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1. Introduction and examples. The groups of local transformations that are defined
by the general integrals of a system of partial difiead equations were studied for the
first time by Sophus Lie'). Later, Elie Cartan gave a more satisfactorytimeat of the
subject and solved some of the fundamental probléms However, their viewpoints
were purely local. In the present article, we shiérapt to pose the foundations of that
theory and show, in particular, that it is a natusaieyalization and has great importance
in the theory of Lie groups and complex manifolds.

A situation that frequently presents itself in diffdi@hgeometry is the following
one: LetM be a real analytic manifold of dimensionwith coordinate neighborhoods
U+, Ug, etc., that form a covering dfl. Suppose that for eadll, one is givenn
independent linear Pfaffian forms &k that will be denoted by, (i =1, ...,n) é). We

then have, for the case whédg n Ug # [:

(1) g, => 9,06, xOUg n Ug.
]

The matrix:

2) 9as®) = [ Gbp (X ]

may be considered as an element of the generak lgreupGL(n, R) in n real variables,

and we suppose that the associakion gs«(x) (x 0 Uy n Up) defines an analytic map
of Uy n Ug into GL(n, R).

Now, letG be a subgroup @sL(n, R). A fundamental problem in the theory of fiber

bundles is the following one: May one choose thenfod, in such a fashion thaf(x)

belongs taG for all pairsa, S of indices and alk J U, n Ug? If this is possible then we
say, in the terminology of fiber bundles, that gtaeucture group of the principal fiber
bundle of the tangent fiber bundle Mbmay bereducedto G. More simply, we say that

() The numbers in brackets [.] refer to the bibliogsaphthe end of the article.

@) [11,[2, (3], [4], [5]-

() Unless stated to the contrary, in all of the preseticle, we shall use the following system of
indices: 1<i,j,k<n; 1< p g, r<r.
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M has aG-structure and that the set of Pfaff forn®, defines aG-structureonM. The
following examples illustrate the significance of thation:

1. Gis composed of just the identity elemeM.is then parallelizable.

2. Gis the orthogonal group(n, R) in n real variables. Then:

3) (6)° ++(6))°= (Gp)° ++-+(6p)°

is a positive-definite, quadratic, differential form Bhand defines a Riemannian metric.
Conversely, a Riemannian metric Bingives rise to &-structure orM with G = O(n, R)

in an obvious way.

3. n=2mis even, andG is the general linear grouL(m, C) in m complex

variables, which is regarded as a subgroug@bfn, R). The corresponding structure

group G will generally be called aalmost-complexstructure group, whilé/ will be
called amalmost-complex manifold.

While the theory of fiber bundles is occupied with éxastence or non-existence of
G-structures orM for a givenG, one of the goals of differential geometry consists
precisely in the study of differential invariants of atgalar G-structure and their global
implications. For example, the existence of a Rieman metric (or, at least, a non-
analytic metric) orM is a simple theorem in the theory of fiber bundbeg, Riemannian
geometry is precisely the study of properties of a Rienaamnmnetric whose most
interesting aspects are the global, or topological,icapbns of these properties.

2. First invariants of a G-structure. Integrable structure. — We shall show how
one may define the first differential invariants déastructure. Letd, refer to the matrix

with one row whose elements af, ..., §7. Equations (1) may then be written in the
matrix form:
(4) O = G59ai(X), xOUg n Upg.

We identifyx 0 U, n Ug with the elementsx(y,) O U, X G and &, yg [ Ug x G, with
Ya, Yp U G by the condition thaysz = goAX) Yo . The spac8g thus obtained is called the
principal fiber bundlewith the structure group Gand it is locally homeomorphic to a
Cartesian produdt), x G. Since&, Yo = 63 Ys, their common expressio@is a matrix
with just one row of Pfaff forms that are defined gityponBg . As a result, instead of
remaining orM, we pass t@gs , and we shall study the properties of these Pfaff$arm
Bs .

