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PREFACE

In the present volume, Olivier Costa de Beauregard gives a summidn tbfeory of
special relativity that especially contains some of the original ambiitant results that
he obtained in latter years in the course of his research on the sudnjekcin particular
in his Doctoral Thesis.

The central idea that has guided Costa de Beauregard in his work and in ting edi
of his book has been that of presenting the special theory of relativtsymost general
tensorial form by constantly assuming the Minkowski view of the ueiaes avoiding
“constant-time” slices of that universe as much as possible; dets of event-points in
the universe that are simultaneous in this or that Galilean systdpon operating in
that way, one voluntarily adheres rigorously to the mode of presentationwdmt
adopted originally by Einstein and was then followed by most of hisriksds and
commentators. It is permissible to think that the elegant meth@isstd de Beauregard
cannot replace the usual method for the initiation of the students intoetim rof
relativistic theories, and likewise for their practical usefhysicists. Indeed, it has the
undeniable advantage that it arises directly from Einstein’s original coreides,
which are very deep and fundamental considerations that are attached dicedtig
facts of experience and correspond to the natural attitude of the phygimsobserves
the phenomena that those facts manifest. We would not like to coynpledaddon the
consideration of “simultaneous” points in space-time that would lead one to reaounc
the use of Galilean systems with their proper time that is m@ted by Einstein’s
process of synchronizing clocks and then consequently forbid the use abrémezL
transformation, the notion of Lorentz contraction, the formula for the vedst
composition of velocities, etc. Such renunciations would obscure the floasetheory
that is often difficult and poorly-contrived, and render it far-rengbfrem the intuition of
physicists without being necessary in the slightest. Howewsta@e Beauregard, who
is quite aware of all those questions, has brought considerable fiteskeir study in
order to adopt an attitude that is also intransigent, and the goal that he pussaelyito
prove that upon assuming thetrinsic viewpoint on space-time, one will succeed in
shedding light upon an entire series of important situations that the usual afiode
presentation does not highlight clearly. We cite only this exampleatiti®r insists
upon the fact that one can define integral tensorial quantities that are attaohad
hyper-endcap in space-time and whose value generally varies with then dingser-
endcap and which cannot be expressed by considering the space-time slica that
composed of simultaneous event-points for the same Galilean obseharimportant
remark appreciably clarifies certain problems that have remainey @bscure up to
now, such as the nature of the proper kinetic momentgpia),

Upon “foliating” space-time with the aid of an arbitrary family of spdike
hypersurfaces, Costa de Beauregard arrived at some concepts thadvsedaones that
Schwinger recently introduced into the quantum theory of electromadredtis, and
that alone should suffice to show the fecundity of the viewpoint thetsh@ssumed.

This treatise of Costa de Beauregard, which is very elegant m fond very
penetrating at its basis, harmoniously groups for the great pleasure ahfibvened
reader an entire series of questions, some of which are well-knogadg while others
are known, but all-to-often left in the dark, and finally some questihat he himself has
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explained in his personal research. The latter category notably contams:déw
relativistic definition of force, his considerations regarding fluldattare endowed with
spin, and the relationship between spin and the asymmetry of the inertsart his
relativistic theory of the barycenter, etc. At the end of work, one will also find some
important complements on the hydrodynamics of Eisenhart, Synge, and Liclkreyawi
the symmetric presentation of analytical mechanics and the manner by thideas
that are at the basis for wave mechanics relate to those of refativit

One of the features that make the book of Costa de Beauregard partidrdatied
is the number and degree of interest of the remarks that the authontgreséhe course
of his presentation. Indeed, along the way and at the margins of his arguhehiss
developed, in a very penetrating way, a whole series of reflectiatsdd not fail to
excite interest in all who meditate upon the foundations of the retatithgories. Along
that order of ideas, one should observe, in particular, the paragraphs that acattli
to the measurement of the velocity of light, the effects afivistic contraction in
rotating bodies, the general problem of the relativistic dynamicsstéisys.

In summary:We are in the presence here of a distinguished work of great sdentifi
value that does great honor to its author. By his previous research apdltheation of
this book, Costa de Beauregard is classified today amongst the school of young
theoretical physicists as an entirely eminent and original speciadighe theory of
relativity.

LOUIS DE BROGLIE
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In hisLecons sur les invariants intégraux. Cartan emphasized how interesting that
it can be -even in pre-relativistic mechaniesto treat the problems of fluid mechanics or
the mechanics of systems of points by taking the varfloig molecules or the various
points at non-simultaneous time-points. The formalasd arguments thus acquired great
generality, and some profound relations exhibit that ganherafor example, the one that
relates the two expressiofts p¢ dx. and W dt for elementary action. In fact, when
employed systematically, that way of looking at thing lead one to treat the time
variable in the same manner as the spatial coordinatestcageneralize all of the
differential formulas that were considered previouslytlhy addition of terms irut.
Those forms, and notably Poincardédegral invariants appear (to use the words of
Cartan himself) to be thuncated expression®r differential forms that involve the
space and time variables symmetrically.

However, if Cartan’s very general viewpoint does a gseatice to the theoretical
presentation of classical mechanics then it goes wiitaying that it will be in close
harmony with the profound spirit of the theory of reféy. One of the guiding
principles to which we shall always remain faithful mst book is to write all of the
differential forms in the complete and symmetricnfothat results from the non-
simultaneous consideration of an extended system. a&fie¢hat manner of proceeding
might seem to be a purely-mathematical luxury in tmontext of pre-relativistic
mechanics, it almost imposes itself in relativity du@tecisely the fact that the notion of
simultaneity at a distanceust be essentiallselative. Hence,integrations at constant
time, for example, which can seem quite natural in pre-resiic mechanics, will
certainly seem arbitrary in relativity. That is why dhighout this book we will
systematically replace the families of hyperplanescatstant time that have been
employed in classical physics, each of which is defined bglue oft, with arbitrary

continuous families of hypersurfac€46) that are everywhere spacelike. Each of them,

which is called g@seudo-spaceas characterized uniquely by a value of the real pammet
6, which is calledbseudo-time.Thecomplete differential formghus-introduced present
some supplementary terms with respect to the classisatated formsthat one can
consider to beorrections for non-simultaneity.

If, conforming to the classical custom, one considleestotality of spacat constant
time in any Galilean frame then in relativity that will imply @htwo different Galilean
observers cannot utilize the same three-dimensiotegiation hypersurface. Hence, if
one is given a certain physical quantity that is reppresd by a world-tensor as a density,
then that will amount to saying that practice the integral quantity will not have a
tensorial character. Indeed, the integral tensor imelkfonlyrelative to the integration
hypersurface, so one will then see that different|&aili observers will utilize different
finite tensors to represent that same quantity. Thah ignportant fact to which L. de
Broglie has emphatically directed attention in the g¥danofkinetic momenf125 126.
Meanwhile, we remark that the preceding disagreeabletisitus found to be avoided
for two quantities among all of the important ones, elgnelectric chargeand mass-
impulse. Since electric charge eonservativeits value will be independent of the world
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hyper-endcap that is used in order to calculate in a givpariiybe. Moreoveiin an
infinitely-thin hyper-tube one easily shows that the mass-impulse quadri-veistor
independent of the world-orientation of the hypersectiosicered.

Is it physically obligatory that one must consider alltieé points of space to be
simultaneous in a given Galilean frame? We do not thonk It is indeed true that,
despite the effective existence of simultaneous ssgale can calibrate all clocks easily
in the same Galilean frame with the aid of physicarafgens in such a manner that they
will be synchronous in that frame. However, it is olos that thigpossibleoperation is
anarbitrary operation whose only merit is to preserve the custfrtise old thinkers in a
completely “relative” manner. Conversely, must onkele that the choice of one of our

families £ (6) will unduly specialize the way that one frames sgaoe? We expect not.
The choice of¢ (6 is doubly arbitrary, from the form &, on the one hand, and the
manner by whicl@is graduated, on the other. We demand only:

1. The everywhere-spatial character of eéch

2. The continual and total sweeping-out of the universenvthacreases from <o
to + 0.

Other than that, the choice of the family&(6) is totally free. In fact, we need only
the (purely abstract) existence of a fandlyfé) in order to give a general form to the

equations that we write. Finally, our familigs(6) are just agelative and just as

arbitrary as a Galilean frame. Their only merit consistshaf tact that they give the
integral laws a symmetric form in the relativistinse. A well-defined Galilean observer
who has been led to think in terms of famili&é&d), instead of simultaneity at a distance,
will expand his way of thinking, since the various pointsanfextended system that he
consideredat the same timewill no longer besimultaneous That observer can
materialize his reference system, as well as befoyrenaking points out of the clocks
that are graduated alorgy He will always know how to pass from the generagleage
“in @ to the classical language “tti' since the relationship betweéhandt that is given
by the formula@= 6(x, y, z t) is bijective at each poinky, 2) in his proper space.

The systematic adoption of the preceding viewpoint redult in a very important
consequencdf it is always understood that the definition of the integral — fomite” —

guantities is a function of the integration hypersurfatgor, if one prefers, it is

“relative” to &) then any density quantity will be associated with by a tensor that is found

to be associated with one or more quantities that are each represente@itisoa One
can even further specify: Since the three-dimensimtedration elementdix’ dxX dx] in

the four-dimensional universe is the dual of an infinitedi quadri-vector that we
regularly denote byc du , we will see thathe finite tensors that are associated with a
density tensor of rank n will have rank#1, according to whether the definition of
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integral tensor does or does not include a contragtiesp.(}). Two notorious examples
of that general situation deal with electric charge,na oase, and mass-impulse, in the
other. Charge-current densityis a quadri-vector, but charggis an invariant. Mass-
impulse density is a second-rank tensdr but mass-impulse is a quadri-vecpot As
another example, we cite the kinetic moment — whethgital or proper — whose density
is a third-rank tensog™ that is antisymmetric in at leasandj, but whose finite form is
a second-rank tensol27], if one takes the preceding remarks into account. e n
application of that rule is concerned with force: Weoasge the classicdbrce-power
densityquadri-vectorf' with a second-tensdt"” in order to represent the finite force. We
have justified that definition by means of two arguragnine of which was mechanical,
and the other of which was electromagnefieq 108, and those arguments will be
reproduced in the present text, in substance.

Along a neighboring train of thought, one poses the pnolé¢ the variance of
temperature, but with the prior complication of neediogdiscuss the variance of the
guantity of heat. Temperature is not a quantity that oneassociate with a density, but
the classical definition of entropy:

_oQ
T

is a differential form in which the variance of the théQ is fixed in advance. Moreover,
entropy, as a pure number and the logarithm of an integeber, is certainly an
invariant. As a result of some papers on the subjeéifstein and PlancklB7, 139,

all of the old treatises have refused to give relatovigmperature both invariance and
tensorial varianced] 88 3& andb; see alsdl43. Those classical rules of variance of
temperature are obtained without the least difficblgycalculating the elementary heat
A in two different Galilean framest constant time and by starting with the proper heat
density @ . On the contrary, in an entire series of modernkboand papers, the
relativistic temperature appears with a covariant teascmaracter. Its inverse is defined
by either the fourth component of a quadri-vedbor as an invariang [140, 141, pp.
676 and pp., 693,42 pp. 922,143. Now, that double result will become obvious when
one reestablishes treomplete formof the differential expression, and if one appeals,
according to the nature of the problem being treated,equhldri-vectorial quantity of
heat which is homogeneous to an energy-impulse, and whiasssciated with Van
Dantzig and Bergmann’s quadri-vec®, or even thecalar quantity of headQ,, which

is homogeneous to a proper energy, and which is asstaidth Tolman and Eckart’'s
scalar@ . If V' denotes the quadri-velocity of the material medium themelation:

. 1
eI: VIE VI
% T

0

will be imposed in a manner that is not absolutawnstricting, but will generally be
reasonablel43.

() True, if the three-dimensional volume is taken in trenf[dx’ dX‘ dX] then one will easily see that
the ranksn + 3 of the finite tensor will be added to the indicatetksan + 1. However, that remark does
not seem to necessarily lead to any interesting palyapplications.
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Our presentation of the theory of special relatiatd those of kinematics and the
optics of the vacuum in relativity, which are coupled thgein essence and by tradition,
appears in Chapter Il. Faithful to our rules of conductestablish the formulas for the
change of Galilean frame in the four-dimensional fortnicl is literally immediate once
one has acquired certain mathematical facts thaassembled in Chapter I, 8 B. We
make no pretense of originality in that part of the b@okwe shall always reason in four-
dimensional form and then recover only the expresdmmthe laws of relativity in their
usual forms. Given the spirit that animates our warkChapter Il, 8 C, we have very
explicitly gathered some general facts of the relstivikinematics of continuous media
and some considerations on differential forms. Ii@#ar, one will note that the notion
of proper or scalar volume elemewill be defined as a quadri-flux:

w= [

which can be of service in regard to some questionsjraedme special cases will
permit one to associate any density with a finite tengohe same rank. For example, it
perfectly justifies the notion offanite forcequadri-vector that is orthogonal to the world-
trajectory, which certain authors have used in the oase material pointZ, pp. 115-
116].

Chapter Ill is dedicated to relativistic electromagsmatialthough it is very classical
to begin with. In § C, we will give our new definition e finite force as a second-rank
tensorF’. That will come about by arguing directly by imitatitlge argument that
establishes the quadri-vectorial character of the fornsityein a manner that is currently
classical. Passing to the case of conduction, wielveih give a covariant form to certain
known results that make contact with Joule heat iativély, and infer a general
conclusion from them that is of interest in some tjoes of the creation or annihilation
of heat, energy, and mass. In 8 D, a very brief amectdargument will give us the
asymmetric expression for the elastic tensor of thevid-Minkowski field [99, 100, 1]
that we absolutely prefer to the symmetric forms (Whidfer from each other) that were
proposed by Einsteirlp5 and Abraham03 104, since it is the one that is suggested
naturally by calculation, and it is in harmony with tieion of spin density for the field.
We shall establish two electromagnetic spin densitiaswere discovered by E. Henriot
[107] with our approach to things by attaching them to the d&fmitof another
asymmetric elastic tensor of the field that we comedén [LOS].

