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INTRODUCTION

The celebrated Laplace method for the integratioseafond-order, linear, partial
differential equations is founded upon the properties @rg simple transformation that
replaces each integral of the given equation with #é&gml of another second-order,
linear equation, and conversely. Upon studying the linear ieqgatand in particular,
upon seeking to obtain equations of that type for whigh giossible to find a general
integral, geometers were led to consider transformmtibat differ from the Laplace
transformations in some of their properties, but whichetheless enjoy the characteristic
property of that transformation: If one is given abitaary surface then there exists a
transformed surface, while the transformation makeb @#degral of a certain second-
order, linear equation correspond to either one integrahanfinitude of integrals of an
analogous equation. The theory of linear equations waemerl by Darboux), to
whom a large number of the important results are duevill Isimply cite the names
Moutard, Lucien Lévy, and Roger Liouville, who have stud@xitain modes of
transformation for linear equations.

The transformations of nonlinear, second-order, patiftarential equations have not
been the object of as great a number of works, althougle sery general results have
been proved by Bécklund in his papefs (hich are, unfortunately, a bit difficult to
read. Upon seeking to analytically study the tramsédion of surfaces with constant
total curvature that were discovered by Bianchi, Lie remtaRethat this transformation
does not apply to an arbitrary surface, but only to swsfadeconstant total curvature.
Backlund showed that in certain cases of systemsraépdifferential equations that are
analogous to the system that was the object of Lieikwone is allowed to deduce from
any integral of a Monge-Ampére equation, an infinitude afgrdls of an equation of the
same type by the integration of ordinary differential eigmat At the same time,
Backlund defined a transformation of surfaces of cohdtaal curvature that includes

() Lecons sur la théorie générale des surfates.
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the Bianchi transformation as a special case. k liiter, Darboux’) generalized the
last result and indicated a very elegant method for protiregtheorems that were
obtained by Backlund.

Some particular transformations of second-order patifferential equations were
studied by Gomes Teixeird)( More recently, Goursaf)(showed that in an extended
case of the surfaces that the transformations tleae wonsidered by Backlund were
applied to — i.e., the transformations that are definedrdmary notation, by a system of
four equations ix, y, z, p,q, X, Y, Z, p, g — are the integrals of a second-order equation.

The present paper, which is divided into three parts fdrags object of study the
transformations that are defined as we just explainethencase where each of two
families of surfaces that correspond to them are compafsietegrals of a second-order
equation. These transformations are calladklund transformations.

In the first part, | point out the general propertasthese transformations. In
particular, after having briefly reviewed the resultattivere obtained by Béacklund, |
examine a case that has not been further considered Wohe equations betweeny, z,

p, g, X, Y, Z, p, q define a transformation that is applied to the integola second-
order equation.

In the second part, | study the Backlund transformatibat make the integrals of the
two equations correspond in a one-to-one manner. #sig ® obtain some very general
and very precise propositions.

When the transformation makes an integral of at least of the two equations
correspond to an infinitude of integrals of the other eqoatibe theory seems very
complicated. Although they are very incomplete, thalteshat | prove in the third part
are possibly capable of providing some useful indicatiomsrobre profound study.

The principal results that are contained in the fwsi parts were presented to the
Académie des Sciences (sessions on 5 February andil9oAg©00 and 11 February
1901).
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PART ONE

1. If we are given two systems of first-order elememtspace then, as is customary,
we letx, vy, z, p, g denote the coordinates of an arbitrary element of thedystem, which
we call the systemH); we employ the same letters with primes for theosd system.
We say that a surface whose elements all belong tofahe two systems belongs to that
system. We have to consider contact transformatioaiseither the elements d)(or
those of E') are subjected to. Often, to abbreviate, we shall tal former
transformationsT) and the latter oned ().

One knows that if the point y, z describes a surfa@= f(x, y) then the coordinates
of the elements of that surface have the values:

so we further write:
0% f 0*f 0*f

r= = =

~ oxay’ ay*

and for the derivatives of higher order, we write:

Pik = ﬁ (| + k> 2)
HT K oy '

i+k
— be
dxX dy
the derivative takemn times with respect tx and k times with respect ty. If one

subtracts the terms that contain the derivativesadfordern +i + k then what remains is
an expression that denote by:
di+k f
(e )

The problem that Backlund proposed can be stated foltbesing manner:

LetV be a function oK, y, z, and the derivatives afup to ordemn, and let

Being given four equations:
(1) Fi(X, y’ Z, p! qa X’!yliz'ip”q’)zo G :1! 21 3! 4)

between the coordinates of the elements of thesiywstemsE), (E'), determine the
surfaces of the systerfts) that correspond to the surfaces(&f).
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We shall show that equations (1) always define a wamsition that makes certain
surfaces of E) correspond to some surfaces &')( We do not consider two
transformations that are defined by two systems of equ&at@be distinct when they can
be converted into each other by the transformatidhsid '), and we likewise regard
two partial differential equations as identical when oae deduce one from the other by
a contact transformation.

At first, we shall not occupy ourselves with theecas which one can deduce an
equation that depends upon omrlyy, z p, q from system (1). In addition, we suppose
that equations (1) are solved with respect to the vasahlg', p’, . If that solution is
impossible then it will suffice to first perform a cfye of variables or a conveniently
chosen transformationT) — for example, the Ampére transformation. The esys{1)
then becomes:

@) {X'=f1(x,y,z, pRa2, Y f(xyzpok

pP=f(xyvzpasy o f(xyzpozk
The elements oH), which generate a surface, satisfy the equation:
dZ-p'dX -q dy =0,

and if one replaces, vy, p', g with their values then this becomes:

(3) Adz+Bdx+ Cdy+adp+£dg=0,
or further:
(3) AdzZ+B+ar+ 9 dx+(C+as+£t)dy=0

on the condition that one must set:

N R L - A R ) A A P A
0z 0z 0x 0X oy oy
of of of of
a= f,—=++f,—=, =f,—2+f,—=.
Sap 4ap ﬁ Saq 4aq

The integrability condition for (3can be written:
(4) Hr+2Ks+Lt+M+N(rt—<)=0,

whereH, K, L, M, N are functions oX, y, z, p, q, Z that are easy to calculate.

Two cases can then present themselves: If equatiode@gnds uporz then one
solves forZ as a function oX, y, z, p, q, I, S, t, and after having inserted it into (3\hat
remains are two third-order, partial differential equagiothat determinez; these
equations are compatible. In general, there exisntegrals that pass through a given
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curve and admit a given tangent plane at each poihabturve ). Only one surface in
(E') corresponds an integral of these equations.

It might likewise happen that equation (4) does not depend dpanis then a
Monge-Ampere equationlf one replaceg with an integral of (4) then equation (3
completely integrable and determines an infinitude ofases in E') that depend upon
an arbitrary parameter. One immediately sees thatsainee thing will be true, in
particular, if Z does not figure in equations (2). If these transformatiadmit an
infinitesimal transformationT) then one can, with the aid of a transformatidr, (
replace the system (2) with a system that is anal®go four equations that no longer
containZ, and the integrability condition (4) again reduces to addeA\mpere equation.

2. These results are due to Backlund, who proved them ipappers that were cited
above. | will add the following remark: Here, | willmsider only the case where one is
led to a Monge-Ampére equation (4). It is always possilyleg contact transformation,
to make the term int — & disappear from that equation, which then admits a Yaafil
integrals that are each composed of a point and diegbtanes that pass through it.

From this, the equation:

AdZz+adp+£dg=0,

in which one regards, y, z as constants, is completely integrable. We thus haam
letting o and & denote two functions of y, z, p, q, Z:

Adz+adp+pBdg=pdé

on the condition that one differentiafavith respect to only the variablpsq, Z.
If one now takes the ordinary differential then one waite:

AdZz+adp+£dqg= p{d&—(%j dx—(%j dy}.
dx dy

Substitute this value fok dZ + a dp + £ dqin (3) and, at the same time, replate
with its expression as a functionxfy, z p, g, and a new variable that is defined by:

¢=8axy,zp,q2)
and equation (3) becomes:
3)" dz—Adx—udy=0,

in which A and i denote functions of, y, z, p, g, z and that equation will be completely
integrable at the same time as (3A linear equation im, s, t is not, in general, identical
to the condition of integrability for an expression Iswas (3). For example, if one
supposes that the equation considered contains neitizt then it is necessary that the
equations must be bilinear inandg. Consequently, a Monge-Ampeére equation is not
generally derived from a transformation (2) by the metti@d was indicated in the

() BAECKLUND, Math. Ann.XVII , pp. 291 ancKIX , pp. 389.
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preceding paragraph. It seems difficult to determin@falhe equations that enjoy this
property, but it suffices to suppose tHatind i do not depend upaodiin order to have an
infinitude of them.

Upon writing thatH, K, L, M, N are proportional to the coefficients of a given
Monge-Ampére equation, one obtains four partial difféa¢euations to determine four
functionsfy, f,, fs, f4, but this system of equations is a singular system tachwthie
theorems of Cauchy do not apply, and which does not, in @eadmit a solution.

3. If (4) is a Monge-Ampére equation then as soon akoaws an integral of that
equationz will be determined by an integratiox', y', p', g are given by equations (2)
as functions ok, y, z, p, g, Z. In a general manner, an arbitrary derivatple of Z is

expressed as a function ofx, y, z, and the derivatives afup to ordei + k. One sees
this by proceeding step-by-step. For example, in ordepliain s and t', one
differentiatesy’ =fa(x, y, z p, g; Z), upon replacinglx, dy, dZ with their values that one
infers from (2) and (3) and one then annuls the coefficientsdxfand dy. The
determinant of the system of linear equations that oume a@btains in order to calculate

: _— , : D(f,, f . .
two consecutive derivatives,,, P, IS alwaysM. It is zero only if the

D(x, y)
multiplicities of E') that correspond to multiplicities oE) satisfy the equation:

y' = arbitrary function oX'.

It suffices to perform a transformatiom’() in order for this situation to not be present.
Moreover, one easily comprehends why this casesimguished from the others. If one
is given an integral form whicji is a function of' thenZ is no longer a function of two
independent variables, and there is no reasonneider the partial derivatives of that
guantity.

4. The arguments of Backlund suppose essentiallythigatoefficientA in equation
(3) is non-zero. |If this coefficient is identicaltero then things will happen differently.
The geometric interpretation of the condition:

%
0z

+f4%—1:0

S=1,
is simple. That equality expresses the idea thal@meni, y, z, p, q corresponds to the
union ofeo! elements offE').

The equation:
dZ-p dXx-gdy =0,

which is satisfied by the elements &f)(that generate a surface, reduces here, xaftgr
p', g have been replaced by their values, to:

B+ar+ g9 dx+(C+as+p[t)dy=0,
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and can be verified only if one has:

(5)

at that time

Upon eliminatingZ from these equations, one is led to one second-orddrlpar
differential equation:
(6) FX ¥,z p,qr,st)=0,

B+ar+ fs=0,
C+as+pft=0

which defines the surfaces @)(that the surfaces okE{() correspond to. For the moment,
regardx, y, z, p, q as arbitrary parameters ands, t as Cartesian coordinates in a three-
dimensional space. The two equations (5) represdntdHhat belongs to the complex
(G) of lines that are parallel to the generators of theeco — & = 0. Equation (6)
represents a ruled surface whose generators belor@),teq that equation possesses a
system of first-order characteristics. Each integfdb) corresponds to only one surface
of (E'), so equations (2) and (5) gi¥ey,Z,p’, q.

