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The principal objective of the following study is a e@mtextension of the oblique
curvilinear coordinates of that great theory that waateceby Lamé to the general case.
Nevertheless, | have added some remarks that areimaiportant and touch upon
orthogonal systems. Finally, | believe that altludt theory must be attached to that of
functional determinants, whose properties | will redallthe extent that they are of use to
me, while deducing them from the consideration of quadratiod.

8 |. —Quadratic form of the product of two determinants. — Identgithat it yields.

Let two determinants whose elements are completégpendent be:

Xl(l) Xél) . X:l) Zl(l) zél) . %1)
(2) (2) .. (2) (2) 2 .. 2)
w=| X % S P LA 27|
Xl(n) X;n) . )én) Zl(n) én) . %n)

and let their product be:
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V1,1 V1,2 Vln
V V cee V
21 2,2 2
V= ",
Vn,l Vn,2 Vn,n

in whichvi j = > X9 29, where the summation extends frgns 1 tog = n, although

g
that will always be implied for all indexed summations.
From the fact that:
av _ Z dX av _ dZ

dx@ - W dz‘g) Z<g) :

one concludes immediately that:

dv dv

(9) — (9) _

E ng Vo OorVv, E ng PEON 0 orV,
g g

in which the right-hand sides are equal to ¥Wpaccording to whether the indices are
different or coincide, resp. Having said that, one represent the determinanty any

of then quadratic forms:
F@ :ZCN X(g) )49)
1]

that correspond to the values ofg, and in which thecoefficients €; keep the same
values. Indeed, under those hypotheses, and due to theafact th

dF(g) - 9) 9)
d)ﬁ(g)_z”é dz“” z|1>§<

] i

one will have, from what precedes this immediatelg:th

Voro:zxgmz;g) z Jz)écn 49 = ZCM’
vOro:zz;mdig) DICHIEEE I

and from then? equalities that are composed of the extreme esjomes, one will infer

. \Y, " :
the symmetric valued— for the coefficienC; ;. One will then have:

dv”.
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FO = zdv (g) Z:g) =V

(9)
Upon multiplying the expression fO-(IjL above by

dx® i)

and then taking the

>, one will get:

g

dF©@ dfF@ g)
; dx(g) dig) Z 'l;%( dz:g) '
and since, by virtue of (a), all of the terms in the trighind side will disappear, except for
j =h, it will result that:

dF@ dF? dv
(b)

——— V =V ——.
> dx(g) dég) G dV

If one supposes, for the moment, that the two detemmisX andZ coincide with
each other term-by-term, and that one sets:

51,1 51,2 51;1 Zl,l Z1,2 Zln
xt=p=| B Sz fn) o geagalfe G Gl
gl,n 52,n gn,n Z1,n Z2,n Zn,n

in which:
—fjuzz)ﬁ(g)xj(g), G,j:Zj,i:ZZ(g) %(g)’ and PQ=V2,
9 9

then one will have, as a particular case of what wa$ $aid, or by some direct
considerations that are entirely parallel to the pregednes:

2f(9):Zij<g))ﬁ<g):p, 2§@ = Z Z(Q) #g):Q

in which the formd, f verify the relations:

@) Zx‘g) dX(g) =0 orP, Zz‘g) dZ(g) =0 orQ,

g

and give rise to the identities:
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df(g) df(g) df(g) dv(g)

b ——==PAj;, = -
(®) = dx® dx9 Al QB

It is now easy to see that:

1 df@ 1 dF‘?

(9) — - gz -

(C) Xl Zlh 4(3) Vg ih d*g)
f(g) 1 dl:(g)

(9) _Z - Z’h—’

T ORRVZ R

because if one successively multiplies the first rowef@mmple, byx® and 2%, resp.,

and then sums ovez then one will conclude that:
g

1 dF‘@ 1
:V?ﬁvhgx?’) T Vi) 6; hzg:zj 49),

in which one will see all the terms on the right-haidé s disappear, by virtue of (a), Xa
except for the ones that halve |.

Upon multiplying them by the first two expressions 6, ¥ and summing over
>, one will get:

g
B 1 df(g) df(g)
§ii= Q_;; ih sz dzﬁg) df’)’
i.e., from (b):

Z ih Jk Blk’

(d) and S|m|IarIy,

1
Z|,j :EZVh,iV(,j A
hok

The multiplication of the last two expressions gt , 29 also gives:

1
Vij= _zgtlh 5j,kCh,k-
\ h,k

When thex and thez are coupled by the conditions that = 0 or 1 (according to
whetherj is or is not different from, resp.), formulas (c), (d) will reduce to:
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1 df‘e
. X = Q d#g) Z‘zm' 37, ; $i =é3,j ’
(c) ’ (d)
1df® 1
(9) — S d){g) ZJ:ZI J )49) Zi,j :EAJ :

in whichPQ=V?=1. The forms, f, for their own part, amount to:

2f (9) 2f(9)

P

- ZZL]X(Q))S(Q) =1, — zgtl] (g)%(g)

and the expression for ; that follows from (d) will giveZgﬁyh {;n =0o0r1l.
h

One will then get back to some known results frdm theory of functional
determinants, except for some differences in farmpan supposing that:

X9 = du, , o = 99 |
da, b dy,
in which them, a, ..., an are functions of theu, uy, ..., uy that are taken to be
independent variables, or inversely.
8 Il. — Differential relations. — Distinguishing two groups of elemts.

Upon lettingt denote any independent variable and setting:

)

(e) Z )g(g) - R(g) ,

in general, in such a way:

R(g) + F{g) $ haIN
it is easy to recognize that one will have:

@ d
® .Z Rin d>¢‘~”

identically, because upon multiplying that by®’ and taking the sumd’ , one will

conclude that:
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Z Xég) d>ﬁ5 IZ R(g)z ){g) d)ég) ,

or, by virtue of (3, all of the terms in the right-hand side will disappesith the
exception of the ones for whick k:
£(a)
When one multiplies equation (f) bal— and then sums ovez upon switching

> .Y, and taking (B into account, one will infer that:

df(g) d>§:g)
(©) Zg:dx‘g) dt = LARY

j i

9)
and from this, ifs is any other independent variable, upon multiplying (r)%;, one
S

will get:
dx? dy® ® ) 9
P 1
Zg: dt ds ZR zd>¢9> ds ZR‘ Z i
or rather:
dx
h RO R
) Zg: dt ds ,Z,:A Tk
Now, it results from the fact that:
s d
(,i_ z (@ Xﬁ
that:
dFﬁS) dX® df® <
= + g) 2 k-
Zg: dt ds th dtds

g

so, upon changingands and taking (h) into account, one will infer that:

d s) t)
® Rk i —ZA (RY R - B 1),

dt

That multiple equation (and it seems to me th& Has not been pointed out, in
general) expresses, in particular, the integrgtulinditions for the simultaneous systems
of linear equations:

dx:g) df (9) dx:g) df (9)
£ P - (t) , P — (s) ,
( ) dt Z R,h dx(g) dS Z R,h d)q(g)
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from which, one proposes to deduce xh&hen all of the other quantities are supposed
to be known in terms dfands. One will get some entirely analogous new conditions
when one introduces an arbitrary number of independerdblest, s, ..., and one can
observe that the set of system%) (¢an be integrated under conditions that are analogous
to (k), as a sequence of separate linear systems in ordiifementials.

