principle will then lead to the equality:

[QFJQ+QFRIG+ QRO IS [( Yo ¢ @O ¢ @I ¥ «
(3)
+ [(0,06,+0,80,++Q,aw)dS=0.

We now seek to free the variatiods;, dp, gz from the third integral by the usual
process in such a way that they will appear explicas they do in the first two integrals.
If one recalls (1) then:



168 Introduction to the Mathematical Theory of Elasticity

95q, dS (O
[o,08ds = .[D@la—q?l%+ja15QldS.

If one integrates by parts and uses a known transfamétihap. XIX, 810) then one
will see that the first integral is equal to:

JD@ 65qlgd§ 6&9 d\, J'Ql 6&9 dS
g, D
Similarly:
QQ,0dq, QQ aaqj 265q ds, ddq, ds
Q, b dS= [| 2 24221 7%% | g5 = [Q2 2 QRQlit =
Jod j( 0, Q 0dg j js6qu
One now has:
, 094, dS s 0Q2QQ, dS
.[Qz aqSZE - j_(Qz ng o 2)_ '[5 2603 D
=-[QQ,cosig )0 q ds-[ 5 anz(?lQ dDS
3
Consequently:
[Q 0w ds

04 QQ, 5 g+6Q3Q1§215 Qﬂds
oa,

= - .[[chos(nqg)é'cw Qcos(hg p q L2, dsf{ O

2

The work done by the internal forces is then coradas three parts that are analogous
to the following one:

000, dS ([I2QQ, .  9QZQQ, . )dsS
—[5q 255 0o S5 Ja |25
Joa g, O I{ 0, ‘" 4g %D

0Q 50 + 9% 50 +9Q 54 |95
+IQ1[ 50“6%5%603508} .
- [Q.©,cos(1q )0 q ds- [ [Qcos(ngy g+ Qcos(ngd g, ¢

If one substitutes this in (3) and equates the ipligdts of o, a), Az to zero
individually, first in the spatial integral and thén the surface integral, then one will get
theindefinite equations:
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_1(o06, 0Q'Q,Q,, 097Q,Q,) (0,0Q,0,0Q,, 0,0Q,
QF-= + + + + ,
O oq a0, 0q, Qdq Qdgq Qaq
(4) Qz FZ:E 6Q22Q293+6D@2 +6Q22Q191 - gla_Ql-i-e_za_QZ.i-%% ,
O og 0q, 0 Qdq Qdg Qdg
QF-1[0920:, 00Q0, a0,) (0,00,,0,00, 0,00
O oq 0q, 00 Qadg Qdg Qadg

and theboundary equations:

¢, =0, cos g, )+ Q, cosig, }Q, cosKg; .
(5) ¢, =Qscos g, )+ O, cos(g, } Q, coshg; .
¢, =Q,cos g, )+ Q, cos(ig, } O, coshq, |

In reality, since these relations are dgations of equilibriumwhich serve to determine
the new form of the body and the new distributidimternal actions, it is necessary that
01, O, gz Should represent the coordinates of the pointhem natural positions and not
the unknowncoordinates that the points take on as a restfieofleformation. In order to
have the equations of equilibrium,df, gz, gs denote thenitial coordinates, and; + &1,

02 + k&2, Oz + k3 denote the coordinatedter the deformationin such a way that the
displacements am@; «1, Q2 k2, Qs k3 then one will need to substitute the « for theq

in theQ, ©, Q in equations (4) and (5). That substitution wikt yield anything but the
additions of some terms that are negligible in cangon to the ones that were written
already if, as one supposes, tkeare negligible with respect to thg Therefore,
equations (4) and (5) will be the equations of Hguim, provided that one attributes the
new significance to thg, which will be done from now on.

1

3. Observations.— The significance of th® andQ results directly from equations
(5). They obviously apply to any surface insidetra& body, provided that one suppresses
a portion of the body that is situated on one péthe surface, and replaces it with the
system of pressures that the portion exerts uperother portion. In particular, p:
represents the unit pressure at any point on acenf, and one suppresses that part of
the body in whichy, increases (when it is removed from the surfacen time will have:



170 Introduction to the Mathematical Theory of Elasticity

coshq)=-1, cos( ) =cos ) =0,

and the formulas (5) will givgps = =01, p12 = —Q3z, piz = — Q2. If one repeats
everything for the other surface coordinates then onesegllthat:

—P11=01,—P22=02,—p3z= O3 ;
—P23=—P32=Q1, —Psu1=—pP13=Q2, —P12=—pP2=Q3.

Therefore, thé® represent the undtresseshat are developedormally to the coordinate
surfaces, and th@ are the ones that are developadgentiallyto that surface. Th®

and theQ are then the unknowns of the problem. One addressemtdggation of
equations (4) in such a way that (5) is satisfied onuhace of the body. One will then
have three equations to determsig functions. However, one must observe that the
concept oklasticityhas not been introduced yet.

4. — Before going any further, it is interesting to profiorfr the last observations in order to see the
formal elegance that the relations (7) of Chap. X\¢thfer upon certain results of analysis. In order to
prove thelaw that was stated by Lamé f@ostatic systemsmagine that there exists an isostatic system in
a body that is subject to only external pressures,tanghrameters can be taken to be coordinates. In that
case (Chap. XX, §), the tangential pressur€s, Q,, Qs will be zero at any point of the body, and the
formulas (4) will become:

1000, _©,00,

© 00, 0O 00
1771, T2 T2, T3 s
4 0q Qdq Qadg Qaq

(=12 3).