Conversely, if one is given a second-order, partialedbfitial equation (6) that
possesses a system of first-order characteristics there exists an infinitude of
transformations (2) such that the proposed equation ivederfrom any of these
transformations in the manner that we just spoke of.

Equation (6) can be replaced by a system of two equations:

Ar+ us+v=0,
As+ut+p=0,

in which A, 4, v, p are coupled by two homogeneous relations:

%Y,z p.a A i v, p) =0, Yo% ¥, 2P, q A 4 v, p) = 0.

On the other hand, the second-order, partial differleeguation that is derived from
a transformation (2) for which one has:

of of
7 f,.—Lt+f,—2=1
() ‘oz ‘o7
is, as we have just seen, equivalent to the systeamaoéquations (5), whe®, C, a, 5
have the values that were indicated above (no. 1)t qaation will be identical to (6) if
one has:

(8 wlxy.zpqapBC)=0, W% y,zp q a BB, C)=0.

These two equations are homogeneous with respegtdadf, . One can thus
eliminatef; andf, , and what remains is just one first-order, partidedential equation
that f, and f, must satisfy. One can take one of these functiobiranily — f,, for
example,— and as soon as one knows a solufioaf the partial differential equations
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thus obtained, one will havie and f,; without any new integration upon solving the
system that is formed by equation (7) and one of equai#ns

When one has determined a transformation from whichdenees the proposed
equation, one will know an infinitude of them, since tais, it will suffice to perform an
arbitrary transformation T(), but, from our conventions, we do not consider two
transformations are deduced from each other as distMoteover, the problem that we
just treated admits an infinitude of distinct solutiomsthe sense that we gave to that
word, and later on we shall point out a remarkabldiogldetween these solutions.

If we let (C) denote the system of first-order characteristichefproposed equation
that is defined by the equations:

dz=pdx+qgdy

(XY, z,p, g, dx dy, —dp, —dg) =0,
Yp(X, Yy, z,p, q,dx dy, —dp —dg) =0

then we say that the transformations that we justiestl are deduced from the system of
characteristicsQ).

5. Recall the four equations:

X =fi(xy,zp,Qq; Z), y =fax,y, 2 p, g, Z),
P =fxy,zp, q, 2), q =fiax v,z p, g, 2),

in which fy, f,, f3, f4 satisfy the equality (7), and suppose thaandf, depend upon
variablesx, y, z, p, q by the intermediary of three functiogs, ¢, ¢ 3 of these variables,
i.e., that the point-like multiplicities that supporetmultiplicities that are generated by
the elements offf) that correspond to an elemerty, z p, q) form a three-parameter
family. A contact transformation will permit one teplace them with the set of points in
space ). The equations of the transformation that we jusdisd will then be:

X=¢,(xy,2 pa,
Y=0,(xy.2pa,
Z=¢,(x Y%z pq,
o(x,y,zpgp §=0.

(9)

In practice, it is frequently interesting, when sudtiag is possible, to consider the
equations of a transformation in this form rather tmathe form (2). It results from the
general theorem of the preceding paragraph that (9)eaill to a second-order equation
for z(x, y), as was already shown by Goursat. We propose toaatkare these
equations.

The condition:

dZ-pdXx-gdy =0

') GoursatLecons sur l'intégration des équations aux dérivées partidiiesecond ordre, 1, pp. 12.
¢



Clairin — On the Backlund transformations 9

is equivalent to the two equations:

dg, _ 46 99, _,
dx dx dx
dg, _ . dg_ 04, _,

dy dy dy

(10)

Upon eliminatingy’, g from (9) and (10), one obtains the desired second-ordern@guat
F(x, v,z pqr,st)=0.
Write the system (10) in the form:

A+ 14V =0,
(10) {rﬂs"

As+ ut+v =0,
whereA, y, v, p have values that are easy to calculate and satisfietation:
(11) hv+lp+ mA+nu=0,

h, I, m, n being quantities that are defined up to a factor by the egsatio

h(d¢‘j+l(d¢‘j+ma¢‘+na¢' =0 (=12, 3).
dx dy op 0q

The relation (11) has a very simple significanceexipresses the idea that all of the
lines (10) that generate the surface that is represented bytbadserder equation meet
a fixed line:

hr+Is+ m=0,
(12) {r s+m

hs+ It+ n=0,

which then belong to a comple)

Conversely, if a second-order, partial differential ¢éiguaF = O represents a ruled
surface whose generators belong to the comp&xand meet a fixed line of that
complex then there exists an infinitude of transforareti(9) that the proposed equation
can be derived from. The parametérg, v, p of the generators of the surface satisfy the
relation (11) upon supposing that the fixed line is represditdte equations (12). |If
@1, @o, @3 are three distinct integrals of the linear equation:

h(%j+l(%j+m%+ n% =0
dx dy op 0¢q

then the values of these parameters (whose raticdl ahat is important) can be written:
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120 08, 0,
op ap ap
M= % _ o2 ¢ 22

aq a9 aq
_(d¢;\_ (dé,\_ _(dg,
V'(Wj p(dxj q( dxj’

p=[902)_ (40 _ ()
dy dy dy
where p', ' denote arbitrary variables. The lines that genera¢esurfaceF = 0
correspond to a relation between the parametegs

d(x,y,zpqgp,q)=0.

It seems immediate that the proposed equation is deineen the transformation that
is defined by the system (9).

The transformations (9) do not differ essentially frdra ones that we considered
above (no. 4), since all of the properties that we guioby supposing that the
transformations are defined by a system such as (2), fiichwhe condition (7) is
satisfied, also apply to the transformations thatgtisdied.

6. From the preceding developments, it results that ureleain conditions equation
(2) leads to second-order, partial differential equatifmnsz; one can naturally repeat
what was said foe for Z. If zandZ simultaneously satisfy two second-order, partial
differential equations then we say that equations (2heeBacklund transformation.

Several cases are possible. If each element obbtie two systems corresponds to
the union ofe! elements of the other one then the integrals oftue equations
correspond in a one-to-one manner. The transformatibnhen be calleca Backlund
transformation of the first kindor, more briefly,a (B;) transformation When a
transformation is defined by four equations that are oloed forx,y', p', q':

\/i(xa yi Z, pa qa X’1y111 p,’q')zo G :11 21 314)1

one sees with no difficulty that an elementy( z p, q) corresponds to the union of
elements of ') if the determinant:

(4] (8Y) 2y 3y
dx )l dy Jop a4
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is zero. Moreover, it is not necessary for this deteant to be zero identically; it
suffices that this betrue when one takes the equatidhe dransformations into account.

Suppose that an element Y, z p, g) corresponds to the union ®f elementsx, v,
Z, P, q), without the elements oEj that correspond to an element Bf)(enjoying the
same property. I satisfies a Monge-Ampére equation then the transfasmaitill be a
Backlund transformation. An integralx, y) will correspond to only one integra(x,
y'). On the contrary, if one is given an integrgk, y') then it will correspond to an
infinitude of integrals(x, y) that depend upon an arbitrary constant. The transfanmat
will be calledBéacklund transformations of the second kimdB,) transformations

Finally, z(x, y) andZ (X, ¥') can simultaneously satisfy two Monge-Ampére equations
in such a way that each integral of either of these éguations will corresponds to*
integrals of the other one. We refer to these taanstions a8acklund transformations
of the third kindor (Bs) transformations

It is easy to give examples of these three kindsaostormations.

For the Bs) transformations, it suffices to consider a systéour equations:

Fixy,zp.a:X,y,Z,p,q)=0 (=1234)

Two contact transformations will always permit omeréeplace two equations of this
system with:

!

X =X, y =vy.

Now consider three arbitrary functiofs f,, f3 of X, y, z p, q, Z, f, that depend
essentially orz, and a functior, that satisfies the equation:

g0 ooy
0z 07z
The equations:
X =fi(x ¥,z p, q; Z), Y =faX ¥,z p, g 2),
P =f(x Y,z p, q 2), q=faxy,zpq; 2)

define a By) transformation. Let a second-order equation admigséem of first-order
characteristics. Suppose that this equation does ndtigothe variablez, so the
operations that were pointed out above (no. 4) permio uketermine four independent
functions ofz that define aB,) transformation that is analogous to the ones thguste
considered. In other words, if the proposed equation remaweiant under an
infinitesimal contact transformation then it willxays be possible to make it correspond
to a Monge-Ampére equation by By) transformation, since the equations of tBg) (
transformation remain likewise invariant under the itésimal contact transformation.

We propose to show how one can write the equationertdin B;) transformations
with no integration. In the spacE)( consider a family of® multiplicities that are each
composed of a union of* elements. It suffices to consider a familydfcurves, and to
append to that curve a developable surface that passes thittmatgleurve, so the
equations, when solved for the constants, are written:
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#i(x, Y,z p, q) = const. (=1, 2,3, 4);
likewise, if one lets:
¢ X,y,zZ,p,q)=const. (=123, 4)

be the equations of a family that is analogou&tpthien the equations:
g(xy.zpd)=¢ (X,y,Z,p,q) (i=1,234)
define a B;) transformation.

7. We have shown above (no. 4) how, when one is gavigansformation:

(13) {x’:fl(x,y,z, NgY, Y= f(xyzpox
P=fL(x%2Rq2 b= f(xyzpOok

W )
0z 07

it corresponds to a second-order equation:
(14) Fx,v,zpqr,st)=0

that admits a system of first-order characteristigsis determined when one knows an
integral of that equation:

z=f(x,y,zpqrst),

and equations (13) defing vy, p', d. One obtains the value @fby solving the second
of equations (5) and it is simple to deduce theeaf the r:;xtio%/?;t from this. That

value isa / 5, on the condition that one replacgwith f in that expression. From the
convention that we made on the sense that onbld#s to the variables s, t, that ratio
is, up to sign, equal to the angular coefficienttted projection of the generator of the
surface (14) that passes through the poistt onto the plane = 0.

Now consider equation (14). It corresponds tanfinitude of transformations such
as (11), namely:

(15) {X": fxyzpaq%, Y= fxyzpdi

p'=f(xyzpnaqz, b= fxyzpnos
and one of these transformatiatiswvill be given by:

zZ =f'(xy,2pqst),
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and, from what we just said, we will have:

atot ot'of _
0s 0t 0dsat
The preceding equality shows that if one eliminatesgtrentitiesx, y, z, p, g, S, t
from (13), (15), and the equatiods=f, z' = f’ then there will always be at least four

relations between the coordinatesy, Z, p', d; X', y", Z', p", q" of two corresponding
elements in the systenis'), (E"):

(16) @ Xy, z,p.d;x,y", 2, p",q") =0 (=123 4.

In particular, if the transformations (13) and (15) Béeklund transformations then
the transformation (16) will likewise be one. One ilgaserifies what sort of
transformation (16) will be from the nature of thengfarmations (13) and (15).

When one makes the preceding elimination, it might hagpat one obtains five
relations between the quantitesy’, Z, p', d’; X", y', Z', p", q", and not just four. In this
case, the transformations (13) and (15) are not distinttare deduced from each other
by a transformationT{("). This latter result can be attached to some gettezatems that
were proved by Backlund. Upon confining ourselves to thecpéati case that is of
concern to us, it is easy to give a very simple prddhce we do not consider the case
where one can deduce an equation between just the vanaglyfe Z, p', g’ in the system
(13), for example, we can suppose that the five relatomsvritten in the form:

X'=g(X, ¥, 2 p 0,
Y'=06,(X, ¥, 2, b, Q),
(17) Z=g(% Y,z b0,
p'=h(X,y, 2 p 0,
q' =h(X,y,2 p Q).

