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 The posthumous work of Hertz Die Prinzipien der Mechanik in neuem Zusammenhang 

dargestellt has given rise to the publication of a certain number of critical studies that have not, at 

the same time, had the goal of giving a somewhat more complete presentation of it that is intended 

for those who are interested in the ideas of that great electrician, but which might recoil from 

reading his book, in which his concern for formal logic seems to have resulted in the accumulation 

of accessory considerations, arguments that are purely formal and sterile, and definitions of terms 

that more or less deviate from their usual sense. 

 The goal that Hertz proposed to pursue was to rid mechanics from the uncontestable difficulties 

that present themselves in the logical coordination of the principles of that science. 

 The means for accomplishing that consists of establishing the unity of force, while proposing 

that the hypotheses of nature are only the manifestations of geometric constraints that exist, not 

only between the masses that are perceptible to our senses, but also between them and the hidden 

(verborgene) masses. 

 Having admitted that hypothesis, mechanics is then found to be reduced to the study of material 

systems with constraints and can be constructed by means of a single fundamental principle that 

consists of the statement of the law of motion of such a system that is devoid of any influence, i.e., 

any external constraint. 

 In order to give the statement of that law all of the simplicity of form that is appropriate to its 

role, Hertz introduced a terminology that reduced a material system with constraints to a geometric 

point that is confined to remain on a fixed surface. 

 Hertz’s book consists of three divisions: 

 An introduction that is devoted to a critical examination of the principles of mechanics. 

 A first part in which the terminology is established. 

 A second part, which consists of a synthetic presentation of the known propositions of 

mechanics in the particular form that they get from the hypotheses and terminology that were 

mentioned. 
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INTRODUCTION 

 

 The Introduction was the subject of a study by Poincaré (1), in which one will find, along with 

a presentation of Hertz’s ideas, a deep discussion of the principles of mechanics that neatly exhibits 

the logical difficulties that present themselves in the coordination of those principles. 

 Referring to that study, we shall confine ourselves to briefly pointing out, without discussion, 

the objections that Hertz made against the two systems that had been proposed up to then, namely, 

the classical system and the energetic system. We will then present Hertz’s concept itself. 

 

 Classical system. – The objections to that system that Hertz raised were directed, above all, to 

the notion of force. 

 First of all, a careful examination of the usual presentation of the principles of mechanics will 

show that the manner by which that notion is established in it is far from satisfactory. 

 In addition, there is something fraudulent about the introduction of force into certain questions 

that gives the impression that it is only useless machinery that pointlessly complicates the intuitive 

concepts. 

 Notably, how do you define the notion of force in celestial mechanics, in which observations 

apply to only the motions, in order for them to first establish the laws, as well as to then verify the 

deductions that are due to analysis? 

 A piece of iron resting on a table that is almost horizontal defines something that seems to be 

extremely simple to us. 

 Now, in order to account for the fact that it is necessarily at rest according to the laws of 

mechanics, one must analyze all of the forces to which that piece of iron is subject, such as weight, 

elastic reaction of the table, friction, molecular, magnetic, electric forces, etc., in order to confirm 

that those forces will collectively cancel each other. 

 There are many good reasons for explaining the permanence of a state in the absence of any 

perceptible cause of perturbation. 

 A third objection that Hertz made to the motion of force was directed towards its magnitude. 

 Far from exhausting the notion of force as one finds it in rational mechanics, nature presents 

us with only forces that are subject to numerous restrictions, such as being decomposable into 

reciprocal actions between the particles of matter and being independent of the absolute value of 

time and the absolute location in space. 

 Some other restrictions still seem to have been assumed, and one is not absolutely fixed in 

one’s choice of them. 

 Thus, one can demand that the elementary forces consist uniquely of attractions and repulsions 

along the connecting lines between the active masses if their magnitude depend upon only the 

distance between those masses or if there is reason to introduce absolute or relative velocities, or 

even accelerations and higher-order derivatives of the velocity. 

 Finally, the principles of mechanics do not explain the law of conservation of energy, although 

its generality would seem to extend from physics to mechanics. 

 It results from those considerations that mechanics is too vast; it includes more than nature. 

 
 (1) H. POINCARÉ, Revue générale des Sciences (1897), pp. 734.  
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 Energetic system. – That system of mechanics is obtained by substituting the notion of energy 

for that of force in the most fundamental notions. 

 At first glance, one finds oneself in the presence of a difficulty, since energy presents itself in 

two forms: One of them, viz., kinetic, finds its definition in its analytic expression. The other one, 

viz., potential, necessitates an experimental definition that seems to be quite difficult to establish 

suitably. 

 If one assumes that that obstacle has been overcome then it will become necessary to pose a 

law that relates the four fundamental notions: space, time, mass, and energy. 

 The choice of that law among the general theorems of mechanics is arbitrary, to some extent. 

Hertz chose Hamilton’s principle, which expresses the idea that the real motion of a system whose 

positions at two instants t0 and t1 one are given, is the one that minimizes the value of the integral: 

 
1

0

( )
t

t
T U dt− , 

 

in which T represents the kinetic part of the energy, and U is the potential part. 