The left-hand side is equal to:

B+36£: ﬁ-'-ei 16Q+ 16Q2+ 16(23 .
o O aq dq Qodq Qadq Qagq

Consequently, if one adopts the stated relations (%) the

aei - 6,-6 +ez_ei +e3_ei

aa'l fiy fiz fis

Hence, when one sets 1, 2, 3, one will get the following relations betwebga principal elastic forces,
which were pointed out by Lamé:(

@:@2_@14_@3_@1

I P s

&_93_92_,_@1_@2

00, Iy P

&:@1_@34_@2_@3

003 Iy I32

() Lecons.., § CXLIX.
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These relations constitute a necessary complemehe taw that is represented by the elasticity ellipsoid,
since it says how the axes of elasticity will vatyam one passes from any point to an infinitely-close on

5. — Return to the questions of § 2 and assume, once and, fdraatheq are the
initial coordinates and thg + « are the final coordinates. The virtual motion cassis
passing from the position + « to the positiorg + K+ (g + K) =q + kK + Ok, instead of
passing from the positiong to the positionsg + J&y. Therefore, thedy from the
beginning of this chapter are now representable byhelt will then follow that if one
sets:

3_]_:aKl+i[anK1+anK2+anK3j’ @:&%+%%,

(6)

then thosef and wwill be precisely thed and win formulas (1), since one will recover
formulas (1) with thedk changed inta)g when one varies thein (6), while naturally the

g and the functions that depend upon them will remain invaridn order to get the
coefficient of elongation in the directiom( as, as), it is enough to imagine that one has
repeated the calculation that one did in order to olitamula (2), except that one needs
to intend that thex in formula (1) have been substituted for tge By virtue of (6), that

is equivalent to substituting th@ and w for the 46 and ow resp. Consequently, the
requisite coefficient will be:

E=6a7+0,a5+0. 0w m i+t asmtwa . (7)

What is the significance of thand «? Letdoi, dos, dos be the projections afo onto
the coordinate lines in such a way that = a; do. If &, &, & are the values of along
the tangents to the coordinates lines, and one supposesththaangles of the
parallelepiped that is constructed from the edims dos, dos are diminished bypi, 72,

13 then one will obtain an oblique parallelepiped afterdeformation, whose diagonals,
edges, and angles will be (1edo; (1 +&) dg, ..., 1l 2— i, ... Therefore, one has:

(1+8°do®= (1+&)* do? + (1 +&)° do? + (1 +&)* do?
+2(1+&)(1+&)do dos Ebos(l—;—qu+

and if one divides this bgd® and drops infinitesimals of order higher than tmen one
will deduce that:

E= §QI+E,Q+EQ A MM B+ A+ 101 s

When one compares this with (7), one will see that &, w =1 ; i.e., thedand ware
the unit elongations of the edges and the decrememtthe angles, resp., of a
parallelepiped element that is bounded by its doatd surfaces.
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6. — We shall now introduce the concept of elasticityo ithe equations of

equilibrium. As one knows, it is expressed by writthgwn that the elementary unit
work done by internal forces — i.e.:

O +0,06 + ... +Q3 oy,

IS an exact variation with respect to the quantigt ttheformation that has already been
made. If one sets, for brevity:
0K,
Kj = —
aq;
then formulas (6) can be written as:

Q. 99 0Q Q Q
6= K11+_1(6 Ly, + 5 K2+aq3/(3j, a)l——Q;/(zgf—C;ZK32
1(0Q 0Q 0Q Q Q
82——/(22+—3(a 2K1+a 2K2+6 ZKJ, W,= 2K ot —K 1, (8)
0Q 0Q Q Q
6, = /(33+—(a 2K+ 3 3/(2+a KEJ, W= — K, —2K

If one substitutes this in the expression for tleekithen one will get:

OMN =0, | ok, +— [ancFK 6Q15K +6Q15Kj Qs[&&qﬁ&éf(ﬂj,
QL og 0q, Q

06, 2
or

ol = Z &@4.&&4.%% K.
Qdq Qodq Qagj

+ 01 Ky + QQ 3(5/( '|'QQ2 OKi3

2 3
+ Qz Qg ko1 + O Okop + Qz Ql OKo3
1 3
+ 29,

2 Ok + QQ L Koz + O3z OKaz .

1 2

One sees thdl is necessarily a function of theand;, and one must have:
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0N _0,0Q , 0,0Q, 0,0,
ok, Qoq Qodq Qog
an on _QQ, o _QQ

- = ei , , ,
aKi 6K23 Q3 6K32 Q2

9

If one compares the values @5 then one will get:

_Qon _Q an _ arl _on
Q, 0Ky, Q0K a( stj 0w’

2

' Q
2
7K23+ 32
3

Therefore, thex; (i # j) will not enter intol1, except in combinations of the
Furthermore, if one observes the first of (8) thencarewrite:

_on_on 96, _ 10Q
ory, 06 ok, Qaq

1

As a result, one can give the following form to finst of (9):

on _ 9M 34, o 96, on 26,
0k, 00,0k 00,0k 00,0k

Since thewdo not contain the; , one will see that they cannot enter into theresgion
for I except in combinations of th&, &, &. In summary, théwelvevariables:

K1, K2, K3, K11, K22, K33, K23, K32, K31, K13, K12, K21

upon which the expression fol depends, can be grouped with each other in that
expression in such a way tHatwill behave like a function of only th&x quantitiesé,,
&, & A, w, .

7.— If one substitutes the last results in the agoatof equilibrium then they will not
depend upon more thamreefunctions, and that is befitting of ordyasticbodies. In the
first indefinite equation, the last parenthesid watluce immediately tall / 0« , while

in the first parenthesis, the functiofi®;, Q, ¥ Q., Q, @ Q, will become:

D6I'I | Qng& or -0 or | QZQfGQ—s on -0 on

al(ll Ql aKlZ aKlZ Ql 6K13 a/(13 .

