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 If we denote the coordinates of two planes by u1, u2, …, v1, v2, … and the coordinates 
of two points that lie upon the line of intersection of the planes by x1, x2, …, y1, y2, … 
then it is known that one can represent the coordinates of the line of intersection of the 
two planes, or – what amounts to the same thing – the connecting line of the two points, 
by the quantities: 
(1)      pik = ui vk – vi uk , 
or the quantities: 
(2)      qik = xi yk – yi xk . 
 
One the following equations between the p or the q: 
 

(3)    12 34 13 42 14 23
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0,
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Q q q q q q q

= + + =
 = + + =

 

 
respectively, and the p, q depend upon each other by means of the equations: 
 

(4)    ρ pik = 
ik

Q

q

∂
∂

,  σ qik = 
ik

P

p

∂
∂

, 

 
in which ρ, σ mean arbitrary quantities that can be set to 1, as will be done in what 
follows. 
 The equation of a complex of order n can then be written in two ways when one 
denotes the variables by p, in one case, and q, in the other, and one then obtains the two 
forms: 
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for the equation F = 0 of such a complex. 
 We make the following remarks on these expressions: 
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 1) The value of a coefficient remains unchanged when one permutes any two of the 
index pairs ih, kl, etc. with each other. 
 2) A coefficient (like the corresponding p, q) changes its sign when two indices of 
one pair are permuted. 
 3) When one carries out the sum on the right, any coefficient will take on a 
polynomial factor that gives the number of distinct forms that it will assume by 
permuting the index pairs. 
 If one symbolically sets: 

(6)     , , ,

, , ,
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=
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⋯

⋯

⋯

⋯

 

 
then F(p) or Φ(q) will appear as the nth power of a linear complex: 
 

(7)     
{ }
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∑
 

 
 The symbols aih , αih then have only the property that their signs will change when 
one permutes the two indices.  They likewise depend upon each other very simply; if one 
then sets: 

(8)     12 31 13 42 14 23
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= + +A

 

then one will have: 

(9)     αih = 
ih

A

a

∂
∂
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∂
∂

A
, 

 
and the equations (6) can then also be written: 
 

(10)    
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with which, the coupling of the two real notations with the two symbolic ones is 
exhibited completely. 
 However, the following remark leads to a simplification of the symbolic notation, and 
at the same time has an essential influence on its use: 
 When n > 1, the coefficients of a complex are in no way determined completely, 
although they can be modified when one calls upon P = 0 or Q = 0, respectively.  In fact, 
one can always set: 
(11)     F + MP = 0 
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in place of F(p) = 0, where M is a function of order n – 2 of the p, and thus a function that 
carries with it: 

( 1)( 2)( 3)( 4)( 5)

1 2 3 4 5

n n n n n+ + + + +
⋅ ⋅ ⋅ ⋅

 

 
arbitrary coefficients.  I will now prove the following theorem: 
 
 The equation F(p) = 0 can always be modified, and in only one way, by applying P = 
0, in such a way that one can consider it to be a symbolic power of a special linear 
complex – i.e., one whose lines all intersect a fixed line.  The form that F(p) then assumes 
shall be called the normal form of the complex equation. 
 
 We examine the conditions that the demands of the theorem will imply.  If the 
symbolic coefficients aih (and analogously for the α) are to be the coefficients of a special 
complex then one can introduce quantities: 
 

a1, a2, a3, a4,  b1, b2, b3, b4 
such that: 
(12)     aih = ai bh – bi ah . 
 
