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 The principal objective of the following study is a certain extension of the oblique 
curvilinear coordinates of that great theory that was created by Lamé to the general case.  
Nevertheless, I have added some remarks that are not unimportant and touch upon 
orthogonal systems.  Finally, I believe that all of that theory must be attached to that of 
functional determinants, whose properties I will recall, to the extent that they are of use to 
me, while deducing them from the consideration of quadratic forms. 
 
 

§ I. – Quadratic form of the product of two determinants. – Identities that it yields. 
 

 Let two determinants whose elements are completely independent be: 
 

X = 

(1) (1) (1)
1 2
(2) (2) (2)
1 2

( ) ( ) ( )
1 2

n

n

n n n
n

x x x

x x x

x x x

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, Z = 

(1) (1) (1)
1 2
(2) (2) (2)
1 2

( ) ( ) ( )
1 2

n

n

n n n
n

z z z

z z z

z z z

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

 
and let their product be: 
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V = 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

n n n n

v v v

v v v

v v v

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

 
in which vi, j = ( ) ( )g g

i j
g

x z∑ , where the summation extends from g = 1 to g = n, although 

that will always be implied for all indexed summations. 
 From the fact that: 

( )g
i

dV

dx
= Z

( )g
i

dX

dx
, 

( )g
i

dV

dz
= X

( )g
i

dZ

dz
, 

 
one concludes immediately that: 
 

( )
( )

g
j g

g i

dV
x

dx
∑ = 0 or V,  ( )

( )
g

j g
g i

dV
z

dz
∑ = 0 or V, 

 
in which the right-hand sides are equal to 0 or V, according to whether the indices i, j are 
different or coincide, resp.  Having said that, one can represent the determinant V by any 
of the n quadratic forms: 

F(g) = ( ) ( )
,

,

g g
i j i j

i j

C x x∑  

 
that correspond to the n values of g, and in which the coefficients Ci, j keep the same 
values.  Indeed, under those hypotheses, and due to the fact that: 
 

( )

( )

g

g
i

dF

dx
= ( )

,
g

i j j
j

C z∑ , 
( )

( )

g

g
i

dF

dz
= ( )

,
g

i j i
i

C x∑ , 

 
one will have, from what precedes this immediately, that: 
 

(a)   

( )
( ) ( ) ( )

, , ,( )

( )
( ) ( ) ( )

, , ,( )

 or 0 ,

 or 0 ,

g
g g g

h i j h j i j h jg
g j g ji

g
g g g

k i j k i i j k kg
g i g ij

dF
V x C x z C v

dx

dF
V z C x x C v

dz


= = =



 = = =



∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

 
and from the n2 equalities that are composed of the extreme expressions, one will infer 

the symmetric value 
,i j

dV

dv
 for the coefficient Ci, j .  One will then have: 
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F(g) = ( ) ( )

, ,

g g
i j

i j i j

dV
x z

dv∑  = V. 

 

 Upon multiplying the expression for 
( )

( )

g

g
i

dF

dx
 above by 

( )

( )

g

g
i

dF

dz
 and then taking the 

g
∑ , one will get: 

( ) ( )

( ) ( )

g g

g g
g i h

dF dF

dx dz
∑ = 

( )
( )

, ( )

g
g

i j j g
j g h

dF
C z

dz
∑ ∑ , 

 
and since, by virtue of (a), all of the terms in the right-hand side will disappear, except for 
j = h, it will result that: 

(b)     
( ) ( )

( ) ( )

g g

g g
g i j

dF dF

dx dz∑ = V Ci,j = V 
,i j

dV

dv
. 

 
 If one supposes, for the moment, that the two determinants X and Z coincide with 
each other term-by-term, and that one sets: 
 

X 2 = P = 

1,1 1,2 1,

1,2 2,2 2,

1, 2, ,

n

n

n n n n

ξ ξ ξ
ξ ξ ξ

ξ ξ ξ

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, Z 2 = Q = 

1,1 1,2 1,

1,2 2,2 2,

1, 2, ,

n

n

n n n n

ζ ζ ζ
ζ ζ ζ

ζ ζ ζ

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

, 

in which: 
 

ξi ,j = ξj, i = ( ) ( )g g
i j

g

x x∑ , ζi, j = ζj, i = ( ) ( )g g
i j

g

z z∑ , and PQ = V 2 , 

 
then one will have, as a particular case of what was just said, or by some direct 
considerations that are entirely parallel to the preceding ones: 
 

2 f (g) = ( ) ( )
,

,

g g
i j i j

i j

A x x∑ = P, 2 f (g) = ( ) ( )
,

,

g g
i j i j

i j

B z z∑ = Q, 

 
in which the forms f, f verify the relations: 
 

(a*)    
( )

( )
( )

g
g

j g
g i

df
x

dx
∑ = 0 or P,  

( )
( )

( )

f g
g

j g
g i

d
z

dz
∑ = 0 or Q, 

 
and give rise to the identities: 
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(b*)   
( ) ( )

( ) ( )

g g

g g
g i j

df df

dx dx∑ = P Ai, j , 
( ) ( )

( ) ( )

f fg g

g g
g i j

d d

dz dz∑ = Q Bi, j . 

 
It is now easy to see that: 

(c)     

( ) ( )
( )

, ,( ) ( )

( ) ( )
( )

, ,( ) ( )

1 f 1
,

1 1
,

g g
g

i i h i hg g
h hh h

g g
g

i i h i hg g
h hh h

d dF
x v

Q dz V dx

df dF
z v

P dz V dz

ξ

ζ


= =



 = =


∑ ∑

∑ ∑
 

 
because if one successively multiplies the first row, for example, by ( )g

ix  and ( )g
jz , resp., 

and then sums over 
g
∑  then one will conclude that: 

 

ξi,j = 
( )

( )
, ( )

1 g
g

i h j g
h g h

dF
x

V dx
ξ∑ ∑ ,  vi,j = 

( )
( )

, ( )

1 f g
g

i h j g
h g h

d
v z

Q dz
∑ ∑ , 

 
in which one will see all the terms on the right-hand sides disappear, by virtue of (a), (a*), 
except for the ones that have h = j. 
 Upon multiplying them by the first two expressions for ( )g

ix , ( )g
jz  and summing over 

g
∑ , one will get: 

ξi, j = 
( ) ( )

, ,2 ( ) ( )

1 f fg g

i h j k g g
h k g h k

d d
v v

Q dz dz
∑∑ ∑ , 

i.e., from (b*): 

(d)     

, , , ,
,

, , , ,
,

1
,

and similarly,

1
.

i j i h j k h k
h k

i j h i k j h k
h k

v v B
Q

v v A
P

ξ

ζ

 =



 =


∑

∑

 

 
 The multiplication of the last two expressions for ( )g

ix , ( )g
jz  also gives: 

 

vi, j = , , ,
,

1
i h j k h k

h k

C
V

ξ ξ∑ . 

 
 When the x and the z are coupled by the conditions that vi, j = 0 or 1 (according to 
whether j is or is not different from i, resp.), formulas (c), (d) will reduce to: 
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(c*)  

( )
( ) ( )

,( )

( )
( ) ( )

,( )

1 f
,

1
,

g
g g

i i j jg
ji

g
g g

i i j jg
ji

d
x z

Q dz

df
z x

P dx

ξ

ζ


= =



 = =


∑

∑
  (d*) 

, ,

, ,

1
,

1
,

i j i j

i j i j

B
Q

A
P

ξ

ζ

 =

 =


 

 
in which PQ = V 2 = 1.  The forms f, f, for their own part, amount to: 
 

( )2 gf

P
= ( ) ( )

,
,

g g
i j i j

i j

x xζ∑  = 1,  
( )2f g

Q
= ( ) ( )

,
,

g g
i j i j

i j

z zξ∑ = 1, 

 
and the expression for vi, j that follows from (d) will give , ,i h j h

h

ξ ζ∑  = 0 or 1. 

 One will then get back to some known results from the theory of functional 
determinants, except for some differences in form, upon supposing that: 
 

( )g
ix  = g

i

du

dα
,  ( )g

jz = i

g

d

du

α
, 

 
in which the α1, α2, …, αn are functions of the u1, u2, …, un that are taken to be 
independent variables, or inversely. 
 
 

§ II. – Differential relations. – Distinguishing two groups of elements. 
 

 Upon letting t denote any independent variable and setting: 
 

(e)      
( )

( )
g

jg
i

g

dx
x

dt
∑ = ( )

,
g

i jR , 

in general, in such a way: 

 ( ) ( )
, ,
g g

i j j iR R+ = ,i jd

dt

ξ
, 

 
it is easy to recognize that one will have: 
 

(f)      
( )g
hdx

P
dt

= 
( )

( )
, ( )

g
g

i h g
i i

df
R

dx
∑  

 
identically, because upon multiplying that by ( )g

kx  and taking the sum 
g
∑ , one will 

conclude that: 
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( )
( )

g
g h

k
g

dx
P x

dt
∑ = 

( )
( ) ( )
, ( )

g
g g

i h k g
i g i

df
R x

dx
∑ ∑ , 

 
or, by virtue of (a*), all of the terms in the right-hand side will disappear, with the 
exception of the ones for which i = k: 

 When one multiplies equation (f) by 
( )

( )

g

g
j

df

dx
 and then sums over 

g
∑ , upon switching 

g
∑ , 

i
∑ , and taking (b*) into account, one will infer that: 

 

(g)     
( )( )

( )

gg
h

g
g j

dxdf

dx dt∑ = ( )
, ,

g
i j i k

i

A R∑ , 

 

and from this, if s is any other independent variable, upon multiplying (f) by 
( )g
kdx

ds
, one 

will get: 
( ) ( )g g
h k

g

dx dx
P

dt ds
∑ =

( )( )
( )
, ( )

gg
t k

i h g
i g i

dxdf
R

dx ds
∑ ∑ = ( ) ( )

, , ,
t s

i h i j j k
i j

R A R∑ ∑ , 

or rather: 

(h)     
( ) ( )g g
h k

g

dx dx
P

dt ds
∑ = ( ) ( )

, , ,
,

t s
i j i h j k

i j

A R R∑ . 