The surfaces of) that correspond to the surfaces that are generated blethents
x',y', Z', p", q') are defined by the system:

dg, , dg, _, dg
N5 h 2 Nz = 0’
dx h dx E dx

dg, , dg _, dg _
B _ph A _ph =2 =,
dy hldy hzd’

This system is identically zero if equations (17) defirmoatact transformation. In all
other cases, it cannot admit an integral that passesdgiiran arbitrary curve and tangent
along that curve with an arbitrarily given developakégher, that is what happens for the
equation or system of equations that defitigs, y').
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Recalling the case in which equation (14) does not coatainwill be possible to
make it correspond to a transformation (13) such thagéqoations do not depend upon
andf no longer depends upan That transformation will be unique, because of there
exists a second one such as (15) then upon elimingtingp, g, s, t there will be five
relations betweex,y, Z, p', d; X", y', Z', p", q". In other words, if equation (14) admits
an infinitesimal contact transformatio8) (that generates a group)(then it corresponds
to one and only Monge-Ampére equatia) @nder a B,) transformation, such that an
integral of ¢) corresponds teo! integrals of the proposed one, which are deduced from
each other by transformations of the gro@p.

Now suppose that the given equation admits not onlyréimsformation €), but also
other infinitesimal transformations. 18 is one of the transformations that lea (
invariant then | say tha#() corresponds to an infinitesimal transformatiéh)(that does
not change §. Indeed, if one performs a transformation of the gr¢@p that is
generated by#) on the equations of the Backlund transformation theretjuations of
the new transformation remain invariant under the toamed group of ®) under the
transformation considere®() — i.e., under the grou®j itself. We will thus have &B;)
transformation that will determine, on the one hahd, groposed equation, and on the
other hand, the Monge-Ampére equation that we alreadynalst. Consequently, it will
be deduced from the original transformation by a transitiom (T ) that leaves &)
invariant. All of the transformationd () that correspond to the transformations ®f)(
form a one-parameter group.

The transformations of the group of the proposed equati@idgave § invariant
themselves form a groug)( and the Monge-Ampére equation admits a holomorphic
group that is isomorphic tg)( Moreover, it might happen that equatiah gdmits other
contact transformations that do not correspond to foemations that are analogous to
the proposed ones, but to a subgroup of the group of thealreguation that does not
leave @ invariant, so it never corresponds to a group of toanstions that do not
change §).

One can further point out an interesting applicatibthe preceding results. Let an
equation (14) that admits two infinitesimal transformasi ) and @) be given. It is
possible to make two Monge-Ampere equatiof)safd ) correspond to that equation
by employing the particularBg) transformations that we spoke of in no. 6, and
successively considering the transformatiof}s dnd @). The two Monge-Ampere
equations that one thus obtains naturally correspond un@g) &ransformation, but, in
general, that B,) transformation does not belong to the particular cthss was in
guestion above; this will the case onlyéj @nd @) commute.

If (6 and @) are homologous to the interior of the group of the psed equation
then the two equationse)( and ¢) are identical. There then exists a Backlund
transformation that makes any integral of equatigncprrespond to an infinitude of
integrals of the same equation.

It is easy to give an example that shows very pdwt things happen. Consider the
equation that studied by Gours3t (

() Bull. Soc. math. t. XXV, pp. 36. kecons sur I'intégration des équations aux dérivées partielles du
second ordrgt. 1l, pp. 252.



Clairin — On the Backlund transformations 15

(18) s=21(x, )/ Pq.

If one takes the unknown to Qéﬁ = Z then one finds that is defined by the linear
equation:
(19) g dlogA

0Xx

q-Az=0.

The transformation that permits one to pass from (&8J18) is defined by the
system:

(20) z=.p, q = A%q.

Equation (18) always admits two infinitesimal contactdfamnmations that we denote
by their characteristic functions, which are 1 andOne can say that the linear equation
that we just obtained foz corresponds to the transformation 1. That transfoomati
remains invariant under the transformation That latter transformation must therefore
correspond to an infinitesimal transformation of (1Mjok is the transformation that has
Z for its characteristic function. Upon takipd z = Z' to be the new unknown, one finds
a new second-order equation ®@rthat corresponds to the transformatonOne must

eliminatez from:
o = 2A\Jpaq _ pq
z

(21) 7' = >

N |o

The product of two transformations (20) and (Zl)ai 83) transformation whose
eguations one obtains by writing down the values,qf, (', Z', p”, 9" as functions ox,
Y, z, p, g, r and eliminating, p, g, r. One thus finds:

" o_ T p’ 12 " o— ] q "2
22 =22 — -7, =22 —-Z :
( ) p Zr q Zr AZZQ

A value of Z' then corresponds to an infinitude of valueszathat one obtains by
multiplying any one of them by an arbitrary constao the values of that correspond

to these values & and which, consequently, correspond to a valug',cdire likewise
obtained by multiplying one of them by an arbitrapnstant, which likewise appears in
formulas (22). On the contrary, the transformatiotioes not leave the transformation
invariant, so the values afthat correspond to a value Bfand differ only by an additive
constant correspond to values Zfsuch that there exists no one-parameter group of
contact transformations that will give all of theagralsz’ that correspond to the same
solution of (19) when they are applied to an aabjtintegralz’.

8. The Monge-Ampére equations admit two systems rgf-érder characteristics.
They will correspond to two families of transformat that are analogous to the ones that
we studied above, but in order to apply the rebalt was established at the beginning of
the preceding paragraph, one must simultaneousiyider only two transformations that
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are deduced from this same system of characteristitsis ihdeed clear that our
arguments apply to only this case.

Meanwhile, it might happen that the product of two B&a#ltransformations that are
each deduced from one of the systems of characterigidiewise a Backlund
transformation. For example, suppose that we havergdAmpere equation that does
not containz. Upon successively considering the two systems of ctaarstics, one can
make it correspond to two other Monge-Ampere equations by €Bmtransformation
whose equations do not depend upon

One will thus obtain eight equations betweew, z, p, g, and the coordinates of two
other systems of elementsy, Z, p', q; X", y', Z', p", d". Upon eliminating, vy, z, p, q,
one gets four equations that obviously definB {ransformation.

The Goursat equation will again provide us with an exampleone is given the

equation:
s=2A(xy) /pq,

while successively taking the unknowns to\tz% and \/a then one obtains two linear

equations that will correspond under a Laplace transfasmat
We propose to apply the results of the study that we raake 4 and 5) to the
Monge-Ampére equation. With no loss of generality, ester only equations that are
linear inr, s, t. Let:
r¢+M+)s+mut+M=0

be such an equation, wheng , M denote functions oX, y, z, p, . This equation
possesses two systems of first-order characterisilos:system @) corresponds to the
differential equatiordy = m dxand the systenT{ corresponds taly = iz dx From the

system C), one will deduce a transformation such as (13) by takimagdf, to be two

integrals of the linear equation:

of of of of of
X(f)=—+ +ul —+ag— [-(M+ A —+)|—_0
0= Paz ”(ay qazj (MAm S 5

whereA is an arbitrary function of, y, z, p, q, Z.
Forf; andf,, one will have:

% of,
f3 = 99 ap ,
oo (S
Jq op)oZ (0q o0pjoz
% of,
i oq_"op
4=

of, of,\of, (of, of |of,
Jq ap a7 0qg 0p/oz
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We remark that if is an integral oK(f) = 0 then one has:

(6fj_a)l of of ).
X| === m—-—=|;
0z 0Z\ odp 0dq

9, _

S0, upon appealing to the identify%+ f, e 1, one will deduce that:
y4

of of
23 —LX(f,)+=2X(f,) =0,
(23) 5y () + o> X(1L)

The transformation considered will beB)(transformation if the determinant:

(ﬂjﬂﬂﬂ (=12 3,4)
dx )l dy)adpoq I

is zero (no. 6). By virtue of (23) and the equatiX(fs) = X(fz) = 0, one must therefore
have:
X(f3) = X(fs) = 0.

In the second part of this paper, we shall determing(BRetransformations that
correspond to a very extended class of Monge-Ampere eqaatiHere, | will confine
myself to pointing out a result whose proof is quita@e, from what we just said. If
two equations &), (&) correspond to one Monge-Ampeére equation under tB (
transformations that are deduced from the same systehacHcteristics then the product
of these two transformations is never a Backlund toamstion.

Indeed, let:

{x’zfl(x,y,z, RAd2 Y= Mxyzpoz
(@)

pP=LxYzpa2, o M(xyzpoy

be the equations of &B{) transformation that is deduced from the systé&h ¢f
characteristics of the given Monge-Ampeére equatoiis given by:

Z=(YUxY,zZzpqr,st),

ma_l//_a_l// =0
Js ot

and one has:

in whichfy, fo, f3, f4 satisfy the equatioK(f) = O.
A (B,) that is deduced from the systel) (ill be defined by:

B {X"= f(xy,zpq%, Y= fxyzpoi
p'=f(xyvzpaqz, b= f(xyzpas
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in order to determing’, one has:
Z=¢yxYy,z2p0q,st),

oy oy _

Js Ot

with

On the one hand, by an argument that was explaingthddirst transformation, one

!

verifies thatf,, f,, f;, f, must satisfy an equation such as:

df’ df’ of"  of
Xi(f) = | — |+m| =— |- (M + pu)—+ p=— =0,
a(f) (dxj (dyj ( ,O,U)ap Paq

p being a function o%,y, z, p, q, Z'.

In order for the product of the transformation® @nd () to be a Bécklund
transformation, it is necessary and sufficient than eliminatingx, y, z p, g, S, t from
(@), (B) and the equatior® = ¢, Z' = ¢/, one finds four relations betwegny, Z, p', q,
Xy, Z',p", q". Since the determinant:

oy oy oy oy
Jos o0t Ot 0s

is non-zero, it must therefore be the case thatotaains four relations by eliminating
Y, z p, q from (@) and ). In other words, one must have that all of theh{fdtder
functional determinants of the functiofisfy, f3, fa, f,', f,, f;, f, with respect t, y, z,

p, g are zero; i.e., these functions must satisfy theessgation:

A£+ Bﬂ+ Cﬂ+ Dﬂ+ Eﬁ =0.
0x oy 0z op 0¢q

However, f;, fp, f3, fs satisfy X(f) = 0, and no other equation, since they are four
independent functions. Likewisd,, f,, f,, f, satisfy just the equatio(f") = 0, and
it is clear that these two equations cannot be iddntica

In order to find the transformations of the form (®ttare derived from the proposed
Monge-Ampére equation, one must tafe @., @s to be three distinct integrals of the
equationX(f) = 0, whered denotes an arbitrary function of justy, z p, . The fourth
equation that defines the transformation is then:

0¢, . 0p, 09,)| 09, 04, .09, _
m(ap Idalo qapj 6q+p6q+q6q >

9. As we have already remarked, the transformationswibgtist studied permit us
to calculated, y', Z, p', d as functions ox,y, z p, q, S, t. One has:
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X =% ¥,z p 0 S 1)
Y =¢p(Xy,2p, QS t),
Z=y¢s(x¥,2p,0q5S1),
P =X Y, 2P aSt),
qd=¢sXy,2p qst).