One has analogous reductions in the other two meosat The boundary equations suffer
slight changes in form, and one finally obtains ¢lq@ations of elastic equilibrium:
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oF=t 0 (gon), o en) o n)| on
D_aql 0K,,) 0Q, 0k,,) 00Q, 0K, 0K ,
QzeziiDGI'I +6 Dan +6 Dan _an,
Oloq\ 0k, ) 00G,\ 0K, ) 00, 0k, | 0K,
o=t 0(gon ), 0 (yen), af en)| on
Ol o\ 0Ky ) 00, O0kgy) 005\ 0kgy)| 0K,

L an on on
Ql ¢1 - QlaTCOS (nq1)+ Qa Cos (noz )" Qa

11 12 13

M or or
Q5 cosha)+ Q=—coshg y Q7

31 K22 K 23

2 cos (1 )+ Qo - cos g ¥ Qo

31 32 33

cosfg )

Q9,= cos g

Qo =Q cosfq .

These equations can be written succinctly as folloys (

1 0 (0n )| on o on .
QiFi—DZj:aqj(DaKijj o Q ¢ Zj‘,Q,- P2 cosg) (i=1,23). (10)

8. Expression for@ in curvilinear coordinates. — We know tha® is the sum of the
coefficients of elongation relative to three armyr orthogonal axes. If one adopts
formulas (6) then it will follow that:

109,100, 100,
O-Areras z{aq. (Qlaq Q ag Qaqjk‘]

The expression that is subordinate to the summatgmis equivalent to:

0K; ok, 00
L = — |
aq g 09Q Q, Q= ( o aqj

Hence:

(11)

@__{GDK ok, amksj
o, 0q, 0¢ )

() However, if one has exhibited the displacemeksof the « then one will get the equations of
equilibrium in the form that was given to them by C. NEANN in the paper “Zur Theorie der
Elastistizitdt.” The first to translate the geneegluations of elasticity into curvilinear coordinatesswa
LAME. Seelecons sur les coord. curvilignes CXLIV and § CVLVII.
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9. Expressions for7y, 7, 73 in curvilinear coordinates. — For the moment, take the
Cartesian axes to be the tangents to the coordinatedmdrace out a closed curve
around the origin in thay-plane. It is known that when the integrjél(u dx+ vdy is

extended over that curve, it will transform intee timtegral j (?—%} ds, when it is
X oy

extended over the area that is enclosed by thaecand it is clear that when one shrinks
the curve around the origin indefinitely, one vhidlve:

£

lim iLj (udx+ vdy = lim
S a

since73 is the value o%—g—; at the point considered. Given that, evaluatefitise

integral in curvilinear coordinates. One s Q; Q. dogy dg , and the displacemenis
v are expressed in terns@f i1, Q2 A2, whiledx=Q; doy , dy=Q2 dai . Consequently:

T = lim [ (QF iy da+ G, do

. 1¢(0Q%k, 0Q’k
= lim= 2% T %1 4g da,,
s ( 0q g j A
or
I(OQZZKZ_anKlj ds
fojmol %% 0% JQQ _ 1 (ansz_anKlj.
[ds QQ\ dq  0Jq
Therefore ):
_ 1 (aqikg_astz,
' QQl 9g,  9g
2 2
- 1 [6Q1K1_6Q3K3, (12)
QQl dg aq
_ 1 (aQ;KZ_ankll
° QQl g ag

10. — We shall now seek to find the special form tiet equations of equilibrium
take in the case of isotropy. If we were to pracegth the direct substitution of the
particular form thafl has in isotropic bodies then the calculations wdwdcome very

() See the first paper orational hydrodynamicshat was published by Prof. BELTRAMI in the
Memorie dellAccademie di Bologna (1871), pp. 463, 471.
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complicated, and as Beltrami has observed, those aatiphs “are not merely a defect
of the algorithm, but have their roots in thature of space itself §.” However, we can
make noteworthy simplifications when we recall a knd@hap. V, 83) decomposition
of the potentialll into two parts, one of which has no influence upon thefimitke
equations. We intend to address only those equations,tBmcebstitution 0® andQ

in the boundary equations presents no difficulty. Tloeegfsubstitute:

Mo=- %[A@Z + B(7,? +722+732)]

for I in the indefinite equations, while setting tBeand7 equal to the expressions (11)
and (12), resp. Instead of performing the direct substityit is better to repeat the
calculations that led to the general equations. Toahdt consider:

jdl‘l0 dS=- j[A@5@+ B(7,07,+7,07,+707)] dS.

First of all, one has:

[omas= Y [| S5 00 [10Q, 10Q , 10Q)\q54q
-3 Qo Qaq Qaq |

The integral inside the summation sign is equivaien

ok, dS o0 dS 000 dS 6D d~
jD@—— jea _qE‘ a_q,( Ok )— jcs = j@ .

The first integral transforms into a surface inté@nd in the other two, one findsos
dS/ 0, multiplied by:

00O o od _ . L] .

Jq aq daq;
Consequently:

[odds= —j 5 +99 50 +99 5 | ds+ surf. int.
0q, 0

Similarly:

[7.67,d8= [QT, { (Q:dK) ==~ (Q25 2)}

K2 _ 2o 0QT, . 0Q7,)dS
j o (@ QT (Qéqltrm} j[Qsakg s a%jm,

() See the following chapter.
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etc. Therefore the indefinite equations for elastialdgium are:

F1+Aa_6+ B (anlziz_aQs,Tg =0,
Qog QQl dg 9g

4 R0O, B [6Q3Tg_6QlTl “o, (13)
Qadg, QQ\ dq 0dg

F+ A0, B (anTl_aQZTZ “o.
Qg QQ\ dg dq

Suppose that they have been integrated. Oneheiti know thex, and one can therefore
calculate thed and thew by means of the defining formulas. T&eandQ will then be
given by the formula:

0,=-A0+2B@,+6,), Q,=-Bw,

0,=-A0+2B@,+6), Q,=-Bw,, (14)

0,=-A0+2B¢, +6,), Q,=-Bw,,

which are obtained by deriving the unitary potdntia
N=-1[A(G+ 6+ &) +B(df +af +wi- 466 - 46,6~ 46, &),

Finally, if one substitutes th® and theQ in the boundary equations then one can
determine the arbitrary constants.

