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INTRODUCTION  
 

 The celebrated Laplace method for the integration of second-order, linear, partial 
differential equations is founded upon the properties of a very simple transformation that 
replaces each integral of the given equation with an integral of another second-order, 
linear equation, and conversely.  Upon studying the linear equations, and in particular, 
upon seeking to obtain equations of that type for which it is possible to find a general 
integral, geometers were led to consider transformations that differ from the Laplace 
transformations in some of their properties, but which nonetheless enjoy the characteristic 
property of that transformation: If one is given an arbitrary surface then there exists a 
transformed surface, while the transformation makes each integral of a certain second-
order, linear equation correspond to either one integral or an infinitude of integrals of an 
analogous equation.  The theory of linear equations was presented by Darboux (1), to 
whom a large number of the important results are due.  I will simply cite the names 
Moutard, Lucien Lévy, and Roger Liouville, who have studied certain modes of 
transformation for linear equations. 
 The transformations of nonlinear, second-order, partial differential equations have not 
been the object of as great a number of works, although some very general results have 
been proved by Bäcklund in his papers (2), which are, unfortunately, a bit difficult to 
read.  Upon seeking to analytically study the transformation of surfaces with constant 
total curvature that were discovered by Bianchi, Lie remarked (3) that this transformation 
does not apply to an arbitrary surface, but only to surfaces of constant total curvature.  
Bäcklund showed that in certain cases of systems of partial differential equations that are 
analogous to the system that was the object of Lie’s work, one is allowed to deduce from 
any integral of a Monge-Ampére equation, an infinitude of integrals of an equation of the 
same type by the integration of ordinary differential equations.  At the same time, 
Bäcklund defined a transformation of surfaces of constant total curvature that includes 

                                                
 (1) Leçons sur la théorie générale des surfaces, t. II. 
 (2) BAECKLUND, “Zur Theorie der partiellen Differentialgleichungen erster Ordnung” Mathematische 
Annalen XVII  (1880), 285, and “Zur Theorie der Flächentransformationen, ibid., XIX  (1882), 387. 
 (3) Archiv for Mathematik og Naturvidenskab, V (1880), 282.  



Clairin – On the Bäcklund transformations                                               2 

the Bianchi transformation as a special case.  A little later, Darboux (1) generalized the 
last result and indicated a very elegant method for proving the theorems that were 
obtained by Bäcklund. 
 Some particular transformations of second-order partial differential equations were 
studied by Gomes Teixeira (2).  More recently, Goursat (3) showed that in an extended 
case of the surfaces that the transformations that were considered by Bäcklund were 
applied to – i.e., the transformations that are defined, in ordinary notation, by a system of 
four equations in x, y, z, p, q, x′, y′, z′, p′, q′ − are the integrals of a second-order equation. 
 The present paper, which is divided into three parts, has for its object of study the 
transformations that are defined as we just explained in the case where each of two 
families of surfaces that correspond to them are composed of integrals of a second-order 
equation.  These transformations are called Bäcklund transformations. 
 In the first part, I point out the general properties of these transformations.  In 
particular, after having briefly reviewed the results that were obtained by Bäcklund, I 
examine a case that has not been further considered where four equations between x, y, z, 
p, q, x′, y′, z′, p′, q′ define a transformation that is applied to the integrals of a second-
order equation. 
 In the second part, I study the Bäcklund transformations that make the integrals of the 
two equations correspond in a one-to-one manner.  It is easy to obtain some very general 
and very precise propositions. 
 When the transformation makes an integral of at least one of the two equations 
correspond to an infinitude of integrals of the other equation, the theory seems very 
complicated.  Although they are very incomplete, the results that I prove in the third part 
are possibly capable of providing some useful indications of a more profound study. 
 The principal results that are contained in the first two parts were presented to the 
Académie des Sciences (sessions on 5 February and 9 April of 1900 and 11 February 
1901).

                                                
 (1) Leçons sur la théorie générale des surfaces, t. III, pp. 438. 
 (2) Comptes rendus, XCIII  (1881), 702. – Bulletin de l’Académie de Belgique (3) III  (1882), 486. 
 (3) GOURSAT, Leçons sur l’intégration des équations aux dérivées partielles du second ordre II , pp. 
284. 



PART ONE 
______ 

 
 

 1. If we are given two systems of first-order elements in space then, as is customary, 
we let x, y, z, p, q denote the coordinates of an arbitrary element of the first system, which 
we call the system (E); we employ the same letters with primes for the second system. 
We say that a surface whose elements all belong to one of the two systems belongs to that 
system.  We have to consider contact transformations that either the elements of (E) or 
those of (E′) are subjected to.  Often, to abbreviate, we shall call the former 
transformations (T) and the latter ones (T′). 
 One knows that if the point x, y, z describes a surface z = f(x, y) then the coordinates 
of the elements of that surface have the values: 
 

p = 
f

x

∂
∂

, q = 
f

y

∂
∂

 

so we further write: 

r = 
2

2

f

x

∂
∂

, s = 
2 f

x y

∂
∂ ∂

, t = 
2

2

f

y

∂
∂

, 

 
and for the derivatives of higher order, we write: 
 

pi,k = 
i k

i k

f

x y

+∂
∂ ∂

  (i + k > 2). 

 

 Let V be a function of x, y, z, and the derivatives of z up to order n, and let 
i k

i k

d f

dx dy

+

 be 

the derivative taken i times with respect to x and k times with respect to y.  If one 
subtracts the terms that contain the derivatives of z of order n + i + k then what remains is 
an expression that denote by: 

i k

i k

d f

dx dy

+ 
 
 

. 

 
 The problem that Bäcklund proposed can be stated in the following manner: 
 
 Being given four equations: 
 
(1)    Fi(x, y, z, p, q; x′, y′, z′, p′, q′) = 0 (i = 1, 2, 3, 4) 
 
between the coordinates of the elements of the two systems (E), (E′), determine the 
surfaces of the systems (E) that correspond to the surfaces of (E′). 
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 We shall show that equations (1) always define a transformation that makes certain 
surfaces of (E) correspond to some surfaces of (E′).  We do not consider two 
transformations that are defined by two systems of equations to be distinct when they can 
be converted into each other by the transformations (T) and (T′), and we likewise regard 
two partial differential equations as identical when one can deduce one from the other by 
a contact transformation. 
 At first, we shall not occupy ourselves with the case in which one can deduce an 
equation that depends upon only x, y, z, p, q from system (1).  In addition, we suppose 
that equations (1) are solved with respect to the variables x′, y′, p′, q′.  If that solution is 
impossible then it will suffice to first perform a change of variables or a conveniently 
chosen transformation (T) – for example, the Ampère transformation.  The system (1) 
then becomes: 

(2)    1 2

3 4

( , , , , ; ), ( , , , , ; ),

( , , , , ; ), ( , , , , ; ).

x f x y z p q z y f x y z p q z

p f x y z p q z q f x y z p q z

′ ′ ′ ′= =
 ′ ′ ′ ′= =

 

 
 The elements of (E′), which generate a surface, satisfy the equation: 
 

dz′ − p′ dx′ − q′ dy′ = 0, 
 

and if one replaces x′, y′, p′, q′ with their values then this becomes: 
 
(3)    A dz′ + B dx + C dy + α dp + β dq = 0, 
or further: 
(3)′    A dz′ + (B + α r + β s) dx + (C + α s + β t) dy = 0 
 
on the condition that one must set: 
 

A = 1 2
3 4

f f
f f

z z

∂ ∂+
′ ′∂ ∂

− 1, B = 1 2
3 4

f f
f f

x x

∂ ∂   +   ∂ ∂   
, C = 1 2

3 4

f f
f f

y y

   ∂ ∂+   ∂ ∂   
, 

 

α = 1 2
3 4

f f
f f

p p

∂ ∂+
∂ ∂

, β = 1 2
3 4

f f
f f

q q

∂ ∂+
∂ ∂

. 

 
 The integrability condition for (3′) can be written: 
 
(4)    H r + 2K s + L t + M + N(rt – s2) = 0, 
 
where H, K, L, M, N are functions of x, y, z, p, q, z′ that are easy to calculate. 
 Two cases can then present themselves: If equation (4) depends upon z′ then one 
solves for  z′ as a function of x, y, z, p, q, r, s, t, and after having inserted it into (3)′, what 
remains are two third-order, partial differential equations that determine z; these 
equations are compatible.  In general, there exist ∞1 integrals that pass through a given 
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curve and admit a given tangent plane at each point of that curve (1).  Only one surface in 
(E′) corresponds an integral of these equations. 
 It might likewise happen that equation (4) does not depend upon z′; it is then a 
Monge-Ampère equation.  If one replaces z with an integral of (4) then equation (3)′ is 
completely integrable and determines an infinitude of surfaces in (E′) that depend upon 
an arbitrary parameter.  One immediately sees that the same thing will be true, in 
particular, if z′ does not figure in equations (2).  If these transformations admit an 
infinitesimal transformation (T) then one can, with the aid of a transformation (T′), 
replace the system (2) with a system that is analogous to four equations that no longer 
contain z′, and the integrability condition (4) again reduces to a Monge-Ampère equation. 
 
 2. These results are due to Bäcklund, who proved them in the papers that were cited 
above.  I will add the following remark: Here, I will consider only the case where one is 
led to a Monge-Ampère equation (4).  It is always possible, by a contact transformation, 
to make the term in rt – s2 disappear from that equation, which then admits a family of 
integrals that are each composed of a point and all of the planes that pass through it. 
 From this, the equation: 

A dz′ + α dp + β dq = 0, 
 

in which one regards x, y, z as constants, is completely integrable.  We thus have, upon 
letting ρ and θ denote two functions of x, y, z, p, q, z′: 
 

A dz′ + α dp + β dq = ρ dθ, 
 

on the condition that one differentiate θ with respect to only the variables p, q, z′. 
 If one now takes the ordinary differential then one can write: 
 

A dz′ + α dp + β dq = 
d d

d dx dy
dx dy

θ θρ θ
   − −   

    
. 

 
 Substitute this value for A dz′ + α dp + β dq in (3) and, at the same time, replace z′ 
with its expression as a function of x, y, z, p, q, and a new variable that is defined by: 
 
      ζ = θ(x, y, z, p, q, z′), 
and equation (3) becomes: 
(3)″     dz – λ dx – µ dy = 0, 
 
in which λ and µ denote functions of x, y, z, p, q, z, and that equation will be completely 
integrable at the same time as (3)′.  A linear equation in r, s, t is not, in general, identical 
to the condition of integrability for an expression such as (3)″.  For example, if one 
supposes that the equation considered contains neither s not t then it is necessary that the 
equations must be bilinear in r and q.  Consequently, a Monge-Ampère equation is not 
generally derived from a transformation (2) by the method that was indicated in the 

                                                
 (1) BAECKLUND, Math. Ann. XVII , pp. 291 and XIX , pp. 389.  
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preceding paragraph.  It seems difficult to determine all of the equations that enjoy this 
property, but it suffices to suppose that λ and µ do not depend upon ζ in order to have an 
infinitude of them. 
 Upon writing that H, K, L, M, N are proportional to the coefficients of a given 
Monge-Ampère equation, one obtains four partial differential equations to determine four 
functions f1, f2, f3, f4, but this system of equations is a singular system to which the 
theorems of Cauchy do not apply, and which does not, in general, admit a solution. 
 
 3. If (4) is a Monge-Ampère equation then as soon as one knows an integral of that 
equation z′ will be determined by an integration.  x′, y′, p′, q′ are given by equations (2) 
as functions of x, y, z, p, q, z′.  In a general manner, an arbitrary derivative ,i kp′  of z′ is 

expressed as a function of z′, x, y, z, and the derivatives of z up to order i + k.  One sees 
this by proceeding step-by-step.  For example, in order to obtain s′ and t′, one 
differentiates q′ = f4(x, y, z, p, q; z′), upon replacing dx′, dy′, dz′ with their values that one 
infers from (2) and (3)′, and one then annuls the coefficients of dx and dy.  The 
determinant of the system of linear equations that one thus obtains in order to calculate 

two consecutive derivatives ,i kp′ , 1, 1i kp − +′  is always 1 2( , )

( , )

D f f

D x y
.  It is zero only if the 

multiplicities of (E′) that correspond to multiplicities of (E) satisfy the equation: 
 

y′ = arbitrary function of x′. 
 

It suffices to perform a transformation (T′ ) in order for this situation to not be present.  
Moreover, one easily comprehends why this case is distinguished from the others.  If one 
is given an integral form which y′ is a function of x′ then z′ is no longer a function of two 
independent variables, and there is no reason to consider the partial derivatives of that 
quantity. 
 
 4. The arguments of Bäcklund suppose essentially that the coefficient A in equation 
(3) is non-zero.  If this coefficient is identically zero then things will happen differently.  
The geometric interpretation of the condition: 
 

S = 1 2
3 4

f f
f f

z z

∂ ∂+
′ ′∂ ∂

− 1 = 0 

 
is simple.  That equality expresses the idea that an element x, y, z, p, q corresponds to the 
union of ∞1 elements of (E′). 
 The equation: 

dz′ − p′ dx′ − q′ dy′ = 0, 
 

which is satisfied by the elements of (E′) that generate a surface, reduces here, after x′, y′, 
p′, q′ have been replaced by their values, to: 
 

(B + α r + β s) dx + (C + α s + β t) dy = 0, 



Clairin – On the Bäcklund transformations                                               7 

 
and can be verified only if one has: 
 

(5)     
0,

0

B r s

C s t

α β
α β

+ + =
 + + =

 

at that time 
 Upon eliminating z′ from these equations, one is led to one second-order, partial 
differential equation: 
(6)     F(x, y, z, p, q, r, s, t) = 0, 
 
which defines the surfaces of (E) that the surfaces of (E′) correspond to.  For the moment, 
regard x, y, z, p, q as arbitrary parameters and r, s, t as Cartesian coordinates in a three-
dimensional space.  The two equations (5) represent a line that belongs to the complex 
(G) of lines that are parallel to the generators of the cone rt – s2 = 0.  Equation (6) 
represents a ruled surface whose generators belong to (G), so that equation possesses a 
system of first-order characteristics.  Each integral of (6) corresponds to only one surface 
of (E′), so equations (2) and (5) give x′, y′, z′, p′, q′. 
 Conversely, if one is given a second-order, partial differential equation (6) that 
possesses a system of first-order characteristics then there exists an infinitude of 
transformations (2) such that the proposed equation is derived from any of these 
transformations in the manner that we just spoke of. 
 Equation (6) can be replaced by a system of two equations: 
 

λ r + µ s + ν = 0, 
λ s + µ t + ρ = 0, 

 
in which λ, µ, ν, ρ are coupled by two homogeneous relations: 
 

ψ1(x, y, z, p, q, λ, µ, ν, ρ) = 0,  ψ2(x, y, z, p, q, λ, µ, ν, ρ) = 0. 
 