 In this case, the first equation (6) then goes to: 
 
(13)  aih,kl,mn,… = (ai bh – bi ah) (ak bl – bk al) (am bn – bm an)… 
 
 The question is then that of whether, and under what circumstances, it is permissible 
for the coefficients of the complex to be set equal to the symbolic expressions on the 
right-hand side of this equation.  Both sides of equation (13) have the aforementioned 
general properties of the invariability or change of sign, respectively, in common with 
each other.   The only question, upon whose answer the possibility of any symbolism will 
depend, is then: Do linear relationships exist between the right-hand parts of equations 
(13) that are not generally fulfilled by the right-hand sides?  In fact, this is the case.  The 
symbols ai bh – bi ah are then the coordinates of a line.  However, the identity: 
 
(14)    0 = (a1 b2 – b2 a1) (a3 b4 – b3 a4) 

+ (a1 b3 – b1 a3) (a4 b2 – b4 a2) + (a1 b4 – b1 a4) (a2 b3 – b2 a3) 
 
exists between them, and no other one.  All conceivable linear relations that exist 
between the right-hand parts of equations (13) must then arise from this under 
multiplication by n – 2 expressions of the form: 
 

ai bh – bi ah . 
 
One then sees immediately that the symbolic equations (13) between the coefficients of 
the complex assume the following equations, which are not fulfilled, in general: 
 
(15)   a12, 34, ih,… + a13, 42, ih,… + a14, 23, ih,… = 0. 
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Since all of the index pairs that follow the first two are completely arbitrary, the number 
of these relations is precisely as large as the number of combinations of n – 2 index pairs 
that are possible, or the number of coefficients that a complex M of order n – 2 contains. 
 If one now replaces the coefficients of F in (15), which these equations generally do 
not satisfy, by any means, with the coefficients of the complex F + MP = 0 (11), which is 
identical with F = 0, then one will obtain a system of first-degree equations in which the 
coefficients of M are the unknowns, and in which precisely as many unknowns as 
equations then appear.  It then follows from this that either these unknowns can be 
determined completely from these equations or that (when the determinant of the system 
vanishes) the unknowns must remain undetermined.  The determinant of the system then 
does not need to be examined when one can show that the unknowns are completely 
determinate, in some way.  However, this happens in the following way: 
 

(16)   ∆F = 
2 2 2

12 34 13 43 14 23

F F F

p p p p p p

∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

. 

 
One will obtain a complex ∆F = 0 of order n – 2 from a complex F = 0 of order n by this 
process, and when one again applies the same operation to them, etc., one will obtain a 
sequence of complexes of order n – 4, n – 6, etc., which shall be denoted by: 
 

∆2F = 0, ∆3F = 0,  …, 
 
respectively.  However, should the modified complex equation F + MP = 0 now be 
representable in the symbolic form: 
 

F + MP = {Σ (ai bk – bi ak) pik}
n 

 
then one would obtain zero identically by applying the process ∆ to the right-hand side of 
equation (14), and the function M must then possess the property that the equations: 
 
     ∆  (F + MP) = 0, 
(17)    ∆2 (F + MP) = 0, 
     ∆3 (F + MP) = 0 
 
must exist identically for F + MP.  In order to develop these equations, I remark that: 
 

 ∆(MP) = P ∆M + M ∆P + 
12 34 13 42 34 12

M P M P M P

p p p p p p

 ∂ ∂ ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

(18)  = P ∆M + 3 M    + 12 13
12 13

M M
p p

p p

 ∂ ∂+ + ∂ ∂ 
⋯  

  = P ∆M + (n + 1) M. 
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This will immediately yield the result of repeated application of this operation, when one 
first defines ∆(P ∆M), ∆(P ∆2M), etc.  One likewise obtains these expressions when one 
replaces M with ∆M, ∆2M, etc., in (18), and replaces n with n – 2, n – 4, …  One will then 
have: 
 ∆ (PM) = P ∆ M + (n – 1) M, 
 ∆ (P ∆M) = P ∆2M + (n – 1) M, 
 ∆ (P∆2M) = P ∆3M + (n – 3) M, 
 …………………………………, 
 
and in order to determine P ∆kM, one will need only to subject the first k – 1 of these 
equations to the operations ∆k−1, ∆k−2, …, ∆ and take their sum, along with the kth one.  In 
this way, one will obtain the following system: 
 
 ∆   (PM) = P ∆ M + (n + 1) M, 
 ∆2 (PM) = P ∆2M + 2n ⋅⋅⋅⋅ ∆M, 
 ∆3 (PM) = P ∆3M + 3 (n – 1) ∆2M, 
 ∆4 (PM) = P ∆4M + 3 (n – 2) ∆3M, 
 …………………………………..…, 
 
whose defining rule is clear.  However, equations (17) are converted into the following 
ones under the introduction of these values: 
 
