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§ 1. – General equations 
 

 The general principles that made it possible for Jacobi to reduce the equation of 
motion to the solution of one partial differential equation (as along as a force function 
exists) allow an application to the ascertainment of the equilibrium figure of a string in 
the same case, and it likewise comes down to a problem in the calculus of variations.  
Moreover, it is not without interest to carry out the corresponding considerations in that 
problem, especially because they also seem to suggest some simplifications in the 
calculations. 
 If we denote the arc-length of the string by ds, the force function by U ds, and finally 
the stress that the string experiences at the element ds by T then the equations upon which 
the form of the string depends are known to be: 
 

(1)     

0,

0,

0.

d dx U
T

ds ds x

d dy U
T

ds ds y

d dz U
T

ds ds z

 ∂ + =  ∂ 
 ∂ + =   ∂ 
 ∂ + =   ∂ 

 

 
One will also get them from the problem of finding a minimum for the integral: 
 

(2)      
1

0

s

s
U ds∫ , 

while the equation exists: 

(3)     
2 2 2

dx dy dz

ds ds ds
     + +     
     

= 1. 

 
 However, at the same time, this can be converted into the problem of integrating a 
partial differential equation when one imagines that a function V of x, y, z has been 
defined such that: 
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(4)    

, , ,

.

dx V dy V dz V
T T T

ds x ds y ds z

V V dx V dy V dz
U

s x ds y ds z ds

∂ ∂ ∂ = = = ∂ ∂ ∂
 ∂ ∂ ∂ ∂ − = + + +
 ∂ ∂ ∂ ∂

 

 
When one eliminates the differential from these equations, one will get the two equations: 
 

(5)      T = − V

s

∂
∂

− U, 

 

(6)    
22 2

V V V

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
 = 

2
V

U
s

∂ + ∂ 
. 

 
The latter is a partial differential equation that has V for a general solution.  If it includes 
three arbitrary constants h, a, b then one will finally have: 
 

(7)    κ =
V

h

∂
∂

, α =
V

a

∂
∂

, β =
V

b

∂
∂

 

 
for the equations of the string, while κ, α, β denote new arbitrary constants. 
 The force function U of the arc-length in this can be obtained in an arbitrary way 

when one treats it as a constant in the definition of the differential quotients 
U

x

∂
∂

, 
U

y

∂
∂

, 

U

z

∂
∂

.  However, if U is free of s, in particular, then one might set: 

(8)      
V

s

∂
∂

= h 

 
in equation (6).  The complete solution of that equation will then take the form: 
 
(9)     V = hs + f (x, y, z), 
 
and the first of equations (7) will give the arc-length as a function of the coordinates with 
no further analysis: 

(10)     κ = s + 
f

h

∂
∂

. 

 
Since that must be true in most cases, one must usually replace equation (6) with the 
simpler one: 

(11)   
22 2

f f f

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
= (h + U)2, 
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and the stress will take the simpler expression: 
 
(12)     T = − h – U. 
 
This is an expression that must be essentially positive, and therefore imply restrictions on 
the values of the integration constant, in general. 
 
 

§ 2. – Catenaries 
 

 The simplest application of these equations is defined by the catenary.  If G is the 
weight per unit length of the string, and the Z-axis points vertically, moreover, then one 
will have U = Gz, and one will have to set: 
 

f

x

∂
∂

= a,  
f

y

∂
∂

= b,  
f

z

∂
∂

= 2 2 2( )h Gz a b+ − −  

 
in equation (11), or also b = 0, when one chooses the XY-plane to be the plane of the 
string; that will then imply that: 
 

V = hs + ax + 2 2( )dz h Gz a+ −∫ , 

 
and therefore, from (7), the equations of the catenary would be: 
 

 α = x − 
2 2( )

a dz

h Gz a+ −∫  = x – 
a

G
log [(h + Gz) + 2 2( )h Gz a+ − ], 

 

 κ = s +
2 2

( )

( )

h Gz dz

h Gz a

−
− −∫ = s − 2 21

( )h Gz a
G

+ − . 

 
However, from (5), the stress is: 

T = − h – Gz. 
 
It would be superfluous to pursue the treatment of these equations any further. 
 