 On the other hand, the second-order, partial differential equation that is derived from 
a transformation (2) for which one has: 
 

(7)      1 2
3 4

f f
f f

z z

∂ ∂+
′ ′∂ ∂

 = 1 

 
is, as we have just seen, equivalent to the system of two equations (5), where B, C, α, β 
have the values that were indicated above (no. 1).  That equation will be identical to (6) if 
one has: 
(8)  ψ1(x, y, z, p, q, α, β, B, C) = 0,  ψ2(x, y, z, p, q, α, β, B, C) = 0. 
 
 These two equations are homogeneous with respect to f3 and f4 .  One can thus 
eliminate f3 and f4 , and what remains is just one first-order, partial differential equation 
that f1 and f2 must satisfy.  One can take one of these functions arbitrarily – f2, for 
example, − and as soon as one knows a solution f1 of the partial differential equations 
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thus obtained, one will have f3 and f4 without any new integration upon solving the 
system that is formed by equation (7) and one of equations (8). 
 When one has determined a transformation from which one derives the proposed 
equation, one will know an infinitude of them, since for this, it will suffice to perform an 
arbitrary transformation (T′), but, from our conventions, we do not consider two 
transformations are deduced from each other as distinct.  Moreover, the problem that we 
just treated admits an infinitude of distinct solutions, in the sense that we gave to that 
word, and later on we shall point out a remarkable relation between these solutions. 
 If we let (C) denote the system of first-order characteristics of the proposed equation 
that is defined by the equations: 

dz = p dx + q dy, 
 

ψ1(x, y, z, p, q, dx, dy, − dp, − dq) = 0, 
ψ2(x, y, z, p, q, dx, dy, − dp, − dq) = 0 

 
then we say that the transformations that we just studied are deduced from the system of 
characteristics (C). 
 
 5. Recall the four equations: 
 
    x′ = f1(x, y, z, p, q; z′),  y′ = f2(x, y, z, p, q; z′),  
    p′ = f3(x, y, z, p, q; z′),  q′ = f4(x, y, z, p, q; z′),  
 
in which f1, f2, f3, f4 satisfy the equality (7), and suppose that f1 and f2 depend upon 
variables x, y, z, p, q by the intermediary of three functions ϕ1, ϕ 2, ϕ 3 of these variables, 
i.e., that the point-like multiplicities that support the multiplicities that are generated by 
the elements of (E′) that correspond to an element (x, y, z, p, q) form a three-parameter 
family.  A contact transformation will permit one to replace them with the set of points in 
space (1).  The equations of the transformation that we just studied will then be: 
 

(9)     

1

2

3

( , , , , ),

( , , , , ),

( , , , , ),

( , , , , ; , ) 0.

x x y z p q

y x y z p q

z x y z p q

x y z p q p q

ϕ
ϕ
ϕ

′ =
 ′ =
 ′ =
 ′ ′Φ =

 

 
 In practice, it is frequently interesting, when such a thing is possible, to consider the 
equations of a transformation in this form rather than in the form (2).  It results from the 
general theorem of the preceding paragraph that (9) will lead to a second-order equation 
for z(x, y), as was already shown by Goursat.  We propose to characterize these 
equations. 
 The condition: 

dz′ − p′ dx′ − q′ dy′ = 0 
 

                                                
 (1) Goursat, Leçons sur l’intégration des équations aux dérivées partielles du second ordre, t. 1, pp. 12. 
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is equivalent to the two equations: 
 

(10)    

3 1 2

3 1 2

0,

0.

d d d
p q

dx dx dx
d d d

p q
dy dy dy

ϕ ϕ ϕ

ϕ ϕ ϕ

 ′ ′− − =

 ′ ′− − =


 

 
Upon eliminating p′, q′ from (9) and (10), one obtains the desired second-order equation: 
 

F(x, y, z, p, q, r, s, t) = 0. 
 

 Write the system (10) in the form: 
 

(10)′    
0,

0,

r s

s t

λ µ ν
λ µ ν

+ + =
 + + =

 

 
where λ, µ, ν, ρ have values that are easy to calculate and satisfy the relation: 
 
(11)    hν + lρ + mλ + nµ = 0, 
 
h, l, m, n being quantities that are defined up to a factor by the equations: 
 

i i i id d
h l m n

dx dy p q

ϕ ϕ ϕ ϕ  ∂ ∂ + + +   ∂ ∂   
 = 0 (i = 1, 2, 3). 

 
 The relation (11) has a very simple significance: It expresses the idea that all of the 
lines (10)′ that generate the surface that is represented by the second-order equation meet 
a fixed line: 

(12)    
0,

0,

hr ls m

hs lt n

+ + =
 + + =

 

 
which then belong to a complex (G). 
 Conversely, if a second-order, partial differential equation F = 0 represents a ruled 
surface whose generators belong to the complex (G) and meet a fixed line of that 
complex then there exists an infinitude of transformations (9) that the proposed equation 
can be derived from.  The parameters λ, µ, ν, ρ of the generators of the surface satisfy the 
relation (11) upon supposing that the fixed line is represented by the equations (12).  If 
ϕ1, ϕ2, ϕ3 are three distinct integrals of the linear equation: 
 

d d
h l m n

dx dy p q

ϕ ϕ ϕ ϕ  ∂ ∂ + + +   ∂ ∂   
 = 0 

 
then the values of these parameters (whose ratios are all that is important) can be written: 
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     λ = 3 1 2p q
p p p

ϕ ϕ ϕ∂ ∂ ∂′ ′− −
∂ ∂ ∂

, 

 

     µ = 3 1 2p q
q q q

ϕ ϕ ϕ∂ ∂ ∂′ ′− −
∂ ∂ ∂

, 

 

     ν = 3 1 2d d d
p q

dx dx dx

ϕ ϕ ϕ     ′ ′− −    
    

, 

 

     ρ = 3 1 2d d d
p q

dy dy dy

ϕ ϕ ϕ     ′ ′− −     
     

, 

 
where p′, q′ denote arbitrary variables.  The lines that generate the surface F = 0 
correspond to a relation between the parameters p′, q′: 
 

Φ(x, y, z, p, q; p′, q′) = 0. 
 

 It seems immediate that the proposed equation is derived from the transformation that 
is defined by the system (9). 
 The transformations (9) do not differ essentially from the ones that we considered 
above (no. 4), since all of the properties that we proved by supposing that the 
transformations are defined by a system such as (2), for which the condition (7) is 
satisfied,  also apply to the transformations that just studied. 
 
 6. From the preceding developments, it results that under certain conditions equation 
(2) leads to second-order, partial differential equations for z; one can naturally repeat 
what was said for z for z′.  If z and z′ simultaneously satisfy two second-order, partial 
differential equations then we say that equations (2) define a Bäcklund transformation. 
 Several cases are possible.  If each element of one of the two systems corresponds to 
the union of ∞1 elements of the other one then the integrals of the two equations 
correspond in a one-to-one manner.  The transformation will then be called a Bäcklund 
transformation of the first kind, or, more briefly, a (B1) transformation.  When a 
transformation is defined by four equations that are not solved for x′, y′, p′, q′: 
 

Vi(x, y, z, p, q; x′, y′, z′, p′, q′) = 0  (i = 1, 2, 3,4), 
 
one sees with no difficulty that an element (x, y, z, p, q) corresponds to the union of ∞1 
elements of (E′) if the determinant: 
 

i i i i
i i i i

dV dV V V

dx dy p q

  ∂ ∂ 
   ∂ ∂   
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is zero.  Moreover, it is not necessary for this determinant to be zero identically; it 
suffices that this betrue when one takes the equations of the transformations into account. 
 Suppose that an element (x, y, z, p, q) corresponds to the union of ∞1 elements (x′, y′, 
z′, p′, q′), without the elements of (E) that correspond to an element of (E′) enjoying the 
same property.  If z′ satisfies a Monge-Ampère equation then the transformation will be a 
Bäcklund transformation.  An integral z(x, y) will correspond to only one integral z′(x′, 
y′).  On the contrary, if one is given an integral z′(x′, y′) then it will correspond to an 
infinitude of integrals z(x, y) that depend upon an arbitrary constant.  The transformation 
will be called Bäcklund transformations of the second kind or (B2) transformations. 
 Finally, z(x, y) and z′(x′, y′) can simultaneously satisfy two Monge-Ampère equations 
in such a way that each integral of either of these two equations will corresponds to ∞1 
integrals of the other one.  We refer to these transformations as Bäcklund transformations 
of the third kind or (B3) transformations. 
 It is easy to give examples of these three kinds of transformations. 
 For the (B3) transformations, it suffices to consider a system of four equations: 
 

Fi(x, y, z, p, q; x′, y′, z′, p′, q′) = 0  (i = 1, 2, 3,4). 
 
Two contact transformations will always permit one to replace two equations of this 
system with: 

x′ = x,  y′ = y. 
 

 Now consider three arbitrary functions f1, f2, f3 of x, y, z, p, q, z′, f2 that depend 
essentially on z′, and a function f4 that satisfies the equation: 
 

1 2
3 4

f f
f f

z z

∂ ∂+
′ ′∂ ∂

 = 1. 

The equations: 
    x′ = f1(x, y, z, p, q; z′),  y′ = f2(x, y, z, p, q; z′), 
    p′ = f3(x, y, z, p, q; z′),  q′ = f4(x, y, z, p, q; z′) 
 
define a (B2) transformation.  Let a second-order equation admit a system of first-order 
characteristics.  Suppose that this equation does not contain the variable z, so the 
operations that were pointed out above (no. 4) permit us to determine four independent 
functions of z that define a (B2) transformation that is analogous to the ones that we just 
considered.  In other words, if the proposed equation remains invariant under an 
infinitesimal contact transformation then it will always be possible to make it correspond 
to a Monge-Ampère equation by a (B2) transformation, since the equations of the (B2) 
transformation remain likewise invariant under the infinitesimal contact transformation. 
 We propose to show how one can write the equations of certain (B1) transformations 
with no integration.  In the space (E), consider a family of ∞1 multiplicities that are each 
composed of a union of ∞1 elements.  It suffices to consider a family of ∞1 curves, and to 
append to that curve a developable surface that passes through that curve, so the 
equations, when solved for the constants, are written: 
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ϕi(x, y, z, p, q) = const. (i = 1, 2, 3, 4); 
likewise, if one lets: 

iϕ′ (x′, y′, z′, p′, q′) = const. (i = 1, 2, 3, 4) 

 
be the equations of a family that is analogous to (E′) then the equations: 
 

ϕi(x, y, z, p, q) = iϕ′ (x′, y′, z′, p′, q′)  (i = 1, 2, 3, 4) 

 
define a (B1) transformation. 
 
 7. We have shown above (no. 4) how, when one is given a transformation: 
 

(13)  1 2

3 4

( , , , , ; ), ( , , , , ; ),

( , , , , ; ), ( , , , , ; ),

x f x y z p q z y f x y z p q z

p f x y z p q z q f x y z p q z

′ ′ ′ ′= =
 ′ ′ ′ ′= =

 

 

1 2
3 4 1

f f
f f

z z

∂ ∂ + = ′ ′∂ ∂ 
, 

 
it corresponds to a second-order equation: 
 
(14)    F(x, y, z, p, q, r, s, t) = 0 
 
that admits a system of first-order characteristics.  z′ is determined when one knows an 
integral of that equation: 

z′ = f(x, y, z, p, q, r, s, t), 
 

and equations (13) define x′, y′, p′, q′.  One obtains the value of z′ by solving the second 

of equations (5) and it is simple to deduce the value of the ratio 
f f

s t

∂ ∂
∂ ∂

 from this.  That 

value is α / β, on the condition that one replaces z′ with f in that expression.  From the 
convention that we made on the sense that one attributes to the variables r, s, t, that ratio 
is, up to sign, equal to the angular coefficient of the projection of the generator of the 
surface (14) that passes through the point r, s, t onto the plane r = 0. 
 Now consider equation (14).  It corresponds to an infinitude of transformations such 
as (11), namely: 
 

(15)  1 2

3 4

( , , , , ; ), ( , , , , ; ),

( , , , , ; ), ( , , , , ; ),

x f x y z p q z y f x y z p q z

p f x y z p q z q f x y z p q z

′′ ′ ′′ ′′ ′ ′′= =
 ′′ ′ ′′ ′′ ′ ′′= =

 

 
and one of these transformations z″ will be given by: 
 

z″ = f′ (x, y, z, p, q, s, t), 
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and, from what we just said, we will have: 
 

f f f f

s t s t

′ ′∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 = 0. 

 
 The preceding equality shows that if one eliminates the quantities x, y, z, p, q, s, t 
from (13), (15), and the equations z′ = f, z″ = f′ then there will always be at least four 
relations between the coordinates x′, y′, z′, p′, q′; x″, y″, z″, p″, q″ of two corresponding 
elements in the systems (E′), (E″): 
 
(16)  ψi (x′, y′, z′, p′, q′; x″, y″, z″, p″, q″) = 0 (i = 1, 2, 3, 4). 
 
