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 A year ago, I published some considerations in these Rendiconti (2) that were 
intended to exhibit the convenience of giving an organic structure to the theory of those 
states of elastic coaction in the absence of external forces that do not belong to the 
category of distortions that has been neatly defined and circumscribed by now. 
 I then promised that I would initiate a systematic study of the argument; the 
occupation of the country that the state of war brought about prevented me, and still 
prevents me, from following up on my proposal, but in compensation, it has offered me 
more than one occasion to thoroughly convince myself of the importance of the question, 
even in practice.  Meanwhile, I ask that the Academy permit me to return to it, if only in 
passing, in order to treat a problem in this note that is very interesting from the realm of 
the theory of the resistance of artillery and to generalize one of the results to which one 
arrives in that problem in a following note. 
 
 Consider a homogeneous, isotropic elastic solid that is bounded by two coaxial 
cylindrical surfaces of radius r0 and r1 .  One proposes to characterize the states of elastic 
coaction that are symmetric with respect to the planes that pass through the axes, as well 
as with respect to the planes that are normal to it. 
 To that end, examine the neighborhood of a generic point of the solid and orient the 
reference axes along the three principal directions: One of them, the z-axis, is parallel to 
the axis of the cylinder, another, the r-axis, is perpendicular to it, and the third, the t-axis, 
is normal to the preceding ones. 
 The elementary elastic potential energy can then be expressed in the well-known 
form: 
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in which G and m are constants that measure the transverse modulus of elasticity and the 
coefficient of lateral contraction, respectively, of the material, while εx , εr , εt represent 
the three principal dilatations, and under the hypotheses that were made, they are 
considered to be (very small) functions of only the distance r of the generic point of the 
axis that is considered. 
 We eliminate any axial deformations from what follows by supposing that: 
 

εx ,  = 0, 
 
but not without warning that this restrictive hypothesis, which is justifiable only as long 
as one treats indefinite cylinders, can be easily removed when one passes to the practical 
case of cylinders of finite length by means of a know procedure of superposition that was 
already usefully applied in similar cases by Prof. Volterra (1). 
 The elastic potential energy that relates to a truncated solid that is bounded by two 
cross-sections, which will be regarded as being situated at a distance of one length unit 
apart, for simplicity, will then prove to be expressed by: 
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Having said that, introduce the hypothesis that in the state under examination, the given 
solid is found to be in stable equilibrium in the absence of external forces.  Its elastic 
potential energy must then be a minimum with respect to all of the virtual variations of 
the configuration (i.e., small and compatible ones that we can imagine it to be subjected 
to). 
 The symmetry conditions remain in place, along with the other restrictions that were 
imposed above, so we confine ourselves to considering the variations of the configuration 
that one will obtain by transforming any cylindrical surface that is coaxial with the given 
solid and has a generic radius of r (which is naturally found between r0 and r1) into 
another surface that also cylindrical and coaxial with it, and has a radius of r + ρ (where 
ρ is supposed to be a small, uniform, continuous function of the variable r). 
 It is easy to verify that the principal dilatations εrr , εll   of the generic elements must 
become: 

εrr + 
d

dr

ρ
,  εll   + 

r

ρ
, 

 
respectively, after such a variation of the configuration. 
 It then follows that the first variation of the elastic potential energy is expressed by: 
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 (1) V. Volterra, “Sur l’équilibrium des corps élastique multiplement connexes,” Annales de l’École 
Normale 24 (1907), 3.  
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 For equilibrium, one must then succeed in verifying the condition: 
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 Under the hypothesis that the function: 
 

εr +
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is continuous and endowed with a derivative that is bounded in the entire interval (r0 , r1) 
(1), one can set: 
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so the equation of condition will become: 
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 Finally, if one performs the indicated integration in the first term and reduces the 
result then one will have: 
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 (1) That hypothesis does not constitute a limitation in regard to the physical magnitudes that the 
function under discussion and its representative derivative must necessarily satisfy. [Cf., C. Somigliana, 
“Sulla teoria delle distorsioni elastiche,” Rend. della R. Accad. dei Lincei (5) 23 (1914).] 
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 That condition must be verified identically, no matter what values that one attributes 
to the function r, because it is notoriously necessary that one should have: 
 

