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On the equilibrium figure of a flexible string
By A. Clebschin Karlsruhe

Translated by D. H. Delphenich

8 1. — General equations

The general principles that made it possible Jacobi to reduce the equation of
motion to the solution of one partial differential etoia (as along as a force function
exists) allow an application to the ascertainmenthefequilibrium figure of a string in
the same case, and it likewise comes down to a proioleime calculus of variations.
Moreover, it is not without interest to carry out t@responding considerations in that
problem, especially because they also seem to suggest smpifications in the
calculations.

If we denote the arc-length of the stringdsy the force function by ds and finally
the stress that the string experiences at the elessdéytT then the equations upon which
the form of the string depends are known to be:

g(Td_x LU
ds\ ds/ 0dx
" g(T_y LU

ds\ ds) 0y
E(Td_z LU
ds\ ds) 0z

01

0.

One will also get them from the problemfofding a minimum for the integral:

(2) j U ds,
%
while the equation exists:
2 2 2
(2
ds ds d

However, at the same time, this can be convertedti@groblem of integrating a
partial differential equation when one imagines thatrctionV of x, y, z has been
defined such that:
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de_av dy ov dz oV

ds dx’ ds oy dsaz
_oVv 6de 6de 0V dz

as axds aydsazds

(4)
When one eliminates the differential from theseatpns, one will get the two equations:

v
0s

2
(6) (a_vj 6V (avj (6V Uj .
0x 6y 0z 0s
The latter is a partial differential equation thasV for a general solution. If it includes
three arbitrary constanks a, b then one will finally have:

(5) T=-—-U,

_ _ N\
(7 == a——a, ﬁ—%

for the equations of the string, white a, S denote new arbitrary constants.
The force functionlJ of the arc-length in this can be obtained in dniteary way

when one treats it as a constant in the definitibthe differential quotient%i, %—U
X y
%—U. However, ifU is free ofs, in particular, then one might set:
z
ov
8 —=h
(8) 3

in equation (6). The complete solution of thataaun will then take the form:
(9) V=hs+f(xY, 2,

and the first of equations (7) will give the aradeh as a function of the coordinates with
no further analysis:
(20) K=S+ ﬂ

oh’

Since that must be true in most cases, one mustllyiseplace equation (6) with the
simpler one:

of of of \_ 2
- (5 (5] (5o
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and the stress will take the simpler expression:
(12) T=-h-U
This is an expression that must be essentially positngetteerefore imply restrictions on
the values of the integration constant, in general.
§ 2. — Catenaries
The simplest application of these equations is definethéycatenary. 16 is the

weight per unit length of the string, and thaxis points vertically, moreover, then one
will have U = Gz and one will have to set:

of of of 2
—=a, —=h, — =, (h+G*-&-1
)4 0z \/( )

in equation (11), or alsb = 0, when one chooses th&-plane to be the plane of the
string; that will then imply that:

V:hs+ax+J'dZ«/(h+ G- &,

and therefore, from (7), the equations of the atewould be:

:x—%log [((h+G2 +./(h+G2?* - &],

o adz
T Trror=2

_ (h-Gdz _ __1 7
K—S+I\/m—s G\/(h+Gz) g .

However, from (5), the stress is:

T=-h-0Gz

It would be superfluous to pursue the treatmemhe$e equations any further.

§ 3. — String under the influence of centrifugal force

I would now like to consider a string whose endgp®iare rigidly fixed along a
uniformly-rotating axis. Abstracting from the ferof gravity, only the centrifugal force
will affect it. If theZ-axis is the axis of rotation, whil@is the constant angular velocity,
andG is, in turn, the weight per unit length then:
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U= %J'(xdﬁ ydy = %rz,
g 29

wherer is the distance from the elemal#to the axis of rotation. The integral (2) will
then assumes the form:

jrzds,
and one will then get the theorem:

The form of the string will be one for which itsment of inertia is a maximum.