 In particular, if the transformations (13) and (15) are Bäcklund transformations then 
the transformation (16) will likewise be one.  One easily verifies what sort of 
transformation (16) will be from the nature of the transformations (13) and (15). 
 When one makes the preceding elimination, it might happen that one obtains five 
relations between the quantities x′, y′, z′, p′, q′; x″, y″, z″, p″, q″, and not just four.  In this 
case, the transformations (13) and (15) are not distinct, but are deduced from each other 
by a transformation (T′ ).  This latter result can be attached to some general theorems that 
were proved by Bäcklund.  Upon confining ourselves to the particular case that is of 
concern to us, it is easy to give a very simple proof.  Since we do not consider the case 
where one can deduce an equation between just the variables x′, y′, z′, p′, q′ in the system 
(13), for example, we can suppose that the five relations are written in the form: 
 

(17)    

1

2

3

1

2

( , , , , ),

( , , , , ),

( , , , , ),

( , , , , ),

( , , , , ).

x g x y z p q

y g x y z p q

z g x y z p q

p h x y z p q

q h x y z p q

′′ ′ ′ ′ ′ ′=
 ′′ ′ ′ ′ ′ ′= ′′ ′ ′ ′ ′ ′=
 ′′ ′ ′ ′ ′ ′=


′′ ′ ′ ′ ′ ′=

 

 
 The surfaces of (E′) that correspond to the surfaces that are generated by the elements 
(x″, y″, z″, p″, q″) are defined by the system: 
 

3 1 2
1 2

dg dg dg
h h

dx dx dx
− −

′ ′ ′
 = 0, 

 

3 1 2
1 2

dg dg dg
h h

dy dy dy
− −

′ ′ ′
 = 0. 

 
This system is identically zero if equations (17) define a contact transformation.  In all 
other cases, it cannot admit an integral that passes through an arbitrary curve and tangent 
along that curve with an arbitrarily given developable; rather, that is what happens for the 
equation or system of equations that defines z′(x′, y′). 
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 Recalling the case in which equation (14) does not contain z, it will be possible to 
make it correspond to a transformation (13) such that the equations do not depend upon z 
and f no longer depends upon z.  That transformation will be unique, because of there 
exists a second one such as (15) then upon eliminating x, y, p, q, s, t there will be five 
relations between x′, y′, z′, p′, q′; x″, y″, z″, p″, q″.  In other words, if equation (14) admits 
an infinitesimal contact transformation (θ) that generates a group (Θ) then it corresponds 
to one and only Monge-Ampère equation (ε) under a (B2) transformation, such that an 
integral of (ε) corresponds to ∞1 integrals of the proposed one, which are deduced from 
each other by transformations of the group (Θ). 
 Now suppose that the given equation admits not only the transformation (θ), but also 
other infinitesimal transformations.  If (θ1) is one of the transformations that leave (θ) 
invariant then I say that (θ1) corresponds to an infinitesimal transformation (θ′ ) that does 
not change (ε).  Indeed, if one performs a transformation of the group (Θ1) that is 
generated by (θ1) on the equations of the Bäcklund transformation then the equations of 
the new transformation remain invariant under the transformed group of (Θ) under the 
transformation considered (Θ1) – i.e., under the group (Θ) itself.  We will thus have a (B2) 
transformation that will determine, on the one hand, the proposed equation, and on the 
other hand, the Monge-Ampère equation that we already obtained.  Consequently, it will 
be deduced from the original transformation by a transformation (T′ ) that leaves (ε) 
invariant.  All of the transformations (T′ ) that correspond to the transformations of (Θ1) 
form a one-parameter group. 
 The transformations of the group of the proposed equations that leave (θ) invariant 
themselves form a group (γ), and the Monge-Ampère equation admits a holomorphic 
group that is isomorphic to (γ).  Moreover, it might happen that equation (ε) admits other 
contact transformations that do not correspond to transformations that are analogous to 
the proposed ones, but to a subgroup of the group of the original equation that does not 
leave (θ) invariant, so it never corresponds to a group of transformations that do not 
change (ε). 
 One can further point out an interesting application of the preceding results.  Let an 
equation (14) that admits two infinitesimal transformations (θ) and (θ1) be given.  It is 
possible to make two Monge-Ampère equations (ε) and (ε1) correspond to that equation 
by employing the particular (B2) transformations that we spoke of in no. 6, and 
successively considering the transformations (θ) and (θ1).  The two Monge-Ampère 
equations that one thus obtains naturally correspond under a (B2) transformation, but, in 
general, that (B2) transformation does not belong to the particular class that was in 
question above; this will the case only if (θ) and (θ1) commute. 
 If (θ) and (θ1) are homologous to the interior of the group of the proposed equation 
then the two equations (ε) and (ε1) are identical.  There then exists a Bäcklund 
transformation that makes any integral of equation (ε) correspond to an infinitude of 
integrals of the same equation. 
 It is easy to give an example that shows very neatly how things happen.  Consider the 
equation that studied by Goursat (1): 

                                                
 (1) Bull. Soc. math. t. XXV, pp. 36. – Leçons sur l’intégration des équations aux dérivées partielles du 
second ordre, t. II, pp. 252. 
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(18)    s = 2λ(x, y) pq . 

 

If one takes the unknown to be p  = z′ then one finds that z′ is defined by the linear 

equation: 

(19)    s′ − 
log

x

λ∂
∂

q′ − λ2 z = 0. 

 
 The transformation that permits one to pass from (18) to (19) is defined by the 
system: 

(20)    z′ = p , q′ = λ2q. 

 
 Equation (18) always admits two infinitesimal contact transformations that we denote 
by their characteristic functions, which are 1 and z.  One can say that the linear equation 
that we just obtained for z′ corresponds to the transformation 1.  That transformation 
remains invariant under the transformation z.  That latter transformation must therefore 
correspond to an infinitesimal transformation of (19), which is the transformation that has 
z′ for its characteristic function.  Upon taking p / z = z″ to be the new unknown, one finds 
a new second-order equation for z″ that corresponds to the transformation z.  One must 
eliminate z from: 

(21)    z″ = 
p

z
, q″ = 

2

2 pq pq

z z

λ
− . 

 
 The product of two transformations (20) and (21) is a (B3) transformation whose 
equations one obtains by writing down the values of z′, p′, q′, z″, p″, q″ as functions of x, 
y, z, p, q, r and eliminating z, p, q, r.  One thus finds: 
 

(22)   p″ = 2z″ p

z

′
′

 − z″2, q″ = 2z″ 
2

2
2 2

q q
z

z zλ
′ ′′′−
′ ′

. 

 
A value of z″ then corresponds to an infinitude of values of z that one obtains by 
multiplying any one of them by an arbitrary constant, so the values of z′ that correspond 
to these values of z, and which, consequently, correspond to a value of z″, are likewise 
obtained by multiplying one of them by an arbitrary constant, which likewise appears in 
formulas (22).  On the contrary, the transformation 1 does not leave the transformation z 
invariant, so the values of z that correspond to a value of z′ and differ only by an additive 
constant correspond to values of z″ such that there exists no one-parameter group of 
contact transformations that will give all of the integrals z″ that correspond to the same 
solution of (19) when they are applied to an arbitrary integral z″. 
 
 8. The Monge-Ampére equations admit two systems of first-order characteristics.  
They will correspond to two families of transformation that are analogous to the ones that 
we studied above, but in order to apply the result that was established at the beginning of 
the preceding paragraph, one must simultaneously consider only two transformations that 
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are deduced from this same system of characteristics.  It is indeed clear that our 
arguments apply to only this case. 
 Meanwhile, it might happen that the product of two Bäcklund transformations that are 
each deduced from one of the systems of characteristics is likewise a Bäcklund 
transformation.  For example, suppose that we have a Monge-Ampère equation that does 
not contain z.  Upon successively considering the two systems of characteristics, one can 
make it correspond to two other Monge-Ampère equations by some (B2) transformation 
whose equations do not depend upon z. 
 One will thus obtain eight equations between x, y, z, p, q, and the coordinates of two 
other systems of elements x′, y′, z′, p′, q′; x″, y″, z″, p″, q″.  Upon eliminating x, y, z, p, q, 
one gets four equations that obviously define a (B1) transformation. 
 The Goursat equation will again provide us with an example.  If one is given the 
equation: 

s = 2λ(x, y) pq , 

 

while successively taking the unknowns to be p  and q , then one obtains two linear 

equations that will correspond under a Laplace transformation. 
 We propose to apply the results of the study that we made (nos. 4 and 5) to the 
Monge-Ampère equation.  With no loss of generality, we consider only equations that are 
linear in r, s, t.  Let: 

r + (m + µ) s + mµ t + M = 0 
 
be such an equation, where m, µ, M denote functions of x, y, z, p, q.  This equation 
possesses two systems of first-order characteristics: The system (C) corresponds to the 
differential equation dy = m dx and the system (Γ) corresponds to dy = µ dx.  From the 
system (C), one will deduce a transformation such as (13) by taking f1 and f2 to be two 
integrals of the linear equation: 
 

X(f) = ( )
f f f f f f

p q M m
x z y z p q

µ λ λ ∂ ∂ ∂ ∂ ∂ ∂+ + + − + + ∂ ∂ ∂ ∂ ∂ ∂ 
 = 0, 

 
where λ is an arbitrary function of x, y, z, p, q, z′. 
 For f3 and f4, one will have: 

    f3 = 

2 2

2 2 1 1 1 2

f f
m

q p

f f f f f f
m m

q p z q p z

∂ ∂−
∂ ∂

   ∂ ∂ ∂ ∂ ∂ ∂− − −   ′ ′∂ ∂ ∂ ∂ ∂ ∂   

, 

 

    f4 = − 

1 1

2 2 1 1 1 2

f f
m

q p

f f f f f f
m m

q p z q p z

∂ ∂−
∂ ∂

   ∂ ∂ ∂ ∂ ∂ ∂− − −   ′ ′∂ ∂ ∂ ∂ ∂ ∂   

. 
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 We remark that if f is an integral of X(f) = 0 then one has: 
 

f
X

z

∂ 
 ′∂ 

 = 
f f

m
z p q

λ  ∂ ∂ ∂− ′∂ ∂ ∂ 
; 

 

so, upon appealing to the identity 1 2
3 4

f f
f f

z z

∂ ∂+
′ ′∂ ∂

= 1, one will deduce that: 

 

(23)    1 2
3 4( ) ( )

f f
X f X f

z z

∂ ∂+
′ ′∂ ∂

 = 0. 

 
 The transformation considered will be a (B1) transformation if the determinant: 
 

i i i idf df f f

dx dy p q

  ∂ ∂ 
   ∂ ∂  

  (i = 1, 2, 3, 4) 

 
is zero (no. 6).  By virtue of (23) and the equations X(f1) = X(f2) = 0, one must therefore 
have: 

X(f3) = X(f4) = 0. 
 
 In the second part of this paper, we shall determine the (B1) transformations that 
correspond to a very extended class of Monge-Ampère equations.  Here, I will confine 
myself to pointing out a result whose proof is quite simple, from what we just said.  If 
two equations (ε), (ε1) correspond to one Monge-Ampère equation under two (B1) 
transformations that are deduced from the same system of characteristics then the product 
of these two transformations is never a Bäcklund transformation. 
 Indeed, let: 

(α)    1 2

3 4

( , , , , ; ), ( , , , , ; ),

( , , , , ; ), ( , , , , ; ),

x f x y z p q z y f x y z p q z

p f x y z p q z q f x y z p q z

′ ′ ′ ′= =
 ′ ′ ′ ′= =

 

 
be the equations of a (B1) transformation that is deduced from the system (C) of 
characteristics of the given Monge-Ampère equation.  z′ is given by: 
 

z′ = ψ(x, y, z, p, q, r, s, t), 
and one has: 

m
s t

ψ ψ∂ ∂−
∂ ∂

 = 0, 

 
in which f1, f2, f3, f4 satisfy the equation X(f) = 0. 
 A (B1) that is deduced from the system (Γ) will be defined by: 
 

(β)   1 2

3 4

( , , , , ; ), ( , , , , ; ),

( , , , , ; ), ( , , , , ; );

x f x y z p q z y f x y z p q z

p f x y z p q z q f x y z p q z

′′ ′ ′′ ′′ ′ ′′= =
 ′′ ′ ′′ ′′ ′ ′′= =
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in order to determine z″, one has: 
 

z″ = ψ′(x, y, z, p, q, s, t), 
with 

s t

ψ ψµ ′ ′∂ ∂−
∂ ∂

 = 0. 

 
 On the one hand, by an argument that was explained for the first transformation, one 
verifies that 1f ′ , 2f ′ , 3f ′ , 4f ′  must satisfy an equation such as: 

 

X1(f) = ( )
df df f f

m M
dx dy p q

ρµ ρ
′ ′ ′ ′  ∂ ∂ + − + +   ∂ ∂   

 = 0, 

 
ρ being a function of x, y, z, p, q, z″. 
 In order for the product of the transformations (α) and (β) to be a Bäcklund 
transformation, it is necessary and sufficient that upon eliminating x, y, z, p, q, s, t from 
(α), (β) and the equations z′ = ψ, z″ = ψ′, one finds four relations between x′, y′, z′, p′, q′, 
x″, y″, z″, p″, q″.  Since the determinant: 
 

s t t s

ψ ψ ψ ψ′ ′∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 

 
is non-zero, it must therefore be the case that one obtains four relations by eliminating x, 
y, z, p, q from (α) and (β).  In other words, one must have that all of the fifth-order 
functional determinants of the functions f1, f2, f3, f4, 1f ′ , 2f ′ , 3f ′ , 4f ′  with respect to x, y, z, 

p, q are zero; i.e., these functions must satisfy the same equation: 
 

f f f f f
A B C D E

x y z p q

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

 = 0. 

 
However, f1, f2, f3, f4 satisfy X(f) = 0, and no other equation, since they are four 
independent functions.  Likewise, 1f ′ , 2f ′ , 3f ′ , 4f ′  satisfy just the equation X1(f′ ) = 0, and 

it is clear that these two equations cannot be identical. 
 In order to find the transformations of the form (9) that are derived from the proposed 
Monge-Ampère equation, one must take ϕ1, ϕ2, ϕ3 to be three distinct integrals of the 
equation X(f) = 0, where λ denotes an arbitrary function of just x, y, z, p, q.  The fourth 
equation that defines the transformation is then: 
 

3 31 2 1 2m p q p q
p p p q q q

ϕ ϕϕ ϕ ϕ ϕ ∂ ∂∂ ∂ ∂ ∂′ ′ ′ ′− − − + + ∂ ∂ ∂ ∂ ∂ ∂ 
 = 0. 