 
 Now, it results from the fact that: 

( )
,
s

h kR = 
( )

( )
g

g k
h

g

dx
x

ds
∑  

that: 
( )
,
s

h kdR

dt
= 

( ) ( ) 2 ( )
( )

g g g
gh k k

h
g g

dx dx d x
x

dt ds dt ds
+∑ ∑ , 

 
so, upon changing t and s and taking (h) into account, one will infer that: 
 

(k)    
( ) ( )
, ,
s t

h k h kdR dR

dt ds
− = ( ) ( ) ( ) ( )

, , , , ,
,

1
( )t s s t

i j i h j k i k j k
i j

A R R R R
P

−∑ . 

 
 That multiple equation (and it seems to me that this has not been pointed out, in 
general) expresses, in particular, the integrability conditions for the simultaneous systems 
of linear equations: 

(f′ )   P
( )g
hdx

dt
= 

( )
( )
, ( )

g
t

i h g
i i

df
R

dx
∑ , P

( )g
hdx

ds
= 

( )
( )
, ( )

g
s

i h g
i i

df
R

dx
∑ , 
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from which, one proposes to deduce the x, when all of the other quantities are supposed 
to be known in terms of t and s.  One will get some entirely analogous new conditions 
when one introduces an arbitrary number of independent variables t, s, …, and one can 
observe that the set of systems (f′ ) can be integrated under conditions that are analogous 
to (k), as a sequence of separate linear systems in ordinary differentials. 
 In the case of functional determinants, the R are subject to some special conditions 
that are provided by the relation: 

( )g
i

j

dx

dα
= 

( )g
j

i

dx

dα
. 

One then infers that: 
( )

( )
g

g i
h

g j

dx
x

dα∑ =
( )

( )
g

jg
h

g i

dx
x

dα∑ ; 

i.e.: 

(l)      
( )

,
j

h iR
α

= ( )
,

i
h jR α . 

 

When that relation is combined with ( )
,

h
i jR α + ( )

,
h

j iR α = ,i j

h

d

d

ξ
α

, it will yield: 

 

(m)     ( )
,

h
j iR α = , , ,1

2
i j j h i h

h i j

d d d

d d d

ξ ξ ξ
α α α

 
+ −  

 
, 

 
which permits one to introduce the ξ in place of the R everywhere, if one deems that 
appropriate. 
 With the theory of curvilinear coordinates in mind, above all, one agrees to perform a 
particular substitution in the preceding formulas while confining oneself to the case of 
functional determinants.  I set: 
 

( ) ( )

, ,

,

,

g g
i i i

i j i j i j

x l a

l lξ λ
 =
 =

 
( ) ( )

, ,

a ,

,

g g
i i i

i j i j i j

z h

h hζ θ
 =
 =

 

 
under the conditions that λi,i = 1, θi,i = 1, in such a way that one will have: 
 

( ) ( )g g
i j

g

a a∑ = λi,j ,  ( ) ( )a ag g
i j

g
∑ = θi,j . 

 
 The two determinants: 
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∆ = 

1,1 1,2 1,

1,2 2,2 2,

1, 2, ,

n

n

n n n n

λ λ λ
λ λ λ

λ λ λ

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

,  ∇ = 

1,1 1,2 1,

1,2 2,2 2,

1, 2, ,

n

n

n n n n

θ θ θ
θ θ θ

θ θ θ

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
are coupled by the relation: 
 

h1 h2 … hn ∇ · l1 l2…ln ∆  = 1. 

 
 One can take f, f to have the following forms: 
 

(ϕ)  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2

1,1 1,2 ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2

1,1 1,2 ,

2 ,

2 a a a a a a ,

g g g g g g g
n n

n n

g g g g g g g
n n

n n

d d d
a a a a a a

d d d

d d d

d d d

ϕ
λ λ λ

ϖ
θ θ θ

∆ ∆ ∆ = + + + = ∆

 ∇ ∇ ∇ = + + + = ∇


⋯

⋯

 

 
in which it is implied that the λi,i, θi,i are replaced with unity after the differentiations.  
They verify the relations: 
 

(a*)   
( )

( )
g

g
j

g i

d
a

da

ϕ
∑  = 0 or ∆, 

( )
( )

( )a
a

g
g
j g

g i

d

d

ϖ
∑ = 0 or ∇, 

 

(b*) 

( ) ( )

( ) ( )
,

( ) ( )

( ) ( )
,

1
,

2

,

g g

g g
g i j i j

g g

g g
g i i i i

d d d

da da d

d d d

da da d

ϕ ϕ
λ

ϕ ϕ
λ

 ∆= ∆



∆ = ∆



∑

∑
 

( ) ( )

( ) ( )
,

( ) ( )

( ) ( )
,

1
,

a a 2

.
a a

g g

g g
g i j i j

g g

g g
g i i i i

d d d

d d d

d d d

d d d

ϖ ϖ
λ

ϖ ϖ
θ

 ∇= ∇



∇ = ∇



∑

∑
 

 
From what the (d*) become, one will have: 
 

(d *) 

,
,

, ,

2
2

,

/

2

1 1
h ,

i j
i j

i i j j

i
i i i

d d

d d

d d

d

l d

λ
θ

λ λ

λ

∆
= ∆ ∆



 ∆ = ⋅ ⋅

∆

  

,
,

, ,

2
2

,

/

2

1 1
.

h

i j
i j

i i j j

i
i i i

d d

d d

d d

d
l

d

θ
λ

θ θ

θ

∇
= ∇ ∇



 ∇ = ⋅ ⋅

∇

 

 
The (c) will be replaced by: 
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(c*)   ( )a g
i  = 

( )

( )

,

1 g

g
i

i i

d

dad

d

ϕ

λ

⋅
∆∆

, ( )g
ia  = 

( )

( )

,

1

a

g

g
i

i i

d

dd

d

ϖ

θ

⋅
∇∇

. 

Finally, upon setting: 

(e)      
( )

( )
g

jg
i

g

da
a

dt
∑ = ( )

,
t

i jR , 

in such a way that: 

  ( ) ( )
, ,
t t

i j j i+R R  = ,i jd

dt

λ
, 

one will have here that: 

(f)      
( )g
ida

dt
∆ = 

( )
( )
, ( )

g
t

h i g
h h

d

da

ϕ
∑R , 

 

(h)     
( ) ( )g g
h k

g

da da

dt ds
∆∑ = ( ) ( )

, ,
, ,

1

2
t s

j h i k
i j i j

d

dλ
∆

∑ R R , 

 

(k)    ∆
( ) ( )
, ,
t s

h k h kd d

ds dt

 
−  

 

R R
= ( )( ) ( ) ( ) ( )

, , , ,
, ,

1

2
t s s t

j k i h j k i h
i j i j

d

dλ
∆ −∑ R R R R , 

 
in which Ri,i = 0.  The latter condition introduces a simplification in the groups (f), (h), 

(k), in comparison to the homologous groups (f), (h), (k).  By contrast, the condition (l) is 
replaced with this other, somewhat more complex, one: 
 

(l)     ( )
, ,

ji
h i i h i

j

dl
l

d
αλ

α
+ R  = ( )

, ,
ij

h j j h j
i

dl
l

d
αλ

α
+ R . 

 
If one would like to rid oneself of the R everywhere then it would suffice to take (m) into 

account, while observing that: 

( )
,
t

i jR  = l i lj 
( )
,
t

i jR + λi,j li 
jdl

dt
. 

 
 Having discussed these preliminaries, I shall now begin the theory of curvilinear 
coordinates.  However, in order to simplify the notation as much as possible, I will 
represent u1, u2, u3 by x, y, z, α1, α2, α3 by α, β, γ, l1, l2, l3 by l, m, n, λ2,3 , λ1,3 , λ1,2 by λ, 
µ, ν, h1, h2, h3 by l, m, n, θ2,3 , θ1,3 , θ1,2 by ε, η, θ, (1)

1a , (2)
1a , (3)

1a , (1)
2a , (2)

2a , (3)
2a , (1)

3a , 
(2)
3a , (3)

3a  by a, a′, a″, b, b′, b″, c, c′, c″, and finally, (1)
1a , (2)

1a , (3)
1a , … by a, a′, a″, … 
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§ III. – Curvilinear coordinates. – Development of some formulas. 
 