[I]     
1

( )
2r r l

d

dr m
ε ε ε + + − 

 = r l

r

ε ε−
 

for any r, as well as: 
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 It is easy to exhibit the mechanical significance of these conditions.  It is enough to 
introduce the principal stresses, which will be denoted by σz , σr , σl , respectively, for 
obvious reasons of analogy, and to recall that they are coupled to the dilatations by the 
relations: 
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 The indefinite equation (1) will then immediately become: 
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or, what amounts to the same thing: 
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 However, the boundary equations (II) reduce, as could easily be predicted, to the 
double condition: 
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 The problem thus posed can obviously be solved in an infinitude of ways by choosing 
σr arbitrarily [with the one reservation that it must be continuous and endowed with a 
derivative that is bounded in all of the interval (r0 , r1) and satisfies (IV) at the extremes] 
and one can then deduce σl from (III). 
 It is well-understood that the states of deformation that can then be defined will not 
generally satisfy the so-called compatibility (or Saint-Venant) equation, which we have 
specifically abstracted from. 
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 One can also, if desired, specify that it is, indeed, beyond doubt that supposing that 
the equations are satisfied everywhere could only lead us to Volterra’s particular 
distortions. 
 Other particular cases (e.g., Somigliana distortions) will be obtained when one 
supposes that the compatibility equations are satisfied in all of the space that is occupied 
by the solid, except for only certain well-defined surfaces that, in homage to the 
symmetry hypothesis that was posed, must be cylindrical and coaxial to that solid.  It is 
easy to see that those particular cases include all of the ones that are realized habitually in 
the construction of artillery by forcibly placing one tube inside of the other in such a way 
that the initial external diameter of one of them is slightly larger than the initial internal 
diameter of the one that has to enclose it. 
 However, the more typical and general cases are obtained only when one drops the 
compatibility equations completely; one will then find, among other things, all of the 
states that are called strongly continuous, which are produced spontaneously when one 
supposes that a hollow cylinder is acted on by internal stresses that are intense enough to 
determine permanent deformations.  Indeed, it can happen that if one operates in that way 
then the internal layers, which are more deformed, will then keep the external layers in a 
state of tension (even after the pressure has ceased to act), while at the same time, one 
will find compressions for the reactions to them. 
 Such states of coaction were recently predicted by the engineers Jacob and Malaval of 
the French Naval Artillery as being the ones that will permit modern artillery to support 
pressures that are far more elevated than the ones that were tolerated in the past (1) with 
no permanent final deformations when one makes a more complete utilization of the 
resistance properties of the materials. 
 For obvious reasons, it is not possible for me to enter into a discussion of the 
technical problems to which I alluded.  I shall limit myself to pointing out a noteworthy 
property that is common to all of those states of coaction, which is a property that had 
already been discovered for some time in certain particular cases, but which can now be 
easily established in a much more general way. 
 To that end, consider the expression for the elementary cubic dilatation: 
 

Θ = εz + εr + εt . 
 
 Taking into account the hypotheses that we made, as well as the results that we 
deduced from them, we can write: 
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 Consequently, the total cubic dilatation for the usual truncated cylinder of unit length 
will be measured by: 
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 (1) Cf., E. Bravetta, La resistenza delle artigliere, Ed. Carlo Pasta, Torino, 1913. 
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 However, according to (IV), σr must vanish for r = r0 , as well as r = r1 ; the total 
cubic dilatation will then be zero identically. 
 In other words, the total volume of the tube in the state of elastic coaction that is 
assumed to exist in it will be equal to the sum of the volumes that would be assigned to 
the individual elements that it is composed of identically if they remained independent of 
each other, so that one could assume that they were all in their natural undeformed state. 
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