 
 9. As we have already remarked, the transformations that we just studied permit us 
to calculate x′, y′, z′, p′, q′ as functions of x, y, z, p, q, s, t.  One has: 
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     x′ = ψ1(x, y, z, p, q, s, t), 
     y′ = ψ2(x, y, z, p, q, s, t), 
     z′ = ψ3(x, y, z, p, q, s, t), 
     p′ = ψ5(x, y, z, p, q, s, t), 
     q′ = ψ6(x, y, z, p, q, s, t). 
 
 It is obvious that one will have to prolong the preceding transformation and calculate 
the derivatives of order n arbitrary as functions of x, y, z, and the derivatives of z up to 
order n + 1, but it is necessary to specify them even more, and the calculation offers no 
difficulty, moreover.  At the same time, we establish certain formulas that will very 
useful to us later on. 
 We write the second-order equation in the form: 
 
(24)    r + F(x, y, z, p, q, s, t) = 0, 
 
and if m and µ are the two roots of the second-degree equation in λ: 
 

λ2 – λ F F

s t

∂ ∂+
∂ ∂

 = 0 

 
then we suppose that the system (C) of characteristics that satisfy the differential 
equation: 

dy = m dx 
 

is of first order and that the transformation considered is deduced from the system (C). 
 All of the functions ψ, ψ1, ψ2, ψ3, ψ4 satisfy the equation: 
 

f f
m

s t

∂ ∂−
∂ ∂

= 0. 

 
 Having said this, we further remark that it suffices to take the derivative of (24) with 
respect to y in order to obtain the following equality, which we shall make use of: 
 

(25)   p2,1 + m p1,2 + µ (p1,2 + mp0,3) + 
dF

dy

 
 
 

 = 0. 

 
 When one replaces x, y, z, p, q, s, t with the expressions that correspond to a 
characteristic of (24) in ψ, ψ1, ψ2, ψ3, ψ4, one obtains a system of ∞1 elements of (E′).  
Let m′ denote the value of the ratio dy′ / dx′ for the systems that correspond to a 
characteristic of (C).  In order to find the expression for m′, it will suffice to replace dy 
with m dx in the equation: 

dψ2 − m′ dψ1 = 0, 
 
and one thus arrives at the formula: 
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m′ = 

2 2 2 2
1,2 0,3

1 1 1 1
1,2 0,3

( ) ( , )

( ) ( , )

d d dF
m m p p

dx dy s s dy

d d dF
m m p p

dx dy s s dy

ψ ψ ψ ψµ

ψ ψ ψ ψµ

   ∂ ∂ + + − + −     ∂ ∂     
   ∂ ∂ + + − + −     ∂ ∂     

. 

 
 Now consider the system (Γ) that is defined by the equation: 
 

dy = µ dx, 
 
where the value of µ′ − i.e., the value of the ratio dy′ / dx′ for the system of elements of 
(E′) that correspond to the characteristics of (Γ) − is obtained by operating as one did for 
m′.  One finds that: 

µ′ = 

2 2 2

1 1 1

d d dF

dx dy s dy

d d dF

dx dy s dy

ψ ψ ψµ

ψ ψ ψµ

   ∂ + −     ∂     
   ∂  + −     ∂     

. 

 
 We now concern ourselves with the calculation of the successive derivatives of z′.  
We consider only the derivatives 0,np′ , 1, 1np −′ , since the knowledge of the expressions for 

these derivatives will suffice.  If z′ satisfies a second-order equation then one can always, 
as we did for equation (24), suppose that a change of variables has been performed such 
that all of the derivatives of z′, starting with the second-order ones, are expressed as 
functions of x′, y′, z′, and the derivatives of order less than or equal to two, where the first 
index is equal to at most one. 
 In order to get s′ and t′, one must annul the coefficient of dx and that of dy in the 
equation: 

dψ4 − s′ dy1 − t′ dψ2 = 0, 
 

where we replace p1,2 + m p4,2 with its value that is deduced from (25).  The solution to 
the equations thus obtained is simple: If we set: 
 

  ∆ = 2 1 1 1 2 2d d d ddF dF

dy dx s dy dy dx s dy

ψ ψ ψ ψ ψ ψ          ∂ ∂   − − −             ∂ ∂             
 

 

   + (p1,2 + m p0,3) 2 1 1 1 2 2d d

s dx y s dx y

ψ ψ ψ ψ ψ ψµ µ
       ∂ ∂ ∂ ∂    + − +          ∂ ∂ ∂ ∂           

, 

then one gets: 
 

  ∆s′ = 2 4 4 4 2 2d d d ddF dF

dy dx s dy dy dx s dy

ψ ψ ψ ψ ψ ψ          ∂ ∂   − − −             ∂ ∂             
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   + (p1,2 + m p0,3) 2 4 4 4 2 2d d

s dx y s dx y

ψ ψ ψ ψ ψ ψµ µ
       ∂ ∂ ∂ ∂    + − +          ∂ ∂ ∂ ∂           

, 

 

  ∆t′ = − 1 4 4 4 1 1d d d ddF dF

dy dx s dy dy dx s dy

ψ ψ ψ ψ ψ ψ          ∂ ∂   − − −             ∂ ∂             
 

 

   + (p1,2 + m p0,3) 4 1 1 1 4 4d d

s dx y s dx y

ψ ψ ψ ψ ψ ψµ µ
       ∂ ∂ ∂ ∂    + − +          ∂ ∂ ∂ ∂           

. 

 
 As before (no. 3), one is assured that there is no reason to examine the case where ∆ 
is zero.  We see that s′ and t′ do not depend upon the derivatives of z′ of order higher than 
three, but we see, in addition, that the third derivatives figure only in the combination p1,2 
+ m p0,3 .  Assume that the same thing is true up to order n – 1 – i.e., that 1, 2np −′  and 0, 1np −′  

are functions of x, y, z, p, q, …, p1,n−2, p0,n−1, p1,n−1 + m p0,n – and show that the property 
persists for the derivatives of order n – i.e., that it is general.  Upon taking the derivative 
of order n – 1 of the given equation with respect to y, one finds: 
 

(25′)   p2,n−1 + m p1,n + m(p1,n + m p0,n+1) + 
1

1

n

n

d F

dy

−

−

 
 
 

 = 0. 

 
 By hypothesis, one has: 

0, 1np −′  = K(x, y, z, …, u), 

 
upon setting p1,n−1 + m p0,n = u, and in order to calculate 0,np′ , 1, 1np −′  one must equate the 

coefficients of dx and dy in: 

1, 1np −′  dψ1 + 0,np′  d ψ2 = dK 

 
to zero.  One finds two equations: 
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(26) 

1 1 2 2
1, 1 1,2 0,3 0, 1,2 0,3

1, 0, 1

1 1 1
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  ∂ ∂ ′ − − +    ∂ ∂    
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





    ∂
 − +   ∂   
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    ∂ ∂ = − − +     ∂ ∂    

 

 
 One sees immediately that 1, 1np −′  and 0,np′  are expressed as functions of x, y, z, …, 

p1,n−1, p0,n, p1,n + m p0,n+1 , which we would like to prove.  One sees further that if n is 
greater than two then 1, 1np −′  + µ′ 0,np′  depends upon only x, y, z, and the derivatives of z up 

to order n.  One proves this by multiplying the first of equations (26) by m and adding 
both sides of the two equations.  On the contrary, 1, 1np −′  + m′ 0,np′  depends upon 

derivatives of order n + 1.  When the equation considered is a linear equation in r, s, t: 
 

r + (m + µ) s + m µ t + M = 0, 
 
x′, y′, z′, p′, q′ are functions of x, y, z, p, q, s + mt, so the last-stated property will be true if 
n is equal to two: s′ + m′ t′ will depend upon only the third derivatives of z. 
 
 10. If one is given a Bäcklund transformation of arbitrary type and two integral 
surfaces that correspond under that transformation then the characteristics correspond on 
these two surfaces (1).  We consider two cases in turn: We first assume that an integral of 
the second-order equation (24) corresponds to just one integral of the transformed one. 
 We first remark that if one replaces x, y, z, p, q, s, t in the functions ψ, ψ1, ψ2, ψ3, ψ4 
with the expressions that correspond to a simply infinite multiplicity that is a union of 
second-order elements then the elements (x′, y′, z′, p′, q′) are not united, in general, but 
they will be if the elements (x, y, z, p, q, s, t) belong to an integral of (24), since (x′, y′, z′, 
p′, q′) then belongs an integral of the transformed equation.  In particular, this will be true 
if the second-order elements generate a characteristic of (24). 
 If a characteristic of order n of the proposed equation is known then this amounts to 
saying that one knows ∞1 systems of values for x, y, z, p, q, …, p1,n−1, p0,n, and that there 
exists an infinitude of integral surfaces that depend upon an infinitude of arbitrary 
constants that pass through this multiplicity of nth-order elements.  In the first place, 
                                                
 (1) See GOURSAT, Leçons sur l’intégration des équations aux dérivées partielles du second ordre, t. II, 
pp. 290. 
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examine the case where the characteristic considered belongs to the system (C) – i.e., it 
satisfies the equation: 

dy = m dx. 
The equality: 

dp0,n = (p1,n + m p0,n+1) dx 
 

is verified all along this characteristic, and p1,n + m p0,n+1 has a well-defined value at each 
point.  From what we said in the preceding paragraph, the given characteristic of order n 
corresponds to a multiplicity of ∞1 nth-order elements, through which pass all of the 
transformed integral surfaces of the integrals of (24) that contain the given characteristic.  
These surfaces thus have a contact of order at least n along that multiplicity, but it can 
happen that this contact is of higher order.  We confirm that if the transformation is a 
transformation of the first kind then the transformed surfaces have a contact of order n + 
1 at all of the points of this multiplicity.  A characteristic of order n thus corresponds to a 
characteristic of order n or n + 1.  The preceding argument only applies, in general, if n is 
greater than one.  It applies to the case where n is equal to one if (24) is a Monge-Ampère 
equation – i.e., as one can always assume, an equation that is linear in r, s, t. 
 One easily sees, by always reasoning in the same manner, that a characteristic of 
order n of the system (Γ) corresponds to a characteristic of order n – 1 of the transformed 
one. 
 It remains for us to study the case where, equation (24) being a Monge-Ampère 
equation, each of its integrals correspond to an infinitude of integrals of the transformed 
one.  As we have done before several times, we assume that the given equation is linear 
in r, s, t. 
 If one is given a first-order characteristic then upon replacing x, y, z, p, q with their 
values in equation (3)″ (no. 2), one finds ζ by an integration.  If we determine ζ by giving 
its value ζ0 for an element (x0, y0, z0, p0, q0) for the characteristic then we define a 
multiplicity of (E′) that corresponds to the given characteristic, since x′, y′, z′, p′, q′ 
depends only upon x, y, z, p, q, ζ.  There exist an infinitude of integrals of (24) that 
depend upon an infinitude of arbitrary constants that contain the first-order characteristic 
considered.  There is likewise an infinitude of integrals of the transformed equation that 
pass through the transformed multiplicity, which is, consequently, a characteristic 
multiplicity. 
 If one is given a characteristic of order n then it contains a first-order characteristic 
that one can make it correspond to, since, as we just said, it is a characteristic of the 
transformed equation.  From the remark that was made in no. 3, one will know the values 
of the derivatives of z′ up to order n along this characteristic.  Therefore, the given 
characteristic of order n will correspond to a characteristic whose order is also n. 
 One proves in the same fashion that if one knows how to solve the Cauchy problem 
for a second-order, partial differential equation (24) then one knows how to solve this 
problem for all equations that correspond to (24) under a Bäcklund transformation. 
 If two second-order equations are such that one can make each integral of one of 
them correspond to the integrals of the other one by algebraic operation, and if one of 
them is integrable by the Darboux method then the other is, as well; this theorem has 
been proved by Goursat.  In particular, it results that if an equation is integrable by 
Darboux’s method then all of the equations that correspond to it under a Bäcklund 
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transformation enjoy the same property.  Furthermore, we shall return to this equation in 
what follows in order to point out some more precise results. 
 
 11. Up to now, we have neglected the case in which one can deduce an equation that 
contains only the coordinates of one of the two systems of first-order elements from the 
four given equations in x, y, z, p, q, x′, y′, z′, p′, q′.  We shall rapidly examine that special 
case. 
 Suppose that one of the systems of equations contains only x′, y′, z′, p′, q′.  It is 
always possible, by a contact transformation, to make that equation reduce to y′ = 0 in 
some way.  The equations of the transformation that we just studied will then be: 
 
    x′ = f(x, y, z, p, q; z′),  y′ = 0, 
    p′ = ϕ(x, y, z, p, q; z′),  q′ = ψ(x, y, z, p, q; z′). 
The condition: 

dz′ − p′ dx′ − q′ dy′ = 0, 
 

which expresses the idea that (x′, y′, z′, p′, q′) generates a multiplicity of ∞2 united 
elements, becomes: 
 

1
f df f f df f f

dz r s dx s t dy
z dx p q dy p q

ϕ ϕ ϕ
    ∂ ∂ ∂ ∂ ∂   ′− + + + + + +      ′∂ ∂ ∂ ∂ ∂       

= 0 

here. 
 The preceding integrability condition is written: 
 

df d d df

dy dx dy dx

ϕ ϕ−  = 0. 

 
If this condition does not depend upon z′ then it reduces to a second-order equation that is 
integrable by the Monge method and which admits the intermediate integral: 
 

ϕ = arbitrary function of f, 
 
whose existence is almost obvious, a priori. 
 If one has: 

f

z
ϕ ∂

′∂
 = 1 

 
then one cannot repeat this argument.  The equation: 
 

dz′ − p′ dx′ − q′ dy′ = 0 
will only be verified if one has: 

df f f
r s

dx p q

∂ ∂ + +  ∂ ∂ 
 = 0, 
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df f f
s t

dy p q

  ∂ ∂+ +  ∂ ∂ 
 = 0. 