Chapter 1V, which is the most voluminous of the bookdaslicated to relativistic
dynamics. Very special care has been afforded to tthectien of relativistic dynamics
in a classical spirit by starting with the laws ofde that electromagnetism teaches us.
Indeed, we believe that any autonomous, theoretical basielativistic dynamics will
be arbitrarya priori, for the very simple reason that before Einsteinhmas ignored
the role that is played by the universal constaim its proper domain. Once that is
known, only two methods for founding relativistic dynamiadl remain: The inductive
method, which must be founded on any sort of experimeatsranifest the role af in
dynamics, such as those of Guye-Lavanchy on the iariaft mass109 110, 111, 117,
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those of Davisson-Germer on the relationship betwesssrand frequency$4], or even
better, for the generality and symmetry of their argusjethe ones on nuclear
bookkeeping that the show the universal proportionalitywé&en energy and maskly,
115. In that way, the laws of relativistic dynamicdivae founded upon a method that is
entirely analogous to the one that was followed belyé&alileo. Following Einstein
himself, and with the goal of didactic elegance, we heéerred the deductive method,
which we believe that one is obligated to follow in &emagnetism. In the course of
that deduction, we shall show that the maximum econonaneé’s postulates is obtained
when one argues in the language of continuous media bngtanth a less-known, but
very general, form that one can give to the fundaaidaws of fluid mechanic#4[ 8§ 28
b]. The rebuttal will be given later on in the deductadpoint dynamics. We show that
a supplementary postulate will be required if one wouldl ik base relativistic dynamics
in terms of a material point. Our 8§ A also contains aegaization of the theory of
volume forces, as well as an explicit theory of theee of surface origin that is based
upon our covariant definition of the finite force.

8 B will treat the theories of spin and viscosity tbget and initially in terms of
continuous media. Of course, they are physically gligenct, since one of them, which
is macroscopically unknown, is taken into consideratinly as a result of the demands
of quantum physics, and the other one appears to have amiabs statistical and
microscopically-evanescent sense, but those two qussti@mve an uncontestable
mathematical parentage. It is for precisely thataedbat we have treated them in the
same paragraph. For several years now, we havedribateroblem of the relativity of
spin when it is posed in terms of continuous media, @d®esome authors abroad have
generally attacked the same problem in terms of matgoimits [L21, 122 123 132
134. Meanwhile, some work that has many common poihtoatact with our own —
namely, that of Weyssenhoff and Raabe — came aboummsathe same epoch and
completely independent of our own wod3[3.

8 C is dedicated to the unsolved problem of the reliiviiynamics of systems &f
interacting points. There, we shall first point ou thhean technique for defining the
barycenter in a covariant manner that we proposeadtigdé35. We then show that a
relativistic formulation of the general theorems ohamics will be possible, provided
that one takes into account sometential phenomena that occur in the field of
interaction. As a result of those simple calcoladi we think that we should then
conclude that the true problem of the relativistic dyrsnoif systems is a field problem
[134; i.e., a problem of partial differential equations.

8 D is concerned with relativistic thermodynamics. \hall treat only some
guestions of principle, and above all, the question ofvdreance of temperature. Two
very simple applications will be given by way of illegion, one of which bears upon
Fourier's law of conduction, while the other one beapon the law of adiabatic
compression of a perfect gd?B pp. 199-200].

Our Chapter V is further dedicated to dynamics, and esfyr¢o our presentation of
three special topics. First, to a very ingenious nait generalization of the theory of
vortices in inviscid fluids that is due, in principle,$gnge 149, 150, and into which A.
Lichnerowicz has introduced the beautiful neatness othbery of integral invariants
[151, 152. It is obvious that we should present that theoryemms of special relativity.
To conclude, we will show that Lichnerowicz’s “defioii B” of an incompressible fluid
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[153, which is more restrictive than Synge’s hypothesis stituries the true relativistic
extension of the notion gerfect fluid in which the pseudo-velocity field is derived from
a double potential of source/sinks and vortex filamergswell as a potential of the
potential that generalizes that of Poincat2g pp. 203-204]. In 8 B, we once more
present our completely-symmetric presentation of thely@ral mechanics of the
material point, in which thevorld-forceis assumed to be derived from a quadri-potential,
as in electromagnetisrB,[IV].

Finally, 8 C presents Louis de Broglie’s famous initiehve mechanic$163
systematically in four-dimensional terms, which iseatment of light in microphysics,
and in order to begin it, one must recall everything ifhabncerned with the relationship
between the theories of relativity and quanta. We catmok of a better way to
conclude a treatise @pecial relativitythen to embark upon one of the major problems in
physics today.

We do not pretend to have exhausted the true or virtudgkwb of the theory of
special relativity with the preceding subjects. We hadentarily limited ourselves to
the questions that we have personally pondered. For éxawg see quite well that the
developments of elasticity or thermodynamics wouldehteir place, and it seems to us
that our covariant definition of the finite force mygermit one to revive the former
subject. Despite everything, we think that we have sait wshessential, and we hope
that we have provided a tool that will be useful in evenghihat is of interest in
relativity, whether in its own right or as an intedray in the study of the problems of
either astrophysics or microphysics.

We have directed the preceding remarks to readersréhairaady familiar with the
theory so that we could present the reasons that daveuraged us to add several
excellent treatises or synthetic articles to our mbdesk. Now, we would like to say a
few words to the novice reader, for whom our book i® atéended, to our way of
thinking.

We have constantly sought to be very clear, and asdhee time, to present the
guestions in a truly relativistic context, which is tbéta systematic symmetrization of
space and time. Rather than making long speeches, wetwdoandly desired to know
the spirit of relativity, and at the same time, to even shogvuhique means for seeing
things absolutely clearly in its questions, which is treaffour-dimensional thinking.

Today, more than 40 years after its formulation, speeiativity is no longer a
difficult theory, technically speaking. Nonethelesse must think that certain points are
still misunderstood, judging by the nature of certain olgestithat are occasionally
formulated. Along with the aforementioned caveats,haee then had to precede our
exposition with a long and detailed introduction, while pdong the reader with some
pure contingencies, moreover; we hope that we have tiven ghem some useful
clarifications.

8 B of the first chapter contains a simple presentadibthe required mathematical
notions. Principally, they are the definition of terssam oblique, rectilinear axes in
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pseudo-Euclidian spaces and the establishment of the Yefoeraula for the
transformation of multiple integrals.

In the entire course of this book, with rare exceptitims same letters will denote the
same physical quantities. The bold numbers between bsaaer to the bibliographic
index. The chapters and the equations inside of eacle divehchapters are numbered.
The chapter number will be a Roman numeral. In génemashall omit that numeral
prefix in the references that are internal to a giveapter, and enclose references to
equations in other chapters in square brackets, along witthdépter number.

In the entire course of the boakj, k, | will denote ararbitrary permutation of the
world-tensorial indices 1, 2, 3, 44, v, w will denote acircular permutation of the spatial
indices 1, 2, 3, so the world-indices will thenlye, w, 4.
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FIRST CHAPTER

INTRODUCTION

I.1. — Sub-chapter A of the present chapter will pref@nepistemological history of
Newton’s and Einstein’grinciples of relativity We have sought to give it brevity and
clarity. However, we have insisted upon some points whogortance has been
revealed to us in our discussion with certain adversafiedativity.

At the heads of the last chapters, the novice readeérfimd some indications
regarding the manner by which the conversion of the branchegsysics in those
chapters into four-dimensional geometry will be treated.

In sub-chapter B, we have compiled some of the maitieah ideas that are
necessary for understanding the rest of the book. Simcentend to always refer
everything to Minkowski space with orthogonal axes of équeasure, we shall have no
need to summarize either the theory or the ruleseofimeral tensor calculus. We shall
give a very simplified, but quite complete, presentatd the notion of tensor and the
rules of tensorial calculus in planar spaces that deeree to rectilinear axes of constant
measure. In order to do that, we shall not at ak $e argue in an axiomatic manner, but
we shall largely appeal to the reader’s intuition in ore extrapolate the results of
ordinary geometry to the-dimensional case. The knowledge that is required in that
paragraph is summarized in combinatorial analysis, theréheof determinants and
linear equations, and the elementary theory of multipégrals.

A. —THE SUCCESSIVE STATEMENTS OF NEWTON’S AND EINSTEIN'S
PRINCIPLES OF RELATIVITY.

I.2. — The *“principle of relativity” in Galilean-Newtonian kinematic s and
dynamics. — One knows that Newton thought that he could basekittematics and
dynamics that are calledassical or Newtoniantoday upon the principle adbsolute
space;that was a purely verbal statement. Phiaciples of relativitythat are valid in
those two respective branchesational mechanicsare, in fact, much broader.

Classical kinematics is subject to what one caksptinciple of relative motion.In
order to understand that principle, one must remembercthsgical kinematics utilizes
the notions of a (three-dimensional) Euclidean s@acka “universal” time. On the one
hand, the theorems of Euclidian geometry are invaniatht respect to the group of rigid
displacements. On the other hand, plestulate of a universal timsignifies that the
framing of an event in time can be done independentlgeofriotion of the (rigid) system
of reference. Finally, the changes of the spatiabbésx” (u = 1, 2, 3) and the time
that respect thprinciple of relative motiortnave the form:

(1.1) XY =x"(x, x, x", 1) t'=t’(t),

in which it is assumed that the transformation. X' essentially leaves the expressions
for the spatial distances or their squares invariant:
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(1.2) D A= A

One sometimes says that this essential autonompawfesthat is respected by the
principle of relative motiorforms aprinciple of absolute spaceOne should be careful,
since this new sense is quite different from the orlgsense, which postulated the
existence of privileged framein space. Be that as it may, in the original seaseayell
as in the derived sense that was just mentionedprtheiple of absolute spaceill be
rejected by relativity, as well as thatwfiversal time.

Before Einstein, one considered tpenciple of relative motionin kinematics as
having been verified quite well by experiments. Einsteirealed that this was only an
approximate truth. The new kinematics that he promoteahaess only aprinciple of
relativity in the large, namely, the one that one knows alrefndgn Newtonian
mechanics.

Theprinciple of relativityis presented in detail in all treatises. It willukdrom this
that the fundamental formuka= m yof point dynamics is a characteristic invariant of the
group of uniform translations (extended in the classieake) of the referencg t; i.e.,
transformations of the form:

(1.3) XY =x'—v"'t, t’=t— const.

Those transformations leave the accelerations imvariand one will assume, as a
postulate, that the masses and the forces are atséomaed as invariants.

Physically, Newtonian dynamics must then restrict cmmably theprinciple of
relative motionthat Newtonian kinematics assumes. The acceleradasfdrmations or
rotations (which are both uniform) of reference frarfwekich are assumed to be rigid)
becomeabsolute. As one knows, experiments have verified that dedudtyoexhibiting
the appearance of ordinary or Coriolis forces of iagdnd consequently permitting the
effective determination of the group Galilean frames The laws of dynamics will be
formulated in arequivalently privilegednanner relative to that group of frames, which
are all in uniform translation with respect to eacleath

[.3. — Absolute space and the ether from Arago (1818) to Michelson-May
(1887). The “ether wind” is hidden from optical experimemation. — The only domain
in classical theoretical science in which Newtoasolute spacés anything but a pipe
dream is in optical (or electromagnetic) kinematicsdekd, consider a monochromatic

point source that emits isotropic waves of spe@ta certain Galilean framg& . From

classical ideas, in any other Galilean fraghehe speed of the waves will no longer be
isotropic, but will have values that are found betweenv = c (1 = £); v denotes the
relative velocity ofG andGp, which is assumed to be less tliamand we have sgf=v /

c. In a less elementary manner, one can insure tead’#lembert equation or those of
Maxwell or Lorentz are not invariant under Galilean sfarmations. It follows naturally
from this that in the classical theory, optical aceromagnetic experimentation seems to

be capable of characterizing the hypothetical absoluteirfpmf space that is further
calledabsolute space.
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One knows that the great legislators of optics andtrelmagnetism Fresnel,
Maxwell, and Lorentz supposed the existence of a medfysmopagation for waves that
they more or less (and in fact, less and less) assumée elastic waves. From the
definition itself of amedium of propagatigrnthe speed of the waves will be isotropic.
That hypotheticalether will then be quite naturally identified with the hypatibel
absolute space.One then sees that classical science, by the wecg bf things, had to
identify a kinematical notion with an optical one, vehiEinstein’s relativity would
condemn both of them together. That was like a cdistiay premonition of the close
kinship that relativity would establish between kinensaéind optics.

In optics, the most direct effects of the motiorsofirces and receivers are aberration
(1728) and the Doppler effect (1842). They are effectgsifdrder in the velocities, and
the classical theory, which assumes the ether, iegplaem easily. The important point
is thatthe first-order terms involve only the relative velocity ofsbarce-observer.The
absolute velocities, which exhibit what they called #teer wind in the time of
Michelson, appear only to second ordegire v/ c. Up to a very recent date (lves and
Stilwell, 1941), the second order fhremained beyond the reach of experiments in that
domain.

From the classical ideas, tkéher windfurther intervened to first order by altering
the velocity of light that progresses along a rigidebadowever, that amounts to a totally
abstract viewpoint, so no apparatus could allow one tothestexperimentally. For
example, one might wish to measure the time duratidneolight trajectory along a rigid
baseAB. In order to synchronize the chronometeré andB, no procedure will be any
better than an exchange of optical (or Hertzian) siggmetweenA and B. That is
ultimately equivalent to measuring the time duration eftifajectory along a round trip
of the base, and that is practically what one does anctassical methods of Fizeau,
Foucault, and Karolus-Mittelstaedt. Any effect of g#ther windwill then disappear to
first order ing, which is the only one that can be experimentallgiadd.

In order to measure the speed of light on a one-w@ctoay, one can appeal to the
two closely-related phenomena of the Doppler effact aberration, and in fact that is
how the first evaluations of the constanivere obtained. Indeed, RGmer’s observation
(1676) was mathematically equivalent to the observatidheoDoppler effect, in which
the frequency of emission of a wave train was replacih the frequency of occultation
of the satellites of Jupiter. The second evaluationveds that of Bradley (1728). In the
two cases, any effect of a hypothetical ether wind bl@avs parallel to the plane of the
ecliptic would disappear to first order  in such a way thathe two phenomena
considered will indeed provide evaluations of the constant ¢, and none ohthatewns
of ¢ augmented or diminished the hypothetical ether wikide also remark that the
preceding methods of evaluation ®flong a one-way trajectory of light succeed only
because of the fact that the receiver — namely, Eagbccessively occupies different
Galilean frames (in fact, an infinitude of them, but twitl suffice, in principle). The
relative velocities of those various Galilean framesst be known directly.