The first step is the calculation of the exteriorigiive daw In U,, we utilize the
representatiomw= 6, Yy, , and we find:
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(5) da): - a)/\ y;ldya + dea ya,

where y! is a matrix of left-invariant Pfaff forms d&. Since the elements (1<i<n)
of ware linearly independent, we may write that equation rexpécitly as follows:

(6) da)':—za a)‘Dﬂ"’+1ZC'Jk(b)af’ Odf,

wherer is the dimension o6, a, are constants, and, (b) are functions ot x G that

are subject to the condition of being anti-symngetmnij, k, in order to be determined
completely. The? are left-invariant Pfaff forms o@. The formula (6) is local, being
valid only onp™(U,), wherep is the projection oBg onto M. We now apply the
transformation:

(7) 7 mP=1+> o

to the formsr?.
Equations (6) preserve the same form under tlaiestormation, where the new

coefﬁcientsc},‘( are given by the equations:
(8) Cie —ch+Z( L+, 1)

Then?(n - 1)/2 expressionsz (—a‘pkbjf’ + a{pj kf) are linear inb’ and have constant
coefficients. Suppose that they are mutually liyemdependent. 1h%(n — 1)/2 =sthen
we may choosg? in such a way that all thel, disappear.

If n’(n — 1)/2 >s then we choosd? in such a way thas of the C]L are annulled,
when chosen conveniently. We now suppose that authnsformation (7) has been
performed, and we suppose that there are now p(ines thesr’” and C]L . In order that

our conditions should remain unchanged, the must be determined up to the
transformation (7) that satisfies:

9) z(_aipkbjp-*-dm ) =0

It results from (8) that the new coefficientﬁ are functions omBg that are defined

globally. They are thus the first invariants dBsstructure. We say that tl@& structure
is integrableif all of these invariants are constants.
We mention the following examples of integraBlestructures:

1. M is a connected Lie group or an open subset ofgtatp, ande are the left-
invariant Pfaff forms. In this cas§ consists of just the identity, and tkng are the

structure constants of the group.
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2. Consider an almost-complex structure, as in exafpieparagraph 1. In order
to study its local invariants, it is convenient to usdfRéams with complex values — i.e.,

Pfaff formsw= ¢ + iy, whereg, (¢ are real analytic; we also writ@ for ¢ — i¢. With
these conventions, suppose that 2m, and suppose that@L(m, C)-structure — i.e., an

almost-complex structure — is given bh It is defined bym Pfaff forms with complex
values f) 4 (1<t<m)ineachU,, such tha#d’, 8' are linearly independent and:

(10) 6 =3 05.(068, xOUqg 0 Ugg,

where [ g;,,(x) | O GL(m, C). By following the general method above, we abtai

Pfaff forms with complex values Bs (G = GL(m, C)) that may be represented locally
by:

(11) G= Vs,

where (y,,) O GL(m, C). In p (U, O Bg, their exterior derivatives may be written in
the form:

(12) dd =Y 7 0t +1> c@' 0@", (c,+¢,)=0,

where therz, are determined up to the transformation:

(13) o~ =y b (b, +1i,) = 0.

It then results that'

uv’

as functions oBg , are first invariants of an almost-complex
structure. The latter is integrable if tlg, are constants. One may verify, by a brief
calculation, that this happens only whelp = 0. From a theorem of Frobenius, this is a

necessary and sufficient condition for the systenm= 0 to be completely integrable.
When these conditions are satisfied, we may takgstem oim functionally independent

first integralsz, ..., 2" to be local coordinates . Any other system of first integrals is
attached to them by a complex analytic transformmawith a non-zero Jacobian. This
shows that an integrable almost-complex structar®adefines a complex structure on
M.

The invariantsc!, were given for the first time by Ehresmann-Libenmg), and are
essentially equivalent to a tensor that was defineBckmann-Frohlichef),

() In all of this example, and on occasion later, wheneve are dealing with an almost-complex
structure, we use the following series of indices:tlu, v<m.

() (11

) [9]
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If one reverts to the case of a gen&adtructure then we desire to remark that the
constantsa‘pk in (6) have a simple geometric interpretation. In,fdone consider§ to

be a linear group that acts on mlimensional vector space with coordinaeghat
conform to the equations:

(14) &~ &=y ly]oG
then: |
(15) X, = Zapfk%

arer infinitesimal transformations that genera&s

3. Notion of general integral of a differential system.Suppose that there exist two
coordinate neighborhood$ andU’, with local coordinateg andx’, respectively, and in
each of them one is given an integraBlstructure whose first invariants have the same
constant values. Lef', &' be Pfaff forms that define thesgstructures; they are
determined up to a transformation@f A homeomorphism dfl into U “that is defined
by the equations:

(16) X" =x0¢, ..., X

is calledadmissiblef it satisfies the equations:

(17) " XK, ..., x""N] = Zeig;(x) (9,(0G).