 In that conception of mechanics, the notion of force is introduced analytically and will result 

in a simple definition of the word, like the motion of vis viva in classical mechanics. 

 In a large number of questions, that system presents the advantage of avoiding the use of 

physical hypotheses that have no other objective than to permit one to apply the principles of 

mechanics. 

 The set of facts that it embraces is more restrictive than that of the classical system, since it 

can be deduced from the latter by means of certain hypotheses. 

 Indeed, it is too restrictive, and that imperfection is sufficient for one to reject it. 

 Hamilton’s principle is indeed applicable to only those systems whose constraints are 

expressed by equations in finite terms between the parameters. 

 Now there exist constraints that are expressed by means of non-integrable differential 

equations. It suffices to cite the case of rolling and pivoting motions, which is case that was the 

subject of the work of certain geometers (1). 

 For example, consider the motion of a sphere that rolls without slipping on a horizontal plane. 

 At each instant, the velocities are determined when one knows that instantaneous axis of 

rotation around the point of contact, so there will be three quantities, instead of the five that are 

involved when the sphere can slide on the plane. 

 When the sphere starts from a given position, it can therefore attain only 3 positions without 

the intervention of external forces. 

 However, the constraint equations are not integrable, so the number of different positions that 

it is kinematically capable of attaining must continue to be represented by 5. 

 For any two of those 5 positions, Hamilton’s principle will obviously determine a trajectory 

in such a way that when one applies it carelessly, one will find that upon starting from one position, 

the sphere can attain 5 position without the intervention of external forces, which is a conclusion 

that is contrary to reality. 

 
 (1) APPELL, HADAMARD, Mouvements de roulement et de pivotement en dynamique, Carré et Naud, Paris.  
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 We add that even in the case where the two chosen positions belong to a dynamically-possible 

trajectory (without the intervention of external forces), Hamilton’s principle will generally give a 

false result. 

 As a second example of a material system whose parameters are subject to non-integrable 

differential equations, we cite the case of the bicycle. 

 We add that Hertz called material systems whose constraints can be represented by a system 

of equations with finite terms, i.e., ones whose position can be determined when one knows a 

certain number of independent parameters, holonomic. 

 

 Hertzian system. – Hertz saw the resolution of the difficulties that presented themselves in 

coordinating the principles of mechanics in an explanation for the concept of force. 

 Mechanics considers force independently of its cause. 

 The same is not true in physics, more generally, in which one considers several types of forces 

that are distinguished by their causes, such as elastic, electric, electrodynamic forces, etc. 

 Can we not reduce those causes to a single one, i.e., give a common explanation for the various 

forces? 

 Among the causes of force (in truth, they are quite restricted in number), one finds motion, i.e., 

inertia. 

 With Poincaré, we consider a ball-regulator, which we will nonetheless modify with the goal 

of suppressing the influence of gravity. 

 Let ABCD be an articulated diamond. The upper angle A is fixed. The lower angle C carries a 

ring that can slide along a vertical spindle AX. A rod T is suspended from the ring C. 

 The lower edges of the diamond CB and CD are prolonged along their own lengths and carry 

balls at their free extremities whose masses dominate that of the rest of the device considerably. 

The entire device is animated with a rotational motion around the spindle AX, and one sees that 

the centers of the balls remain in the horizontal plane of the fixed point A, in such a way that the 

effect of the weight is eliminated completely. 

 The centrifugal force tends to move the balls apart, and consequently, the point C will approach 

A. 

 The system is then capable of exerting a force by the intermediary of the rod T due to its own 

motion. 

 Suppose that the system is invisible for us. The observer will attribute the traction that is 

exerted on the rod T to a force, namely, an attraction that the point A exerts on the that rod. 

 Hertz’s hypothesis can be expressed in the following manner: 

 

 All of the forces of nature are due to the motion of masses that are perceptible or latent. 

 

 According to Hertz’s expression, one will have a dynamical explanation for force. 

 That hypothesis obviously postulates the existence of latent (verborgene) material masses, 

such as the ether of Fresnel and Maxwell. 

 It remains to establish the particular theory that is appropriate to each type of forces, and one 

must observe that elasticity itself does not escape the necessity of a dynamical explanation in that 

way of looking at things. 
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 If we assume Hertz’s hypothesis then we will be in a position (at least theoretically) to 

determine the expressions for the forces that are exerted between the material systems, whether 

perceptible or latent, by virtue of their constraints, and in order to do that, we appeal to only the 

principle of inertia, which can be conceived in the absence of any notion of force, as one sees. 

 It will then result from this that force will be eliminated from mechanics as a fundamental 

notion, and it will be reduced to the role of an auxiliary notion that is simply defined by an 

analytical expression. 

 That is Hertz’s conception of things. 

 Does the hypothesis that is at the basis for it suffice to eliminate the difficulties in the definition 

of force that have been encountered up to now? We will make a judgment on that later after we 

have presented the manner by which Hertz introduced that definition. 

