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 1.  Introduction and examples.  The groups of local transformations that are defined 
by the general integrals of a system of partial differential equations were studied for the 
first time by Sophus Lie (1).  Later, Élie Cartan gave a more satisfactory treatment of the 
subject and solved some of the fundamental problems (2).  However, their viewpoints 
were purely local.  In the present article, we shall attempt to pose the foundations of that 
theory and show, in particular, that it is a natural generalization and has great importance 
in the theory of Lie groups and complex manifolds. 
 A situation that frequently presents itself in differential geometry is the following 
one: Let M be a real analytic manifold of dimension n with coordinate neighborhoods 
Uα , Uβ , etc., that form a covering of M.  Suppose that for each Uα one is given n 
independent linear Pfaffian forms on Uα that will be denoted by iαθ  (i = 1, …, n) (3).  We 

then have, for the case where Uα  ∩ Uβ  ≠ ∅: 
 
(1)     i

αθ  = , ( )i j
j

j

g xαβ βθ∑   x ∈ Uα  ∩ Uβ . 

 The matrix: 

(2)     gαβ(x) = , ( )i
jg xαβ    

 

may be considered as an element of the general linear group GL(n, R) in n real variables, 

and we suppose that the association x → gαβ(x) (x ∈ Uα  ∩ Uβ ) defines an analytic map 

of Uα  ∩ Uβ  into GL(n, R). 

 Now, let G be a subgroup of GL(n, R).  A fundamental problem in the theory of fiber 

bundles is the following one: May one choose the forms i
αθ  in such a fashion that gαβ(x) 

belongs to G for all pairs α, β of indices and all x ∈ Uα  ∩ Uβ ?  If this is possible then we 
say, in the terminology of fiber bundles, that the structure group of the principal fiber 
bundle of the tangent fiber bundle to M may be reduced to G.  More simply, we say that 

                                                
 (1) The numbers in brackets [.] refer to the bibliography at the end of the article.  
 (2) [1], [2], [3], [4], [5].  
 (3) Unless stated to the contrary, in all of the present article, we shall use the following system of 
indices: 1 ≤ i, j, k ≤ n; 1 ≤ ρ, σ, τ ≤ r. 
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M has a G-structure, and that the set of Pfaff forms iαθ  defines a G-structure on M.  The 

following examples illustrate the significance of that notion: 
 
 1. G is composed of just the identity element.  M is then parallelizable. 
 

 2. G is the orthogonal group O(n, R) in n real variables.  Then: 

 
(3)     1 2 2( ) ( )n

α αθ θ+ +⋯ = 1 2 2( ) ( )n
β βθ θ+ +⋯  

 
is a positive-definite, quadratic, differential form on M and defines a Riemannian metric.  

Conversely, a Riemannian metric on M gives rise to a G-structure on M with G = O(n, R) 

in an obvious way. 
 

 3. n = 2m is even, and G is the general linear group GL(m, C) in m complex 

variables, which is regarded as a subgroup of GL(n, R).  The corresponding structure 

group G will generally be called an almost-complex structure group, while M will be 
called an almost-complex manifold. 
 
 While the theory of fiber bundles is occupied with the existence or non-existence of 
G-structures on M for a given G, one of the goals of differential geometry consists 
precisely in the study of differential invariants of a particular G-structure and their global 
implications.  For example, the existence of a Riemannian metric (or, at least, a non-
analytic metric) on M is a simple theorem in the theory of fiber bundles, but Riemannian 
geometry is precisely the study of properties of a Riemannian metric whose most 
interesting aspects are the global, or topological, implications of these properties. 
 
 
 2.  First invariants of a G-structure.  Integrable structure. – We shall show how 
one may define the first differential invariants of a G-structure.  Let θα refer to the matrix 
with one row whose elements are 1

αθ , …, n
αθ .  Equations (1) may then be written in the 

matrix form: 
(4)     θα = θβ gαβ(x),  x ∈ Uα  ∩ Uβ . 
 
We identify x ∈ Uα  ∩ Uβ  with the elements (x, yα) ∈ Uα  × G and (x, yβ) ∈ Uβ × G, with 
yα , yβ ∈ G by the condition that yβ = gαβ(x) yα .  The space BG thus obtained is called the 
principal fiber bundle with the structure group G, and it is locally homeomorphic to a 
Cartesian product Uα  × G.  Since θα yα = θβ yβ , their common expression ω is a matrix 
with just one row of Pfaff forms that are defined globally on BG .  As a result, instead of 
remaining on M, we pass to BG , and we shall study the properties of these Pfaff forms in 
BG . 
 The first step is the calculation of the exterior derivative dω.  In Uα , we utilize the 
representation ω = θα yα , and we find: 
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(5)     dω = − ω ^ 1yα
− dyα + dθα yα , 

 
where 1yα

−  is a matrix of left-invariant Pfaff forms on G.  Since the elements ωi (1 ≤ i ≤ n) 

of ω are linearly independent, we may write that equation more explicitly as follows: 
 
(6)     dωi = − 1

2
, ,

( )i k i k
k jk

k j k

a c bρ α
ρ

ρ
ω π ω ω∧ + ∧∑ ∑ , 

 
where r is the dimension of G, i

kaρ are constants, and ( )i
jkc b  are functions on Uα  × G that 

are subject to the condition of being anti-symmetric in j, k, in order to be determined 
completely.  The πp are left-invariant Pfaff forms on G.  The formula (6) is local, being 
valid only on p−1(Uα), where p is the projection of BG onto M.  We now apply the 
transformation: 
(7)     πp → π′ p = πp + k

k
k

bρω∑  

to the forms πp. 
 Equations (6) preserve the same form under this transformation, where the new 
coefficients i

jkc′  are given by the equations: 

 
(8)     i

jkc′  = ( )i i i
jk k j j kc a b a bρ ρ

ρ ρ
ρ

+ − +∑ . 