 

§ 3. – String under the influence of centrifugal force 
 

 I would now like to consider a string whose endpoints are rigidly fixed along a 
uniformly-rotating axis.  Abstracting from the force of gravity, only the centrifugal force 
will affect it.  If the Z-axis is the axis of rotation, while ω is the constant angular velocity, 
and G is, in turn, the weight per unit length then: 
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U = 
2

( )
G

x dx y dy
g

ω +∫  = 
2

2

2

G
r

g

ω
, 

 
where r is the distance from the element ds to the axis of rotation.  The integral (2) will 
then assumes the form: 

2r ds∫ , 

and one will then get the theorem: 
 
 The form of the string will be one for which its moment of inertia is a maximum. 
 
 Now, if one introduces the polar coordinates r, ϕ into equation (11), instead of x, y, 
then one will get the differential equation: 
 

(13)   
22 2

2

1f f f

r r r ϕ
 ∂ ∂ ∂   + +     ∂ ∂ ∂     

= µ2 (h − r2)2 

 
from a known transformation formula, in which µ = Gω2 / 2g, and h has been replaced 
with – µ h2.  The latter is justified by the fact that the stress assumes the expression: 
 
(14)     T = µ (h − r2)2, 
 
which actually requires that µ h2 must have a positive value, since T must be positive. 
 However, one must set: 

 
f

z

∂
∂

= µ ⋅⋅⋅⋅ a, 
f

ϕ
∂
∂

= µ ⋅⋅⋅⋅ b, 

 

 
f

r

∂
∂

= 2 2 2 2 2 2 2( )r h r a r b
r

µ − − − , 

 
and one will get the expression: 
 

(15) V = − h2 s + a z + b ϕ + 2 2 2 2 2 2 2( )
dr

r h r a r b
r

− − −∫  

 
for the function V when one drops the common factor of µ.  One then sees that the 
magnitude of the angular velocity has no influence upon the form of the string. 
 However, from (7), the integral of the problem will be the following: 
 



Clebsch – On the equilibrium figure of a flexible string 5 

(16)   

2 2

2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2

( )
,

( )

( )
,

( )

( )
.

( )

h r r dr
s

r h r a r b

h r r dr
z a

r h r a r b

h r r dr
b

r h r a r b

κ

α

β ϕ

 −= − +
 − − −


− = −
− − −

 − = −
 − − −

∫

∫

∫

 

 
These equations show that the z-coordinate can be expressed by an elliptic integral of the 
first kind, the arc-length, by one of the second kind, and the angle ϕ, by one of the third 
kind.  It can also be expressed rationally in terms of sin am (p z), while s, ϕ can be 
represented in terms of the functions Z and Π with the same arguments. 
 In order to develop this manner of representation, it is next necessary to consider the 
quantity under the square root sign: 
 
 For r = ∞, r = h, r = 0, 
 
 it will assume the value + ∞, − (a2 h2 + b2), − b2, resp. 
 
The cubic equation: 
 
(17)    R = r2 (h2 − r2) − a2 r2 − b2 = 0 
 
will then have a real root between r2 = h2 and r2 = ∞, in any event.  However, since one 
must always have r2 < h2, from (14), it is necessary that the roots should also assume a 
real value between r2 = 0 and r2 = h2, so, since R is negative at both limits, the sign must 
alternate twice within them.  The equation R = 0 will then have three positive real roots, 
two of which are smaller than h2, and one of which is larger. 
 We then set: 
(18)    R = (r2 – ρ2) (r2 – σ2) (r2 – τ2), 
 
where: 

ρ > σ > τ. 
 
A comparison of (17), (18) will then give: 
 

(18a)   

2 2 2
2 2 2 2 2

4 2 2 2 2 2 2 2

2 2 2 2
2 2 2 2 2 2 2

1
4

, ,
2

, or

( )
( )

2
( )( )( )( ).

h b

h a

a

ρ σ τ ρ σ τ

ρ σ σ τ τ ρ
ρ σ τ ρ σ σ τ τ ρ

ρ σ τ ρ σ τ ρ σ τ ρ σ τ

 + += =


− = + +


+ + = − + +

 = + + + − − + − −
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Therefore, in order for a, b, h to be real, ρ, σ, τ will only have to satisfy the condition 
that: 
 
(19)     ρ ≥ σ + τ. 
 