However, there is a domain in which thiher windseems to be manifested to first
order a priori, from classical ideas: It is the domain of experiteethat involve
transmission in a transparent medium, such as glasater. Indeed, if the hypothetical
etheris not carried along by the material medium in questiailaor completely, then a
first-order effect will manifest itself — for examplen the observed aberration that is
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observed with a lunette that is filled with waterd aiso in the deviation that is due to a
prism. Nothing of the sort has been observed. Notabdy,sdtond experiment was
attempted by Arago in 1818, and repeated in 1872 in a refined wayabyak, and with
a perfectly “negative” result. In 1818, Fresnel showed tti@atmecessary and sufficient
condition for annulling thesther windto first order (which was Arago’s experimental
result) was that one must assumeaatial dragging of the ether by the matter in the
prismaccording to the well-known formula:

(1.4) c = Eiv(l—izj.
n n

Throughout the XIX Century, Babinet, Fizeau, Angstrém, Hoek, and Mesc
accumulated experiments that were equivalent tgptheeding ones, in principle. The
results were consistently “negative,” but with theeption of a series of experiments by
Fizeau on the rotation of the plane of polarizatioma block of ice. However, that same
experiment, which was repeated in a much more ggeoanner in 1905 by Brace and in
1907 by Strasser, gave perfectly “negative” redodt times. Among the experiments
in question, special mention must be made of thesoby which Fizeau (1851),
Michelson (1886), and Zeeman (1914) verified Frésndragging formula in a
completely direct way.

As a result of all those experiments, and notahly ones that he himself had
performed, Mascart was convinced that the optieatch forabsolute spacenust be in
vain. The group of Galilean frames must enjoyshameprivileged equivalence optics
that one knows from dynamics. In purely qualitatberms, that is what one would
anticipate from Einstein’s thesis. In the same @®73-1874), Veltmann, and then
Potier, brought into plain view the general reshéit was implied by Fresnel's formula,
and which Stokes has pointed out alrealsesnel’'s law of dragging of the ether is
equivalent to the unconditional annulling of anfeet of an “ether wind” to first order.
A little bit later, Lorentz extended that theoraticesult to all of electromagnetism. The
first campaign in the search for an “ether windatthvas inaugurated by Arago then
arrived at a totally “negative” result.

The second campaign opened with the celebratedndemrder experiments of
Michelson (1881), and then Michelson-Morley (1887Dnce again, the result was
absolutely “negative.” This time, the theory caenetd with an appropriate formula that
translated into a convenient and universal efféth® supposed “ether wind.” It was the
formula for thecontraction of length by the ether wiadcording to law:

(1.5) | =1,41-5°,

which was proposed by Fitzgerald (1893) and Lordh&95). Epistemologically, the
Fitzgerald-Lorentz hypothesis has the same veryegdafect as the older hypothesis of
Fresnel:At the same time, it asserts the existence of ttier @nd the impossibility of
proving that fact experimentally.

Moreover, the theory does not stop with that: Witientz and Poincaré, it adds the
hypothesis of groper time for each Galilean frame to the preceding ofénally, it
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writes the formula for the change of Galilean frami the aid of the group of formulas
that is becoming celebrated:

(1.6) o= XVt t,:t—vx/c2

which agrees with the Galilei formulas, to an appration that is first-order in 1 ¢.
Einstein’s theory of relativity consists essenyiadif the adequate interpretation of the
preceding formulas.

Michelson’s experiment was repeated by variouhiast and generally with its
totally “negative” result. Meanwhile, Miller's egpiments seemed to reveal an “ether
wind” of 4 or 5 km/s, which is much smaller thar thne that was initially sought, and
varies according to different laws, as well. Hoesmvit does not seem that those
experiments should be retained, since newer ané pracise experiments, one of which
was due to Kennedy and lllingsworth (1927), andatier of which, to Joos (1930), gave
totally negative results. From the latter expentsethe “ether wind” will be less than 1
or 1.5 km/s (the value of the experimental impriecls while the speed of the Earth in its
orbit is of order 30 km/s.

Along with the second-order experiments of Micbhaldype, one must cite the
electromagnetic experiments of Trouton-Noble typ80@) and Trouton-Rankine type
(1908). Those experiments have also been renovatestably by Chase (1927) and
Tomashek (1925-1927). Their results, whose pratisould reach 4 or 5 km/s, were
always negative.

Naturally, the concept was calling into questiba éxperiments on the optical effects
of rotations. There as well, the effect that wesdgcted by the classical theory was of
first order ing, and experiments verified it precisely (Harre®%12, Sagnac, 1913). It
then asserted that rotations haveadsolutecharacter, in optics, as well as dynamics.
The Michelson-Gale experiment (1925, which was f@sgise, moreover), in which the
Earth was taken to be a rotating rigid body, isttlue optical analogue of the Foucault
pendulum experiment.

I.4. —Einstein’s relativity postulate. —

A. — For Einstein, as well as for Mascart and Paig before him, the qualitative
lesson of all the experimentation that was caroetdin kinematical optics from Arago to
Michelson-Morley was thisThe law of privileged equivalence of Galilean frann not
just aprinciple of relativity that is intrinsic to dynamics, it is a principlé elativity that
is universal to all physics.In particular, theprinciple of relative motiorof classical
mechanical kinematics and tpestulate of absolute spac# ether of classical optical
kinematics are both false; the one, in the verydaand the other, in the very small.

Here, we must respond to a group of objectionsnapaelativity a priori that are
often posed by the practitionersrafional mechanics.

For them, true kinematics must be an integral parational mechanics. They stress
that one claims to be overhauling kinematics inrthme of the laws that were discovered
by optics. But, in reality, kinematics is not asjal case of mechanics; on the contrary,
it is the general context in which all physicsnsdribed. By virtue of an uncontestable
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epistemological view of Duhem, it is not at all exclu@egriori then that experimental
progress in any chapter of physics should retroactivejyose a refining of the most
“primary” postulates of science: namely, those of kiagotype.

The objectors in question then ask: “Why give prefereiceptics in a conflict
between traditional mechanics and optics?” First, byeidf its uncontestable precision.
The proof of a universal acknowledgement of the superioligmwadn optics — or, what
amounts to the same thing, electromagnetism — is providplicitly by the two facts
that as of today, all high-precision metrology is sdbmate to the spatial standard that is
defined by light, and all high-precision chronometry ibadinate to the Hertzian time
standard. However, there is more: It is not just ®yequaled precision that the science
of waves naturally dominates geometry and kinematicsbécduse of the fact thatig
really the most geometrical and the most kinematicahefphysical sciences. If one
leaves aside the ancillary questions of intensity theit® essentially treats length (viz.,
wave length time (viz.,period), and pure numbers (viphase.

Moreover, the final deciding point in this controversyrovided by the formulation
of wave mechanicslt is no longer just kinematics, but dynamics, tkadubordinate to
the science of waves. A synthesis of the kinemaifcpoints and the kinematics of
waves is found within the context of relativity. Optias is the will oflvave mechanigs
is nothing but the wave mechanics of gieton which is a corpuscle whose very small
physical mass is physically indiscernible. It is sol®ivirtue of that particular fact that
the physical speed of light — viz., the group velocity efghoton— is indiscernible from
the universal constaet In truth, the constamtis not at all special to optics; it belongs to
all physics. One simply arrives at the fact thatrfrthe fact of the vanishing mass of the
photon the dynamics of the photon sublimates, so to sp&akhe state of pure
kinematics.

In anticipation of what follows to some extentoosh are the reasons of an
epistemological order that oppose the objection ditimal mechanicians, and which
justify Einstein for having identified kinematics and ogtit a way.

B. — For Einstein, the law of privileged equivalence of Gahldrames in the optics
of the vacuum translates thuhe speed of light not onlseems isotropic in every
Galilean frame, iisisotropic. In opposition to the epistemological frailty ogtbriginal
hypotheses of Fresnel and Fitzgerald-Lorentz, Einsteie\s hypothesis adequately
translates the homogeneity that stands out in the iexgets into a theoretical statement.

At this point in the presentation, it is important xamine closely the significance of
the Michelson-Morley experiment, in order to see astirdjuish the conclusions that it
imposedanore clearly, along with the postulates thaeitmits.

The net resultof the Michelson-Morley experiment is thiBhe round-trip speed of
the optical phase is isotropiand consequently in independent of divection of the so-
calledether wind. Two questions seem to have been left in suspenseaheémne must
demand to know the circumstances under which it is peiblade ask:

1. Might the round-trip phase velocity be a functiontlod absolute valueof the
ether wind?

2. Might the phase velocity of @e-way tripbe a function of thelirection of the
ether wind?
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We remark that it is easy to translate those twatipes into the language of wave
length. First of all, th@et resultof the Michelson-Morley experiment can be formulated
equivalently in the following formThe number of stationary waves that are carried by a
given material yardstick and emitted from a monochromatic source ghett rest with
respect to that yardstick is isotropi¢Jnder those conditions, is it permissible to demand
to know (and then, under what conditions):

1. Whether that number can be a function ofahsolute valuef the hypothetical
ether wind?

2. Whether th@umberof waves that propagatdong the yardstick and issue from a
source that is coupled with it can be a function efdinection of the hypotheticagéther
wind?

We first address the former question. When posednmstef theether wind one can
hardly see how it could make any intelligent sense, Usecdhe Michelson-Morley
experiment showed precisely that if there isstirer windthen its physical behavior will
differ radically from the properties that a truénd of true ether would have. Under
those conditions, it is not indicated that one shaokitinue to appeal to words that evoke
inexact images, and one agrees to pose the first guastione or the other of the
following direct forms:Is the number of stationary waves of a well-defined physical
radiation that are carried by a given yardstick subject to secular varnia? Or evenis
the round-trip speed of the optical phase subject to secular variations when
evaluated with the aid of a material standard of length and a standard ofttahes tthe
period of the source utilized?

Before returning to that interesting first questiontt@elibit later, we shall pass on to
an examination of the second one.

Experimentally speakingt would seem that there i sensen demanding that the
speed of light must have a given value along a one-way tr

It results clearly from what was said in the precgdmo. that the process of
measuring the speed of light along a one-way traje¢tanich one can, in principle, base
upon the Bradley effect, or what is equivalent tohg Romer and Doppler effects) can
no longer be provided by processes that utilize hypothetistlorder round-trip effects
of the ether wind. Similarly, no process can permit one to enumeratenumber of
propagating waves that are carried by a given materiat hyl taking into account the
classical hypothetical effect of the ether wind. Eeample, if one places a source at the
extremityA of the ruler and receives its waves with a grid teatlaced at the extremity
B then the Doppler effect for emission will be compeéedady a second Doppler effect
for reception, in such a way that the apparatus will g@vhe number of waves that are
carried by the ruler in the absence of an ether windl,nathing more. That experiment
with a source-grid that is fixed in the laboratory is time that Angstrom and Mascart
performed. Finally, to address the Michelson-Morleyegkpent, one cannot learn more
from the consideration of one-way trajectories thare @an from real round-trip
trajectories.

C. — As a result of theegative resulbf the Michelson-Morley experiment, Einstein
formulated thefundamental postulatef his new kinematics in the following forrithe
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speed of light in vacuo c is an absolute constafie shall show (as an application of the
Duhem’s epistemological viewpoint) thtétat postulate is not properly imposed by the
Michelson-Morley experiment, it is the Michelson-Morley expemimthat makes it
possible and suggests i¥We will then show (and this will be an applicatidriPoincaré’s
epistemological viewpoint) th&instein’s postulate is equivalent to a definition, namely,
the “universal” attachment of a standard of time to a standard of length.

We refer to the interferential experiments by whicichdlson-Benoit, Benoit-Pérot-
Fabry, and then some other authors, have referrestanelard meter to the wave length
of the red line in cadmium. It is clear that if thaterial lengths and optical wave lengths
are not unconditionally common to each other in campa to the assumezther wind-
which is the net result of experiments of Michelsonrlelp type — then the metrological
comparisons in question can have no sense at all. Theyhbauatcompanied by a
determination of the direction and speed ofeteer wind which is not the case, in fact
(*). The negative result of the experiments of Michelson-Morley typeafigears to be a
necessary condition for the substitution of the optical standard of lengthdonaterial
standard.

Now, the red line of cadmium (or any other well-defiied) () was chosen to be
the standard of length (by way of its wave length), lsipériod can just as well be a
standard of time, in principle. It is clear that make an optical line the standard of
length, as well as time, is equivalent to assuming that the speedaissolute constant
(®). We have then established the two points that wer@sl, and they are closely
connected.

What would happen if the experimental evaluations ofgpeed of light were to
reveal a secular variation of that so-called absalotestant? That is a question that is
not absolutely Platonic, and several authors — the emstent of whom is Esclangon —
have raised it effectively’. From the preceding argument, and contrary to whaes
have suggested, it is clear that the eventuality coresideill affect nothing in the theory
of relativity. Einstein’s postulate rests upon the expenital fact ofsotropy, and upon it
alone. It then makesan absolute constarty definition. Let o1 denote the ratio of the
standard meter to the wave length of a certain welihddfmonochromatic line then, and
let o, denote the ratio of the sidereal second to the peffiddeosame line. Assuming
that the experimental value ofis subject to secular variations is equivalent to ragsy
that at least one of the ratigs or 0, is subject to secular variations. That question is
entirely independent of the question of the foundatiorspetial relativity.

() The optical method permits one to detect relativéatians of the material lengths of order 0
From classical ideas, it will then permit one to detatues of thesther windof order 50 km/s, which is a
degree precision that is quite inferior to that of expemisef Michelson-Morley type. The question of the
principle that was formulated in the text will then conérto exist.

() The use of the green line of an isotope of mercury aéro nuclear spin has recently been proposed.
One knows that such lines are particularly finep#ikr things being equal, moreover.

() In the present state of science, one does not kroowto get the period of an optical line directly.
By contrast, in the centimeter and millimeter Hemtzdomain, certain molecular lines can be compared to
the astronomical second directly. It has already Ipeposed that the standards of time that are defined
down to 10% to 10° in the inversion spectrum of ammonia can be made dinémore stable7[7].

() E. ESCLANGON,La notion du tempsParis, 1938, pp. 16-18. — GHEURY DE BRAY, Nat(3
(1934), pp. 464 and 948. — EDMONDSQNId., pp. 759.