 

 

PART ONE 
 

GEOMETRY AND KINEMATICS OF MATERIAL SYSTEMS 

 

 Constraints. – Hertz subjected the constraints to the restriction that they can be represented by 

systems of linear total differential equations of the form: 

 

A1 q1 + A2 q2 + … + An qn = 0 , 

 

in which q1, q2, …, qn are parameters that determine the position of the system, and the coefficients 

A1, A2, …, An are continuous functions of those parameters. 

 Equivalently, one can say that the sum of two possible infinitesimal displacements q and q   

that start from the same position is a possible infinitesimal displacement that starts from the same 

position (viz., it is possible to superpose infinitesimal displacements that are compatible with the 

constraints). 

 Hertz attached the linear form of the constraint equations to a property of constraints that he 

referred to by the name of continuity in the infinitesimal and which consists of the idea that any 

possible infinitesimal displacements can be obtained by a rectilinear trajectory. 

 It first results from the continuity of constraints, which is intended in the ordinary sense of the 

word, that one can successively perform two infinitesimal displacements q (q1, q2, …, qn) and 

q   1 2( , , , )nq q q      that are supposed to be possible and start from the position q (q1, q2, …, 

qn), because there exists a possible displacement that starts from the position q + q that differs 

from q   only by infinitesimals of higher order. One can then make the system pass from the 

position q to the position q + q + q   by way of that trajectory. 

 Hertz’s condition expresses the idea that one can, in addition, pass from the position q to the 

position q + q + q   by way of a rectilinear trajectory, or rather, since the word “rectilinear” 

makes no sense in the infinitesimal, that the positions q and q + q + q   belong to the same 
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possible trajectory that has differential elements of first and second order that are continuous at 

that position. 

 We prefer the following statement, by which we can characterize the constraints by expressing 

them as linear equations that are homogeneous in the differentials of the parameters that express a 

concrete fact. 

 

 Any trajectory that is traced through the positions that are obtained by all possible 

infinitesimal displacements expresses a concrete fact. 

 

 Motion of a material point. – A point that is subject to remain on a fixed surface and is devoid 

of any other influence will traverse a geodesic on the surface with a constant velocity. 

 That case consists of the one in which the coordinates x, y, z of the point are subject to a linear 

differential equation: 

A dx + B dy + C dz = 0 , 

which is or is not integrable. 

 The law of motion is always represented in rectangular coordinates by the formula: 

 
2 2 2

2 2 2

d y d y d z
x y z

dt dt dt
  + +  = 0 , 

 

in which x, y, z represent the variations of the coordinates x, y, z of the point under an arbitrary 

virtual displacement that is compatible with the constraints. 

 That formula expresses the idea that the direction of the acceleration is rectangular to all virtual 

displacements at each positions. 

 Since the acceleration is, moreover, always contained in the osculating plane of the trajectory, 

it will be determined by the condition that its osculating plane at each point contains the normal to 

the surface element that is determined by all of the virtual displacements that relate to this point. 

 The trajectories thus-determined, which are very analogous to the geodesics of a surface, enjoy 

the same property of the latter that they have a curvature at each of their points that is less than all 

other trajectories that are tangent to that point. 

 For that reason, we call them trajectories of least curvature, which then translates into Hertz’s 

expression: straightest paths. 

 Hertz reserved the name of geodesics for the trajectories that are determined by the condition 

that the length between their two points presents a zero variation when one passes to an infinitely-

close trajectory that connects the same two points. 

 Any line of least curvature is obviously a geodesic. However, the converse is true only in the 

case where the equation of constraint is integrable. 

 That is because in the contrary case, 1 lines of least curvature and 2 geodesics will pass 

through an arbitrary point of space since two arbitrary points in space will determine at least one 

geodesic. 

 The law of motion of a point that is subject to a condition of the type in question can then be 

expressed by saying that the point describes a line of least curvature with a constant velocity. 
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 Material systems with constraints. – Hertz took a direct approach to this. We believe that by 

recalling the properties of the motion of the point we can simplify the presentation in what follows. 

 We let x, y, z denote the coordinates of an arbitrary point of the system. Let m denote its mass, 

and let ds denote the length of an element of the trajectory. 

 A trajectory of the system is the set of positions that are occupied by the system during a 

continuous motion. 

 The length S of a trajectory is defined by the formulas: 

 
2M dS  = 2 2 2( )m dx dy dz+ +  = 2mds , 

in which one sets: 

M = m . 

 

 The velocity V of the system is defined by the formula: 

 

V = 
dV

dt
 = 

T

M
, 

in which T represents the vis viva. 

 Upon indicating the derivative with respect to S by a prime, one will have: 

 

 
dx

dt
 = x V , 

dy

dt
 = y V , 

dz

dt
 = z V , 

2

2

d x

dt
 = 2 dV

x V x
dt

 + = 
2x V , 

2

2

d y

dt
 = 

2y V ,  
2

2

d z

dt
 = 

2z V  

 

in the case where the vis viva is constant. 