This condition remains unchanged if we repl&ier &' by forms that differ by a
transformation of5; it is therefore a condition on tl&structures. Equations (17) may
be regarded as a system of partial differentialaiqns onU x U’ We would like to
study the question of whether it admits a “genaraégral,” upon shrinking the
neighborhood&) andU’, if necessary. Consequently, a precise definibtine notion of
a general integral, and other things, that referthé theory of differential systems on a
manifold will be given in the present sectidh (

Let X be a real analytic manifold. At each poxtl X, we letV(x) denote the space
of (contravariant) vectors atand letV'(x) denote the space of covectors; denote their
exterior algebras bj(V(X)) andA( V (X)), respectively. By the teriifferential system
2 on X, we intend this to mean a submanifdd] X, along with the association of an
ideal O(x) O A( V' (x)) at each poink O Y, in such a way that the following condition is
satisfied: For each homogeneous element O(X), there exists a neighborhottof x
onY and a real analytic differential form@onU that belongs t@®(y) for each pointy [

U and reduces ta atx; one says that such a folmlongs tax. Since the vector spaces
A(V(x)) andA( V(X)) are dual, a homogeneous eleméytd A(V(X)), x O Yis called an

() For a detailed treatise on the subject, we referahder to] or [13).
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integral elementf it annuls all of the elements @¥(x). A submanifoldQ [J Y is called
anintegral manifoldof Z if its tangent space at any point is an integral elem@é/ say
that = is closedif exterior differential of every differential far in = belongs to>. In
order to study integral manifolds, we may suppose that owareliftial system is closed.
We give ourselves a decomposable, analytic, exteritardiftial formW of degreep
on Y that is nowhere zero. A fundamental problem inldwal theory of differential
systems is the formulation of theorems palimensional integral manifolds whose
tangent spaces nowhere ankiiil One may formulate a sufficient condition asdois:
SinceW is decomposable, we locally wriké= ¢ '~ ... ~@P. If n denotes the dimension
of Y then one chooses chooses p other Pfaff formsp P*,..., ¢ ", in such a way thag*
A ... N @" # 0 in the neighborhood of in question. Legy, ..., &, be the dual basis to
¢*,...,¢" and consider the vectors:

(18) Vi:e.+zn:li”eg i=1,..,p).

Letl(X), k=1, ...,p denote the space generated/y..., w . Let:
(19 o 17, ..., 17)=0

be the conditions fdi(X) to be a&k-dimensional integral elementgtit is easy to see that
these equations are linear Ifi. We say that is involutive (with respect to the

decomposable form\\) if, for a certain choice ofg, equations (19) are linearly
independent in th&, after taking into account the equations:

(20) O 17) =0, .., Oca(X, 17, ..., 12,) = 0,

A fundamental theorem in the local theory of diffar@l systems confirms the
existence of @-dimensional integral manifold that satisfies appropriaitéail conditions
and the condition thaWw # 0 when the system is involutive. One proves this by
successive applications of the Cauchy-Kowalewsky theordine integral manifolds
whose existence is thus confirmed by this existencer¢heare called “general,” in
contrast to the integrals of partial differential ejras that are called “singular.” It is
important to remark that the condition that a difféldrsystem is involutive is obviously
independent of the choice of local coordinates.

A notion that is closely attached to the notionneblution of a differential system is
that of prolongation. In order to define that notion, Nét be the multiplicity of allp-
dimensional integral elements that are not annulledhbyJpon associating any integral
element with its originx, we obtain a representation: M — Y. In the dual
representation op, W becomes a formV’, and the differential forms that belong Io
become forms oM . The latter assign a set of elementé6f (m)) that define an ideal
to each poinm [ M. It is not difficult to see that these ideals deneifferential system
2' on M; in general,Z' is not closed. We lek denote the corresponding closed
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differential system that is obtained by startingrir®’ and adding the exterior derivatives
of the differential forms in=’. The systen® on M, combined with the fornw/,
constitutes th@rolongationof the given syster. It results easily from our definitions
that the prolongation of an involutive system is involutive

There exists a particularly important case in whichcthrdition of involution may be
formulated more explicitly. It is the case in whitte idealsO(x), for x belonging to a
neighborhoodJ of Y, can be generated by:

1. h analytic Pfaffian form¢, ..., '
and
2. manalytic, exterior, quadratic, differential forms:

P
(21) ZZ J0g+ Y ¢ 8 Ogf (I<ism)
p=1 k=1 jk=1
such that:
(22) WAGIA  A@" At A0,

In this case, let), ..., t;, (1< k<p) bep(p— 1) generic constants. Let be the

number of linearly independent forms amo@Za;ktfﬂ"’, let i ... & be the number
p k
of linearly independent forms among:

2.2 A, DIPI Moy
p k k
and finally letai + & + ... + gp-1 be the number of linearly independent forms among:

Zp:zk:aipktfﬂ"’, ZZ%E—

Let g be the dimension of the manifold pdimensional integral elements that passes
through a point o¥. We then have the inequality:

(23) gspv-pP-1a ... -

Our criterion of involution confirms that the “equalys is valid if and only if the
given differential system is involutive. (It is img@t that we assume that our system is
closed.) This criterion may be applied to our differ@rdystem (17). In order to do this,
we transform the system into a new form. Vet U x G, V'=U’x G, and we introduce
the Pfaff forms:

=30,

:Zy’jigﬂ',

(24)



Chern — Infinite, continuous pseudogroups 8

onV andV’, respectively, wher%yﬂ : [y’l'} are generic elements &f The differential
system (17) is then equivalent to the following one:

(25) w'-w=0.

In our terminology, the ideal ovi’ x V that isassociatedwvith the differential system
at a point ofV’ x V is generated by the left-hand sides of (25). In orderakenthat
system closed, we add the generatifrg’' — ') to the ideal at any point. Since the two
G-structures are integrable with the same first invasiazne may choose Pfaff formg
in such a way that:

dw' - )= a, (" -n")0df .

Our differential system is then of the particulgre that was discussed above, With
=d " ... d. Inorder to find the condition of involution, vietroduce the integer
ai, ..., Oh1, @S before, witlp placed byn. According to the criterion above, a necessary
and sufficient condition for the differential systeo be involutive is:

(26) g=nv—-n-1)a, ..., Oh1 .

In particular, we see that this condition depeowly upon the groug. When it is
satisfied, we say that the linear gro@gs involutive. One will say that @-structure is
involutive if G is involutive.

4. Pseudogroups defined by an involutive integrable structure- In the present
section, we shall show how an involutive integrafiiricture on a manifold defines a
pseudogroup of transformations, and a correspontiingly of admissible coordinate
systems. We first recall the definition of a psagidup.

Let E be a topological space, and febe a family of open subsets such that the union
of an arbitrary number of subsetsFofind the intersection of a finite number of subsets
of F belong toF. A family H of homeomorphisms, each of which represents aesuibs
F on a subset of, is said to constitute pseudogrougf the following conditions are
satisfied:

1. IfU O F then the identity representation belongsitolf h 0 H represent$) in V
then the inverse representation belongsitolf h, h” [0 H and their produchh’is well-
defined therhh’[J H.

2. LetV be a union of subsets, of F. In order for a homeomorphismthat is
defined onV to belong tdH, it is necessary and sufficient that its restich | V, belong
to H.
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Now, letX be a topological space, and l&t 4 be a covering oK with open subsets.
Suppose that for eaah there is a homeomorphisrgof a subseV, of F ontoU,, in
such a fashion that the following condition is sat&fi€or two arbitrary indicesr,
with U, n Ug# [, there is a representatibpsz U H of V, onto Vs with the property that
the representationyas : ., *(U, n Uy - (U, n Up that is defined byf«(x) =
f)[9a4¥)], x O f,*(U, nU,) is the restriction ohszto f,*(U, nU,). If this is the
case then we say th&thas a family of local coordinate systems thatcarapatiblewith

the pseudogrouH.
Suppose that we have an involutive, integr&lgtructure orM. Using the notations

of paragraph 2, we have, in particular, equations (6), inh/\ﬂhiu;c‘jk are constants, while
the 77 are determined up to the transformation (7), alwaysmaisspthe condition (9). In
addition, the grougs is now assumed to be involutive. The coefficieas, c; are

subject to certain relations. In order to establish theenfemark that7” are exterior,
quadratic, differential forms, in such a way that wey moaally write:

(27) d7f' = 1> yen’ O +> usn’ O +4> ol Odl
o,r o i,

where:

(28) Vo + Vi =0, v+ =0.

Upon using (27), we find that the conditiad{slw') = 0 may be written explicitly:
(29) Z_a;iazirj'*'a;drj :Za%( azi;p’
(30) Z:(_C.Ir(na;n'H:%< %+¢n é.)"'Z( é| Gm_ ém g) =0,

I g

(31) Z(C'Ii(qi'“+qk¢"i+¢n a)+2(4 h+ 8 9+ h 9 =0

i P
The compatibility of these equations is therefore eessary condition o), , c;, .
We remark, in passing, that @ is composed of only the identity then (29), (30) are
satisfied identically, and (31) reduces to the well-knoagobi identities.