In the case of functional determinants, Bh@re subject to some special conditions
that are provided by the relation:

dx(g) _ dX}g)

da, da

One then infers that:
9

Z (g)dx( _ingg) X(
g
le.:
0 R’ = Ry
dé

When that relation is combined witR" + R = 5 —1L it will yield:
ah

(m) R(n) (dgtlj dgtjh _dgti,hj,

! da, da, da,

which permits one to introduce tlfein place of theR everywhere, if one deems that
appropriate.

With the theory of curvilinear coordinates in miradbove all, one agrees to perform a
particular substitution in the preceding formulasiles confining oneself to the case of
functional determinants. | set:

{ Xi(g)=|- aT(g) { Z(@J) ha(g)
G =hhAy, ¢Gi=hhe;,

under the conditions thai; = 1, 4; = 1, in such a way that one will have:

zai(g) a]_(g) — /]i‘j’ 281_(9) a§g) =4
g g

The two determinants:
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/]1,1 /]1,2 Aln 61,1 61,2 Hln
A= /]1,2 /]2,2 Azn , 0= 91,2 92,2 92n
Al,n Az,n T An,n el,n ez,n en,n

are coupled by the relation:

hihe oo by O 1l dn /B =1,
One can takg f to have the following forms:

dA dA

2 (9) — (9) (9)+ (0 9)+ + 9 O:A
" ¢ d/]llal al d)llzal d, 4 3
dol d0 dD
2% = a9 49+ 9 L9 4.4 @ =0
dﬂl c d@zé § @nﬁ”#

in which it is implied that thel;, 8; are replaced with unity after the differentiations.
They verify the relations:

(9) (9)
@) Zagg)% =0 orA, Za‘g) dw(g) =0 or0,
a
dg’ dg'® _1, dA 4@ dw'® _ 1, dO
. - da(g) dq(g) 2 d4,j’ - dai(g) da§g) 2 d)”’
(b) d¢(g) d¢(g) dA d(D(g) d(D(g) do
@ 49 - O ’ @ 4o - U :
7 dg? dd i, 7 da¥ dd dg,

From what the (§ become, one will have:

dA/dA d0/dé,
8 =—n 1 A =—_— "

7o, da da 7, [d0 dO
d) dA; dA;; dg; dg,
e=ddedl p=tetcl

12°A dA, h7 1 dg,

The ) will be replaced by:
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) (@
1 ¢ @ - 1 Y

C* (@) — , ' .
( ) a1 dA da(g) a' 0 d£ dai(g)
San, dé,

Finally, upon setting:

dal?

e @5 - RpO
C) 2.3% = R
in such a way that:
RO+ RO = %

1] 1 dt !
one will have here that:

dq(g) ® d¢
(0 T R

da? dg? 1 dA

h A = =S 22 RORG).
" ; dt ds Z,:z di,

Q) —(RORY -RIRY),

A dR) dRr‘fﬂ 1.dA
ds ¥ 2 dA
in whichR;; = 0. The latter condition introduces a simplifioa in the groupsf], (h),

(k), in comparison to the homologous groups (f), (k), By contrast, the condition (I) is
replaced with this other, somewhat more compleg; on

dl; (a7) di; (@)
) — A HL R = =—A  HL Ry,
da, Cdg, MM
If one would like to rid oneself of tHR everywhere then it would suffice to take (m) into

account, while observing that:

d
R =1l R+ Ay

Having discussed these preliminaries, | shall rmgin the theory of curvilinear
coordinates. However, in order to simplify the at@n as much as possible, | will
represent, Uy, Us by X, y, z an, oo, as by a, G, ¥, 11, 12, Is by, m,n, A2 3, A13, A12bYy A,
ﬂa Vl hll h21 h3 by [l ml nl 32,31 9.].,3 Ll 9.'.,2 by gl ,71 el ai(l)l a;2)1 ai(s)l aél)l aEZ)a aés)l aél)l
al?, a¥ bya,a,a” b, b, b”%c c,c’and finally,a®, a?, a®, ... by a, 4 &, ...
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8 Ill. — Curvilinear coordinates. — Development of some formulas.

If the orthogonal, rectilinear coordinates of an aabyt point in space are y, z then
let:

F(Yy, 2=a, Fi(xy.2=a, Fox,y,2 =y

be the equations of three surfaces, wherg, ydenote three arbitrary parameters that do
not enter into the left-hand sides. From Lamé’siléextision of things, for each system
of values that is attributed to those parameters, thaiahumtersection of the three
surfaces will determine a poiM in space. The linear elements of the intersectibais
issue from that point are represented by, m d5, n dy, and ifA, u, v denote the cosines
of the angles between those elements then onéawi# this first group:

O, 97, dxdx dydy dzdz
da da* da By B EF
" L0 L dxdx dydy dzdz,
d,[>’ Wz d)( b & &
dx® dy2 2 _dx dx dy dy dz dz
dy2 dy? dy ' Clé’ @ B @ @

to which one appends the inverse group:

da L da’ da 2 By LI B

’ mﬂf,
y2 dx dx dy pl dy jd

A /3+/3+ﬁ_2 Wy, b, &y

=m?, —ZL+— L4+ 7 =qp,
o A dZ " Tdxdx dy dy dz dz"

A e B b B d B,
dé  dy dZ dx dx dy dy dz dz

in whichda /1 ,dB/ m, dy/ n are the shortest distances from the pdnto the two

successive surfaces of the same families, respectaetis, /7, € are the cosines of the
angles that those shortest distances subtend. ¢teréakes:

dx _ dx _ dx _ da dg dy

——Ia, ——mb, ——Ia, — =Iaqa, —— =mb, —=nc,

da dg dy dx ax T Tk
@) Wy, Vo, Yo g 99 _\w, 9By, Yoy

da dg dy dy dy dy

92 e, 92y, 92 e, 9 o B, Yoy

da dg dy dz dz dz
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Having said that, one will have:

A=1-—1F—V+ 2y, O=1-£?=1*—6%+ 2en6,

Imny/A - tmn /O =1, dv=,/AImn da dBdy,

in whichdV denotes the volume element. The forgsl{ecome:

20 = (1-A%)a2+ (1- p® )b+ (1-v2)c?+A, ber A, acr A, ab= A,
2¢' = (1-12)a%+---,
2¢" = (1-A%)a"2 +---,