Now, since r must also lie between σ and τ, one can set: 
 

(19)[sic]   
2 2 2 2

2 2 2 2

sin am cos am

( )sin am ,

r u u

u

σ τ
τ σ τ

 = +


= + −
 

 
and when one introduces this into (18), that will give: 
 

(20)   

2 2 2 2 2 2 2

2 2
2

2 22 2

( )( ) am cos am sin am

, ,

R u u u

r dr du
k

R

ρ τ σ τ
σ τ
ρ τρ τ

 = − − ∆


− = = −−

 

 
from which, equations (16) will assume the form: 
 

(21)   

2 2 2 2 2 2 2

0

2 2

2 2
2 2 2 20

( ) [( ) ( )sin am ] ,

,

.
( )sin am 

u

u

s h u du

z
u

a
du

b u

ρ τ κ τ σ τ

αρ τ

ϕ βρ τ
τ σ τ


− + = − − −


− − =


− − = + −

∫

∫

 

 
 Furthermore, in order to bring the last integral into the usual form of the third type, 
set: 
 
(22)    σ 2 – τ 2 = − τ 2 k2 sin2 am (i c), 
 
in which c always represents a positive real argument.  When one brings in the value of k2 
from (20), one will get: 
 
(23)    σ = τ ∆ am (i c), ρ = τ cos am (i c). 
 
Finally, if one sets: 
 

(24) z – α = nu, n = 
2 2

a

ρ τ−
 = 

4 4 2 2sin am ( ) 2(1 )sin am( ) 3

2 sin am( )

k ic k ici

ic

τ ′ + + −
⋅  

 
then one can now represent the roots ρ, σ, τ in terms of the three quantities n, k, c, and 
when one introduces this into equations (21), one will get from the first and third ones: 
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(25)  

2 2 2 2 2

0

4 4 2 2

2 2 20

[1 (1 )sin am( )] 2 sin am( ) sin am
,

sin am( ) 2(1 )sin am( ) 3

cosam( ) am( )
.

sin am ( ) 1 sin am ( )sin am

u

u

k ic u k ic u dus

n k ic k ic

ic ic du
i

ic k ic u

κ

ϕ β

 − + ++ =
 ′ + + −
 ∆− = −

∫

∫

 

 
Now, if K, E denote the entire integrals of the first and second kind, resp.: 
 

2

0
sin am 

u
u du∫  = 1

K

E
 − 
 

 u – Z (u), 

 

2 2 20 1 sin am ( )sin am 

u du

k ic u−∫  = u + 
sin am ( )

cos am ( ) sin am ( )

ic

ic ic∆
Π (u, ic) 

 
then one will ultimately get the following formulas, which express r, s, and ϕ in terms of 
z and the constants n, k, c: 
 

(26)

2 2
2 2 2

2 4 4 2 2

2 2 2

4sin am ( )
1 sin am ( )sin am ,

sin  am ( ) + 2(1+ )sin am ( ) 3

cos am ( )  am ( )
, ,

sin am ( )

[1 (1 )sin am ( )] 2sin am ( ) 1

r ic z
k ic

n k ic k ic n

ic ic z z
i i ic

ic n n

z K z
k ic ic

n Es

n

α

α αϕ β

α α
κ

− − = − ′ −  

∆ − − − = + Π  
 

− − − + + − +  =
4 4 2 2

.
sin  am ( ) + 2(1+ )sin am ( ) 3

z
Z

n n

k ic k ic

α











  −  −    

  
 ′ −

 

 
 

σ 

τ 
σ 

τ 
Ω 

Ω 
Ω 

 
 If one measures the z-coordinate from a height at which the radius r attains a 
maximum and then sets α = 0 then that radius will itself be a periodic function of z that 
will not change when z goes to – z, while s and ϕ will, at the same time, change signs 
with z, as well as including a periodic part with terms that are proportional to z.  The form 
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of the curve is then that of a spiral that approaches the Z-axis more or less closely at 
times.  The projection onto the XY-plane exhibits congruent and alternately symmetric 
parts whose limiting radii alternately have the values σ and τ and always subtend the 
same central angle.  In order to find it, one must only determine the growth that 

ϕ experiences when 
z

n

α−
 increases by K.  For that, it is not inconvenient to first appeal 

to a manner of representation that Jacobi had applied to the rotation of a body.  One has: 
 

Π (u, ic) = u Z (ic) + 1
2

( )
log

( )

u ic

u ic

Θ −
Θ +

. 

Thus: 
( )

( )

u ic

u ic

Θ −
Θ +

= e−2i Φ = cos 2Φ – i sin 2Φ, 

in which one sets: 

Φ = ϕ – β − 
cos am ( )  am ( )

( )
sin am ( )

ic ic z
i Z ic

ic n

α ∆ −+ 
 

, 

 
for brevity, so one will have: 
 

(27)  tan 
cos am ( )  am ( )

2 ( )
sin am ( )

ic ic z
i Z ic

ic n

αϕ β
  ∆ −− − +  

  
 

 

= 
1

z z
ic ic

n n
z zi

ic ic
n n

α α

α α

− −   Θ + − Θ −   
   ⋅

− −   Θ + + Θ −   
   

. 