 
This system is equivalent to a second-order equation that admits a first-order intermediate 
integral: 

f(x, y, z, p, q, λ) = µ, 
 

where λ and µ denote two arbitrary constants.  As before, this result can be anticipated 
with no difficulty. 
 It can, moreover, happen that two of the equations of the transformation contain only 
the coordinates x′, y′, z′, p′, q′, or that one has one equation that depends upon only x′, y′, 
z′, p′, q′ and another one that depends upon only x, y, z, p, q, but these special cases hold 
no interest for the theory of second-order equations. 
 

________ 



PART TWO  
______ 

 
 

 12. In this second part, we shall study the Bäcklund transformations of the first kind, 
or (B1) transformations, according to the terminology that we have adopted; i.e., the 
Bäcklund transformations that make the integrals of the transformed equations 
correspond in a one-to-one way. 
 The fundamental results are provided by the use of the formulas that were proved 
above (no. 9), which I rapidly recall.  All of the symbols employed have the same 
significance as before. 
 Let there be given a second-order equation: 
 
(27)    r + F(x, y, z, p, q, s, t) = 0, 
 
which admits two systems of characteristics (C) and (Γ) that are defined by the equations: 
 
(C)      dy = m dx, 
(Γ)      dy = µ dx. 
 
We assume that m and µ have different values, and we do not concern ourselves with the 
special case in which the two systems of characteristics coincide. 
 As in the paragraph that was already cited, we assume that the characteristics of the 
system (C) are of first order and that the (B1) transformation is deduced from that system. 
 The transformed equation: 
 
(28)    r′ + F′ (x′, y′, z′, p′, q′, s′, t′) = 0 
 
likewise admits two systems of characteristics: The one – viz., the system (C′), which 
corresponds to (C) – satisfies the equations: 
 

dy′ = m′ dx′, 
 
while the other one – viz., the system (Γ′), which corresponds to (Γ) – satisfies: 
 

dy′ = µ′ dx′. 
 

 We have seen that 1, 1 0,n np pµ−′ ′ ′+  depends upon only x, y, z, p, q, …, p1,n−1, p0,n , while 

the derivatives of z of order n + 1 appear in the expression for 1, 1 0,n np m p−′ ′ ′+ , n being an 

arbitrary whole number that is greater than two.  We thus have the means to distinguish 
the two systems of characteristics, which allows us to make a very important remark. 
 It is quite obvious that, conversely, we can express x, y, z, p, q, …, p1,n−1, p0,n as 
functions of x′, y′, z′, p′, q′, …, 1,np′ , 0, 1np +′ , and by replacing x, y, z, and the derivatives of 

z up to order n in the first of equations (26) with their expressions as functions of x′, y′, z′, 
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and the derivatives of z′, one sees that p1,n + m p0,n+1 depends upon only the derivatives of 
z′ of order at most n + 1.  Consequently, relative to equation (28), the (B1) transformation 
considered is deduced from the system of characteristics (Γ′); i.e., from the system that 
does not correspond to the system (C), which is deduced from the transformation that 
relates to equation (27). 
 We have seen (no. 10) that a family (α) of integrals of (27) that has a contact of order 
n along a characteristic of the system (C) will correspond to a family of integrals of (28) 
that have a contact of order at least n at all points of a characteristic of (C′).  I say that 
along that characteristic the integrals of (28) considered have a contact of (n + 1)th order.  
Indeed, if the contact is of lower order then since the transformation is, relative to 
equation (28), deduced not from the system (C′), but from system (Γ′), one confirms that 
by applying a result of the paragraph cited above the corresponding integrals of (27) – 
i.e., the integrals (α) – will admit a contact of order less than n along the characteristics 
considered, which is contrary to the hypothesis. 
 
 13. If we appeal to the result that we just obtained then we shall show that if one is 
given a second-order, partial differential equation (27) then there exist only one equation 
that corresponds to it under a (B1) transformation that is deduced from the system (C), or, 
more precisely, that all of the equations that correspond to it in this manner are deduced 
from one of them by a contact transformation. 
 Indeed, let equation (28), which corresponds to (27) by a (B1) transformation, be 
deduced from (C).  Suppose that there exists another equation: 
 
(29)    Ψ(x″, y″, z″, p″, q″, r″, s″, t″) = 0 
 
that enjoys the same property.  Let (C″) and (Γ″) be two systems of characteristics of 
(29), where (C″) corresponds to (C) and (Γ″) corresponds to (Γ).  From what was proved 
in Part One (no. 7), equations (28) and (29) can be converted into each other by either a 
Bäcklund transformation or a contact transformation.  We shall see that the second 
hypothesis is the only admissible one.  The transformation that establishes a uniform 
correspondence between the integrals of (27) and those of (29) is deduced, on the one 
hand, from the system (C), and on the other hand, from the system (Γ″), which would 
result from the proposition that was made the object of the preceding paragraph, while 
the transformation that permits one to pass from (27) to (28) is deduced from the system 
(C) and the system (Γ′). 
 If there exists a Bäcklund transformation that changes equation (28) into equation 
(29) then it will be a (B1) transformation that is deduced from the system (Γ′) and the 
system (Γ″).  This cannot happen, since these two systems of characteristics correspond 
to each other, so equations (28) and (29) are identical, up to a contact transformation. 
 The preceding proof can give rise to an objection: Suppose that (28) and (29) 
correspond under a Bäcklund transformation.  It is not absolutely obvious that this 
transformation, which can only be a (B1) transformation, is deduced from the systems (Γ′) 
and (Γ″).  It is very easy to eliminate this difficulty by remarking that if that 
transformation is, for example, deduced from the system (C′) then since equation (28) has 
two systems of first-order characteristics it will be a Monge-Ampère equation, and from 
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the remark that was made at the end of no. 8, equations (27) and (28) cannot correspond 
by a Bäcklund transformation, which is contrary to hypothesis. 
 We shall point out an application of the preceding theorem that is particularly 
interesting.  Imagine that equation (27) remains invariant under a certain continuous 
group of contact transformations (g).  We shall show that equation (28) admits a group of 
holomorphic contact transformation that is isomorphic to (g). 
 Let (Θ) be a transformation of the group (g).  The equations that define (Θ) permit us 
to express x, y, z, p, q as functions of the new variables X, Y, Z, P, Q.  Upon replacing x, 
y, z, p, q with their values in the equations of the Bäcklund transformation, one obtains a 
new (B1) transformation that leads to equation (28) for z′(x′, y′) and to the transform of 
(27) under (Θ) for Z(X, Y); i.e., to equation (27) itself.  From the theorem that was proved 
at the beginning of this paragraph, one can pass from the original (B1) transformation to 
the new transformation by a transformation (T′) that naturally does not change equation 
(28).  When the parameters that the equations that define the group (g) depend upon vary, 
one obtains a continuous family of transformations (T′) that corresponds to the 
transformations of (g) in the manner that was just explained and generates a holomorphic 
group that is isomorphic to (g).  The stated proposition is thus proved. 
 It is important to remark that the argument does not apply to an isolated 
transformation or to a discontinuous group of contact transformations that leave the 
proposed equation invariant (1).  To fix ideas, consider the equation that one encounters 
in the theory of surfaces of constant total curvature: 
 
(30)     s = sin z. 
 
If one takes ρ to be a new unknown, with the independent variables being preserved, then 
one obtains the equation: 

(31)     s′ = z′ 21 q′−  
 
that corresponds to the preceding one by a (B1) transformation whose equations are: 
 
(32)    z′ = p,  q′ = sin z. 
 
 Equation (30) does not change if one adds an arbitrary multiple of 2π to z, but no 
transformation of (31) corresponds to these transformations.  No matter what the 
determination of z, one finds the same value for z′.  The transformation (32) thus remains 
invariant under a discontinuous group of transformations (T), while it is impossible that 
this is true for a continuous group.  We have seen (no. 1) that the transformation will not 
be of the first kind.  Moreover, one knows that from the standpoint of the theory that 
concerns us only the continuous groups of contact transformations are important. 
 

                                                
 (1) In a Note that was inserted into the Comptes rendus (t. CXXXII, pp. 305), I stated the proposition 
that was just proved without making these restrictions, whose necessity I recognized only later on. 
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 14. Suppose that one of the two transformed equations – for example, equation (28) – 
is such that one of its systems of characteristics admits an invariant of order n – i.e., that 
there exists a function ϖ′ of x′, y′, z′, …, 1, 1np −′ , 0,np′  such that the equation: 

 
(33)     ϖ′ = k, 
 
where k denotes an arbitrary constant, possesses an infinitude of integrals that depend 
upon an infinitude of arbitrary constants that simultaneously satisfy equation (28).  By 
replacing all of the quantities that appear in ϖ′ with their expressions as functions of x, y, 
z, and the derivatives of z, one finds a function ϖ that is an invariant for one of the 
systems of characteristics of (27), because all of the transforms of the integrals common 
to (27) and (33) satisfy both (27) and: 

ϖ = k. 
 

 Conversely, if one considers the invariant ϖ, which belongs to one of the systems of 
characteristics of (27) then one sees that there exists an invariant for the corresponding 
system of characteristics of (28), and that invariant can only be ϖ′, since the integrals 
correspond uniformly.  In the last Part, we shall confirm that if the integrals correspond 
according to a more complicated law then things happen in a completely different 
manner. 
 If we are given an invariant then we propose to find what the order is for the invariant 
that it corresponds to under a (B1) transformation, as was just explained.  We first 
consider the invariants of order higher than two. 
 Suppose that there exists such an invariant ϖ′ that belongs to the system (C′) of 
characteristics of (28).  ϖ′ is a function of x′, y′, z′, …, 1, 1 0,n np pµ−′ ′ ′+ , and upon replacing 

these quantities with their expressions, one finds, from the results of no. 9, that ϖ does 
not depend upon derivatives of z of order higher than n.  On the contrary, if the invariant 
considered belongs to the system (Γ′) then it corresponds to an invariant of order n + 1, 
since 1, 1 0,n np m p−′ ′ ′+  depends upon derivatives of z of order n + 1. 

 One finds some entirely similar results when n is equal to two.  A second-order 
invariant of the system (C′) satisfies the equation: 
 

s t

ϖ ϖµ ′ ′∂ ∂′ −
′ ′∂ ∂

= 0. 

 
A direct calculation permits one to verify that if one replaces x′, y′, z′, p′, q′, s′, t′ in the 
preceding equation with their values that were found in the paragraph cited above then 
one obtains a function of only x, y, z, p, q, t, since the derivative of ϖ′ with respect to p1,2 
+ m p0,3 is zero.  The order of the invariant that corresponds to ϖ′ does not exceed two.  If 
the second-order invariant that we consider belongs to the system (Γ′) then it corresponds 
to a third-order invariant.  One verifies quite easily that the third-order derivatives cannot 
be omitted. 
 It is quite obvious that one will arrive at identical results by first considering the 
invariants of the system of characteristics (27) and looking for the order of the invariants 
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of the corresponding systems of characteristics of (28).  Finally, one sees that if n denotes 
an arbitrary number that is greater than or equal to two then the (B1) transformation is 
deduced from an invariant of order n of the system of characteristics (C) of the original 
equation, so that transformation will make an invariant of order n + 1 correspond to the 
system of characteristics (C′) of the transformed equation, while an invariant of order n of 
the system (Γ) will correspond to an invariant of order n − 1 of the system (Γ′). 
 One proves in the same fashion that an equation of order n that forms a system in 
involution with (27) will correspond to an equation of order n – 1 or n + 1 will form a 
system in involution with (28). 
 It remains to examine the case where there exists a first-order invariant for one of the 
systems of characteristics of (28).  Suppose, to fix ideas, that one has performed a contact 
transformation such that this invariant is y′.  It suffices to refer to the expression for y in 
order to see that, in general, the corresponding invariant is of second order, but we shall 
show that in certain cases that invariant is of only first order. 
 If that is true then one of the equations of the (B1) transformation reduces to: 
 

y′ = f2(x, y, z, p, q), 
 
and consequently, after a suitable transformation (T), it becomes: 
 

y′ = y. 
 

 Having said this, we write down the equations of the Bäcklund transformation: 
 
    y′ = f(x, y, z, p, q; z′),  y′ = y, 
    p′ = ϕ(x, y, z, p, q; z′),  q′ = ψ(x, y, z, p, q; z′), 
 
so since that transformation is a (B1) transformation, one has: 
 

(34)    

1
,

0.

f

z

df f f

dx p q

d

dx p q

d

dx p q

ϕ

ϕ ϕ ϕ

ψ ψ ψ

 = ∂
 ′∂
 ∂ ∂ 
   ∂ ∂ 
 ∂ ∂  =   ∂ ∂ 
 ∂ ∂ 
   ∂ ∂ 

 

 
 In addition, equation (27) does not contain t, since y is an invariant, so one sees 
immediately that f cannot depend upon q, and equations (34) show that the same is true 
for ϕ and ψ [we exclude the case where equation (27) reduces to df / dx = 0].  The 
equations that define the transformation can thus be written: 
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(35)   

( , , , ; ), ,

1
, ( , , , ; ).

x f x y z p z y y

p q x y z p z
f

z

ψ

′ ′ ′= =


′ ′ ′ = =∂
 ′∂

 

 
 If f does not depend upon z′ then one can no longer argue as we just did: The 
transformation must then belong to the special class of transformations that was pointed 
out by Goursat, and the equations that satisfy the defining ones will be: 
 

(35)′   
( , , , , ), ,

( , , , , ), ( , , , , ; ).

x f x y z p q y y

z f x y z p q p g x y z p q q

′ ′= =
 ′ ′ ′= =

 

 
 Upon proceeding as above, one finds that g does not contain q′ and that the 
determinant: 

d

dx p q

d

dx p q

dg g g

dx p q

ϕ ϕ ϕ

ϖ ϖ ϖ

∂ ∂ 
  ∂ ∂ 

∂ ∂ 
  ∂ ∂ 

∂ ∂ 
  ∂ ∂ 

 

 
must be zero.  Transformations such as (35)′ do not differ from transformations as in 
(35), so one easily perceives that one passes from one to the other by replacing the 
primed variables with the ones that are not, and conversely. 
 Upon operating on equations (35)′ in the way that we explained (no. 4 and 5), one 
finds that z satisfies a Monge-Ampère equation in which t does not appear, while z′ 
satisfies an equation of the following form: 
 

s′ + q′ G(x′, y′, z′, p′, q′) + K(x′, y′, z′, p′, r′) = 0. 
 