Equations (29) have a simple interpretation. Indeedenmg of the infinitesimal
transformations, in (15), they are equivalent to the equations:

(32) Ko, Xo) = zy;axr-

T

It then results thay;,, are constants and, in fact, they are the structure constants of
G.

A fundamental theorem states that these results aaonverse. More precisely, we
have the following theorem: Suppose that the constalptsc;, are such that equations
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(29), (30), (31) are compatible. Ley‘j) be a generic element &, and let/r “ ber
linearly independent, left-invariant Pfaff forms @& We may find a connected open
subsetE in then-dimensional Euclidian space (which may be any spacé)n dinearly
independent, analytic Pfaff formg' in E with the property: IrE x G, there are Pfaff
forms:
(33) =+ Y digk,

k

which, when combined witw' = > y/¢* , satisfy equations (6).
k

This theorem is a generalization of the converskia$ third fundamental theorem
for Lie groups. One proves it by applying the existence #mathat was given in
paragraph 3. Neither the d&t nor the formsgp k are determined in a unique fashion.
However, in the discussion that we made we directedattention to a particular choice
of these elements.

When a choice of this type has been made, we sayritatadytic representatidrof

an open subsd& [J E into an open subsdt[ E is admissible if the restrictiong, of the
forms ¢ ¥to V are represented by the dual representatidtpthe forms:

(34) PRAC T Y (x0OG, x0OU.

If we take the sets &f to be open subsets Bfand take the representationd-bfo be
admissible homeomorphisms then all of these homeamems define a pseudogroup, in
the sense that was defined at the beginning griésent section.

Suppose that our manifoM has a covering{,} by coordinate neighborhoods, with
respect to which, the given involutive, integraBletructure is defined in eadh, by the
Pfaff forms &,. Letx 0 U,. It results from the fundamental theorem abowet te may

find a neighborhoo® [ E, and a homeomorphisfrof V onto a neighborhood, x 1 U
0 Ug, on which thed, are represented by the forms:

PRACL (yw)oe, vow

Among these neighborhoods we may choose a covering Mfthat, when combined
with the corresponding homeomorphism®bviously defines local coordinate systems
that are compatible with the pseudogrdti@bove. Such systems of local coordinates
will be calledadmissible

5. Other examples.— In order to make our concepts clearer, we shia# some
examples. All of the structures of the presentiseavill be involutive and integrable.

1. G consists of just the identity. As in example &rggraph 2, such a structure
exists on the manifold of a Lie group or on ondatefopen submanifolds. In a certain
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sense, these are the only possible ones. Indeed, deénstructure by the linearly
independent Pfaff forme). Consider a parameterized cur(g, O<t< 1 inM, and let
o = p'(t) along the curve. The structure is calbeanpleteif lim x(t) exists whenever:

[N+ + () et

converges. We then have the following theorem: Mebe a connected and simply
connected manifold with an integrab@structure for whichG consists of just the
identity. Suppose the structure is compleké.is then a Lie group, witlw for the left-
invariant Pfaff forms.

The condition of being complete is a property of thmacttre. However, it results
from the definition that the structure is complet®ifs compact. As a consequence, we
see that the seven-dimensional spl#mgives an example of a parallelizable manifold on
which no integrable structure exists Wi identity.

2. G =GL(n, R). Such a structure is always integrable, and equationsd§)be

written in the form: _
(35) dw = ZﬂL Do .
k

In this case, we taketo ben-dimensional Euclidian space and let:
(36) g =dX,

wherex are coordinates oB. The systems of admissible local coordinates are mpthi
but the original systems that correspond to the giwathyac structure oM.

3. Almost-complex structure on an even-dimensional folhi This was studied in
example 2, paragraph 2, and we adopt the notations gratemployed there. We have
shown that if the almost-complex structure is intbgrahen systems of local complex
coordinates may be introduced gin

It is well-known that the existence of an almostrpéex structure onM is
topologically equivalent to that of an exterior, quadratifferential form ® that is
everywhere of rank equal to the highestSuch a manifold has been calenplectidoy
Ehresmann? if @ is closed d® = 0). Among the symplectic manifolds, one finds the
ones for which® is locally reducible to the form:

(37) ® =dx A dX™ A L+ dX A dE™

Such a manifold then has an integrable, involutive strectults systems of
admissible local coordinates are the ones for wibichkes the form (37).

