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1 Introduction

At the root of the methods of complex relativity [1–5] is the fact that the Lorentz group O(3, 1) – or rather, its
Lie algebra so(3, 1) – admits various isomorphic representations. Perhaps the most studied representation
is the (1-to-2) representation of the proper orthochronous Lorentz group SO0(3, 1) by the elements of
the group SL(2;C), which leads one into the realm of Dirac spinors and relativistic wave mechanics. One
approach to complex relativity then involves the representation of 2-forms on spacetime by SL(2;C) spinors
(see Obukhov and Tertychniy [5]). Another approach to complex relativity is based in the fact that there
is also an isomorphism of SO0(3, 1) with the complex orthogonal group in three dimensions SO(3;C),
which acts naturally on C3.
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616 D. H. Delphenich: A more direct representation for complex relativity

The customary way of representing SO(3;C) in complex relativity is by way of self-dual complex 3-
frames that are associated with 2-forms on spacetime. In order to make this association, one complexifies the
six-real-dimensional vector space of 2-forms on Minkowski space into a six-complex-dimensional vector
space and then restricts to the three-complex-dimensional subspace of self-dual complex 2-forms, which
satisfy the eigenvalue equation:

∗F = iF (1.1)

relative to the Hodge ∗ operator that one defines on the bundle Λ2(M) of 2-forms on the spacetime man-
ifold M in terms of the Lorentzian metric g and a Lorentzian unit-volume element V , and extends to the
complexification of Λ2(M).

The basic thesis of this presentation is that since ∗ will define an almost-complex structure on the real
vector bundle Λ2(M) to begin with, there is something redundant about complexifying the bundle, as well,
when one is only going to use a rank three sub-bundle for representing Lorentz transformations. Apparently
the original desire was to adapt the methods of self-duality that had proved so fundamental to the study of
gauge fields on Riemannian manifolds, in which the restriction of ∗ to 2-forms obeys ∗2 = I , which makes
the eigenvalues of ∗ real, to the Lorentzian case, in which ∗2 = −I , which makes them imaginary.

The key is to regard (1.1), not as an eigenvalue equation, but a defining identity. In particular, it facilitates
the definition of the action of complex scalars on the fibers of Λ2(M) that makes it into a complex vector
bundle of rank three. The isomorphism of a fiber of Λ2(M) with C3 then follows from making a choice of
complex 3-frame for the fiber. Of course, unless M is parallelizable a unique choice of complex 3-frame
for each fiber is only locally possible.

In order to show that this produces a more direct route from 2-forms to complex 3-vectors that would be of
interest to relativity, we shall demonstrate how one represents the various results of complex relativity. In the
first section, we summarize the definition of the complex orthogonal group for three dimensions and exhibit
its isomorphism with the identity component of the Lorentz group. Next, we discuss the representation of
2-planes in R4 by decomposable bivectors and algebraic 2-forms, the complexification of these spaces,
and some of the real and complex scalar products of physical significance that facilitate the representation
of SO(3;C) in those spaces. We also show how the methods that are discussed in the present work relate
to the more established methods of complex relativity. Then, in order to show how the representation of
the geometric machinery of general relativity can be independently formulated on the bundle of oriented
complex 3-frames in the bundle of 2-forms on spacetime, we first summarize the conventional representation
of general relativity in terms of real frames in the tangent bundle in such a manner that the construction in
the complex case is completely analogous. We conclude by discussing some topics of research that would
make the analogy complete.

2 The complex orthogonal group

Although one is often taught in special relativity that the vector product that one learned about in the context
of the three-dimensional real vector space R3 is no longer applicable to the four-dimensional real vector
space R4, it is interesting that actually all one has to do to make the cross product relativistically significant
is to complexify it. This is because on R3 the cross product defines a Lie algebra that is isomorphic to
so(3;R) by way of:

[v,w] = v × w . (2.1)

If ei, i = 1, 2, 3 are the standard basis vectors for R3 – viz., the triples real numbers of the form [δ1
i , δ2

i , δ3
i ]

– then the structure constants of the Lie algebra relative to this basis are given by the Levi-Civita symbol
εijk, since, as one directly verifies:

[ei, ej ] = εijkek . (2.2)
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This makes the components of v × w relative to this basis equal to:

(v × w)i = εijk(vjwk − vkwj) . (2.3)

In the case of C3, if associates the basis vectors ei with the same vectors, regarded as complex vectors
with vanishing imaginary parts, then one can still define the cross product of two vectors by (2.3), and the
result is that it defines a Lie algebra on C

3 by way of (2.1), whose structure constants are still given by
(2.2). However, the Lie algebra is now isomorphic to so(3;C).

As it turns out, this Lie algebra is still of fundamental significance for special relativity since it is (real)
isomorphic to the Lie algebra so(3, 1) of the Lorentz group. To exhibit this isomorphism, one needs to first
regard C3 as R3×R3 = R6 by way of the association of vi+iwi with (vi, wi). If {Ji, Ki, i = 1, 2, 3} is the
standard basis for so(3, 1) that is defined by the three elementary infinitesimal Euclidian rotations and the
three elementary boosts, respectively, then the isomorphism of so(3, 1) with so(3;C) as real vector spaces
is defined simply by associating the basis vectors Ji with the vectors Zi = (ei, 0) and the basis vectors Ki

with the vectors iZi = (0, ei). More concisely, one can say that the infinitesimal Lorentz transformation
viJi + wiKi goes to (vi + iwi)Zi. By comparing the structure constants for so(3, 1) in this basis:

[Ji, Jj ] = εijkJk , [Ji, Kj ] = εijkKk , [Ki, Kj ] = −εijkJk , (2.4)

with those of so(3;R) relative to the basis {Zi, iZi}:

[Zi, Zj ] = εijkZk , [Zi, iZj ] = iεijkZk , [iZi, iZj ] = −εijkZk , (2.5)

one sees that this vector space isomorphism is also a Lie algebra isomorphism.
Under this association, infinitesimal Euclidian rotations in so(3, 1) become infinitesimal rotations about

real axes in so(3;C) and infinitesimal boosts become infinitesimal rotations about imaginary axes. This
way of looking at Lorentz transformations as complexified rotations has its roots in the more elementary
association of a real variable x with the imaginary variable ix, which takes ex to eix, and consequently cosh x
to cos x and sinhx to i sin x. However, rather than think of Minkowksi space itself as being complexified,
as when one introduces an imaginary time, it is better to think of the complex orthogonal space C3 with
the Euclidian scalar product:

γ = δijZ
i ⊗ Zj (2.6)

as simply being the new arena of relativistic geometry that replaces Minkowski space. In this expression,
we have defined {Zi, i = 1, 2, 3} to be the coframe that is reciprocal to the frame Zi, so Zi(Zj) = δi

j .
The reason that γ has the Kronecker delta for its components is because the standard basis Zi is complex

orthonormal. When {Yi, i = 1, 2, 3} is not necessarily a complex orthonormal frame on C3 we given the
tensor γ the more general components γij :

γ = γijY
i ⊗ Y j . (2.7)

We denote the Lie algebra isomorphism by σ : so(3, 1) → so(3;C) and the components of the iso-
morphism relative to a choice of basis for both by σiμ

jν , such that if ωμ
ν ∈ so(3, 1) then the corresponding

σi
j ∈ so(3,C) is obtained by way of:

σi
j = σiμ

jνων
μ. (2.8)

In order to make the somewhat abstract space (C3, γ) more physically meaningful, one needs to show
how it relates to the vector spaces of bivectors and 2-forms on Minkowski space.
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618 D. H. Delphenich: A more direct representation for complex relativity

3 The geometry of bivectors

In order to make the shift from starting with the tangent bundle T (M) given a Lorentzian metric g to
starting with the bundle of 2-forms Λ2(M) given an almost-complex structure ∗, we must first look at how

everything is defined in terms of the vector space A2(R4) = R4 ∧ R4 of bivectors on R4, and which

is the exterior product of R4 with itself, and its dual vector space A2(R4) = R4∗ ∧ R4∗ of (algebraic)
2-forms, which is the exterior product of the dual of R4 with itself. For brevity, we shall simply refer to
the two vector spaces as A2 and A2, respectively. If it should be necessary to refer to the exterior tensor
products of other vector spaces, we shall modify the notation accordingly.

3.1 Real vector space structure on A2

Since A2 is six-dimensional as a real vector space, any frame – i.e., basis – for it must consist of six linearly
independent bivectors {bI , I = 1, . . . , 6}. Any other general linear frame {b′

I , I = 1, . . . , 6} on A2 will
then be related to the former frame by an invertible linear transformation of A2:

b′
I = AJ

I bJ (3.1)

that can be defined by the invertible 6 × 6 real matrix AJ
I of components with respect to the frame bI .

Hence, the general linear 6-frames on A2 are in one-to-one correspondence with the elements of the group
GL(6;R).