Now, if one introduces the polar coordinate® into equation (11), instead &fy,
then one will get the differential equation:

N (of V' 1(of Y_ 5, oo
- G ) e

from a known transformation formula, in whigh= Gaf / 2g, andh has been replaced
with — 7 h%. The latter is justified by the fact that theess assumes the expression:

(14) T=uh-r??

which actually requires that ¥ must have a positive value, sirfEenust be positive.
However, one must set:

ﬂ: A, i:/j[b,
0z

0¢

of _ U 2,2 22 2 12
—=Lr*h*-r?»?-ar?-b?,
or r\/ ( )

and one will get the expression:

(15) V:—h2s+az+b¢5+.[%\/rz(hz—rz)z—azrz—b2

for the functionV when one drops the common factor of One then seethat the
magnitude of the angular velocity has no influeapen the form of the string.
However, from (7), the integral of the problemIveg the following:
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: —r)rdr
St I\/r(hz 2_aF2-p?
—r)rdr
16
(19) I\/r(hz 2_a¥’-b?
(h? —r)rdr
p= 9 I\/r(hz 2_a¥’-b?

These equations show that theoordinate can be expressed by an elliptic infegfrthe
first kind, the arc-length, by one of the seconddkiand the anglée, by one of the third
kind. It can also be expressed rationally in teohsin am p 2, while s, ¢ can be
represented in terms of the functiadhandIl1 with the same arguments.

In order to develop this manner of representatiois, next necessary to consider the
guantity under the square root sign:

For I = oo, r =h, r=20,

it will assume the value &, - (@°h? +b?), -b%  resp.
The cubic equation:
(17) R=r?(h*-r)-a’r* -*=0
will then have a real root betweeh= h? andr? = », in any event. However, since one
must always have? < h?, from (14), it is necessary that the roots shakd assume a
real value betweerf = 0 andr® = h?, so, sinceR is negative at both limits, the sign must
alternate twice within them. The equati@r= 0 will then have three positive real roots,

two of which are smaller thahf, and one of which is larger.
We then set:

(18) R=(%-0) (P -&) (" - 1),

where:
pP>0>T.

A comparison of (17), (18) will then give:

hZ:—p2+gz+T2, b* =p’c?r?,
(180) h*-a’=p°c’+oT*+1 7% or
a’ —(’0 +02+T) —(p’c*+0T?+1%0?

=l(p+o+1)(p+o-T)(p-0o+T)(P-0T-T).
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Therefore, in order fog, b, h to be real,o, g, r will only have to satisfy the condition
that:

(19 PO+ T
Now, sincer must also lie betweesrandr, one can set:

- 2 ~in2 + 2
(19)fsid { r=o?sin?amu+72 coé am

=r’+(o”-r?sinamu,
and when one introduces this into (18), that will give:

R=(p*-1%)(0’-r%A%amucos amu siA am
(20) rdr _ du K2 = o’ -r1?

JR oo T

from which, equations (16) will assume the form:

w/pz—rz(sw():j:[(hz—r?)—(az—rasinzamu]du,
(21) NS )
\/7¢ ,3 I

r’+(c°-r1 )sm amu’

Furthermore, in order to bring the last integral itlte usual form of the third type,
set:

(22) o —r?=-r?Ksirfam {c),

in whichc always represents a positive real argument. Wherbdngs in the value &
from (20), one will get:

(23) o=1Aamf{c), L= Tcos ami(c).

Finally, if one sets:

a @/k"‘sm am{c+ 2(# k* )sid ami¢ ¥

24) z—-a=nu, N=—
0° —r2 sinamic )

then one can now represent the rqate; 7in terms of the three quantitiesk, c, and
when one introduces this into equations (21), otieyet from the first and third ones:
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s+x [L-(1+K*)sin® am{c )u+ X* sirt ami(:J')Ou sih amdu
(25) n o JK?sin® amic )+ 20 k? )sid ami¢ 3 3
$-p=i cosamic N ami¢ ]u du
- sinam{c) 0 +-k* sif ami€¢ )sih amn

Now, if K, E denote the entire integrals of the first and sddand, resp.:

Iusinz amudu = (1—5j u—2 (u),
0 E

=u
1-k*sin® am {c )sii anu cosamigc A sinamd

Jou du N sinam(c) N @, ic)

then one will ultimately get the following formulashich express, s, and¢ in terms of
zand the constants k, c:

r_ _ —4sin” amic )_ : 1-k?sin® am {c ) sifi an%_—aj
n°  K?sin* am{c)+2(14* )siA ami¢ 9 n
¢_’8:icosami@ N ami¢ ;—aﬂ n(z;a icj
(26) sinamic) n n ')
[1-(1+k*)sin® am{c )]ﬂ+ 2sifd ami¢ H &Kj z—a_z(z—aﬂ
StK _ n E) n n
n JK*sin" am [c )+2 (1 )sif ami¢ ) 3 '