 
 The n2(n − 1)/2 expressions ( )i i

k j j ka b a bρ ρ
ρ ρ− +∑  are linear in kbρ  and have constant 

coefficients.  Suppose that they are mutually linearly independent.  If n2(n − 1)/2 = s then 
we may choose kbρ  in such a way that all the ijkc′  disappear. 

 If n2(n − 1)/2 > s then we choose kbρ  in such a way that s of the i
jkc′  are annulled, 

when chosen conveniently.  We now suppose that such a transformation (7) has been 
performed, and we suppose that there are now primes (′) on the π′ p and i

jkc′ .  In order that 

our conditions should remain unchanged, the πp must be determined up to the 
transformation (7) that satisfies: 
 
(9)     ( )i i

k j j ka b a bρ ρ
ρ ρ

ρ
− +∑  = 0. 

 
 It results from (8) that the new coefficients i

jkc  are functions on BG that are defined 

globally.  They are thus the first invariants of a G-structure.  We say that the G-structure 
is integrable if all of these invariants are constants. 
 We mention the following examples of integrable G-structures: 
 
 1. M is a connected Lie group or an open subset of that group, and ωi are the left-
invariant Pfaff forms.  In this case, G consists of just the identity, and the i

jkc  are the 

structure constants of the group. 
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 2. Consider an almost-complex structure, as in example 3 of paragraph 1.  In order 
to study its local invariants, it is convenient to use Pfaff forms with complex values – i.e., 
Pfaff forms ω = ϕ + iψ, where ϕ, ψ are real analytic; we also write ω  for ϕ − iψ. With 

these conventions, suppose that n = 2m, and suppose that a GL(m, C)-structure – i.e., an 

almost-complex structure – is given on M.  It is defined by m Pfaff forms with complex 
values (4) t

αθ (1 ≤ t ≤ m) in each Uα , such that t
αθ , t

αθ  are linearly independent and: 

 
(10)    t

αθ  = , ( )t u
u

u

g xαβ βθ∑ , x ∈ Uα  ∩ Uαβ , 

 

where , ( )t
ug xαβ    ∈ GL(m, C).  By following the general method above, we obtain m 

Pfaff forms with complex values in BG (G = GL(m, C)) that may be represented locally 

by: 
(11)    ωt = t u

u
u

yα αθ∑ , 

 

where ( )t
uyα  ∈ GL(m, C).  In p−1(Uα) ⊂ BG , their exterior derivatives may be written in 

the form: 
(12)    dωt = 1

2
,

t u t u v
u uv

u u v

cπ ω ω ω∧ + ∧∑ ∑ , ( )t t
uv vuc c+ = 0, 

 
where the t

uπ  are determined up to the transformation: 

 
(13)    t

uπ  → t
uπ ′  = t t v

u uv
v

bπ ω+∑ ,  ( )t t
uv vub b+ = 0. 

 
 It then results that tuvc , as functions on BG , are first invariants of an almost-complex 

structure.  The latter is integrable if the t
uvc  are constants.  One may verify, by a brief 

calculation, that this happens only when t
uvc  = 0.  From a theorem of Frobenius, this is a 

necessary and sufficient condition for the system ωt = 0 to be completely integrable.  
When these conditions are satisfied, we may take a system of m functionally independent 
first integrals z1, …, zn to be local coordinates on M.  Any other system of first integrals is 
attached to them by a complex analytic transformation with a non-zero Jacobian.  This 
shows that an integrable almost-complex structure on M defines a complex structure on 
M. 
 The invariants t

uvc  were given for the first time by Ehresmann-Libermann (5), and are 
essentially equivalent to a tensor that was defined by Eckmann-Fröhlicher (6). 
                                                
 (4) In all of this example, and on occasion later, whenever we are dealing with an almost-complex 
structure, we use the following series of indices: 1 ≤ t, u, v ≤ m.  
 (5) [11].  
 (6) [9].  
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 If one reverts to the case of a general G-structure then we desire to remark that the 
constants i

kaρ  in (6) have a simple geometric interpretation.  In fact, if one considers G to 

be a linear group that acts on an n-dimensional vector space with coordinates ξi that 
conform to the equations: 

(14)    ξi → ξ′ i = i j
j

j

y ξ∑   i
jy  ∈ G 

then: 

(15)    Xρ = 
,

i k
k i

i k

aρ ξ
ξ
∂

∂∑  

 
are r infinitesimal transformations that generates G. 
 
 
 3.  Notion of general integral of a differential system.  Suppose that there exist two 
coordinate neighborhoods U and U′, with local coordinates x and x′, respectively, and in 
each of them one is given an integrable G-structure whose first invariants have the same 
constant values.  Let θ i, θ′ i be Pfaff forms that define these G-structures; they are 
determined up to a transformation of G.  A homeomorphism of U into U′ that is defined 
by the equations: 
(16)    x′ i = x′ i(x1, …, xn) 
 
is called admissible if it satisfies the equations: 
 
(17)   θ′ i [x′ 1(xk), …, x′ n(xk)] = ( )j i

j
j

g xθ∑  ( ( )i
jg x ∈ G ). 