(2) 2 2 2 2 2y, 2
20=1-&")a"+(1-n")o"+ (1-0"x "+ U b+ ac+Uyab =1,

2 = (1- £2)a'% +---,
an - (1_82)a"2 +.“’

in which the letters that are used as indices indicat@pderivatives, in such a way that
A, =2 (uv—A), for example. Those forms satisfy the conditions:

d¢ do _
S a2 = L =A
ada & “da T
3 d¢ _ D dw _
3 bda_o' bda '

in which theX, always affect the primed quantities. Equationsgoe written:

a—;% b:;% C:—l%
A(1-A?) da’ Jaa-p2)db’ T [a@-v?) de
gzt 90 e
A(1-A?) da
y l d¢"
(4) A= =", s eereemeemerer .
AQ1-A?%) da
a'——l d_w ——1 d_w C——l E
O(1-¢%) da’ Joa-p2) do’ — [oa-e2) de’
, 1 dw
AT, L e
O(1-&%) da
, 1 do’
AT, , ,
O(1-&%) da
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and (d) are written:

, 1 1—;12 1A, . 11—‘92 10,
(5) 1> A J(l 1A)A-v?) ! J(l n*)(1-6%)
Having set:

SbE=RY, Falf=q", Yol=p,

©) db da
Zaaznm, ZCE=Q“) Zb— P,

which implies that:

* dv du dA
6 RO + RO =9V 4 ot 29K PO 4 po = 94
() dt Q'+ 0 dt dt

in whicht is any of the variables, £, y, the ) can be written:

pd2_go 9, oo B

dt db dc’

(7) A0 _ oo 92, o P
dt dc da’

p9¢- 0% po @

dt da db’

and one will get two analogous groups by first pmgnthe lettersg, a, b, ¢, and then
double-priming them. Here, the grol) (ill become:

A[ 9RY _dRY
ds dt

j:(l—vz)(P(S)Q“)—F‘t)Q(S) Fin, ROPI - P R )

+%A#(Q(t)R(S) _Q(S)R(t)) +%AV(R(0R($ _ |j S)R( ) ),

A(dQ(t) _ dQ(S)

q pm j = (]_—luz)(R(S)'p(t) - R(t)'p(s) )+%A4 ('p(S)Q(t) _'p(t)Q(S) )
S

(8)
+%Ap(Q(t)Q(S) —Q(S)Q(t))+%AV (Q(t) RO — Q IR ),

(t) s)
A(olp _dP

s pm j = (1—A2)(Q(S)R(t) — Q(UR(S) )+%A/] (Ijﬂfp(t) - pip09 )

+%A#(PmQ<S) - FSS) Qt) )+%Av R(t)P(S) _R( 97;)( ) )

Finally, upon isolating the partial derivativeslpfn, n, one will deduce from equations
() that:



Combescure — On functional determinants and curvilineadcwdes. 13

d__m SR@ + L 4 _RY,
d,[>’ 1-v? 1-v?
dm Am
Zp(ﬂ)+ 2P,
dy 1-1 1-A
dn _ — w4 H HN Q@
da  1- U 1- ,u
da_ (@) 78
+
dy 1= 7 —Q Q
dm I R(ﬂ)+ vm R‘”)
da  1-v2 1-v?
dn_ m - An ®
qan 2 —z 7
dg 1-1 1-A
[@-v)Q® +1A,RP ]| =[ (1-v*)P" +1A,R |m
[(1_A2)R(y)+%AﬂR(V)}m:[(1_A2)Qﬁ)+%Avfp(ﬂ)] n
(9) [(1_/12)73(0) +%Av R(a)}n :[(1—/,12)R(y) +%A)Q(V)}| )

| combine these with the equations for the lines of atwne on the coordinate
surfaces. For an infinitely-small displacement tlsaperformed on the surface =
constant, one will have:
X = dﬁd'g dy dy
and in turn:
(20) Zbdﬁ =m dé+niAdy chx:m/ldﬁ+ndy.

If the displacement corresponds to a line of curvatume time must have:
X=—-00da, o¢y=-00d, &=-0794d

hence, one easily concludes that:

be’x-—A(l — )[%AyP(/}H(l—)IZ )R‘/})Jdﬁ

.|-—e [lAyp(V) + (1_/]2 )R‘”de

(11) Joa-2%)-’

ZCJX—W[%AV’P(:& +(1_A2)Q('B):| dﬂ

+L[%AV73(V) + (1_/]2)Q(V):| dy

JAR-4%)
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Upon equating these expressionsYob ox, 2. ¢ & to the preceding ones and then
eliminating ©, one will get the equations of the lines of curvaturehef surfacea =
constant. One will also get two values @that will be the expressions for the principal
radii of curvature.

General remark— The formulas of the present paragraph correspond gitecthe
differential question that takes the form: If the amgular coordinateg, y, z of an
arbitrary point in space are expressed arbitrarily in tesmaell-defined functions of
three independent variables S, ythen one proposes to calculate the principal geometric
elements, which are either the intersection curveth@efcoordinate surfaces or those
surfaces themselves.

However, that presents the otherwise difficult probtef findingx, y, z in terms ofa,
£, ywhen one is given three distinct conditions betwdenatter variables and the...,

v, I, ..., 6 or some other quantities that they can depend upon. ti&oua8),
concurrently with (9) and (& will then play the principal role. When combinedtwihe
three given conditions, they will suffice to determammpletely the functions m, ..., v
orl, m, ..., @and the auxiliary functions P, Q ... Once those quast#ie determined,
one can present the much simpler question, which | wokedtd address, of deducing
the cosines, b, ... from equations (7) and its analogues, such that (8)agsllire their
coexistence precisely. After thad,y, z are obtained from (1) by integrating the exact
differentials:

(©)

8 IV. — Integration of a particular system of partial difference equati®n

If one regards the angles of the elementary trihedvbn (a)(£)()) as being
determined by, B, ythen one imagines three rectangular adesX, Y, Z being drawn

through its summit that make angles wath xyzwhose cosines até, A', A", B, B, B",

C,C,C'. Ifoneletsé, &, &% n, n, n” ¢ {, {"denote the cosines of the angles that the

elements of the curvilinear axeg)( (0), ()) that issue fronM make with those auxiliary
axes then one will have:

a=A&+BE&E+CE, b=An+Bn+Cn"
a'=A'é+B E+C' &,

with the six relations:

g(2_|_<312_|_<3”2: 1’ . g(,7_|_<(/,7/ +<(//,7// =, o
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and one can arrange some of éhe, ... such that these relations will still be arbitrary, i
such a fashion as to give the auxiliary system theipodihat one deems to be the most
convenient relative to the elementary trinedron. Hgwaid that, if one makes:

S5 de:l ro > A q©, S ?f o0,
da¢_ o a7 _ o dn _
2.7 a ng o sz

then one will deduce from the preceding values, & c, ... that:

Zb%l =(@n'=né&) 1O+ ¢"=én") q® +@&n =€) p P +0?,
Za— = (&= r O + (& -E) qV + (7= ) p O + kO,

an — (,7(/_(,7/) r ®) + (Z,7/I_ OZ”) q ®) + (,7,(”_ ZI,7/I) p(t) + ﬂ(t),

which express the P, Q, R, and in turn, BheQ, R, linearly in terms of the, q, r, and
some quantities that one regards as knowwicerversa

By means of that sort of coordinate transformatiore will be led to consider the
canonical system:

%:Brm)_cq(g) %:Br‘ﬂ)—Cq‘ﬂ), dA _pom_ —cq”),
’ dgs dy
(7*) d_B =C p(ﬂ) -A r‘”), d_B =C p(ﬂ) -A r(ﬂ), dB =C p(y) A r(y)’
da dg dy
dac =Aq“ -B p“9, dc — = Aq® -B p”?, dc =Aq” -8B p”
da dg dy :
instead of the system (7), along with two othersomeA’, ..., A", ... that are entirely

analogous. Here, one will have:

Zlgt CS =—-r © q(s), ZA{ As =r ® r ©® + q(t) q(S),

and their analogues; the letters that are useada=es indicate partial derivatives, in such
a way that4d; =dA / dt. Thep, g, r, which are considered to be known in termgrof,
y, are supposed to verify tifendamentagroup:
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(8*) qg) —o® + p(t) r(S) _ p(s) r(D =0,
) (s) (9 ~(9 (940 =
'~ PR +tr'g’-r’q’ =0,

identically. From the first group (7 one deduces that:
A=Ac+Br+Cuy, B=Aoc+Br+Cuv, C=Ac"+Br"+Cv”

in which A, B, C are arbitrary functions #f ), and theg, r, ... are some well-defined
functions ofa, B, ythat are deduced from a complete solution to itise group (7) (see
below) that is integrated under the hypothesis timhy « is variable. Those functions
must verify the usual relations between cosines:

o’+0%+0’%=1, or+or+o'r’=0, ..

due to the fact that one must have
A2+B+=1,

independently of A, B, C, and in turn:
A*+B+C=1.

Upon expressing the idea that the preceding valtigs 5, C verify the second group
(7", one will conclude that:

(7 Az;=Br’'-Cq, Bs=Cp'-Ar/ Cs=Aq’-Bp,
in which:
r'=Xroz+v p?+v P +0ur®,
Q=Xous+1p?+7d? +77r P,
p=Xvip+op?+ad?+or?,

in which the quantitiep’, q’, r“ are independent of the Equations (7), which have the
same form as (J, but no longer refer to the traceafsince they are integrated under the
hypothesis that onlg is variable, give:

A=ap+by+cy B=ap+bytor, C=a"+by'+or’

in which ¢, ¢, ... are well-defined functions gf, y that verify the usual relations
between cosines, and a, b, ¢ are three arbitrawtiins ofy such that a+ ¥ + & = 1.

Upon substituting the expressions above in theesgions forA4, B, C above, one will
get results of the form:
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Azaf+bn+o, B=af'+by'+ol, C=a"+bn"+ "

in only the unknowns a, b, ¢, and the definitive verifaatof the third group (7*) will
give:
(7") a=br’-cq’  b=cp’-ar,  ¢=aq"-bp"
in which:
=X né&+{p+d? + 7V,
Q=X &G+ np + ' d?+nr
p =X lnp+&pl+ &g+ &V,

in which thep”, q” r ”“depend upon only: The integration of the group (7 for only
the independent variabjewill finally give:

a=gf+hw+kaw b=g0'+hw'+kw, c=98"+hwo”+kw,

in whichg, h, k are three arbitrary constants, such @ifat h* + k¥ = 1, and thef, @, ...
verify the usual relations between cosines. Ond thiégn have, upon combining
everything:

(12) A=gA+hB+ke¢, B=gA +hB +ke, C=gA"+hB" +ke",

in which2(, B, &, ... are functions o#, S, ythat are currently known.
As for the expressions fod', ', C, A", B", C", one will obviously get them by

replacing the constantg h, k with some other constants, h', k', g’, h", k" in the
expressions that were just found fdr B, C and establishing the usual relations between

the cosines:
g +h?+IKE=1, gg +hH +kK =0,

between those constants.

It is not pointless to recall that tipg ', r “depend upon onlg, y; and thep”, ", r”
depend upon only: That will result from the sequence of calculaticarsd the
integrability conditions (8, which are supposed to be fulfilled; one can also pthae
directly. | will confine myself to proving thalr'/da = 0. From the identities:

a-a = O—’r (0') _ 0" q(a) 0—' = 0—” p(a) _ O-r (0') 0—" = O-q(a) _ U’p(a)
! a ’ a ’
and analogous ones ..., v, ..., one will conclude that:
dYro, ==Y up{+> (o, -1"0,)p, dr,0,=-> (T'o,-1"0,)p“,

and in turn:

(Sroy),=-Sone. 1 =Xo(p0-5)+ 3o, 97,
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in which one will see that all of the terms mutualncel when one considers Y&nd
the equations that theverify.

In the foregoing, one must integrate some systenisfalainto the classical type
three times in succession, and one encounters themeiwdntext of the rotation of
bodies:

%zbr—cq @ch—ar d—Czaq—bp
dt dt Cdt

in which p, g, r are regarded as known functions of time Upon making use of the
imaginary substitution that was employed by Hoppe (JowteaCrelle, t. LXIII, pp.
122):

bsind+ccosfd=1, bcosfd-csinf=ia, in whichi = /-1,

which is a substitution that gives:

sin 8@ + cos@d—c+ ia %z 0,
dt dt dt

when one considers the differential equations andaetd/ 2 =z, one will have:

2i3—f=2rz+(q+ip)z—(q—ip),

and then:

i%+ (r cosq+qsinQ) a+%—p: 0.
dt dt

Whenz is determined from the penultimate equation (which is dugernoulli), the
last one will givea by quadraturedy andc will then follow. One immediately concludes
three special systems from the knowledge,dd, c that will be denoted by, o', ¢”; T,

' T”: U, U, U”, respectively, for the first group {7 for example.