A particularly useful type of frame on A2 is obtained by starting with a 4-frame {eμ, μ = 0, . . . , 3}
on R4 and considering the independent bivectors defined by all of the eμ

∧ eν . In particular, we denote
them by:

bi = e0
∧ ei , i = 1, 2, 3 , b4 = e2

∧ e3 , b5 = e3
∧ e1 , b6 = e1

∧ e2 . (3.2)

The last three vectors can be summarized in the formula:

bi+3 = 1
2 εjk

i ej
∧ ek , (3.3)

in which we have lowered the first index of the Levi-Civita ε symbol by means of the Kronecker delta δij .
Note that this expression is not invariant under a general linear transformation of R4, but only under a linear
transformation of the three-dimensional subspace Π3 of R4 that is spanned by the 3-frame {ei, i = 1, 2, 3}
that preserves the volume element that is defined on it by:

V3 = θ1 ∧
θ2 ∧

θ3 =
1
3!

εijkθi ∧
θj ∧

θk , (3.4)

as well as the Euclidian scalar product that is defined by:

δ = δijθ
i ⊗ θj , (3.5)

in which {θi, i = 1, 2, 3} is the 3-frame that is reciprocal to the ei. Hence, the 3-frame bi+3 is really an
SO(3;R)-invariant construction. However, under complexification this will not be as much of a restriction
in the eyes of the Lorentz group.

Another observation that must be made at this point is that not every frame on A2 is representable
in the form (3.2) for some corresponding frame on R4. For one thing, the set of linear frames on R4

is parameterized by the sixteen-dimensional Lie group GL(4;R), while the set of linear frames on A2
is parameterized by the 36-dimensional Lie group GL(6;R). For another, not all frames on A2 can be
subdivided into a set of three elements with a common exterior factor – such as e0 – and another three
elements that represent the vector space A2(R4); the other possibility is that no three of the frame members
will have a common exterior factor.
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The dual space to A2 is the space A2 of 2-forms on R4. Hence, a 2-form α can be regarded as a linear
functional on the space of bivectors. In fact, since α is also a bilinear functional on R4 to begin with we
can express the evaluation of the linear function α on a decomposable bivector c = a ∧ b by way of:

α(c) = α(a,b) . (3.6)

One then extends to non-decomposable bivectors by linearity.
Any frame bI for A2 defines a reciprocal 6-coframe bI on A2 by way of:

bI(bJ) = δI
J . (3.7)

One verifies that if the reciprocal 4-coframe to eμ on R4 is θμ then the reciprocal coframe bI to the frame
bI that was defined by (3.2) is given by:

bi = θ0 ∧
θi , i = 1, 2, 3 , b4 = θ2 ∧

θ3 , b5 = θ3 ∧
θ1 , b6 = θ1 ∧

θ2 . (3.8)

If one has chosen a unit-volume element for R4, that is, a non-vanishing 4-form:

V = θ0 ∧
θ1 ∧

θ2 ∧
θ3 =

1
4!

εκλμνθκ ∧
θλ ∧

θμ ∧
θν , (3.9)

then one can use it define a scalar product on A2 by way of:

< F,G >= V (F ∧ G) . (3.10)

If F = 1
2 Fμνeμ

∧ eν and G = 1
2 Gμνeμ

∧ eν then:

< F,G >= εκλμνFκλGμν . (3.11)

One can also express F and G as F IbI and GIbI , in which case:

< F,G >= εIJF IGI , (3.12)

in which the 6 × 6 real matrix εIJ is equal to:

εIJ =< bI ,bJ >=

[
0 I

I 0

]
. (3.13)

By the change of frame, this can be brought into the canonical form:

ε′
IJ =

[
I 0
0 −I

]
, (3.14)

so this scalar product is of signature type (+1, +1, +1,−1,−1,−1).
The quadric hypersurface in A2 that is defined by the equation:

0 =< F,F >= εIJF IF I , (3.15)

which is called the Klein quadric, has considerable significance in the eyes of projective geometry. A
bivector F satisfies (3.15) iff it is decomposable; viz., it is of the form a ∧ b for some vectors a,b ∈ R4.
Furthermore, F �= 0 iff a and b are not collinear. Hence, in that case, they span a 2-plane Π2 in R4. Had
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620 D. H. Delphenich: A more direct representation for complex relativity

one chosen another pair of non-collinear vectors c and d to span Π2 then there would be an invertible 2× 2
real matrix aij such that:

c = a11a + a12b , (3.16a)

d = a21a + a22b , (3.16b)

in which case:

c ∧ d = det(a)a ∧ b . (3.17)

Hence, there is a one-to-one correspondence between 2-planes in R4 and equivalence classes of decom-
posable bivectors that differ by a non-zero scalar multiple. One can think of this as defining an embedding
of the Grassmanian manifold G2,4 of 2-planes in R4 into the projective space defined by all lines through
the origin of A2, and which is commonly referred to as the Plücker-Klein embedding.

One can represent a 3-plane Π3 in A2 in two ways: As long as one also has a line L through the origin
of R4 that does not lie in Π3, one can choose any vector t that generates L and define the linear injection
et : Π3 → A2,v �→ t ∧ v. A different choice of t would change the value of et(v) by only a non-zero
scalar multiple. Hence, the 3-plane Π3 gets mapped to a unique 3-dimensional subspace of A2. Secondly,
the exterior algebra A2(Π3) of bivectors over Π3 defines another 3-dimensional subspace of A2, which
is, moreover, complementary to the latter one. As shown in [6], these are the only two possible types of
3-dimensional subspaces in A2. As discussed in [7], this relationship between 1+3 decompositions of R4

and 3+3 decompositions of A2 has significance in both projective geometry and special relativity when one
regards Π3 as the rest space for a measurement.

Of course, dual statements to all of the foregoing can be made for the vector space A2. In particular, one
defines the scalar product on A2 by means of the volume element V on T ∗(M) that is reciprocal to V , so
V (V) = 1:

< F, G >= (F ∧
G)(V) . (3.18)

If one decomposes F and G into Eib
i + Bib

i+3 and E′
ib

i + B′
ib

i+3 then

< F, G >= εκλμνFκλGμν = εIJFIGJ = E · B′ + E′ · B , (3.19)

in which the dot signifies the Euclidian scalar product on R3. In particular, one has:

< F, F >= εκλμνFκλFμν = εIJFIFJ = 2E · B , (3.20)

an expression that has considerable significance in the theory of electromagnetism.

3.2 Complex vector space structure on A2

Now let us assume that A2 is endowed with a complex structure, in the form of a linear isomorphism
∗ : A2 → A2 that has the property ∗2 = −I . When R4 is given the Lorentzian structure that makes it into
Minkowski space and the unit-volume element, as above, such an isomorphism can be defined by Hodge
duality.

One can think of Hodge duality as obtained from the composition of two isomorphisms: Poincaré duality,
which comes from the unit-volume element, and takes the form:

# : A2 → A2 , a ∧ b �→ i
a

∧
b
V , (3.21)

and the metric isomorphism:

g−1 ∧
g−1 : A2 → A2 , α

∧
β �→ g−1(α) ∧

g−1(β) (3.22)
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that represents the “raising of the indices” operation on the components of the 2-form α
∧

β
In pre-metric electromagnetism [8,9], the isomorphism (3.21) is replaced with a linear electromagnetic

constitutive law. Although this has deep and far-reaching physical ramifications, and defines the motivation
for the present study, nevertheless, we shall make only occasional mention of this electromagnetic aspect of
doing geometry in terms of the bundle of 2-forms instead of the tangent bundle, since our present concern
is gravitation.

One notes that the basis (3.2) for A2 that we have been using heretofore has the property that under
Hodge duality one has:

∗bi = bi+3 , ∗bi+3 = −bi . (3.23)

Hence, if we define ARe
2 to be the three-dimensional subspace of A2 that is spanned by the bi, i = 1, 2, 3

and AIm
2 to be the subspace spanned by the bi+3, i = 1, 2, 3 then since these subspaces are complementary

in A2 we can decompose A2 into the direct sum ARe
2 ⊕ AIm

2 . Since (3.23) implies that ∗ARe
2 = AIm

2 and
∗AIm

2 = ARe
2 , we suspect that we are indeed justified in thinking of the subspaces ARe

2 and AIm
2 as the

“real” and “imaginary” subspaces of A2 when given the complex structure ∗.
In order to confirm this, we show how ∗ allows us to define a complex vector space structure on A2 and

a (non-canonical) isomorphism of A2 with C3. In order to accomplish the first objective, it is sufficient to
show how ∗ allows us to define complex scalar multiplication on A2. This follows from the basic definition:

iF = ∗F , (3.24)

which one then extends to any complex scalar α + iβ by way of:

(α + iβ)F = αF + β ∗ F . (3.25)

We can then express any bivector F = Eibi + Bi ∗ bi as:

F = (Ei + iBi)bi . (3.26)

Hence, the three linearly independent bivectors {bi, i = 1, 2, 3} define a complex basis for the complex
vector space A2 with the complex structure ∗, and an isomorphism with C3 can be defined by any such
choice of complex 3-frame:

b : C3 → A2 , (z1, z2, z3) �→ zibi . (3.27)

One then sees that not every real 6-frame on A2 will define a complex 3-frame, but only the ones for which
(3.23) is satisfied. Similarly, two complex 3-frames on A2 will differ by an element of GL(3;C), which can
be represented in GL(6;R) by means of invertible 6 × 6 real matrices that commute with ∗, whose matrix
with respect to the bI frame is:

[∗]IJ =

[
0 I

−I 0

]
. (3.28)

The real 6 × 6 matrices that represent invertible complex transformations then take the form:[
A B

−B A

]
=

[
A 0
0 A

]
+ ∗

[
B 0
0 B

]
. (3.29)

The association of a 3 × 3 complex matrix of the form A + iB with its representative in GL(6;R) then
becomes clear. This representation of GL(3;C) in GL(6;R) is, moreover, faithful; i.e., it is one-to-one.
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One must observe that the concept of a line through the origin of A2 takes on a different meaning when
one uses complex scalars instead of real ones. In particular, just as the complex line C is two-dimensional
as a real vector space, similarly, a complex line through the origin of A2 is a real 2-plane in A2. If one
expresses an arbitrary complex scalar α in polar form as α = aeiθ then one sees that such a 2-plane is
obtained by starting with a bivector F, extending to the real line [F] that it generates, and rotating that line
around a unique plane that is associated with F that we shall call the duality plane; similarly, the rotation in
question will be called a duality rotation. The duality plane through a bivector F is spanned by F and ∗F.