 
 This condition remains unchanged if we replace θ i or θ′ i by forms that differ by a 
transformation of G; it is therefore a condition on the G-structures.  Equations (17) may 
be regarded as a system of partial differential equations on U × U′.  We would like to 
study the question of whether it admits a “general integral,” upon shrinking the 
neighborhoods U and U′, if necessary.  Consequently, a precise definition of the notion of 
a general integral, and other things, that refers to the theory of differential systems on a 
manifold will be given in the present section (7). 
 Let X be a real analytic manifold.  At each point x ∈ X, we let V(x) denote the space 
of (contravariant) vectors at x and let V*(x) denote the space of covectors; denote their 
exterior algebras by Λ(V(x)) and Λ( V*(x)), respectively.  By the term differential system 
Σ on X, we intend this to mean a submanifold Y ⊂ X, along with the association of an 
ideal O(x) ∈ Λ( V*(x)) at each point x ∈ Y, in such a way that the following condition is 
satisfied: For each homogeneous element α ∈ O(x), there exists a neighborhood U of x 
on Y and a real analytic differential form ω on U that belongs to O(y) for each point y ∈ 
U and reduces to α at x; one says that such a form belongs to Σ.  Since the vector spaces 
Λ(V(x)) and Λ( V*(x)) are dual, a homogeneous element l(x) ∈ Λ(V(x)), x ∈ Y is called an 

                                                
 (7) For a detailed treatise on the subject, we refer the reader to [6] or [13].  
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integral element if it annuls all of the elements of O(x).  A submanifold Q ⊂ Y is called 
an integral manifold of Σ if its tangent space at any point is an integral element.  We say 
that Σ is closed if exterior differential of every differential form in Σ belongs to Σ.  In 
order to study integral manifolds, we may suppose that our differential system is closed. 
 We give ourselves a decomposable, analytic, exterior differential form W of degree p 
on Y that is nowhere zero.  A fundamental problem in the local theory of differential 
systems is the formulation of theorems on p-dimensional integral manifolds whose 
tangent spaces nowhere annul W.  One may formulate a sufficient condition as follows: 
Since W is decomposable, we locally write W = ϕ 1 ^ … ^ ϕ p.  If n denotes the dimension 
of Y then one chooses chooses n – p other Pfaff forms ϕ p+1,…, ϕ n, in such a way that ϕ1 
^ … ^ ϕ n ≠ 0 in the neighborhood of Y in question.  Let e1, …, en be the dual basis to 
ϕ 1,…, ϕ n, and consider the vectors: 
 

(18)    Vi = ei + 
1

n

il
σ

σ
σ =
∑ e  (i = 1, …, p). 

 
 Let lk(x), k = 1, …, p denote the space generated by v1, …, vk .  Let: 
 
(19)    Ok(x, 1l

σ , …, kl
σ ) = 0 

 
be the conditions for lk(x) to be a k-dimensional integral element at x; it is easy to see that 
these equations are linear in kl

σ .  We say that Σ is involutive (with respect to the 

decomposable form W) if, for a certain choice of ϕ, equations (19) are linearly 
independent in the kl

σ , after taking into account the equations: 

 
(20)    Ok(x, 1l

σ ) = 0, …, Ok−1(x, 1l
σ , …, 1kl

σ
− ) = 0. 

 
 A fundamental theorem in the local theory of differential systems confirms the 
existence of a p-dimensional integral manifold that satisfies appropriate initial conditions 
and the condition that W ≠ 0 when the system is involutive.  One proves this by 
successive applications of the Cauchy-Kowalewsky theorem.  The integral manifolds 
whose existence is thus confirmed by this existence theorem are called “general,” in 
contrast to the integrals of partial differential equations that are called “singular.”  It is 
important to remark that the condition that a differential system is involutive is obviously 
independent of the choice of local coordinates. 
 A notion that is closely attached to the notion of involution of a differential system is 
that of prolongation.  In order to define that notion, let Mɶ  be the multiplicity of all p-
dimensional integral elements that are not annulled by W.  Upon associating any integral 
element with its origin x, we obtain a representation n : Mɶ → Y.  In the dual 
representation of p, W becomes a form W′, and the differential forms that belong to Σ 
become forms on Mɶ .  The latter assign a set of elements of Λ(V*(m)) that define an ideal 
to each point m ∈ M.  It is not difficult to see that these ideals define a differential system 
Σ′ on M; in general, Σ′ is not closed.  We let Σ denote the corresponding closed 
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differential system that is obtained by starting from Σ′ and adding the exterior derivatives 
of the differential forms in Σ′.  The system Σ on Mɶ , combined with the form W′, 
constitutes the prolongation of the given system Σ.  It results easily from our definitions 
that the prolongation of an involutive system is involutive. 
 There exists a particularly important case in which the condition of involution may be 
formulated more explicitly.  It is the case in which the ideals O(x), for x belonging to a 
neighborhood U of Y, can be generated by: 
 
 1. h analytic Pfaffian forms θ1, …, θh 
and 
 2. m analytic, exterior, quadratic, differential forms: 
 

(21)  Φi = 
1 1 , 1

p pv
i k i j k

k jk
k j k

a cρ
ρ

ρ
π ϕ ϕ ϕ

= = =

∧ + ∧∑∑ ∑  (1 ≤ i ≤ m) 

such that: 
(22)   W ^ θ 1 ^ … ^ θ h ^ π 1 ^ … ^ π n ≠ 0. 
 