It is obvious that one will have to prolong the precedragsformation and calculate
the derivatives of ordem arbitrary as functions of, y, z, and the derivatives afup to
ordern + 1, but it is necessary to specify them even more tlag calculation offers no
difficulty, moreover. At the same time, we estdblsertain formulas that will very
useful to us later on.

We write the second-order equation in the form:

(24) r+Fx y.zpast)=0,
and ifm andy are the two roots of the second-degree equatidn in

2oL F g
os ot

then we suppose that the syste@) (f characteristics that satisfy the differential
equation:
dy =m dx

is of first order and that the transformation consadas deduced from the syste@).(
All of the functionsy, ¢a, i, ¢k, s satisfy the equation:

o _of _,

Js ot

Having said this, we further remark that it sufficesatcetthe derivative of (24) with
respect tgy in order to obtain the following equality, which we $imahke use of:

dF
(25) P2itMp2+ (P2t Mpg + (d_yj =0.

When one replaceg, vy, z p, q, S, t with the expressions that correspond to a
characteristic of (24) iy, ¢, b, s, s, one obtains a system &f elements of §').
Let m denote the value of the ratdy / dX for the systems that correspond to a
characteristic of@). In order to find the expression fot, it will suffice to replacedy
with m dxin the equation:
d¢gp—m dyn =0,

and one thus arrives at the formula:



Clairin — On the Backlund transformations 20

(e Jom( We o me %2, =22 )

o = dx dy,
dy, dy, _ %% _0yy(dF )
(% em{ e om0 % -2

Now consider the systerfi)Ythat is defined by the equation:
dy = dx

where the value of’ - i.e., the value of the ratidy / dX for the system of elements of
(E") that correspond to the characteristicslQf< is obtained by operating as one did for

m'. One finds that:
(dwzjﬂ, dp,)_oy,(dF
. dx dy os dy
(dwljﬂ, Ay, |_oy,(dF)’
dx dy os| dy

We now concern ourselves with the calculation ofdhecessive derivatives af.
We consider only the derivatives, ,, p;, ;. since the knowledge of the expressions for

these derivatives will suffice. ¥ satisfies a second-order equation then one can always,
as we did for equation (24), suppose that a change obiesiaas been performed such
that all of the derivatives of, starting with the second-order ones, are expressed as
functions ofx, y, Z, and the derivatives of order less than or equal towere the first
index is equal to at most one.

In order to gets andt’, one must annul the coefficient dx and that ofdy in the
equation:

dygn—s dys —t dygp =0,

where we replacp: > + m 2 with its value that is deduced from (25). The solutmon t
the equations thus obtained is simple: If we set:

O e
o 122}, (28] sef( ). o]}

then one gets:

()
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+ pro+mpa) {aai _(d@w[afy“ﬂ‘afs{( dﬁx}”(?yﬂ}
A T e

oy, |( dy, oY, ||_oy, | (dy, oy,
tPrztmps) { ds ( dxjﬂ{ ayﬂ OSK dxjﬂ{ 0 yﬂ}

As before (no. 3), one is assured that there is asoreto examine the case whare
is zero. We see thatandt’ do not depend upon the derivativeZodf order higher than
three, but we see, in addition, that the third derivatiigese only in the combinatiop >
+m 3. Assume that the same thing is true up to onded —i.e., thatp,, _, and p, ,_,
are functions ok, y, z. p, Q, ..., Prn-2, Pon-1, P1n-1 + M p — and show that the property

persists for the derivatives of order i.e., that it is general. Upon taking the derivative
of ordern — 1 of the given equation with respeclyt@ne finds:

d"'F
(25) P2n-1 +MpPLn+M(Prp+ M ) + ( dy”‘l j =0.

By hypothesis, one has:
Pon-1 = KX, Y, Z, ..., L),

upon settingd;p-1 + M n = U, and in order to calculate,,, P, , one must equate the

coefficients ofdx anddy in:
pi,n—l dya + p('),n dy¢p=dK

to zero. One finds two equations:
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Kd%} 4['1(|012+m|003)} boﬂdwz}wz(pl mm}

dy dy
[ I mp),
dy ay 1,n Fbml
(26) dy, ) oy, dF oY,
plnl (dx 65 ,U as(p1,2+mp),3)

)
;) ‘””2("7 o

+ p(’)n ( GS (p1,2 + m 9)3):|

(& 5 [ i man
dy dy* ou " Roes):

One sees immediately that ., and p,, are expressed as functions»fy, z, ...,

Pin-1, Pon, Pin + M n+1 , Which we would like to prove. One sees furttiet if n is
greater than two them,, , +// p,, depends upon only y, z, and the derivatives afup

to ordern. One proves this by multiplying the first of etjoas (26) bym and adding
both sides of the two equations. On the contrgsy, , + m' p,, depends upon

derivatives of orden + 1. When the equation considered is a lineaaggu inr, s, t:
r¢+ M+ s+mut+M=0,

X,Y,Z,p,q are functions ox, y, z p, g, S+ mt, so the last-stated property will be true if
nis equal to twos + m t' will depend upon only the third derivativeszof

10.1f one is given a Backlund transformation of amdoy type and two integral
surfaces that correspond under that transformahien the characteristics correspond on
these two surface$)( We consider two cases in turn: We first asstime an integral of
the second-order equation (24) corresponds tojustintegral of the transformed one.

We first remark that if one replacesy, z p, g, S, t in the functionsy, ¢4, ¢k, (s, s
with the expressions that correspond to a simpiypite multiplicity that is a union of
second-order elements then the elemexits/( Z, p', ') are not united, in general, but
they will be if the elementx(y, z p, g, S, t) belong to an integral of (24), since,{/, Z,

p', g) then belongs an integral of the transformed egnatin particular, this will be true
if the second-order elements generate a charaaterig24).

If a characteristic of order of the proposed equation is known then this anstmt
saying that one knows® systems of values fog y, z, p, q, ..., Prn-1, Pon, and that there
exists an infinitude of integral surfaces that awpeipon an infinitude of arbitrary
constants that pass through this multiplicity iSforder elements. In the first place,

() SeeGOURSAT,Lecons sur l'intégration des équations aux dérivées partielles dmdexdre t. 11,
pp. 290.



Clairin — On the Backlund transformations 23

examine the case where the characteristic considefedds to the systent) — i.e., it
satisfies the equation:
dy=m dx
The equality:
dpon = (P1n + M Pe1) dX

is verified all along this characteristic, apgh + m pn+1 has a well-defined value at each
point. From what we said in the preceding paragraph, itlee gharacteristic of order
corresponds to a multiplicity ob* n"-order elements, through which pass all of the
transformed integral surfaces of the integrals of (Bd) tontain the given characteristic.
These surfaces thus have a contact of order atrealsing that multiplicity, but it can
happen that this contact is of higher order. We confirat if the transformation is a
transformation of the first kind then the transfornsedfaces have a contact of order

1 at all of the points of this multiplicity. A chatacistic of ordem thus corresponds to a
characteristic of ordarorn + 1. The preceding argument only applies, in genenalisif
greater than one. It applies to the case whasesqual to one if (24) is a Monge-Ampére
equation — i.e., as one can always assume, an equaions tinear irr, s, t.

One easily sees, by always reasoning in the same mdhatrm characteristic of
ordern of the systeml{) corresponds to a characteristic of omder1 of the transformed
one.

It remains for us to study the case where, equation (2dy ke Monge-Ampére
equation, each of its integrals correspond to an infiniofdategrals of the transformed
one. As we have done before several times, we ashanée given equation is linear
inr, s, t.

If one is given a first-order characteristic then upeplacingx, y, z, p, q with their
values in equation (3)Yno. 2), one findg by an integration. If we determireby giving
its value { for an elementx, Yo, 2, Po, Qo) for the characteristic then we define a
multiplicity of (E') that corresponds to the given characteristic, skic¢’, Z, p', d
depends only upor, vy, z, p, g, {. There exist an infinitude of integrals of (24) that
depend upon an infinitude of arbitrary constants that cotttairfirst-order characteristic
considered. There is likewise an infinitude of integadlshe transformed equation that
pass through the transformed multiplicity, which is, ssmuently, a characteristic
multiplicity.

If one is given a characteristic of ordethen it contains a first-order characteristic
that one can make it correspond to, since, as we jugt isas a characteristic of the
transformed equation. From the remark that was made. i, mne will know the values
of the derivatives o up to ordern along this characteristic. Therefore, the given
characteristic of order will correspond to a characteristic whose orderds al

One proves in the same fashion that if one knows toosolve the Cauchy problem
for a second-order, partial differential equation (24ntbee knows how to solve this
problem for all equations that correspond to (24) undeickiBnd transformation.

If two second-order equations are such that one can emde integral of one of
them correspond to the integrals of the other one dpgbahic operation, and if one of
them is integrable by the Darboux method then the otheas well; this theorem has
been proved by Goursat. In particular, it results thani equation is integrable by
Darboux’s method then all of the equations that corresgonit under a Backlund
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transformation enjoy the same property. Furthermoeeshall return to this equation in
what follows in order to point out some more precesilts.

11.Up to now, we have neglected the case in which oneleduce an equation that
contains only the coordinates of one of the two systefifirst-order elements from the
four given equations ir, y, z, p, g, X, Y, Z, p’, 4. We shall rapidly examine that special
case.

Suppose that one of the systems of equations contapsKot, Z, p', . Itis
always possible, by a contact transformation, to mhke equation reduce % = 0 Iin
some way. The equations of the transformation thgustestudied will then be:

X =f(x, ¥,z p, q; Z2), y =0,

p'=@(% Y,z P, g Z), q=¢UxY.zpqZ).
The condition:

dZ-p' dXx-gdy =0,

which expresses the idea that, (/, Z, p’, q) generates a multiplicity of? united
elements, becomes:

(¢i—1jdz’+¢ (ﬂj+rﬂ+sﬂ dx+ ¢ dr + sa—f+ :t‘E d=0
0z dx dp 0¢q dy dp 0

here.
The preceding integrability condition is written:

df dp _dp df _
dy dx dy dx

If this condition does not depend upnhen it reduces to a second-order equation that is
integrable by the Monge method and which admits the ietgiate integral:

@ = arbitrary function of,

whose existence is almost obvioagyriori.
If one has:

of
— =1
? 0z
then one cannot repeat this argument. The equation:

dZ-p'dX-gdy =0
will only be verified if one has:
(dfj of of
+r—+s— =0

dx
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df of of _
— |[+s—+t— =0.
dy Jdp g

This system is equivalent to a second-order equatioratimits a first-order intermediate
integral:
f, Y,z p, d, A) =4,

whereA and 4 denote two arbitrary constants. As before, this tesurl be anticipated
with no difficulty.

It can, moreover, happen that two of the equationkeofransformation contain only
the coordinate®’, vy, Z, p', g, or that one has one equation that depends uporxogly
Z, P, g and another one that depends upon @nly z p, g, but these special cases hold
no interest for the theory of second-order equations.



PART TWO

12.1n this second part, we shall study the Backlund transftons of the first kind,
or (B;) transformations, according to the terminology tha& have adopted; i.e., the
Backlund transformations that make the integrals loé transformed equations
correspond in a one-to-one way.

The fundamental results are provided by the use ofdimulas that were proved
above (no. 9), which | rapidly recall. All of the sais employed have the same
significance as before.