 
Since the expression on the right does not change when one lets the argument increase by 
2K, ϕ must, in the meantime, increase through the angle: 
 

(28)   2Ω = 
cos am ( )  am ( )

( )
sin am ( )

ic ic
i Z ic

ic

 ∆ + 
 

2K, 

 
and since that angle belongs to a curve length at which the radius vector once more 
assumes precisely the previous values, it will yield one-half (Ω) of the angle that 
corresponds to a single curve segment. 
 In the special case that will be of interest here, the case k = 0 must be singled out to 
begin with.  In that case, r will equal to a constant in (26), but ϕ – β will be proportional 
to z – α, so Π will vanish.  One will then be dealing with an ordinary helix of the most 
general form. 
 If the curve lies entirely on a cylindrical surface in that case then it will be, by 
contrast, contained in a plane whenever b or a vanishes.  For b = 0, ϕ is constant, so the 
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curve will be contained in a plane that goes through the rotational axis.  As a result of 
equations (18a), it will then be necessary that τ must also be zero, and if σ, ρ are not also 
supposed to vanish then it would be necessary for ∆ am (ic) and cos am (ic) to become 
infinitely large; i.e.: 

c = K′. 
 
Since, at the same time, sin am (ic) = ∞, equations (26) will go to: 
 

 
2

2

r

n
 = 

2
2

4

4
sin  am

k z

k n

α−
′

, 

 

 
s

n

κ+
 = 

2

2

(1 ) 2 (1
z K z z

k Z
n E n n

k

α α α−  − −    + − − −    
    

′
. 

 
By contrast, if a = 0 then the curve will be contained completely within the plane that is 
perpendicular to the rotational axis.  As a consequence of equation (24), one will then 
have the condition: 

n = 0 = k′4 sin4 am (ic) + 2 (1 + k2) sin2 am (ic) – 3, 
 

which shows how to express the constant c in terms of the modulus k.  One will get: 
 

sin2 am (ic) = 
2 2 4

4

(1 ) 2 1k k k

k

− + − + +
′

, 

 
since the other sign must be discarded, because sin2 am (ic) is essentially negative.  It 
should be remarked that n must again be expressed in terms of τ [using (24)] in equations 

(26).  The argument 
z

n

α−
will assume an indeterminate value, and one will ultimately 

have: 
 
 r2  = τ 2 (1 – k2 sin2 am (ic) sin2 am u), 
 

 ϕ – β  = 
cos am ( )  am ( ) ( , )

sin am ( )

ic ic u ic
u

i ic i

∆ Π+ , 

 

 s + κ = 2 2[1 (1 )sin am ( )] 2sin  am ( ) 1
2 sin am ( )

K
k ic u ic u Zu

i ic E

τ    − + + − −   
   

. 

 
Finally, a combination of the last two cases will give the simplest case for a = b = 0, for 
which the string defines a straight line that is perpendicular to the rotational axis. 
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§ 4. – Equations for a string that is not free 
 

 If the string is not free, but required to remain on a certain surface, then one will 

define the problem of finding a maximum for U ds∫ , while x, y, z, s are coupled by the 

equation of surface and the equation: 
 

(29)    1 = 
2 2 2

dx dy dz

ds ds ds
     + +     
     

. 

 
The equation of the surface might be represented by the three equations: 
 
(30)   x = ϕ (p, q), y = ψ (p, q), z = χ (p, q), 
 
in which p, q denote arbitrary variables.  Thus, the condition equation (29) will assume 
the form: 

(31)    1 = 
2 2

2
dp dq dp dq

P Q R
ds ds ds ds

   + +   
   

. 

In one then sets: 

(32)    

,

,

,

V dp dq
T P Q

p ds ds

V dp dq
T R Q

q ds ds

V V dp V dq
U

s p ds q ds

 ∂  = +  ∂  
 ∂  = +  ∂  
 ∂ ∂ ∂− = + + ∂ ∂ ∂

 

 
analogous to equations (1), then upon eliminating the differentials using (31), (32), one 
will get: 

(33)     T = − U – 
V

s

∂
∂

 

and 

(34)   
2

V
U

s

∂ + ∂ 
(QP – R2) = 

2 2

2
V V V V

Q P R
p q p q

   ∂ ∂ ∂ ∂+ −   ∂ ∂ ∂ ∂   
 

 
will be the partial differential equation whose complete solution is V, and if h, a denote 
the arbitrary constants in it then that will give the equation of the desired curve and its 
arc-length by: 

(35)     κ = 
V

h

∂
∂

, α = 
V

a

∂
∂

. 