 If the orthogonal, rectilinear coordinates of an arbitrary point in space are x, y, z then 
let: 

F (x, y, z) = α,  F1 (x, y, z) = α, F2 (x, y, z) = γ 
 

be the equations of three surfaces, where α, β, γ denote three arbitrary parameters that do 
not enter into the left-hand sides.  From Lamé’s fertile vision of things, for each system 
of values that is attributed to those parameters, the mutual intersection of the three 
surfaces will determine a point M in space.  The linear elements of the intersections that 
issue from that point are represented by l dα, m dβ, n dγ, and if λ, µ, ν denote the cosines 
of the angles between those elements then one will have this first group: 
 

(A)   

2 2 2
2

2 2 2

2 2 2
2

2 2 2

2 2 2
2

2 2 2

, ,

, ,

, ,

dx dy dz dx dx dy dy dz dz
l mn

d d d d d d d d d

dx dy dz dx dx dy dy dz dz
m nl

d d d d d d d d d

dx dy dz dx dx dy dy dz dz
n lm

d d d d d d d d d

λ
α α α β γ β γ β γ

µ
β β χ γ α γ α γ α

ν
γ γ γ α β α β α β


+ + = + + =


 + + = + + =



+ + = + + =


 

 
to which one appends the inverse group: 
 

(A′)  

2 2 2
2

2 2 2

2 2 2
2

2 2 2

2 2 2
2

2 2 2

, ,

, ,

, ,

d d d d d d d d d

dx dy dz dx dx dy d dy d

d d d d d d d d d

dx dx dz dx dx dy dy dz dz

d d d d d d d d d

dx dy dz dx dx dy dy dz dz

α α α β γ β γ β γ ε
γ γ

β β β α γ α γ α γ η

γ γ γ α β α β α β θ


+ + = + + =


 + + = + + =



+ + = + + =


l mn

m nl

n lm

 

 
in which dα / l , dβ / m, dγ / n are the shortest distances from the point M to the two 

successive surfaces of the same families, respectively, and ε, η, θ are the cosines of the 
angles that those shortest distances subtend.  Here, one takes: 
 

(1)      

, , ,

, , ,

, , ,

dx dx dx
la mb la

d d d

dy dy dy
la mb nc

d d d

dz dz dz
la mb nc

d d d

α β γ

α β γ

α β γ

 = = =

 ′ ′ ′= = =



′′ ′′ ′′= = =


      

, , ,

, , ,

, ,

d d d

dx dx dx
d d d

dy dy dy

d d d

dz dz dz

α β γ

α β γ

α β γ

 = = =

 ′ ′ ′= = =



′′ ′′ ′′= = =


la mb nc

la mb nc

la mb nc .
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 Having said that, one will have: 
 

∆ = 1 – λ2 – µ2 – ν2 + 2λµν,  ∇ = 1 – ε 2 – η2 – θ 2 + 2εηθ, 
 

lmn ∆ · lmn ∇ = 1, dV = ∆ lmn dα dβ dγ, 

 
in which dV denotes the volume element.  The forms (ϕ) become: 
 

(2)  

2 2 2 2 2 2

2 2

2 2

2 2 2 2 2 2

2 2

2 2

2 (1 ) (1 ) (1 ) ,

2 (1 ) ,

2 (1 ) ,

2 (1 ) (1 ) (1 ) ,

2 (1 ) ,

2 (1 ) ,

a b c bc ac ab

a

a

λ µ ν

ε η θ

ϕ λ µ ν
ϕ λ
ϕ λ

ϖ ε η θ
ϖ ε
ϖ ε

 = − + − + − + ∆ + ∆ + ∆ = ∆
 ′ ′= − +
 ′′ ′′= − +

 = − + − + − + ∇ + ∇ + ∇ = ∇
 ′ ′= − +
 ′′ ′′= − + 

⋯

⋯

⋯

⋯

a b c bc ac ab

a

a

 

 
in which the letters that are used as indices indicate partial derivatives, in such a way that 
∆λ = 2 (µν – λ), for example.  Those forms satisfy the conditions: 
 

(3)    

,

0,

..................,

d
a

da
d

b
da

ϕ

ϕ

 = ∆

 =





∑

∑  

,

0,

..................,

d

d
d

d

ϖ

ϖ

 = ∆

 =





∑

∑

a
a

b
a

 

 
in which the ∑ always affect the primed quantities.  Equations (c*) are written: 
 

(4)  

2 2 2

2

2

1 1 1
a , b , c ,

(1 ) (1 ) (1 )

1
a , ............................, .............................,

(1 )

1
a , ............................, ............................

(1 )

d d d

da db dc

d

da

d

da

ϕ ϕ ϕ
λ µ ν

ϕ
λ

ϕ
λ

= = =
∆ − ∆ − ∆ −

′′ =
′∆ −
′′′′ =
′′∆ −

2 2 2

2

2

,

1 1 1
, , ,

a b c(1 ) (1 ) (1 )

1
, ............................, .............................,

a(1 )

1
, ............................, ...............

a(1 )

d d d
a b c

d d d

d
a

d

d
a

d

ϖ ϖ ϖ
ε η θ

ϖ
ε

ϖ
ε












′ = = =
∇ − ∇ − ∇ −

′′ =
′∇ −
′′′′ =
′′∇ −

.............,
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and (d*) are written: 
 

(5)    

2 1
2 2

2 2 2

1 1
l , ,

(1 )(1 )

.............................................................,

l
λλ ε

µ ν
 ∆−= = ∆ − −



  

2 1
2 2

2 2 2

1 1
, ,

l (1 )(1 )

.............................................................,

l εε λ
η θ

 ∇−= = ∇ − −



 

 
 Having set: 

(6)    

( ) ( ) ( )

( ) ( ) ( )

R , Q , P ,

, , ,

t t t

t t t

da dc db
b a c

dt dt dt
db da dc

a c b
dt dt dt

 = = =

 = = =


∑ ∑ ∑

∑ ∑ ∑R Q P

 

which implies that: 
 

(6*)  R(t) + R(t) =
d

dt

ν
, Q(t) + Q(t) =

d

dt

µ
, P(t) + P(t) = 

d

dt

λ
, 

 
in which t is any of the variables α, β, γ, the (f) can be written: 
 

(7)     

( ) ( )

( ) ( )

( ) ( )

R ,

P ,

Q ,

t t

t t

t t

da d d

dt db dc
db d d

dt dc da
dc d d

dt da db

ϕ ϕ

ϕ ϕ

ϕ ϕ

 ∆ = +

 ∆ = +

 ∆ = +


Q

R

P

 

 
and one will get two analogous groups by first priming the letters ϕ, a, b, c, and then 
double-priming them.  Here, the group (k) will become: 
 

(8)  

( ) ( )
2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
2 2

( ) ( )
2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2

1
2

R R
(1 )(P P ) (R P P R )

+ ( ) (R P ),

Q Q
(1 )(R R ) ( )

(Q

t s
s t t s s t t s

t s s t t s s t

t s
s t t s s t t s

d d

ds dt

d d

ds dt

λ

µ ν

λ

µ

ν

µ

 
∆ − = − − + ∆ − 
 

∆ − + ∆ −

 
∆ − = − − + ∆ − 
 

+ ∆

Q Q

Q R Q R R R

P P P Q P Q

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
2

( ) ( )
2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
2 2

Q ) (Q R Q R ),

P P
(1 )(Q Q ) (P P )

(P Q P Q ) ( ).

t s s t t s s t

t s
s t t s s t t s

t s s t t s s t

d d

ds dt

ν

λ

µ ν

λ









 − + ∆ −

  

∆ − = − − + ∆ −  
 

 + ∆ − + ∆ −

Q Q

R R P P

R P R P

 

 
Finally, upon isolating the partial derivatives of l, m, n, one will deduce from equations 
(l) that: 
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(9)  

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

2 ( ) ( ) 2 ( ) ( )1 1
2 2

R ,
1 1

P ,
1 1

Q ,
1 1

Q ,
1 1

R ,
1 1

P ,
1 1

(1 ) R (1 )P

dl m l

d

dm n m

d

dn l n

d

dl n l

d

dm l m

d
dn m n

d

l

α β

β γ

γ α

α γ

β α

γ β

β β α α
λ µ

ν
β ν ν

λ
γ λ λ

µ
α µ µ

µ
γ µ µ

ν
α ν ν

λ
β λ λ

ν ν

= +
− −

= +
− −

= +
− −

= +
− −

= +
− −

= +
− −

 − + ∆ = − + ∆ 

R

P

Q

Q

R

P

Q R

2 ( ) ( ) 2 ( ) ( )1 1
2 2

2 ( ) ( ) 2 ( ) ( )1 1
2 2

,

(1 ) R (1 )Q ,

(1 ) R (1 )R .

m

m n

n l

γ γ β β
µ ν

α α γ γ
ν λ

λ λ

µ µ




















   


   − + ∆ = − + ∆    


   − + ∆ = − + ∆    

R P

P Q  

 
 I combine these with the equations for the lines of curvature on the coordinate 
surfaces.  For an infinitely-small displacement that is performed on the surface α = 
constant, one will have: 

δx = 
dx dx

d d
d d

β γ
β γ

+ , 

and in turn: 
(10)   b dβ∑  = m dβ + nλ dγ, c xδ∑  = mλ dβ + n dγ. 
 
 If the displacement corresponds to a line of curvature then one must have: 

 
δx = − Θ δ a, δy = − Θ δ a′, δz = − Θ δ a″; 

 
hence, one easily concludes that: 
 

(11)  

( ) 2 ( )1
22

( ) 2 ( )1
22

( ) 2 ( )1
22

( ) 2 ( )1
22

P (1 )
(1 )

P (1 ) ,
(1 )

(1 )Q
(1 )

(1 )Q .
(1 )

b x d

d

c x d

d

β β
µ

γ γ
µ

β β
ν

γ γ
ν

δ λ β
λ

λ γ
λ

δ λ β
λ

λ γ
λ

Θ  = ∆ + −  ∆ −
 Θ

 + ∆ + −  ∆ −
 Θ  = ∆ + −  ∆ −


Θ
 + ∆ + −  ∆ −

∑

∑

R

R

P

P
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 Upon equating these expressions for ∑ b δx, ∑ c δx to the preceding ones and then 
eliminating Θ, one will get the equations of the lines of curvature of the surface α = 
constant.  One will also get two values for Θ that will be the expressions for the principal 
radii of curvature. 
 