¢ [11.
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4. M has odd dimensiom = 2m + 1, andG is the group of all non-singular matrices
of the form:

90 Y01 " Yom

0
(38) 3 c ., Goo>0,

0

whereC is the most generah®x 2m matrix that satisfies the relati@J C™ = J, whereJ
is the matrix:

0 | 1 O
(39) 'J:|:_I g}a m = t. m.

One may write equations (6) in the form:

day =, Dw, =Y e, Oay,,
k
(40) da =37, 0a + 7 O+ 74 Oa + ) 7. Oeg.,
k k'
dw =37, 0@ + 7. Owy+ 3,7, O+ 7, Ocge,
k k'

wherei’=m+i,k’=m+k, and:
(41) o+ 7% =0, my+7&i =0, i+ 77 =0, 1<i,ksm

For the spac&, we may take the Euclidian space of dimension+21, with the
coordinates, ..., Xom, and we may take:

@, =dx, + >, dx,
@, =dx,, ¢, = dx;.

(42)

The pseudogroup is essentially that of the conti@stsformations on a space of
dimensionm— 1. The structure oM is defined by a Pfaff fornf that is defined up to a
positive factor, and is locally reducible to thenfo

43) G =dxp + Xmer dXg + ... +Xom OXn .

The admissible local coordinate systems are tles dor which that Pfaff form may
be written in the form (43).

5. M is three-dimensional, ar@is the group of all matrices of the form:
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uv w
(44) 010 u> 0.
001
Equations (6) become:
da = Uw,
(45) daw, =, Uw,

daw, = m, 0w - m,Dw,

In the present case, we take the spBceo be the half-spacg > 0 of three-
dimensional Euclidian space, {/, z). Equations (45) then have the solutions:

(46) @ =udx a =V dx+ %dy, ay =wdx+ idz.
y

An admissible representation of a neighborhood wiite coordinates, y, z in a
neighborhood that has the coordinate¥, Z satisfies the differential equations:

dX =udx
(47) EdY = vdx+—1 dy
y y
1

—dz= de+—1 dz
y y
The finite equations are:

(48) X =1(x), Y=ydx), Z=zdx +h(x),

wheref, g, h are arbitrary analytic functions rf

6. Involutive and semi-involutive linear groups. Connections- It results from
the discussions above that the study of involuinear groups plays an important role in
the theory of infinite continuous groups. It igparely algebraic problem. Meanwhile,
we shall give some geometric considerations thitheip to clarify the situation.

To continue the general discussions of paragrapleXee that the form# onB are
determined up to the transformation (7), with testriction of conditions (9). The latter
are homogeneous, linear equationdfnwith constant coefficients. Suppose tbdt 1

< s<r; are a fundamental system of solutions of thisalingystem, in such a way that
any other solution may be written:

(49) oY = YLt
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where the® are arbitrary parameters. It follows thaBigwe haven + r Pfaff formsc) —
P, the first of which are completely determined, while thtter are determined up to the
transformation:

(50) - =1+ ib{;tswk.

If G; denotes the group of all matrices of the form:

C

In - 0 +S
oul e[z

then this must say precisely tH&¢ has aG;-structure, wher&s; is an Abelian group of
dimensionr that acts on a vector space of dimengionr. It is determined completely
by G, and one may call it théerived groupof G.

Upon repeating this process, we obtain a sequence of mdariffle, B, , B; , ...,

where Gy is the derived group ofGy-; . Naturally, these structures are not necessarily
integrable, even if the origin&-structure orM is integrable. We say th& is semi-
involutive if G is involutive and different from the identity for artaen k = 1. Since,
according to our existence theorem on differential egosit the derived group of an
involutive group is involutive, an involutive group that fetent from the identity is
semi-involutive. A necessary condition f@rto be semi-involutive is that nGx is the
identity fork > 1.

This situation is in direct contrast with the caseekgha connection may be defined
by starting with aG-structure. Indeed, the conditi@h= identity signifies precisely that
one may define linearly independent Pfaff forms®&n whose number is equal to the

dimension ofB; . These Pfaff forms define a connection on the fibedleuB, -
B, (with the convention thaB, =Bg, B;  =M) whose structure group @1 . As a

particular example, we may také = O(n, R). Then, as one easily shows; is

composed of just the identity, and we define a conneatioinei sheaBs — M that is the
well-known parallelism of Levi-Civita. This proves, inrpeular, that the orthogonal

groupO(n, R) is not involutive.