If one represents F as Eibi + Bi ∗ bi then if we express the complex scalar α as a cos θ + ia sin θ the
product of α with F takes the real form:

αF = a(Ei cos θ − Bi sin θ)bi + a(Ei sin θ + Bi cos θ) ∗ bi . (3.30)

One can clearly see that if the E and B vectors define a plane in R4 – which one calls the polarization
plane – then the effect of a duality rotation on them is a rotation of both of them in the polarization plane
through the same angle as the duality rotation in A2.

If one represents Maxwell’s sourceless equations for a 2-form F as:

dF = d ∗ F = 0 (3.31)

then it is clear that if F is a solution to these equations then so is αF . Hence, one suspects that Maxwell’s
equations are more intrinsically formulated in complex terms than in real terms since duality rotations are
already a symmetry of the solutions, even in the real case.

By any choice of complex 3-frame, the space CPA2 of all complex lines through the origin – i.e., duality
planes – in A2 is shown to be diffeomorphic to the complex projective space CP2. One must be careful not
to confuse CPA2 with the space RPA2 of all real lines through the origin, which is then diffeomorphic to
RP5.

If one assumes that the complex structure ∗ is self-adjoint, so:

< F, ∗G >=< ∗F,G > , (3.32)

then one can use ∗ to define another real scalar product on A2:

(F,G) =< F, ∗G >= V (F ∧ ∗G) = ∗IJF IGI . (3.33)

Assuming the self-adjointness of ∗ is equivalent to assuming the symmetry of ∗IJ .
One finds that the matrix of this scalar product with respect to the bI frame is:

∗IJ =

[
I 0
0 −I

]
. (3.34)

This is already in canonical form, so we see that this scalar product has the same signature type as < . >;
indeed, they differ only by an imaginary rotation.

The E − B form of this scalar product is then:

(F,G) = E · E′ − B · B′ , (3.35)

which includes the special case:

(F,F) = E2 − B2 . (3.36)

This expression also has considerable significance in electromagnetism. Indeed, a necessary – but not
sufficient – condition for a 2-form F to represent a wavelike solution of the Maxwell equations is that both

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 16, No. 9 (2007) 623

< F, F > and (F, F ) must vanish. A counter-example to the converse is the example of two static electric
and magnetic fields that are perpendicular and have the same field strength.

When < F,F > and < F, ∗F > both vanish for a bivector F one calls it isotropic. Both conditions
define quadric hypersurfaces in A2 so the isotropic bivectors define the intersection of the two quadrics,
which will then be four-dimensional as a real algebraic variety. Since both conditions are also algebraically
homogeneous they also define quadrics onRPA2, and their intersection is represented as a three-dimensional
real projective variety in it.

As we have observed above, when < F,F >= 0 the bivector F is associated with a unique 2-plane
Π2 in R4. Since the isomorphism ∗ takes decomposable bivectors to other decomposable bivectors – i.e.,
it leaves the Klein quadric invariant – one also has a unique 2-plane Π′

2 in R4 that is associated with the
bivector ∗F. What the expression (F,F) =< F, ∗F > then tells us, by its vanishing or not, is whether the
2-planes Π2 and Π′2 intersect in more than the origin or not, respectively. Moreover, since the two 2-planes
cannot be identical, their intersection must be either the origin or a unique line through the origin of R4.
Indeed, one can define this line to be lightlike, and the resulting hypersurface in R4 can be shown to be a
cone generated by a sphere; i.e., a light cone. This is a particularly elegant geometric way of showing that
a complex structure on A2 induces a conformal Lorentzian structure on R4.

We can combine the two real scalar products into a single complex Euclidian scalar product. Indeed,
since there is only one possible signature type for a complex orthogonal structure on C3, of the two obvious
ways of combining them, either choice produces an isometric complex orthogonal structure. If we choose
to define:

< F,G >C= (F,G) + i < F,G > (3.37)

then we see that the complex 3-frame {bi, i = 1, 2, 3} is also orthonormal:

(bi,bj) = δij . (3.38)

This can also be interpreted as meaning that the complex linear isomorphism that takes each triple (z1, z2, z3)
of complex numbers to the bivector zibi is also an isometry of the two complex orthogonal spaces; of course,
we are giving C3 the complex Euclidian scalar product whose components with respect to the standard
basis are δij .

Any other complex orthogonal 2-frame differs from thebi frame by a complex orthogonal transformation,
which can be represented by an invertible complex 3×3 matrix A with the property that A−1 = AT. Hence,
we have a (right) action of O(3;C) on the manifold of complex orthogonal 3-frames on A2. In order to
maintain the frame invariance of a bivector F = F ibi under this action, O(3;C) must act on the components
F i on the left by way of the inverse of A.

If one gives A2 a volume element then one can speak of unit-volume – or simply oriented – complex
orthogonal frames on A2 and the frame transformations reduce to the matrices of SO(3;C). Such a volume
element can be defined by a non-zero 3-form on A2. However, one must be careful not to confuse the
exterior product of elements in the vector space A2 with the exterior product of vectors in R4, which are
traceable to two different tensor products over two different vector spaces; we shall use the notation ⊥
for the exterior product over the vector space C3. One can define the volume element by means of the Zi

coframe members as:

VC = Z1⊥Z2⊥Z3 =
1
3!

εijkZi⊥Zj⊥Zk . (3.39)

We have thus finally arrived at a representation of SO(3;C), which we have seen to be isomorphic to
SO0(3, 1), on the three-dimensional complex orthogonal space A2.

Just as the real and imaginary parts of the complex scalar product (3.37) define real quadrics in A2 and
its real projectivization RPA2 ∼= RP5, so does the complex scalar product define a complex quadric in
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A2 and its complex projectivization CPA2 ∼= CP2. One sees immediately that the homogeneous complex
quadratic equation:

< F,F >C= γijF
iF j = 0 (3.40)

is equivalent to the pair of real equations:

< F,F >= (F,F) = 0 . (3.41)

Bivectors that belong to this quadric are called isotropic. One can also characterize them as decomposable
bivectors such that (F,F) vanishes, which is equivalent to the geometric condition that their 2-planes
intersect their dual 2-planes in a line.

In order to represent SO(3;C) on the dual vector space A2, the only modification of the foregoing that
is necessary is to note that the action of 3 × 3 complex matrices on coframes is the inverse transpose of
the action on frames. That is, if bi goes to Aj

ibj then the reciprocal coframe bi must go to Ãi
jb

j . In other
words, the action of a group on the dual of vector space is contragredient to its action on that vector space.

3.3 Relationship to the formalism of self-dual bivectors

Since the methods of complex relativity have long since been established in the literature, it is necessary
to explain how the representation of SO(3;C) that we have described above relates to the established
representation in terms of “self-dual” bivectors and 2-forms.

The essential point of departure is whether you wish to regard the statement:

∗F = ±iF (3.42)

as two possible definitions of how the imaginary i acts on the real vector space A2 or as an eigenvalue
equation for the operator ∗. The latter interpretation is the traditional one.

In order for (3.42) to make mathematical sense, F must belong to a complex vector space. However,
instead of simply using the complex structure that has been given to A2 by means of ∗, it has been traditional
all along to first complexify A2 and then decompose the complexified vector space, which is six-dimensional
as a complex vector space, into two eigenspaces of ∗, which will both be three-dimensional as complex vector
spaces. The elements of the positive eigenspace are referred to as self-dual bivectors and the elements of the
negative eigenspace are called anti-self-dual bivectors. One then represents SO(3;C) by way of self-dual
complex 3-frames.

This aforementioned program seems conceptually understandable, since it represents an attempt to
duplicate the corresponding constructions that were ventually established by gauge field theorists (see
Atiyah, Hitchin, Singer [10]) for Riemannian manifolds, in which the eigenvalues of ∗ will be real and
the eigenspaces will exist in A2 without complexification. However, if one approaches the basic problem
of constructing a representation space for SO(3;C) in terms of bivectors and 2-forms objectively, it also
becomes clear that there is something redundant about complexifying A2 when one has already given it a
complex structure, especially since one only uses “half” of the resulting space.