 From the fundamental formula that expresses the law of motion: 

 
2 2 2

2 2 2

d x d y d z
m x y z

dt dt dt
  

 
+ + 

 
  = 0 , 

one will then deduce that: 

( )m x x y y z z    + +  = 0 , 

 

in which x, y, z represent an arbitrary virtual displacement of the system. 

 We have assumed that the equations of constraint have the form: 

 

( )Ax B y C z  + +  = 0 . 

 

 Upon differentiating the left-hand sides with respect to S, one will obtain equations that equate 

expressions such as ( )Ax B y C z  + +  to functions of the coordinates x, y, z in such a way that 
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if we consider the trajectories that give rise to the same values x , y , z  for the first derivatives 

relative to each of the points of the system then we will get equations of constraint for the second 

derivatives that take the form: 

( )A x B y C z    + +  = 0 , 

 

i.e., that the variations x  , y  , z   are subject to the same conditions as the variations x, y, 

z. 

 The law of motion can then be expressed by the formula: 

 

( )m x x y y z z       + +  = 0 

or 
2 2 2( )m x y z   + +  = 0 . 

 

 Hertz called the quantity c that was defined by the formula: 

 
2M c  = 2 2 2( )m x y z  + +  

the curvature of a trajectory. 

 In addition, two trajectories that pass through the same position are called tangent there when 

the derivatives x , y , z  have the same values for both trajectories for each of the points of the 

system, i.e., when two trajectories are tangent, any material point of the system will describe two 

tangent trajectories, and the ratio of their velocities will be the same for all points of the system. 

 The law of motion can be expressed by means of those definitions by saying that a constrained 

system that is devoid of any other influence traverses a trajectory of least curvature with a constant 

velocity when one says trajectory of least curvature to mean a trajectory that presents a curvature 

at each of the points that comprise it that is less than that of the possible trajectories that are tangent 

at that position. 

 Hertz, whose wished to make a didactic presentation of mechanics without employing the usual 

principles, posed that law as an experimental principle at the head of the second part of his book. 

 We have preferred to deduce, first of all, the aforementioned law from the principles of 

d’Alembert and virtual work and show that one will then be naturally led to Hertz’s terminology, 

which is a terminology that we shall now briefly complete. 

 As is the case for a point, one distinguishes geodesics from trajectories of least curvature, and 

those two types of trajectories will coincide when the constraint equations are integrable, i.e., when 

it is possible to determine the position of the system by means of a certain number of independent 

parameters. 

 The rectilinear trajectories are the ones whose curvatures are zero, i.e., the ones for which one 

has: 

x  = 0 , y  = 0 , z   = 0 , 

 

or rather the ones for which the various points of the system describe straight lines, so the spaces 

that are traversed by all of their points in the same time interval will be proportional. 
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 Two positions determine a rectilinear trajectory, in which one naturally assumes that the 

material points that comprise the system are not subject to any constraint. 

 The distance between two positions is the length of the rectilinear trajectory that connects the 

two positions. 

 That distance R is given by the formula: 

 
2M R  = 2 2 2

2 1 2 1 2 1[( ) ( ) ( ) ]m x x y y z z− + − + −  = 2mr . 

 

 The angle  of two rectilinear trajectories is defined by the following formula: 

 

2 2 cosm r m r    = cosmr r   

or 

cosM R R   = cosmr r  . 

 

 One verifies that the curvature of a trajectory is equal to the ratio of the angle between two 

infinitely-close elements to the length of the corresponding arc. 

 One defines the parallelism of two rectilinear trajectories by the condition that the angle 

between them is zero. 

 In other words, the lines that are described by the same material point along the two trajectories 

will be parallel. 

 On thus arrives at the notion of direction. 

 Two directions are rectangular when the angle between them is equal to  / 2. 

 Upon denoting the direction cosines of the displacements of the point mass m along two 

rectilinear trajectories by , ,  and  ,   ,   , the condition will be expressed by the formula: 

 

( )m       + +  = 0 . 

 

 3n−2 rectangular rectilinear trajectories with a given direction pass through a given position. 

 The notion of vectorial quantity includes the notions of directions and length, i.e., it applies to 

a set of vectors that are each attached to one of the points of the system. 

 If u, v, w are the components along the coordinate axes of the vector that is attached to a point 

of m that belongs to the system then the magnitude R of the vectorial quantity will be given by the 

formula: 
2M R  = 2 2 2( )m u v w+ +  . 

 

 The set of vectors that represent the velocities of the various points of the system is a vectorial 

quantity whose magnitude V is given by the preceding formula, namely: 

 

2M V  = 

2 2 2
dx dy dz

m
dt dt dt

      
+ +      

       
  , 
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and coincides with the value of the velocity that was given before. 

 That vectorial quantity itself takes the name of velocity. 

 One will similarly define a vectorial quantity that is composed of the set of vectors that 

represent the accelerations of the various points and call it the acceleration. 

 The magnitude f of the acceleration will be given by the formula: 

 

2M f  = 

2 2 2
2 2 2

2 2 2

d x d y d z
m

dt dt dt

      
+ +      

       
  . 