 ∆  F + P ∆  M + (n + 1) M = 0, 
 ∆2 F + P ∆2M + 2 ⋅⋅⋅⋅ n ⋅⋅⋅⋅ ∆M = 0, 
(19) ∆3 F + P ∆3M + 3(n – 1) ∆2M = 0, 
 ∆4 F + P ∆4M + 4(n – 2) ∆3M = 0, 
 ………………………………….. 
 
One can successively calculate M, ∆M, etc., from these equations when one starts with 
the last one, which contains just one ∆kM, while ∆k+1M vanishes identically.  However, 
since it comes down to not so much the determination of these functions as much as to 
the expression for the modified complex: 
 
(20)    F + PM = F1, 
 
one can add this equation to equations (19), and then sum over all of them, after one has 
multiplied equations (19) by: 
 

− 
1 1

P

n⋅ +
, − 

2

1 2 1

P

n n⋅ ⋅ + ⋅
, − 

3

1 2 3 1 1

P

n n n⋅ ⋅ ⋅ + ⋅ ⋅ −
,  etc., 

 
in sequence.  All of the terms that are affected with M, ∆M, etc., will then drop out upon 
addition, and what remains will be the normal form of the complex: 
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(21) F1 = F – 
1 1

P

n⋅ +
∆F + 

2

1 2 1

P

n n⋅ ⋅ + ⋅
∆2F – 

3

1 2 3 1 1

P

n n n⋅ ⋅ ⋅ + ⋅ ⋅ −
∆3F − …, 

 
which is determined completely and uniquely in this way. 
 The normal form of the complex allows one to give its equation the symbolic form: 
 

(22)    F1 = { Σ (ai bk – bi ak) pik} n = 0. 
 
The symbol ai bk – bi ak then seem to be the coordinates of a line that is given by two 
points a, b.  If one thinks of it as being expressed by two planes α, β instead, and likewise 
introduces the q, in place of p, then one will obtain the second symbolic form that is 
equivalent to the one above: 

(23)    F1 = { Σ (αi βk – βi αk) qik} n = 0. 
 

________ 
 

 As an application of this symbolism, I will present the equation for the surface of 
order four and class four, which is described by the vertices of decomposing complex 
cones and the planes of decomposing complex curves for a second-order complex.  (cf., 
Plücker’s Neue Geometrie des Raumes, pp. 307, et seq.)  For the second-degree complex, 
the normal form brings with it a determination of the coefficients.  If F = 0 is the equation 
of the complex in arbitrary form then one will have: 
 

 F1 = F – 
3

Q
(a12, 34 + a13, 42 + a14, 23). 

 
If one now sets, symbolically: 
 

 F1 = { Σ (ai bk – bi ak) pik} 2, 

  = { Σ (αi βk – βi αk) qik} 2 
 
then one will obtain the equation of a complex cone that emanates from the point y when 
one expresses the p or the q in terms of the quantities xi yk – yi xk , and thus considers the y 
to be given.  The equation of this complex cone will then become: 
 
(24)   (a b x y)2 = 0,  or (αi βk – βi αk)

2 = 0. 
 
 One likewise gets the equation for the complex curve that is contained in the plane v 
when one expresses the p or the q in terms of the quantities ui vk – vi uk, and thus 
considers the v to be constant.  The equation of the complex curve is then: 
 
(25)  (ua vb – va ub)

2 = 0,  or (α β u v)2 = 0. 
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 One obtains the complex surfaces that correspond to the connecting lines between 
two points y, z when one replaces the y in (24) with the coordinates of a variable point y + 
λz, and thus, the family of complex cones whose vertices lie on these lines, and then 
defines the locus of the intersections of successive complex cones – i.e., lets the 
discriminant of the quadratic equation in λ that thus arises vanish.  One now gets the 
following expression for this quadratic equation with the use of the second formula in 
(24): 