 General remark. – The formulas of the present paragraph correspond directly to the 
differential question that takes the form: If the rectangular coordinates x, y, z of an 
arbitrary point in space are expressed arbitrarily in terms of well-defined functions of 
three independent variables α, β, γ then one proposes to calculate the principal geometric 
elements, which are either the intersection curves of the coordinate surfaces or those 
surfaces themselves. 
 However, that presents the otherwise difficult problem of finding x, y, z in terms of α, 
β, γ when one is given three distinct conditions between the latter variables and the l, …, 
v, l, …, θ, or some other quantities that they can depend upon.  Equations (8), 

concurrently with (9) and (6*), will then play the principal role.  When combined with the 
three given conditions, they will suffice to determine completely the functions l, m, …, v 
or l, m, …, θ and the auxiliary functions P, Q …  Once those quantities are determined, 

one can present the much simpler question, which I would like to address, of deducing 
the cosines a, b, … from equations (7) and its analogues, such that (8) will assure their 
coexistence precisely.  After that, x, y, z are obtained from (1) by integrating the exact 
differentials: 

(c)     
,

............................................

dx la d mb d ncdα β γ= + +



 

 
 

§ IV. – Integration of a particular system of partial difference equations. 
 

 If one regards the angles of the elementary trihedron M · (α)(β)(γ) as being 
determined by α, β, γ then one imagines three rectangular axes M · X, Y, Z being drawn 
through its summit that make angles with O · xyz whose cosines are A, A′, A″, B, B′, B″, 
C, C′, C″.  If one lets ξ, ξ′, ξ″, η, η′, η″, ζ, ζ′, ζ″ denote the cosines of the angles that the 

elements of the curvilinear axes (α), (β), (γ) that issue from M make with those auxiliary 
axes then one will have: 
 
 a = A ξ + B ξ′ + C ξ″, b = A η + B η′ + C η″, …, 

 a′ = A′ ξ + B′ ξ′ + C′ ξ″, ………………………, …, 

 ………………………..., ………………………., …. 
 
with the six relations: 
 

ξ 2 + ξ′ 2 + ξ″ 2 = 1, …, ξ η + ξ′ η′  + ξ″ η″  = ν, …, 
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and one can arrange some of the ξ, η, … such that these relations will still be arbitrary, in 
such a fashion as to give the auxiliary system the position that one deems to be the most 
convenient relative to the elementary trihedron.  Having said that, if one makes: 
 

 
d

dt∑
A

B = r (t), 
d

dt∑
C

A = q(t), 
d

dt∑
B

C = p(t), 

 
d

dt

ξη∑ = υ (t), d

dt

ζξ∑ = κ (t), d

dt

ηζ∑ = π (t) 

 
then one will deduce from the preceding values of a, b, c, … that: 
 

 
da

b
dt∑  = (ξη′ – ηξ′ ) r (t) + (ηζ″ – ξη″ ) q (t) + (ξ′η″ – η′ξ″ ) p (t) + υ (t), 

 
dc

a
dt∑  = (ζξ′ – ξζ′ ) r (t)  + (ξζ″ – ζξ″ ) q (t) + (ξ″ ζ′– ξ′ζ″ ) p (t) + κ (t), 

 
db

c
dt∑  = (ηζ′ – ζη′ ) r (t) + (ζη″ – ηζ″ ) q (t) + (η′ζ″ – ζ′η″ ) p (t) + π (t), 

 
which express the P, Q, R, and in turn, the P, Q, R, linearly in terms of the p, q, r, and 

some quantities that one regards as known, or vice versa,. 
 By means of that sort of coordinate transformation, one will be led to consider the 
canonical system: 
 

(7*)    

( ) ( )

( ) ( )

( ) ( )

,

,

,

d
r q

d
d

p r
d
d

q p
d

α α

α α

α α

α

α

α

 = −

 = −

 = −


A
B C

B
C A

C
A B

    

( ) ( )

( ) ( )

( ) ( )

,

,

,

d
r q

d

d
p r

d

d
q p

d

β β

β β

β β

β

β

β

 = −



= −



= −


A
B C

B
C A

C
A B

    

( ) ( )

( ) ( )

( ) ( )

,

,

,

d
r q

d

d
p r

d

d
q p

d

γ γ

γ γ

γ γ

γ

γ

γ

 = −



= −



= −


A
B C

B
C A

C
A B

 

 
instead of the system (7), along with two other ones in A′, …, A″, … that are entirely 

analogous.  Here, one will have: 
 

t s∑B C = − r (t) q(s), t s∑A A = r (t) r (s) + q(t) q(s), 

 
and their analogues; the letters that are used as indices indicate partial derivatives, in such 
a way that At = dA / dt.  The p, q, r, which are considered to be known in terms of α, β, 

γ, are supposed to verify the fundamental group: 
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(8*)   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0,

0,

0,

t s t s s t
s t

t s t s s t
s t

t s t s s t
s t

r r q p q p

q q p r p r

p p r q r q

 − + − =
 − + − =
 − + − =

 

 
identically.  From the first group (7*), one deduces that: 
 
A = A σ + B τ + C υ,  B = A σ′ + B τ′ + C υ′, C = A σ″ + B τ″ + C υ″, 

 
in which A, B, C are arbitrary functions of β, γ, and the σ, τ, … are some well-defined 
functions of α, β, γ that are deduced from a complete solution to the first group (7*) (see 
below) that is integrated under the hypothesis that only α is variable.  Those functions 
must verify the usual relations between cosines: 
 

σ 2 + σ′ 2 + σ″ 2 = 1,    σ τ + σ′ τ′ + σ″ τ″ = 0,    ..., 
 
due to the fact that one must have 

A
2 + B2 + C2 = 1, 

 
independently of A, B, C, and in turn: 
 

A2 + B2 + C2 = 1. 
 
 Upon expressing the idea that the preceding values of A, B, C verify the second group 

(7*), one will conclude that: 
 
(7** )  Aβ = B r′ − C q′, Bβ = C p′ − A r′, Cβ = A q′ − B p′, 
in which: 
 r′  = ∑ τ σβ + υ  p(β) + υ′ q(β) + υ″ r (β) , 
 q′ = ∑ σ υβ + τ  p(β) + τ′ q(β)  + τ″ r (β) , 
 p′ = ∑ υ τβ  + σ p(β) + σ′ q(β) + σ″ r (β) , 
 
in which the quantities p′, q′, r′ are independent of the α.  Equations (7** ), which have the 
same form as (7*), but no longer refer to the trace of α, since they are integrated under the 
hypothesis that only β is variable, give: 
 

A = aϕ + bψ + cχ, B = aϕ′ + bψ′ + cχ′, C = aϕ″ + bψ″ + cχ″, 
 
in which ϕ, ψ, … are well-defined functions of β, γ that verify the usual relations 
between cosines, and a, b, c are three arbitrary functions of γ such that a2 + b2 + c2 = 1.  
Upon substituting the expressions above in the expressions for A, B, C above, one will 

get results of the form: 
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A = aξ + bη + cζ, B = aξ′ + bη′ + cζ′, C = aξ″ + bη″ + cζ″, 
 
in only the unknowns a, b, c, and the definitive verification of the third group (7*) will 
give: 
(7*** )  aγ = b r″ – c q″, bγ = c p″ – a r″, cγ = a q″ – b p″, 
in which: 
 r″ = ∑ η ξβ + ζ p(γ) + ζ′ q(γ)  + ζ″ r (γ) , 
 q″ = ∑ ξ ζβ + η p(γ) + η′ q(γ) + η″ r (γ) , 
 p″ = ∑ ζ ηβ + ξ p(γ) + ξ′ q(γ) + ξ″ r (γ) , 
 
in which the p″, q″, r″ depend upon only γ.  The integration of the group (7*** ) for only 
the independent variable γ will finally give: 
 

a = gθ + hϖ + kω, b = gθ′ + hϖ′ + kω′, c = gθ″ + hϖ″ + kω″, 
 
in which g, h, k are three arbitrary constants, such that g2 + h2 + k2 = 1, and the θ, ϖ, … 
verify the usual relations between cosines.  One will then have, upon combining 
everything: 
(12)       A = g A + h B + k C,      B = g A′ + h B′ + k C′,      C = g A″ + h B″ + k C″, 
 
in which A, B, C, … are functions of α, β, γ that are currently known. 

 As for the expressions for A′, B′, C′, A″, B″, C″, one will obviously get them by 

replacing the constants g, h, k with some other constants g′, h′, k′, g″, h″, k″ in the 
expressions that were just found for A, B, C and establishing the usual relations between 

the cosines: 
g2 + h2 + k2 = 1, gg′ + hh′ + kk′ = 0, … 

 
between those constants. 
 It is not pointless to recall that the p′, q′, r′ depend upon only β, γ, and the p″, q″, r″ 
depend upon only γ.  That will result from the sequence of calculations and the 
integrability conditions (8*), which are supposed to be fulfilled; one can also prove that 
directly.  I will confine myself to proving that dr′ / da = 0.  From the identities: 
 

σα = σ′ r (α) – σ″ q(α),      ασ ′  = σ″ p(α) – σ r (α),      ασ ′′  = σ q(α) – σ′ p(α), 

 
and analogous ones in τ, …, υ, …, one will conclude that: 
 

αβτ σ∑  = − ( ) ( )( )p pα α
β β βυ τ σ τ σ′ ′′ ′′ ′+ −∑ ∑ , α βτ σ∑ = − ( )( ) p α

β βτ σ τ σ′ ′′ ′′ ′−∑ , 

 
and in turn: 

( )β α
τ σ∑ = − ( )p α

βυ∑ , rα′  = ( )( ) ( ) ( )p p pβ α β
α β αυ υ− +∑ ∑ , 
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in which one will see that all of the terms mutually cancel when one considers (8*) and 
the equations that the υ verify. 
 In the foregoing, one must integrate some systems that fall into the classical type 
three times in succession, and one encounters them in the context of the rotation of 
bodies: 

da

dt
= br – cq,      

db

dt
= cp – ar,      

dc

dt
= aq – bp, 

 
in which p, q, r are regarded as known functions of time t.  Upon making use of the 
imaginary substitution that was employed by Hoppe (Journal de Crelle, t. LXIII, pp. 
122): 

b sin θ + c cos θ = 1, b cos θ − c sin θ = ia,  in which i = 1− , 

 
which is a substitution that gives: 
 

sin θ 
db

dt
 + cos θ 

dc

dt
+ ia 

d

dt

θ
= 0, 

 
when one considers the differential equations and sets tan θ / 2 = z, one will have: 
 

2i 
dz

dt
= 2rz + (q + ip) z – (q – ip) , 

and then: 

i
da

dt
+ (r cos q + q sin q) a +

d

dt

θ − p = 0. 