If one measures the-coordinate from a height at which the radiusttains a
maximum and then sets = 0 then that radius will itself be a periodic ¢tion of z that
will not change whermz goes to -z while s and ¢ will, at the same time, change signs
with z, as well as including a periodic part with teringttare proportional ta The form
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of the curve is then that of a spiral that approache<-axis more or less closely at
times. The projection onto th€Y-plane exhibits congruent and alternately symmetric
parts whose limiting radii alternately have the valeeand r and always subtend the
same central angle. In order to find it, one must onlerdahe the growth that

. zZ-a . L . : ,
@ experiences When—a increases b¥. For that, it is not inconvenient to first appeal
n

to a manner of representation tdatobi had applied to the rotation of a body. One has:

_ _ O(u-ic)
M (u,ic) =u Z(ic) + log———.
(i) =uz(e)* g g o
Thus:
OWU=I0) _ i@ = cos 2 i sin 20,
O©(u+ic)

in which one sets:

¢:¢_ﬁ_i(cosami€:z)x ami¢ lZ(ic)jﬂ

sinam{c) n

for brevity, so one will have:

27 tan2{¢—,8—i[cos amic 3 ami¢ lz(i@ﬂ%

sinam{c)

@(Z’”ch—@( Z_a—icj

G . .

G)(Z a+icj+@(z a—icj
n n

Since the expression on the right does not chargs wne lets the argument increase by
2K, ¢ must, in the meantime, increase through the angle:

(28) 0 = {COS amic 3 am¢ J—Z(ic)}ZK,
sinam{c)

— I

and since that angle belongs to a curve lengthrathamthe radius vector once more
assumes precisely the previous values, it will dyiehe-half 2) of the angle that
corresponds to a single curve segment.

In the special case that will be of interest héne,cas&k = 0 must be singled out to
begin with. In that case,will equal to a constant in (26), byt— S will be proportional
to z —a, soll will vanish. One will then be dealing with an orary helix of the most
general form.

If the curve lies entirely on a cylindrical suréaan that case then it will be, by
contrast, contained in a plane whendver a vanishes. Fob = 0, ¢ is constant, so the
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curve will be contained in a plane that goes through aketional axis. As a result of
equations (18), it will then be necessary thaimust also be zero, andaf o are not also
supposed to vanish then it would be necessaryfam {c) and cos ami€) to become
infinitely large; i.e.:

c =K.

Since, at the same time, sin aig) € «, equations (26) will go to:

re _4k* ., z-a
—2:—,45|n am—,
n k n
i o i )
StK _ n E) n n
n k'? '

By contrast, ifa = O then the curve will be contained completelyhwi the plane that is
perpendicular to the rotational axis. As a conseqa of equation (24), one will then
have the condition:

n=0 =k*sir am (c) + 2 (1 +k°) sirf am {c) — 3,

which shows how to express the constaintterms of the modulus One will get:

-(1+k?) -2 1+ K+ K

sirf am (c) = T

since the other sign must be discarded, becausasiric) is essentially negative. It
should be remarked thatmust again be expressed in termg pfsing (24)] in equations

(26). The argumen{z_—awill assume an indeterminate value, and one wiimately
n

have:
r? =r7%(1 -k sirf am {c) sirf amu),

_ cosamic A ami¢ L)1+n uic

$-F isinamic ) i
S+ K :W){[l—(ﬂ k?)sinamic )u+ 2sih ami¢ H —1%) u- Zu}}.

Finally, a combination of the last two cases willegthe simplest case far=b = 0, for
which the string defines a straight line that isggedicular to the rotational axis.
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8 4. — Equations for a string that is not free

If the string is not free, but required to remain on dage surface, then one will
define the problem of finding a maximum fgSU ds, while x, y, z, s are coupled by the

equation of surface and the equation:

2 2
SHECRG
ds ds d
The equation of the surface might be represented bytbee equations:

(30) X=¢@ad, y=¢@a, z=x(pa,

in which p, g denote arbitrary variables. Thus, the condition equo&i29) will assume
the form:

dp
(31) 1= P(ds) +Q( r

dp do

jm
ds de¢

S
In one then sets:

6V T(Pﬂ)+ Q@j

ap ds ds
oV dp, dqj
32 —=T| R—+ Q—|,
(32) 0q ( ds ds

oV 6V dp dV dq

as ap ds aq ds

analogous to equations (1), then upon eliminating the diffiade using (31), (32), one
will get:

(33) T=-y-N

0s
and

o[V LAV _ g2V
(9 (U+_j (QP_FQ)_Q[Gpj P(aqj RNTYE

will be the partial differential equation whose qaete solution isv, and ifh, a denote
the arbitrary constants in it then that will giveetequation of the desired curve and its
arc-length by:

(35) K= —, a=—.