 

 One calls a vectorial quantity that has the given direction and a magnitude that is the 

rectangular projection of the vectorial quantity onto that direction, i.e., the magnitude of the latter 

multiplied by the cosines of the angle between the two directions, the component of a vectorial 

quantity along a given direction. 

 Upon decomposing the acceleration of each of the points of the system along the tangent to the 

trajectory at that point, one will get, by that fact itself, the decomposition of the acceleration of the 

system into a tangential component ft and a normal component fn . 

 One easily sees that one has: 

ft = 

2

2

dx d x
m

dt dt

M V
  = 

dV

dt
 = 

2

2

d S

dt
, 

 
2

nf  = 2 2

tf f−  = 
2 2c V , fn = 

2cV  

 

when one takes into account the relations: 

 
2

2

d x

dt
 = 2 dV

x V x
dt

 + ,  
2

2

d y

dt
 = 2 dV

y V y
dt

 + ,  
2

2

d z

dt
 = 2 dV

z V z
dt

 + , 

 
2 2 2( )m x y z  + +  = M , ( )m x x y y z z     + +  = 0 . 

 

 The direction of the vectorial quantity that is characterized by the set of vectors x , y , z   

can be assimilated in the direction of the principal normal to a curve. 

 The normal component to the acceleration points along that principal normal. 

 It is easy to see that in the case where there exist no other forces than the ones that are due to 

constraints, the law of motion can be expressed thus: 

 In any position of the system, the direction of the acceleration is rectangular to all the virtual 

displacements that relate to that position. 

 One can further say that: 
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 The natural motion in the case where there exist no other forces than the ones that are due to 

constraints is the one that minimizes the magnitude of the acceleration. 

 

 It is implicit that the givens for the motion are the position of the system, and the direction and 

magnitude of its velocity. 

 Any of those propositions above will suffice to determine the second-order differential 

elements of the coordinates as functions of those coordinates and their first-order differential 

elements and will permit one to exhibit the problem of motion in the form of an equation as a 

result. 

 Now suppose that the position of the system is determined by means of a certain number of 

parameters or coordinates q1, q2, …, qr . 

 Start from a position of the system and vary one coordinate q while leaving the others constant. 

The direction of the trajectory thus-obtained will be called the direction of the coordinate q for the 

position in question. 

 The magnitude and direction of the velocity of the system at a point are determined completely 

by its components along the directions of the coordinates, just as the velocity of a point that is 

subject to move on a fixed surface is determined by its components along the tangents to the curves 

of the chosen curvilinear coordinates on the surface. 

 The same thing will not be true for acceleration when the number of coordinates q is less than 

3n, where n is the number of material points. 

 If one lets T denote the expression for the vis viva as a function of the coordinate q and their 

derivatives q  with respect to time then upon applying the given definitions, one will find that the 

component fq of the acceleration f along the coordinate q is given by the formula: 

 

M fq = 
d T T

dt q q

 
−
 

, 

in which the term 
d T

dt q




 is due to the tangential component of the acceleration and the term 

T

q




 

is due to its normal component. 

 The condition that the acceleration must be rectangular with all of the virtual displacements of 

the system will be written: 

qf q  = 0 , 

 

in which the q represent an arbitrary virtual displacement. 

 If the q are arbitrary then the condition will be written: 

 

fq = 0  or 
d T T

dt q q

 
−
 

 = 0 (r equations). 

 

 If the q are subject to some constraint equations of the form: 
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a q  = 0 ,  b q  = 0 ,  … 

then one must have: 

fq =  a + b  + … 

or 

  
d T T

dt q q

 
−
 

 =  a + b  + … (r equations). 

 

 Hertz’s terminology applies no less fortunately to the case in which the system is subject to 

forces. 

 Those forces determine a vectorial quantity that represents, by definition, the force that is 

applied to the material system. 

 Upon denoting the vectorial quantity to which one gives the name of acceleration by J, the 

general equation of dynamics will express the idea that the vectorial quantity M J – F is 

rectangular to all virtual displacements, where the minus sign indicates an operation on the 

vectorial quantities whose significance is obvious. 

 That vectorial quantity can be called the constraint (der Zwang to Gauss), and one sees that 

the motion is determined by the condition that the magnitude of the constraint is a minimum when 

the motions that one compares it to exhibit the same velocity in terms of magnitude and direction 

at the position in question. 

 One sees that the general propositions of the mechanics of systems with constraints take a 

particularly simple form when one uses the Hertz terminology. 

 It is appropriate to observe that an analogous terminology, that is perhaps a little less fortunate, 

was presented before by Julius Kœnig (1). 

 

 

PART TWO 
 

MECHANICS OF MATERIAL SYSTEMS 

 

 In this part of his book, Hertz proposed to construct rational mechanics by means of his 

hypothesis and his terminology by following a perfectly logical argument. 

 Indeed, it came down to nothing but suppressing force as a fundamental concept. 

 The notions of space, time, and mass are supposed to have been acquired already. The 

constraints between the masses are supposed to be independent of time and subject to the 

restrictions that were indicated before. Hertz called a material system whose constraints are 

internal a free system, i.e., one is interested in only the relative positions of the points of the 

system, or more concisely, one permits any displacement without deformation of the system. 