(αx βy – βx αy)
2 + 2λ (αx βy – βx αy) (αx βz – βx αz) + λ2 (αx βz – βx αz)

2 = 0; 
 
if one then forms the discriminant and distinguishes the different symbolic series by a 
prime then one will have: 
 

(26)  0 = { }2
( )( ) ( )( )x y x y x z x z x z x z x y x yα β β α α β β α α β β α α β β α′ ′ ′ ′ ′ ′ ′ ′− − − − −  

 
for the equation of the complex surface. 
 One will likewise obtain the equation for the complex surface in plane coordinates 
when one thinks of the line y, z as the intersection of two planes v, w, then replaces v with 
v + λw in (25), and again forms the discriminant in λ.  The first form (25) then gives the 
form: 
(27)  0 = {(ua vb – va ub) (ua′ wb′ – wa′ ub′) − (ua wb – wa ub) (ua′ vb′ – va′ ub′)}

2 
 
to the equation for the complex surface in plane coordinates. 
 The equations of these complex surfaces can be written more simply when one now 
replaces the quantities yi zk – zi yk with the ones that correspond to the vi wk – wi vk , and 
conversely in (27).  These two equations then assume the forms: 
 

(28)   
2

2

( , , , ) 0,

( , , , ) 0.
x x x x

a b a b

v w

u b u a u b u a y z

α β β α α β β α

′ ′

′ ′ ′ ′ − − =
 ′ ′− − =

 

 
 One can also obtain these equation forms immediately.  The first one says that the 
complex surface of a line v, w is the locus of the points whose complex cones contact the 
line; the second one says that the tangent planes of the complex surface contain complex 
curves that have the lines for the common secant. 
 If one consider the second equation (24): 
 

(αx βy – βx αy)
2 = 0 

 
to be the equation of the complex cone for the point x and then denotes it by: 
 
(29)   2

yγ  = 0  (γi = αx βi – βx αi , then γx = 0) 

 
then from the theory of second-order surfaces: 
 

(γ γ′ γ″ u)2 = 0 
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is the equation of the surface (29) in plane coordinates; i.e., since (29) is a cone, the 
square is the equation of its vertex.  One must then have: 
 
(30)     (γ γ′ γ″ u)2 = M ⋅⋅⋅⋅ 2

xu , 

 
where M now depends upon only the x, but no longer on the u.  Now, the condition for 
the cone to decompose, and thus for its vertex to be indeterminate, is M = 0.  Therefore, 
M = 0 is the equation of a surface that is the geometric locus of all points whose complex 
cone resolves into a pair of planes. 
 Now, in order to define M, one needs only to replace a series of γ with their values in 
the left-hand side of (30).  One then has: 
 

(γ γ′ γ″ u)2 = (αx β – βx α,  γ′, γ″¸ u)2 = {αx (β γ′ γ″ u) – βx (α γ′ γ″ u)} 2, 
 

or, when one applies the known identity, and considers that  xγ ′  = xγ ′′  = 0: 

 
= (α β γ′ γ″)2 2

xu . 

 
The factor 2

xu  has been separated in this, and one then has: 

 
 M  = (α β γ′ γ″)2, 
 = (α, β, x xα β β γ′ ′ ′ ′− , x xα β β γ′′ ′′ ′′ ′′− )2. 

 
 The surface M = 0 then has order four, and its equation consists of the equation of the 
complex surface (28), when one lets the coordinates of the guiding line symbolically 
mean the coefficients of the given complex. 
 
 One likewise contains the (known from the previous identity) surface of class four 
whose tangent planes contain decomposing complex curves, when one defines the 
equation: 

N = 0 = (a, b, a bu b u a′ ′′ ′− , a bu b u a′′ ′′′′ ′′− )2, 

 
or when one lets the coordinates of the guiding line in the equation for the complex 
surface in plane coordinates mean the symbolic coefficients of the given complex. 
 I will give other applications of the method of notation that was set down above on 
some other occasions. 
 
 Göttingen, 5 April 1869. 
 

___________ 
 