One can alter the integration of the system of eipeations (7 in various ways. |
will confine myself to the following one: One infers fraiwe first horizontal row in (J
that:

A (y)_A (B) A I’(y)—.A r(ﬂ)
(13) B= (g)q( ) (y)q(ﬂ) ’ C= (5) CRRCITR

B M reg —rq
and when one takes into account thit+ B2 + ¢ = 1, that will transform the first
vertical group in (7) into:
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[qwhwo_qmrwq/g+{ﬂmqwx_ﬂmqwq/%+[ﬂmqm)_ﬂmqw1szo
[q(y)Z + r(y)Z] AﬂZ +[q(ﬂ)2+ r (B)i Ay2_2[ q @)qﬂ/)+ réy 6/] -Aa-Ay

_(1_A2)[r(ﬂ)q(y) _r(ﬂ)q(y)]Z =0,
B,=Cp@-Ar®, c,=Aq“-Bp?,

a

(14)

in which B andC are regarded as having been replaced with their preceding walthe
last two equations, one of which is superfluous, by virtuehefother three and the
relations (8). The first of the preceding equations will makedepend arbitrarily upon
two well-defined functiongoand w If one considers! to depend immediately upam
and w then the substitution in the following two equations veldd to a first-order
equation and a second-order betwgknm, and wwhen one has eliminatg@land y; for

example, by means of the forms afand wthemselves, which must makedisappear.
It is easy to see that one will deduce a second-ordetiequeom these equations that
one can consider to be an ordinary differential equaiiondc« for example. The
constants that are introduced by its integration arsidered to be arbitrary functions of
@, so the equations that were employed already and tbgraftility conditions will
easily lead to two first-order equation in those constamdwmust finally disappear.

8 V. —Triply-orthogonal systems

If the cosinesl, y, v are equal to zero then the relations (9) will reduce to:

- _ a) —-_ ) - _ )
(15) l,=-mR?, m=-nf, p=-1¢,

|y: nQ‘”’), m, = |R‘ﬂ), Q?: mliv)’
(15) -1QA=mP? -mR?=n@? -nP?=|RY

The multiplication of (15 shows that one must have:
(16) P9=0, Q=0 R¥=0,

in whichl, m, n are assumed to be non-zero.
By virtue of (16), the identities (8) will redute:

{ R?=-Q7P", = P, P=- @,

(17) Rl(/ﬂ) = POy, ny) =-RpP, pP= R @,
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R - RO+ 37 PP =0,
(18) Q’-Q”+R7P” =0,
py(ﬂ) _ Bgy) + R(ﬂ) Qy) =0,

and will be equivalent to only six distinct equato as one will convince oneself by
differentiating each of the last three by the alga that do not appear in them, on the
surface of things.

On the other hand, upon regarding (17), (18),wiienfer from (15) that:

in such a way that equations (15) will not leadmhy new relation between tReQ, R, as
one could predict. Therefore, the only non-ideaitielations that the latter functions
must verify will be expressed by equations (16).

Presently, the nine cosinasb, c, ... can be expressed in an infinitude of ways by

means of three independent functions. For examplene takes Euler's formulas
(DUHAMEL, Mécanique 2™ ed., t. I, pp. 267), which give:

o . dy
PO =  cosp — + sing sind —,
S dt ¢ dt

. dég o dy
O =-sing —+ cosg sind —,
Q 4 dt ¢ dt

RO = cos¢d—¢'+%,
dt dt

then it will result from what was just said thae thletermination of the triply-orthogonal
systems can be reduced to:

1. The integration of three equations:

(19) d—[‘[/+Cot¢ﬂ:0, d—w—tan¢ﬂ:0, W _ o9l -y,
da da dgs ds dy dy
in which:
1 (U su
tanip:e”, cotu:—z(e +e_ ).
2 3(e"-€)

2. The determination ¢f m, n from the linear equations (13).

3. The quadratures)((end of § I11).
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As forl, m, n, which must verify equations (15), if one focused,dar example, then
the elimination ofm, n will show that the function must satisfy the two sitaneous,
compatible equations:

2 (a)
dl__R_dl gogrs=o,
0 dadg RY 43
—__xa -+ a y)l:o
dady Q< dy QR

so whenl is known, equations (15) will givea andn with no other integration.

“That method, which | believed to be new when | siwet theoretical part of the
present work to the Institute (June 1864), had been thetadfj@ prior communication
by Bonnet (March 1862). That geometer had made the remairkhih integration of
equations (19) can be reduced to that of a single third-ogigtien that one obtains by
eliminatingu from those three equations and then considegitm be a function o, a,

L. One can obtain a single third-order equation by a stwatewifferent choice of
variables. If one eliminatgsfrom the three (19) then that will give:

0 :d_wd_w+ﬂﬂ', d—w:—cotu i[ﬂj[Hw—;j
da d@  da dB dy dy Vs

ua
and when one considens Sto be functions ofi, ¢, y(which are taken to be independent

variables), one will find from the formulas that rel&d the change of variables t%,%’

%, Z—Z are proportional to some expressions that depend uponwmlgd the
derivatives off with respect tay, u, yup to order two, inclusively. Upon expressing the
idea that those proportional quantities will satisfg tisual integrability condition, one
will get the aforementioned third-order equation. That sgawhich is moderately
complicated, can be replaced with that of Bonnet,vioe versa according to the
viewpoint that one assume$.{

Lamé’s method- By virtue of (15) and what was said about the motionro&terial
point (i.e., curvilinear coordinates), the identities (1(@)8) amount to those of that
illustrious author in relation to the arcs of curves dhdir variations, and upon
eliminating P, Q, R, one will be naturally led to theundamentalgroup [8], [9] of
curvilinear coordinates (Lamé, pp. 76, 78):

() 1 have enclosed in quotes all of the parts of thislarthat were introduced after an editing of it that
Hermite was willing to accept on March 1865, and which diffeom the one that was sent to the Institute
only by the preliminary considerations on determinants tae addition of some examples in 88 VI and
VIII.
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(17) AL
m), n m'
(18) (Iij J{ﬂj Mg
m), l ), nn
Equations (7) will become:
da da da
— =pR? - cd”, — = bR?, —=-c@,
a Q dgs dy <
(21) db =-aR“, db_ cP? - af?, db_ ch,
d,[>’ dgs dy
dc_ g dc__ppa, e q - b
da dg dy
here, and upon mtroducm% dx 1dx ld—, in place ofa, b, ¢, respectively, they
da’ mdg’
will become:
(22) d’x _ lg dx Lm, dx
da d,[>’ I da mdg’
, d®x _ 1z dx 11, dx I, dx
(22) c=L———2 —~ =
da? 1da P d8 7 o

i.e., the [28], [30] inCoordinées curvilignesOne must combine them with:

2
(23) izdxﬁ_l2 d><22+ 1 dX -1
1>da® m?dB* n® dy?

Conforming to Lamé’s method, after findihgm, n by means of the six equations
(17), (18), one determines (and analogously, z) by means the three (22) and (23).
Since that method is far from having to be abandaempletely, whether we take the
unknowns to be the rotations bhrm, n [which we pass to easily by means of (15)], |
would like to add the following remarks:

1. One of the three (22) is a consequence of therdwo and (23), as it easy to
convince oneself when one takes jiahd (18) into account.

2. The integration of (22), (23) comes down ta tifaequations (21), which one can
treat in succession as ordinary differential equesti which will be developed more
generally in 8 IV.
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3. It results from the first method that was presgmbethis section that equations
(22), (23) admit three unique, well-defined solutions (whenigineres what amounts to
a rectangular coordinate transformation) that will deesier to find directly by the
immediate consideration of (22), (23), which is what hapgder isothermal systems, in
particular.