 
 When z is determined from the penultimate equation (which is due to Bernoulli), the 
last one will give a by quadratures; b and c will then follow.  One immediately concludes 
three special systems from the knowledge of a, b, c that will be denoted by σ, σ′, σ″ ; τ, 
τ′, τ″ ; υ, υ′, υ″ , respectively, for the first group (7*), for example. 
 One can alter the integration of the system of nine equations (7*) in various ways.  I 
will confine myself to the following one: One infers from the first horizontal row in (7*) 
that: 

(13)   B = 
( ) ( )

( ) ( ) ( ) ( )

q q

r q r q

γ β
β γ
β γ γ β

−
−

A A
,  C = 

( ) ( )

( ) ( ) ( ) ( )

r r

r q r q

γ β
β γ
β γ γ β

−
−

A A
, 

 
and when one takes into account that A

2 + B2 + C2 = 1, that will transform the first 

vertical group in (7*) into: 
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(14) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )2 ( )2 2 ( )2 ( )2 2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( )

[ ] [ ] [ ] 0,

[ ] [ ] 2[ ]

(1 )[ ] 0,

, ,

q r q r r q r q r q r q

q r q r q q r r

r q r q

p r q p

β γ γ β α γ α β β α α β
α β γ

γ γ β β β γ β γ
β γ α γ

β γ β γ

α α α α
α α

 − + − + − =
 + + + − +
 − − − =
 = − = −

A A A

A A A A

A

B C A C A B

 

 
in which B and C are regarded as having been replaced with their preceding values in the 

last two equations, one of which is superfluous, by virtue of the other three and the 
relations (8*).  The first of the preceding equations will make A depend arbitrarily upon 

two well-defined functions ϖ and ω.  If one considers A to depend immediately upon ϖ 

and ω then the substitution in the following two equations will lead to a first-order 
equation and a second-order between A, ϖ, and ω when one has eliminated β and γ, for 

example, by means of the forms of ϖ and ω themselves, which must make α disappear.  
It is easy to see that one will deduce a second-order equation from these equations that 
one can consider to be an ordinary differential equation in dω, for example.  The 
constants that are introduced by its integration are considered to be arbitrary functions of 
ϖ, so the equations that were employed already and the integrability conditions will 
easily lead to two first-order equation in those constants, and ω must finally disappear. 
 
 

§ V. – Triply-orthogonal systems. 
 

 If the cosines λ, µ, ν are equal to zero then the relations (9) will reduce to: 
 

(15)   
( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

l mR m nP n l Q

l nQ m l R n mP

α β γ
β γ α

α β α
γ α β

 = − = − = −
 = = =

 

 
(15*) − l Q(β) = m P(α),      − m R(γ) = n Q(β),      − n P(α) = l R(γ).  
 
 The multiplication of (15*) shows that one must have: 
 
(16) P(α) = 0,      Q(β) = 0,      R(γ) = 0, 
 
in which l, m, n are assumed to be non-zero. 
 By virtue of (16), the identities (8) will reduce to: 
 

(17)  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,

, , ,

R Q P Q R P P R Q

R P Q Q R P P R Q

α α γ α α β β β α
γ β α

β β γ γ β γ γ α γ
γ β α

 = − = = −
 = = − =
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(18)    

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0,

0,

0,

R R Q P

Q Q R P

P P R Q

α β α β
β α

γ α α γ
α γ

β γ β γ
γ β

 − + =
 − + =
 − + =

 

 
and will be equivalent to only six distinct equations, as one will convince oneself by 
differentiating each of the last three by the variables that do not appear in them, on the 
surface of things. 
 On the other hand, upon regarding (17), (18), one will infer from (15) that: 
 
 lβγ = − ( ) ( )m R m Rα α

γ γ− = m Q(α) P(γ) + n P(β) R(α), 

 lγβ =   ( ) ( )nQ n Qα α
β β+ = n R(α) P(β) + m Q(α) P(γ), 

 
in such a way that equations (15) will not lead to any new relation between the P, Q, R, as 
one could predict.  Therefore, the only non-identical relations that the latter functions 
must verify will be expressed by equations (16). 
 Presently, the nine cosines a, b, c, … can be expressed in an infinitude of ways by 
means of three independent functions.  For example, if one takes Euler’s formulas 
(DUHAMEL, Mécanique, 2nd ed., t. I, pp. 267), which give: 
 

 P(t) =    cos ϕ 
d

dt

θ
+ sin ϕ sin θ 

d

dt

ψ
, 

 Q(t) = − sin ϕ 
d

dt

θ
+ cos ϕ sin θ 

d

dt

ψ
, 

 R(t) = cos ϕ d

dt

ψ
+

d

dt

ϕ
, 

 
then it will result from what was just said that the determination of the triply-orthogonal 
systems can be reduced to: 
 
 1. The integration of three equations: 
 

(19)  
d

d

ψ
α

+ cot ϕ 
du

dα
= 0, 

d

d

ψ
β

− tan ϕ 
du

dβ
= 0, 

d

d

ψ
γ

− cot u 
d

d

ϕ
γ

= 0, 

in which: 

tan 
2

θ
= eu, cot u = 

1
2

1
2

( )

( )

u u

u u

e e

e e

−

−

+
−

. 

 
 2. The determination of l, m, n from the linear equations (13). 
 
 3. The quadratures (c) (end of § III). 
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 As for l, m, n, which must verify equations (15), if one focuses on l, for example, then 
the elimination of m, n will show that the function must satisfy the two simultaneous, 
compatible equations: 

(20)    

( )2
( ) ( )

( )

( )2
( ) ( )

( )

0,

0.

Rd l dl
R R l

d d R d

Qd l dl
Q Q l

d d Q d

α
α βα

α

α
α γα

α

α β β

α γ γ


− + =



 − + =


 

 
so when l is known, equations (15) will give m and n with no other integration. 
 
 “That method, which I believed to be new when I sent the theoretical part of the 
present work to the Institute (June 1864), had been the object of a prior communication 
by Bonnet (March 1862).  That geometer had made the remark that the integration of 
equations (19) can be reduced to that of a single third-order equation that one obtains by 
eliminating u from those three equations and then considering ϕ to be a function of ψ, α, 
β.  One can obtain a single third-order equation by a somewhat different choice of 
variables.  If one eliminates ϕ from the three (19) then that will give: 
 

0 = 
d d du du

d d d d

ψ ψ
α β α β

+ , 
d

d

ψ
γ

= − cot u 
2

2: 1
d

d u u
α α

α α

ψ ψ
γ
   

+   
   

, 

 
and when one considers α, β to be functions of u, ψ, γ (which are taken to be independent 

variables), one will find from the formulas that relate to the change of variables that 
d

d

α
ψ

, 

d

du

α
, 

d

d

α
γ

 are proportional to some expressions that depend upon only u and the 

derivatives of β with respect to ψ, u, γ up to order two, inclusively.  Upon expressing the 
idea that those proportional quantities will satisfy the usual integrability condition, one 
will get the aforementioned third-order equation.  That equation, which is moderately 
complicated, can be replaced with that of Bonnet, or vice versa, according to the 
viewpoint that one assumes (*).” 
 
 Lamé’s method. – By virtue of (15) and what was said about the motion of a material 
point (i.e., curvilinear coordinates), the identities (17), (18) amount to those of that 
illustrious author in relation to the arcs of curves and their variations, and upon 
eliminating P, Q, R, one will be naturally led to the fundamental group [8], [9] of 
curvilinear coordinates (Lamé, pp. 76, 78): 
 

                                                
 (*) I have enclosed in quotes all of the parts of this article that were introduced after an editing of it that 
Hermite was willing to accept on March 1865, and which differs from the one that was sent to the Institute 
only by the preliminary considerations on determinants and the addition of some examples in §§ VI and 
VIII. 
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(17*)     
l

m
β

γ

 
 
 

= 
l n

n m
γ β , …, 

 

(18*)    
l l mm

m l n n
β γ γα

αβ

   + +   
  

= 0, … 

 
 Equations (7) will become: 
 

(21)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , ,

, , ,

, , ,

da d da
bR cQ bR cQ

d d d

db db db
aR cP aR cP

d d d

dc dc dc
aQ bP aQ bP

d d d

α α β γ

α β β γ

α β γ γ

α
α β γ

β β γ

α β γ

 = − = = −



= − = − =



= = − = −


 

here, and upon introducing 
1 dx

l dα
, 

1 dx

m dβ
, 

1 dx

n dγ
, in place of a, b, c, respectively, they 

will become: 

(22)     
2d x

d dα β
= 

l mdx dx

l d m d
β α

α β
+ , …, 

 

(22*) 
2

2

d x

dα
= 2 2

l l ll ldx dx dx

l d m d n d
β γα

α β γ
− − , …, 

 
i.e., the [28], [30] in Coordinées curvilignes.  One must combine them with: 
 

(23)  
2 2 2

2 2 2 2 2 2

1 1 1dx dx dx

l d m d n dα β γ
+ + = 1. 