X3 Fs

M

AN

F .

Fi

Y X1

X2

11. Example. — Assume cylindrical coordinates; i.e., consider triply-orthogonal
system that is composed as follows: Cylinders ¢dtion with the common axi®xs ,
planes that pass throu@hs, planes perpendicular ©@x; . Parametersy, =r, g2 = ¢, O3
=z Coordinate line elements:

Q1 dqg, =dr, Qs dg =rdy, Q:dg =dz
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ThereforeQ: = 1,Q.=r, Qs = 1,00 =r. Finally, sets1 = u, k<2 =V, k&3 =w, while being
aware that the displacements arev, w. Formulas (11) and (12) then give:

16(ur) ov a_vv

(15)
r or aw oz’
2
polow_ovo o ou ow o 1fow?) du) 0
roy oz 0z Or r{ or oy
and equations (13) will become:
F+Aa—@+B 07, 197, =0,
or 0z raz//
£, +209, B(%_ 9Ti\_o 17)
ror o a
YIS L[ A S
or oy or
The dand ware given by the formulas:

_au _0v, 1ow

17 5. e B

or 0z roy
ezzﬂ-}-g’ wzza_vv+@’ (18)

oy r o oz

ow 1du ov

6, =— =——+r—

0z roy o0z
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12. Application to the cylindrical casing.— Letro, po be the radius and unit pressure,
resp., on an internal surface, andrigtp, be the radius and unit pressure, resp., on an
external surface. If the pressure is distributed unifpronver the surface then one will
know that the deformation will be independentypotindz by reason of symmetry; i.e.,

one will have thau, ©, 73, ..., are functions of only, while v andw will be equal to
zero. With that, equations (17) will become:

do_, d7, _ d(7,1)

=~ =0.
dr dr dr

On the other hand, from (16), one has= 0,7, = 0. Therefore, the last two equations
will be satisfied, while the first one will become:

i(éﬂj: O,
dr\r dr

by virtue of (15). One will then deduce that:

u:)lr+£

r

by integration. In order to determine thandy, we will need to appeal to the boundary
equations. However, we must first calculate @andQ, which are given by formulas
(14). In the present case, formulas (18) then:give

6'1:%, 6’223, E=w=w=w=0,
dr r

and one will then have, from (14):
Q1=Q,=0Q3=0,

©,=-A0+2B- =2 A+ 25()1 +ﬁ2j:—2/1 (A B 2B
r r r
@2:—A®+ZB%:—2)I A+ 25()1 —ﬁzj:—m (A- B-2HB (19)
r r r
u_ du)_ _
o, :—A@+ZB(?+d—rj_—2)l A+ 41 B=-24 (A- 2B).

Given that, the boundary equations will becogne= ©; cos (1), ¢, = ¢3 =0. On the
internal surfaceg: =po, cos ir) = 1. On the external surfagg, =—p1, cos (1) =—1.
Therefore:
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Z’UB pr=—-24(A- B)+2’UB.

0 1

P=-24(A-B+

One will then deduce that:

1 r’-p,r2 1 -p)rr?
A=- Epllz p20 0 /J:——épl 2po)21 0

2(A-B) -, 2B L —r,

The displacements, unit dilatations, etc., will theemain completely determined.
Finally, the formulas (19) will tell one about tdgstribution of internal actions at each
point of the body. For example, in the case ofraefinite cylindrical cavity, one has

A=0, uB=p,r?, and formulas (19) give:

2

G)l:—GDzzpori

r2’

@3:0.

Considering the infinitude of planar sections thet made in the body perpendicular to
the axis, it will follow that they will behave akthey were mutually-independent, and

radial pressures and lateral tensions will devatogny section that are equal in absolute
value for every point and vary from one point te thther in inverse proportion to the

square of the radius.

13. Betti’'s theorem. — Betti's theorem can be presented in orthogonalikinear
coordinates. That is not obvioaspriori, since the orientation of the triad of axes with
respect to which one computes the displacenm@nrtwill vary from point to point in the
case of general curvilinear coordinates. Qat represent some other displacements that
are due to the force~,| F,,F;), (¢,,9,,¢5). Multiplying equations (10) by; dS and
integrating, one will obtain:

JQF«&ds

- | 2020 )42 (g 20, 2 (3N )]dS_r, 30 4
6/( aq2 0K ,) 00, 0K, oL
The first integral is equivalent to:
ji/(i'Dan +6 i,Dal'l +i /(i’Dan das
g, 0K, ) 00, 0/q2 00, 0K ;)] O
- .[[ i' +l(i' o j ds.
0K, 0K,

The first of these integrals, in turn, transform®i

X
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- j{Ql

Therefore, if one seis= 1, 2, 3 and sums then:

cosq }Ki' d=- jQi ¢ k' ds.

3

S{jarxas eax db

_J. Karl +K! a_n+ K ort +K'a_r|+...+K' orn as
Yok, ‘0K, Yok, = 2ok, B0kl

Therefore[1 will be the quadratic form iRy, A2, K3, K11, K12, K13, ..., K23, K33 . The right-
hand side will not change when one exchangeg thith the”. Thus:

[(QFA+QFk,+ QFx) dSH( QP ' Qp '+ QP &) d
(20)
= [(QRK+QFK,+ QFA) dSH(QP'n'+ QP '+ Q' &), d.

14. — One can make some applications of the precethiagrem, as was done in
Chap. VI. However, everything depends upon thecéife integration of equations (8),
in which one can suppose that tBeand the w are constants. One will then get
expressions for the’that contain six arbitrary constams ay, ..., as linearly, along with
the 8and w When thed and theware set equal to zero, tikéthat relate to them will
correspond to the rigidity hypothesis, and therefireF” and ¢’ will be zero. Hence,
formula (20) will reduce the left-hand side to zerbhe equation thus-obtained will then
split into six distinct equations for any domain of this, and those are the equations of
rigid equilibrium. However, if one sets th&s equal to zero and determines thand w
by means of the six first-degree equations:

@1:@2:@3:1, 91292293:0
then equations (4) and (5) will give:
F' =0, ¢ =cos(Qq) (i=1,273).