Another point that needs to be made is how the real basis bi, ∗bi, i = 1, 2, 3 relates the “complex
conjugate” bases Zi, Z̄i, i = 1, 2, 3 that are commonly used in complex relativity, as well as in complex
manifolds, in general. Although the space A2 of bivectors has been given a complex structure, in order to
define the conjugation of a bivector one must also assume that A2 has been given a specific choice of “real
+ imaginary” decomposition A2 = ARe

2 ⊕ AIm
2 , with AIm

2 = ∗ARe
2 , so any bivector F can be expressed as

FRe + iFIm = FRe + ∗FIm, in which both FRe and FIm belong to ARe
2 . Since such a decomposition is

equivalent to a choice of real 3-plane ARe
2 in A2, this is physically related, but not equivalent to a choice of

3-plane – i.e., rest space – in R4, although we shall not dwell on that fact here. (See Delphenich [7].)
One can then define the complex conjugate of the bivector F by way of:

F̄ = FRe − ∗FIm . (3.43)
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One then sees that, as would be consistent with life in C3:

FRe = 1
2 (F + F̄) , FIm = 1

2 (F − F̄) . (3.44)

Note that in order for six bivectors Zi, Z̄i to define a real basis for A2 they must all have non-vanishing real
and imaginary parts. In fact, we can define such a basis by starting with the bi, ∗bi by the obvious definitions:

Zi = 1
2 (bi − ∗bi) , Z̄i = 1

2 (bi + ∗bi) . (3.45)

These bivectors as sometimes referred to as the self-dual and anti-self-dual parts of bi and ∗bi, since:

∗Zi = Z̄i , ∗Z̄i = −Zi . (3.46)

In complex relativity, the expressions (3.45) are replaced by ones in which i∗ appears in place of ∗, which
then makes:

∗Zi = iZi , ∗Z̄i = −iZ̄i ; (3.47)

i.e., Zi and Z̄i are, in fact, eigenvectors of the linear isomorphism ∗ that correspond to ±i, resp.
If one normalizes the definitions (3.45) by using a factor of 1/

√
2 in place of the factor of 1/2 then the

transformation from the bi, ∗bi frame to the Zi, Z̄i frame has the matrix:

1√
2

[
I −I

I I

]
= cos

π

4
I − sin

π

4
∗ , (3.48)

which is a duality rotation through −π/4; hence, it is complex orthogonal.
Now, since we will be dealing with 2-forms that take their values in complex vector spaces – viz., C

3

and so(3;C) – one must note that one can make sense of the operator i∗ for such geometric objects without
needing to complexify A2. One simply lets the ∗ isomorphism act on A2, as usual, and then lets i act on
the complex vector space in which the 2-forms take their values. Hence, if F is 2-form on R4 that takes its
values in a complex vector space V one defines i ∗F as the 2-form on R4 with values in V that takes a pair
of vectors v,w ∈ R4 to i ∗ F (v,w); i.e.:

(i ∗ F )(v,w) = i(∗F (v,w)) . (3.49)

One can then identify two types of R-linear maps L : A2 → V : the ones that commute with ∗ and i and
the ones that anti-commute:

L(∗F ) = ±iL(F ) . (3.50)

If one defines the operator iL* to be the composition of the three maps then this takes the form:

iL*(F ) = ∓F . (3.51)

This allows us to make rigorous sense of the concept of self-dual and anti-self-dual 2-forms without first
complexifying A2.

The mathematically astute reader will immediately object that we are still implicitly complexifying A2

by the fact that one can define the complexification of any real vector space V to be the vector space of
R-linear maps from V into C. However, we will not need to consider 2-forms with values in C, only ones
with values in C3 and so(3,C). Furthermore, in the former case, we shall be primarily concerned with
2-forms of a particular sort, ones that take real bivectors to real values and imaginary bivectors to imaginary
values.
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Given the definition of i∗ as in (3.51), one can then polarize any L into its commuting and anti-commuting
parts in the usual way:

L+ = 1
2 (L − i ∗ L) , L− = 1

2 (L + i ∗ L) . (3.52)

When A2, hence A2, is given a complex structure ∗, there is a canonical real 2-form on R4 with values in
C3 that is defined by the isomorphism of A2, when given the standard basis defined by bi, with the standard
basis for C3. Since the bi are also 2-forms of the form θμ ∧

θν , we define the C3-valued canonical 2-form
Zi on R4 by:

Zi = θ0 ∧
θi + i ∗ (θ0 ∧

θi) . (3.53)

This 2-form then has the property it takes a real bivector, such as any e0
∧ ei, to a real 3-vector and an

imaginary bivector, such as the ei
∧ ej , to an imaginary 3-vector.

When the operator i∗ acts on Zi, one gets:

i ∗ Zi = i ∗ (θ0 ∧
θi) + θ0 ∧

θi = Zi ; (3.54)

i.e., it is self-dual. One can easily see that Z̄i is then anti-self-dual.
We can also express the 2-form Zi in the manner that is more familiar from conventional complex rela-

tivity:

Zi =
1
2

Zi
μνθμ ∧

θν = Zi
0jθ

0 ∧
θj +

i

2
Zi

jkθj ∧
θk , (3.55)

in which:

Zi
0j = −Zi

j0 = δi
j , Zi

jk = εijk , (all other are zero) . (3.56)

Similarly, one can then use the inverses Zμν
i of the Zi

μν matrices – which are represented by the same
matrices as in (3.56) – to map the components Fμν of a 2-form F with respect to the coframe θμ to the
corresponding complex components of a vector in C3:

Fi = Zμν
i Fμν = Z0j

i F0j +
i

2
Zjk

i Fjk . (3.57)

However, one will note in the sequel that the only point at which it becomes necessary for us to introduce
the operator i∗ into our geometrical discussion will be when we wish to duplicate the Debever-Penrose
decomposition of the Riemannian curvature tensor into the Weyl curvature tensor, the trace-free part of the
Ricci curvature, and the scalar curvature.

4 Associated principal bundles for the vector bundle of 2-forms

Next, we must extend the scope of our previous discussion from vector spaces to vector bundles. In the
case of the real vector spaces A2 and A2, we simply pass to the real vector bundles Λ2(M) and Λ2(M)
that consist of all bivector fields and differential 2-forms on the spacetime manifold M . The fibers of
these bundles will then be (non-canonically) isomorphic to the vector spaces A2 and A2, respectively. The
isomorphism for a given fiber of Λ2

x(M) can be specified by a choice of frame on that fiber. However, unless
M is parallelizable this choice of frame cannot be made globally.

In the case of a real vector bundle, the assignment of an isomorphism ∗ such that ∗2 = −I to each fiber is
not referred to as a complex structure, but an almost-complex structure. This is because when the bundle in
question is the tangent bundle to a real manifold one cannot necessarily find a complex atlas for the manifold
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that has the bundle in question for its complex tangent bundle. The issue is one of integrability, but since
we are chiefly concerned with a real vector bundle whose fiber dimension is not equal to the dimension of
the tangent spaces to the base manifold, integrability cannot be an issue, anyway.

We need to discuss the various ways that one can associate a principle fiber bundle with the vector bundles
Λ2(M) and Λ2(M). Basically, this amounts to looking at the possible types of frames that one can choose
in the fibers.

Suppose G is a Lie group and one has defined a representation of G in an n-dimensional (real or complex)
vector space V ; i.e., a linear action of G on V . A G-principal bundle P → M can then be associated with a
vector bundle E → M , whose typical fiber is isomorphic to V . Conversely, in order to define an associated
principal bundle for E one must first settle on what group is acting on the bundle. Equivalently, one identifies
a class of frames in the fibers. Although a frame in a fiber Ex(M) can simply be regarded as a maximal set
of linearly independent vectors {ei, i = 1, . . . , n}, it is often more convenient to think of a frame as a linear
isomorphism e : Kn → Ex(M) that takes the canonical basis for Kn to that set of vectors, in which we let
K represent either R or C. A coframe then becomes a linear isomorphism θ : Ex(M) → Kn; i.e., a 1-form
with values in Kn. In particular, the reciprocal coframe to the frame e is the one that makes θ(e) = I , or,
in terms of individual frame members:

θi(ej) = δi
j . (4.1)

In general, one can always consider all of the linear frames in a fiber, which then defines an associated
GL(n)-principal bundle, where we intend this to mean GL(n;R) or GL(n;C) depending upon whether V
is real or complex, respectively. If the group G is a subgroup of GL(n) then one restricts oneself to some
set of frames that all differ by the elements of G. For instance, if G is O(n) then one restricts oneself to a
set of orthogonal frames. In general, any frame defines such a set by its orbit under the action of G. The
associated O(n)-principal bundle is then defined by a choice of a set of orthogonal frames at each point;
i.e., by a choice of G-orbit.

In the case of the bundle Λ2(M) of 2-forms on a four-dimensional Lorentzian manifold M there are
a number of groups and associated frames that one can consider. If one regards a typical fiber Λ2

x(M) as
the six-real-dimensional vector space R6 then the G in question would be GL(6;R) and the associated
principal bundle would be defined by all real linear frames in the fibers. However, since we are assuming
that Λ2(M) has an almost-complex structure defined by ∗ on it, it would be more to the point to assume
that the vector space is C3, the group is GL(3;C), and the associated principal bundle is defined by all
complex 3-frames in the fibers.