 
 Conforming to Lamé’s method, after finding l, m, n by means of the six equations 
(17*), (18*), one determines x (and analogously y, z) by means the three (22) and (23).  
Since that method is far from having to be abandoned completely, whether we take the 
unknowns to be the rotations or l, m, n [which we pass to easily by means of (15)], I 
would like to add the following remarks: 
 
 1. One of the three (22) is a consequence of the other two and (23), as it easy to 
convince oneself when one takes (17*) and (18*) into account. 
 
 2. The integration of (22), (23) comes down to that of equations (21), which one can 
treat in succession as ordinary differential equations, which will be developed more 
generally in § IV. 
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 3. It results from the first method that was presented in this section that equations 
(22), (23) admit three unique, well-defined solutions (when one ignores what amounts to 
a rectangular coordinate transformation) that will be easier to find directly by the 
immediate consideration of (22), (23), which is what happens for isothermal systems, in 
particular. 
 
 

§ VI. – Example that relates to the preceding section. 
 

 Euler’s formulas can be replaced with those of O. de Rodrigues: 
 

Θa = 1 + X2 – Y2 – Z2, Θb = 2 (XY + Z), Θc = 2 (XZ – Y), …, 
 

 Θ P(t) = 
Y Z X

2 Z Y
d d d

dt dt dt
 − − 
 

, 

 Θ Q(t) = 
Z X Y

2 X Z
d d d

dt dt dt
 − − 
 

, 

 Θ R(t) = 
X Y Z

2 Y X
d d d

dt dt dt
 − − 
 

, 

 
in which Θ = 1 + X2 + Y2 + Z2.  In order to re-establish homogeneity, one sets: 
 

X = 
H

ξ
, Y = 

H

η
, Z = 

H

ζ
. 

 
Equations (16) can be written: 

(19*)    

,

,

.

d dH d d
H

d d d d
d dH d d

H
d d d d

d dH d d
H

d d d d

ξ η ζξ ζ η
α α α α
η ζ ξη ξ ζ
β β β β
ζ ξ ηζ η ξ
γ γ γ γ


− = −




− = −



− = −


 

 
 “One can arrange that the arbitrary denominator H fulfills some special condition.  
For example, if one makes the triple assumption that ξ does not contain α, η does not 
contain β, and ζ does not contain γ, which will make the terms on the extreme left vanish, 
then the elimination of H from the reduced equations will give the following three 
equations: 
 − wαβ = (wα – vα) (wβ – uβ), 
 − vαβ  = (vα – wα) (vβ – uβ), 
 − uαβ  = (uα – wα) (uβ – vβ), 
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in which one has set u = ln ξ, v = ln η, w = ln ζ, and which introduces no new conditions, 
as one will see upon differentiating with respect to γ, β, α, respectively.  For example, 
one infers from the first one that: 

w

v w
αβ

α α α

 
 − 

= wαβ , 

i.e.: 
w

w
ααβ

αβ

= vα – wα +
v w

v w
αα αα

α α

−
−

. 

 
 Upon differentiating with respect to β and considering that same equation, one will 
conclude that: 

(ln ϖ)αβ = − 2ϖ or ϖ = wαβ . 
 
From Liouville, that will give: 

ϖ = 2( )

′ ′
−
A B

A B
. 

It will then result that: 
 

ζ = A1 B1 (A – B), η = A1 C1 (C – A), ξ = B1 C1 (B – C), 
 

H = k − 2 2 2
1 1 1d d dα β γ′ ′ ′− −∫ ∫ ∫A A B B C C . 

 
k is an arbitrary constant, A, A1, B, B1, C, C1 are arbitrary functions of α, β, γ, 

respectively, and the primes indicate derivatives.  Three of these six arbitrary functions 
can be taken to be α, β, γ.” 
 
 Upon supposing that A, B, C are constants, one will get the very special solution: 
 

X = βγ, Y = αγ, Z = αβ, 
which will give: 
 
 Θ P(β) = − 2γ (α2 + 1), Θ Q(α) =   2γ  (β 2 − 1), Θ R(α) = − 2β (γ 2 + 1), 
 Θ P(γ) =    2β (α2 − 1), Θ Q(γ) = − 2α (β 2 + 1), Θ R(β) =    2α (γ 2 − 1), 
 
in which: 

Θ = 1 + α2β 2 + α2γ 2 + β 2γ 2. 
 

 Equations (15) generally provide the three combinations P(γ) dl

dβ
+ R(α) dn

dβ
= 0, …, 

which will become immediately integrable here, when one suppresses a common factor, 
and one will then conclude that: 
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 (β 2 + 1) m − (γ 2 − 1) n  = ϕ (β, γ), 
 (γ 2 + 1) n  − (α 2 − 1) l  = ψ (α, γ), 
 (α2 + 1) l   − (β 2 − 1) m = χ (α, β). 
 
 If one infers the values of l, m, n from this and substitutes them in (15) then one will 
get: 

 (α2 − 1)
d

d

χ
α

+ (α 2 + 1)
d

d

ψ
α

= 0, 

 (β 2 − 1)
d

d

ϕ
β

+ (β 2 + 1)
d

d

χ
β

= 0, 

 (γ 2 − 1)
d

d

ψ
γ

+ (γ 2 + 1) 
d

d

ϕ
γ

= 0; 

 
hence, by the immediate differentiation: 
 

2d

d d

χ
α β

= 0, 
2d

d d

ψ
α γ

= 0, 
2d

d d

ϕ
β γ

= 0. 

 
If one integrates these and substitutes into the preceding equations then one will conclude 
the defining expressions for ϕ, ψ, χ, and in turn: 
 

 Θ l = 
2

2

( )

2

d

d

λ α
α α

Θ  
 Θ 

  + (γ 2 + 1) µ (β) + (β 2 − 1) ν (γ), 

 Θ m = 
2

2

( )

2

d

d

µ β
β β

Θ  
 Θ 

+ (α 2 + 1) ν (γ) + (γ 2 − 1) λ (α), 

 Θ n = 
2

2

( )

2

d

d

ν γ
γ γ

Θ  
 Θ 

   + (β 2 + 1) λ (α) + (α 2 − 1) µ (β), 

 
in which l, m, n are three arbitrary functions.  Since the cosines a, b, … are expressed in 
terms of α, β, γ, moreover, one will have, upon integrating the exact differentials: 
 

 x = 
α
Θ

[(γ 2 + 1) µ (β) + (β 2 − 1) ν (γ) – (γ 2 + β 2) λ (α)] + 
( )

2
d

λ α α
α

′
∫ , 

 y = 
β
Θ

[(α 2 + 1) ν (γ) + (γ 2 − 1) λ (α) – (α 2 + γ 2) µ (β)] + 
( )

2
d

µ β β
β

′
∫ , 

 z = 
γ
Θ

[(β 2 + 1) λ (α) + (α 2 − 1) µ (β) – (α 2 + β 2) ν (γ)] + 
( )

2
d

ν γ γ
γ

′
∫ . 

 
 For example, if one takes λ, µ, ν to be linear functions of α 2, β 2, γ 2, respectively, 
then one will easily conclude the following combinations from the equations obtained: 
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1 1

y zβ γ
β γ

   + − −   
   

 = g, 

  
1 1

z xγ α
γ α

   + − −  
  

 = h, 

  
1 1

x yα β
α β

  + − −   
   

 = k, 

and in turn: 

 
2 2

2 21 1
4 4x k y x k zα α

α α
      ± + − + ± − + −      
      

= g, 

 

 
2 2

2 21 1
4 4y g z y k xβ β

β β
      ± + − + ± − + −      
      

= h, 

 

 
2 2

2 21 1
4 4z h x z g yγ γ

γ γ
      ± + − + ± − + −      
      

= k, 

 
in which g, h, k are constants.  The first of these orthogonal surfaces reduces to a family 
of spheres when g = 0.  If, at the same time, h = 0 then the second one will also transform 
into a spherical family, while the third one will always remain of order four. 
 
 “It is characteristic of that example that l, m, n refer to three different arbitrary 
functions of one variable and their first derivatives.  I am curious to know whether other 
orthogonal systems do not enjoy the same property.   By the use of indeterminate 
coefficients, upon considering (15), (17), (18), one will see that the necessary and 
sufficient conditions for that to be true are: 
 

( )

( )

R

Q

β

γ = a, 
( )

( )

P

R

γ

α = b, 
( )

( )

Q

P

α

β = c, 

 
in which a, b, c are three arbitrary functions that are missing α, β, γ, respectively. 
 Upon taking (17) into account in the interval of transformations, those relations will 
give: 

( )

( )

R

R

α
β
α

α

 
  
 

= 
( )

( )

P

P

γ
α

γ
β

 
 
 

= 
( ) ( )

( )

R Q

P

α γ

γ
β

 
 
 

= − R(α) R(β), … 

 
One then forms the triple group: 
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(α)   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

R R (ln R ) (ln R ) (ln Q ) ,

Q Q (ln Q ) ,

P P (ln P )

α β α β γ
αβ αβ αβ

α γ γ
αγ

β γ β
βγ

 − = = =
 − = =
 − = =

⋯

⋯

 

 
 From a comparison of the logarithmic terms, one concludes, with a little attention that 
one can adopt in the most general form possible: 
 
(α′ ) P(β) = θ C,     P(γ) = θ B′,     Q(γ) = θ A,     Q(α) = θ C′,     R(α) = θ B,     R(β) = θ A′, 
 
in which θ is an entirely indeterminate function, and A, A′, … are arbitrary functions of 
the same type as a, b, c. 
 (17), (18) now generally provide the obvious combinations: 
 
(β)   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P R R P R P P R P R R Pγ β β γ α γ γ α β α α β