In particular, if the system of curves:
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p =const.,, Q= const.

intersect at right angles on the given surface Ren0, and equation (34) will assume
the simpler form:

o544
0s P\ dp Qloq

If the force functiorlJ is also independent stthen one can set:

(37) V=hs+f(p,q),
and equation (36) will go to:
2 2
(38) U+h)?= l[ﬂj +i(ﬂj .
P\dp Qlaq

8 5. — String on a surface of revolution

One can adapt the two problems that were tredtedea and even a generalization of
them, to an arbitrary surface of revolution. Weate the distance from a point to the
rotational axis byr and let that axis be th&-axis, but let¢ mean the angle that is
described by the projection of the radius vectdoam plane that is perpendicular Zo
As is known, one will then have:

ds’ =dr? + dZ + r* d¢?,
or when the equation of the surface of revolut®on= Fz:
ds =dZ [1 + (F'2? + (F2)* d¢*.
Therefore, in the equations of the previous pargwa

P=1+F"27° Q=F2° R=0;
hence, from (36):

O N N
s 1+(F'2’\ dz) (F2°\ d¢

Now, if U depends upon only andz, or what amounts to the same thing, upon anly
then one might set:

oV _ a—V: a_V: 2 a’ "A?1:
E‘h’ Y a, 3 \/{(U+h) (Fz)z}[H(F 2)°];

SO
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a.2
(F2)°

(40) V:hs+a¢+jdz\/{(u+ h? - }[1+(F’ 27,

and therefore the equations of the curve of thegtill be represented by:

K:S+IGJ+MdLM&(F32

2

2 a ,

a:¢_J» adz1+(F 2
(FﬁJw+mt

(41)

(F 2)°

to which, one must add the equation for the stress:

(42) T=-U-h

In particular, let us consider the case that wasitimeed at the beginning of this
paragraph. If th&-axis points downwards then the force function i@vgy will be Gz

whereG means the weight of a piece of the string of temgth; furthermore, the force
function of the centrifugal force (cf.,3):

C& , _ G
29 29

(F2°=u(F2°.

(41), (42) will then imply the equations:

h+Gz+u( F 27 dz/1+( F ¢

212 A
\/[h+GZ+,U( F 3] (F 2

(@3 a=¢- A0y 1+ (P Y
FZYJW+GHu(FfV—

T=-h-Gz-u(F2?

K:s+J'[

a.2

(F2)°

which give the equilibrium figure of a string orsarface of revolution that is subject to
centrifugal force.
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If one letsG and i vanish then those equations will become the equatiorikeof
shortest line on such a surface.

§ 6. — Catenary on the sphere

Equations (43) will then give one the form that a massiving assumes on the

surface of a ball. If one leyg vanish and setsz =,/ 1> —z*, wherel denotes the radius
of the ball, then the equations above will become:

k=t (h+G2) ldz
J(h+G?*(P-2)- &
aldz
44 =Q- ’
o = I(IZ—zZ)J(h+Gz)2(F—z2)—a2
T=-h-Gz

One sees that the angleis represented by an integral of the third kind, while tice a
length is represented by one of the second kind.

Without going into the series development of thosegirals, | would at least like to
give a different form to the roots that will lead tetnormal form of the elliptic integral
with no further analysis. Whereas one will oftenldxd to discuss equations of third and
fourth order whose coefficients depend upon arbitrary cotsstartheir integration, it is
still quite often possible to replace them with otbees that already indicate how to
solve the equation, and the reduction to normal form witen point to such a
replacement; an example of this was given befo&3in

The series development of the expressions (44) dependssajuing the biquadratic
equation:

Z=Mh+G2*(>°-2)-a’=0,

into which the arbitrary constargsh enter. | next sett = - Glm, a = GbFP, z=1 cos 3.
One must then consider the expression:

%zez (m- cosd)? sirf 9 - b?.