Thus, the right-hand side of (20) will become:

[[Qxcos (g )+ Qk, cosg, } Qi , coshig )]d
_ J[aml+aDK2+aDK3jd_s
0, 0q, 9dq )0
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If one substitutes in (20) and observes (11) then itfalibw that:
- [@dS= [(Q Fk+ QP+ QF.) dSH( QP #'+ Qp &'+ Qf '), d.

It remains for one to determine the total dilatasidor any deformation.

15. Example.— One must integrate equations (18), while supgptiat thed and the
w are constants in the case of cylindrical coordimat One can distinguish those
equations by means of their left-hand sides. H differentiates ¢») with respect t@
andr in succession then one will get:

One then sees thati / 0z is independent of, whiledu / dr = & . Similarly,ow / or is
independent of, whileow/ dz= 6. Therefore:

U=Br+zF() +G (), w=6&z+rU () +V (Y. (21)

If one substitutes this inug) then one will see that:

FW+UW=w. (22)

If one differentiatesdy) and () with respect tay and takes4z) into account then one
will get:
62u_rziu azw_r@

o> orr oy oz’

One then deduces, by virtue of (21), that:
F+F'=0, G+G"=0, V'=0,
o)
F(Y)=arsing+acosy, Gy =asiny+ascosy, V=my+as.

If one takes (22) into account then (21) will beeom

u=86r+(asing +a, coyy )z+ a si + a, cog
w=6, z+(w, ~ g)sing - g cogy )zt Y + Q.

If one now integrates) then one will get:
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v=(&-6) t/l+FZ(a1 cosy—a sin y) +%(a3 cosy—assinyg) +H(r, 9).

The substitution of this result ig) and ) will show that the functiotd must satisfy
the equations:
OH _a, OH & m

o r’ 0z r r

Therefore,a =0 (), m=0,H =z logr +as. Finally:

u=86r+(asing+a,cos/ )z+ a siy + g, coy
w=6,r+(w—-a,sing —a,cox/ r+a,

V=(6,-8)y +%(a,cosy - 3, siny )r% (@ cog/— a, siy Jw, log+ a,

It is now easy to find the six conditions for riggdjuilibrium, the total dilatations, etc.,
from the process that was described. The resadtsane will get in this special case can
be reached more rapidly thanks to the direct toansdtion of the analogous results that
are obtained in Cartesian coordinates. Howeveoyder to perform that transformation,
it is necessary to know the relations that existvben theq and thex, and after all, the
general process that was presented has the adeavftagmaining applicable when one
rejects the validity of Euclid’s postulate in thgase considered.

() What one can call homogeneousdeformation relative to the particular cylindrical regentation
that one considers is therefore not possible, unlessopposes that two arbitrary surface elements that ar
situated in a plane perpendicular to the axis and a ghatedantains the axis will remain orthogonal under
deformation. With that, one sees that one cannobati¢riconstant values to tl#eandwarbitrarily, as one
can in the Cartesian representation. The conditibasthose quantities must satisfy, whether they are
constant or variable, have been pointed out by Prof. EDA@*A in vol. Il of the Studii offerti
dall'Universita Padovana alla Bolognese nell'VIII centenario, ecc.



CHAPTER XXII

ELASTICITY IN CURVED SPACES

1. — Before we enter into the field of research thas wdéiated by Prof. Beltrami for
the study of elasticity ispaces of constant curvatuee it is good to remember that they
are characterized by the property that any rigid figuriém possesses the property that
it can always be superimposed with itself after any emoti That property is assumed
dogmatically in ordinary geometry, which is based upon twowkn@ostulates, in
addition, one of which characterizEsclidean spacéa = 0) among all of the spaces of
constant curvature — i.eEuclid’s postulate- and the other of which is the postulate of
theinfinitude of space ). It is intuitive that in spaces of constant curvattine concept
of isotropy will persist as it is from the homogenega®metric constitution that such
spaces admit around each point by virtue of the aforeametticharacteristic property.
However, when one visualizes that concept in an arpigpace, the coefficie® andB
will need to be considered to be variable from poimdint along with the curvature ).
Finally, observe that th€artesian representatiosupposes that space is infinite and
includes the Euclidian hypothesia such a way that all of the results that areioled in
Cartesian coordinates are applicable to Euclidian spaadssively. It will then follow
that in order to study elasticity in non-Euclidian space® will need to make use of
general curvilinear coordinates that assume nothing abeutatiure of space. However,
the results that one obtains can then be appliedysmlespaces of constant curvature
when one considers the coefficieAtandB to be constants, in addition.

2. — The preceding considerations might perhaps become pmecise when one
recalls the analytical conceptualization of spaces when one would like to give the
name of threedimensional) space to the set of all triples of valoeshe parameteny,
U2, O3 - Any arbitrary triple of functionsQ, Q2, Qs of g1, gz, gz corresponds to a
particular space in which the square of the line elewembe expressed as:

dd? = Qdg¢+ @ df+ G dd.
In order for such a space to be Euclidian space (whickepsesentable in Cartesian

coordinates, as we have said), it is a necessary aficientfcondition that one can find
three functions, Xo, X3 of g1, ¢, g3z such that:

d}¢ +dX+ d¥ =Q° dof+ @ dg+ Q dd.

() See, e.g., the translator’s note in § 6 of the @sténg book by CLIFFORDI senso commune nelle
scienze esatfaMilan, Dumolard, 1886. The younger generation of our dchibmedia can draw much
knowledge of general mathematical culture from this well.