 
 In particular, if the system of curves: 
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p = const., q = const. 
 
intersect at right angles on the given surface then R = 0, and equation (34) will assume 
the simpler form: 

(36)    
2

V
U

s

∂ + ∂ 
= 

2 2
1 1V V

P p Q q

   ∂ ∂+   ∂ ∂   
. 

 
If the force function U is also independent of s then one can set: 
 
(37)     V = hs + f (p, q), 
 
and equation (36) will go to: 

(38)    (U + h)2 = 
2 2

1 1f f

P p Q q

   ∂ ∂+   ∂ ∂   
. 

 
 

§ 5. – String on a surface of revolution 
 
 One can adapt the two problems that were treated above, and even a generalization of 
them, to an arbitrary surface of revolution.  We denote the distance from a point to the 
rotational axis by r and let that axis be the Z-axis, but let ϕ mean the angle that is 
described by the projection of the radius vector onto a plane that is perpendicular to Z.  
As is known, one will then have: 
 

ds2 = dr2 + dz2 + r2 dϕ2, 
 

or when the equation of the surface of revolution is r = Fz : 
 

ds2 = dz2 [1 + (F′ z)2] + (Fz)2 dϕ2. 
 

Therefore, in the equations of the previous paragraphs: 
 

P = 1 + (F′ z)2,  Q = (F z)2, R = 0; 
hence, from (36): 

(39)   
2

V
U

s

∂ + ∂ 
= 

22

2 2

1 1

1 ( ) ( )

V V

F z z F z ϕ
 ∂ ∂  +   ′+ ∂ ∂   

. 

 
Now, if U depends upon only r and z, or what amounts to the same thing, upon only z, 
then one might set: 
 

V

s

∂
∂

= h, 
V

ϕ
∂
∂

= a, 
V

z

∂
∂

= 
2

2 2
2

( ) [1 ( ) ]
( )

a
U h F z

F z

  ′+ − + 
 

; 

so 
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(40)   V = hs + aϕ +
2

2 2
2

( ) [1 ( ) ]
( )

a
dz U h F z

F z

  ′+ − + 
 

∫ , 

 
and therefore the equations of the curve of the string will be represented by: 
 

(41)   

2

2
2

2

2

2
2 2

2

( ) 1 ( )
,

( )
( )

1 ( )
,

( ) ( )
( )

U h dz F z
s

a
U h

F z

a dz F z

a
F z U h

F z

κ

α ϕ

 ′+ +
= +

 + −



′+
= −

 + −


∫

∫

 

 
to which, one must add the equation for the stress: 
 
(42)     T = − U – h. 
 
In particular, let us consider the case that was mentioned at the beginning of this 
paragraph.  If the Z-axis points downwards then the force function of gravity will be Gz, 
where G means the weight of a piece of the string of unit length; furthermore, the force 
function of the centrifugal force (cf., § 3): 
 

2
2

2

G
r

g

ω
 = 

2

2

G

g

ω
(F z)2 = µ (F z)2 . 

 
(41), (42) will then imply the equations: 
 

(43)   

2 2

2
2 2

2

2

2
2 2 2

2

2

[ ( ) ] 1 ( )
,

[ ( ) ]
( )

1 ( )
,

( ) [ ( ) ]
( )

( ) ,

h Gz F z dz F z
s

a
h Gz F z

F z

a dz F z

a
F z h Gz F z

F z

T h Gz F z

µ
κ

µ

α ϕ
µ

µ

 ′+ + +
= +

 + + −

 ′+ = −
 + + −


= − − −



∫

∫  

 
which give the equilibrium figure of a string on a surface of revolution that is subject to 
centrifugal force. 
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 If one lets G and µ vanish then those equations will become the equations of the 
shortest line on such a surface. 
 