However, one can next give this expression the form:
© = [(m—- cos?) sinZ—b] [(m— cosd) sinF+ b,
and when one decomposes each of these factors, imhgrigcan set:

O=[sin@+¢&+)Y[cos(F-¢& +y]sin(F-¢ - UY[cos(F+¢ +)V].
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If one then considers the equation:
(cosgd—msind+b=[sin(F+¢& + )f[cos T ¢ + )],

from which the equation that corresponds to the otherrfaagtoemerge upon switching
Jwith — &, then one will get just the conditions:

ycos Zz = msing,
Jy/COS £ =— MCOSE,
singcose+ W = h.

One can then consider the quantiteando = m/ cos Zto be new arbitrary constants, in
place ofm andb, as soon as one only shows that each valus, df always actually
correspond to real values @f & In the case op, that is obvious, but when one
eliminatesyy’ from the equations above, one will further get:

X=x—-2D) (1 -x%) —nmfx=0,

in which one setg = sin Z. This equation is nothing but the resolvent of the bigqu&dra
equation. However, one has:

for x=+1, X=-nT,

for x=-1, X=+nT,

so a real root must necessarily exist that might becpdl to a sine.
Now, when one multiplies the first factor in theeession fol® by the third one and
the second one with the fourth, it will take the fallog form:
© = - [sin® 9 cog - sirf £ (cosd + p)?] [sin® I sirf £- cos £(cosI - p),

or, when one replaces cé&svith z again, it will be:

Z=-G*(Z+2pzsine+1?r’sine—1?cog &) (Z + Apzsine+1°r’sine—I?cos &

=-G?(z+|psirf e+1cose~1-p?sin*e)(z+psirf =1 cose+J1- p?sin’e)
Oz-lpcos e+lsine+1- p’cose )(z—lpcog e—1sing1-p°cose)

=-G?¢.

The equatiorz = 0 will then have either four real roots, andeiad whend” < 1 / siff ¢
and also® < 1 / co$ & or two of them whe” lies between those two quantities. The

third case is excluded, since the existence of fmaginary roots would make/f

continually imaginary. Finally, if one introduc#ise new constanp, £ into equations
(44) then one will get:
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(lpcosz-z)dz
J-¢
1%sin 2¢ 5 dz
1- —
2 )I(IZ—zZ)J—_Z

T=G(lpcosZx-12z),

k=s-|

(44a) a=¢-

which are equations from which one can easily derivedhessdevelopment now.

§ 7. — String on a sphere that is subjected to centrifugadfce

| would now like to consider the case in which a strireg th found on a sphere is
subject to only the centrifugal force, while the axisatation should be a diameter of the

15

sphere. If one let& vanish in (43) and likewise introduces the radius place ofz

such that? = I —r? then one will get (cf., 8):

e I (h*=r%)rdr

k=s j\/(hz_rz)rz_az\/lz_rz’
. lardr

a=¢ jrz\/(hz_rz)rz_ale 2_r2’

T:,u(hz—l’z).

(45)

As before, one then replacess h? with h and? a* with &2, in turn, and setg = G /
29, such that now, in order for the stress to be pasibne must have only< h, and at

the samey will vanish completely, from the equations of the curve
The treatment of the integral depends upon the cubic eguatio

(46) R=(*-r?)?r’-a’=0.

However, for:
rf=w KW 0
the expressioR will assume the values:

+o0 —a® —a’ resp.

Now, since the expressidd must necessarily be positive for certain values thiat are
smaller tharh in order for a real curve to appear at all, one w#él &t the equatioR =
0 must have three positive roots, two of which are sm#ikemh, and the third of which

is greater thah. Therefore, let:
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(47) R=(?-0) (" -0?) (*-1?),
so a comparison of the coefficients of (46), (47) wilke:

2h? :,02+0'2+T2,
(48) h* = p’c*+07T%+1%07

a’=p’or’

It follows from this thato, g, 7 will assume entirely arbitrary values within theits that
were envisioned above, and they will satisfy timglke condition:

02(02+0'2+T2)2—4(020'2+0'2T2+T2,02)2
=(to+rn(p+to-1)(p-o+1)(p-0-1).
Therefore, if:
p>0>T,
as one can assume, then it will follow that:
p=0+T,
and the expressioR can then be replaced with the following one:
(49) R=[r*- (g+D% (r* - &) (r* - D).
Now, one can then replace equations (45) withahewiing ones:
2 2 .2
K=s—j | (o°+1°+0r—r)rdr |
V=13 =07 *-1IF *~(o0+1) ]
lor(o+1)dr

T o o el

T=pu(o®+r*+or-r?),

(50)

in which g; 7 denote arbitrary constants aot> 7. One of those constants must also be
smaller thar, and onlyr will fulfill that condition, sor must lie betweerr andl. By
contrast, ifois also smaller thahthenr must lie betweewandz. It is easy to go from
the expressions above to the series developments.
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8 8. — Equilibrium of thin elastic strings

The problem of an elastic string is also susceptible somilar treatment when it is
subject to external force that admits a force funcamd when, at the same time, its
cross-section is so narrow that one might neglextésistance to bending.

Let do be the original length of an element and distbe the same thing after
extension. The stress in the string in that elensetiiten:

(51) Tz~ _ 2y
do

in whichm denotes a constant aids the extension of the unit length. Hencé) disis
likewise the force function then, from (1), one wiéive the equations:

mz_(jg( +6_U:O’

do\ ds) 0dx

(52) mZi(AQ +6_U:
do\ ds) dy

2d(dz ou

01

m—| A—|+—=0.
do\ ds) 0z

However, since:
2 2 2
(53) A= (%j +(ﬂj +(izj -1, E: 1+,
do do do do

one can also replace equations (52) with the following:one

m d| aA% | au_
- +__0’
2 do| 5dx | ox

ds

2

(54) modjort | ou_,

2 do| 54y | oy

ds
m d| oAt | ou_
- - +__0’
2 do| 5dz| oz

ds

which can be derived from the starting assumptiathe integral:
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j(mzlz—ujda

must take on a minimum.

If one sets:
ov _ dx nf 0A?
L ema ==
0X ds ZadX
ds
2
(55) LA
oy ds Zady
ds
ov ,,dz_ nf 9A?
oM
0z ds 2612
ds
212
(56) vV 0V dx 0V dy 0V dz_mfA®

o 0Oxdo dydo dz w 2

in order to convert that given assumption into digledifferential equation, and likewise
considers the expression (53) fothen one will obtain:

(555

e\ A2 ds _ (;12 j
= - —=-m

but also:

+U= m?A Z_+)
Er; 2 do 2

and upon eliminating from both equations:

o0 {350l (305 5559

or also

u+dv
(58) (a_vj (avj (avj =mtJy1-2—00 _4l |

0x ay 0z m

That is the partial differential equation whose ptete solution must be sought. One can
always work with it in the irrational form (58), &g asU is independent of;, in which
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0V / 0o must then be set equal to a constant, and will havespigdhe character of
equation (6). It will then admit the complete solution to any problem that was posed for
an inelastic string above.

It might be remarked that equation (58) will go to equat&)ras along as is made
infinitely large, which would correspond to the inelastiring. The previous problems
can then be truly regarded as special cases of the poesen

8 9. — Equilibrium of a thin elastic string under the infuence of gravity

Let gravity be the only force that is active, let Faaxis point upwards, and I& be
the weight per unit length. One will then haye — Gz and if one then sets:

a_V: m2 a, a_V: Gh
0x 0o
in (58) then:
2
ov z-h
—= 1+2G—- -1 - &,
SO

v:mzax+Gha+m2jdz\/{ 1+26ﬂ—1} - 3.

mZ

Now, the equation of the curve of the string is:

(59) a=—=X~— aj

However, when one differentiates this with respecth and remarks that one can
differentiate with respect to z instead ofz, under the integral sign instead, the original
arc-length will be expressed by:

(60) K=o mz\/{/HZG%h—l} -&.

The integral (59) is easy to perform. If one sets:

z—h

mZ

1+ 2G -1=u

then:
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2
m
dz=— (1 +u) du,
G
so (59) will go to:

X -

o= amzj(1+ u) du

G Ji-a

:%[Iog(uh/uz—az)ﬂ/ - aﬂ

If one again replacaswith its value inz then one will get:

(61) X—a=

e (T B N e e

which is the equation of the desired curve. If ongkesm infinitely large in it and
replacesa with a/ n? then it will go over to the equation of the ordipaatenary.

Karlsruhe, 26 May 1859.