By a broad use of the theory of representationsrai-semple Lie algebras, E. Cartan
has determined all of the semi-simple complex lineaugsothat are irreducible, and
whose derived group is not the identity. On the basikaifresult, he has determined all
of the linear groups that are irreducible and semi-involutlweparticular, one shows that
the only complex, semi-simple, irreducible, semi-invivleit linear groups are the special
linear group and the symplectic group. The proof of the émas long and demands
many calculations. A simplified proof and an extensmihe real case would be very
desirable.

Cartan appealed to this theorem to determine what hezldaksimplepseudogroups.
In the ultimate developments of the theory of inéBnpseudogroups, these simple
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pseudogroups will probably be the primary objects of the st@bnsequently, we shall
summarize his results here. The following concepteatiesly local.

As is the custom, a pseudogroup is cafledpleif it contains no sub-pseudogroup,
properly speaking, that is distinct from the identity. neOcalls itimprimitive if it
transforms a family of disjoirit-dimensional submanifolds (Ok< n) that the manifold
is subdivided into amongst themselves. If it is not imgive then one says that it is
primitive. A simple pseudogroup is necessarily primitive. By detanygi all of the
primitive infinite pseudogroups, Cartan has shown that ictineplex domain the simple
infinite pseudogroups are of four types:

A. The pseudogroup of all complex analytic transformatafns complex variables
with non-zero Jacobian.

B. The pseudogroup of all complex analytic transformatefns complex variables
with Jacobian equal to 1.

C. The pseudogroup of all complex analytic transformatiohea = 2m complex
variablesz', ..., 72" that leave invariant the exterior quadratic differeritiem:

(52) dZ A dZ™ + .. +dZ2" A dP™

D. The pseudogroup of all complex analytic transformatains= 2m + 1 complex
variables?, ..., 72" that reproduce the Pfaff form:

(53) d2 + 2™ dZ + ... +dZ"dZ",
up to a non-zero factor.

These pseudogroups have their analogues in the real variabl&s say that a
manifold has armA-structure if it has a covering by systems of localrdmate systems
that are compatible with the pseudogradymand similarly forB, C, andD-structures. In
the real case, we intend the term “pseudogmUup mean all real transformations that
reproduce the form (53), up to a positive factor. This pseodpgnas been considered
in example 4, paragraph 5.

7. Global problems.— LetG be an involutive linear group mvariables. The global
problems that we immediately encounter are those ofkigpwhether a manifol1 has

a G-structure, and whether it has an integrdbistructure. Fon = 2mandG = G(m, C),

this amounts to the problems of the existence of dahtm®plex and complex structures
on M, about which much work has been dof)e (n the present section, we shall give a
sampling of these results for the case Btstructure on a multiplicity of odd dimension.
We recall that the only local invariant of a Pfaffegquationw= 0 is its class, which
is an odd integet = 2 + 1 such that 2is the rank olw(mod ). On a multiplicity of
odd dimensiom = 2m + 1, there always exists a non-zero Pfaffian form,(a Pfaffian

() See, for exampleg], [11], [12).
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form that is never annulled). The existence Btstructure is equivalent to the existence
of a Pfaffian form that is everywhere of claga 2 1. Such a property has topological
implications on the manifold. It is easy to thatvif has aD-structure then it must be
orientable.

Other necessary conditions for the existence @f-structure may be deduced as
follows: Let E be the real Euclidian space of dimensiom22N + 1, and le© be a fixed
point ofE. LetE’be a hyperplane that passes throDghand letv be a unit vector that is
perpendicular tcE”. E’” may be considered as a complex Euclidian space of complex
dimensionm + N. A complex vector spacgof complex dimensiom that issues from®
in E” determines a real vector space of dimensimnwhich, along withv, determines a

real vector space of dimensiom2+ 1. We letG(m, N; C) denote the complex
Grassmann manifold of all complex vector spaces of g@m that issue fron®© and
are foundE’, and letG(2m + 1, ; R) denote the real Grassmann manifold of all real

vector spaces of dimensiorm2+ 1 in E. The construction above then defines a
representation:

(54) h: G(m, N; C) - G(2m+ 1, N; R).

For N sufficiently large, letr: M - G(2m + 1, N; R) be the tangential

representation d¥1; i.e., the representation that induces the tangent lilbedle of\V. It
results from standard considerations regarding fiber bartd&M has aD-structure only

if there exists a representatian: M - G(m, N; C) such thatr and g are homotopic.

Since G(m, N; C), as a complex Grassmann manifold, has no non-zenonwmlogy

group of odd dimension, we have the following theorenM lihias aD-structure then all
of the Stiefel-Whitney characteristic classes of oddegision must be zero.