 

§ 6. – Catenary on the sphere 
 

 Equations (43) will then give one the form that a massive string assumes on the 

surface of a ball.  If one lets µ vanish and sets Fz = 2 2l z− , where l denotes the radius 

of the ball, then the equations above will become: 
 

(44)   

2 2 2 2

2 2 2 2 2 2

( )
,

( ) ( )

,
( ) ( ) ( )

.

h Gz l dz
s

h Gz l z a

a l dz

l z h Gz l z a

T h Gz

κ

α ϕ

+ = + + − −
 = −

− + − −
 = − −


∫

∫  

 
One sees that the angle ϕ is represented by an integral of the third kind, while the arc-
length is represented by one of the second kind. 
 Without going into the series development of those integrals, I would at least like to 
give a different form to the roots that will lead to the normal form of the elliptic integral 
with no further analysis.  Whereas one will often be led to discuss equations of third and 
fourth order whose coefficients depend upon arbitrary constants in their integration, it is 
still quite often possible to replace them with other ones that already indicate how to 
solve the equation, and the reduction to normal form will often point to such a 
replacement; an example of this was given before in § 3. 
 The series development of the expressions (44) depends upon solving the biquadratic 
equation: 

Z = (h + Gz)2 (l2 – z2) – a2 = 0, 
 

into which the arbitrary constants a, h enter.  I next set h = − Glm, a = Gbl2, z = l cos ϑ.  
One must then consider the expression: 
 

2 4

Z

G l
= Θ = (m − cos ϑ)2 sin2 ϑ − b2. 

 
However, one can next give this expression the form: 
 

Θ = [(m – cos ϑ) sin ϑ – b] [(m – cos ϑ) sin ϑ + b], 
 
and when one decomposes each of these factors, in turn, one can set: 
 

Θ = [sin (ϑ + ε) + γ] [cos (ϑ − ε) + γ′ ][sin (ϑ − ε) − γ] [cos (ϑ + ε) + γ′ ] . 
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If one then considers the equation: 
 

(cos ϑ – m) sin ϑ + b = [sin (ϑ + ε) + γ] [cos (ϑ − ε) + γ′ ], 
 
from which the equation that corresponds to the other factor will emerge upon switching 
ϑ with – ϑ, then one will get just the conditions: 
 
  γ cos 2ε =    m sin ε, 
  γ′ cos 2ε = − m cos ε, 
 sin ε cos ε + γγ′ =    b. 
 
One can then consider the quantities ε and ρ = m / cos 2ε to be new arbitrary constants, in 
place of m and b, as soon as one only shows that each value of m, b always actually 
correspond to real values of ρ, ε.  In the case of ρ, that is obvious, but when one 
eliminates γγ′ from the equations above, one will further get: 
 

X = (x – 2b) (1 – x2) – m2 x = 0, 
 
in which one sets x = sin 2ε.  This equation is nothing but the resolvent of the biquadratic 
equation.  However, one has: 
 for x = + 1, X = − m2, 
 for x = − 1, X = + m2, 
 
so a real root must necessarily exist that might be set equal to a sine. 
 Now, when one multiplies the first factor in the expression for Θ by the third one and 
the second one with the fourth, it will take the following form: 
 

Θ = − [sin2 ϑ cos2 ε − sin2 ε (cos ϑ + ρ)2] [sin2 ϑ sin2 ε − cos2 ε (cos ϑ − ρ)2], 
 
or, when one replaces cos ϑ with z again, it will be: 
 
 Z = − G2 (z2 + 2lρ z sin ε + l2 r2 sin ε – l2 cos2 ε) (z2 + 2lρ z sin ε + l2 r2 sin ε – l2 cos2 ε) 
 

 = − G2 (z + lρ sin2 ε + l cos ε 2 21 sinρ ε− )(z + lρ sin2 ε − l cos ε 2 21 sinρ ε− ) 

 

 ⋅⋅⋅⋅ (z − lρ cos2 ε + l sin ε 2 21 cosρ ε− )(z − lρ cos2 ε − l sin ε 2 21 cosρ ε− ) 
 
 = − G2 ζ . 
 
The equation Z = 0 will then have either four real roots, and indeed when ρ2 < 1 / sin2 ε 
and also ρ2 < 1 / cos2 ε, or two of them when ρ2 lies between those two quantities.  The 

third case is excluded, since the existence of four imaginary roots would make Z  

continually imaginary.  Finally, if one introduces the new constant ρ, ε into equations 
(44) then one will get: 
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(44a)   
2

2

2 2

( cos 2 )
,

sin 2
(1 ) ,

2 ( )

( cos 2 ),

l z l dz
s

l dz

l z

T G l z

ρ εκ
ζ

εα ϕ ρ
ζ

ρ ε

− = − −
 = − −

− −
 = −



∫

∫  

 
which are equations from which one can easily derive the series development now. 
 