α α β β γ γ− + − + − = 0, 

 
and two other analogous ones: 
 

(g)   
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

P P P P Q Q Q Q

R R R R P Q R + P Q R ,

β γ γ β γ α α γ
α α β β

α β β α β γ α γ α β
γ γ

 − = −
 = − =

 

 
which, abstracting from the last expression in (γ), has the property that it remains 
absolutely the same when the letters that appear in it are multiplied by the same arbitrary 
factor. 
 Substituting the preceding values of P(β), P(γ), … in (β) will yield: 
 

A

A
γ

β

′
= 

B

C′
, 

B

B
α

γ

′
= 

C

A′
, 

C

C
β

α

′
= 

A

B′
, 

 
so, upon differentiating with respect to α, β, γ, one will conclude these more inclusive 
forms: 
 A = C2 B, B = A2 C, C = B2 A, 

 B′ = C2 A1, C′ = A2 B1, A′ = B2 C1, 

 
in which A, A1, A2  are arbitrary functions of only α, etc.; however, the complete 

verification of the undifferentiated equations will demand that: 
 

1 2

′B
B B

= 1

2

′C
C C

= g, 
1 2

′C
C C

= 1

2

′A
AA

 = h, 
1 2

′A
A A

= 1

2

′B
BB

= k, 

 
in which g, h, k are constants that one can obviously suppose to be equal to unity.  Those 
equations will yield AA′ – A1 1′A = 0, …  The three constants that the integration of the 
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latter introduces must be equal in order for the three values of θ that are deduced from (γ) 
to coincide.  From that, it is obvious that one can take: 
 

A = α +
1

α
,      A1 = − α +

1

α
,      A2 = − 1

α
, …, 

and consequently: 

θ = 2 2 2 2 2 2

2

1

αβγ
α β α γ β γ+ + +

. 

 
One then comes back to the preceding example. 
 If one eliminates the arbitrary functions whose derivative is missing from the 
expression for x, y, z that relate to this example, when considered pair-wise, then one will 
see that all of the lines of curvature of the orthogonal surfaces will be planar.  If one 
would like to look for all the similar systems upon starting with the equations for the 
rotations (17), (18) then one will first get: 
 

( )

( )

R

Q

α

α = a, 
( )

( )

P

R

β

β = b, 
( )

( )

Q

P

γ

γ = c, (see § IX) 

 
to express the idea that all of the lines of curvature are planar; one will find two groups 
that are analogous to (α) and (α′ ), except that one must switch the upper indices for P(β), 
P(γ), …  One must then begin to specialize the arbitrary functions A, A′, … as much as 
possible by means of the first two of (γ).  By the consideration of some third-order linear 
equations and ordinary differential equations, one will get some forms for the A, A′, … 
that are comparatively much-reduced.  One will continue to circumscribe them by the 
group (β); however, I shall suppress that analysis, which demands attending to some 
details that are a little tricky.” 
 

 
§ VII. – Isothermal triply-orthogonal system. 

 
 Several eminent geometers have sought to simplify (by some considerations that were 
borrowed chiefly from infinitesimal geometry) the method by means of which the 
illustrious author of Coordinées curvilignes has shown that the ellipsoidal system is the 
only triply-orthogonal system that is isothermal.  The importance of the subject has led 
me to indicate some modifications that seem to me to give that method all of the 
analytical rigor and simplicity that one might desire. 
 The isothermal condition (Coordinées curvilignes, pp. 95) gives: 
 

l = BC,  m = AC, n = AB, 
 
in which A, B, C are arbitrary functions that are missing α, β, γ, respectively.  The 
relations (17*) will then give: 
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A = 
B C

A A
B Cγ β

γ γ

+ , B = 
A C

B A
A Cγ α

γ α

+ , C = 
A B

C C
A Bβ α

β α

+ , 

 
in which the variables that are used as indices indicate partial derivatives with respect to 
those variables, as always. 
 Upon differentiating the first one with respect to α twice, one will deduce that: 
 

0 = 
B C

A A
B Cγ β

γ γα α

   
+      

   
, 0 = 

B C
A A

B Cγ β
γ γαα αα

   
+      

   
, 

 
so, upon completely excluding the hypothesis that either Aβ or Aγ is zero: 
 

B

B

B

B

γ αα

γ α

 
  
 

 
  
 

 = 

C

C

C

C

γ αα

γ α

 
  
 

 
  
 

= 
ln ( )d

d

χ α
α
′

, 

 
in which the first two ratios must be independent of β and γ, respectively.  From that: 
 

B

Bγ

= f (γ) χ (α) + f1(γ), 
C

Cγ

= f (β) χ (α) + f1(β), 

 
in which the f and c are arbitrary functions.  Upon rearranging, it will result that: 
 

0 = Aγ f (γ) + Aβ f (β),  A = Aγ f1(γ) + Aβ f1(β). 
Upon setting: 

( )

d

f

γ
γ∫ = ϖ (γ), 

f ( )

dβ
β∫ = ω (β), ϖ – ω = v 

 
and letting Φ denote an arbitrary function, the first one will give: 
 

A= Φ (v), Aγ = Φ′ (v) ϖ′ (γ), Aβ = − Φ′ (v) ω′ (β). 
 

Hence, by virtue of the second one: 
 

Ψ (v) =
Φ

′Φ
= ϖ′ (γ) f1(γ) − ϖ′ (β) f1(β), 

 
and upon differentiating this alternately by γ and β: 
 

Ψ′(v) ϖ′ (γ) = [ϖ′ (γ) f1(γ)]′, Ψ′(v) ω′ (β) = [ω′ (β) f1(β)]′. 
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As a result: 

Ψ′(v) = 1[ ( ) ( )]

( )

fϖ γ γ
ϖ γ

′ ′
′

= 1[ ( ) f ( )]

( )

ω β β
ω β

′ ′
′

= 
1

k
, 

 

Ψ =
v

k
+ K, Φ = h (v + H)k, 

 
in which k, H, h, H are arbitrary constants.  The necessary form for A is known, and in 
turn, that of B, C, as well, so the simultaneous verification of (17*) will give, in the most 
general form possible: 
 

A2 = g (B – C)p, B2 = g1 (C – A)p, C2 = g2 (A – B)p, 
 
in which g, g1, g2, p are arbitrary constants.  There is a second, exponential, form that 
corresponds to an infinite k, but one can see with no extra effort that it cannot verify 
(18*). 
 With those values, the first of (18*) will become: 
 

(A) 

2
1

2 2
1 2

2
2( ) 2( ) ( )

2 ( )
( ) ( ) .

( )( )

p p p

p p

p
g g g

p p
g g

  ′′ ′′ ′− − − = − −  − − 


−  ′ ′+ − − + −  − − − − 

B C A C A B � B C A
A B C A

A B
C A B A B C

A B B C B C C A

 

 
If one adds this to two other equations that are obtained by a circular permutation of the 
letters then one will get: 
 
(B)  (p – 1) [(B – C)p+2 g A′2 + (C – A)p+2 g1 B′2 + (A – B)p+2 g2 C′ 2] = 0. 

 
 The hypothesis that the second factor will be zero when one sets: 
 

g A′2 = U, g1 B′2 = V, g2 C′ 2 = W, 

 
and that one takes A, B, C to be independent variables will give, upon differentiating 

twice with respect to A: 

 
(B – C)p+2 U + (C – A)p+2 V + (A – B)p+2 W = 0, 

 

(B – C)p+2 
Ud

dA
+ (p + 2)(C – A)p+1 V + (p + 2)(A – B)p+1 W = 0, 
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(B – C)p+2 
2

2

Ud

dA
+ (p + 2)(p + 1)(C – A)p V + (p + 2)(p + 1)(A – B)p W = 0. 

 
 If one supposes that p = − 2 then the first of these equations will yield constant values 
for U, V, W that verify equations (A), but correspond to an imaginary isothermal system 

that one can consequently reject.  On the other hand, one recognizes that the assumption 

that p = − 1, which will give 
2

2

Ud

dA
= 0, cannot agree with (A).  Since (p + 1) and (p + 2) 

are non-zero, the elimination of V, W from the preceding three equations will give a 
second-order equation in U that will lead to the inadmissible value U = 0.  Equation (B) 

will then demand perforce that one must take p = 1.  Upon recalling that: 
 

g A′2 = U, 2 g A′ A″ = Ud

dα
, so 2 g A″ = Ud

dA
, 

equation (A) will then become: 

 

 (B – C)
Ud

dA
– (C – A)

dV

dB
  

 

= 
2 1 − − − B C C A

(B – C) U + 
2 1 − − − A B B C

(C – A) V + 
2( )

( )( )

−
− −
A B

B C C A
W. 

 
 If one isolates W and differentiates three times in turn with respect to A then after 

suppressing the factor (B – C) that the first differentiation introduces, one will get  

 

(A – B)2
2

2

Ud

dA
− 4 (A – B) 

Ud

dA
+ 6U = 2 (A – B) 

Vd

dB
+ 6V, 

 

(A – B)2
3

3

Ud

dA
− 2 (A – B)

2

2

Ud

dA
+ 2

Ud

dA
 = 2 

Vd

dB
, 

 

(A – B)2
4

4

Ud

dA
= 0. 

 
Therefore, since λ, λ1, λ2 are arbitrary constants, one will have, upon combining these, or 
by symmetry: 
 U = A3 + λ A2 + λ1 A + λ2 , 

 V = B3 + λ B2  + λ1 B + λ2 , 

 W = C3 + λ C2  + λ1 C  + λ2 , 
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and in turn, if U, V, W have those values: 
 

dα = 
U

d

g

A
, dβ = 

1

V

d

g

B
, dγ = 

2

W

d

g

C
. 