 In this case, let 1

kt , …, 1
k
pt −  (1 ≤ k ≤ p) be p(p – 1) generic constants.  Let σ1 be the 

number of linearly independent forms among 1
i k

k
k

a t ρ
ρ

ρ
π∑∑ , let σ1 … σ2 be the number 

of linearly independent forms among: 
 

1
i k

k
k

a t ρ
ρ

ρ
π∑∑ ,  2

i k
k

k

a t ρ
ρ

ρ
π∑∑ , 

 
and finally let σ1 + σ2 + … + σp−1 be the number of linearly independent forms among: 
 

1
i k

k
k

a t ρ
ρ

ρ
π∑∑ ,  1

i k
k p

k

a t ρ
ρ

ρ
π−∑∑ . 

 
 Let q be the dimension of the manifold of p-dimensional integral elements that passes 
through a point of Y.  We then have the inequality: 
 
(23)    q ≤ pv – (p – 1) σ1 … σp−1 . 
 
 Our criterion of involution confirms that the “equal” sign is valid if and only if the 
given differential system is involutive.  (It is implicit that we assume that our system is 
closed.)  This criterion may be applied to our differential system (17).  In order to do this, 
we transform the system into a new form.  Let V = U × G, V′ = U′ × G, and we introduce 
the Pfaff forms: 

(24)    

,

,

i i j
j

j

i i j
j

j

y

y

ω θ

ω θ

=

′ ′ ′=

∑

∑
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on V and V′ , respectively, where i
jy   , i

jy′    are generic elements of G.  The differential 

system (17) is then equivalent to the following one: 
 
(25)     ω′ i – ω i = 0. 
 
 In our terminology, the ideal on V′ × V that is associated with the differential system 
at a point of V′ × V is generated by the left-hand sides of (25).  In order to make that 
system closed, we add the generators d(ω′ i – ω i) to the ideal at any point.  Since the two 
G-structures are integrable with the same first invariants, one may choose Pfaff forms πp, 
in such a way that: 

d(ω′ i – ω i) = 
,

( )i k
k

k

a ρ ρ
ρ

ρ
π π ω′ − ∧∑ . 

 
 Our differential system is then of the particular type that was discussed above, with W 
= ω1 ^ … ^ ωn.  In order to find the condition of involution, we introduce the integers q, 
σ1, …, σn−1, as before, with p placed by n.  According to the criterion above, a necessary 
and sufficient condition for the differential system to be involutive is: 
 
(26)     q = nv – (n – 1) σ1, …, σn−1 . 
 
 In particular, we see that this condition depends only upon the group G.  When it is 
satisfied, we say that the linear group G is involutive.  One will say that a G-structure is 
involutive if G is involutive. 
 
 
 4.  Pseudogroups defined by an involutive integrable structure. – In the present 
section, we shall show how an involutive integrable structure on a manifold defines a 
pseudogroup of transformations, and a corresponding family of admissible coordinate 
systems.  We first recall the definition of a pseudogroup. 
 
 Let E be a topological space, and let F be a family of open subsets such that the union 
of an arbitrary number of subsets of F and the intersection of a finite number of subsets 
of F belong to F.  A family H of homeomorphisms, each of which represents a subset of 
F on a subset of F, is said to constitute a pseudogroup if the following conditions are 
satisfied: 
 
 1. If U ∈ F then the identity representation belongs to H.  If h ∈ H represents U in V 
then the inverse representation belongs to H.  If h, h′ ∈ H and their product hh′ is well-
defined then hh′ ∈ H. 
 
 2. Let V be a union of subsets Vα of F.  In order for a homeomorphism h that is 
defined on V to belong to H, it is necessary and sufficient that its restriction h | Vα belong 
to H. 
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 Now, let X be a topological space, and let {Uα} be a covering of X with open subsets.  
Suppose that for each α there is a homeomorphisms fα of a subset Vα of F onto Uα , in 
such a fashion that the following condition is satisfied: For two arbitrary indices α, β 
with Uα ∩ Uβ ≠ ∅, there is a representation hαβ ∈ H of Vα onto Vβ with the property that 
the representation gαβ : 1( )f U Uα α β

− ∩  → f−1(Uα ∩ Uβ) that is defined by fα(x) = 

fβ(x)[gαβ(x)], x ∈ 1( )f U Uα α β
− ∩  is the restriction of hαβ to 1( )f U Uα α β

− ∩ .  If this is the 

case then we say that X has a family of local coordinate systems that are compatible with 
the pseudogroup H. 
 Suppose that we have an involutive, integrable G-structure on M.  Using the notations  
of paragraph 2, we have, in particular, equations (6), in which the i

jkc  are constants, while 

the πρ′ are determined up to the transformation (7), always assuming the condition (9).  In 
addition, the group G is now assumed to be involutive.  The coefficients i

kaρ , i
jkc  are 

subject to certain relations.  In order to establish them, we remark that dπρ′  are exterior, 
quadratic, differential forms, in such a way that we may locally write: 
 
(27)  dπρ′ = 1 1

2 2
, , ,

i i j
i ij

i i j

u vρ σ τ ρ σ ρ
στ σ

σ τ σ
γ π π π ω ω ω∧ + ∧ + ∧∑ ∑ ∑ , 

where: 
(28)    ρ ρ

στ τσγ γ+  = 0,  ij jiv vρ ρ+  = 0. 