Of course, from the standpoint of relativity theory, which treats geometry as something that lives in the
metric structure on the tangent bundle, the role of the bundle Λ2(M) is somewhat secondary, since one
starts with the action of the Lorentz group SO(3, 1) on tangent frames and defines its action on 2-forms
by way of the tensor product representation. In particular, if eμ, μ = 0, . . . , 3 is a Lorentzian frame for
Minkowski space and the right action of a Lorentz transformation A takes the frame eμ to A−1eμ then

the frame on Λ2(R4) that is defined by eμ
∧ eν , μ < ν goes to the frame A−1eμ

∧
A−1eν . This gives

the usual transformation of tensor components that takes Fμν to Aρ
μAσ

νFρσ. We then have an injective
homomorphism of SO(3, 1) in GL(6;R) whose image is then isomorphic to SO(3, 1).

This suggests that for the purposes of relativity and the theory of gravitation we should probably wish
to concentrate on the frames in Λ2(R4) that make this isomorphism take the form of the isomorphism of
SO0(3, 1) with SO(3;C). These would then be the oriented complex orthogonal 3-frames, relative to the
almost-complex structure and orthogonal structure that is defined by ∗. We can define a complex orthogonal
structure γ on Λ2(M) locally by the tensor field:

γ = γijZ
i ⊗ Zj , (4.2)

whose restriction to each fiber is the complex orthogonal scalar product that we defined by means of ∗ and
V . The tensor field γ also defines a map γ : GL(3;C)(Λ) → GL(3;C)/SO(3;C) that takes the complex
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frame Zi to the components γij of γ with respect to that frame. A reduction of GL(3;C)(Λ) to O(3;C)(Λ)
is then defined by the set of all complex frames that map to δij , which will then be, by definition, complex
orthogonal.

Hence, by the isomorphism of the Lie groups SO0(3, 1) and SO(3;C) the bundle of oriented complex
orthogonal 3-frames in Λ2(M) is isomorphic to the bundle of oriented time-oriented Lorentzian frames
in the tangent bundle T (M). One can then relate the geometric constructions that are customarily defined
relative to frames in the tangent bundle with corresponding constructions that relate to frames in the bundle
of 2-forms.

We shall use the notation SO0(3, 1)(M) for the bundle of oriented, time-oriented Lorentzian frames in
T (M) and the notation SO(3;C)(Λ) for the bundle of oriented complex orthogonal 3-frames in Λ2(M).
The isomorphism of frames can then be represented by the association of the complex orthogonal 3-frame
bi, i = 1, 2, 3 with the Lorentzian 4-frame eμ, μ = 0, . . . , 3, as discussed above.

The isomorphic representation of a given fiber Λ2
x(M) by C3 is then defined by a complex 3-frame

in Λ2
x(M). Hence, the isomorphism of the fibers with C3 is not global in the general case of a non-

parallelizable M , since its existence would imply the existence of a global frame field. Nevertheless, the
isomorphism does exist locally over any open subset U ⊂ M for which a local frame field exists, so we
will sometimes represent a complex 3-frame field over such an open subset by either by a set of three
linearly independent sections bi : U → U × Λ2(R4), i = 1, 2, 3 or by a set of three linearly independent
sections Zi : U → U × C3, i = 1, 2, 3, and the isomorphism of Λ2(R4) with C3 will be denoted by
Z : Λ2(R4) → C3, F �→ F i = Zi(F ), which makes {Zi, i = 1, 2, 3} a coframe on Λ2(U) for each
x ∈ U .

The bundle SO0(3, 1)(M) has a canonical 1-form, which we also denote by θμ, with values in R4 that
it inherits from the bundle GL(M) of all linear frames on M by restriction. The origin of the canonical
1-form on GL(M) is in the fact that a linear 4-frame eμ on a tangent space Tx(M) is an isomorphism of R4

with Tx(M). Hence, the reciprocal coframe θμ is an isomorphism of Tx(M) with R
4, as well as a 1-form

on M with values in R4. One can lift it to an R4-valued 1-form on GL(M) by pulling it back along the
projection π : GL(M) → M .

One can define a canonical real 2-form Zi on GL(3; C)(Λ) that takes its values in C3 in an analogous
fashion. One starts with the fact that a complex 3-frame Zi on a fiber Λ2

x(M) of Λ2 (M) defines a C-linear
isomorphism of C3 with Λ2

x(M), as discussed in the previous section. Its reciprocal coframe Zi, which can
be represented by the 2-forms that were defined in (3.51), then defines a C-linear isomorphism of Λ2

x(M)
with C3, as well as a real 2-form on M with values in C3. One can then lift it to a C3-valued 2-form on
GL(3;C)(Λ) by pulling it back along the projection GL(3;C)(Λ) → M .

In fact, the canonical 2-form on GL(3;C)(Λ) associates each complex 3-frame of GL(3;C)(Λ) with
the C3-valued 2-form Zi, as defined in (3.51). Hence, when one chooses a local C3-frame Z : U →
GL(3;C)(Λ) the canonical 2-form on GL(3;C)(Λ) pulls down to the C3-valued 2-form Zi on U that is
defined by (3.51).

The canonical 2-form Zi on SO(3;C)(Λ) is then just the restriction of the canonical 2-form on
GL(3;C)(Λ) to complex orthogonal frames.

It is a useful coincidence that since the elements ωμ
ν of the Lie algebra so(3, 1), when their upper index

is lowered, can define the components ωμν of 2-forms if one is given a frame. Hence, one can also use the
same Zi

μν matrices to define an R-linear isomorphism of so(3, 1) with so(3,C) when one regards the three
elementary infinitesimal boost matrices as the complex basis Zi for so(3,C). One should then note that the
Zi

μν matrices will then take the elementary infinitesimal rotations to the iZi, which is not how we defined
the isomorphism of so(3, 1) with so(3,C) in the previous section.

Before we discuss the representation of general relativity in terms of the geometry of the bundle Λ2(M),
we shall first try to briefly summarize the way it is represented in terms of the geometry of the bundle T (M),
where M is the four-dimensional spacetime manifold.
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5 Levi-Civita connection on the bundle SO(3, 1)(M)

As is traditional in the post-Cartan era of differential geometry (cf., [11, 12]), we introduce a connection
on the bundle the bundle SO(3, 1)(M) of oriented Lorentzian frames by starting with a linear connection
on the bundle of GL(M) of all linear frames and reducing to an so(3, 1)-connection. In the spirit of gauge
field theory, we introduce the connection by way of its 1-form ω, which is a 1-form on GL(M) that takes
its values in the Lie algebra gl(4;R). Moreover, one requires that when one goes from a linear frame eμ in
a tangent space Tx(M) to another linear frame fμ = Aν

μeν that the values of ω transform to Ad−1(A)ω.
When ω is represented by a local matrix-valued 1-form ωμ

ν on an open subset U ⊂ M , such as the domain
of a coordinate chart (U, xμ):

ωμ
ν = Γμ

κνdxκ, (5.1)

the requirement of Ad−1-equivariance of ω takes the form of saying that Aν
μ is a GL(4;R)-valued function

on U that effects a transition to another frame field eμ = Aμ
νdxν then the 1-form ω transforms like1:

ω �→ A−1ωA + A−1dA . (5.2)

A more geometrically intuitive picture for the introduction of a linear connection on M is to regard the
value ω(v) that the local 1-form ω on U associates to a tangent vector v ∈ Tx(U) as the infinitesimal
generator of a linear transformation that takes any frame at x ∈ U to a neighboring frame in the direction
of v that one regards as parallel to the initial frame.

One introduces the covariant differential of a local frame field e : U → GL(M), x �→ eμ(x) by way of:

∇eμ = Deμ − ων
μ ⊗ eν ; (5.3)

in this expression, we are using the symbol D to represent the differential of the map e. One then calls the
frame field eμ parallel on U iff ∇eμ = 0; i.e.:

Deμ = ων
μ ⊗ eν . (5.4)

Given such a parallel frame field, one can speak of the parallelism of vectors, covectors, and tensors
more generally by specifying that their components with respect to eμ and its reciprocal coframe must be
constant.

When one has a general frame field on U , such as the natural frame field ∂/∂xμ for a coordinate chart
(U, xμ), one can extend to the covariant differential from frame fields to more general geometric objects by
letting the connection 1-form act on the components of the object being differentiated.

For instance, the covariant differential of a vector field v = vμ∂/∂xμ is given by:

∇v = dvμ ⊗ ∂

∂xμ
+ vμ ⊗ ∇ ∂

∂xμ
= ∇vμ ⊗ ∂

∂xμ
, (5.5)

with:

∇vμ = dvμ + ωμ
ν vν . (5.6)

The vector field v is then said to be parallel iff ∇v = 0. Although this definition of ∇v seems to violate
the spirit of covariance, nevertheless, the whole point of introducing ω is precisely to make the expression
(5.5) frame-invariant.