8 VI. — Example that relates to the preceding section.

Euler’s formulas can be replaced with those of CRddrigues:

@a=1+X-Y*-27, ©Gb=2(XY+2), 06Gc=2(XZ-Y), ...,
orY= 2(zd—Y—YE—$j,
dt dt  dt
CYORE 2(x%—z%—ﬁj,
dt — dt dt
ORY= 2(Yd—x—xﬁ—gj,
dt dt dt

in which® = 1 + X + Y> + Z2. In order to re-establish homogeneity, one sets:
x=%, y=  z=-<
H H

Equations (16) can be written:

@ _dH_,d7 &
Hda g(da Zda Oda’
(19) pi_pdi_ & _, &

dg Tdp " ap ‘ ap
4 dH_ df_
de Zdy dy g(dy'

“One can arrange that the arbitrary denomin&tdiulfills some special condition.
For example, if one makes the triple assumption éndoes not contaimr, /7 does not
containg, and{ does not contaip which will make the terms on the extreme leftisan
then the elimination oH from the reduced equations will give the followitigree
equations:

= Wop = (Wa— Va) (Wp— Ug),
—Vap = (Vo — Wa) (Va— Ug),
—Ugg = (U — Wa) (Ug— V),
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in which one has setu =§v =1Inn, w = In ¢, and which introduces no new conditions,
as one will see upon differentiating with respectt@, a, respectively. For example,
one infers from the first one that:

W s
= W3,
[V -W ja »

a a

W vV, —W
aaf _ Vg — Wy +—22 aa
Wz V,—W

a

Upon differentiating with respect {6 and considering that same equation, one will
conclude that:
(In @gp=-2w or 0= Wgg .

From Liouville, that will give:
A'B'
o= —.
(A-B)
It will then result that:

Z:Allgl(.A—B), /7:A1C1(C—.A), E:Blcl(B—C),
H=k- [A’A'da-[B!B'dB~[clC dy.
k is an arbitrary constantd, Ai;, B, Bi, C, Ci1 are arbitrary functions otr, £,
respectively, and the primes indicate derivativ@firee of these six arbitrary functions

can be taken to be g, y”

Upon supposing thad, 5, C are constants, one will get the very special gmut

X =6y Y =ay Z=ap,
which will give:
OPP=-2y(@+1), Q9= 2(B*-1), ORY=-28(y*+1),
O = 28(F-1), Q¥ =-2a(B?+1), ORP = 2a(y*-1),

in which:
O =1 +d°B%+ d?y* + B~

Equations (15) generally provide the three contiona F"’)%+ R(”)S—I;: 0, ...,
which will become immediately integrable here, wiwere suppresses a common factor,
and one will then conclude that:
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BZ+1)m-(y°’-1)n =¢ (B
(V+Dn —(@*-1)1 =y(a
(?+1) —(B*°-1)m=x(a, P.

If one infers the values of m, n from this and substitutes them in (15) then one will
get:

(d? - 1)d—X+ (a?+ 1)d—¢’: 0

B - 1)d¢ (ﬂ+1)dX 0,

a5 a5
(-0l e Lo
dy dy

hence, by the immediate differentiation:

d’x -0 dy -0 d’¢ _
dadB ~ dady = dBdy

If one integrates these and substitutes into the pregedjuations then one will conclude
the defining expressions f@; ¢, x, and in turn:

01=24d ["(")j+(y2+1)u(@+<ﬁ2—1)v(m,

20 da\ @2
©* d [ up)

Om= Zﬁdﬁ( j (a +1)v(m+(y 1) A (a),
©° d(v(y 2 2_

©n= 2ydy( ezj +B°+DA(@) + (@ -Lud,

in whichl, m, n are three arbitrary functions. Since the cos@ds ... are expressed in
terms ofa, S, y, moreover, one will have, upon integrating thecéxhfferentials:

= L1+ D@+ B - D) - P+ A @)+ [ da
y:ﬁ[(a +)v()+ (P~ (@) - (@ +y)ﬂ(@]+j”(ﬁ)d/3

2= LB+ DA (@) + @ - DuB-@° +/3)v(m+jmdy.
C] 2y

For example, if one takek x4, v to be linear functions ofr 2, B2, y? respectively,
then one will easily conclude the following comhioas from the equations obtained:
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a2
o e
o 3o 3ro

[T ey sis
[l 3o oo -2 s

R R

in whichg, h, k are constants. The first of these orthogonal sasfaeduces to a family
of spheres wheg = 0. If, at the same timé,= 0 then the second one will also transform
into a spherical family, while the third one will alvgagemain of order four.

and in turn:

I+

I+

“It is characteristic of that example thBtm, n refer to three different arbitrary
functions of one variable and their first derivativésam curious to know whether other
orthogonal systems do not enjoy the same property. thByuse of indeterminate
coefficients, upon considering (15), (17), (18), one will sest the necessary and
sufficient conditions for that to be true are:

R(ﬂ) p(y)

Q(a)
Q(y) - R@ -

b, pa

C,

in whicha, b, c are three arbitrary functions that are missing, y; respectively.
Upon taking (17) into account in the interval cdrisformations, those relations will

give:
(a) a
R _ P _ R@ QW _ _R@ B
R@ =0 , =0 ,

One then forms the triple group:
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—-R@ RB = (|n R@ )aﬂ - (|n R# )aﬂ - (|n Qy) )7[3 ,

(a,) _Q(H)Q(y) - (ln qy) )ay =...,
—pPA BN = (|n pA) )iy -...

From a comparison of the logarithmic terms, onectiades, with a little attention that
one can adopt in the most general form possible:

(@) PP=6c, ®=gB, P =6A Q?=6C, RI=6B, RI=0A,

in which @is an entirely indeterminate function, aAdA’, ... are arbitrary functions of
the same type as b, C.
(17), (18) now generally provide the obvious camabibns:

(B PV RO - RO B+ RO |§y>_ () g>+ ® 1@_ (=) ;@:O,
and two other analogous ones:

POBN-P P = @ G- @ @
(9 e y 0 — B8 ) B ) ) @B
—RORY -RORD = PO @ R +P @ K

which, abstracting from the last expression j fas the property that it remains
absolutely the same when the letters that appeaane multiplied by the same arbitrary
factor.

Substituting the preceding values & P, ... in (8 will yield:

so, upon differentiating with respect tp £, y; one will conclude these more inclusive
forms:

A:C2B, B:Azc, C:lgz.A,
B'=CA1, C'=AB1, A'=B30(,

in which 4, A;, A, are arbitrary functions of only, etc.; however, the complete
verification of the undifferentiated equations vaémand that:

B' C C' A “h A’ _ B, —k
BB, CC, cC, AA AA, BB

in whichg, h, k are constants that one can obviously suppose &gl to unity. Those
equations will yield4.A' — A; A= 0, ... The three constants that the integratiothef
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latter introduces must be equal in order for the thragegabfdthat are deduced fronp)(
to coincide. From that, it is obvious that one can take:

.AZO"FE, A12—0'+1, AZZ—E,...,
a a a
and consequently:
_ 2aBy
- 1+a2,32+a2y2+,32y2'

One then comes back to the preceding example.