 

§ 7. – String on a sphere that is subjected to centrifugal force 
 
 I would now like to consider the case in which a string that is found on a sphere is 
subject to only the centrifugal force, while the axis of rotation should be a diameter of the 
sphere.  If one lets G vanish in (43) and likewise introduces the radius r in place of z, 
such that z2 = l2 – r2 then one will get (cf., § 3): 
 

(45)   

2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2

( )
,

( )

,
( )

( ).

l h r r dr
s

h r r a l r

l a r dr

r h r r a l r

T h r

κ

α ϕ

µ

 −= −
− − −

 = −
− − −

 = −


∫

∫  

 
As before, one then replaces − µ h2 with h and µ2 a2 with a2, in turn, and sets µ = Gω2 / 
2g, such that now, in order for the stress to be positive, one must have only r < h, and at 
the same, µ will vanish completely, from the equations of the curve. 
 The treatment of the integral depends upon the cubic equation: 
 
(46)    R = (h2 – r2)2 r2 – a2 = 0. 
 
However, for: 
 r2 = ∞ h2 0 
 
the expression R will assume the values: 
 
  + ∞ − a2 − a2, resp. 
 
Now, since the expression R must necessarily be positive for certain values of r that are 
smaller than h in order for a real curve to appear at all, one will see that the equation R = 
0 must have three positive roots, two of which are smaller than h, and the third of which 
is greater than h.  Therefore, let: 
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(47)    R = (r2 – ρ2) (r2 – σ 2) (r2 – τ 2), 
 
so a comparison of the coefficients of (46), (47) will give: 
 

(48)    

2 2 2 2

4 2 2 2 2 2 2

2 2 2 2

2 ,

,

.

h

h

a

ρ σ τ
ρ σ σ τ τ ρ
ρ σ τ

 = + +
 = + +
 =

 

 
It follows from this that ρ, σ, τ will assume entirely arbitrary values within the limits that 
were envisioned above, and they will satisfy the single condition: 
 
 0 = (ρ2 + σ 2 + τ 2)2 – 4 (ρ2 σ 2 + σ 2 τ 2 + τ 2 ρ2)2 
 
  = (ρ + σ + τ)(ρ + σ − τ)(ρ − σ + τ)(ρ − σ − τ). 
Therefore, if: 

ρ > σ > τ, 
 
as one can assume, then it will follow that: 
 

ρ = σ + τ, 
 

and the expression R can then be replaced with the following one: 
 
(49)    R = [r2 − (σ +τ)2] (r2 − σ2) (r2 − τ2). 
 
Now, one can then replace equations (45) with the following ones: 
 

(50)  

2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

( )
,

( ) ( )( )[ ( ) ]

( )
,

( ) ( )( )[ ( ) ]

( ),

l r r dr
s

l r r r r

l dr

r l r r r r

T r

σ τ στκ
σ τ σ τ
στ σ τα ϕ

σ τ σ τ
µ σ τ στ

 + + −= −
− − − − +

 + = −
− − − − +

 = + + −


∫

∫  

 
in which σ, τ denote arbitrary constants and σ > τ.  One of those constants must also be 
smaller than l, and only τ will fulfill that condition, so r must lie between τ and l.  By 
contrast, if σ is also smaller than l then r must lie between σ and τ.  It is easy to go from 
the expressions above to the series developments. 
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§ 8. – Equilibrium of thin elastic strings 
 

 The problem of an elastic string is also susceptible to a similar treatment when it is 
subject to external force that admits a force function and when, at the same time, its 
cross-section is so narrow that one might neglect the resistance to bending. 
 Let dσ be the original length of an element and let ds be the same thing after 
extension.  The stress in the string in that element is then: 
 

(51)    T = 2 ds d
m

d

σ
σ

−
 = m2 λ, 

 
in which m  denotes a constant and λ is the extension of the unit length.  Hence, if U ds is 
likewise the force function then, from (1), one will have the equations: 
 

(52)    

2

2

2

0,

0,

0.

d dx U
m

d ds x

d dy U
m

d ds y

d dz U
m

d ds z

λ
σ

λ
σ

λ
σ

 ∂ + =  ∂ 
 ∂ + =   ∂ 
 ∂ + =   ∂ 

 

However, since: 

(53)  λ = 
2 2 2

dx dy dz

d d dσ σ σ
     + +     
     

− 1,  
ds

dσ
= 1 + λ, 

 
one can also replace equations (52) with the following ones: 
 