Generally, it is too strong a restriction to demand that a geometric object be parallel over all of an
open subset, since that demands that it be parallel in every direction at every point. One then introduces

1 Naturally, we intend that the products in the right-hand side of this association are matrix products.
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the covariant derivative in the direction w by taking the interior product of w with the operator ∇. For
instance, the covariant derivative of the vector field v in the direction w is:

∇wv = iw∇vμ ⊗ ∂

∂xμ
= (wnvμ,ν + Γμ

κνwκvν) ⊗ ∂

∂xμ
. (5.7)

A curve in M is said to be geodesic iff its tangent vector field is parallel with respect to itself; i.e., is
parallel translated along the curve. This gives a system of ordinary differential equation that can be expressed
in a frame invariant way by:

∇vv = 0 (5.8)

or in local component form as:

dvμ

dτ
+ Γμ

κνvκvν = 0 . (5.9)

In general relativity, geodesics are assumed to represent the natural curves that are followed by matter –
whether massive or not – in spacetime.

Dually, since GL(4;R) acts on coframes by the inverse of the transformation that acts on frames the
covariant differential of a coframe field is:

∇θμ = Dθμ + ωμ
ν ⊗ θν , (5.10)

so it is parallel iff:

Dθμ = −ωμ
ν ⊗ θν . (5.11)

One then defines the covariant differential of a 1-form α = αμdxμ by way of:

∇α = dαμ ⊗ dxμ + αμ ⊗ ∇(dxμ) = (dαμ − ων
μαν) ⊗ dxμ . (5.12)

The extension of the covariant differential to higher rank tensor fields follows from requiring it to be a linear
derivation on tensor products:

∇(v ⊗ w ⊗ . . . ⊗ α ⊗ β) = (∇v) ⊗ w ⊗ . . . ⊗ α ⊗ β + v ⊗ ∇(w) ⊗ . . . ⊗ α ⊗ β + . . .

+ v ⊗ w ⊗ . . . ⊗ ∇(α) ⊗ β + v ⊗ w ⊗ . . . ⊗ α ⊗ ∇(β) (5.13)

One can also define an exterior covariant derivative that acts on differential forms on GL(M) that take
their values in a vector space V on which GL(4;R) acts linearly. In general, one defines:

∇α = dα + ω
∧

α , (5.14)

although the precise meaning of the second term on the right-hand side depends upon V and the way that
GL(4;R) acts on it.

The torsion Θμ and curvature Ωμ
ν 2-forms for the connection 1-form ω are defined by the Cartan structure

equations:

Θμ = ∇θμ = dθμ + ωμ
ν

∧
θν , (5.15a)

Ωμ
ν = ∇ωμ

ν = dωμ
ν + ωμ

κ
∧

ωκ
ν . (5.15b)

In (5.15a), θμ can refer to either the canonical R4-valued 1-form on GL(M), or the local coframe field that
it pulls down to by a choice of local frame field.
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By a second exterior covariant derivation, one obtains the Bianchi identities from these equations:

∇Θμ = ∇2θμ = Ωμ
ν

∧
θν , (5.16a)

∇Ωμ
ν = ∇2ωμ

ν = 0 . (5.16b)

When a connection has vanishing torsion one has an immediate algebraic identity that follows from the
first Bianchi identity:

0 = Ωμ
ν

∧
θν . (5.17)

In order to reduce a linear connection on GL(M) to an SL(4;R) connection, one must assume that M
– or rather, T (M) – is orientable to begin with and that one has chosen a unit-volume element V on it.
Locally, this takes the form of a non-vanishing 4-form:

V = dx0 ∧
dx1 ∧

dx2 ∧
dx3 =

1
4!

εκλμνdxκ ∧
dxλ ∧

dxμ ∧
dxν . (5.18)

When one transforms to a general linear coframe θμ = Aν
μdxν the components of V go to

1/(4!) det(A)εκλμν . Hence, one can define V globally as a function on GL(M) by assigning a frame
eμ to the real number det(eμ); note that this expression is well-defined since if we had chosen any other
initial frame field that differed by an invertible linear transformation L from dxμ the new determinant would
be det(L−1AL) = det(A). The reduction to the bundle SL(M) of unit-volume frames is defined by all
linear frames that map to unity under this map.

In order for ω to be reducible to an sl(4;R)-connection it must parallel translate the volume element V
in any direction. Hence, the covariant differential of V must vanish:

0 = ∇V

= − 1
4!

εκλμν

[
ωκ

αdxα ∧
dxλ ∧

dxμ ∧
dxν + . . . + dxκ ∧

dxλ ∧
dxμ ∧

ων
αdxα

]

= − 1
4!

εκλμνωα
αdxκ ∧

dxλ ∧
dxμ ∧

dxν , (5.19)

which says that one must have:

Tr(ω) = 0 ; (5.20)

i.e., ω must take its values in sl(4;C).
One usually introduces a Lorentzian metric on the bundle T (M) by defining a symmetric non-degenerate

second rank covariant tensor field g on M. It gets expressed locally in terms of an arbitrary coframe field
θμ on U as:

g = gμνθμ ⊗ θν . (5.21)

Note that this construction also makes rigorous sense if θμ is the canonical R4-valued 1-form on GL(M).
In order to make it Lorentzian, one must require that there be a linear transformation A at any point of U

such that ATgA takes the form ημν = diag(+1,−1,−1,−1). Moreover, the local frame field θμ is called
Lorentzian – or orthonormal – iff one has:

g = ημνθμ ⊗ θν . (5.22)

In order to reduce an sl(4;R)-connection ω to a Lorentzian connection, it must preserve the Lorentzian
metric under parallel translation. Hence, the covariant differential of the metric tensor field must vanish:

∇gμν = dgμν − ωλ
μgλν − ωλ

ν gλμ = 0 , (5.23)
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For an orthogonal frame field the components of g are ημν = diag(+1,−1,−1,−1) and the metricity
condition (5.23) takes the form:

ωμν + ωνμ = 0 ; (5.24)

i.e., the connection 1-form must take its values in so(3, 1).
The Levi-Civita connection is the metric connection on SO0(3, 1)(M) that is uniquely defined by the

requirement that its torsion vanish:

Θμ = dθμ + ωμ
ν

∧
θν = 0 . (5.25)

For a general (i.e., anholonomic) local coframe field θμ on U ⊂ M , one has:

dθμ = 1
2 cμ

κνθκ ∧
θν , (5.26)

for a unique set of functions cμ
κν on U . If we set:

ωμ
ν = Γμ

κνθκ, (5.27)

in which the functions Γμ
κν are the Ricci rotation coefficients for an anholonomic frame and the Christoffel

symbols for a holonomic frame (i.e., dθμ = 0) then (5.23) takes the local form:

Γμ
κν − Γμ

νκ = −cμ
κν . (5.28)

Hence, for a holonomic frame, one recovers the usual notion that vanishing torsion is equivalent to the
symmetry of the Christoffel symbols in the lower indices.

To make contact with the traditional components Rμ
κλν of the Riemann curvature tensor for the Levi-

Civita connection ω, one must set:

Ωμ
ν = 1

2 Rμ
κλνθκ ∧

θλ. (5.29)

In this form, one sees that the symmetries of the components follow naturally as properties of 2-form
components, elements of so(3;C), and the first Bianchi identity. Notice that one could just as well define
(5.29) globally on SO0(3, 1)(M) by means of the canonical 1-form θμ.

The Ricci curvature tensor is obtained by contracting (5.29) with the local frame field eμ that is reciprocal
to θμ:

Ων = ieμΩμ
ν = Rλνθλ (Rλν = Rμ

μλν) . (5.30)

Hence, in this form the Ricci tensor is a 1-form with values in R4, although it is not necessarily a 4-coframe
field on U unless det(Rλν) is non-zero. The traditional form for the tensor is obtained from:

Ων ⊗ θν = Rλνθλ ⊗ θν . (5.31)

Note that this construction does not involve the metric.
In order to define the scalar curvature R, we must raise the index on Ων by means of gμν and then

contract with eμ:

R = ieμΩμ = Rμ
μ . (5.32)

This means that if we raise the ν index in Ωμ
ν to begin with, we can also say that:

R = i
eμ

∧eν
Ωμν . (5.33)
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The Hodge dual of this 0-form is a 4-form that can be expressed as:

∗R = RV = θμ ∧
θν ∧ ∗Ωμν , (5.34)

which then represents the Einstein-Hilbert Lagrangian for the spacetime metric.
Closely related to this 4-form is the curvature 3-form:

∗Gμ = θν ∧ ∗Ωμν = (Rμν − 1
2 Rgμν) ∗ θνg (5.35)

whose components take the form of the Einstein tensor for gμν , which is characterized by the divergenceless
part of the Ricci curvature tensor. Its dual 1-form Gμ is then coupled to the stress-energy-momentum 1-form
Tμ by way of the Einstein field equations for gμν :

Gμ = 8πκTμ , (5.36)

which are usually expressed in component form as:

Rμν − 1
2 Rgμν = 8πκTμν . (5.37)

6 Levi-Civita connection on the bundle SO(3; C)(Λ)

Although we could use the isomorphism of the bundles SO0(3, 1)(M) and SO(3;C)(Λ) to pull back all of
the aforementioned machinery of general relativity from SO(3, 1)(M) to SO(3;C)(Λ), that would violate
the spirit of the present work, which proposes that one can do general relativity on the bundle SO(3;C)(Λ)
independently of the way that one defines everything on SO0(3, 1)(M).