This necessary condition easily leads to the midtigs of odd dimension that have
no D-structures. In particular, we may consider the fiimmethsional manifold of Wu
Wen-Tsun that is defined as follows: L&t be the complex projective plane, andllbe
the unit interval xt < 1. At a pointz O P,, let z be the point whose homogeneous
coordinates are the complex conjugateg. ofVe take the Cartesian proddt x | and
identify the pointz x 0 andz x 1. The resulting space is an orientable five-dimeradio
manifold whose three-dimensional Stiefel-Whitney clasmisannulled ). As a result,
it has noD-structure.

On the other hand, there do exist manifolds witbrstructure. Leju be an analytic
manifold of dimensiorm— 1. By the ternto-ray of 4, we intend this to mean the class
of all covectors that differ from one of the othbysa positive factor. The manifold of all
co-rays ofu has dimension — 1, and obviously has B-structure. Instead of
considering the manifold of all co-rays, we may dbdee the manifold of all rays, which
is generally called the&angent manifoldo 1. If we introduce a Riemannian metric gn
then we see that the tangent manifold is differentiabljneomorphic to the manifold of
all co-rays, and, in turn, to@structure.

() [15].
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Another example of a multiplicity with B-structure is given by a sphe®™* of
dimension 2 "%, Indeed, consider a complex Euclidian space of dimemsierl with
the coordinates, ..., Z", and define™* to be the locus of the equation:

(55) 2+ Z77++ 2772 =0.
The Pfaff form:

(56) 1Y (a7 -7 o)

I o2=0

is then real and everywhere of clags21.

We need to remark that the second example isnmuiided in the first one. The
following theorem was communicated to me by PrafesSpanier: Any spher§& of
dimension th— 1 is the tangent manifold of a multiplicity afreensionm — 1.

This theorem is proved as follows: Suppose thas the tangent manifold of a
manifold i of dimensiorm — 1. Sis then a bundle oveM that is fibered into spheres of
dimensionm. If x is non-orientable then the tangent manifold of tit®-sheeted
orientable covering coveiStwice. Since this is not possible,must be orientable. As
the casem = 1 easily leads to a contradiction, we supposg this greater than 1.
Consider the Gysin sequence of the fiber busdle 2 (*)):

(57) ..o HY9 OO H™Y ) 0N HY(W) OP- H(S O H ™D
O H™YY W) - ...,

where the groups are the cohomology groups witkgit coefficients.p  is the dual
homomorphism that is induced Ly | is the integration on the fiber, ard is
multiplication by the characteristic clagé™*. We may infer the following conclusions
from this exact sequence:

1. Forr = m— 1,H%) OH™Y(), andW™?! generatesi™ (), which implies that
the Euler-Poincaré characteristy) is equal tat 1.

2. Forr<m, H"(1) ~H'(S = 0.
3. Forr > 1,H'(x) OH™™(S), in such a way tha' () = 0.
From the last two results, we infer thdli(z) = 0 (1< r < m). This latter condition

implies thaty() is equal to 0 or 2, which contradicts 1). Thasnpletes the proof of the
theorem.

8. Observations.— The infinite continuous groups that were congdein the
present article constitute only a particular casth® ones that were studied by E. Cartan.
One may obtain other generalities in two directioRgst, the transformations of

) [7.
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pseudogroups may be defined as being the general integralssydtean of partial
differential equations of higher order, rather than b@hgrst order, as with equations
(17) in our case. For this generalization, Ehresmanisryhof jets or N. Bourbaki's
theory of infinitely close points reveals its utilitySecondly, Cartan has taken under
consideration what one calls thgransitivegroups. They are important for the infinite
continuous groups pseudogroups, because, with a notion ofisocabrphism that we
have not discussed here, contrary to the case of ldapgr there exist intransitive
pseudogroups that are not isomorphic to any transitive pseudogroup.

Despite the restricted nature of our class of pseudograupsems that one has
sufficient grounds for reflection. Other than the typproblems that were considered in
paragraph 7, there is the question of the study of patitainilies of functions oM. If
the structure grouf® has an invariant subspace then a natural family of fumetof this
type is composed of the ones whose gradient vectors vevery belong to the
corresponding invariant subspaces. This notion contairisotha complex analytic
function on an almost-complex manifold. If we use tlog¢ation of paragraph 2 then a
functionf with complex values on an almost-complex manifoldasmplex analytic idf
is everywhere a linear combination of e Given the extreme richness of the theory of
functions of one or more complex variables, we dréhe opinion that it might perhaps
be worthwhile to consider this generalization a littlerenclosely.
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