A. — Newton’s and Einstein’s principles of relatyvit 9

In fact, the most recent measurements bf Anderson did not confirm the laws of
variation that were proposed, and it seems that tisé ibeerpretation of the set of
terrestrial measurements that were made in the lamsirbd years is that of the constancy
of ¢ [70, 71, 74] (*). Moreover, nine comparisons of the standard meter the wave
length of the red line in cadmium that were spread aftgryears are mutually coherent
to almost 10° [77] (3.

D. — It results from Einstein’s postulate thia¢ formulas for the change of Galilean
frame X, t (u= 1, 2, 3)are no longer the formulas for the Galilei grququt those of the
Lorentz-Poincaré group. The proof is found in Einstein’s work, and it was already
implicit in the work of Lorentz and Poincaré. We slgave that proof again, in our own
manner, in no. I.2, where we will link it immediately the notion of Minkowski’'s four-
dimensional space-time.

B. -MATHEMATICAL INTRODUCTION:
TENSORS IN PSEUDO-EUCLIDEAN SPACES.

I.5 —Covariant and contravariant components of ann-vector. Metric tensor. —
Consider am-dimensional space that is referred to a system i&ctilinear axes with
constant, but not necessarily equal, magnitudes, and &hecbenerally oblique to each
other. We shall put ourselves in a very general caseomihins the particular case of
the pseudo-Euclidian space-time —woniverse— of the theory of special relativity by
assuming that the coordinates; are complexi(= 1, 2, 3, ...n).

Each of then axes can be defined by its unit directevectoru;, and the lengths of
those vectors are not equal, in genesed | The most general spatial vecgeonsidered
can be written uniquely as the sum:

() Birge [70, 71] held the best measurementsab be:

1. Rosa-Dorsey (1906, report on the bases for E. SadJEaM. U., which was a correction to the
report on the bases for absolute and internationarieleciits).

2. Mercier (1923, stationary radio-electric waves).

3. Karolus-Mittelstaedt (1928, beam chopped at very higiuérecy by a Kerr cell and having a very
short base).

4. Michelson-Pease-Parson (1932, rotating mirror, dsemilein vacug.
To them, it is suitable to add:

5. Anderson (1941)7¢4], who ingeniously refined the method in 3.

Here is a table of those results:

1. (1906) c= 299,781+ 10 km/s

2. (1923) 299,782 30
3. (1928) 299,778 10
4. (1932) 299,774 4 *
5. (1941) 299,776 14 *

This table does not at all create the impressiortiieaé is an ample and rapid secular variatiory ab
some authors have assumed. On the contrary, the prgdadi results, which were obtained by four very
different methods and over dates that were spread overaB$, are remarkably coherent.

() It was quite recently that a measurement efas made in the centimeter Hertzian domain by a
procedure that was equivalent to the simultaneous measurehé¢he period and wave length of a
stationary wave. The precision obtained was equal ¢peater than that of the previous methods.
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(1.7) s=> Xu,

in which then coordinates xare, as we said, assumed to be complex. We now ingoduc
and utilize thesummation over dummy indices conventighich is well-known in tensor
calculus and consists of thid/fhenever the same index appears twice in a monomial —
once above and once below — one must sum over all values of that Teexraonomial

in question will then be a polynomial, in reality, andvimat follows in this book we shall
speak indifferently ofts termor its terms according to whether our attention is directed
spontaneously to its formal aspect or the reality ithatplies; we shall see that this will
introduce no confusion. We then agree to write the sspe (7) in the form:

(1.8) s=xu;.

The repeated indaxs calleddummybecause since the summation avisrautomatically
required by the form itself of the right-hand side of, (B)at index will not figure
essentially in the expression far

Upon scalar-multiplying the vectarby itself, we will get the square of its length,
which is a number (that is complex, from our general thygms), and whose expression
will be (4):
(1.9) S =uujX xI =2 (u uj +uju) X x.

Of course, we shall continue to utilize tt@nvention of summation over dummy indices
andu; u; X x!, for example, is intended to mean:

Then complex numberg' are calleccontravariant coordinatesf the vectors, and
then? numbers:

(1.10) O =4 (Ui uj + uj uj),

which are also complex and symmetricijirj, are calledcovariant coordinates of the
metric tensor. By definition, then numbers:

(1.11) X =g X

arecovariant coordinatesf the vectos.

() In the Hilbert space that is used by quantum theorysdakar product of two vectors is defined to be
what we will call the scalar product of one vectottmthe conjugate of the other one.

In order to pass from first expression in (9) to tbeosad one, one must postulate that the scalar product
of the two director vectors; is commutative; some geometries that reject thatufzde have been
proposed.
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Equations (11), in which one sums over the dummy ipdaxen in number, since
can take all of the values from 1m0 Depending upon whether we direct our attention
spontaneously to the vectorial significance or the aicalyexplanation for a formula
such as (11), we shall speak indifferently of the equatioequations of the formula that
is represented; we shall see that no confusion sholidavffrom that. _

Equations (11) can be regarded as a systemlioBar equations im unknownsx.
One then essentially supposes that the determinaratofybtem:

(1.12) A=|dg'|20
IS non-zero.
Equations (11) can then be inverted into the form:

(1.13) X =g x,

in which theg’ are thenormalized minorof the elementg; of A. By definition, then®
numbersg’, which are complex and symmetriciirandj, are called theontravariant
coordinatesof the metric tensor. Their determinant is foundbt equal toA, by
definition, and it will then be non-zero:

(1.14) lgj | =A#0.

The square® of the length can successively take on the three forms:

(1.15) sS=gxx=%xx= gxk

If a“J denotes the well-known Kronecker symbol then the @i those forms can be
written:
(1.16) S=3dxXx, é'ij={ 0 !f I¢J
1 if i=j.
By definition, then® real numbers:
(1.17) g' =9

are called thenixed componentsf the metric tensor.

/0 Xu; xut

Figure 1.
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Formulas (11), (13), an(_:i: _
X = J x! or X =0 %,

show thatthe tensors'g g , and g‘j = JJ deserve the names of raising and lowering
operators, and the substitution of the index i, resp.

We address the special case of a two-dimensional sp#teeal coordinates and
seek the geometric interpretation of the covariant coordinates tke vectos, it being
intended that the contravariant coordinates are nothing but the oblique coordinates in
the usual sense of the tertiie reader can pass to the general case effortlesSly.
denotes the angle between the director vectpasdu, then we will have:

O11= (Ul)z, 022 = (U2)2, 012 = g21 = Uy U2 COSQ,
and consequently:
X1 = U (U X+ Up XC €OSQ),
X = U (U X2 + Uy X €OSQ).

We then introduce two vectotg andu? that are collinear to; andu. , resp., and are
such that the two scalar productsu® andu, u? are equal to 1. We will see theie
extremities xu* and % u? are nothing but the orthogonal projections of the extremities of
the vectors onto the coordinate axes.

I.6 —Formulas for a change of axes. General definition of a teas Tensorial
rules of homogeneity — Taken linearly-independent vectoig in the space considered,

and leto; denote th¢" contravariant component of tHevector. By definition, one has

the system of relations:
(1.18) U;= 0u,

between the system of vectalis and the basis vectors. Consider the vector that is
defined by (8) again, and look for its contravariant coreptsin the new system of axes
that are defined by thevectorsu, ; by definition, one has:

s=xT= 5inU,-,

from which, one concludes the formulas:

(1.19) x' =9 X,

which express the old contravariant coordinates asifingcbf the new ones. Since, by
hypothesis, the vectorsu, are linearly independent, the determinhﬁﬂ will be non-

zero. Since th@‘j denote the normalized minors, (19) will invert to:
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(1.20) x =g/ % (|o}|=|g; | #0).

and one will then see that tlg#; represent thg" contravariant components of the vector
u, in the systenu, .

By virtue of the definition itself of the inverse cdeiénts g‘j, if one starts with the
direct coefficientsﬁ‘j , and if . always denotes the Kronecker symbol then one wileha
the double system of identities:

(.21) 0,01=0.6=4,

Let o] denote thg" covariant component of thi€ vectort,, and letx denote the
new covariant components, so formula (19) will permé tmwrite:

and one concludes from this that:

Recalling (21), the latter formula will show that:

o’'=19/, 0
i.e., o/, which is the normalized minor @', is nothing but thé" covariant component
of thej™ vector; in the systenu; .\WWhen one compares this result with the preceding
result, one will see that th& covariant component of the vectar in terms ofu; is
equal to thé™ contravariant components of the vectpin terms ofu;. Finally, (19)
and (20) imply the consequences:

(1.22) x=0% %¥=79x

the reciprocal consequences are established with no dificult

Let a, b, ¢, ... be a certain number afvectors, and consider, for example, an
expression such as' b! ¢ , which is doubly-contravariant and simply-covariant. |
transforms according to the law:
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ab g :qiq‘)d‘, dn¢.

By definition, a tensor is a geometric object wh@senponentdransform like such
products, and itsank is the number oh vectors that occur in the product considered.
For example, the doubly-contravariant, simply-covdr@mponents of a tensor of rank
3 transform according to the law:

(1.23) Ti=9d¢T).

As was explained in the preceding no., the opesaiorg, g“ = J* can be applied to

the two sides of such equations in order to lowase, or substitute an index, resp.; i.e.,
in the first two cases, one can turn a covariadexinto a contravariant one, awite
versa Notably, one will then see that a second-ramksde will have contravariant

componentsTy, covariant component®', and “mixed” component3,'. By definition,

one calls the operation that consists of seftmg and summing over allfrom 1 ton the
contractionof a tensor over a pair of indiceg, one of which is raised and one of which
is lowered (if they are not that way already). Example, the contraction ovelj of the
preceding tensor is written:

T,
and that expression is intended to mean:

n

DT

i=1

The contractiorT,' of a second-rank tensor, which is a scalar, isafedled itstrace. As

examples of tensors, we have already encounssa@dr magnitudeswvhich aretensorial
invariants and then-vectors which are tensors of rank 1. Téguare of a quadri-vector
— namely,x; X — is the contraction of thgeneral vectorial product'x, and is a scalar,
moreover.

Formally, any tensorial expression presents itgafa polynomial. Tensorial
homogeneity demands that all of the indices that rast dummy indices — viz., the
significant indices- must occur once and only once in each formalanoal, and with
the same upper or lower position each time. Thdaewill have noticed that we have
appealed to a rule for the placement of the barishsimilar to the one that is utilized in
the formulas for the change of a system of axeg;iwtne calls &rame moreover.

If all of the expressions with indices in a forrmadnomial that has tensorial validity
are tensors except for one of them then one cartabat the latter is a tensor that has
obvious variances, as one can effortlessly vehfinks to the formula for the change of a
frame. In order to abbreviate the discussiongiini current usage to saypvariant,
contravariant, or mixed tenspeven though rigor would demand that one mustkspéa
the set of covariant, contravariant, or mixed congs of a certain tensor, resp.
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[.7. — Symmetric and antisymmetric tensors. Dual tensor of a copletely-
antisymmetric tensor.— A tensor is called symmetric or antisymmetric wéhpect to a
pair of indiceg, j (that are both upper or both lower) if one has:

(1.24) IREERE

identically. Under the hypothesis that the tensontssgmmetric, one will havad " = 0
identically fori =j.

Quite often, from the fact that certain symmetieesantisymmetries are known in a
certain frame, one can conclude a more complete symmeantisymmetry of the tensor
from that. The following chapters will provide examplésh® arguments of that type,
where at least one of them will imply a conclusidnhe greatest physical importanc (

As examples of completely-antisymmetric tensoes,(ones that are antisymmetric in
all of their indices), one has the exterior produdtgeators, whose rank is defined in the

following manner: Suppose that one hadinearly-independent vcctors, and tha;t
denotes th¢" covariant component of thi# vector (= 1, 2, ....p,j = 1, 2, ....n). The
CP non-zero covariant components of the exterior prodficinkp of those vectors are,
by definition, the determinants of rapkhat are extracted from the matrix:

i
bt

and are each affected with a sign. By definitionderote the components in question in
the form:

(1.25) X% ... %d,

in which the indices, j, ..., k are all different, and there apeof them. As always by
definition, the tensor considered will be said to repreteehyper-volume of order jm

n-dimensional space of the hyper-parallelepiped that isieenied from the vectorsx‘j :

and its components will measure thjectionsof that geometric entity onto the”

linear varieties of ordgp that are defined by the coordinate axes. The extemwiugt of
rankn, which has a sign that is defined by the order ofide&es, involves just one non-
zero component and is said to b@seudo-scalgrwhich is an expression that will be
justified in a moment. The well-known equality frormdainatorial analysis:

(1.26) CP=Cre

shows that two completely-antisymmetric tensors nksg@ andn — pwill have the same
number of a non-zero components.

All of the non-zero components (contravariant, &ample) of a completely-
antisymmetric tensor of rank have the same modulus, and their signs will be + or —
according to whether the permutation of indices has evemdd class, resp.; call the

() Namely: the universal proportionality between eneagg mass that was discovered by special
relativity.
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common modulus of those componef¥s In the case of contravariant components, it
will clearly result from what was said about the digifim of the K x’...] that under a
change of frameQ) will vary like the evaluation of a hyper-volume of oraewith the

aid of a hyper-volumew of the n-parallelepiped that is constructed from the director
vectors of the axes, which will be called gugeof the frame used. K'**" denotes a
completely-antisymmetric tensor of rankhen the expression with just one component:

(1.27) A= wA?"

will then be atensorial invariant— or scalar quantity— that is called thelual of the
completely-antisymmetric tensé " of rankn.
More generally, if A™* are the contravariant components of a completely-

antisymmetric tensor of rankthen the covariant componemsy | of its dual, which is
completely-antisymmetric and of rank- p will be defined by:

(1.28) Aab.| = E WA™ 2,
There aren indicesa, b, ...,I andm, n, ..., z, and they are all differents will equal + 1
or — 1 according to whether thetal permutationa, b, ..., z has even or odd class,

respectively.
In order to show that thd,, | are indeed the covariant components of a tensor, we

introduce a completely-antisymmetric auxiliary tenB8t' of rankn — pand form the
contracted product:

(1.29) B! Aap..1 = CUZEBab""Am”"Z.