 15. We just confirmed that in certain cases a (B1) transformation can make a first-
order invariant correspond to an invariant of the same order.  We shall see that the same 
thing is always true for the equations of the same form as the ones that we obtained.  In 
order to this, we shall show that one can always find (B1) transformations that correspond 
to these equations by algebraic calculations and by the integration of first-order, partial 
differential equations in just one unknown function.  Moreover, it will suffice to find one 
of these transformations, since all of the other ones are deduced from it by contact 
transformations. 
 Consider a Monge-Ampère equation such that one of its systems of characteristics 
admits the invariant y: 

r + m s + M = 0; 
 

this equation is derived from the transformation that is defined by the equations: 
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   x′ = ϕ(x, y, z, p, q),  y′ = y, 
 

   z′ = ϖ(x, y, z, p, q),  p′ = 
m

p q

m
p q

ϖ ϖ

ϕ ϕ

∂ ∂−
∂ ∂
∂ ∂−
∂ ∂

 = g(x, y, z, p, q), 

where ϕ and ϖ are two integrals of: 
 

(36)   X(f) = ( )
f f f f

p M m
x z p q

λ λ∂ ∂ ∂ ∂+ − + +
∂ ∂ ∂ ∂

 = 0, 

 
in which λ denotes an arbitrary function of x, y, z, p, q (no. 8). 
 In order for the transformation considered to be a (B1) transformation, it is necessary 
that g likewise satisfy (36).  This condition is easily expressed by remarking that if f is a 
solution of (36) then the derivative of X(f) with respect to an arbitrary variable is zero.  It 
results from this remark that one has: 
 

    
f

X
p

 ∂
 ∂ 

= − ( )f M m f f

z p p p q

λ λ∂ ∂ + ∂ ∂ ∂+ −
∂ ∂ ∂ ∂ ∂

, 

 

    
f

X
q

 ∂
 ∂ 

= 
( )M m f f

q p q q

λ λ∂ + ∂ ∂ ∂−
∂ ∂ ∂ ∂

. 

 
 Upon developing the calculations, one finds that g satisfies (36) if ϕ and ϖ are two 
distinct integrals of the system: 
 

(37)   

[ ( ) ] ( ) 0,

( ) 0,

f f f
p mH M m pH

x p q

f f f
mH H

z p q

ξ λ λ

ξ

∂ ∂ ∂ + + − − + − =∂ ∂ ∂
∂ ∂ ∂ − + + =
∂ ∂ ∂

 

 
where H denotes a function of x, y, z, p, q, and where one has set, to abbreviate: 
 

m ξ = 
m m m M M

p M m
x z p p q

∂ ∂ ∂ ∂ ∂+ − + −
∂ ∂ ∂ ∂ ∂

. 

 
 The system (37) must be complete.  This condition determines the two functions H 
and λ.  Upon combining the two equations that express the idea that the system enjoys 
this property, one sees that λ is defined by the equality: 
 

λ 
m m

m
z p p q

ξ ξξ ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
 = 2 M M

p M
x z p p z

ξ ξ ξ ξ ξ∂ ∂ ∂ ∂ ∂+ − − + −
∂ ∂ ∂ ∂ ∂

, 
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and the fact that H must verify the equation: 
 

( ) ( )
H H H H

p M m mH H H
x z p q p q z

λ λ λλ λ ξ  ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − + + − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 = 0. 

 
If ϕ and ϖ are calculated in this way then it results from the developments of the 
preceding paragraph that the equation that defines z′ is of the form: 
 

s′ + q′ G(x′, y′, z′, p′, r′) + K(x′, y′, z′, p′, r′) = 0. 
 

One immediately sees that, conversely, when one is given such an equation, the 
transformation: 
     x = h(x′, y′, z′, p′; z),  y = y′, 
 

     p = 
1
h

z

∂
∂

,   q = k(x′, y′, z′, p′; z) 

 
makes it correspond to a Monge-Ampère equation of the type indicated if h sand k are 
determined by the two equations: 
 

h

z

∂
′∂
 = , , , ,

h h
ph x zG x y z p
hp
p

 ∂ ∂′+ ∂ ′ ′∂ ∂′ ′ ′ ′ − ∂′∂  
 ′∂ 

, 

 

h h
k

y z

∂ ∂+
′∂ ∂

= , , , ,

h h
ph x zK x y z p
hp
p

 ∂ ∂′+ ∂ ′ ′∂ ∂′ ′ ′ ′ − ∂′∂  
 ′∂ 

. 

 
 Gomes Teixeira has studied some transformations that are analogous to the ones that 
we just considered, but limited to the special case where the first two equations that 
define the transformation reduce to: 
 

x′ = x,  y′ = y. 
 

In order for this to be possible, it is necessary that the coefficient of λ in the equation that 
determines this quantity be zero, so one finds a relation between m and M.  As for the 
equation that determines z′, G is then independent of r′.  Conversely, if G does not 
contain r′ then that equation is reducible to a Monge-Ampère equation by a 
transformation of Gomes Teixiera. 
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 In order to solve the problem that we studied in this paragraph, it is not necessary to 
completely integrate the equation that gives H, but it suffices to determine a particular 
integral. 
 In the proposed Monge-Ampère equation, we have supposed that the coefficient of r 
was unity in order to simplify the calculations a little, but that hypothesis is not essential.  
We shall not develop the calculations in the case of an equation of the form: 
 

s + g(x, y, z, p, q) = 0, 
 

since one only has to operate as one does in the general case.  Here, one can deduce a 
(B1) transformation from the two systems of characteristics.  In particular, one confirms 
that in order for a transformation of Gomes Teixeira to be applicable to the preceding 
equation, it is necessary and sufficient that g be linear with respect to p or q. 
 
 16. One of the systems of characteristics of the Monge-Ampère equation: 
 

r + ms + M = 0 
 

admits the first-order invariant y.  We shall now consider the case where the same 
systems of characteristics likewise admits a second-order invariant.  From what we 
proved above (no. 14), one of the systems of characteristics of the transformed equation 
will possess two first-order invariants, one of which will be y′.  This transformed 
equation will be integrable by the Monge method, and along with being linear with 
respect to s′ and q′, it will necessarily be of the following form: 
 

(38)    
d

dx′
[q′ ρ(x′, y′, z′, p′) + σ(x′, y′, z′, p′)] = 0. 

 
 We shall first show that the transformation that permits one to pass from the original 
Monge-Ampère equation to equation (38) differs from the Teixera transformation only by 
transformations (T) and (T′).  Define a transformation (T) by the equations: 
 
     X′ = ξ(x′, y′, z′, p′), 
 
     Y′ = y′, 
 
     Z′ = ζ(x′, y′, z′, p′), 
 

     P′ = 
p

p

ζ

ξ

∂
′∂

∂
′∂

, 
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     Q′ = q′ρ(x′, y′, z′, p′) + 
p

y y
p

ζ
ζ ξ

ξ

∂
′∂ ∂∂− ∂′ ′∂ ∂
′∂

, 

in which ζ satisfies the equation: 

ρ 
z

ζ∂
′∂

− ρ2 + [ρ, ζ] = 0, 

 
and ξ is an integral of the complete system: 
 

p
x

x p
p

ζ ρξ ξ
ζ

∂ ′+∂ ∂′∂− ∂′ ′∂ ∂
′∂

 = 0, 

 

z
z p

p

ζ ρξ ξ
ζ

∂ −∂ ∂′∂− ∂′ ′∂ ∂
′∂

 = 0. 

Equation (38) then becomes: 

(38)′    
d

dX′
[Q′ + Θ(X′, Y′, Z′, P′)] = 0 

 
and no longer contains Q′.  Under these conditions, the (B1) transformation that will 
change equation (38)′ into the proposed equation, or at least into a equation that is 
identical to the proposed one up to a contact transformation, will be a Teixeira 
transformation that one can write down by calling the independent variables that do not 
change x, y, instead of X′¸Y′, namely: 
 

z = P′,  q + p z
P L

∂Θ ∂Θ+
′ ′∂ ∂

= 0. 

 
z is defined by a Monge-Ampère equation, one of whose systems of characteristics 
possesses a first-order invariant and a second-order invariant, and when the function Θ 
takes on all of the possible forms, one obtains all of the Monge-Ampère equations that 
enjoy that property. 
 



PART THREE 
______ 

 
 

 17. When two second-order, partial differential equations can be converted into each 
other by a Bäcklund transformation of the first kind, and when one can, consequently, 
being given the general integral of one of the equations, calculate the general integral of 
the other one with no integration, it is quite obvious that if an equation has an explicit 
general integral then the same is true for the other one.  More generally, if one of the two 
equations admits a general integral of the first kind then the other one enjoys the same 
property.  When one considers the (B2) and (B3) transformations, one cannot see how 
things behave as easily.  Here, we consider only the general case.  We only show that if a 
Bäcklund transformation makes each integral of one equation (ε) correspond to an 
infinitude of integrals of an equation (ε′), and if (ε) admits an explicit general integral 
then the equation (ε′) is of the first kind. 
 In order to do this, we prove the following proposition, from which the stated 
property will ensue in an obvious way. 
 If the total differential equation: 
 
(39)  du = ϕ(α, β, A, A′, …, A(m), B, B′, …, B(n), u) dα 
       + ψ(α, β, A, A′, …, A(m), B, B′, …, B(n), u) dβ, 
 
where A denotes a function of α and B denotes a function of β, is completely integrable 
then for any functions A and B one can give this equation the following form: 
 
(40)  R(α, β, A, A′, …, A(m), B, B′, …, B(n), u) 
 

   = ∫ Φ(α, A, A′, …, A(m)) dα + ∫ Ψ(β, B, B′, …, B(n)) dβ. 
 
 Goursat has already proved this theorem in the case where ϕ and ψ do not contain u 
(1).  We shall study the general case. 
 By hypothesis, the equality: 
 

(41)  ( 1)
( )

n
n

B B
B B u

ϕ ϕ ϕ ϕψ
β

+∂ ∂ ∂ ∂′+ + + +
∂ ∂ ∂ ∂

⋯  

 

    = ( 1)
( )

m
m

A A
A A u

ψ ψ ψ ψ ϕ
α

+∂ ∂ ∂ ∂′+ + + +
∂ ∂ ∂ ∂

⋯ , 

 
which expresses the idea that equation (39) is completely integrable, is verified 
identically if one regards α, A, A′, …, A(m+1), β, B, B′, …, B(n+1) as independent variables.  

                                                
 (1) Bulletin de la Société mathématique, t. XXV, 1897.  Leçons sur l’intégration des équations aux 
dérivées partielles du second ordre, t. II, pp. 233. 
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It then results immediately that ϕ does not depend upon B(n) and ψ does not depend upon 
A(m). 
 Having said this, upon differentiating the two sides of the equality (41) twice with 
respect to A(n) and twice with respect to B(n), one gets: 
 

u

ϕψ ∂′′
∂

 = 
u

ψϕ ∂′′
∂

. 

 
 If neither of the two quantities ϕ″, ψ″ is zero then, if one refers to a conveniently-
chosen function of α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), u as N, one can write that: 
 

u

ϕ

ϕ

′′∂
∂

′′
 = u

ψ

ψ

′′∂
∂

′′
= 

N

u
N

∂
∂ , 

or, upon integrating: 
 
 ϕ = A(m)λ(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), u) 
   + ρ(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), u) 
   + f(α, β, A, A′, …, A(m), B, B′, …, B(n−1), u) N, 
 
 ψ = B(n)µ(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), u) 
   + σ(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), u) 
   + g(α, β, A, A′, …, A(m−1), B, B′, …, B(n), u) N, 
 
 Define a new variable v by the equation: 
 

du

N
 = dv. 

Equation (39) then becomes: 
 
(39)′ dv = [A(m)λ0(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v) 
   + ρ0(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v) 
   + f(α, β, A, A′, …, A(m), B, B′, …, B(n−1))] dα 
  + [B(n)µ 0(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v) 
   + σ0(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v) 
   + g(α, β, A, A′, …, A(m−1), B, B′, …, B(n))] dβ, 
 
in which λ0, ρ0, µ0, σ0 are functions whose explicit calculation presents no difficulty.  I 
will not indicate their expressions, any more than those of the new functions that we will 
consider in the course of that proof.  If will suffice for us to know what the quantities are 
that appear in each of these functions, which are indicated between parentheses. 
 Upon differentiating the integrability condition for the preceding equation twice with 
respect to A(m) and once with respect to B(n), one finds: 
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0
( 1)n

f
f

B v

µ
−

′′ ∂∂ ′′−
∂ ∂

 = 0. 

 
Since f″ is non-zero, one deduces from this that µ0 is linear with respect to v, so the same 
must naturally be true for λ0, and one can write: 
 
 dv  = [v A(m)ω(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1)) 
   + ρ0(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v) 
   + f0(α, β, A, A′, …, A(m), B, B′, …, B(n−1))] dα 
  + [v B(n)ϖ(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1)) 
   + σ0(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v) 
   + g0(α, β, A, A′, …, A(m−1), B, B′, …, B(n))] dβ . 
 
 This equation is completely integrable.  Upon differentiating both sides of the 
equality that expresses this property with respect to A(m) and B(n), it becomes: 
 

(42)   0
0( 1) ( 1)n n

f
v g

B B

ω ω− −

′∂∂ ′+ +
∂ ∂

 = 0
0( 1) ( 1)m m

g
v f

A A

ϖ ϖ− −

′∂∂ ′+ +
∂ ∂

. 