Let there be given a second-order equation:

(27) r+Fxy,zpgst)=0,
which admits two systems of characteristiCy &nd (') that are defined by the equations:

© dy=m dx
(N dy =z dx

We assume thah andy have different values, and we do not concern ourseludsting
special case in which the two systems of charaadterisbincide.
As in the paragraph that was already cited, we asshamehe characteristics of the
system C) are of first order and that thB,} transformation is deduced from that system.
The transformed equation:

(28) r+rFx,y,z,p,q,s,t)=0

likewise admits two systems of characteristics: The e viz., the systentC(), which
corresponds toQ) — satisfies the equations:

dy =nt dX,
while the other one — viz., the systel)( which corresponds td ) — satisfies:
dy =y dX.

We have seen that,, , + /' p,,, depends upon onlyy, z p,q, ..., P11, Pon , While
the derivatives ot of ordern + 1 appear in the expression fof , +nid, , nbeing an

arbitrary whole number that is greater than two. Westhave the means to distinguish
the two systems of characteristics, which allows usa&e a very important remark.

It is quite obvious that, conversely, we can express z p, q, ..., Pin-1, Pon @S
functions ofx', y', Z, p', q, ..., P, Pon... @nd by replacing, y, z, and the derivatives of

z up to ordem in the first of equations (26) with their expressionfuastions ofx, y', Z,
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and the derivatives &, one sees tha , + m P+ depends upon only the derivatives of
Z of order at mosh + 1. Consequently, relative to equation (28), B¢ fransformation
considered is deduced from the system of character{§tisi.e., from the system that
does not correspond to the systed), (which is deduced from the transformation that
relates to equation (27).

We have seen (no. 10) that a famiy Of integrals of (27) that has a contact of order
n along a characteristic of the syste@) (ill correspond to a family of integrals of (28)
that have a contact of order at leastt all points of a characteristic a@'j. | say that
along that characteristic the integrals of (28) considlérave a contact ofi ¢ 1)" order.
Indeed, if the contact is of lower order then since tila@sformation is, relative to
equation (28), deduced not from the syst&m, (but from systemi{’), one confirms that
by applying a result of the paragraph cited above the sfmyneling integrals of (27) —
I.e., the integralsd) — will admit a contact of order less thamalong the characteristics
considered, which is contrary to the hypothesis.

13.If we appeal to the result that we just obtained twershall show that if one is
given a second-order, partial differential equation (B&ntthere exist only one equation
that corresponds to it underBy) transformation that is deduced from the syst€jm @r,
more precisely, that all of the equations that corneggo it in this manner are deduced
from one of them by a contact transformation.

Indeed, let equation (28), which corresponds to (27) bB;p ttansformation, be
deduced from@). Suppose that there exists another equation:

(29) LIJ(X", yu, Z", pn, qn, rn, S", t") — 0

that enjoys the same property. L&' and (") be two systems of characteristics of
(29), where C") corresponds toQ) and (") corresponds td(). From what was proved
in Part One (no. 7), equations (28) and (29) can be convertedanh other by either a
Backlund transformation or a contact transformatiowe shall see that the second
hypothesis is the only admissible one. The transfoomahat establishes a uniform
correspondence between the integrals of (27) and tho&9pis deduced, on the one
hand, from the systenCj, and on the other hand, from the systéif),(which would
result from the proposition that was made the objedhefpreceding paragraph, while
the transformation that permits one to pass from (2728 is deduced from the system
(C) and the systent ().

If there exists a Backlund transformation that charemsation (28) into equation
(29) then it will be aB;) transformation that is deduced from the systéf &nd the
system [”). This cannot happen, since these two systems of ¢bastics correspond
to each other, so equations (28) and (29) are identical, upotdacttransformation.

The preceding proof can give rise to an objection: Supplose (28) and (29)
correspond under a Backlund transformation. It is rasolately obvious that this
transformation, which can only be By) transformation, is deduced from the systef} (
and ("). It is very easy to eliminate this difficulty by rarking that if that
transformation is, for example, deduced from the sy$€ithen since equation (28) has
two systems of first-order characteristics it will #dVlonge-Ampére equation, and from
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the remark that was made at the end of no. 8, equd2@hsand (28) cannot correspond
by a Backlund transformation, which is contrary to hypsih

We shall point out an application of the precedingotém that is particularly
interesting. Imagine that equation (27) remains invanamer a certain continuous
group of contact transformationg)( We shall show that equation (28) admits a group of
holomorphic contact transformation that is isomorpbi(j.

Let (©) be a transformation of the group.( The equations that defin®) permit us
to express, Y, z p, g as functions of the new variabl¥sY, Z, P, Q. Upon replacing,

Y, Z, p, q with their values in the equations of the Backlundgf@amation, one obtains a
new (B;) transformation that leads to equation (28)4¢x’, y') and to the transform of
(27) under ©) for Z(X, Y); i.e., to equation (27) itself. From the theorent thas proved

at the beginning of this paragraph, one can pass fromrifp@al (B;) transformation to
the new transformation by a transformatidi) ¢hat naturally does not change equation
(28). When the parameters that the equations that dbérgroup §) depend upon vary,
one obtains a continuous family of transformatios) (that corresponds to the
transformations ofg) in the manner that was just explained and generate®mdbrphic
group that is isomorphic t@). The stated proposition is thus proved.

It is important to remark that the argument does not applyan isolated
transformation or to a discontinuous group of contaatstoamations that leave the
proposed equation invariart).( To fix ideas, consider the equation that one encesinte
in the theory of surfaces of constant total curvature:

(30) s=sinz

If one takeso to be a new unknown, with the independent variablegylq@ieserved, then
one obtains the equation:

(31) s =7 \1-q>

that corresponds to the preceding one B atfansformation whose equations are:
(32) Z =p, g =sinz

Equation (30) does not change if one adds anrarpimultiple of 27to z but no
transformation of (31) corresponds to these transdbions. No matter what the
determination o, one finds the same value Br The transformation (32) thus remains
invariant under a discontinuous group of transfaioms (T), while it is impossible that
this is true for a continuous group. We have geen 1) that the transformation will not
be of the first kind. Moreover, one knows thatnfrohe standpoint of the theory that
concerns us only the continuous groups of contansformations are important.

() In a Note that was inserted into tBemptes rendug. CXXXII, pp. 305), | stated the proposition
that was just proved without making these restrictioms)se necessity | recognized only later on.
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14. Suppose that one of the two transformed equations —&on@®, equation (28) —
is such that one of its systems of characteristicsits an invariant of order — i.e., that
there exists a functiow ofx',y, 7, ..., p,,.,, P,, such that the equation:

(33) @ =k

wherek denotes an arbitrary constant, possesses an infintudeegrals that depend
upon an infinitude of arbitrary constants that simultais§o satisfy equation (28). By
replacing all of the quantities that appeardnwith their expressions as functionsx¥,
z, and the derivatives of one finds a functiorw that is an invariant for one of the
systems of characteristics of (27), because all ofrtesforms of the integrals common
to (27) and (33) satisfy both (27) and:

o=k

Conversely, if one considers the invariajtwhich belongs to one of the systems of
characteristics of (27) then one sees that theresearstinvariant for the corresponding
system of characteristics of (28), and that invariant @aly bed, since the integrals
correspond uniformly. In the last Part, we shall comfihat if the integrals correspond
according to a more complicated law then things happen @onapletely different
manner.

If we are given an invariant then we propose to findtwima order is for the invariant
that it corresponds to under B,) transformation, as was just explained. We first
consider the invariants of order higher than two.

Suppose that there exists such an invar@nthat belongs to the syster@') of
characteristics of (28)a is a function oK', y', Z, ..., p,,, + &' p,,, and upon replacing

these quantities with their expressions, one finds, flmarresults of no. 9, that does
not depend upon derivatives 0bf order higher than. On the contrary, if the invariant
considered belongs to the systdm) then it corresponds to an invariant of orde¥ 1,
since p,,,, + M d,, depends upon derivatives 0bf ordern + 1.

One finds some entirely similar results whens equal to two. A second-order
invariant of the systent)) satisfies the equation:

,UIE_E: 0
os ot

A direct calculation permits one to verify that iereplacex’, vy, Z, p', , s, t' in the
preceding equation with their values that were found inpragraph cited above then
one obtains a function of onky, z p, g, t, since the derivative alff with respect t@; »
+ m [ 3is zero. The order of the invariant that correspoodd tloes not exceed two. If
the second-order invariant that we consider belongsetsystemI(’) then it corresponds
to a third-order invariant. One verifies quite easittiine third-order derivatives cannot
be omitted.

It is quite obvious that one will arrive at identicakults by first considering the
invariants of the system of characteristics (27) anditgpfor the order of the invariants
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of the corresponding systems of characteristics of (E8)ally, one sees thatnfdenotes
an arbitrary number that is greater than or equal to hea the B;) transformation is
deduced from an invariant of orderof the system of characteristidS) (of the original
equation, so that transformation will make an invar@nbrdern + 1 correspond to the
system of characteristic€'() of the transformed equation, while an invariant of ordef
the systemI{) will correspond to an invariant of order- 1 of the systenT().

One proves in the same fashion that an equation of artteat forms a system in
involution with (27) will correspond to an equation of order 1 orn + 1 will form a
system in involution with (28).

It remains to examine the case where there existstaofder invariant for one of the
systems of characteristics of (28). Suppose, to fix jdbasone has performed a contact
transformation such that this invariantyis It suffices to refer to the expression yon
order to see that, in general, the corresponding an&is of second order, but we shall
show that in certain cases that invariant is of dinty order.

If that is true then one of the equations of g {ransformation reduces to:

y =faxy,z p, 0),

and consequently, after a suitable transformatipnit{fbecomes:

y =Y.

Having said this, we write down the equations of the Backtvansformation:

y =fx,y,z p, q; 2), y =y,
P=odX V¥, 2pQq 2), qd=UuxY.z2pq 2),

so since that transformation isBy) transformation, one has:

1
¢:6_f’
0z

(&) 5 o

(34) dp dq
)% 5

dp dq
oy oy
) % 5

S gls

QL o
“S><|

o
x

In addition, equation (27) does not contgirsincey is an invariant, SO one sees
immediately thaf cannot depend upap and equations (34) show that the same is true
for ¢ and ¢[we exclude the case where equation (27) reducesf tadx = 0]. The
equations that define the transformation can thus beewrit
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X=f(xy,zp2, Y=y
I 1 I
(35) P=a qd=¢(xVyzp 2.
0z

If f does not depend upan then one can no longer argue as we just did: The
transformation must then belong to the special addssnsformations that was pointed
out by Goursat, and the equations that satisfy theidgfomes will be:

J

(35) {{=nyzpd, y=y |
Z=f(x¥%zpad pP=dxyzpoy

Upon proceeding as above, one finds tbatloes not contairg’ and that the
determinant:

dg) 99 09
(dxj dp dq
dw) 0w dw
() 5 5
dg) dg dg
(&) % 5

must be zero. Transformations such as’(86) not differ from transformations as in
(35), so one easily perceives that one passes from otiee tother by replacing the
primed variables with the ones that are not, and conyersel

Upon operating on equations (3%) the way that we explained (no. 4 and 5), one
finds thatz satisfies a Monge-Ampére equation in whicdoes not appear, whilg
satisfies an equation of the following form:

s+q G(x,y,Z,p,q)+K(X,y,z,p,r)=0.