The sum). extends over all permutations of theéndicesa, b, ..., z The tenso. of
rankn is completely antisymmetric. Indeed, igf be an arbitrary pair of indices. The
sum >, is composed of terms for whichandj occur together in one of the two
permutations, b, ..., | andm, n, ..., zand terms for which andj occur in one and the
other of those permutations. Each of the terms ofitkekind is antisymmetric im, |
and terms of the second kind can be grouped into pairs whosésantisymmetric, SO
the two terms in each pair will differ by only the excparof the indices andj. In
regard to those pairs of terms, each of them will beodepred in modulus when one
exchanges andj, and its sign will change because the total permutatidm ..., z will
change class. The tensprwill then be completely antisymmetric. Upon comparing
formula (29) with (27), one will see that the duappfwhich is a scalar, is nothing but:

B! Aap.1,

and sinceB®®!' is a contravariant tensor, the antisymmetric exfassap. will indeed
be the components of a covariant tensor. Q. E. D.

As a particular example of dual tensors, other thareikample of a tensor of rank
and an invariant, one has the example of a tensoarndfr — 1 and am-vector. For
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example, in three-dimensional space, the dual of ariextproduct of two vectors is a
vector that is defined with an arbitrariness in its sigimat is the origin of the distinction
between “polar vectors” and “axial vectors” that islivk@own to physicists. In three-
dimensional space, the fact that all circular permanat, v, w of the numbers 1, 2, 3
have even class will make the passage to duals very simple
In four-dimensional space, which will be that of thedty of relativity, it is easy in

practice to distinguish the three indices 1, 2y,3/(w will denote a circular permutation
of them) from the time index 4. Passing to duals thenesoabout according to the
schema, which refers to those notations:

uv,w--4 and u,v, - -w

(1.30)
uv,---w4d and w,4.-- uyv.

[.8. —Tensorial derivation in Cartesian axes— LetT be a tensor of arbitrary rank
that is defined in a spatial domain and is an ditalynction of then-pointx, . When one
passes from the point to the pointg + dx , T will submit to a certain increastl, and
one will have:

n 6 n . a
dT= ;dxa—XiT = iZ::dx&T

identically in any coordinate system, whether tear or curvilinear. If we set, by
definition:

(1.31) d=—, 0 =—,

then when we take the summation over dummy indam@s/ention into account, the
preceding differential identity can be written:

(1.32) dT=dxd' T=dXa; T,
or further, in symbolic or operator form:
(1.33) d=dx0'=dXd;.

Now, make a change of coordinates (or variabtds} x", and let(X\) denote the
partial derivative ok with respect tox" :

From elementary analysis, the operadar d; , for example, transforms by invariance,
since one will have:
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9.= (%)
and _
dxX = (x\)dX .

How, one must once more take into account the expre&sidnas a function of the new
variables. In rectilinear axes of constant measunas,will have simply the expressions

that were deduced in (19), in which the coefficiemtare constants [witho! = (X.),

moreover]. In our particular case of rectilinear axes of constant measitreill then
follow that the operators; will not act upon theo, in such a way that the preceding
analysis will exhibit theirvariance as acovariant n-vector symbolically;the same
argument will apply to the contravariant symbdls That will not be true at all for
general curvilinear coordinates. The analysis that alh¢hen carry out, and which will
provide the covariant and contravariant definitions effitst-order tensorial derivatives,
will constitute one of the essential pieces of theegal tensorial calculusl®, 19, 20,
22]. Recall, in passing, that the symbolic veabris known by the name afablain
three-dimensional space with Cartesian coordinates o

Always in Cartesian axesne will then see by recursion that the operaogs’ or 0,
0; have the symbolic variance of tensors of second r&kvirtue of the property of the
commutability of partial derivatives, that symbolic tenswill be symmetric. By
definition, we set:

0 0 0 0

(1.34) 0 =0"=——, 0, =0, =——.
ox 0% ox' ox'

The contraction of that second-rank tensorial operator

29 T

is well-known in three-dimensional space by the namieLaplacian and in the four-
dimensional space witky = ict by the name of’ Alembertian.

The covariant components, for example, of an arlyitpartial derivative of ordep
are written:

(1.36) Oy =

1.9 —The general formula for the transformation of multiple integrals (). — LetT
be a certain tensor that is defined in a spatial daonaeid consider the definite integral

that is taken along a curved atdetween am-point M; and am-point M, :

() In the argument that follows, we assume that alhef\ariables are essentially real. Meanwhile,
upon reading nos. 1.3 and 1.4, the reader will understhatithe formula that is obtained will be valid in
pseudo-Euclidian Minkowski space.
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(1.37) j;”zai T =T (M) =T (My).

Now, suppose that the tensbis interpreted physically as a density of orgger.e.,
that the integral:

(1.38) JIf--] Tldx dx--- dxd

that is taken over a variety of orderp < n that is generally curvilinear is meaningful.

The [ ] denotes the general covariant components dktisor that was defined in no. 8
whose dual represents the hyper-volume of an infinit@shyper-parallelepiped of order

p that is tangent td’ at then-point x;, . We finally recall that the hyper-volume is

“automatically” referred to its natural gauge; i.e.,the system of volumes of the
parallelepipeds that are defined by the director vectoifse axes.

Take a simply-connected curvilinear manifdldf orderp < n in the spatial domain
considered, and let denote the closed contour of orger 1 that surrounds it. Pass a
curve L that is not contained v through each of the points Bf and take two pointsl;
andM; on £ that are distinct from the point of intersecti®wof £ and). We assume that
the curvel and the two pointd; andM, will vary continuously wherP describes the
manifold V), and thatM; andM will coincide with each other, as well RswhenP varies
alongC. In that way, the two pointgl; andM, will describe a closed manifold of order
p, namelyW. Finally, letD denote a manifold of order+ 1 that is bounded byy.

First, argue in orthogonal axes, and t#dkéo be a line that is parallel to one of the
axes (say, the first ong, take) to be a plane that is parallel poof the other axes, and

finally, takeD to be contained in the planar subspace that is delipedep + 1 axes in

guestion. In order to take into account the order in wthose axes are enumerated, we
affect their permutations with convenient signs, which deéned up to an arbitrary
initial permutation, moreover. We then consider theadity that was deduced in (37)
and (38):

(1.39) J[ox d -] o' T d= [ {TIMLP] =T M B dxdx]-

By the definition itself, we have the following egral of ordemp + 1 on the left-hand
side:

[ 0Tldxdx... dg.

On the right-hand side, we have the differencenaf integrals of ordep that are taken
over V, which is equivalent to a single integral thataken overn/V. Since the hyper-

surface)V is met by the curves of the congruentat only two points, it is natural to
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orient the “upper sheetf, in the same sense adsand the “lower sheetM; in the
opposite sense, which would imply replacing the — sigh thie + sign. Finally, formula
(39) is written:

(1.40) j(p+l)6‘T[dx dx... d] :j(p) T dxdx.. ¢k

The integral of ordep is taken over a closed domain that is met by the phtalkhei-
axis at two points, and the integral of orgdex 1 is taken over the domain that is enclosed
by the preceding one. As in ordinary differential geaoyedine is effortlessly liberated
from the first restriction, and one extends thatriola to more complicated domains.
Naturally, nothing will prevent one from raising the igcek in [ | and performing
contractions of the indices in the [ ] with the sme the tensof. Note, as well, that that

VY and thel have disappeared from the result, so the arbitraritegéshas seemed to

prevail in their choice has had no consequences, atdsdshg as they remain contained
in the planar subspace that is defined bypthel axes that were considered previously.
In order to free ourselves from that restrictionwadl as that of the choice of a planar

D, we begin by making an arbitrary change of rectilineagsaxf constant measure.

Those of the components of [ ] that are zero (naniké/ones that contain indices other
than those of thp + 1 axes that are considered) will cease to beésomula (40), which

is formally correct from the tensorial viewpoint, Witen be automatically completed by
terms that are zero. That being the case, one asilyereduce the case of an arbitrary

curvilinearD to that of a planaP by dividing that domain into sufficiently small pieces
and summing them in the well-known manner.

In the course of this book, we will indeed often have dbal of [ ] under thqr(p)
sign, instead of [ ]. In that case, the rule to apply vé to differentiate with respect to
the indices that occur in the dual fd, where each term is, of course, affected with a
convenient sign.

As an application of the general formula (40), we slslbw thatin three-

dimensional spageone in fact recovers the known formulas that atled¢ahe Stokes,
gradient, divergence, and rotation formuf§sifat are classically written as:

jAdI :HrotAEis,

(1.41) ”V ds= ﬂjgraqv [dlu,
| .UA 0B lds= '[Udiv(A OB)du,

”A Hds :—erotAdu.

Formula (40) “automatically” givesi(v, w=1, 2, 3):

() See, for example, R. BRICARGalcul vectorie] Paris, 1932, pp. 140.
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[Ardx = [[o*ATdx,dx],

[[Vidxdx]= [[[o°Vidx,dx dx],
(1.42)

[[ AB"Tdx dx] =[] 0" A'B"[dx db ] ,

[] A'Ldx, dx] = [[[ 0" ATdx, dx dx] .

The right-hand sides of (42and (42) consist of only one non-zero term. The left-hand
side of (43) consists of only two, and upon introducing theldis" to [dx, dx], one can
interpret it as an exterior product. In the ripatad sides of (42, (42), and the left-hand
side of (43), the antisymmetry of [ ]| makes a rotation or atesor product appear.
Finally, that same antisymmetry will appear onrigét-hand side of (42 as a sum over
circular permutations ofl, v, w and an exterior product, in succession. Takirgf th
remark into account, (42) will be written:

[Adx, =4[[(@ A -0"AY)[dx dx],

[[vds=[[[o'v du,

3[[(aB - A"BY dy dy] =1 [[[>0“(A'B"~ A"BY) du,

(1.43)

HAVdé’— Add = m(a“AV—aVA“) du.

(41) and (43) are, in fact, equivalent, by passindual tensors, if necessary.
The simple verification that we just carried caitiate the novice reader to some of
calculations that they will find the rest of theao

[.10 —The very important particular case of orthogonal axes of equameasure.
Orthogonal linear substitutions. — To conclude with the general considerations, we
refer our pseudo-Euclidian space to orthogonal akxesjual measure, @artesian axes
in the narrow senseThe square’ of the length of a vector will take one or theath
equivalent form: ) o
(1.44) £=gd"x%x=9gdx x,

in such a way that the values of the covariant@mravariant components of a vector or
a tensor will always become equal to each other There is then no longer any reason
to distinguish between covariant or contravariamgonents of a tensor. Nonetheless,

() That property is also obvious from Figure 1 and the aegusnat the end of no. 6.
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for clarity in our formulas, we shall continue to wrthe dummy summation indices with
one above and one below.
Nothing will prevent us from setting:

(1.45) g=1

in (44), which amounts to taking the standard of lengtretthb common measure of all
the axes. Under those conditions, the metric tenshoge general mixed components

will be JJ ) will admit the Kronecker symbols:
(1.46) gi =9, =gl

for its covariant and contravariant components.
The expression: )
(1.47) §=0" %X

can then be written as a sum of squares:
(1.48) = %.

One calls the linear substitutions that preserve that for s (i.e., the orthogonality of
the axes) when one starts with a system of variablels as one has in (4@)ythogonal
linear substitutionsBy hypothesis, the coefficients of such a substitutwdhsatisfy the
relations:

(1.49) idd:@h

i=1

which, when compared with (21), will show tham orthogonal linear substitution is
characterized by the system of relatighs

(1.50) 0 =0.

It is clear from this that the square of the two detaamlis‘ 0, ‘ and ‘92 ‘ has the same

value 1, in such a way that those two determinantsswilltaneously have the value + 1
or— 1. If they equal + 1 then one will say that the systems of axes (or the initial and
final n-hedrg havethe same sensend that one passes from one to the other by a
rotation. If they equal — 1 then one will say that the twvbedrahaveopposite senses
and that one passes from one to the otherrbflection.

(") These relations are obvious if one refers to thengéacal interpretation of the coeffmen&i that
was given previously.
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If one takeg = 1, as was said, then the gaugef the system of axes (i.e., the hyper-
volume of then-cube that is defined by the director vectors of the )awals be 1 in
modulus, by definition, and if it equals + 1 then the seriseferencen-hedronwill be
direct, and one can always enumerate the axes in an ordetlsicthe permutation of
the indices will have even class. If one eliminatesreflections, in order to keep only
the rotations of the referenaehedron then one can always preserve the gauget 1.




CHAPTER I

RELATIVISTIC KINEMATICS AND OPTICS

[I.1. — As one knows, Minkowski was the author of aaddathat is essential to both
the comprehension and the development of the theasjatfvity. Letx', t (u=1, 2, 3)
be a system of four Galilean variables, in the sehaé is implied by the Lorentz-
Poincaré formulas (no. 1.4). ¢fdenotes Einstein’s absolute constant then set:

x* =ict

and complete the tri-rectangular trihed®x' to a quadri-rectangular quadrihedi©OR (i
=1, 2, 3, 4). Anyevent &, t will then be referred to a four-dimensionkdgram. One is
easily assured that the Lorentz-Poincaré formulasesspnothing more thanratation of
the quadrihedron Ox Thanks to Minkowski, theinematic law of the privileged
equivalence of Galilean frames will then take on a p#yfedear interpretation: It is
identified with theprivileged equivalence of Cartesian frames in the narrow sevisieh

is well-known in Euclidian (or pseudo-Euclidian) geomet®ne will also see that the
expression:

NS =" A - AL,

which is called thesquare of the world-intervals an invariant of the group in question.
That is not the case for either the square of theladpdistance or the square of the
temporal interval.

In summary, in the new kinematics, any Galilean frasna frame that iso longer
just spatial, but also tempor#@lorentz’s notion otocal or proper timg@. The solidarity
between the spatial standard and the time standardvdwstintroduced by Einstein’s
postulate translates into an effectiphysical equivalencef space and time, and the
change of Galilean frame will partially transform ant® the other.

Furthermore, the whole time that relativity introdsitbat novekquivalencgwhich
is also quite paradoxical from the classical viewpoimtglso mathematically accounts
for the complete disparity that experiments reve&lvben space and time, such as the
characteristic irreversibility of time. Notably, tiles to the distinction that is established
betweenspacelike quadri-vectorandtimelike quadri-vectorsthe latter can be divided
into two classes according to the sign of the fowtimponent. The well-known
distinction betweerpast, future,and unphysical(") forms a body of notions that are
corollary to the preceding ones. Those statemeraagakith some other statements
about inequalities such as the one that is implied bpolmded character of the speed
define various expressions for what one can call theofse principle” of relativity.