 
 Upon using (27), we find that the conditions d(dω i) = 0 may be written explicitly: 
 
(29)   k i k i

i j i j
i

a a a aρ σ σ σ− +∑  = k i
ij

i

a aσρ∑ , 

(30)  ( ) ( )k i k i i k k k
im l il m lm i l m m l

i

c a c a c a a u a uσ σ
ρ ρ ρ σ ρ σ ρ

σ
− + + + −∑ ∑  = 0, 

(31)  ( ) ( )k i k i k i k k k
ij lm il mj im jk j lm l mj m jl

i

c c c c c a a v a v a vρ ρ ρ
ρ ρ ρ

ρ
+ + + + +∑ ∑  = 0. 

 
 The compatibility of these equations is therefore a necessary condition on i kaρ , i

jkc .  

We remark, in passing, that if G is composed of only the identity then (29), (30) are 
satisfied identically, and (31) reduces to the well-known Jacobi identities. 
 Equations (29) have a simple interpretation.  Indeed, in terms of the infinitesimal 
transformations Xρ in (15), they are equivalent to the equations: 
 
(32)    (Xρ , Xσ) = Xτ

ρσ τ
τ

γ∑ . 

 
 It then results that τρσγ  are constants − and, in fact, they are the structure constants of 

G. 
 A fundamental theorem states that these results have a converse.  More precisely, we 
have the following theorem: Suppose that the constants i

kaρ , i
jkc  are such that equations 
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(29), (30), (31) are compatible.  Let ( )i
jy  be a generic element of G, and let π′ ρ be r 

linearly independent, left-invariant Pfaff forms on G.  We may find a connected open 
subset E in the n-dimensional Euclidian space (which may be any space), and n linearly 
independent, analytic Pfaff forms ϕ i in E with the property: In E × G, there are Pfaff 
forms: 
(33)    π′ρ = π′ ρ + k

k
k

d ρϕ∑ , 

 
which, when combined with ω i = k

k
k

yρϕ∑ , satisfy equations (6). 

 This theorem is a generalization of the converse of Lie’s third fundamental theorem 
for Lie groups.  One proves it by applying the existence theorem that was given in 
paragraph 3.  Neither the set E, nor the forms ϕ k, are determined in a unique fashion.  
However, in the discussion that we made we directed our attention to a particular choice 
of these elements. 
 When a choice of this type has been made, we say that an analytic representation f of 
an open subset U ⊂ E into an open subset V ⊂ E is admissible if the restrictions iνϕ  of the 

forms ϕ k to V are represented by the dual representation of f by the forms: 
 
(34)   ( )i k

k u
k

y x ϕ∑ ,  ( )i
ky x ∈ G, x ∈ U. 

 
 If we take the sets of F to be open subsets of E and take the representations of H to be 
admissible homeomorphisms then all of these homeomorphisms define a pseudogroup, in 
the sense that was defined at the beginning of the present section. 
 Suppose that our manifold M has a covering {Uα} by coordinate neighborhoods, with 
respect to which, the given involutive, integrable G-structure is defined in each Uα by the 
Pfaff forms i

αθ .  Let x ∈ Uα .  It results from the fundamental theorem above that we may 

find a neighborhood V ⊂ E, and a homeomorphism f of V onto a neighborhood U, x ∈ U 
⊂ Uα , on which the i

αθ  are represented by the forms: 
 

( )i k
j v

j

y v ϕ∑ ,  ( )( )i
jy v ∈ G, v ∈ V. 

 
 Among these neighborhoods U, we may choose a covering of M that, when combined 
with the corresponding homeomorphisms f, obviously defines local coordinate systems 
that are compatible with the pseudogroup H above.  Such systems of local coordinates 
will be called admissible. 
 
 
 5.  Other examples. – In order to make our concepts clearer, we shall give some 
examples.  All of the structures of the present section will be involutive and integrable. 
 
 1. G consists of just the identity.  As in example 1, paragraph 2, such a structure 
exists on the manifold of a Lie group or on one of its open submanifolds.  In a certain 
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sense, these are the only possible ones.  Indeed, define the structure by the linearly 
independent Pfaff forms ωi.  Consider a parameterized curve x(t), 0 ≤ t ≤ 1 in M, and let 
ωi = pi(t) along the curve.  The structure is called complete if lim x(t) exists whenever: 
 

1 1 2 2

0
( ) ( )np p dt+ +∫ ⋯  

 
converges.  We then have the following theorem: Let M be a connected and simply 
connected manifold with an integrable G-structure for which G consists of just the 
identity.  Suppose the structure is complete.  M is then a Lie group, with ωi for the left-
invariant Pfaff forms. 
 The condition of being complete is a property of the structure.  However, it results 
from the definition that the structure is complete if M is compact.  As a consequence, we 
see that the seven-dimensional sphere S7 gives an example of a parallelizable manifold on 
which no integrable structure exists with G = identity. 
 

 2. G = GL(n, R).  Such a structure is always integrable, and equations (6) may be 

written in the form: 
(35)     dωi = i k

k
k

π ω∧∑ . 

 
 In this case, we take E to be n-dimensional Euclidian space and let: 
 
(36)     ϕi = dxi, 
 
where xi are coordinates on E.  The systems of admissible local coordinates are nothing 
but the original systems that correspond to the given analytic structure on M. 
 
 3. Almost-complex structure on an even-dimensional manifold.  This was studied in 
example 2, paragraph 2, and we adopt the notations that were employed there.  We have 
shown that if the almost-complex structure is integrable then systems of local complex 
coordinates may be introduced on M. 
 It is well-known that the existence of an almost-complex structure on M is 
topologically equivalent to that of an exterior, quadratic differential form Φ that is 
everywhere of rank equal to the highest n.  Such a manifold has been called symplectic by 
Ehresmann (8) if Φ is closed (dΦ = 0).  Among the symplectic manifolds, one finds the 
ones for which Φ is locally reducible to the form: 
 
(37)    Φ = dx1 ^ dxm+1 ^ … + dxm ^ dx2m. 
 