15.We just confirmed that in certain casesBa) (transformation can make a first-
order invariant correspond to an invariant of the sarderorWe shall see that the same
thing is always true for the equations of the same faha ones that we obtained. In
order to this, we shall show that one can always (83)l transformations that correspond
to these equations by algebraic calculations and by tbgration of first-order, partial
differential equations in just one unknown functidvioreover, it will suffice to find one
of these transformations, since all of the other cemes deduced from it by contact
transformations.

Consider a Monge-Ampere equation such that one of #®ms¢ of characteristics
admits the invariany:

r+ms+M=0;

this equation is derived from the transformation thdeifned by the equations:
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X =@(x Y,z p ), y =Y,
ow Jw
Top oq
Z =axy,zp.q), p=—P 2 =gy zp0q),
96 _09
op dq
whereg and ware two integrals of:
of of of of
36 X)=—+p——-(M+Am—+A1— =0,
(36) () Py ( )ap 34

in which A denotes an arbitrary functionxfy, z p, q (no. 8).

In order for the transformation considered to 8 transformation, it is necessary
thatg likewise satisfy (36). This condition is easilypeessed by remarking thatfifs a
solution of (36) then the derivative X{f) with respect to an arbitrary variable is zerb. |
results from this remark that one has:

[\ o oM +Am) of _oA o
op 0z op 0dp 0pdq

%[ 9F |2 9(M +Am) of 04 of
aq oqg dp 0qdq

Upon developing the calculations, one finds thagatisfies (36) if¢ and w are two
distinct integrals of the system:

T rlpe+mH) - M=y a2 - py &=,
(37) 0x ap 0q

I ErmHy ey =g,

0z ap 0q

whereH denotes a function of y, z, p, g, and where one has set, to abbreviate:

om dm om oM oM
mé=—+p—-M—+m—-——.
X 0z ap op 0¢

The system (37) must be complete. This conditietermines the two functions
and A. Upon combining the two equations that expressidiea that the system enjoys
this property, one sees thats defined by the equality:

2
+ 55—
0z ap op 0q IRt

A(Om_pom, 0 0&)_0&, 08\ 0& . OM M
0x 0z op op 0z
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and the fact that must verify the equation:

_+pa_+(M+)|m)—p—)la—+(E+mH) 6p + H—+— =0.

oH oH oH oH _ 04 0A 04
0x 0q 0z

If ¢ and w are calculated in this way then it results from tlevelopments of the
preceding paragraph that the equation that definesof the form:

S+q GKX,Y,Z,p, 1" +KX,y,Z,p,r=0

One immediately sees that, conversely, when ongiven such an equation, the
transformation:

x=h(X,y,Z,p; 2, y=Yy,

_ 1 =k(X,Y,Z,p;2)

p—%, q_ v Yo apa
0z

makes it correspond to a Monge-Ampere equatiomeftype indicated ih sandk are
determined by the two equations:

6h ,0h
—G| X,Y, 2, LCL |
o7 op Yoz b=
op’
oh pah
oh , oh_ oh X o7
+k—=—K Z,
oy 9z op Y2, B oh
op

Gomes Teixeira has studied some transformaticatsatte analogous to the ones that
we just considered, but limited to the special cabere the first two equations that
define the transformation reduce to:

X =X, Yy =V.

In order for this to be possible, it is necessaat the coefficient ofl in the equation that
determines this quantity be zero, so one findslaioa betweerm andM. As for the

equation that determines, G is then independent af. Conversely, ifG does not
contain r' then that equation is reducible to a Monge-Ampeéguation by a
transformation of Gomes Teixiera.
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In order to solve the problem that we studied in this papygrit is not necessary to
completely integrate the equation that gi¥gsbut it suffices to determine a particular
integral.

In the proposed Monge-Ampére equation, we have supposetth¢hatefficient of
was unity in order to simplify the calculations a dftbut that hypothesis is not essential.
We shall not develop the calculations in the case efcaiation of the form:

s+9(xy,zpa) =0,

since one only has to operate as one does in the geasml Here, one can deduce a
(B,) transformation from the two systems of charactesst In particular, one confirms
that in order for a transformation of Gomes Teixeaabe applicable to the preceding
equation, it is necessary and sufficient dpae linear with respect {@or g.

16. One of the systems of characteristics of the Mohggére equation:
r+ms+M=0

admits the first-order invariant. We shall now consider the case where the same
systems of characteristics likewise admits a second-arndariant. From what we
proved above (no. 14), one of the systems of charsiitsrof the transformed equation
will possess two first-order invariants, one of whichlvie y'. This transformed
equation will be integrable by the Monge method, and alorih being linear with
respect te andd’, it will necessarily be of the following form:

(38) d%[q' AX. Y. Z.p) + oX, Y, 2, )] = 0.

We shall first show that the transformation thatnies one to pass from the original
Monge-Ampére equation to equation (38) differs from the Taik@nsformation only by
transformations®) and {"). Define a transformatio) by the equations:

X =4X,y,z,p)

Y =Y,

Z' ={Xx,y,Z,p),
0d

U

ap
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74
L 9¢ _0p 05
op'

in which ¢ satisfies the equation:

p%—p%[p,a:o,
Z

and{is an integral of the complete system:

[N
06 _ax PPos _
-2 0’
ox’ o ap
op'
0{
6 _o7 P05 _,
0z 0{ op '
op'
Equation (38) then becomes:
d
38) —[Q +O(X,Y,Z,P)] =
(38) ™ [Q +O( )]

and no longer contain®. Under these conditions, th&;] transformation that will
change equation (38)nto the proposed equation, or at least into a equahan is
identical to the proposed one up to a contact transtarmawill be a Teixeira
transformation that one can write down by calling the inddeet variables that do not
changex, y, instead oX',Y', namely:

00  _00
z=P, —+2z—=0.
ar paP oL

z is defined by a Monge-Ampere equation, one of whose regstaf characteristics
possesses a first-order invariant and a second-ordetfanyaand when the functio®
takes on all of the possible forms, one obtains athefMonge-Ampere equations that
enjoy that property.



PART THREE

17.When two second-order, partial differential equaticans loe converted into each
other by a Backlund transformation of the first kind, ariten one can, consequently,
being given the general integral of one of the equaticaisulate the general integral of
the other one with no integration, it is quite obvioust tii an equation has an explicit
general integral then the same is true for the other dtore generally, if one of the two
equations admits a general integral of the first kind tihenother one enjoys the same
property. When one considers th&)(and Bs) transformations, one cannot see how
things behave as easily. Here, we consider only the @jazase. We only show that if a
Backlund transformation makes each integral of one @gqudk) correspond to an
infinitude of integrals of an equatio@’), and if () admits an explicit general integral
then the equatiore() is of the first kind.

In order to do this, we prove the following propositfidrom which the stated
property will ensue in an obvious way.

If the total differential equation:

(39) du=d(a, BA A, ...,A" BB, .. B" uda
+fa, BA A, ..., A" BB, .. B" uds

whereA denotes a function af andB denotes a function ¢f, is completely integrable
then for any functioné andB one can give this equation the following form:

(40) R(a’ ﬁ’ A’ A” ’A(m)a Bl B’, saay B(n), u)

=Jo(@, A A, .., AY) da+| w5 B B, ....B") dB

Goursat has already proved this theorem in the caseswhand ¢ do not contairu
(*). We shall study the general case.
By hypothesis, the equality:

(41) 99,005, .+ 99 gow 99,
93 B 8™ au

Y O sy Oy O
da oA IA™ u

which expresses the idea that equation (39) is completedgrable, is verified
identically if one regards, A, A, ..., A™Y g B, B, ..., B™" as independent variables.

() Bulletin de la Société mathématique, t. XXV, 189econs sur l'intégration des équations aux
dérivées partielles du second ordtell, pp. 233.
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It(tr)1en results immediately thgtdoes not depend upd@{’ and ¢ does not depend upon
A,

Having said this, upon differentiating the two sides oféhaeality (41) twice with
respect toA” and twice with respect 8", one gets:

YY)
v ou ¢ ou

If neither of the two quantitieg”, ¢/’ is zero then, if one refers to a conveniently-
chosen function ofr, B, A, A, ...,A™ B, B, ...,B™™ uasN, one can write that:

04" oy N
du Ju _ du
¢" w" N

or, upon integrating:

¢ = A(m)A(a,ﬁ,A, A’, .“’A(m—l)’ B, B’, - B(n_l)’ u)
+po(a, BA A, ...,A"D B B, ..., B" )
+f(a, BAA, ..., A™ B B, ..., B™ u)N,

¢/ = B(n),U(O’,,B,A, A’, .“’A(m—l)’ B, B’, ...,B(n_l), u)
+oa, BAA, .. A" B B, ... B"Y
+o(a, BAA, .., A"V B B, ....BY u)N,

Define a new variable by the equation:

% =dv.
N

Equation (39) then becomes:

(39Y dv=[A)y(a, BA A, ....A™ B B, ... B" v)
+oo(a, BAA, ...,A™) B B, ..., B" V)
+f(a, BAA, ..., A" B B, ...,B")] da

+ B uo(a, BA A, ..., A" B B, ..., B )
+oo(a, BAA, ..., A™ B B, .., B" v
+9(a, BAA, ..., A™ B B, ....BM]d3

in which Ao, o, o, o are functions whose explicit calculation presentgifficulty. |
will not indicate their expressions, any more tharséhof the new functions that we will
consider in the course of that proof. If will suffifoe us to know what the quantities are
that appear in each of these functions, which areateticbetween parentheses.

Upon differentiating the integrability condition fdret preceding equation twice with
respect tA™ and once with respect B”, one finds:
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Ok r g
0B"™ v

Sincef” is non-zero, one deduces from this thats linear with respect tg, so the same
must naturally be true fot,, and one can write:

dv = v A"«(a, B A A, ...,A™0 B B, ..., B"Y)
+oo(a, BAA, ...,A™ B B, ..., B" V)
+fo(a, BA A, ...,A" BB, ...,B"] da

+vBYda, BAA, ..., A"V B B, .., B"™)
+ao(a, BAA, ..., A™ B B, .. B v
+ao(a, BAA, ..., A™ B B, .. BM] da.

This equation is completely integrable. Upon differemgp both sides of the
equality that expresses this property with respeffoandB", it becomes:

dw . of , dw . 9g,

0 —_
(42) \Y; PTG + 35D +wg, =

\Y; AT + SA™T +af,.

In order for this condition to be verified, it is nesary that one first have:

Jw _ 0w
OB T gAm D’

and ifM denotes a suitably-chosen function®f3, A, A, ...,A™ B, B, ...,B™ Y then
one will thus have:

Y 1 M
RARVIFYCER SR VIFECER

I.e., equation (39)s written:

v oM m1) _ V oM

VTGl M oB™

dB™"™ = (o +fo) da + (co + go) A3

Upon setting:

v =W
N 1y
M

one finds, after a simple calculation, that:

dw = [oa, BAA, ...,A™Y B B, ..., B w)
+fi(a, BA A, ...,A" BB, ...,B"] da
+[oa, BA A, ...,A™ B B, ..., B" w)
+oui(a, BAA, ...,A™ B B, ...,B"Y v)] dB
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The integrability condition for this new equation, whdifferentiated twice with
respect tA™| gives:
df’ _ ag, .,
—4 1.

dB " ow,

o1 andp, are thus linear with respect wa, and we can replace the equation that we just
wrote with the following one:

dwm = [Wé(a, BAA, ..., A"V BB, .. B")
+hi(a, BAN, ...,A™ B B, ...,B" )] da
+ [wi(a, BA A, ..., A™D B B, ..., B"™)
+ki(a, BAA, ...,A"V B B, ...,B"Y V)] dg

which is also completely integrable. Omlyand its derivatives up to order— 1 appear

in 6 and 1, while only B and its derivatives up to order— 1 appear, angy is a
function ofu, @, B A, A, ...,A™ B B, ...,B™Y. In a more general manner, suppose
that one has converted the integration of the propogedaltien into the integration of an
equation such as:

(43) dw= [Wéa(a, BAA, .. A" BB, .. B")
+ h(a,BAA,....A" BB, ..B") da
+ [wxi(a, BAA, ....,A™ BB, .. B")
+ k(a, BAA, ..., A" BB, ..., BM ds

in which i denotes an integerd and x; do not depend upon derivatives Adfof order
higher tharm —i or derivatives oB of order higher than —i. w; is expressed with the
aid ofa, B A A, ...,A™D B B, ..., B™Y. | say that one can replace equation (43)
with an equation of a similar form, but in whicks replaced by + 1.