True to our rule of always arguing in four-dimensional geioyn we shall deduce
Minkowski's kinematical laws directly from Einstein’s gtalate. It will only be in sub-
chapter B, as a prelude to other applications, thatha# show their equivalence with
the Lorentz-Poincaré form. The other applications bélconcerned with kinematics and

(") Translator’s note: The original French vetiailleurs = “elsewhere.”



B. — Applications of the new kinematics. 25

optics indifferently. For the most part, they will the ones that are given in the classical
treatises. We shall strive to present them in aergsdly geometric light.

The ends of sub-chapter B, and above all, sub-ch#&pteare dedicated to some
general questions that are indispensible if one is toagkrupon the various chapters of
relativistic physics. We shall insist upon the bengifit can be derived from treating
fluids or systems of points inr@on-simultaneousnanner, which was pointed out by E.
Cartan; in relativity, that benefit becomes almoseeessity. It is only then that one can
insure that thentegral or finite quantities have a tensorial character. Another e bhat
is closely connected with the preceding one, and also iguyitertant, is thain relativity,
the tensorial ranks of a density quantity and its homologous finite quaiityiffer by
one unit. That is due to the quadri-vectorial character of tiea-dimensional volume
element.

A. —THE NEW EINSTEIN-MINKOWSKI KINEMATICS

[1.2. — The relativistic equivalence of space and time- Consider a region of the
vacuum that is traversed by light waves, andkiek,, x3, t be a system of four Galilean
coordinates, in the sense that was specified in no. Ldt dx, (u = 1, 2, 3) be an
elementary vector that, from Huygens principle, isvd¢raed by light, and in a time
intervaldt. If c denotes the velocity of light waves then one waNéx

idxf—czdtzzo.

From Einstein’s postulate, c is an absolute conistand the preceding formula is
universally true in any Galilean framen order to make the expression on the left-hand
side symmetric, with Minkowski, we set:

(11.1) x* =ict,

and when we take the summation convention into acdoont.5), that will give the left-
hand side the form:

(11.2) ds’ = dxdx=0 (i=1,2 3, 4.

Also with Minkowski, we refereventsto a system of four Galilean axdbat are
orthogonal and of equal measuPeq x; X3 X4 and call the “continuum” thus-defined
space-timeor theuniverse. The left-hand side of formula (2) represents the sqoala
world-distance, and by hypothesis, that expression \eithain invariant under all
changes of Galilean frame. It will then follow th&alilean frames are represented in
the Minkowski universe by systems of four orthobmedilinear axes of equal measure —
or Cartesian quadrihedra, in the narrow sense — anty by those systemd.he notion
of privileged equivalence of Galilean frame#hich is well-known in classical dynamics
and extended universally to physics by means of relativititiven take on a simple and
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clear interpretation that is attached to the privileggdivalence of Cartesian frames in
the narrow sense that is well-known in geometry.

Finally, if we take into account what we recalled ima@ter |, § B then the formulas
for the change of Galilean frame in the Minkowski ureeewill be those of an
orthogonal linear substitution:

(11.3) X' =0 X, %X=q97%X, 0'0 =07 =4, 0 =0l.

With such substitutions, the covariant or contravartaardinates of a vector — or, more
generally, a tensor — will always be equal to each p#ret there will be no reason to be
preoccupied with distinguishing them. Nevertheless, in thmenaf elegance in the
formulas, as well as in view of their possible eximmgo general relativity, we shall be
obliged to respect the rules of tensorial homogeneityoiggly.

It is obvious that the system of transformations (3serves the form of the

d’Alembertian operatod! , whose classical expression is:

3 2 1 2
0= _2__26_2’
o 0x,  C° ot

and that, reciprocally, we can conclude formulas (3afguing with the d’Alembertian
as we did witrds’ = dx dX.

The preceding set of formulas express various aspediiseadquivalenceof the
notions of space and time that relativity establisheldat @quivalencewhich is implied
from the outset by the universal coupling of the standafdgpace and time [formula
()], translates into a partial reciprocal transfoiorabf space and time into each other
under a change of Galilean frame [formula (3)], and d&gothe introduction of a
synthetic notion that encompasses the notions of $jpaeaval and temporal interval in
a quadratic form, namely: _

(11.4) AS? = AX A

whose expression in classical terms will be:
3
AS = A -2 AP,
u=l

Note that if theAx, andAt are real theids? will be real, and it can be positive, negative,
or zero. By definition, the quadri-vectdxx; will be called spacelike timelike or
isotropic respectively, in those three cases. The profoundifisignce of those
distinctions will appear in the following no.

For the readers who are not familiar with the thesrgelativity, we shall insist a bit
on the new situations that will appear in Einsteindivski kinematics that are
consequences of rejecting the notionslb$olute spacandabsolute time. Two events
that happen simultaneously at two distant poipis andx), in a certain Galilean frame
are represented in the universe by two instant-paigtsindxqy in such that the quadri-
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vectorxpy — Xqy Is orthogonal to the axiSx, . That property is natbsolute butrelative

to the spatio-temporal frame that is utilized, so inet preserved under a change of
Galilean frame, in general. That amounts to saying thageneral, twaeventswill no
longer be simultaneous in any Galilean frame besidemitied one, which is a situation
that was ignored completely by classical kinemat®snilarly, two eventghat happen at
the same poink, in space at two successive instantandt, in a certain Galilean frame
will be represented in the universe by the extremiigsandx.) of a quadri-vector that
is parallel to the axi®x, . Since that property i®lative, two successive events will not
take place at the same point in the other Galileandsawhich is a situation that already
happens in classical kinematics.

More generally, the spatial distance, as well asténgporal interval, is aelative
notion in relativity. By contrast, théensorially-invariant spatio-temporal interval,
whose expression is (11.4), will be absolute. The gpdistance between two points that
was first considered in the preceding paragraph will incremsgeneral, when one
changes the Galilean frame, and under the same caowglitlte temporal interval of the
two events considered after that will also increase.

I1.3. — Mathematical expressions for the distinction between gwe and time.
Interpretation of the o‘j. — The relativistic discovery of aequivalenceof space and

time is certainly quite troubling. One must demand to krfowand how — the radical
distinction between space and time that our percepstabkshes will be preserved in
the formulas, as well as the irreversibility of gpgnthat is present in time, but not space.

As a result of Einstein, most authors have writtett the manner in which relativity
accounts for the difference in the physical behaviospaice and time is by way of the
negative sign on the temporal square inske We shall show that, in fact, the special
character of time follow from that, as well as saveorollaries.

If the constant remains essentially real then formulas (1), (3), a)dw(ll just as
well be true in complex variables. We shall now irtfer detailed consequences of the
fact that the four physical variablegandt are real, and consequently, that the thyes
Minkowski are essentially real, amglis pure imaginary.

Under those conditions, formulas (3) show ttieg coefficients of the change of
Galilean frame will be essentially real if they contain the indlexher zero or two times,
and imaginary if they contain it oncd.hat being the case, one will have, in particular:

(11.5) (0)*=1-9,0,, (0,'=03=0;, 0, =0}),

—u

and since the sur@,' o’ is essentially negative, one will conclude that:

(0)? =1,
and consequently:

N

either 0,<-1 or o =+1.

N
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Hence, as in thermodynamics,sacond principlels expressed by the inequalities that
restrict the possibilities that are offered by gnimciple of equivalencen relativity. The
initial group of transformations (3) has now been spilib two completely distinct
families.

If one then postulates (as would seem natural) tttetransformations that remain
permissible must again form a grodipen the first family, which does not contain the
identity transformation, will be found to have beem&lated. On the contrary, the
second family, which does contain the identity tramaftion, does indeed form a group,

since, as one can effortlessly see, the transfomma(lo‘j) will produce two
transformationgo]') and (o;'), such thato;'> 1 ando;* = 1, sooj = 1.

Finally, in addition to the conditions that were fotatad already in (3), the‘j of a
change of Galilean frame must satisfy the inequality:

(11.6) o 21.

First, take the hypothesis tha} = 1. From (5), thep,' = o} will then be zero, and
the transformation will reduce to:

(1.7) t' =t, X' =9,'x" (uv=1,2,3),

which is interpreted as a simple rotation of a spatiaedron, and not as a change of
Galilean frame, properly speaking. In one blow, therpmegation of the nine coefficients

0,'= o, is found to be given in the particular case, as wethagjeneral one (at least, to

a first approximation).
In order to study a true change of Galilean frame, supihas®; > 1. In order to

“follow the motion” of the origino of the spatial axes of the frame)(setx, =0 (u =1,
2, 3)in (3). One will then have:

oU_ = Sh_ =44
(11.8) x'=0,x", X'=9,/'x".

If one substitutes® from (&) into (&) then one will get thequations of motion of the
spatial origin o with respect to the Galilean frarre

(@]

1
0;

(1.8") X! = =0o,%* o, 1.

o

. Jc _ [
One will then see that the three real qu.’:\ntlfﬁi%x;)4u (or —0491, for that matter, due to the
0, 0,
equality of the covariant and contravariant compisieare nothing but the components

of the velocity of the spatial origimof the “moving” Galilean framex{, t) in the “fixed”
fame (X“,1). Inrelativity, it is customary to set:



B. — Applications of the new kinematics. 29

(11.9) Vin E%Vu u=1,293),

in such a way that one will finally write:

(@]

(11.10) vi= —g', B'=—0'.

-bo.p |
-bo.p | -

Hence,the three componentg of thereduced velocity are interpreted as the three
tangent directors orangular coefficients of the axis Oxin the quadrihedrorOX' .
Now suppose that the matrix of the nigg is diagonal, which amounts to taking the

spatial axes to be “parallel” to each other, in tammmon language of space and tire (
Formulas (3) will then show that:

(1.11) o,=-0,

(the + sign is excluded, due to the fact that the matrsodeen o‘j for a rotation cannot
be symmetric). Since,'= 0,, one will conclude that:

(11.12) o'=-0!, V'=-\

The speed of the origia of the spatial axes of the syst@® with respect to the system
OX is a vector that is “equal to” v, in the usual language of space.

We finally show thathe coefficiento] relates to the absolute value of the reduced

velocity. If we form the spatial scalar prodygt 8" = ,82 and take (8) into account once
more then we will get:

(11.13) Vi

2 _ (0:)2 -1 4 1

(0;)° 1-5°

Since o] is real, one can conclude the following important indigutom that:

(11.14) p<1 or Vi<

The relative velocity of the spatial origins of t@alilean frames that are “physical” or
“real” is always less than the universal constantirc modulus. We already see the

() None of the axe®x' in the universe is parallel to any of tiX". However, the axesx' and 0 X'
can be called “parallel,” in the common sense of the,tdrecause if the Galilean observef), (for

example, considers all of the material points that amadaalong the axi® X then they will be aligned
along the axigx' for him.
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constantc appear in kinematics here by way of its role as an ulypéron physical
velocities. .
We then write thals’ of the axisOX of the “moving” Galilean framéXx in the

“fixed” quadrinedronOX*. We have:
(11.15) ds’ =dx' dx, —c dt = (* —c?) d < 0,

which shows thathe temporal axes of physical Galilean frames dietimelike, and
consequentlytheir spatial axes will all be spacelikéWe then see the appearance of a
more concrete interpretation of the distinction betwadimelike quadri-vector and a
spacelike quadri-vectothat was pointed out in the preceding no. A charatieri
property of the former kind of quadri-vector that existegain “proper” Galilean frame
in which its three spatial components are zero, and radeaistic property of the latter
kind is that there exist certain Galilean frames inclwhihe temporal component is zero.
Three linearly-independent spacelike quadri-vectors definenigue proper Galilean
frame (up to a rotation of the spatial axes), naméby,one in which the temporal axis is
orthogonal to the other three, and the temporal conmisad the latter are all zero. Two
instant-points — or events — that can be localized asdhge spatial point will define a
timelike quadri-vector, and two events can appear to beltsineous will define a
spacelike quadri-vector; the converses are obvious.

As a result of the restricting hypothesis that tiates into the inequality (6), one sees
that the sign of the temporal compondht of a timelike quadri-vector is the same in
every physical Galilean frame, and that propertycigracteristic. If one is given an
instant-pointO as an origin and considers the two sheets of the t@tehas that point
for its summit and isotropic generators (in the sehsé¢ was defined no. 3) then the
universe will be found to have been divided into thesgans: The interior of the upper
sheet contains the extremities of timelike quadri-vectdiese temporal component is
positive, and is called thiuture region The interior of the lower sheet contains the
extremities of the timelike quadri-vectors with negatteenporal components, and is
called thepast region The exterior of the two sheets contains the extres of the
spacelike quadri-vectors, and is called uhphysical region.

In particular, the temporal axes of all physical ®ah frames are oriented into the
future. That will permit one to say thiamne flows in the same sense in any real Galilean
frame Thus, as was said before, in relativity, one findgha same time, a very neat
distinction between the concepts epace and time which are now depicted as
equivalent and a mathematical formulation of the irrevergypibf time. The preceding
statements, as well as the inequalities (6) and (14)xtibate various consequences of
something that deserves the name ofg&eond principle of relativity. That principle
was initially stated with the aid of the formal demaaéiphysical reality and the fact that
the transformations must define a group.

Remark: The quantitieso; and /3 are related to the angibetween two temporal
axes by the formulas:
(11.16) cosf=o0; =1, pB=-itané.

() When that expression is applied to a pure imaginary dyaitsi sense will be self-referent.
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(16;) results from (13. Theangle @is pure imaginary.

[1.4. —Some other relativistic principles.— We shall now state some principles that
will prepare us for the passage from kinematics to resaigvphysics.

1. Certain phenomena that are ideally capable ofjlqgenfectly localized as points
in space and time have the property that they can losviedl in the course of time. Their
other properties evolve in a sufficiently continuous marihat one can recognize the
“same” phenomenon at successive instants. As very temoexamples of those
“persistent phenomena,” one has the classiakrial pointthat is endowed with mass,
as well as the classical fluidolecule or a geometrical material point of that fluid in its
motion.

In the universe, @ersistent point-like phenomenalescribes drajectory 7 that is

curvilinear in the general case of an accelerated mofiww, it is an experimental fact
that has been made intdundamental postulatby the theory of relativity that there is
always an objective Galilean frame in which the persigdaenomenon is at rest at a
given instant. It is theroper Galilean framgwhich is also calledomovingor tangent
because in ordinary space, its motion will be tangetitabof the point-like phenomenon
in the sense of rational mechanics, and its temporaldveods will be geometrically

tangent to the trajectoffjof the phenomenon.