Now that we have our associated SO(3;C)-principal bundle to Λ2(M), in the form of the bundle
SO(3;C)(Λ) of oriented complex orthonormal frames in its fibers, we can speak of defining an so(3;C)
connection on that bundle. This means defining the infinitesimal parallel translation of any frame Zi in
SO(3;C)(Λ) at any point x ∈ M to the neighboring points of M . Furthermore, since the motions that we
are considering are volume-preserving complex orthogonal transformations, we expect that the infinitesimal
parallel translations must come from the Lie algebra so(3;C).

Since we are dealing with frames we can represent the elements of so(3;C) by traceless anti-symmetric
complex 3 × 3 matrices σi

j , which take the frame Zi to the infinitesimal increment σi
jZ

j , which is, of
course, not necessarily a frame. At the same time, in order to preserve the frame-invariance of a complex
3-vector F = FiZ

i (i.e., a 2-form F = 1
2 Fμνθμ ∧

θν) the components must transform by the transpose of
the transformation. Hence, the Fi must go to −σj

i Fj .
In order to relate the geometry that we define on oriented complex orthogonal frames back to the usual

general relativistic picture one need only use the association of the oriented complex orthonormal 3-frame
Zi with the oriented, time-oriented Lorentzian 4-frame θμ, so that the group SO0(3, 1) gets represented
in A2 and A2. We then associate the 3 × 3 complex matrix σi

k ∈ so(3;C) with the 4 × 4 real matrix
ωμ

ν ∈ so(3, 1), by way of the isomorphism σ that was described above. The matrix ωμ
ν acts on the frame

θμ ∧
θν by way of ωμ

λθλ ∧
θν + θμ ∧

ων
λθλ, and on the components Fμν by way of −ωλ

μFλν − ωλ
ν Fμλ.

Now that we have defined the action of the Lie algebra so(3;C) on the frames of SO(3;C)(Λ), the
components of sections of Λ2(M) and the components of the metric tensor field on Λ2(M), we can introduce
a connection on SO(3;C)(Λ). We shall simply define such a connection by its 1-form. Hence, we now allow
the infinitesimal complex rotation σi

j to vary linearly with the tangent vectors to SO(3;C)(Λ), or locally,
with the tangent vectors to an open subset U ⊂ M over which we have defined a local frame field Zi. That
is, a tangent vector v ∈ Tx(U) is linearly associated with an infinitesimal complex rotation σi

j(v) of the
frames in SO(3;C)x(Λ). One can then represent the 1-form σi

j on U , which takes its values in so(3;C),
by a set of four functions Γi

jμ, μ = 0, . . . , 3, on U that also take their values in so(3;C) by way of:

σi
j = Γ̃i

jμθμ . (6.1)
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Note that in this form it is geometrically absurd to speak of permuting the lower two indices.
When v is the velocity vector field along some curve segment C : [0, 1] → U and Y i(τ) is an oriented

complex orthonormal frame field along C one says that Y i is parallel along C iff:

vY i = ivDY i = σi
j(v)Y j . (6.2)

If we define the covariant differential ∇Y i of the frame field Y i by way of:

∇Y i = DY i − σi
j ⊗ Y j (6.3)

then we can express the condition that Y i be parallel along the curve C more concisely as:

∇vY i ≡ iv∇Y i = 0 . (6.4)

Hence, the covariant differential of a bivector field F = F iYi is given by:

∇F = dF i ⊗ Yi + F i ⊗ ∇Yi = ∇F i ⊗ Yi , (6.5)

with:

∇F i = dF i + σi
jF

j , (6.6)

and the covariant differential of a 2-form F = FiY
i is given by:

∇F = dFi ⊗ Y i + Fi ⊗ ∇Y i = ∇Fi ⊗ Y i , (6.7)

with:

∇Fi = dFi − σi
jF

j . (6.8)

If V is a complex vector space on which SO(3;C) acts linearly – i.e., a representation space for the
group – then we can also define the exterior covariant derivative of a V -valued k-form α on SO(3;C)(Λ)
by the predictable rule:

∇α = dα + σ
∧

α , (6.9)

in which the meaning of the term σ
∧

α will again depend upon the way that SO(3;C)(Λ) acts on V .
For instance, when one takes the exterior covariant derivatives of the canonical 2-form Zi and the

connection 1-form σ itself, one obtains the Cartan structure equations, which serve as the definitions of the
torsion 3-form Ψi (N. B.) and the curvature 2-form Σi

j :

Ψi = ∇Zi = dZi + σi
j

∧
Zi , (6.10a)

Σi
j = ∇σi

j = dσi
j + σi

k
∧

σk
j . (6.10b)

This means that Ψi takes its values in C3 and Σi
j takes its values in so(3;C).

A second application of the exterior covariant derivative to the structure equations gives the Bianchi
identities:

∇Ψi = ∇2Zi = Σi
j

∧
Zi , (6.11a)

∇Σi
j = ∇2σi

j = 0 . (6.11b)
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On the bundle SO(3;C)(Λ), we shall use the complex orthogonal metric γ and the canonical 2-form Zi

instead of the metric g and the canonical 1-form θμ,
To say that the infinitesimal complex rotation that is described by the matrix σi

k must preserve γ is to
say that:

∇̃γij = dγij − σi
kγkj − σi

kγik = 0 . (6.12)

If the frame Zi is complex orthogonal then γij = δij and (6.12) takes the form:

σij + σji = 0 ; (6.13)

i.e., the connection 1-form σi
j must take its values in so(3;C).

The condition that the connection σi
j be torsionless then takes the form:

dZi = −σi
j

∧
Zj . (6.14)

The so(3;C)-connection on SO(3;C)(Λ) that corresponds to the Levi-Civita connection on
SO0(3, 1)(M) is also uniquely defined by the requirement that its torsion vanish:

Ψi = 0 . (6.15)

This makes the corresponding first Bianchi identity take the form:

0 = Σi
j

∧
Zi . (6.16)

We then define the Levi-Civita connection on SO(3;C)(Λ) to be the unique so(3;C) connection that has
a vanishing torsion 3-form.

Now let us see how these conditions relate to the corresponding conditions on the Levi-Civita connection,
as it is usually defined on SO0(3, 1)(M).

Since we have an isomorphism of the bundles SO0(3, 1)(M) and SO(3,C)(Λ), as well as an isomor-
phism of the Lie algebra so(3, 1) with so(3;C), it stands to reason that we should also have an isomorphism
of the affine space of so(3, 1)-connections on SO0(3, 1)(M) with the affine space of so(3;C)-connections
on SO(3,C)(Λ). To exhibit this one-to-one correspondence explicitly, we use the matrices Zi

μν , i = 1, 2, 3,

and their inverses Zμν
i , i = 1, 2, 3, which relate a frame Zi on C3 to a bivector basis eμ

∧ eν , μ < ν by
way of:

Zi = 1
2 Zμν

i eμ
∧ eν . (6.17)

We can then express the isomorphism of so(3, 1) with so(3;C) by way of:

σiμ
jν = Zi

νλZλμ
j , (6.18)

that is:

σi
j = Zi

μλZλν
j ωμ

ν . (6.19)

If ωμ
ν is the 1-form for an so(3, 1)-connection on SO0(3, 1)(M) then one can associate it with a unique

so(3;C)-connection σi
j on SO(3,C)(Λ) by pulling back ωμ

ν to a 1-form on SO(3,C)(Λ) by way of the
bundle isomorphism and mapping the values of ωμ

ν to so(3;C) by way if the Lie algebra isomorphism.
Briefly, in terms of local representatives for both 1-forms, this amounts to regarding equation (6.19) as
involving 1-forms, instead of elements of the Lie algebras.
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The first structure equation for ωμ
ν , namely:

Θμ = ∇θμ = dθμ + ωμ
ν

∧
θμ , (6.20)

can be related to the corresponding structure equation for σi
j by exterior differentiating (4.2), keeping in

mind that the Z-matrices are constant:

dZi = Zi
μνdθμ ∧

θν = Zi
μν(Θμ − ωμ

λθλ) ∧
θν , (6.21)

which gives:

Zi
μνΘμ ∧

θν = dZi + Zi
μνωμ

λθλ ∧
θν = ∇̃Zi . (6.22)

In order to make this consistent with (6.6a), we need only make the identification:

Ψi = Zi
μνΘμ ∧

θν . (6.23)

This makes it clear that the representation of the torsion tensor for σi
j is a set of 3-forms, not a set of 2-forms.

The second structure equation of ω maps to the second structure equation of σ more directly, since
σ can be obtained by pulling back ω by means of the bundle isomorphism between SO0(3, 1)(M) and
SO(3;C)(Λ) and mapping the values of ω to so(3;C) by means of the Lie algebra isomorphism between
so(3, 1) and so(3;C). It helps that both pullbacks and the Lie algebra isomorphism commute with exterior
derivatives.