 Hertz posed, a priori, the following law of motion of a free system as the fundamental law of 

mechanics: 

 

 
 (1) JULIUS KŒNIG, “Interpretation der fundamental Gleichungen der Dynamik,” Math. Ann. 31 (1888). 
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 Any free system describes a trajectory of least curvature with a constant velocity. 

 

 By hypothesis, any system that is not free will belong to a free system, and its motion can 

consequently be determined from the fundamental law (at least theoretically). 

 Such is the general economy of the logical edifice that Hertz constructed. 

 His terminology permitted him to express the properties of motion of free systems in the form 

of a single law. 

 His hypothesis on the nature of force, which reduced to only a manifestation of the motion of 

perceptible or latent masses, permitted him to construct mechanics in terms of only the notions of 

space, time, and mass. 

 Hertz easily deduced the Lagrange equations for free systems from the fundamental law, as 

well as all of the general propositions of mechanics including the principles of the center of gravity 

and areas. 

 Any material system whose motion is not governed by the fundamental law must be considered 

to be linked with masses that do not belong to the system. 

 Let q1, q2, …, qr be the parameters of the partial system in question, and let p1, p2, …, ps be the 

parameters that determine the positions of the other masses of the total system. 

 An equation of constraint will have the form: 

 

Adq Bdp+   = 0 . 

 

 A particularly simple case is the one in which the masses that are external to the system q 

remain fixed, i.e., dp = 0. 

 In that case, the constraint equations express simply the idea that this system is subject to 

constraints that are independent of time. Although it is not free, it will have its motion ruled by the 

fundamental law, which is as it should be, since we have started from the usual principles of 

mechanics and established a law for all systems with constraints, whether free or not, upon which 

no other forces are exerted besides the ones that are due to constraints, where the word “force” is 

employed in its usual sense. 

 It is perhaps not unworthy of interest to point out (notably in the search for the significance of 

the principles of the center of gravity and areas) that in all cases in nature in which the constraints 

on a system do not permit all of the displacements without deformation, one can always add some 

perceptible masses to them, i.e., solid, liquid, or gaseous bodies, such that the constraints will 

become internal. 

 Let us return to the general case. 

 The term that is due to the constraint considered in the Lagrange equation that relates to the 

coordinates q will have the form  A. 

 If one regards the motion of the masses that do not belong to the partial system of q as known 

then the coefficient  will be determined in the usual manner by appealing to the constraint 

equation, which takes the form: 

Adq C dt+  = 0 , 

in which one sets: 
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dp
B

dt
  = C , 

 

and one will easily see that the result agrees with the ones that d’Alembert’s principle will give 

when it is extended to the case in which the constraints are independent of time. 

 That explains the validity of the latter principle. 

 

 The notion of force. – In order to introduce the notion of force, Hertz considered a type of 

constraint that was capable of being expressed by the equality of one or more parameters in another 

systems. Hertz called that sort of constraint a coupling (Koppelung). 

 If q and p are parameters that are equal in the two systems, respectively, then the constraint 

equation: 

q = p or q – p = 0 

 

will give some terms in the Lagrange equations that relate to q and p, respectively, and are equal 

and opposite in sign in such a way that if Q is the term that is due to the constraint that relates to 

q, and P is the analogous term in the equation that relates to p then one will have: 

 

Q = − P . 

 

 Here, we have arrived at a crucial point in Hertz’s book, namely, the introduction of the notion 

of force. 

 At the same time, we fall into darkness. We also believe that the reader could do no better than 

to cast their eyes upon a literal translation of the text itself, while suppressing only the proofs, as 

well as certain considerations that are irrelevant to the question that we are addressing. 

 
 DEFINITION. – We intend the term “force” to mean the influence that one of two coupled systems exerts upon 

the other due to the fundamental law. 

 

 CONSEQUENCE. – Each force necessarily corresponds to a reaction (Gegenkraft). 

 

That is because…………………………………………………………………………………………………………... 

 

 ANALYTICAL REPRESENTATION OF FORCE. – In agreement with the definition, we can, and would 

therefore like to, propose that the set of quantities P that are determined for all of the coordinates p must constitute 

the analytical expression for the force that the system of p exerts on the system of q. The quantities P, or rather Q, are 

called the components of the form along the corresponding coordinates p or q, or simply the forces along those 

coordinates. 

 We establish the agreement with the present terminology in mechanics with that determination, and the necessity 

of realizing that accord sufficiently justifies the choice that we made from among several possible determinations. 
 

 CONSEQUENCE. – The force that a system exerts upon another can be considered to be a vectorial quantity that 

relates to the second system whose components along the common coordinates are generally non-zero, whose 

components along the coordinates that are not common are annulled, and finally whose components along the direction 

that cannot be expressed by the variations of the coordinates employed will remain indeterminate. 
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 SECOND CONSEQUENCE. –The force that a system exerts upon another can just as well be considered to be a 

vectorial quantity that relates to the first system. 