 
 As for the final determination of x, y, z, nothing can replace Lamé’s calculation. 
 
 

§ VIII. – Orthogonal system that is deduced from an elliptic system. 
 
 When one knows a particular orthogonal system, one can deduce the cosines a, b, c, 
…, and the P(β), P(γ), … in terms of α, β, γ.  If one substitutes those particular values of P, 
Q, R into equations (15), and one integrates that latter equations while taking l, m, n to be 
unknowns then one will get the expressions for those unknowns with three arbitrary 
functions, in general.  Upon preserving the particular values of a, b, c, …, one will then 
have the x, y, z by quadratures.  Here is an example that is suitable to exhibit that remark: 
Upon setting: 

G = 
4

( )( )( )h k k j j h

−
− − −

, 

 
in which h, k, j are constants, and supposing that α > β > γ, the formulas that relate to the 
elliptic system can be written: 
 

1

1

1

( )( )( )( ),

( )( )( )( ),

( )( )( )( ),

x G k j h h h

y G j h k k k

z G h k j j j

α β γ
α β γ
α β γ

 = − − − −
 = − − − −
 = − − − −

 

1

1

1

( )( ),

( )( ),

( )( ).

l

m

n

α β α γ
α β β γ
α γ β γ

 = − −
 = − −
 = − −

 

 
From (15), the corresponding values of P, Q, R will be: 
 

R(α) = 
1

2( )

α γ
α β β γ

−
− −

, R(β) = 
1

2( )

β γ
α β α γ

−
− −

, … 

 
If one substitutes these values into the same equations (15), (20), when one currently 
regards l, m, n as three unknown functions, then (20) will give: 
 

 
2

2

2

2( )( ) 4( )

d l dl l

d d d

α β γ
α β α β α γ β α β

+ −+ +
− − −

= 0 

 
for the determination of l. 
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 If one sets l = l1 u, and ultimately m = m1 v, n = n1 w, then upon observing that l1 is 
one of their common solutions: 

 2 (α – β)
2

3
d u du du

d d d dα β β α
+ −  = 0, 

 2 (α – γ)
2

3
d u du du

d d d dα γ γ α
+ −  = 0. 

 
These equations will admit the simple solution: 
 

( ) ( )( )( )

T

t t t tα α β γ− − − −
, 

 
in which T, t are arbitrary constants.  Equations (15) yield simple, corresponding values 
for V, W, and one will have the very general solution: 
 

u = 
( ) ( )( )( )

T

t t t tα α β γ− − − −∑ , 

v = 
( ) ( )( )( )

T

t t t tβ α β γ− − − −∑ , 

w = 
( ) ( )( )( )

T

t t t tγ α β γ− − − −∑ , 

 
in which the ∑ extends over all values that one would like to give to T, t.  In order to find 
x, y, z, one takes: 

a = 1

1

1 dx

l dα
 = 

1

1 ( )( )( )

2 ( )

G k j h h

l h

β γ
α

− − −
−

,  b = …, 

 
and upon integrating the exact differentials (c), § III, one will find that: 
 

 x = ( )( )( )( )
( ) ( )( )( )

T
G k j h h h

h t t t t
α β γ

α β γ
− − − −

− − − −∑ , 

 

 y = ( )( )( )( )
( ) ( )( )( )

T
G k h k k k

k t t t t
α β γ

α β γ
− − − −

− − − −∑ , 

 

 z = ( )( )( )( )
( ) ( )( )( )

T
G h k j j j

j t t t t
α β γ

α β γ
− − − −

− − − −∑ . 

 
The systems that are included in these formulas, which are infinite in number, obviously 
have the same spherical image as the elliptic system. 
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§ IX. – Some mappable surfaces. 
 

 I shall introduce this last section in order to connect the general theory of curvilinear 
coordinates with the partial theory of the deformation of surfaces, which is impossible to 
deduce from Lamé’s formulas.  If one introduces the hypothesis that n = 0 into equations 
(15), § V then they will become lγ = 0, mγ = 0, P(γ) = 0, Q(γ) = 0, R(γ) = 0, and: 
 

(24)   R(α) = − 
l

m
β , R(β) = 

m

l
α , m P(α) + l Q(β) = 0. 

 
 One can no longer make use of relations (17), (18), or (17*), (18*), which were 
established under the express condition that P(α), Q(α), R(α) are equal to zero.  However, 
upon referring to the identities (8), into which that assumption was not introduced, and in 
which one made l = 0, m = 0, v = 0, one will have, upon considering (24): 
 

(25)   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Q P P Q ,

Q Q P P 0,

P P Q Q 0.

l m

m l

lm

l m
l m

m l

βα β α β α

αβ

βα β α βα
β α

β βα β β α
β α

    − = +    
  


 − + + =



− + − =


 

 
Equations (24), (25) correspond to the problem of the mapping of surfaces when l and m 
are given in terms of α, β.  In the particular case of l = 1, upon eliminating Q(β), one will 
get back to the Bour’s fundamental equations (Journal de l’École Polytechnique, Cahier 
XXXIX). 
 When one infers the values of P(α), P(β), Q(α), Q(β) from these equations, one will 
obtain the cosines by integrating equations (7), which are: 
 

(26)   

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

Q , Q ,

P , P ,

Q P , Q P ,

l mda da
b c b c

d m d l

l mdb db
c a c a

d m d l

dc dc
a b a b

d d

β α βα

βα β α

α α β β

α β

α β

α β


= − − = −


 = + = −



= − = −


 

 
here, and which were considered more generally in § IV.  One will then get x, y, z from 
equations (c), § III. 
 If one rids oneself of any sort of auxiliary variable and determines x, for example, 
directly then one will only have to eliminate P(α), P(β), Q(α), Q(β) from (26) and the first of 
(25).  One will then get: 
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(27) 2 l m m lda db da db da db da db
c a b a b

m l d d d d l d d m d d
β β β β

β α α β β α α α β β
       + + − + + + +        

        

= 0, 

 

in which one replaces c2 with 1 – a2 – b2, and a and b with 
1 dx

l dα
 and 

1 dx

m dβ
, which will 

yield the second-order equation that any of the coordinates x, y, z must verify. 
 Another mode of solution will result from the use of Euler’s formulas, which will 
transform (24) into: 

 cos
d d

d d

ϕ ψθ
α α

+ = − 
l

m
β , 

 cos
d d

d d

ϕ ψθ
β β

+ =     m

l
α , 

cos sin sin
d d

m
d d

θ ψϕ ϕ θ
α α

 + 
 

 = sin cos sin
d d

l
d d

θ ψϕ ϕ θ
β β

 − 
 

. 

 
Equations (25) will be simple identities then.  When ϕ, ψ, θ have been determined in 
terms of α, β by those three equations, Euler’s formulas will give the cosines 
immediately, and the quadratures (c), § III will finally yield x, y, z (*). 
 
 “From the equations for the lines of curvature of any of the surfaces considered, 
namely: 
 (l  + Θ Q(α)) dα + Θ Q(β) dβ = 0, 
 (m − Θ P(α)) dβ  − Θ P(β) dα = 0, 
one will have: 

(P(α) Q(β) − P(β) Q(α)) Θ2 + (m Q(α) – l P(β)) + ml = 0. 
 
 Upon comparing this with the first of (25), one will conclude that the product of the 
inverses of the principal radii of curvature will be: 
 

1 l m

ml m l
β α

αβ

    +    
    

. 

 
Upon denoting the angles of contingency and torsion, and the inclination of the curve β = 
const. to the tangent plane by ω(α) dα, υ (α) dα, ε (α), resp., and letting ω(β) dβ, υ (β) dβ, 
ε (β) denote the analogous quantities for the curve α = const. (ε (α), ε (β) are measured by 
starting from the corresponding osculating plane and supposing that they turn around the 
tangent in the direct sense), it will be easy to see geometrically or analytically that: 
 
 P(α) = υ (α) + ( )α

αε , P(β) = ω (β) sin ε (β), 

                                                
 (*) I have been informed that the results above were established by Codani, but I do not know in what 
precise era. 
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 Q(α) = ω (α) sin ε (α), Q(β) = υ (β) + ( )β
βε , 

 R(α) = ω (α) cos ε (α), R(β) = ω (β) cos ε (β). 
 
 When α = const., β = const. correspond to the lines of curvature for an individual 
surface, it will result from the equations above that relate to those lines that P(α) = 0, Q(β) 
= 0.  In that case, υ (α) + ( )α

αε  = 0, in such a way that if the line is planar then the ratio R(α) 

/ Q(α) will not depend upon α. 
 
 Final remark. – If one must establish the simplest possible of all the various formulas 
that relate to either mappable surface or triply-orthogonal systems then it will obviously 
suffice to take the classical formulas of mechanics that give the variations of the cosines 
by means of the components of rotations.  One will write down those equations twice in 
the first case and three times in the second, with the components of the two rotations (the 
two or three groups (7*), § IV, for example).  One writes down the group (8*) (in the 
same section), which I presume to have been established, first, in full generality, and then 
upon making the moving rectangular axes coincide with the tangents to the orthogonal 
trajectories of the surface (the third will coincide with the normal), one will recover the 
formulas of the present paragraph, whereas upon making them coincide with the tangents 
to the curves of intersection of the three orthogonal surfaces, one will obtain the formulas 
that relate to that theory.  The latter path is the one that was followed by Bonnet, while 
immediately employing Euler’s formulas, in which it seems to me that he has disguised 
somewhat the role of partial rotations whose analytical composition (which Lamé had 
neglected) has, in the other hand, left the three geometrically-obvious conditions P(α) = 0, 
Q(β) = 0, R(γ) = 0 fruitless for that celebrated geometer.” 
 

___________ 
 