If one eliminates the arbitrary functions whoseidgive is missing from the
expression fox, y, z that relate to this example, when considered \p&e, then one will
see that all of the lines of curvature of the ogthal surfaces will be planar. If one
would like to look for all the similar systems upsetarting with the equations for the
rotations (17), (18) then one will first get:

(@) (B) )
R _ P QY _

Q@ a, RO b, P

C, (see§ IX)

to express the idea that all of the lines of cwkatare planar; one will find two groups
that are analogous tar(and @’), except that one must switch the upper indices??,
PY, ... One must then begin to specialize the arlyitfanctionsA, A’, ... as much as
possible by means of the first two ¢§.( By the consideration of some third-order linear
equations and ordinary differential equations, afieget some forms for thé, A’ ...
that are comparatively much-reduced. One will toe to circumscribe them by the
group (B); however, | shall suppress that analysis, whiemands attending to some
details that are a little tricky.”

8 VII. — Isothermal triply-orthogonal system.

Several eminent geometers have sought to simjyysome considerations that were
borrowed chiefly from infinitesimal geometry) theethod by means of which the
illustrious author ofCoordinées curvilignebas shown that the ellipsoidal system is the
only triply-orthogonal system that is isothermdlhe importance of the subject has led
me to indicate some modifications that seem to megive that method all of the
analytical rigor and simplicity that one might desi

The isothermal conditiorCpordinées curvilignegpp. 95) gives:

| =BC, m=AC, n = AB,

in which A, B, C are arbitrary functions that are missiag 5, y; respectively. The
relations (17) will then give:
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B C A C A B
A=A+ A B=2B+Ca c=2c+2c,
BVA/ CyAﬁ 14 C A7 14

A o A "B
in which the variables that are used as indices indicat@lpderivatives with respect to

those variables, as always.
Upon differentiating the first one with respectadwice, one will deduce that:

(gl le)s oleladlels

so, upon completely excluding the hypothesis that efiaer A, is zero:

=), ()
By aa — Cy ag — dln)('(a)

sl el "

in which the first two ratios must be independenfahd ), respectively. From that:

BE:f(m((a) +f1()), C£=f(ﬁ?)((a) + f1(0),

/4 /4

in which thef andc are arbitrary functions. Upon rearranging, it wekult that:

0=A/f() +Aszf (D) A=A + Asfi(D).
Upon setting:

ﬂ— ﬂ: — W=
Ifp=o0 Jigme® omesy

and letting® denote an arbitrary function, the first one willey
A= D (v), A= (V) d (), Ag=—®" (V) @ (D).

Hence, by virtue of the second one:
o)
W (v) "o @' (Y () - (B LB,

and upon differentiating this alternately ppgnd .

W) @) =[a i, YV &P =B D)
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As a result:
Y i Ced O L) W 0 L0
@ (y) W(B)

1

kl
v k

lJJ:E+K, ® =h (v+H),

in whichk, H, h, H are arbitrary constants. The necessary fornAfg known, and in
turn, that ofB, C, as well, so the simultaneous verification of Jwill give, in the most
general form possible:

A*=g (B -0 B2=g (C-AP, C’=g(A-B)

in which g, g1, g2, p are arbitrary constants. There is a second, expa@h, form that
corresponds to an infinitk, but one can see with no extra effort that it cdnrerify
(18).

With those values, the first of (3&vill become:

2(B-C)PgA"-2(C-A)PgB'= (L Lj B-CygA”?

) A-B C-A
L__p — p 12 p(A_B) _R\P 12
J{A—B B—cj(c A e -y B &

If one adds this to two other equations that ataiobd by a circular permutation of the
letters then one will get:

(B) P-1)[B-0OP?gA?+(C-AP?qB?+(A-BP?gC?=0.
The hypothesis that the second factor will be zrénen one sets:
gAIZZ U, 91 BIZZV, ng’ZZW,

and that one taked, B, C to be independent variables will give, upon défaiating
twice with respect tod:

(B-CP? U+ (C-AP?V+(A-BP?W=0,

(B-0)*? g—j+ P+2)C-AP*V+((p+2)A-BP*T*W=0,
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(B-O* giluz +P+2P+1C-A’V+(p+2p+1A-B°W=0.

If one supposes that= — 2 then the first of these equations will yield stamt values
for U, V, W that verify equations4), but correspond to an imaginary isothermal system

that one can consequently reject. On the othed,h@me recognizes that the assumption
2

v = 0, cannot agree with4). Sincep+ 1) andp + 2)

thatp = — 1, which will give 3 5
are non-zero, the elimination of V, W from the meing three equations will give a
second-order equation in U that will lead to thadimissible value U = 0. EquatioB)(

will then demand perforce that one must tpkel. Upon recalling that:

du du
A?=U, 2gA A"=—, so 2gA"=—,
J J da J dA

equation () will then become:
du dv
B-C)—-(C-A)—
( C)dA ( )dB

2 —1J(B—C) u +(L——1J(C—A)V+

:( . (A-B)?
B-C C-A A-B B-C

(B-C)(C-A)

If one isolates W and differentiates three times$urn with respect tod then after
suppressing the factoB C) that the first differentiation introduces, ondl\get

d?u du dv
A —B)? -4(A-B) —+6U=2U-B) —+6V,
( )dAZ ( )dA “ )dB
3 2
AP 2 u-p Tt NV
dA dA dA dB
d‘u
(A—B)ZdA4:O.

Therefore, sincd, A1, A, are arbitrary constants, one will have, upon caimbi these, or
by symmetry:

U=A+A A2+ 1A+ A,

V=B+AB + B+,

W=C+AC +1,C +A,,
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and in turn, if U, V, W have those values:

TR

As for the final determination of y, z, nothing can replace Lamé’s calculation.

dy

8 VIII. — Orthogonal system that is deduced from an elliptic system.

When one knows a particular orthogonal system,aamededuce the cosinasb, c,
.,and the @, P¥, ... interms ofa, B, ). If one substitutes those particular values of P,
Q. R into equations (15), and one integrates #dt&trl equations while takirlgm, n to be
unknowns then one will get the expressions for éhosknowns with three arbitrary
functions, in general. Upon preserving the paléicualues ofa, b, ¢, ..., one will then
have the, y, z by quadratures. Here is an example that is daitabexhibit that remark:
Upon setting:
-4

~ (h-R(k-)(j-h

in whichh, k, j are constants, and supposing tat 5> ), the formulas that relate to the
elliptic system can be written:

x =+ G(k= )(@-h(B-H(y-H, L, =J(@-B)a-y),
=JG(i-h@-K(B-RK(y- R, m=yJ(@-B)(B-),
z =/ G(h- R(@- )(B- Dy- D, n=J(@-nB-y.