We can expand the curvature 2-form Σi
j in terms of the canonical 2-form Zi:

Σi
j = Σi

jkZk. (6.24)

If we want to relate this to the corresponding real form of the curvature then we can start with the locally
equivalent expression:

Σi
j = 1

2 Σi
jkZk

μνθμ ∧
θμ. (6.25)

in which we have expanded Zk in terms of real 2-forms, as in (3.51).
If we map so(3;C) to so(3, 1) by the isomorphism σ then we can relate the components Rκ

λμν of the
Riemannian curvature 2-form to those of its complex equivalent by way of:

Rκ
λμν = σjκ

iλ Σi
jkZk

μν . (6.26)

It is often more convenient to regard so(3;C) as a Lie algebra over C3, instead of a matrix Lie algebra.
As mentioned above in section 4, we can then use the same Zi matrices to map a real anti-symmetric 4 × 4
matrix ωμν to a complex 3-vector in so(3;C); in the case of the Riemannian curvature 2-form, one first
lowers the upper index using g. As a result, one can also represent the 2-form Σi

j with only one lower index;
viz., Σi. At the risk of confusion, one can then expand the Σi in terms of the Zi:

Σi = ΣijZ
j = 1

2 ΣijZ
j
μνθμ ∧

θμ . (6.27)

One can then relate the Σij , which are now complex 3 × 3 matrices, to the Rκλμν by way of:

Σij = 1
4 Zκλ

i Zμν
j Rκλμν . (6.28)

We can expand this into:

Σij = (R0i0j − 1
4

εiklεjmnRklmn) +
i

2
εjklR0ikl . (6.29)
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in which all indices range from 1 to 3. This can be expressed in terms of 3 × 3 real matrices:

Σij =

⎡
⎢⎣R0101 R0102 R0103

R0102 R0202 R0203

R0103 R0203 R0303

⎤
⎥⎦ −

⎡
⎢⎣R2323 R2331 R2312

R2331 R3131 R3112

R2312 R3112 R1212

⎤
⎥⎦ + i

⎡
⎢⎣R0123 R0131 R0112

R0131 R0231 R0212

R0121 R0212 R0312

⎤
⎥⎦ . (6.30)

The symmetry of these matrices follows from the basic symmetry of the Riemannian curvature tensor:

Rκλμν = Rμνκλ . (6.31)

Note that there is a conciseness in the way that the matrices in (6.30) represent the independent compo-
nents of the Riemannian curvature tensor. The only redundancy is due to the symmetry of the matrices.

Since the matrix Σij is symmetric, one can either use it to define a second rank tensor on the bundle
SO(3;C)(Λ2) via:

Σ = ΣijZ
i ⊗ Zj (6.32)

or, similarly, another one on C3, if one regards the Zi as a complex 3-frame at a particular point of M . This
second rank tensor is by no means non-degenerate in general, and, in fact, can very well be identically zero.

The group SO(3;C) acts linearly on the components Σij since it also acts on the 3-frames Zi. If
Ai

j ∈ SO(3;C) then the matrix Σij will go to Ak
i Al

jΣkl, which can also be expressed as ATΣA. The
action is reducible since, for one thing, AT = A−1 and the conjugation A−1ΣA will preserve the trace of
Σ. Hence, as a first reduction, one can split Σ into a traceless part and a trace:

Σ = Σ0 + 1
3 Tr(Σ)γ . (6.33)

One finds, in fact:

Tr(Σ) = 1
4 R . (6.34)

This is related to the fact that:

R = [∗(θμ ∧
θν) ∧ Ωμν ](V) = (θμ ∧

θν , Ωμν) . (6.35)

and the scalar product (., .) is the real part of the complex scalar product < ., . >C.
There is a further reduction of the action of SO(3;C) on the vector space of all Σ that derives from the

fact that A is complex so it – or rather its representation as a 6 × 6 real matrix – must commute with ∗.
Hence, A will also take (anti-)self-dual 2-forms to other (anti-)self-dual 2-forms. This follows from the fact
that if:

i ∗ F = ±F (6.36)

then if F ′ = ATFA one must have that:

i ∗ F ′ = i ∗ ATFA = AT(i ∗ F )A = ±ATFA = ±F ′ . (6.37)

Hence, we can decompose the traceless matrix Σ0 into a self-dual part:

E = 1
2 (Σ0 − i ∗ Σ0) (6.38)

and an anti-self-dual part:

C = 1
2 (Σ0 + i ∗ Σ0) . (6.39)
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This is the standard Debever-Penrose decomposition of the Riemannian curvature tensor into the sum
of the Weyl curvature C, the traceless part E of the Ricci curvature tensor, and the scalar curvature R. The
real form of E has the components:

Eμν = Rμν − 1
4 Rgμν , (6.40)

which differs from the Einstein tensor – viz., the divergenceless part of the Ricci tensor – by 1/4Rgμν .
However, the vanishing of E defines an Einstein space in the generalized sense of a Riemannian or pseudo-
Riemannian manifold for which there exists a function α ∈ C(M) such that:

Rμν = αgμν , (6.41)

which includes the cases α = 0, 1/4R, and 1/2R.
Hence, one arrives at the traditional way of expressing the vacuum Einstein field equations in complex

form: the vanishing of the self-dual part of the curvature 2-form Σ. As for the anti-self-dual tensor C, i.e.,
the Weyl tensor, it defines a quadratic form on C3:

C(X,X) = CijX
iXj . (6.42)

The zero hypersurface of this quadratic form defines a quadric surface in C3, and, since its equation is
homogeneous of degree two, a quadric surface in CP2.

We already have another quadric defined in CP2 by way of the complex orthogonal structure:

0 = γ(X,X) = γijX
iXj . (6.43)

The four intersection points of these two quadrics define the basis for the Petrov classification of Weyl
tensors, as described in Debever [2,3]. However, since we have not fundamentally altered anything in that
analysis except to represent CP2 directly in terms of the duality planes in A2 instead of something derived
from projecting the complex vector space of self-dual 2-forms – a space that is also isometric to C3 with
the standard Euclidian structure – we shall not elaborate on the details.

7 Discussion

Although it may seem that the representation of general relativity in terms of the bundle of 2-forms on
spacetime instead of the tangent bundle is reasonably complete, concise, and self-contained, nevertheless,
there are a few topics of a physical nature that also suggest directions of further research if one is to make
the representation truly complete.

For one thing, it is usually only the vacuum Einstein equations that are discussed in the context of
complex relativity. In order to discuss the field equations for gravitation with sources, one must also represent
the energy-momentum-stress tensor in terms of things that are germane to the bundle of 2-forms. Since
the physical concept of energy-momentum is more intrinsically related to tangent vectors and covectors
associated with motion, this would involve a non-trivial resetting of mechanics in general.

This brings us to the second issue: Although we have discussed the complex geometric equivalent of
the Einstein field equations, we have said nothing about what happens to the geodesic equations of motion.
Indeed, one sees that since geodesics relate to the parallel translation of tangent vectors along curves, there
is a fundamental issue associated with how one does something similar with the geometric objects that relate
to the bundle of bivectors and 2-forms in place of the tangent and cotangent bundles. However, it seems
plausible to conjecture that perhaps the type of motion that is intrinsically related to fields of 2-planes is wave
motion, if one assumes that the 2-planes are tangent to the momentary wavefronts, such as the polarization
planes of electromagnetic waves. Conceivably, one might obtain these surfaces as autoparallel surfaces for
a connection that defines the parallel translation of 2-planes, or, equivalently, 2-forms. The motion of the
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momentary wave front could then come about from the parallel translation of the 2-planes along the dual
surfaces that have the dual 2-planes for their tangent planes. This also suggests an immediate dichotomy
between the decomposable 2-forms F such that F

∧ ∗F is non-zero and the ones for which it vanishes.
Since it is the latter class that defines lightlike lines in the tangent spaces, one speculates that the difference
between the two types of 2-forms is one of characteristic versus non-characteristic wave motion. Perhaps
the characteristic wave motion, which is more closely related to the complex structure on Λ2(M) defined
by ∗, represents, in some sense, a “complexification” of geodesic motion from the parallel translation of
real tangent lines along real curves to the parallel translation of complex lines along complex curves.

One of the predictable directions of inquiry in complex relativity that followed the study of self-duality
in Euclidian gauge field theories was the definition and study of gravitational instantons, which would
presumably be analogous, in some sense, to the instanton solutions of the gauge field theories. However,
since the application of self-duality to gauge field theories was, as was pointed out, mostly carried out
in the context of Riemannian manifolds, not surprisingly, the analogous application to gravitation was in
the context of Euclidian quantum gravity. Since Euclidian R4 and Minkowski space both live in the same
complex orthogonal space, presumably what happens in one of them can be “Wick rotated” into the other.
However, there are limits to this logic, since the theory of the Laplace equation is not completely isomorphic
to the theory of the wave equation in all of its aspects, even though one can generalize the Laplace operator
to pseudo-Riemannian manifolds of unspecified signature type. This has, as a consequence, that Hodge
theory is not applicable to Lorentzian manifolds. Nevertheless, since gravitational instantons represent an
important class of solutions to the Einstein equations, the details of how one represents them in the presently
discussed formalism is worth investigating.

Another topic of general relativity that is closely related to the methods of complex relativity is the
method of the Ashtekar variables, which are complex variables that define a phase space for the Hamiltonian
formulation of gravitation as a problem in the time evolution of spatial geometry, or “geometrodynamics.”
Although the definitions of the variables start in the complexification of Minkowski space, it is possible that
they too can be represented in the present framework.
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