 

…………………………………………………………………………………………………………………………... 

 

 Action and reaction are equal and opposite. One must intend that to means that their components along each of 

the coordinates that are employed are equal and opposite, and that one considers the force to be a vectorial quantity in 

one or the other system. 

 That is because……………………………………………………………………………………………………... 

 

 REMARK 1. – The preceding proposition corresponds to Newton’s Lex tertia and is referred to as the principle 

of reaction. Since its content does not coincide completely with the content of that third law, their exact relationship 

is as follows: 

 Newton’s law contains our proposition completely, in the view of its author, as the examples that support the law 

show. However, Newton’s law contains more. At least, it is generally applicable to actions at a distance, i.e., to forces 

that are exerted between two bodies that have no common coordinates. 

 Nonetheless, our mechanics does not know of such forces. That is why one can, for example, deduce the 

consequence from our proposition that a planet attracts the Sun with a force that is equal to the one with which the 

Sun is attracted to the planet, but it is necessary to have some information that is more intrinsic to the nature of the 

coupling that exists between the two bodies. 

 

 REMARK 2. – One might demand to know whether the surplus that principle of reaction presents beyond out 

proposition might deservedly figure among the fundamental laws of mechanics, or if, in the contrary, the essential 

part of that principle that is valid in full generality does not consist of our proposition. 

 As far as the form of it is concerned, the scope of the third law is not expressed clearly in its application to actions 

at a distance, because if the force and the reaction are applied to different bodies then what one intends the term 

“opposite direction” to mean is not well-defined. For example, that is what happens when one addresses the reciprocal 

action between two current elements. As far as the content is concerned, the application of the principle of reaction to 

the actions at a distance in the usual mechanics obviously represents a fact of experience whose exactness in all cases 

begins to become doubtful. Thus, one is almost convinced that the reciprocal action between two magnetized particles 

in motion will satisfy the principle in any case. 

 

 A host of questions that one would like to ask Hertz appear. 

 First of all, what is the physical significance (if one exists) of that sort of constraint that Hertz 

called a coupling of the two systems and that he defined only by an analytical property, namely, 

the fact that they have common coordinates? 

 Incidentally, in regard to the law of the equality of action and reaction, Hertz told us that the 

actions at a distance are the ones that are exerted between two bodies that have no common 

coordinates, and that his mechanics knows of no such forces. 

 What sort of incompatibility did Hertz imagine existed between the analytical fact of having 

common coordinates and the physical fact of acting at a distance? 

 It is not that one does not perceive the guiding idea in that darkness. 

 Hertz obviously contemplated the theory of cyclic systems, which he presented by following 

its brilliant creator, Helmholtz, and more especially, Maxwell’s kinetic theory of electrodynamics. 

 Maxwell’s mechanical image, which was also very imprecise, was the model for any 

mechanical explanation for Hertz. 
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 Now, in that theory, one considers a hypothetical material system whose vis viva depends upon 

the coordinates of the perceptible bodies, which amounts to saying that a constraint consists of the 

fact of having common coordinates (controllable coordinates). 

 We see the origin of the idea of a coupling in that, to which Hertz attached much importance, 

since he could not imagine the notion of force in its absence. 

 When one reads that statement, it might seem that it is thanks to that idea that one can recover 

the law of the equality of action and reaction, or at the very least, whatever it is that must replace 

it. 

 But that is not so, because the fact that Hertz preserved that law, namely, the principle of the 

center of gravity and the principle of areas, results immediately from his fundamental hypothesis 

that all forces are forces of constraint. 

 Indeed, the forces of constraint do no work under any virtual displacement that is compatible 

with those constraints, and in particular when one is dealing with a free system, under any 

displacement without deformation, which constitutes precisely the condition for those forces to be 

in equilibrium in the sense that the latter work present in the mechanics of undeformable bodies. 

 The postulate is basically this one: 

 We do not know how to conceive of constraints that do not permit all displacements without 

deformation of the set of material masses in question in such a way that the existence of a constraint 

that prevents a material system from displacing freely without deformation will always demand 

the presence of material masses that are foreign to the system. 

 Moreover, the forces of constraint can always be calculated without having recourse to the law 

of the equality of action and reaction. The latter law will then become completely useless when 

one assumes, with Hertz, that there exist only forces of constraint. 

 I add that when one conveniently extends the postulate above, one can prove the principles of 

the center of gravity and areas in the case of arbitrary forces, and in such a general fashion that 

one can calculate the action that the second one exerts on the first, which constitutes, in total, the 

role of the law of the equality of action and reaction. 

 One will undoubtedly conclude, as we did, that the manner by which Hertz introduced the 

notion of force is clearly not sufficient. 

 Moreover, we believe that the arbitrariness that persists in the determination of force when one 

defines it, as Hertz did, by way of certain terms in the Lagrange equations would not be appropriate 

to a notion that would come to mind naturally apart from any mechanical theory. 

 Is there not something distasteful in refusing to allow the notion of force the right to exist, 

although in practice, we have no hesitation about determining the direction of a force and 

measuring its magnitude? 