(") In order to gain a precise notion of the curvaturesgaces, one can study Prof. BELTRAMI's
“Teoria degli spazii di curvature costante,” Annali di Brattica, v. Il of the second series, pp. 232. See
also CLIFFORDIoc. cit., pp. 255.
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When one performs the effective integration ¢ne will get six relations between t@e
and their derivatives that are due to Lamé, and one cam ttat they ar@mecessaryand
sufficientconditions for the integration, and consequently heBuclidian-nesf space.
Those conditions result spontaneously from the folgwanalysis, which will provide
the analogous conditions for the space considered to ¢@vstant curvature, more
generally. Here it is convenient to recall that adiay to Riemann(), the square of the
line element in a space of constant curvature can albeagsven the form:

do® = Q*(dgf + df + dd),
in whichQq, Q, Qs are equal to:
1

Q=— . (1)
1+ @ + i+ )

The coordinatesy, o, 0z that appear here are the ones that Prof. Beltranidalled
stereographicand the constamst measures theurvature of space.

3. — In order to account for the ultimate formad;, it is perhaps useful to seek to
establish it by means of elementary consideratiomsle being guided by the analogy
with two-dimensional spaces. It is known that Htereographic representation of a
spherical surface is accomplished by projectindgratn one of its pointd onto the
tangent place at the diametrically-opposite p@nt The stereographic coordinates of a
point on the surface are the Cartesian coordinatebe stereographic image of that
point. IfN andN”are the images of the poirtsandM "then one will have:

OF? = PM [PN = PM’[PN".

The trianglesPMM”and PN’ N are similar then, and therefosM’: NN’ = PM : PN’.
Thus, ifM’is infinitely close tavl then:

do _PM _ OP* _ 1
NN PN PN2 (ONJF

14| —

oP

and one will then get Riemann’s formula by obseyimat:

*

)  See BIANCHI,Geometria differenziale§ 125.
) Read the celebrated paper on the fundamental hypstloésgeometry inB. Riemann’s math.
Werke pp. 264.

*

(™) Loc. cit, pp. 242.

C
(
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NN’?=dg? + df, ON?= ¢+, op2=4
a

4. — From what was said before, the general equatiorejwfibrium [Chap. XX,
forms. (4) and (10)] are applicable to all spaces, whileaops (13) of the previous
chapter are suitable to only Euclidian spaces, sincetftifece that was resorted to in
order to abbreviate the calculations was to adopte€iar coordinates (Chap. V38 It
will then follow that if one would like to obtain ¢hequations of equilibrium of isotropic
bodies in an arbitrary space then one would need towita the general equations (4)
and introduce the isotropy hypothesis into them direc#y;, to suppose that:

=-(A-B)0-B4, Q=-Baw (=123,

with A and B variable, likea. We limit ourselves to the case of constanand first
consider the terms that are multipliedAy That will then give rise to the expression:

_A(lame @amj _p 0
og,

in the first equation (4). The terms that are mué&gbbyB easily reduce to:

[Ql 6,5% - Qanan 109 O, 10Q) Qz“’zj. @)

0q, 2 00q, 2 0q

One can predict that this expression will be included/at one obtains for Euclidian
space, i.e.:

_BQ (aQ;e_aQe,i@j )
QQ 0 )
in which:
T = 1 [GQZK aQSKZJ’ T, = 1 (aQZKZ_anKlj. @)
Q% Q 0q QQ 0G,

If one substitutes (4) in (3) and then subtracts thatr&sm (2) then what will remain’
is a homogeneous linear function/fwhich one can give the following form:

B
H22+H3 1 1_H12 2 H13 '
QZQ3[( ) QK QXK Q«l

after having set:

() See the following paragraph for the details of tHeutation.
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y :Q_a{la(&}i( aQsj 10Q,0Q
? o\ Qg ) 0qlQoq)| Qagdg
H. =0, (HQJ [_HQJ . 10Q0Q
10,{Q 0q ) dq\ Qdqg)| QOJqdaq, (5)

_10Q0Q,, 10Q0Q, &Q
"Q,09,00, Q09,00 0G0 g
Wy 210900, 10Q,0Q_dQ
#7870 90,0 Q0qoq 0Gdq
10Q0Q, 10Q,0Q, _ 9°Q
Qla%aqz Qdqdq 0qdgq

H12 = H21

If one sets, in addition:

=3 H;QQ K K —(Hy+Hyt Hy) Y k2 (6)

then one will finally see that the expression §&quivalent to:

_BQ {aQSTZ_aQJsj_ B 00
QQ 0q, ) QQdQx,

The indefinite equations of equilibrium will theaduce to:

F+A6@ B (GQZT 0Q7, j B 0P =0
! QlanL QzQs aqz QQQG Q(l
[, A0, B (aQsTg_anﬂ} B__0® _, )
Qzaq2 QQ 0q QQ QJd Qx,
A, o (oar oar) b
Qi QQ 0q QQ QJd Qk,

5. —In order to perform in detail the calculatiomathvas pointed out in the preceding
paragraph, recall expression (2), and after chaniie sign, write:
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0QQ _ 9.0, 926, 1 9GQw,, 1 anszz)

6
Qng[l g, 0q g 2Q 0dg 2Q dg

Subtracting:

BQ {anifz_aqsfgj
Q,Q dq,

and dropping the factoB®/ (Q. Qs) will give:
92Q

1

_0920Q _,9Q%Q
o Q, 2 Q 2q

(8)
L L1 00Qw, 100w _QiQT,, QIQT,
2Q, 00, 2Q 0g 2 0¢q 2 0g

One now notes that:
1 0 Quw,,Q0Q7,_10QQw , Qm0Q , 10QQ7, QF.0Q
2Q, 00, 2 0g, 2 09, 2 0q, 2 0Q, 2 0q

=§6—Q1Q3(w +T)+ZQ(, 73)

On the other hand, one has:

- Q0K Q0K 10Qk, 10QK _K,0Q K,0Q,
Qdg, QaJdq Q OJq Qz 0q, Qzaqz Qaq

3:

1 (GQZZKZ_anKlJ:ianKz__lan _K,0Q,, K,0Q,
QQ\ dq  dg Q Jdg Q 0gq Qaqz Qg

in such a way that:

ianKz_ﬁan a-Tp) =+ 1 0Q«k, kK, an

i(a}g+’]’): ,
2 77Q oaq Qag  ° Q dq, Qoq’

Therefore:
iannga%_*_%aQsTs
2Q  0q 2 09,
(Q 0Q.K; _Q0Q 5 j aQ{gaq _Q, anj
T, % aq  Qog, Qdg Q°agq
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0°Q, K, , 0Q; 0QuK, o (anQlj Q0Q9Q,
09,00, 00, g 99\ Q0q) Qogag "

= Q3

Analogously, one gets:
1 Q' Quw, _Q09Q,7,

2Q  0q 2 0q,
QK | 0Q, 9QuKs _ oy 9 [gagj Q0Q0Q,
09,00, 0g, 0q ' Qdg) Qagagq’

:Q2

In addition, one has:

aK an +6Q1K +6Q1K aK Q1+6Q1K + Ql/(3

2

R A T R A T
and therefore the expression (8) will become:
ianQs{GQK1+6QK2+5QK3J
Q dq | 9q dg, ° 0g
_ 0Q,k, , 0Q, 0Q, | ~ 0 ([0Q«k; 0Q,  0Q
Qs ql( q2 aoﬂK1+aq3K3j Q q( 608 +6qK1+602K2j
0,02k, 00,00k, (5, 0 (gaqj Q0Q0Q,
0q0q, 0g, dq Qdq) Qogagq’
+0, Y QKs | 0Q, 0QuK, _Qx Qzan _Q0Q0Q
> 90,00, g, 0g ‘9q Qoq) Qdgogq
The terms:

iaQZ Q3 ankl aQS aQZKZ an 6Q3K3
Q dq dq 0g, 0q dq, 0q

cancel with:
_% 0Q, anl(l_& 0Q,0Q«, —Q,O- 1 6Q3 6Q2 1 6Q2 6Q3
Q Jq 0q Qadq dq Q dq 0q Qs dg, 0q

respectively, and the expression under consideratit become:

109,0(0Q, ,09, ). [o, 0 [109), o, 8 (L0
Ql aql (aqzkz-*'aqgkgj Q3|:Q1Kla (qaqj*'Qa 3 (

Qo
10Q, 1
Q2|:Q1 1 (Ql aqu QZ 2 (Q

)
)
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gaqu_gaqaqz Qs [QZGQJ Q0QoQ,

-Q«k X d 73
“6q2[Q26qz Qo dq Qdg) Qdgog’

This is linear in theds. The coefficient 00, « Is:

1 00,00 1(_16@}_ Q 9Q9Q
'QQ 0dgq 0g ~0qlQd0g) QQAgdg

_10Q,0Q 10Q,0Q 0°Q

S = - =Hiz.

Qog o QJqdg 0Qdg

Similarly, the coefficient 0Qs; &3 is Hiz and that of); «; is:
od{a o aA A
00, Q dq ) ~aqlQaq) dagl Qag) g Qo
wlat ) sl ase)aress
0,\Q 0q ) 0\ Q0g Qdqgadqg
elnanlann
100\ Q 3q ) 3¢ Qoq)| Qogag

i.e.,— (H22 + Hs3). Therefore, the first indefinite equation of ddpuium is:

=-Q

[

o F, + %2, BQ [aQZTZ_aQJgj
o, QQl dg  0Jg

[- (Hoo+ H33) Quar + Hio Qo ko + Hi3 Q3 A3] = 0

+
QG

which is to say:

A 00 B[aQZT aqsfgj+ B 00

Fi+——+ =0
Qdgq QQ 0 ) QQ QI Qx,

6. — Equations (7) have still not found their defirat form, in which the hypothesis
of constant curvaturewhich has been taken into account only by supgoiatA andB
are constants, has not yet been introduced intedbedinate system. Observe, first of
all, that equations (7) can be likewise arrivedythe general process when one takes
into consideration, not the potentid) but one of its componeni¥,, which is expressed
as follows:
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Mo=~1 A®* +B(Z’+7,+T7)] +BTcp .

That exhibits the invariant character of the expresdiohl], and that authorizes us to
specialize the coordinate system in order to find iteisggince. Assume stereographic
coordinates then, for whick; , Q. , Qs have the expression (1), as we have said.
Formulas (5) and (6) then give:

-Q*x if =], ® 2.2, .2, .2

Hjj = : — =2aQ° (k] +K; +Kj;),
’ { 0 if i#j, 0 O Vari )

in succession. Therefor®,/ [J is the product oRa with the square of the displacement.

It will then follow that in spaces of constant cutvata, one will have:

% = 20 (Q2 K2 + Q2+ Q%) 9)

for any orthogonal coordinate system, and consequently:

1 09 .
= =4aQ Kk (i=1,2,3). 10
790« QA ( ) (10)
Finally, equations (7) become:
R + L0, B [0Q7T, 6Q3T3j +4aBQk, =0,
Qdg QQ( dg 0

A0 . B (3QT, 0QT,

F+——+ -
Q5 QQl oq og

-, A0, B (0Q7T, 00T,

' Qoq QQl dq dq

j+4aB Qk, =0, (11)

j+4aB Qk,=0.

These are thequations of elastic equilibrium of isotropic bosli®r spaces of constant
curvaturea in arbitrary orthogonal coordinates

7. Observations

a) In order for equations (7) to coincide with (1it)is necessary and sufficient that
the relations (10) should be verified; i.e., tihamust have the form (9), and one will then
have:

Hi1 =Hx =Hs3=—-al], Hi1 = H22 =Hs3= 0.
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These are therefore the necessary and sufficierditemms for the invariability of the
curvature of the space. Far= 0, one will recover the conditions that were palnbet
by Lamé as necessary and sufficient forEoelidian-nes®f the space, i.e.:

Hi1 =H22=Hzz3=Hz3=H21=H12=0.