(54)    

2 2

2 2

2 2

0,
2

0,
2

0,
2

m d U
dxd x
ds

m d U
dyd y
ds

m d U
dzd z
ds

λ
σ

λ
σ

λ
σ

  
  ∂ ∂+ =   ∂  ∂

 


   ∂ ∂ + =   ∂  ∂
 

    ∂ ∂ + = 
 ∂ ∂  

 

 
which can be derived from the starting assumption that the integral: 
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2 2

2

m
U d

λ σ 
− 

 
∫  

must take on a minimum. 
 If one sets: 

(55)    

2 2
2

2 2
2

2 2
2

,
2

,
2

,
2

V dx m
m

dxx ds
ds

V dy m
m

dyy ds
ds

V dz m
m

dzz ds
ds

λλ

λλ

λλ


 ∂ ∂= = ∂ ∂

 ∂ ∂ = = ∂ ∂

 ∂ ∂
 = =

∂ ∂


 

 

(56)   
V V dx V dy V dz

x d y d z dσ σ σ σ
∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 
2 2

2

m λ
 − U, 

 
in order to convert that given assumption into a partial differential equation, and likewise 
considers the expression (53) for λ then one will obtain: 
 

22 2
V V V

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
 = m4 λ2, 

but also: 

V

σ
∂
∂

+ U = 
2 2

2

2

m ds
m

d

λ λ
σ

− = −
2

2

2
m

λ λ 
+ 

 
, 

 
and upon eliminating λ from both equations: 
 

(57) 

2
22 2

2

1

2

V V V V
U

m x y zσ

   ∂ ∂ ∂ ∂    + + + +      ∂ ∂ ∂ ∂        

=
22 2

V V V

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
 

or also 

(58)   
22 2

V V V

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
=

2

4
2

1 2 1

V
U

m
m

σ
 ∂+  ∂− − 
 
  

. 

 
That is the partial differential equation whose complete solution must be sought.  One can 
always work with it in the irrational form (58), as long as U is independent of σ, in which 
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∂V / ∂σ must then be set equal to a constant, and will have precisely the character of 
equation (6).  It will then admit the complete solution to any problem that was posed for 
an inelastic string above. 
 It might be remarked that equation (58) will go to equation (6) as along as m is made 
infinitely large, which would correspond to the inelastic string.  The previous problems 
can then be truly regarded as special cases of the present one. 
 
 

§ 9. – Equilibrium of a thin elastic string under the influence of gravity 
 

 Let gravity be the only force that is active, let the Z-axis point upwards, and let G be 
the weight per unit length.  One will then have U = − Gz, and if one then sets: 
 

V

x

∂
∂

= m2 a,  
V

σ
∂
∂

= Gh 

in (58) then: 

V

z

∂
∂

= 

2

2 2
2

1 2 1
z h

m G a
m

 − + − − 
  

, 

so 

V = m2 ax + Ghσ +

2

2 2
2

1 2 1
z h

m dz G a
m

 − + − − 
  

∫ . 

 
Now, the equation of the curve of the string is: 
 

(59)    α =
V

a

∂
∂

= x − 
2

2
21 2 1

dz
a

z h
G a

m

 − + − − 
  

∫ . 

 
However, when one differentiates this with respect to h and remarks that one can 
differentiate with respect to – z, instead of z, under the integral sign instead, the original 
arc-length will be expressed by: 

(60)    κ = σ − 

2

2 2
2

1 2 1
z h

m G a
m

 − + − − 
  

. 

 
The integral (59) is easy to perform.  If one sets: 
 

21 2
z h

G
m

−+ − 1 = u 

then: 
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dz =
2m

G
(1 + u) du, 

so (59) will go to: 

 x – α = 
2

2 2

(1 )am u du

G u a

+
−∫  

 

  = 
2

2 2 2 2log( )
am

u u a u a
G

 + − + −
 

. 

 
If one again replaces u with its value in z then one will get: 
 
(61)  x – α =  
 

2 2
2

2 2
2 2 2

log 1 2 1 1 2 1 1 2 1
am z h z h z h

G G a G a
G m m m

     − − −  + − + + − − + + − −              

, 

 
which is the equation of the desired curve.  If one makes m infinitely large in it and 
replaces a with a / m2 then it will go over to the equation of the ordinary catenary. 
 
 Karlsruhe, 26 May 1859. 
 

____________ 
 