 Certainly, among the objections that are naturally raised when one tries to define (but not 

effectively measure) the magnitude of a force, is it not true that they could also be applied to the 

more established notions? 

 For example, consider the notions that are associated with length and displacement without 

deformation, which one might say serve as the basis for all science. 

 If one tries to define the equality (or the comparison) of two lengths then one will be reduced 

to the notion of displacement without deformation. However, the scholars have not ignored the 

fact that there exist no bodies that displace without deformation. On the contrary, for the ignorant, 
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there exist a great number of them, and it is their crude notion of undeformable body that is at the 

basis for geometry, which is pure science par excellence, just the same, and a slightly more subtle  

analysis might discover some basic physical concepts that are more complicated, which is, in truth, 

a simple notion, but not because it obtained by the force of abstraction, which it is not, but because 

it is the entirely unconscious result of our first glance when we turn our attention to nature. 

 The notion of force, like that of length, is essentially subjective, and it is illusory for one to 

look for a purely-objective definition. 

 

 Cyclic motions. – The study of cyclic motion is due to the ideas that led physicists to identify 

certain potential energies (heat, electrodynamical potential, etc.) with kinetic energy. 

 Hertz concluded his book with a presentation of the theory of cyclic systems. Due to the 

influence that his theory seems to have had on the genesis of Hertz’s ideas on mechanics, we 

believe that we must recall its principles. 

 Consider a material system whose position depends upon coordinates of two types q and  that 

enter into the expression for the vis viva of the system only by their derivatives, and the former 

give rise to a vis viva that is negligible with respect to the vis viva that corresponds to the latter. 

 The coordinates  are called cyclic. 

 When one writes the vis viva as a sum: 

 

T = Tq + Tq + T , 

 

one preserves only the last term and supposes, in addition, that the coefficients of the squares and 

the products of the derivatives d / dt depend upon only the coordinates q. 

 It is clear that one cannot assume with all due rigor that the derivatives of the coordinates q do 

not enter into the general expression for T. However, one can consider only the motions for which 

the terms that contain those derivatives are negligible with respect to the terms that contain only 

the derivatives of the cyclic coordinates. 

 The Lagrange equation for a coordinate q will have the form: 

 

− 
T

q




 = P , 

and for a coordinate  : 

d T

dt 




 = F . 

 

 Suppose that the cyclic system is coupled to a system by the parameters q, i.e., suppose that 

those parameters q are constantly equal in number to the parameters of the second system. 

 The term that is due to the motion of the cyclic system in the Lagrange equation relative the 

parameter of a new system that is considered to be equal to q will be – P or /T q  , and the work 

done under a displacement of the latter system will be: 
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d  = 
T

dq
q




  . 

 

 The expression for T in the two interesting cases will be a function of only the parameters q, 

namely, in the case where the derivatives d / dt =   are constants, and in the case where the 

quantities /T    are constants. 

 In the former case, one has: 

d  = dT , 

and in the latter case: 

d  = − dT . 

 

 In the former case, the motion is called isocyclic. In the second case, it is called adiabatic. 

 In the latter case, one has: 

d T

dt 




 = 0 , 

 

i.e., the force exerted on the cyclic system along the coordinate  is zero. 

 The system is then called conservative. 

 The kinetic energy T of the cyclic system represents the potential of the forces that are exerted 

by that system on the system whose parameter is q. 

 The properties of cyclic systems lead to some interesting formulas that were suggested by the 

mechanical theories of physical phenomena. 

 Suppose that the system is monocyclic, i.e., it depends upon only one cyclic coordinate . 

 Let dQ be the work done by the cyclic force, i.e., let: 

 

dQ = 
d T

d
dt







 = 

d T
dt

dt








 = 

T
d







 . 

 

 On the other hand, one has: 

T = 
1

2

T








. 

 Hence: 

dQ

T
 = 2

T
d

T













 = 

2

log
T

d


 
  

 = 

2

log
T

d


 
  

. 

 Upon setting: 

T






 =  , 

one will have: 
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dQ

T  = 
2

2

0

log



 . 

 

 Upon assuming that the vis viva T is proportional to temperature, one will have an expression 

for entropy. 

 

 In these few pages, we proposed to show what appears to us to be important in Hertz’s book 

and leave to the reader the task of reflecting upon the numerous considerations that first inspired 

its subject and then Hertz’s ideas. 

 To conclude out study, we shall pass along the following appreciation of Hertz’s theory that 

Poincaré expressed (1). 

 

 “Although it is certainly interesting, it does not satisfy me entirely, because it 

depends too much upon hypothesis.” 

……………………………………………………………………………………… 

 

 “Nonetheless, from that fact alone, it is new, so the method of exposition is 

useful. It forces us to reflect and free ourselves of the old ways of associating ideas. 

Moreover, we cannot see the monument in its entirety. There is some value in 

having a new perspective and taking a new viewpoint.” 

 

G. COMBEBIAC (Limoges).   

 

____________ 

 

 
 (1) H. POINCARÉ, loc. cit.  