By hypothesis, (43) is completely integrable. Upon oBifitiating the integrability
condition twice with respect t&™, it becomes:

an .,
ap - X
One concludes from this that does not contain derivatives Bfof order greater than or

equal ton —i, because at least one of the derivatives of order hibhen —i will figure
in xi, which we did not assume. Moreovgrijs linear with respect t8" ™. Set:

a=A" ¢+
x=B"Vn+e.
Equation (43) becomes:

(44) dw =w EdA™ D +w 7 dB™ + (Cw + 77) dar + (6w + ki) B
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In addition, upon writing down the integrability conditioone perceives immediately
that one can set:
oK oK

in whichK denotes a function of, B A A, ...,A™™ B B, ...,B™™. Zandeno

longer contain the derivatives &f"™ andB™™.
Upon operating as before — i.e., upon taking a new varialte:

Wir1 =

~|=

one finds an equation of the stated form:

dW+1 = (VV|+13+1 + hi+1) d0'+ (VV|+ i+1 + ki+1) d,B
Upon calculating the function8:1, Xi+1, hi+1, ki+1, one verifies tha#:1 and xi+1 do not
depend upon either the derivatives Afof order higher thatm — i — 1 or on the

derivatives ofB of order higher than — i —1. Upon operating in this way step-by-step
(%), one arrives at an equation:

dw= H(a BAA, .. A" BB, .. B")da
H(a, BAA, .. ,A"V BB, ..,B")dg

in whichw denotes a function af, B, A, A, ...,A™ B, B, ...,B"Y u.
From the result of Goursat, this latter equation apui into the form:

wW=Ri(a, BAA, .., A™D BB, . B") +[da A A, ... A™) da

+JweB B, ...B"d3

If one replacesv with its expression then one finds that equation (38)icdeed be
put into the form (40); this is the result that we shedive.

We have neglected the case where one of the quagitie® is zero. It is very easy
to see that if¢', for example, is zero then equation (39) can be ctedento an
analogous equation in which omlyis replaced witim — 1. Let:

(45) du= g da+ B g+ ¢) dB

be the equation that would like to study. We write ithie following manner:

() The consideration of the integrability condition iraties the modifications which are important,
moreover- that one must make to the preceding arguments when eithesf the numbensi—i, n —iis
zero or both of them are.
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(45) du= ¢ da+ gpdB" Y+ g4 dB

One can find two functiongandrof a, B, A, ...,A™%, B, ..., B™% such that one has:

_ ox oy _
du- ¢pdB™Y = (—du+—dB‘””j;
U= " ou Y apr D

i.e., such that one has:

du— godB™ = ﬂ{d}(—(a—)(+a—)(,6(+..-+ ox A<m>j dr

da 0A oA™Y
- a_X+a_XB'+,,,+ a)(_ B(n—l) dﬁ ,
0f 0B 9B"2

and if we takey to be the new variable then we can replace equat®hwith:
dy=Ada+ udg

in which A, u are functions ofr, B A, A, ...,A™ B, B, ..., B""), x. If the product

9°A 0%u
a(A(m))Z a(B(n—l))Z
apply the reduction process that we first presented

It is not without interest to remark that the meag proposition is not only useful for
the theory of Backlund transformations, but alsotimer question in the theory of partial
differential equations. For example, it can inddwghpen that the application of the
Darboux method leads to the integration of an egoatuch as (39) that one can simplify
in the manner that we just explained.

We make another remark: Imagine that an equahanis linear irr, s, t admits an
explicit general integral that is expressed with #d of two auxiliary variableg, £ and
a functionA of a and its derivatives up to ordeyor, in a more precise manner, tkay,
z p, g are expressed as functions of these quantijesIf a Backlund transformation
makes each integral of)(correspond to an infinitude of integrals of amstbquation £)
then one must calculate the quantity that we halledt (no. 2), and one sees th#gf™"
andB™?" enter into equation (3)inearly. When one has simplified the expressa
A™D andB™Y will therefore no longer enter in. It has beenw@nient for us to assume
that () is an equation that is linear m s, t, but it immediately emerges that i)(
contains a term irt — & then this proposition is still true.

IS zero then one continues in the same manneepéexhat one will

18. We have shown (no. 14) that if a Backlund transftion makes an integral of an
equation (27) correspond to just one integral oegunation (28) then each invariant of
one of the characteristic systems of (28) will espond to an invariant of one of the
characteristic systems of (27). An invariant Gf)(of ordern will correspond to an

() There is no reason to consider the expressions §oiz separately, since for us a partial differential
equation is defined only up to a contact transformation.
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invariant of C) order at mosh, and an invariant off() of ordern will correspond to an
invariant of () of ordern + 1. The arguments that led to these results dicsuopose
that the transformation considered isBa) (transformation. They still persist when an
integral of (28) corresponds ¢¢' integrals of (27).

We shall now assume that a Backlund transformatiakes each integral of the
Monge-Ampére equation:
(46) r£M+)s+mut+M=0

correspond to an infinitude of integrals of the equation:
47) r+G6ixx,y,z,p,d,s,t)=0,

and investigate what the system of characteristics(4df) becomes under this
transformation. The results that we shall proveraneh less precise than the ones that
were obtained in the study dBi) transformations. | shall at least attempt to point
what sort of cases might present themselves.

If one is given an arbitrary functidv of X, y', Z, ..., p,,;, Py, then upon replacing

these quantities by their values (no. 3), one finds aicefinctionF of x, y, z, ..., pin-1,
Pon, Z. It is very easy to see that if the transformationsidered is of the third kind and
if nis equal to at most 2 then this latter function depend=ngally on derivatives of
ordern. Indeed, if things were otherwise then one would haedation of the form:

F'X,¥.Z, ..., Ploar Pon) =F(X Y, 2 ..., Pin-1, Pon, Z),

and upon replacing, v, z, ..., Pin-1, Pon, Z In F with their values as functions afx, y/,
Z, and the derivatives af, one would find a relation such as:

F'X\. Y. Z, oo Pipss Pon) FiX0 Y 20 s Py Ponenr D

It is impossible thaF; might containz, since an integral of (47) will correspond to
only one integral of (46) that is determined by the pregedguation and the equations
of the Backlund transformation, which will therefanet be of the third kind. On the
other hand, ifF; does not depend upathen one will have a relation betweény', Z,
and the derivatives af whose first index is 0 or 1, which is likewise impossilsiace
equation (47) has been solved far We have seen (no. 9) that if we have a Backlund
transformation of the second kind then it is possibiat ta function such aB’ is
expressed as a function of omlyy, z, and the derivatives afup to orden — 1.

Having made that remark, first suppose that there existquation:

(48) Fi}, ¥, Z, s P2y Popa) =0,

that forms a system in involution with (47). By repharx’, y', and the derivatives af
in the left-hand side of that equation with their valugduanctions ofz, x, y, z, and the
derivatives ofz, one finds an equation:
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(49) FO(X, Y,Z, ..., P1n-1, Pons Z') =0

that is verified if one replaces, vy, z ..., Pin-1, Pon, Z With the expressions that
correspond to two integrals that are transforms of ettwdr, whilez satisfies (48).

If Fo does not depend upahthen equation (49) obviously corresponds to equation
(48), and forms a system in involution with (46). Oncbetrary, if the variable does
enter intoF, then one appends to equation (49) its derivative with cespeone of the
two independent variablesy-for example — which is written:

dF, _oF, . oF, oF, oF, oF
= + +. 4 + — % +(C+as+tpH—2
dy ay aZ pl,n a q'n_l pO,n+1a Fb'n ( ﬁb a 2

:O,

in which we preserve the notations that were engaddyefore (no. 1).

We may eliminatez from equation (49) and the derived equation, amatwhen
remains is an equation af ¢ 1)" order that forms a system in involution with (46)e
can summarize by saying that an equation of onddvat forms a system in involution
with (47) will correspond to an equation of ordérnaost equal tn + 1 that forms a
system in involution with (46).

Now, suppose that one of the systems of charatiterof (47) admits an invariagh
of n" order, i.e., that no matter what the constéis, the equation:

(50) X, Y, Z, .oy Prpss Pon) =K

will admit an infinitude of integrals that dependam an infinitude of arbitrary constants
that simultaneously satisfy (47). We operate agustdid in the study of the preceding
question. Replac,y, 7, ..., p, ., By, With their values. We find a functishy of Z,

XY, Z ..., PLn-1, Pon SUch that the equation:

(51) Po(X, ¥, Z ..., P11, Pony Z) =K

is verified by corresponding integrals of equat{@g) and (47), on the condition th#t
must likewise satisfy equation (50).

As we did just now, one must distinguish severdes. If the left-hand side of
equation (51) does not depend ugbthen one has an invariant @? order or less that
corresponds to the invariarP; . On the contrary, iiZ enters into®, then one
differentiates equation (51) with respeciyf@nd it becomes:

do, _
dy

(52) 0.

It can happen that the functia®, / dy does not depend upah Equation (52) then
forms a system in involution with (46). No matténat the value oK, all of the integrals
that are common to equations (47) and (50) correbpo integrals that simultaneously
satisfy equations (46) and (52). Finallydé®, / dy containsZ then one can deduce that
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quantity from equation (52) by substitutingdya, and one will find a functiol, of X, v,
Z ..., Pin Pon+1 SUCh that the equation:
Yo=K

forms a system in involution with (46) for all valueskof

By definition, if there exists an invariant of orderfor one of the characteristic
systems of (47) then the corresponding system of desistecs of (46) admits an
invariant of order less than or equaite 1, or there exists a unique equation of order at
mostn + 1 that forms a system in involution with (46).

We just found an upper bound on the order of the invanarthe equation that
corresponds to the known invariai . The remark that we made at the beginning of
this paragraph permits us to give some indications orotherlbound. Suppose that the
transformation considered is @3] transformation:®, depends essentially on the
derivatives oz of ordern. ®; corresponds to either an invariant of order n + 1 or to
a unique equation of order+ 1. If the transformation that we are considers@ B,)
transformation, and ifby contains derivatives of order, then we only need to repeat
what we just said, but it can happen that these derivalivesot appear i®y,. When
this is true, the invariarb, corresponds to either an invariant of order 1 orn or to an
equation of orden that forms a system in involution with (46).