 Such a manifold then has an integrable, involutive structure.  Its systems of 
admissible local coordinates are the ones for which Φ takes the form (37). 
 

                                                
 (8) [11].  
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 4. M has odd dimension n = 2m + 1, and G is the group of all non-singular matrices 
of the form: 

(38)    

00 01 02

0

0

mg g g

C

 
 
 
 
 
 

⋯

⋮
, g00 > 0, 

  
where C is the most general 2m × 2m matrix that satisfies the relation CJ C−1 = J, where J 
is the matrix: 

(39)   J = 
0

0
m

m

I

I

 
 − 

,  Im = 

1 0

0 1

m

  
 
 
   

⋱ . 

 
 One may write equations (6) in the form: 
 

(40)   

0 0 0

1
0 02

1
0 02

,

,

,

k k
k

i i i ik k ik k
k k

i i i i k k i k k
k k

d

d

d

ω π ω ω ω

ω π ω π ω π ω π ω

ω π ω π ω π ω π ω

′

′ ′
′

′ ′ ′ ′ ′ ′ ′
′

 = ∧ − ∧
 = ∧ + ∧ + ∧ + ∧

 = ∧ + ∧ + ∧ + ∧


∑

∑ ∑

∑ ∑

 

 
where i′ = m + i, k′ = m + k, and: 
 
(41)  πik′  + πki′  = 0,    πi′ k + πk′ i  = 0,    πik  + πi′ k′   = 0,  1 ≤ i, k ≤ m. 
 
 For the space E, we may take the Euclidian space of dimension 2m + 1, with the 
coordinates x0, …, x2m , and we may take: 
 

(42)    
0 0 ,

, .

u u
u

u u u u

dx x dx

dx dx

ϕ

ϕ ϕ

′

′ ′

= +

= =

∑
 

 
 The pseudogroup is essentially that of the contact transformations on a space of 
dimension m – 1.  The structure on M is defined by a Pfaff form θ0 that is defined up to a 
positive factor, and is locally reducible to the form: 
 
(43)   θ0 = dx0 + xm+1 dx1 + … + x2m dxm . 
 
 The admissible local coordinate systems are the ones for which that Pfaff form may 
be written in the form (43). 
 
 5. M is three-dimensional, and G is the group of all matrices of the form: 
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(44)    0 1 0

0 0 1

u v w 
 
 
  

  u > 0. 

 Equations (6) become: 

(45)    
1 1 1

2 2 1

3 3 1 2 3

,

,

.

d

d

d

ω π ω
ω π ω
ω π ω π ω

= ∧
 = ∧
 = ∧ − ∧

 

 
 In the present case, we take the space E to be the half-space y > 0 of three-
dimensional Euclidian space (x, y, z).  Equations (45) then have the solutions: 
 

(46)   ω1 = u dx, ω2 = v dx + 
1

dy
y

, ω3 = w dx + 
1

dz
y

. 

 
 An admissible representation of a neighborhood with the coordinates x, y, z in a 
neighborhood that has the coordinates X, Y, Z satisfies the differential equations: 
 

(47)    

,

1 1
,

1 1
.

dX u dx

dY v dx dy
y y

dZ wdx dz
y y

=

= +

= +

 

 The finite equations are: 
 
(48)   X = f(x), Y = y g(x), Z = z g(x) + h(x), 
 
where f, g, h are arbitrary analytic functions of x. 
 
 
 6.  Involutive and semi-involutive linear groups.  Connections. – It results from 
the discussions above that the study of involutive linear groups plays an important role in 
the theory of infinite continuous groups.  It is a purely algebraic problem.  Meanwhile, 
we shall give some geometric considerations that will help to clarify the situation. 
 To continue the general discussions of paragraph 2, we see that the forms πρ on B are 
determined up to the transformation (7), with the restriction of conditions (9).  The latter 
are homogeneous, linear equations in kbρ  with constant coefficients.  Suppose that ksbρ , 1 

≤ s ≤ r1 are a fundamental system of solutions of this linear system, in such a way that 
any other solution may be written: 

(49)     kbρ  = 
1

1

r
s

ks
s

b tρ

=
∑ , 
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where the ts are arbitrary parameters.  It follows that in BG we have n + r Pfaff forms ωi – 
ρ, the first of which are completely determined, while the latter are determined up to the 
transformation: 

(50)    πρ → π′ ρ = πρ + 
1

1

r
s k

ks
s

b tρ ω
=
∑ . 

 
 If G1 denotes the group of all matrices of the form: 
 

(51)    
0
n

r

I

I

 
 
 

C
, C = s

js
s

b tρ 
 
 
∑  

 
then this must say precisely that BG has a G1-structure, where G1 is an Abelian group of 
dimension r that acts on a vector space of dimension n + r.  It is determined completely 
by G, and one may call it the derived group of G. 
 Upon repeating this process, we obtain a sequence of manifolds BG, 

1GB , 
2GB , …, 

where Gk is the derived group of  Gk−1 .  Naturally, these structures are not necessarily 
integrable, even if the original G-structure on M is integrable.  We say that G is semi-
involutive if Gk is involutive and different from the identity for a certain k ≥ 1.  Since, 
according to our existence theorem on differential equations, the derived group of an 
involutive group is involutive, an involutive group that is different from the identity is 
semi-involutive.  A necessary condition for G to be semi-involutive is that no Gk is the 
identity for k ≥ 1. 
 This situation is in direct contrast with the case where a connection may be defined 
by starting with a G-structure.  Indeed, the condition G = identity signifies precisely that 
one may define linearly independent Pfaff forms on 