Henceany persistent point-like phenomenon is, at each instant, the virtual ofigin
Galilean trihedron in objective spacdt follows that all of the properties that are prdve
for the origins of Galilean trihedra will extend to gistent phenomena, and notably that:

@) The speed of propagation of any objective phenomenon cannot exceed the value c.
P The world-trajectories7 of objective phenomena are timelike, and their
curvilinear abscissas are constantly-increasing functions.

2. Now imagine a point-like observer. It is a “peesst phenomenon” that is
endowed with the preceding properties and which possessistieoce, moreover.
Relativity poses thtundamental postulatiat the framework of space and time to which
the point-like observespontaneously refers the phenomena that he is awaneist be
the tangentsand thenormal three-dimensional hyperplanagspectively, to his world
trajectory. Any material point is considered to beugeed by an observer, and one says
proper timeand proper spaceof the material point to refer to the preceding twwedir
varieties, which are subtended by the temporal @xfsand the three spatial axés¢,
respectively, of the instantaneously-comoving Galileaméra Theduration of the

accelerated material poinis obtainedby integrating over proper timdZ, or what
amounts to the same thing, the curvilinear abscissa:

(1.17) ds=icdr.

3. Relativistic physics can be interpreted in term®of-dimensional geometry, and
its equations will refer to space-time tensors, vectamns scalars. Of course, the usual
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relations must be recovered from the new relatioas ¢an sometimes be predicted, at
least in the first approximation. In any event, theiotes algebraic components of a
tensorial relation must all be physically interpreteguch a manner that the quantities
implied are presented with the desired real charadtkee. latter result will be achieved as
long as one respects the followinge: Any component of a world-tensor will be real if it
contains the inde® zero, two, or four times, and pure imaginary if it contains it one or
three times.In particularthe homologous components of two dual antisymmetric tensors
will be real in one case and pure imaginary, in the other.

B. —VARIOUS APPLICATIONS OF AND EXPLANATIONS
FOR THE NEW KINEMATICS

[I.5. — The Lorentz-Poincaré formulas. Minkowski's hyperbolic universe.— For
the sake of completeness, we return to the considesathat permitted us to write
formulas (8), (10), (13). Upon assuming that the spakat are mutually “parallel,” in

the language of ordinary space, and taking the diagonalixmafrnine o, into
consideration, we can write (3)jthout the summation conventjan the form:

X'=0'x'+9"X =1-(@,")’x"+9,"X,
o4 — =u =4
X'=->705,'x'+9'X.

The sign in front of they will be + if the homologous axes have the samesesen
Taking (10) and (13) into account, those equataamsbe written:

u Xu [1+ﬁu2_ﬁ2+vut _ Ct+ﬁ|}
(11.18) X = , Ct= —;
J1-3 J1-3?
the inverse equations are obtained by changing tbe) into —v (or— ).

In the case where one takes the spatial axtsand 0 X"'to be “parallel” to the
relative velocity, in addition to the preceding byipeses, one will have:

ﬁV:_BVZO, ﬁW:_BWZO,

S0 (18) and their inverses will take on the foriat thas become quite familiar today:
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L,:x+\/Jt’ )(J:x—vt’
1- 32 1- g2
(11.19) o )
X = , X =X,
t__—t+vx”/c2 t_T—v‘X‘/é
J1-5 1-p5

As we said, those equations were obtained from Loremtz Poincaré in their
interpretation of Michelson’s experiment.

In some applications of the preceding “planar problemis advantageous to utilize
some formulas that make the relativistic symmetry betwspace and time more
apparent than (19) do, and meanwhile refer to nothing but reables. To that end, it
is natural to set:

(11.20) X=X, y=ct
and
(1.21) o =0, =coshg, G =0,'=- 0} =-0, =sinhg,

which will lead to the formulas:

(11.22)

X = xcoshy + y sinlp Xx= Xcoshg -y sinky
y = xsinh¢ + y coshy

y =—=Xsinhg +y coshy

Figure 2.

If one then considers two equilateral hyperbolas tha¢ hla same asymptotes and
the same moduli (which is taken to be 1) for their &hi-axes then each pair of
Galilean axes will be represented by a pair of conjugaenetiers, and the director
vectors of each axis will describe the corresponding fiogde. A double mesh of such
hyperbolas will provide the standard of length for the deceand timelike world-
vectors, and a double mesh of their conjugate diametérbkewise provide a standard
for the measurement of the angle between two worltbyvec
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That hyperbolic model for the universe is advantageous evieenone must
effectively draw a figure. One explicitly recovere ttiireepast, future, and unphysical
regions that were defined previously. One has the refatio

(11.23) f=tanhg, O=i¢

between the real parameigin (21) and (22) and the parametthat is defined by (16).

[1.6. — The slowing of clocks. Lorentz contraction. An expressiofor the four-
dimensional volume element- Consider two successive events that happen at thee sam
material point along its motion; for example, two ssstee beats of a tiny point-like
clock In the proper Galilean fram®X', they will be separated by a certain proper time
interval Aty = At = AX*/ic. One assumes that the time inteivalis sufficiently brief
that the corresponding arc of the world-trajectoayn be considered to be a small line
segment. In any Galilean fran@x, with respect to which the material point has the
reduced velocityS at the mean proper instant considered, the profectf the proper
interval Aty ontoOX* will have the value:

(11.24) At=of D= —2o

At is greater thanty, becausen; = cos@is greater than unity.

That phenomenon ofhe slowing-down of clocks by their motiowhich is a
phenomenon that ielative to the Galilean reference system, is one of thetrdeect
consequences of the new kinematics. It maniféesedf quite neatly in the elongation of
the mean lifetime of thmesonin cosmic raysg5, 86).

Now consider two material points that are simwétausly at rest at two distant points

P and @ in a certain Galilean fram@<X'; for example, they might be the extremities of
a yardstick Those two world-points will generate two recidar trajectories that are
parallel to the axisOX*, and their simultaneous spatial manifestatiprandq in an
arbitrary Galilean fram©X will be the traces of those lines in a hyperplghe const.
Sinceo; = cosd#is greater than 1, the vectgr p will have a length that is less than or

equal to that ofj — P.

Decompose the vectar— p into components that are “parallel” and “perpentic’

to the translation velocity. By arguing four-dimensionally, one will efforsigly see that
the transverse component has the same length did &t rest, and the longitudinal
component will be contracted by the ratio:

(11.25) AX = AXyJ1-5° .
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For example, a body that presents itself as a messniligid sphere in a certgmnoper
Galilean frame will appear to be an ellipsoid that ftet$ened in the direction of motion

by the ratio of\/1- 3 in any other frame. If the velocity of the bodgncattain the

valuec then it will reduce to a disc that is normal te thisplacement.

That is the contraction of material lengths thairdntz and Michelson quite
justifiably imposed upon the elements that compribe Michelson interferometer, when
it is explained by a purely kinematical theory, ahd¢an be considered to be verified
directly by the experiment in question. In Lorestpriginal way of thinking, that
contraction, which was assumed to be absolute,attebuted to a physical effect of the
ether wind. However, due to the fact that the btweformulas, when completed by
Poincaré, will become those of group, that wayharfking is not admissible, because the
Lorentz contraction will becomeeciprocal and consequentlyelative Two Galilean
observers that are animated with respect to edwr otith a velocityw and each make
use of two equal rules of measurement when onageses them at rest will each find

that the other’s ruler has been shortened by the K%ﬁ— [° when they compare the

lengths in motion when they have been placed “fedtab v.

Now consider a material droplet inside a movingidfl and letdu denote the
evaluation of a volume that is made at a giveramtsin a certain Galilean frame. L&,
be the “proper” value odu; i.e., the value thadu takes in the Galilean frame that follows
the mean point of the droplet. Moreover,debe the evaluation of a certain “proper time
duration” dtp that is attached to the mean molecule of the dtoplt results from the
preceding that iBu anddt vary according to the law:

(11.26) dt = dy A= g +1- B2

then the producfu dtwill be a relativistic invariant. Obviouslig Au dtis the evaluation
of the elementary four-dimensional volume elemeéd {Ix, dx; dxs], or more precisely,
its dualic dw

(1.27) ou dtzéa)E%[d)g dx dx dj.

In the course of this book, we will often appealtat formula.

[I.7. — The composition of velocities in relativity. The Fresnel-Fzeau law of
dragging. — Recall thatthe laws of classical kinematics are integrally conserved by
special relativity inside a given Galilean frame.

The present problem is the following one: If osegiven three spatial Galilean
trinedra (1), (I1), (1), and one knows the veltesv, = v (llI, 1) and v1 = v (ll, 1), then
find the velocityv = v (lll, ). Formulas (3) or (19) permit one to ttaaat problem
completely, and one confirms that the relativisterection has second orderfnandf;
in comparison to classical kinematics. Here, wadlsheat the case of parallel velocities
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vi andv,, which leads to a very interesting physical applicatimat was pointed out by
Von Laue p1].

The composition of two world-velocities relative aoGalilean trihedron translates
into the “product” of two quadrihedral rotations whose magies are defined by the
anglesé and &, which are coplanar here. One will then have:

tang, + tarng,

tanfd=tan @ + = ,
G+ &) 1-tang, targ,

and thus, theelativistic law for the composition of parallel velocities:

(11.28) v:%:(\/ﬁvz) A-B+..)

Naturally, that law is symmetric m andv., and it will coincide with the classical law
up to second order & andg; .

If one of the velocities — for exampbe, — equalsc then one will find thav = ¢, as
would be necessagypriori. Hence, any velocity, when composed with the ligngipeed
¢, will once again give the limiting speed c.

Now suppose that the velociy is the speed of propagation of light in an isoicop
material medium of inder that is at rest in a certain Galilean frame andaturally
taken to be a reference rigid body for the evatunabf that velocity. From classical
optics, one has:

Vo =

=l o)

in every direction.

Now, if vi = v denotes the speed of translation of the mediurh vaspect to an
arbitrary Galilean frame then the longitudinal \edwf the speed of light relative to the
latter frame will be, from (28):

,_clntv (c j( v j
C=z=———— =|—+v 1+_+... .
1+tv/nc (n nc

Upon retaining only the first two terms, one wilcover the celebrated law that was
stated by Fresnel on the basis of Arago’s expertiraed verified directly by Fizeau later
on:

(1.29) ¢ :Eiv(l—izj.
n n

According to Fresnel, the term/ n? accounts for thelragging of the etheby the
transparent body. Basicaltyye old experiments of Arago and Fizeau, even befat of
Michelson, were experiments that virtually revealled laws of relativistic kinematics,
and were justly entitled to a purely kinematicaplexation. Fresnel's idea of the
dragging of the ether by transparent bodies, likeehtz's idea of the contraction of
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length by the ether wind, were only provisional expedieats] not very satisfying in
their own righta priori. Each of them, while asserting the existence oéther, had the
goal and the effect of rendering it experimentally inaside.

11.8. —Some words about the kinematics of rotating rigid bodie§'). —

1. To begin with, consider a continuous set of matgmanhts that define a rigid
body P that rotates with a uniform angular velocyaround a fixed axis when it is

referred to a certain Galilean systéin To abbreviate the discussion, we shall call that
rotating rigid body gplanet. We demand to know what kind of geometry (or, if one
prefers,geodesy that theinhabitantsof that planet (which are assumed to be point-like)
will construct for themselves.

First of all, theplanet P will be considered to be a rigid body by itdhabitants
indeed, letp be a point that follows it. In the spatial domaintleé inhabitant that is
stationed ap, take three local axgsf;, which isradial, p &, which istangential and
p&s, which is parallel to the axis of rotation, wartical. The standards of lengg®€, and
pé; for that inhabitant will be the same as they aretierGalilean observer that regards
the planet as turning. By contrast, from the fact afelntz contraction, the standgré:

will be 1/,/1- % times greater for the inhabitant of the planentitas for the Galilean

observer. One has:
_w

(11.30) Jij ,

c

in whichr denotes the radius of tiparallel that is described by when it is evaluated in
the Galilean framé&j. Since, on the one hand, the three spatial p&&S5& move with

‘P, and on the other hand, the Lorentz contractiorstamtly affects only the axss, in

the same way, the matter of the planet will indeeem to be indeformable to the
inhabitantp. He cannot exhibit the rotation of his planet fnyrely local geodesic
operations. Nonetheless, from the principles ttraty, that rotation will certainly have
some absolute kinematical consequences.

Now suppose that ounhabitant sets about the step-by-step measurement of the
length and radius of a parallel on his planet, avlpifovisionally assuming that he has
characterized that parallel, moreover. He wiltlfin

(11.31) =0

for the length of that parallel, in whidh denotes the length that is measured by the
Galilean observer. Similarly, he will find:

() For a theory that is phrased in terms of generativitly, the reader can refer to P. LANGEVIN, C.
R. Acad. Scil73(1921), pp. 831ibid. 200 (1935), pp. 48ibid. 205(1937), pp. 304.
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(1.32) r=ro
for the radius. Since one will certainly have:
lo = 2719
in the Galilean framéy, the inhabitant oP will find the relation:

2
J1-afr?ic?

between the length and the radius of a parallel. &l¢he geometry that is valid on the
planet is not Euclidian(Ehrenfest and Pfaff), and one will see tlsaime extended
geodesic operations that are performed on the planet will permit its itambi(who are
assumed to be familiar with the theory of relativity) to deterrthireaxis and the angular
velocity of the absolute rotation.

But that is not all: Complete the trihedrpd, with the temporal axipés that is

tangent to the world-helix that is describedySince the congruence of helices p does
not admit an orthogonal trajectory, there exists no system of world-cttedi that are
coupled with the planet and realize the separation of space and time xtesuled way.
It is obvious that a coordinate systénwill be calledcoupled with the planet the three
equationsé, = const ¢ = 1, 2, 3) define a world-trajectory for a point of fflanet. It
follows from this thathere is no time that is valid for the entire planet collectivblyt
only a local timeat each poinp. As a corollary, one sees thalativity rejects the
classical notion of a rotating body as an absurdity.

We leave to the reader the task of verifying that if twieabitants of the planet
traverse the same parallel in the opposite senses thgthsame speed, which is
measured with respect to the Sun with the aid of tlespective chronometers, then
when those inhabitants return to their common stagwigt po, they will disagree with
each other by:

W
c?