From (15), the corresponding values of P, Q, R béll

2(a 5) \/ 2(a B) \/

If one substitutes these values into the same memqsa(l5), (20), when one currently
regardd, m, n as three unknown functions, then (20) will give:

I, a+p-2y d |
dadg 2(@-pB)a-y)dB8 4@- ,3)

for the determination df
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If one setd =1; u, and ultimatelym = my v, n = n; w, then upon observing thhtis
one of their common solutions:
2
2 (a_@£+3ﬂ—ij =0
dadg df do

2

2 (a_nﬂ.{-gﬂj_ﬂl =0.
dady dy oo

These equations will admit the simple solution:

.
(@-t) (@-t)(B-(y-1)

in which T, t are arbitrary constants. Equations (15) yield simpesesponding values
for V, W, and one will have the very general solution

_ T

D Symoure sy e e
_ T

D 3y sy ey e
_ T

R Sy ey g

in which theX. extends over all values that one would like to givé,tb In order to find
X, Y, Z, one takes:

a=10% _ i\/G(k‘ (B-h)(y—h)
Il da 2'1 (a'_h) !

and upon integrating the exact differentiadgs & Ill, one will find that:

.
(h=t(@-DB-)(-1)

x={G(k=a-M(B-hHy-HY

T

=./G(k-h -K - - ’
y=/G(k-h(a-R(B- Ry (R BYDRECN s s o

.
-t (@-t)(B-t)(y-t)

z=G(h-K(@- )(B- Dy- J')Z(

The systems that are included in these formulag;hwdre infinite in number, obviously
have the same spherical image as the elliptic syste
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8 IX. — Some mappable surfaces.

| shall introduce this last section in order to cartritbe general theory of curvilinear
coordinates with the partial theory of the deformabésurfaces, which is impossible to
deduce from Lamé’s formulas. If one introduces the hygsishithan = 0 into equations
(15), § V then they will become=0,m,= 0, B» =0, 3» =0, R? = 0, and:

(24) R“’):—Iﬁ, R(@:%, mP9+1 Q¥ = 0.

One can no longer make use of relations (17), (18), o, (1¥8), which were
established under the express condition ti4t €9, R are equal to zero. However,

upon referring to the identities (8), into which that agsion was not introduced, and in
which one madé= 0,m=0,v = 0, one will have, upon considering (24):

Q@ PP — P P :(Iij +(ﬂj
ﬂ a

m I
I
(25) QY -QF +1 P9+ L B9 =
I m

P — A +% a” _m_lﬂ @ = 0.

Equations (24), (25) correspond to the problemhehappingof surfaces whehandm
are given in terms of, B In the particular case bF 1, upon eliminating 9, one will
get back to the Bour'tundamentakequations (Journal de I'Ecole Polytechnique, Qahie
XXXIX).

When one infers the values of P P?, @9, @ from these equations, one will
obtain the cosines by integrating equations (7)¢clare:

L -_pl-c @ L=p_a_cQ?,
da m Q dg I Q
I

(26) ﬁ:cp(a)_i_ai’ Ezcljﬂ)_ m, ’
da m' dg |
dc (@) dc
— =zaQ@ -ppP?, —=zaQ@? -bP?
da Q dg d

here, and which were considered more generallyIM. 80One will then gek, y, z from
equationsd), 8 Il

If one rids oneself of any sort of auxiliary vdii@a and determines, for example,
directly then one will only have to eliminaté®® P2, @9, Q¥ from (26) and the first of
(25). One will then get:
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m), I ), | da dﬂ dg dCJ' I dCJ' ar 05} &

in which one replaces® with 1 —a® —b?, anda andb with I—% nd £ 9% , which will

da mdg’
yield the second-order equation that any of thedioatesx, y, z must verify.
Another mode of solution will result from the usg&Euler’'s formulas, which will
transform (24) into:

d¢ +cosd dy = Iﬁ,
da da m
de +cos€ ﬂ,
dg d,B I
m(cow%+ sing sirﬁ%} -I[sm¢—ﬁ—cosy> snﬂg—%j

Equations (25) will be simple identities then. Whg ¢, @ have been determined in
terms of a, B by those three equations, Euler's formula*s willegithe cosines
immediately, and the quadrature}, 8 11l will finally yield x, y, z ().

“From the equations for the lines of curvatureaofy of the surfaces considered,
namely:
(| +0Q9da+0 Q¥ ds=0,
M-0 P d3 -0 P?da=0,
one will have:

(p(a) Q([J? -pA Q(U/)) %+ (m Q(U/) — p(/ﬁ) +ml=

Upon comparing this with the first of (25), ondlwibnclude that the product of the
inverses of the principal radii of curvature wid:b

2l (@]

Upon denoting the angles of contingency and torsaod the inclination of the curyg=
const. to the tangent plane by da, v da, £, resp., and lettingd® dB, vP dg,
£ denote the analogous quantities for the curveconst. £9, ¢ are measured by
starting from the corresponding osculating plang supposing that they turn around the
tangent in the direct sense), it will be easy ® gsometrically or analytically that:

PY=p@+ g, PP = 0P sing®,

() 1 have been informed that the results above were estatllby Codani, but | do not know in what
precise era.
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R = 0@ cose@, RO = w® cose®,

When a = const.,f = const. correspond to the lines of curvature for aivithaal
surface, it will result from the equations above tiedate to those lines that®P= 0, J°
= 0. Inthat casey ¥ + £ =0, in such a way that if the line is planar themrtio R?

/ Q@ will not depend upou.

Final remark.— If one must establish the simplest possible of alVd#t®us formulas
that relate to either mappable surface or triply-ortmadgystems then it will obviously
suffice to take the classical formulas of mecharies give the variations of the cosines
by means of the components of rotations. One willendown those equations twice in
the first case and three times in the second, witlcdngponents of the two rotations (the
two or three groups (¥, § IV, for example). One writes down the group) (@n the
same section), which | presume to have been estathliBist, in full generality, and then
upon making the moving rectangular axes coincide with the mémge the orthogonal
trajectories of the surface (the third will coincidéhathe normal), one will recover the
formulas of the present paragraph, whereas upon makingdahecide with the tangents
to the curves of intersection of the three orthofjendaces, one will obtain the formulas
that relate to that theory. The latter path isdhe that was followed by Bonnet, while
immediately employing Euler’s formulas, in which it seeta me that he has disguised
somewhat the role of partial rotations whose analytoanposition (which Lamé had
neglected) has, in the other hand, left the three oteimaléy-obvious conditions ® = 0,
QY =0, R” = 0 fruitless for that celebrated geometer.”