1kGB
−

 whose number is equal to the 

dimension of 
1kGB

−
 .  These Pfaff forms define a connection on the fiber bundle 

1kGB
−

→ 

2kGB
−

 (with the convention that 
0GB  = BG, 

1kGB
−

 = M) whose structure group is Gk−1 .  As a 

particular example, we may take G = O(n, R).  Then, as one easily shows, G1 is 

composed of just the identity, and we define a connection in the sheaf BG → M that is the 
well-known parallelism of Levi-Cività.  This proves, in particular, that the orthogonal 

group O(n, R) is not involutive. 

 By a broad use of the theory of representations of semi-simple Lie algebras, E. Cartan 
has determined all of the semi-simple complex linear groups that are irreducible, and 
whose derived group is not the identity.  On the basis of that result, he has determined all 
of the linear groups that are irreducible and semi-involutive.  In particular, one shows that 
the only complex, semi-simple, irreducible, semi-involutive, linear groups are the special 
linear group and the symplectic group.  The proof of the theorem is long and demands 
many calculations.  A simplified proof and an extension to the real case would be very 
desirable. 
 Cartan appealed to this theorem to determine what he called the simple pseudogroups.  
In the ultimate developments of the theory of infinite pseudogroups, these simple 
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pseudogroups will probably be the primary objects of the study.  Consequently, we shall 
summarize his results here.  The following concepts are entirely local. 
 As is the custom, a pseudogroup is called simple if it contains no sub-pseudogroup, 
properly speaking, that is distinct from the identity.  One calls it imprimitive if it 
transforms a family of disjoint k-dimensional submanifolds (0 < k < n) that the manifold 
is subdivided into amongst themselves.  If it is not imprimitive then one says that it is 
primitive.  A simple pseudogroup is necessarily primitive.  By determining all of the 
primitive infinite pseudogroups, Cartan has shown that in the complex domain the simple 
infinite pseudogroups are of four types: 
 
 A. The pseudogroup of all complex analytic transformations of n complex variables 
with non-zero Jacobian. 
 
 B. The pseudogroup of all complex analytic transformations of n complex variables 
with Jacobian equal to 1. 
 
 C. The pseudogroup of all complex analytic transformations of n = 2m complex 
variables z1, …, z2m that leave invariant the exterior quadratic differential form: 
 
(52)    dz1 ^ dzm+1 + … + dzm ^ dz2m. 
 
 D. The pseudogroup of all complex analytic transformations of n = 2m + 1 complex 
variables z0, …, z2m that reproduce the Pfaff form: 
 
(53)    dz0 + zm+1 dz1 + … + dz2m dzm, 
up to a non-zero factor. 
 
 These pseudogroups have their analogues in the real variables.  We say that a 
manifold has an A-structure if it has a covering by systems of local coordinate systems 
that are compatible with the pseudogroup A, and similarly for B, C, and D-structures.  In 
the real case, we intend the term “pseudogroup D” to mean all real transformations that 
reproduce the form (53), up to a positive factor.  This pseudogroup has been considered 
in example 4, paragraph 5. 
 
 
 7.  Global problems. – Let G be an involutive linear group in n variables.  The global 
problems that we immediately encounter are those of knowing whether a manifold M has 

a G-structure, and whether it has an integrable G-structure.  For n = 2m and G = G(m, C), 

this amounts to the problems of the existence of almost-complex and complex structures 
on M, about which much work has been done (9).  In the present section, we shall give a 
sampling of these results for the case of a D-structure on a multiplicity of odd dimension. 
 We recall that the only local invariant of a Pfaffian equation ω = 0 is its class, which 
is an odd integer c = 2r + 1 such that 2r is the rank of dω (mod ω).  On a multiplicity of 
odd dimension n = 2m + 1, there always exists a non-zero Pfaffian form (i.e., a Pfaffian 

                                                
 (9) See, for example, [8], [11], [12].  
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form that is never annulled).  The existence of a D-structure is equivalent to the existence 
of a Pfaffian form that is everywhere of class 2m + 1.  Such a property has topological 
implications on the manifold.  It is easy to that if M has a D-structure then it must be 
orientable. 
 Other necessary conditions for the existence of a D-structure may be deduced as 
follows: Let E be the real Euclidian space of dimension 2m + 2N + 1, and let O be a fixed 
point of E.  Let E′ be a hyperplane that passes through O, and let v be a unit vector that is 
perpendicular to E′.  E′ may be considered as a complex Euclidian space of complex 
dimension m + N.  A complex vector space ξ of complex dimension m that issues from O 
in E′ determines a real vector space of dimension 2m, which, along with v, determines a 

real vector space of dimension 2m + 1.  We let G(m, N; C) denote the complex 

Grassmann manifold of all complex vector spaces of dimension m that issue from O and 

are found E′, and let G(2m + 1, 2N; R) denote the real Grassmann manifold of all real 

vector spaces of dimension 2m + 1 in E.  The construction above then defines a 
representation: 

(54)    h: G(m, N; C) → G(2m + 1, 2N; R). 

 

 For N sufficiently large, let τ : M → G(2m + 1, 2N; R) be the tangential 

representation of M; i.e., the representation that induces the tangent fiber bundle of M.  It 
results from standard considerations regarding fiber bundles that M has a D-structure only 

if there exists a representation σ : M → G(m, N; C) such that τ and σ are homotopic.  