 
 In order for this condition to be verified, it is necessary that one first have: 
 

( 1)nB

ω
−

∂
∂

 = 
( 1)mA

ϖ
−

∂
∂

, 

 
and if M denotes a suitably-chosen function of α, β, A, A′, …, A(m−1), B, B′, …, B(n−1) then 
one will thus have: 

ω = 
( 1)

1
m

M

M A −

∂
∂

, ϖ = 
( 1)

1
n

M

M B −

∂
∂

; 

 
i.e., equation (39)′ is written: 
 

dv − 
( 1)m

v M

M A −

∂
∂

 dA(m−1) − 
( 1)n

v M

M B −

∂
∂

 dB(n−1) = (ρ0 + f0) dα + (σ0 + g0) dβ. 

 
Upon setting: 

v

M
= w1, 

 
one finds, after a simple calculation, that: 
 
 dw1 =  [ρ1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), w1) 
   + f1(α, β, A, A′, …, A(m), B, B′, …, B(n−1))] dα 
   + [σ1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), w1) 
   + g1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v)] dβ. 
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 The integrability condition for this new equation, when differentiated twice with 
respect to A(m), gives: 

1df

dβ
′′
 = 1

1
1

f
w

σ∂ ′′
∂

. 

 
σ1 and ρ1 are thus linear with respect to w1, and we can replace the equation that we just 
wrote with the following one: 
 
 dw1 =  [w1θ1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1)) 
   + h1(α, β, A, A′, …, A(m), B, B′, …, B(n−1))] dα 
   + [w1χ1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1)) 
   + k1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), v)] dβ, 
 
which is also completely integrable.  Only A and its derivatives up to order m – 1 appear 
in θ1 and χ1, while only B and its derivatives up to order n – 1 appear, and w1 is a 
function of u, α, β, A, A′, …, A(m−1), B, B′, …, B(n−1).  In a more general manner, suppose 
that one has converted the integration of the proposed equation into the integration of an 
equation such as: 
 
(43) dwi =  [wi θi(α, β, A, A′, …, A(m−i), B, B′, …, B(n−i)) 
   +      hi(α, β, A, A′, …, A(m), B, B′, …, B(n−1))] dα 
   + [wiχi(α, β, A, A′, …, A(m−i), B, B′, …, B(n−i)) 
   +      ki(α, β, A, A′, …, A(m−1), B, B′, …, B(n))] dβ, 
 
in which i denotes an integer.  θi and χi do not depend upon derivatives of A of order 
higher than m – i or derivatives of B of order higher than n – i.  wi is expressed with the 
aid of α, β, A, A′, …, A(m−1), B, B′, …, B(n−1).  I say that one can replace equation (43) 
with an equation of a similar form, but in which i is replaced by i + 1. 
 By hypothesis, (43) is completely integrable.  Upon differentiating the integrability 
condition twice with respect to A(m), it becomes: 
 

idh

dβ
 = i ihχ ′′ . 

 
One concludes from this that ih′′  does not contain derivatives of B of order greater than or 

equal to n – i, because at least one of the derivatives of order higher than n – i will figure 
in χi, which we did not assume.  Moreover, χi is linear with respect to B(n−1).  Set: 
 
      θi = A(m−i) ξ + ζ, 
      χi = B(n−i) η + ε . 
Equation (43) becomes: 
 
(44)  dwi = wi ξ dA(m−i−1) + wi η dB(n−i−1) + (ζ wi + ηi) dα + (ε wi + ki) dβ. 
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In addition, upon writing down the integrability condition, one perceives immediately 
that one can set: 

ξ = 
( 1)m i

K

A − −

∂
∂

,  η = 
( 1)n i

K

B − −

∂
∂

, 

 
in which K denotes a function of α, β, A, A′, …, A(m−i−1), B, B′, …, B(n−i−1).  ζ and ε no 
longer contain the derivatives of A(m−i) and B(n−i). 
 Upon operating as before – i.e., upon taking a new variable to be: 
 

wi+1 = iw

K
, 

 
one finds an equation of the stated form: 
 

dwi+1 = (wi+1θi+1 + hi+1) dα + (wi+1χi+1 + ki+1) dβ. 
 
Upon calculating the functions θi+1, χi+1, hi+1, ki+1, one verifies that θi+1 and χi+1 do not 
depend upon either the derivatives of A of order higher than m – i – 1 or on the 
derivatives of B of order higher than n – i – 1.  Upon operating in this way step-by-step 
(1), one arrives at an equation: 
 
   dw =  H(α, β, A, A′, …, A(m), B, B′, …, B(n−1)) dα 
            + L(α, β, A, A′, …, A(m−1), B, B′, …, B(n)) dβ, 
 
in which w denotes a function of α, β, A, A′, …, A(m−1), B, B′, …, B(n−1), u. 
 From the result of Goursat, this latter equation can be put into the form: 
 

  w = R1(α, β, A, A′, …, A(m−1), B, B′, …, B(n−1)) + ∫ Φ(α, A, A′, …, A(m)) dα 
      

 + ∫ Ψ(β, B, B′, …, B(n)) dβ. 
 
 If one replaces w with its expression then one finds that equation (39) can indeed be 
put into the form (40); this is the result that we shall prove. 
 We have neglected the case where one of the quantities ϕ″, ψ″ is zero.  It is very easy 
to see that if ψ″, for example, is zero then equation (39) can be converted into an 
analogous equation in which only n is replaced with n – 1.  Let: 
 
(45)    du = ϕ dα + (B(n) ψ0 + ψ1) dβ 
 
be the equation that would like to study.  We write it in the following manner: 
 

                                                
 (1) The consideration of the integrability condition indicates the modifications − which are important, 
moreover − that one must make to the preceding arguments when either one of the numbers m – i, n – i is 
zero or both of them are. 
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(45)′    du = ϕ dα + ψ0 dB(n−1) + ψ1 dβ. 
 
One can find two functions χ and π of α, β, A, …, A(m−1), B, …, B(n−1) such that one has: 
 

du − ψ0 dB(n−1) = π ( 1)
( 1)

n
n

du dB
u B

χ χ −
−

∂ ∂ + ∂ ∂ 
; 

i.e., such that one has: 
 

du − ψ0 dB(n−1) = π ( )
( 1)

m
m

d A A d
A A

χ χ χχ α
α −

 ∂ ∂ ∂ ′− + + +  ∂ ∂ ∂ 
⋯  

      − ( 1)
( 2)

n
n

B B d
B B

χ χ χ β
β

−
−

 ∂ ∂ ∂′+ + +  ∂ ∂ ∂  
⋯ , 

 
and if we take χ to be the new variable then we can replace equation (45)′ with: 
 

dχ = λ dα + µ dβ, 
 

in which λ, µ are functions of α, β, A, A′, …, A(m), B, B′, …, B(n−1)), χ.  If the product 
2

( ) 2( )mA

λ∂
∂

2

( 1) 2( )nB

µ
−

∂
∂

 is zero then one continues in the same manner, except that one will 

apply the reduction process that we first presented. 
 It is not without interest to remark that the preceding proposition is not only useful for 
the theory of Bäcklund transformations, but also in other question in the theory of partial 
differential equations.  For example, it can indeed happen that the application of the 
Darboux method leads to the integration of an equation such as (39) that one can simplify 
in the manner that we just explained. 
 We make another remark: Imagine that an equation that is linear in r, s, t admits an 
explicit general integral that is expressed with the aid of two auxiliary variables α, β and 
a function A of α and its derivatives up to order n, or, in a more precise manner, that x, y, 
z, p, q are expressed as functions of these quantities (1).  If a Bäcklund transformation 
makes each integral of (ε) correspond to an infinitude of integrals of another equation (ε′) 
then one must calculate the quantity that we have called ζ (no. 2), and one sees that A(m+1) 
and B(n+1) enter into equation (3)″ linearly.  When one has simplified the expression for ζ, 
A(m+1) and B(n+1) will therefore no longer enter in.  It has been convenient for us to assume 
that (ε) is an equation that is linear in r, s, t, but it immediately emerges that if (ε) 
contains a term in rt − s2 then this proposition is still true. 
 
 18. We have shown (no. 14) that if a Bäcklund transformation makes an integral of an 
equation (27) correspond to just one integral of an equation (28) then each invariant of 
one of the characteristic systems of (28) will correspond to an invariant of one of the 
characteristic systems of (27).  An invariant of (C′) of order n will correspond to an 
                                                
 (1) There is no reason to consider the expressions for x, y, z separately, since for us a partial differential 
equation is defined only up to a contact transformation.  
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invariant of (C) order at most n, and an invariant of (Γ′) of order n will correspond to an 
invariant of (Γ) of order n + 1.  The arguments that led to these results did not suppose 
that the transformation considered is a (B1) transformation.  They still persist when an 
integral of (28) corresponds to ∞1 integrals of (27). 
 We shall now assume that a Bäcklund transformation makes each integral of the 
Monge-Ampère equation: 
(46)    r + (m + µ) s + m µ t + M = 0 
 
correspond to an infinitude of integrals of the equation: 
 
(47)    r′ + G(x′, y′, z′, p′, q′, s′, t′) = 0, 
 
and investigate what the system of characteristics of (47) becomes under this 
transformation.  The results that we shall prove are much less precise than the ones that 
were obtained in the study of (B1) transformations.  I shall at least attempt to point out 
what sort of cases might present themselves. 
 If one is given an arbitrary function F′ of x′, y′, z′, …, 1, 1np −′ , 0,np′  then upon replacing 

these quantities by their values (no. 3), one finds a certain function F of x, y, z, …, p1,n−1, 
p0,n, z′.  It is very easy to see that if the transformation considered is of the third kind and 
if n is equal to at most 2 then this latter function depends essentially on derivatives of 
order n.  Indeed, if things were otherwise then one would have a relation of the form: 
 

F′ (x′, y′, z′, …, 1, 1np −′ , 0,np′ ) = F(x, y, z, …, p1,n−1, p0,n, z′), 
 

and upon replacing x, y, z, …, p1,n−1, p0,n, z′ in F with their values as functions of z, x′, y′, 
z′, and the derivatives of z′, one would find a relation such as: 
 

F′ (x′, y′, z′, …, 1, 1np −′ , 0,np′ ) = F1(x′, y′, z′, …, 1, 2np −′ , 0, 1np −′ , z). 

 
 It is impossible that F1 might contain z, since an integral of (47) will correspond to 
only one integral of (46) that is determined by the preceding equation and the equations 
of the Bäcklund transformation, which will therefore not be of the third kind.  On the 
other hand, if F1 does not depend upon z then one will have a relation between x′, y′, z′, 
and the derivatives of z′ whose first index is 0 or 1, which is likewise impossible, since 
equation (47) has been solved for r′.  We have seen (no. 9) that if we have a Bäcklund 
transformation of the second kind then it is possible that a function such as F′ is 
expressed as a function of only x, y, z, and the derivatives of z up to order n – 1. 
 Having made that remark, first suppose that there exists an equation: 
 
(48)    F1(x′, y′, z′, …, 1, 2np −′ , 0, 1np −′ ) = 0, 

 
that forms a system in involution with (47).  By replacing x′, y′, and the derivatives of z′ 
in the left-hand side of that equation with their values as functions of z′, x, y, z, and the 
derivatives of z, one finds an equation: 
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(49)    F0(x, y, z, …, p1,n−1, p0,n, z′) = 0 
 
that is verified if one replaces x, y, z, …, p1,n−1, p0,n, z′ with the expressions that 
correspond to two integrals that are transforms of each other, while z′ satisfies (48). 
 If F0 does not depend upon z′ then equation (49) obviously corresponds to equation 
(48), and forms a system in involution with (46).  On the contrary, if the variable z′ does 
enter into F0 then one appends to equation (49) its derivative with respect to one of the 
two independent variables – y, for example – which is written: 
 

0dF

dy
= 0 0 0 0 0

1, 0, 1
1, 1 0,

( )n n
n n

F F F F F
p p C s t

y z p p z
α β+

−

∂ ∂ ∂ ∂ ∂+ + + + + + +
′∂ ∂ ∂ ∂ ∂

⋯  = 0, 

 
in which we preserve the notations that were employed before (no. 1). 
 We may eliminate z′ from equation (49) and the derived equation, and what then 
remains is an equation of (n + 1)th order that forms a system in involution with (46).  We 
can summarize by saying that an equation of order n that forms a system in involution 
with (47) will correspond to an equation of order at most equal to n + 1 that forms a 
system in involution with (46). 
 Now, suppose that one of the systems of characteristics of (47) admits an invariant Φ1 
of nth order, i.e., that no matter what the constant K is, the equation: 
 
(50)    Φ1(x′, y′, z′, …, 1, 1np −′ , 0,np′ ) = K 

 
will admit an infinitude of integrals that depend upon an infinitude of arbitrary constants 
that simultaneously satisfy (47).  We operate as we just did in the study of the preceding 
question.  Replace x′, y′, z′, …, 1, 1np −′ , 0,np′  with their values.  We find a function Φ0 of z′, 
x, y, z, …, p1,n−1, p0,n such that the equation: 
 
(51)    Φ0(x, y, z, …, p1,n−1, p0,n, z′) = K 
 
is verified by corresponding integrals of equation (46) and (47), on the condition that z′ 
must likewise satisfy equation (50). 
 As we did just now, one must distinguish several cases.  If the left-hand side of 
equation (51) does not depend upon z′ then one has an invariant of nth order or less that 
corresponds to the invariant Φ1 .  On the contrary, if z′ enters into Φ0 then one 
differentiates equation (51) with respect to y, and it becomes: 
 

(52)     0d

dy

Φ
= 0. 

