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On a quantity that is analogous to potential
and a theorem that relatesto it

By R. CLAUSIUS

Translated by D. H. Delphenich

One knows that a large part of mathematical physiceased upon the potential
theory. Since knowledge of that theory is not as wvpckesd as one might desire, |
believed that it would be useful to publish a small tseain which | presented the most
essential properties of the potential function and thenpiate

Folie, although occupied with some very important geameésearch in his own
right, and who has already published some interestindtsefas nonetheless been kind
enough to take the trouble to produce a French translafitimat treatise, and it is not
necessary to add that it was accomplished with the gteziee and propriety. Permit me
to pay homage to the name of that translator beforataidemy.

| shall take this occasion to communicate a theooethé Academy that | discovered
in my research into the mechanical theory of heat vamch pertains to the subject that |
treated in that book.

In a paper that | had the honor of communicating to tbaddmy, | stated the
following theorem:The force that acts upon heat is proportional to the absolute
temperaturg’). Since, according to my way of thinking, heat is magtbut a motion, |
have no doubt that this theorem corresponds to a geneleth in mechanics that
allows one to derive the equations of motion in the sese that the principle of the
equivalence of heat is only a special case of the plenaf the equivalence of thas
viva and mechanical work. Here is that theorem, which gdfestationary motion of an
arbitrary system of material points — i.e., to a notimwhich the positions and velocities
of the points do not always change in the same seatsegrbain within certain limits.

Let a system of material pointg m’, m", ... be given with coordinatesy, z; X', y’,
z’;x",y',Z"; ..., which are subject to forces whose componentXareZ ; X, Y, Z’;

X' Y' Z": ... Formthe sum:
2 2
(&) |
dt dt

3%

or the sum (which is known by the name oftigvivaof the system):

() Poggendorff Annalen, v. CXCI. — Journal de Liouville (2),VIll. — Théorie mécanique de la
Chaleur, translated by F. Folie, v. I, pps. 257, 261, and 324.
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>V,
2
when one denotes the velocities of the points, vy, v', ..., and further form the sum:
D =1 (Xx+ Yy+ 73,

to whose mean values | propose to give the name ofiilaé of the system (in German
virial, from the Latin wordsis for force). We will then have the theorem:

The mean vis viva of the system is equal to its virial.

If we distinguish the mean value of a quantity frosnvéiriable value by putting an
overbar on the formula that represents the variabletgyahen our theorem can be
expressed by the following equation:

Zrzn V2= =13 (Xx+ Yy+ Z3.

As for the value of the virial, it will take someery simply forms in the most
important cases in nature.

When there are two points andm’that are separated by a distance ahd which
exert an attractive or repulsive force upon eatlerothat is represented by the function
#(r), and which we will suppose to be positive or izgaaccording to whether the force
is attractive or repulsive, respectively, we widMe:

(X - X)

X X+ XX = ¢(r)x'r‘xx+¢(r) X; g

and as a result:
—L(XX+YyYy+Zz+X'X'+Y'y'+2'2")=3r ¢ (1).

When that result is extended to an arbitrary nunatb@oints that are subject to only
attractive or repulsive forces that they exert upach other, one will have:

=YX x+Yy+Z2)=1>r g (1),

in which the sum on the right relates to all paisevcombinations of given points. The
virial of the system of points will then have theeession:

12.ré0)
in this case.
One easily recognizes the analogy between thattigpand another known quantity.
If we introduce the functio® (r) by setting:
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® (1) = [¢(r)dr,
then we will have:

Y (Xx+Yy+Z=d) o(r).

In the special case where the attractive or remuerces are inversely proportional
to the squares of the distances, the sEmJ(r), up to sign, is called theotential of the

system. Since that quantity has not further beganga name in the general case, |
propose the name efgonfor it (from the Greek wordpyov, for work), whose German
form is ergal, but it might be pronounceergiel in French. The known theorem of the
equivalence o¥is vivaand mechanical work is then expressed very singuig, in order
to show more clearly the analogy between that thmoand the one that concerns the
virial, I will juxtapose two theorems:

1. The sum of the vis viva and the ergon is constant.
2. The mean vis viva is equal to the virial.

In order to apply our theorem to heat, considdiody to be a system of material
points in motion. Those points act upon each othed in addition, they are subject to
external forces. We can then separate the virtaltwo parts, one of which refers to the
internal forces and the other, to the externaldsyavhich we will call thenternal virial
and theexternal virial respectively. The internal virial is represenbgdhe formula that
was cited before:

1Drem,

in which the overbar is no longer necessary becduséo the large number of atoms that
move irregularly, the value that the sum posseas@scertain time will be equal to its
mean value. As for the external virial, in the mosmmon case, in which the only
external force that acts is a uniform pressureithabrmal to the surface, one can express
it by the following formula, in whichp represents the pressure, andepresents the
volume:

3pv.

If we further denote thatis vivaof the motion that we call heat lbythen we will
have:

h=1>r ¢ (r) +2 pv.

It remains for us to prove the stated theorem atheuvirial. That proof is very easy.
The equations of motion of a material pamare:

2 2
md—zxzx, moI 2y:Y,
dt dt

d?z
m

W:Z.



Clausius — On a quantity that is analogous to potential #mebaem that relates to it 4

Now one has:

202 2 2
S0 - 28 ()= o T 4 S
dt? dtl dt dt dt®

2
Upon multiplying that equation by / 4 and puttingX in place ofm%, one will

obtain:

2 2
E(Qj = —%Xx+m d (5)
2\ dt 4 dt
SO upon integrating this and dividing hyne will infer that:

D[ ore -2 e 7] 400 {201 |
2t o\ dt 2t 4| dt dt ),

0

2
in which [%):z)j represents the initial value %
0

The formulas:
t 2 t
}j(%j dt and :—L.[X xdt,
t % dt t %

2
. X
when taken over a large value of timerepresent the mean values E%J and Xx,

2
which we have denoted t{yz—i(j and X x, respectively. For a periodic motion, the last

term in the equation will be equal to zero at thd ef each period, becaudgx?) / dt
d(x)

will take on its initial value[ j . If the motion is not regularly periodic, but
0

irregular, like the motion of the atoms in the mde of a body, then the difference
d(x’) _
dt

will present itself from time to time, and otheaththat, the divisot will make the last
term vanish when timebecomes very large.
Hence, upon suppressing that term, we can write:

[d(df)j will not regularly represent the value zero, bunhetheless that value
0

2
m Q(j - 1% %
> dt

VR
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Since the same equation will be true for the other coates, we will get:
2 2
mifax) L (ay) .
2|\ dt dt

EVZZ—%(X Xx+Y y+ Z13,

d 2
(Fﬂ =-3(Xx+Yy+ 73,

or, more briefly:

and for a system with an arbitrary number of points

Zg\?:—%(x x+Y y+ Z 3.

Our theorem has then been proved, and we wilige see that it is not only true for
the entire system of points and the three cooré@athen taken together, but also for
each point and each coordinate, when taken separate