One easily sees that there can be an exceptiois ifqual to one or two, and only in
this case. Indeed, ®, depends upon the variablgsy, z p, q, Z, and not on the
derivatives ok of higher order then one has:

= +0—2+s—2+t—2+(C+ast+tf) =0.

dy ay 0z dp aq 0

do, _ 00, 9®, P,  0d o,
2

It is possible that upon reducing this one findgquation that is independentsdndt.

We shall now examine the case in which one ofsysems of characteristics of
equations (47) admits two distinct invariants ofiesrm andn (m < n). Let u; be the
invariant of ordemm and letv; be the invariant of order. If one is given an arbitrary
integral of equation (47) then there will exist andtion f such that this integral
simultaneously satisfies the equation:

(53) V1= f(U]_).

In addition, if one is given an equation of theqa@ing form and any sort of functidn
then this equation admits an infinitude of integrdtat depend upon an infinitude of
arbitrary constants that likewise satisfy equa(in). By proceeding as we did before,
we make each equation such as (53) correspondequation of orden + 1 or less that
forms a system in involution with (46). Moreovémne is given an arbitrary integral of
(46) then there exists an equation of order at mostl that admits that integral and
which forms a system in involution with (46). Imde consider an integral of (47) that
corresponds to the given integral of (46). We damose the functiohin such a way that
equation (53) possesses that integral, and uposftraming that equation one finds an
equation of order less than or equahte 1 that admits, at the same time as the given
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integral, an infinitude of integrals that depend upon aniinfie of arbitrary constants
and satisfy (46). It results from this that one of #ystems of characteristics of (46)
possesses two invariant of order at most equahtd.

At the basis of the preceding, we have simply proved ttmatinvariants of the
systems of characteristics of equation (47) can be ftnaned in several different
manners. It is not pointless to indicate some eXasnfhat show that these different
kinds of transformations can actually present themselves

Consider the very simple equation:

(54) qgr-ps+fxyzp,q)=0.

One of the systems of characteristiCy @dmits the first-order invariagtand the other
one C') admits the invariangZ. If one preserves the independent variables then the
transformation:

(55) z=p, gp-zatfxy,zq)=0

replaces equation (54) with another Monge-Ampére equatidnone imagines that
equations (55) are solved fprandq':

(55) p=z q =¥x Y,z p Q)
then equationd), which defineg, is identical to the integrability condition of:
(56) dZ -z dx-¢x Y,z p, q) dy=0.
The invarianty, which belongs to the systeni’), likewise belongs to the

corresponding system of characteristicy ¢f (¢), but the invarianZ of the system@')
corresponds to the equation:

Ux Y,z p.q) =0,

z=0,

or, if one prefers, the equation:

which forms a system in involution witl)(
Now, consider the equation:
(57) rr qr _ Sr pr = pr3 eX

The system of characteristidS)(admits the invariar® and the second-order invariant:

2rl + pl
13 '

p

1=

Consequently, it admits a sequence of invariahtsdz, d(%j/ dZ, ... When one

applies the transformation (55), the invarigntvill correspond to a unique equation, but
the invariant will correspond to an invariant that is of firgder. Indeed, equation (56)
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shows thap' andr’' are equal t@ andp, respectively. Moreoved! / dZ and all of the
invariants that follow correspond to invariants. Theosel system of characteristics
admits a first-order invariant, a second-order one,sEndn. The transformation (55)
makes them correspond to invariants of the same order.

We have considered onl\B4) transformations, but it is very easy to finBs)
transformations that transform the invariants as werdesd in the general theory.
Imagine that the functiohin equation (54) does not depend upgpme., that equation
(54) remains invariant under a translation that is paradl€y, or furthermore that the
equation admits an infinitesimal contact transfornmaiidose characteristic function is
g. We have already explained that there exists a Monggefarequationg) that is the
transform of (54), such that the equations of the toainsdtion do not contaig, which
corresponds tog by a Bs) transformation. In particular, one finds that orfetree
systems of characteristics &) admits a first-order invariant that is the transfayhz
and corresponds to the unique equatier.

It is, moreover, important to make the following rekadn general, the systeni’
admits no invariant. Meanwhile, the systelm) (@dmits one that ig. Consequently,
when one studies a Backlund transformation that isan@t) transformation, one is not
assured of finding all of the invariants of a system ofrattaristics of one of the
equations when one has only looked for the invariants @ratthe transforms of the
invariants of the corresponding systems of charadterist the second equation.

19. 1 conclude this paper with the study of an interestingkRéd transformation').
| have already recalled the results that were nbthby Lie, Backlund, and Darboux in
the study of surfaces of constant curvature. A systemvafirst-order elements(y, z,

p, q), X,VY, Z, p, d) admits four invariants relative to the group of motiamspace.
Upon equating these invariants to constants, one obtdies etuations of the
transformation that was studied by Darboux that is aphptiehe surfaces that are parallel
to the surfaces of constant total curvature.

We shall show that there exists an analogous tranaf@m in non-Euclidian
geometry. For this, we employ a method that is dptsemilar to that of Darboux,
which will provide us with an occasion to recall the efggmanner by which that
geometer had proved the theorems that were found by@B#tkho. 1).

If we are given a quadri&), which we call thdundamental quadricand which we
suppose has a reduced equation of the simple form:

X+ +Z+1=0,

then by equating the constants of the four invariants gétes of two elementx(y, z,
p, 9, X,V, Z, @, q) relative to the group of projective transformationst tleave the
quadric § invariant, we find a system of four equations:

() Bulletin des Sciences mathématiques, t. XXIV, pp. 284; 1900.
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_ HX+W+2HH 2
Fl 2 2 =k
[X>+ Y+ Z+1[ X*+ y°+ 2°+]]
- [p(x—X)+c(y—y)—(sz 7
o e A ane L A B
F = [P(X-X+d(y-y-(2- B° .
T+ ZH[ PP+ GPH( pR+ by B ’
E - [P + o +(px+ ay- 3( pi+ Gy y+1F° 2
PP+ H(pxt gy P B+ G+ P dy )2+

which defines the transformation that shall study, anghichk, m, n, | denote constants.
Upon differentiating the preceding system, one finds:

OII:'d +d—de+(dFj dx+ dE dy db+aF d=0 (=123 4).
dx dy dx dy 6 b 0 Qg

If one solves the preceding equations with respedptaddq, dx, dy then if one lets
H, K, L, M, N denote certain functions gfy, z, p, q one gets:

Hdp =K dx +L dy,
Hdd =M dx +N dy,

and the elementx'(y, Z, p', ') generate a surface if one has:
L=M.

One can see that in the particular case that weoecapied with the preceding
condition reduces to a Monge-Ampére equation that detesnine However, the
calculation will be somewhat lengthy, and one would prefe proceed otherwise.
Consider the elemert=y =z=p=q = 0. Upon performing the calculations that we just
indicated, one finds that the valuesrps, t that correspond to that element must satisfy
the equation:

Q- =1Art—) -l +km)(r +t) + 1 —n? —1>=0.
The group considered admits two second-order, diffetemtariants:

[X*+ Yy + Z+1]°

= — (- <),
[P+ +( px+ qy- 2°+]]

_ [X2+ y2+ 22+1]l/2
[p*+ 0 +( px+ qy- ¥*+1]
x{[(L + ) r — pgs+ (L +p)) X + Y +Z + 1]
—(y+02°r + 2 + q(x + p3 s —(x + pY*t},

3/2
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and if one annulg, y, z, p, q then the values of these two invariants are- €) andr +t.

On the other hand, there always exists an infinitudegapisformations of the group
considered that permit one to convert an arbitrary eteny, y, z, p, q) to the origin
element, on the condition that the poixt ¥, z2) does not belong to the fundamental
quadric. The transformation that is defined by the syg&&nthus applied to the integral
surfaces of the equation:

(59) 1=K -l +kmJ+ @ -nf-1%=0.
As for the transformed surfaces, they satisfy the tmua
(1 -t =) 1’=(ml +nk J’+ (1 —n* =13 = 0,

in whichl”andJ’are deduced frorhandJ, respectively, by accenting all of the symbols
that appear in them.

Let D denote the line perpendicular to the pdt{k,y, z) on the planep; q); i.e., the
line that passes througt and the pole of the plane with respect to the qua@®ic
Likewise, letD’' denote perpendicular to the poid (X, y', Z) on the plane, q).
Furthermore, lefA denote the line conjugate B and4’, the line conjugate t®’, and
suppose that one of the lines that meeD’, A, A’ is drawn, wheréeN andN' are the
points of intersection of that line with andD’. The points\, N' thus determined belong
to an invariable system that is defined by the two pdihtd!’, and the two planes that
pass through these points, respectively. If the pgdialescribes a surface that is tangent
to the plane f, ) then the pointN will describe a surface whose tangent plane will
contain the liné\. Indeed, lefA, B be the intersection points Bfwith (S). Suppose that
the lineD is displaced infinitely little and goes @y, so the point#, B, M, N go to Ay,

Bi1, M1, N1, and the pointéy, B will be in the planes defined ldyand the pointé, B, M,
respectively. Since the anharmonic ra##g B, M, N) is equal to the ratioAq, Bi, My,
N1), the pointN will be in the plane that passes throdghndN.

It is useless to write down the equations of the comtagsformation that permits one
to replace each first-order element by another elementyeajust explained. We only
remark that this transformation is completely analsgto the dilatation. When the
pointsM, M’ are then replaced with the poiftsandN’, resp., in equations (58))( the
constantam andn reduce to zero, since the lifg N' is the line of intersection of the
planes tangent to the surfaces that are described bypgbeds. The surfaces that are
described by the poiM, for example, satisfy the equation:

_ [p°+q*+(px+ gy- ¥*+1]° _
(60) n—<+c e+ s 20 =0

in whichc denotes a constant. The integrals of that equatie the surfaces of constant
total curvature of non-Euclidian geometry.

() We now denote the coordinates of the transformedesits by, y, z p, g, X, Y, Z, p', .
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20. It might be interesting to study the transformatiohthese surfaces in a detailed
manner, as one does in non-Euclidian geometry. Wenuatlenter into the examination
of the questions that are posed on that subject herey@ardnfine ourselves to showing
that the preceding theory is susceptible to applicationsdinary geometry.

Let o', p”denote the principal radii of curvature of a surfacéhe radius vector, and
d, the distance from the origin to the tangent plafde integrals of (60) satisfy the
relation:

,0',0”(1 +d2)2 + é(l +r2)2 — 0
This equation belongs to a type of equation that wasdenes! by Weingarten. It results

from the work of that geometer that the integrationtloé preceding equation is
equivalent to the search for the surfaces that admiirtbar element:

A7 da? +2)!2 udu dv +2)l2vd\%
c (1+u’)* ¢ I+ W) (1+2v)Y  (+ 2v)

in which A denotes an arbitrary constatt (
That linear element is convenient to the paraldoloi

2iNz=cX +V

One can always choogeandc in such a way that the preceding paraboloid isakqu
to an arbitrary paraboloid. In particular, if oge&ves c the value one then one has a
paraboloid of revolution, so equation (60) is imtdge by the Monge method. That
equation was integrated by Li&,(who studied it in a slightly different form. ©wasily
puts equation (60) into this form by supposing thdtomographic transformation has
been performed such that the fundamental quadsitHeequation:

Z=Xxy.

() WEINGARTEN, “Sur la déformation des surfaces,” AMath., XX (1895), 159. - Likewise, see
DARBOUX, Lecons sur la théorie général des surfaded/, pp. 317.
() “Beitrage zur allgemeinen Transformationstheorigipziger BerichteXLVIl (1895), 494.