 
 It can happen that the function dΦ0 / dy does not depend upon z′.  Equation (52) then 
forms a system in involution with (46).  No matter what the value of K, all of the integrals 
that are common to equations (47) and (50) correspond to integrals that simultaneously 
satisfy equations (46) and (52).  Finally, if dΦ0 / dy contains z′ then one can deduce that 
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quantity from equation (52) by substituting in Φ0, and one will find a function Ψ0 of x, y, 
z, …, p1,n, p0,n+1 such that the equation: 

Ψ0 = K 
 
forms a system in involution with (46) for all values of K. 
 By definition, if there exists an invariant of order n for one of the characteristic 
systems of (47) then the corresponding system of characteristics of (46) admits an 
invariant of order less than or equal to n + 1, or there exists a unique equation of order at 
most n + 1 that forms a system in involution with (46). 
 We just found an upper bound on the order of the invariant or the equation that 
corresponds to the known invariant Φ1 .  The remark that we made at the beginning of 
this paragraph permits us to give some indications on the lower bound.  Suppose that the 
transformation considered is a (B3) transformation: Φ0 depends essentially on the 
derivatives of z of order n.  Φ1 corresponds to either an invariant of order n or n + 1 or to 
a unique equation of order n + 1.  If the transformation that we are considering is a (B2) 
transformation, and if Φ0 contains derivatives of order n, then we only need to repeat 
what we just said, but it can happen that these derivatives do not appear in Φ0 .  When 
this is true, the invariant Φ1 corresponds to either an invariant of order n – 1 or n or to an 
equation of order n that forms a system in involution with (46). 
 One easily sees that there can be an exception if n is equal to one or two, and only in 
this case.  Indeed, if Φ0 depends upon the variables x, y, z, p, q, z′, and not on the 
derivatives of z of higher order then one has: 
 

0d

dy

Φ
= 0 0 0 0 0( )q s t C s t

y z p q z
α β∂Φ ∂Φ ∂Φ ∂Φ ∂Φ+ + + + + +

′∂ ∂ ∂ ∂ ∂
 = 0. 

 
It is possible that upon reducing this one finds an equation that is independent of s and t. 
 We shall now examine the case in which one of the systems of characteristics of 
equations (47) admits two distinct invariants of order m and n (m ≤ n).  Let u1 be the 
invariant of order m and let v1 be the invariant of order n.  If one is given an arbitrary 
integral of equation (47) then there will exist a function f such that this integral 
simultaneously satisfies the equation: 
 
(53)     v1 = f(u1). 
 
In addition, if one is given an equation of the preceding form and any sort of function f 
then this equation admits an infinitude of integrals that depend upon an infinitude of 
arbitrary constants that likewise satisfy equation (47).  By proceeding as we did before, 
we make each equation such as (53) correspond to an equation of order n + 1 or less that 
forms a system in involution with (46).  Moreover, if one is given an arbitrary integral of 
(46) then there exists an equation of order at most n + 1 that admits that integral and 
which forms a system in involution with (46).  Indeed, consider an integral of (47) that 
corresponds to the given integral of (46).  We can choose the function f in such a way that 
equation (53) possesses that integral, and upon transforming that equation one finds an 
equation of order less than or equal to n + 1 that admits, at the same time as the given 
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integral, an infinitude of integrals that depend upon an infinitude of arbitrary constants 
and satisfy (46).  It results from this that one of the systems of characteristics of (46) 
possesses two invariant of order at most equal to n + 1. 
 At the basis of the preceding, we have simply proved that the invariants of the 
systems of characteristics of equation (47) can be transformed in several different 
manners.  It is not pointless to indicate some examples that show that these different 
kinds of transformations can actually present themselves. 
 Consider the very simple equation: 
 
(54)    q′ r′ − p′ s′ + f(x, y, z, p′, q′) = 0. 
 
One of the systems of characteristics (Γ′) admits the first-order invariant y and the other 
one (C′) admits the invariant z′.  If one preserves the independent variables then the 
transformation: 
(55)   z = p′,  q′ p – z q + f(x, y, z, q′) = 0 
 
replaces equation (54) with another Monge-Ampère equation.  If one imagines that 
equations (55) are solved for p′ and q′: 
 
(55)′   p′ = z,  q′ = ψ(x, y, z, p, q) 
 
then equation (ε), which defines z, is identical to the integrability condition of: 
 
(56)    dz′ − z dx − ψ(x, y, z, p, q) dy = 0. 
 
 The invariant y, which belongs to the system (Γ′), likewise belongs to the 
corresponding system of characteristics (Γ) of (ε), but the invariant z′ of the system (C′) 
corresponds to the equation: 

ψ(x, y, z, p, q) = 0, 
or, if one prefers, the equation: 

z = 0, 
 
which forms a system in involution with (ε). 
 Now, consider the equation: 
(57)     r′ q′ − s′ p′ = p′3 ex. 
 
The system of characteristics (C) admits the invariant z′ and the second-order invariant: 
 

1 = 3

2r p

p

′ ′+
′

. 

 

Consequently, it admits a sequence of invariants dI / dz′, dI
d

dz
 
 ′ 

/ dz′, …  When one 

applies the transformation (55), the invariant z′ will correspond to a unique equation, but 
the invariant I will correspond to an invariant that is of first order.  Indeed, equation (56) 
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shows that p′ and r′ are equal to z and p, respectively.  Moreover, dI / dz′ and all of the 
invariants that follow correspond to invariants.  The second system of characteristics 
admits a first-order invariant, a second-order one, and so on.  The transformation (55) 
makes them correspond to invariants of the same order. 
 We have considered only (B2) transformations, but it is very easy to find (B3) 
transformations that transform the invariants as we described in the general theory.  
Imagine that the function f in equation (54) does not depend upon y; i.e., that equation 
(54) remains invariant under a translation that is parallel to Oy, or furthermore that the 
equation admits an infinitesimal contact transformation whose characteristic function is 
q′.  We have already explained that there exists a Monge-Ampère equation (ε1) that is the 
transform of (54), such that the equations of the transformation do not contain y, which 
corresponds to (ε) by a (B3) transformation.  In particular, one finds that one of the 
systems of characteristics of (ε1) admits a first-order invariant that is the transform of z′ 
and corresponds to the unique equation z = 0. 
 It is, moreover, important to make the following remark: In general, the system (Γ) 
admits no invariant.  Meanwhile, the system (Γ′) admits one that is z′.  Consequently, 
when one studies a Bäcklund transformation that is not a (B1) transformation, one is not 
assured of finding all of the invariants of a system of characteristics of one of the 
equations when one has only looked for the invariants that are the transforms of the 
invariants of the corresponding systems of characteristics of the second equation. 
 
 19. I conclude this paper with the study of an interesting Bäcklund transformation (1).  
I have already recalled the results that were obtained by Lie, Bäcklund, and Darboux in 
the study of surfaces of constant curvature.  A system of two first-order elements (x, y, z, 
p, q), (x′, y′, z′, p′, q′) admits four invariants relative to the group of motions in space.  
Upon equating these invariants to constants, one obtains the equations of the 
transformation that was studied by Darboux that is applied to the surfaces that are parallel 
to the surfaces of constant total curvature. 
 We shall show that there exists an analogous transformation in non-Euclidian 
geometry.  For this, we employ a method that is entirely similar to that of Darboux, 
which will provide us with an occasion to recall the elegant manner by which that 
geometer had proved the theorems that were found by Bäcklund (no. 1). 
 If we are given a quadric (S), which we call the fundamental quadric, and which we 
suppose has a reduced equation of the simple form: 
 

x2 + y2 + z2 + 1 = 0, 
 

then by equating the constants of the four invariants of a system of two elements (x, y, z, 
p, q), (x′, y′, z′, p′, q′) relative to the group of projective transformations that leave the 
quadric (S) invariant, we find a system of four equations: 
 

                                                
 (1) Bulletin des Sciences mathématiques, t. XXIV, pp. 284; 1900.  
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(58) 
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which defines the transformation that shall study, and in which k, m, n, l denote constants. 
 Upon differentiating the preceding system, one finds: 
 

i i i i i idF dF dF dF F F
dx dy dx dy dp dq

dx dy dx dy p q

  ∂ ∂  ′ ′ ′ ′+ + + + +  ′ ′ ′ ′∂ ∂   
= 0 (i = 1, 2, 3, 4). 

 
 If one solves the preceding equations with respect to dp′, dq′, dx, dy then if one lets 
H, K, L, M, N denote certain functions of x, y, z, p, q one gets: 
 

H dp′ = K dx′ + L dy′, 
H dq′ = M dx′ + N dy′, 

 
and the elements (x′, y′, z′, p′, q′) generate a surface if one has: 
 

L = M. 
 

 One can see that in the particular case that we are occupied with the preceding 
condition reduces to a Monge-Ampère equation that determines z.  However, the 
calculation will be somewhat lengthy, and one would prefer to proceed otherwise.  
Consider the element x = y = z = p = q = 0.  Upon performing the calculations that we just 
indicated, one finds that the values of r, s, t that correspond to that element must satisfy 
the equation: 

(1 – n2 – k2)(rt – s2) – (nl + km)(r + t) + 1 – m2 – l2 = 0. 
 
 The group considered admits two second-order, differential invariants: 
 

   I = 
2 2 2 2

2 2 2

[ 1]

[ ( ) 1]

x y z

p q px qy z

+ + +
+ + + − +

(rt – s2), 

 

   J = 
2 2 2 1/2

2 2 2 3/ 2

[ 1]

[ ( ) 1]

x y z

p q px qy z

+ + +
+ + + − +

 

  × {[(1 + q2) r – 2pqs + (1 + p2) t][x2 + y2 + z2 + 1] 
  − (y + qz)2 r + 2(y + qz)(x + pz) s – (x + px)2 t}, 
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and if one annuls x, y, z, p, q then the values of these two invariants are (rt – s2) and r + t. 
 On the other hand, there always exists an infinitude of transformations of the group 
considered that permit one to convert an arbitrary element (x, y, z, p, q) to the origin 
element, on the condition that the point (x, y, z) does not belong to the fundamental 
quadric.  The transformation that is defined by the system (58) thus applied to the integral 
surfaces of the equation: 
 
(59)   (1 – n2 – k2) I – (nl + km) J + (1 – m2 – l2) = 0. 
 
As for the transformed surfaces, they satisfy the equation: 
 

(1 – m2 – k2) I′ – (ml + nk) J′ + (1 – n2 – l2) = 0, 
 

in which I′ and J′ are deduced from I and J, respectively, by accenting all of the symbols 
that appear in them. 
 Let D denote the line perpendicular to the point M(x,y, z) on the plane (p, q); i.e., the 
line that passes through M and the pole of the plane with respect to the quadric (S).  
Likewise, let D′ denote perpendicular to the point M′(x′, y′, z′) on the plane (p′, q′).  
Furthermore, let ∆ denote the line conjugate to D and ∆′, the line conjugate to D′, and 
suppose that one of the lines that meet D, D′, ∆, ∆′ is drawn, where N and N′ are the 
points of intersection of that line with D and D′.  The points N, N′ thus determined belong 
to an invariable system that is defined by the two points M, M′, and the two planes that 
pass through these points, respectively.  If the point M describes a surface that is tangent 
to the plane (p, q) then the point N will describe a surface whose tangent plane will 
contain the line ∆.  Indeed, let A, B be the intersection points of D with (S).  Suppose that 
the line D is displaced infinitely little and goes to D1, so the points A, B, M, N go to A1, 
B1, M1, N1, and the points A1, B1 will be in the planes defined by ∆ and the points A, B, M, 
respectively.  Since the anharmonic ratio (A, B, M, N) is equal to the ratio (A1, B1, M1, 
N1), the point N will be in the plane that passes through ∆ and N. 
 It is useless to write down the equations of the contact transformation that permits one 
to replace each first-order element by another element, as we just explained.  We only 
remark that this transformation is completely analogous to the dilatation.  When the 
points M, M′ are then replaced with the points N and N′, resp., in equations (58) (1), the 
constants m and n reduce to zero, since the line N, N′ is the line of intersection of the 
planes tangent to the surfaces that are described by these points.  The surfaces that are 
described by the point N, for example, satisfy the equation: 
 

(60)   rt – s2 + c
2 2 2 2

2 2 2 2

[ ( ) 1]

[ 1]

p q px qy z

x y z

+ + + − +
+ + +

 = 0, 

 
in which c denotes a constant.  The integrals of that equation are the surfaces of constant 
total curvature of non-Euclidian geometry. 
 

                                                
 (1) We now denote the coordinates of the transformed elements by x, y, z, p, q, x′, y′, z′, p′, q′.  
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 20. It might be interesting to study the transformations of these surfaces in a detailed 
manner, as one does in non-Euclidian geometry.  We will not enter into the examination 
of the questions that are posed on that subject here, and we confine ourselves to showing 
that the preceding theory is susceptible to applications in ordinary geometry. 
 Let ρ′, ρ″ denote the principal radii of curvature of a surface, r, the radius vector, and 
d, the distance from the origin to the tangent plane.  The integrals of (60) satisfy the 
relation: 

ρ′ ρ″ (1 + d2)2 + 
1

C
(1 + r2)2 = 0. 

 
This equation belongs to a type of equation that was considered by Weingarten.  It results 
from the work of that geometer that the integration of the preceding equation is 
equivalent to the search for the surfaces that admit the linear element: 
 

2 2 2 2 2

2 2 4 2 2 2 4

2 2

(1 ) (1 ) (1 2 ) (1 2 )

du u du dv v dv

c u c u v v

λ λ λ+ +
+ + + +

, 

 
in which λ denotes an arbitrary constant (1). 
 That linear element is convenient to the paraboloid: 
 

2iλz = cx2 + y2. 
 
 One can always choose λ and c in such a way that the preceding paraboloid is equal 
to an arbitrary paraboloid.  In particular, if one gives c the value one then one has a 
paraboloid of revolution, so equation (60) is integrable by the Monge method.  That 
equation was integrated by Lie (2), who studied it in a slightly different form.  One easily 
puts equation (60) into this form by supposing that a homographic transformation has 
been performed such that the fundamental quadric has the equation: 
 

z = xy. 
 

 

                                                
 (1) WEINGARTEN, “Sur la déformation des surfaces,” Acta Math., XX  (1895), 159. -  Likewise, see 
DARBOUX, Leçons sur la théorie général des surfaces, t. IV, pp. 317. 
 (2) “Beiträge zur allgemeinen Transformationstheorie,” Leipziger Berichte XLVII  (1895), 494. 