Since G(m, N; C), as a complex Grassmann manifold, has no non-zero cohomology 

group of odd dimension, we have the following theorem: If M has a D-structure then all 
of the Stiefel-Whitney characteristic classes of odd dimension must be zero. 
 This necessary condition easily leads to the multiplicities of odd dimension that have 
no D-structures.  In particular, we may consider the five-dimensional manifold of Wu 
Wen-Tsun that is defined as follows: Let P2 be the complex projective plane, and let l be 
the unit interval 0 ≤ t ≤ 1.  At a point z ∈ P2, let z be the point whose homogeneous 
coordinates are the complex conjugates of z.  We take the Cartesian product P2 × l and 
identify the points z × 0 and z × 1.  The resulting space is an orientable five-dimensional 
manifold whose three-dimensional Stiefel-Whitney class is not annulled (10).  As a result, 
it has no D-structure. 
 On the other hand, there do exist manifolds with a D-structure.  Let µ be an analytic 
manifold of dimension m – 1.  By the term co-ray of µ, we intend this to mean the class 
of all covectors that differ from one of the others by a positive factor.  The manifold of all 
co-rays of µ has dimension 2m – 1, and obviously has a D-structure.   Instead of 
considering the manifold of all co-rays, we may also take the manifold of all rays, which 
is generally called the tangent manifold to µ.  If we introduce a Riemannian metric on µ 
then we see that the tangent manifold is differentiably homeomorphic to the manifold of 
all co-rays, and, in turn, to a D-structure. 
                                                
 (10) [15].  
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 Another example of a multiplicity with a D-structure is given by a sphere S2m+1 of 
dimension 2m − 1.  Indeed, consider a complex Euclidian space of dimension m − 1 with 
the coordinates z0, …, zm, and define S2m+1 to be the locus of the equation: 
 
(55)    0 0 1 1 m mz z z z z z+ + +⋯  = 0. 
 The Pfaff form: 

(56)    ( )
0

1 m

z dz z dz
i

α α α α

α =
−∑  

 
is then real and everywhere of class 2m – 1. 
 We need to remark that the second example is not included in the first one.  The 
following theorem was communicated to me by Professor Spanier: Any sphere S of 
dimension 2m – 1 is the tangent manifold of a multiplicity of dimension m − 1. 
 This theorem is proved as follows: Suppose that S is the tangent manifold of a 
manifold µ of dimension m – 1.  S is then a bundle over M that is fibered into spheres of 
dimension m.  If µ is non-orientable then the tangent manifold of its two-sheeted 
orientable covering covers S twice.  Since this is not possible, µ must be orientable.  As 
the case m = 1 easily leads to a contradiction, we suppose that µ is greater than 1.  
Consider the Gysin sequence of the fiber bundle S → µ (11): 
 

(57) … → Hz−1(S) j→  Hr−m−1(µ) h→  Hz(µ) p∗

→ Hr(S) j→  Hr−m(µ) h→  
   h→  Hr+1(µ) → …, 
 
where the groups are the cohomology groups with integer coefficients.  p* is the dual 
homomorphism that is induced by p, j is the integration on the fiber, and h is 
multiplication by the characteristic class Wm+1.  We may infer the following conclusions 
from this exact sequence: 
 
 1. For r = m – 1, H0(µ) ≅ Hm+1(µ), and Wm+1 generates Hm+1(µ), which implies that 
the Euler-Poincaré characteristic χ(µ) is equal to ± 1. 
 
 2. For r < m, Hm(µ) ~ Hr(S) = 0. 
 
 3. For r > 1, Hr(µ) ≅ Hr+m(S), in such a way that Hr(µ) = 0. 
 
 From the last two results, we infer that Hr(µ) = 0 (1 ≤ r ≤ m).  This latter condition 
implies that χ(µ) is equal to 0 or 2, which contradicts 1).  This completes the proof of the 
theorem. 
 
 
 8.  Observations. – The infinite continuous groups that were considered in the 
present article constitute only a particular case of the ones that were studied by E. Cartan.  
One may obtain other generalities in two directions: First, the transformations of 

                                                
 (11) [7].  
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pseudogroups may be defined as being the general integrals of a system of partial 
differential equations of higher order, rather than being of first order, as with equations 
(17) in our case.  For this generalization, Ehresmann’s theory of jets or N. Bourbaki’s 
theory of infinitely close points reveals its utility.  Secondly, Cartan has taken under 
consideration what one calls the intransitive groups.  They are important for the infinite 
continuous groups pseudogroups, because, with a notion of local isomorphism that we 
have not discussed here, contrary to the case of Lie groups, there exist intransitive 
pseudogroups that are not isomorphic to any transitive pseudogroup. 
 Despite the restricted nature of our class of pseudogroups, it seems that one has 
sufficient grounds for reflection.  Other than the type of problems that were considered in 
paragraph 7, there is the question of the study of particular families of functions on M.  If 
the structure group G has an invariant subspace then a natural family of functions of this 
type is composed of the ones whose gradient vectors everywhere belong to the 
corresponding invariant subspaces.  This notion contains that of a complex analytic 
function on an almost-complex manifold.  If we use the notation of paragraph 2 then a 
function f with complex values on an almost-complex manifold is complex analytic if df 
is everywhere a linear combination of the ωt.  Given the extreme richness of the theory of 
functions of one or more complex variables, we are of the opinion that it might perhaps 
be worthwhile to consider this generalization a little more closely. 
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