By vir(gue of a known relation [Chap. XVII, form. (7)3ne can give them the following
form ():

Sl 51
Ty Ta +i+i+ 1 =0
602 603 r223 r§2 rl{ 13
3t ot
a1 r13+i+_1+ 1 =0
603 601 r321 r123 rZJ 21
st ot
f22 4 r21+1+_1+ ! =0
0 0o, r3 r2 r '
Ul 2 12 21 3{ 32
ot ot
603 r3l r23 r21 602 r 21 r 32 r 31)
ot ot
rsz_i _1__1 I’22__l _l—_l
aal r12 r3l r32 , 603 r 32 r 13 r 12)’
ot ot
r23 - = _1__1 r23 —_l ___1
602 r23 r12 r13 , 601 rl3 r 21 r 23/

b) The Lamé relations are ordinarily obtained bynigyto integrate the equations:

a_xlaxl+6_x26x2+6_x36x3: Q* if i=]
dg 0q dqoq 0qgaq 0o if i#]j,

which serve to determine the Cartesian coordinates, x; as functions ofy;, gz, gz .
For a two-dimensional space, the analogous equsatios obtained by supposing that
andx, are functions 0Q; andQ, while allowing thatxs is an arbitrary function of only

() LAME, Lecons.., § XLVI.
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gz, and therefor€)s will be a function of onlyys, while Q; andQ, are independent of; .
Five Lamé relations will then be satisfied, and thglsimelationHss = 0 will reduce to:

00, Q 9q ) g\ Qag
That is therefore the single condition that mussdksfied by the function®, andQ. in
order for it to be possible to pass from the fo@hdgf + Q@ dd for the square of line

element in a two-dimensional space to the Cartesian tix° + dX. If r; andr; are the

radii of geodetic curvature of the lings andg, on the surface considered then one can
give that condition the form:

ENE
L-}- g +i+_1:0_
do, 9o, 1 r?

It is easy to verify that this condition is satsfiby the ordinary systems of orthogonal
curves that one adopts in the plane.

c) If e is the curvature of the surfage at a given point then we need to substitute
the form that the condition that was just obtainaititake for three-dimensional spaces:

0[(10Q,), 0 10Q _
aql(qaq}aoiqzaoj”l@% >

One then has:

1 0Q, 0Q 1
Hii=— a1 Q1 Q Qs +——2 32[ —GJD,
Q 0gy 00 \Tpfyy

and the conditionBl; + a O = 0 will become:

a=a+

a»=aq+ az=q+
IPLET M3l M3173

For a = 0, that will give the measure of the curvature.( the product of the principal
curvatures) of the three surface coordinates aguptd GAUSS’s theorem. Whemis
non-zero, one will see that the geodetic curvatdireach surface in a curved space must
be augmented with the curvature of that space.

8. — Returning to (11), observe, with Prof. Beltrathiat “one can predict that the
curvature of the space must not be devoid of imibeeon the equations of elasticity.
However, it is, with a doubt, supremely noteworthgt this influence manifests itself in
such a simple form.” Nonetheless, we can add“tespite that simplicity, the theory of
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elastic media in spaces of constant curvature presenysrelevant differences when
compared to the ordinary ones.” As a first examplehdsewritten equations (11), in the
absence of volume forces, in the following way:

A£6_9+B[GQZ%_G%%}MBDKFO,

Q 9, o 0
If one differentiates this with respectdg o, gs and then sums then one will get:
AN O+4aB0O=0.

Therefore the cubic dilatation in a curved space casatgfy the Laplace equation, as it
does in Euclidian space. For example, it is not poséibl® to have a constant, non-
zero value in the entire body.

9. — What is more noteworthy is the result that one inbthy considering certain
potential deformations. Since twice the compon&nt9>, 73 of the rotation are zero for
those deformations, the formulas (12) of the precediagtehn will imply thatQ*«. are
the first derivatives of a functiod, and the total dilatation will be expressed by:

@:i _aDKi :i 0 (0oJ =AU,
05 oq 045 aq | @ 9
in such a way that equations (11) will become:
Fi+(AA’U+4aBU) =0 i=1,223),

and that will show that the for¢ealso admits a potential function. Vfis that function
then the three indefinite equations will reducé® single one:

AANU +4aBU+V =0,

in which one intends that the constant of integrais included inJ. If one takes/ =

- a BU andA?U = 0 then one will see that one Has= — 4a B U « . One will then
obtain a deformation that is devoid of either ditesins or rotations in which the force
and displacement have a constant ratio at any poohthave the same direction ik O:
Gaussian space @seudo-sphejeor opposite directions (fr > 0: Riemannian space or
spherg. That result, as Prof. Beltrami said, “is not@euntered in Euclidian space, and
presents a singular analogy with certain moderrcepts in regard to the action of
dielectric media.”
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10. — The last observation brings to mind the ingenious hypeththat have been
proposed in order to explain light, heat, magnetism,, @ben one considers those
phenomena to have been produced by a reaction under whashgmaoses the variation
of its curvature on time. It is important to observat tihe additional terrB® / [ in the
effective part (for the formation of the indefinitquations) of the elastic potential can be
considered to be precisely the expression for the grudridne reactions that space, whose
geometric constitution is rigid, opposes the elastittenahat fills it, which one supposes
to beinert, in the sense that when it is required to deform a&t #pace, it will tend to
behave as if the space were Euclidian. Recent progréiss theory of elastic media in
curved space might allow one to respond to Clifford’s dwirta know ():

“Whether we cannot say that we can consider certaiheféects that
are due to changes in the curvature of our space to becghyariations;
in other words, whether any of the causes that we ¢albipal (and
probably all of them) are not, perchance, due to the ggantonstitution
of the space in which they live.”

() Loc. cit, pp. 267.