AIZZO

in regard to the length of the parallel, such that tleeex will be found by the one that
travels to the east, and their returnggawill no longer be simultaneous, but will differ
by:
At :AI or At = 4“1W,
w C

in which 4 denotes the area of the parallel that is evaluatedeb§alilean observer.

2. Another important problem is concerned with the hiagcs of a rotating rigid
body: What will happen when one takes a rigid b&dyat is initially at rest in a certain



B. — Applications of the new kinematics. 39

Galilean framgg, and one progressively puts it into uniform rotation et game frame?
Let | © andr © denote the length and radius, respectively, of a futarallel of P when

evaluated irg, so one will have:
19=27r°,

Now put the bodyP into rotation. When viewed iy, each element of the parallel

will be subject to the Lorentz contractidfnno tension is applied to its extremitieend
the circumference will then collectively suffer aldcation at any arbitrarily fine scale.
However, one must naturally think that the cohesion atten would be opposed to such

a phenomenonPutting P into rotation must then cause a tension to appear along each

parallel, which is a tension that will be easy to calculate aadunction of the
corresponding elastic modulus of the matter, as wellhasformula for the Lorentz
contraction. Those tensions of relativistic origihose value will increase witB and

therefore withr, will tend to shorten the circumference of the dalsl and thus, to
contract their radir. They will then induce radial, centripetal forcascording to the
process that is well-known in artillery by the nameslofinking (frettagg. If the matter

of P possesses neither radial cohesion nor mass densityh(vghém entirely schematic

case) then no force could oppose the tensions consideinazh will cancel themselves
after having transformed the initial lendthinto:

(1.34) lo=1°%/1-5%,

and consequently, the initial radiu$ into:

(11.35) ro=r°J1-53°.

With that schematic hypothesis, one will then have:

(11.36) =19, r=r’/1-5%,

in whichl andr always denote the results afrveyshat are made by anhabitantof P.

We also remark that if one takes the expressiof @04 into account then one will
have:

(11.37) lwr |=—% <,

2
1+4-C

2
Wi,

which shows thatipon communicating an arbitrarily large angular geity to a rigid
bodyP that is initially arbitrarily large, the linear spad will remain less than c at every

point of P.
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In reality, neither the forces of cohesion nor ¢katrifugal forces of inertia of matter
on P will be zero. They will largely surpass the very weadntripetal forces of
relativistic origin, which remain far below the scafeany possible experiments.

[.9. — Theory of the Haress and Sagnac experiments— The almost
contemporaneous experiments of Harress (1912) and Sagnac (l©&3periments that
have first-order inB, and therefore do not permit one to distinguish betwesssicial and
relativistic kinematics, so they will answer to tl@em® theory. There is some interest to
proving the absolute character of rigid rotations by opjust, as the Foucault pendulum
experiment did by dynamicd)(

In those experiments, one causes two optical ragfstthverse the same material
circuit in opposite directions to interfere when theyhbioilow the uniform rotation of a
disc, and the circuit is composed of a broken line thdefined by planar mirrors. In the
Harress experiment, the light traveled through prismsndéx n that followed the
rotation, and in that of Sagnac, through air, which @pweads to a vacuum. When the
disc turned with an angular velocity the two experiments showed that dpical delay
At was given by the same formula, independently of ttiexn:

4Aw

c®

(||38) At =

A denotes the area of the projection of the mean cittoihto a plane that is normal to

the axis of rotation, and that mean circuit will bellvdefined if the interfering rays are
thin. We shall justify that result.

Take ararbitrary Galilean framej, and neglect the component of the velocity that is

normal to the disc. Since classical and relativisiiematics are equivalent to first order,
everything will happermt that orderas if the disc were turning as a unit with an angular
velocity waround annstantaneous center Which is the instantaneously-fixed point in
G. Setr =P — |, whereP denotes an arbitrary point of the circdit

By virtue of Einstein’s postulate, the speed of light weél isotropic (i.e., the ether
wind will be absent) in the Galilean frame that inséameously followd? and at the point
P. In the Harress experiment, it equatedn, and in the Sagnac experiment, it veas
One can devise a simultaneous theory of the two expatsrby settingh = 1 in the
Sagnac case.

Now letv be the component of the velocity of the materiahpBithat is tangent td
in the Galilean framg that instantaneously follows an arbitrary pdimf the disc. It
denotes the unit vector that is tangenftthen it will have the expression:

V=(w"r)t=w(r"t).

() One can read a study of the optical effects of a ireesit acceleration of the reference system from
the pen of E. DURAND. Annales de PhysiqR@(1945), 535-544 anithid. 1 (1946), 216-231.
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Along that same axis, and in the same sense, the spégttavill be given by the
Fresnel-Fizeau law (29), which is a direct consequenctheofrelativistic law for the
composition of velocities, and which will give in the Sagnac experimentUpon
subtracting = ¢ from that formula, one will get two speeds of light with respethe
disc, when evaluated in the Galilean frame that instantaneously follows I:

clzg(l—éj, 02:£(1+£j.
n n n n

Consequently, for a small element of the ciralithat is placed aP, one will get the
following two unequal time durations for the tras@ir(always evaluated ig):

d|1:n_d|(1+£+...j’ d|2:n_d|(1—£+...j_

Cc n Cc n

Upon taking their difference, the index n will blanenated to first order,and if dA

denoteghe area of the sectdrd then one will get the following partial expressiton
the optical delay:
_ 2vdI

w(rOa) 4w
c? 2 -T2

fo}
c c?

=2 dA.

One will indeed obtain the stated formula (38) wbeg integrates this alond

It goes without saying that, physically, one does observe a difference in tindg,
but a displacement of the interference fringes tmatesponds to aaptical delayAt.
Obviously, since the optical frequency is the sdorethe two rays at any point that

follows L, the preceding theory will agree verbatim with agument that makes the

number of stationary waves occur explicitly.

One must remark thao first order,the relativistic theory coincides exactly with the
classical theory that one devises by supposing ttatether is at rest in the Galilean
frame that is used.That confirms, in a particular example, the gahassertion that
everything happens in relativity as if the clastkiether were at rest irvery Galilean
frame.

The preceding theory permits one confirm tthegre exists an optical anisotropy on
the rotating rigid body that is proportional to:

a) The distance from the point considered to the pthat is occupied by the
observer.
£ The angular velocityu

That is no contradiction with Einstein’s fundameémastulate, since that anisotropy will
disappear when:

a) r - 0;i.e., at the point that is occupied by the ob=e
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p w- 0;ie., atall points of a “Galilean rigid body.”

Remark: The experiments of Dufour and Prunier.— Dufour and Prunier have
complicated the experiment of Harress-Sagnac type bsticating their closed optical
circuit from an element that is fixed in the laboratand an element that follows the
rotation of the discg2] (*). The theory of that experiment that we proposedrsé years
ago P2 will no longer be suitable when, as the aforememib authors have since
realized, the “fixed” part of the circuit has a compted form that possibly involves
some prisms of indemx.

It goes without saying that the theory of the experinmequestion can be given in an
arbitrary Galilean frame, and by virtue of the genenabty of Veltmann-Potier (or, if
one prefers, by some properties of the Lorentz-Poincangformation), that theory will
not differ at all (to first order) from the classiddleory that one constructs with an
“ether” at rest. Naturally, the Fresnel-Fizeau folarfor the dragging of the frames must
be used for the portions of the circuit that involvesms of index.

Here, we shall give a theory of those experimemsifthe viewpoint of an observer
that is coupled with the disc.

Let ASB be the portion of the circuit that is dragged by the,dis whichS denotes
the point of the disc that is occupied by a window tlegiasates the two interfering rays

at the start and superimposes them when they retunng he the Galilean frame that is
materialized by the laboratory. Two events that hamwemlitaneously at the poings
andB relative toG will no longer be simultaneous for an observer th#iods the disc.
Moreover, their temporal shifit will be a function of theeomoving patharound which
the synchronizing signals circulate. Along the AEB, one will have (to first order):

2 a0 [B _ (B _
C At—jAvds —jA(wr k) = 2wA,

by virtue of the Lorentz formulas, and with the sanotations as befored denotes the

area in which one sees the comoving portia8B of the circuit from the center of
rotation of the disc. Now, if the events considefeandB are no longer simultaneous in

g then the precedingt will remain the expression for the supplementduift shat is due

to the rotation of the disc. Furthermore, if themts in question are caused by a signal
that is emitted by a point that follovi&then the precedingt must be doubled in order to
give the total delay that is caused by the rotatibtine disc. One will then indeed predict
the:

_ 4Aw

at==5

that was found experimentally, from the viewpoifitree comoving observer.

() See also Arch. Sci. Phys. Nat. £8(1946), pp. 73et seq.
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[1.10. — The spatio-temporal frequency quadri-vector. Aberration andDoppler
Effect. Reflection from a moving mirror. — Consider a planar, monochromatic light
wave. The vectorial quantities that characterize jitedd upon the spatial variablgs
and timet by thephasefunction, which is expressed by:

(11.39) ¢="u" —

The @" are the three direction cosines of flght ray — viz., the normal to thevave
planesg (x', t) = const. The constantsandT — namely, theperiod andwave length-
are related to each other by:

(11.40) L=cT.

The phase, which is a pure number, enters intmdtas by way of the exponent of
the numbee. It can only be a relativistic invariant, in sughvay that one sets:

1 [
11.41 A==a, A,=—.
(l41) S T o1 |
Equation (39) transcribes into:
(11.42) p=AX,

and one sees that the fodr are the components of a quadri-vector thasagropic
moreover, by virtue of (40):

(11.43) A A =0.

That quadri-vector, which was systematically coesed by L. de Broglie in his thesis
[163, obviously deserves the name of g8patio-temporal frequendieach of its spatial
components is nothing but the number of waves pérlength in that direction). By
definition, the quadri-vectod; has the direction of the isotropight world-ray. The
hyperplanesp = const. are thevorld-hyperwaveswhich are likewise isotropic and are
both orthogonal tal; and contain; .

2. We shall now give the relativistic theory ofatation and the Doppler Effect by

appealing to the notion of the quadri-vector
Take two Galilean frames whose spatial axes aggaflel,” with their relative

velocity being directed alongx, and&, and apply the Lorentz-Poincaré formulas (19)
to the quadri-vectod; :

(11.44) 3 =A1BA g = AtiBA 1=k, A=A

R N
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If we let o1 denote the cosine of the angle between the rayrencetative velocity then,
by virtue of (40) and (41), we can replatewith i A; / a1 in (441), and then divide both
sides by:

+\/)_l22+)_|32 = +\/)|22+)|32 ,

One brings about the cotanger)s and y. of the angles between the ray and the relative
velocity, and one will get theelativistic law of aberration:

_1+8lay

Ny

If the plane waves emanate from a distant sourdeighfxed in the unprimed system
thena / 1 will be the sine of the angle between the ray aedafiparent velocity of the
source, in such a way thatc / y» will be the transverse component of the velocity along
the ray, namelyg; . The preceding formula will then be further written:

(11.45) X

(11.46) x=AvG

R

and this will coincide with the well-known classidatmula when one letg/1- 8> go

to 1.
If one takes (40), (41) into account, as welllesusual definition for the frequency:

1
(11.47) vz,

and if ;1 always denotes the cosine of the angle betweerathand the relative velocity
then formula (44) can be written:

(11.48) 7= 1rap

Ny

That is therelativistic law of the transformation of frequencie., the Doppler Effect.
Always assuming that the plane waves emanate frdistant source that is at rest in the
unprimed systema 8 will be nothing but the radial component of thedueed
translational velocity — namelyg — and the preceding formula can be further written

V.

(11.49) y=_tB_

This will agree with the well-known classical forfawhen one letg/1- 5° go to 1.
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In the early days of relativity, one could find thag thew explanation for aberration
and the Doppler Effect was less simple and less dihact the old one and invoke the
analogy with sound in which the old explanation was g#da Indeed, that analogy was
not correct, because sound propagates in a medium thdwe bery fact of its existence,
defines a privileged reference system. If one then renthetshe so-called absolute
velocities occur in the classical formulas only to first ortle#n one must concede that
aberration and the Doppler Effect speak in favor of relativity, and not agijrag least
to first order.

But there is more:Some recent experiments have permitted us to exhibit the

intervention of the relativistic factot/1- 8°, which expresses, in short, tBlwing-
down of clocks.Recall formula (49). Set:

=0

in it; i.e., suppose that the velocity of the s@uicnormal to the direction of observation.
One will get:

(11.49) yp=_—2

which is the formula for the transverse DopplereEff which is a relativistic effect that
was not predicted by the classical theory; in #tiet, one simply sets:

vV =vw.

Now, the recent experiments of lves and Stilwe8, [84, 86) have permitted us to exhibit
the transverse Doppler Effect, which is a secomt&oeffect that is in perfect accord with
the relativistic formulas.

If one sets:

G=xpB

in formula (49) — i.e., if one considers a source velocity tlsgpurely radial — then one
will get the relativistic law for the purely-longitlinal Doppler Effect:

(11.49") =L
158

which differs from the classical law by a factorwglgl— 5.

3. We shall now study the aberration and Doppl&edE that are obtained by
reflection from a moving mirror. In the classidaioks on relativity, that question, like
the preceding one, was generally treated by mebakectromagnetic theory, which has
the inconvenience that it masks the purely-kinecaatnature of the problem to some
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extent {). As before, we shall argue directly on the bakth@ law of transformation for
the quadri-vectoA .

In classical optics, the set that is composed of at{i&e source that is fixed in the
reference system and a plane mirror that translaitssancomponent of the velocity
that is normal to that mirror is equivalent to a pdike-sources that is symmetric ts at
each instant, and thus animated with a velocity wf.2 We shall show that those
properties persist in relativity to first order.

First, take a Galilean frame x X X3, t that is fixed in the mirror, witlpx, being
directed along the normal. From Descartes’ first, lalae planes of incidence and
reflection will coincide; letxs = O be that plane, to simplify matters. From Dessart
second law, the angles of incidence and reflection wéllequal. Finally, from wave
optics, there will be conservation of frequency. tha proper system of the mirror, the
two quadri-vectorsA' and A", which relate to the incident and reflected wave,
respectively, will then satisfy thaoper laws of reflection:

(11.50) A==, A= %20, A=A3 =0, A,=A.

We seek to know what those laws will become in al€zad frame that is not proper.
First of all, we verify effortlessly that a transtan of the mirror parallel to itself that does
not move with the source will leave the classicaldawmaltered. The only second-order
differences between the present reference systenthandne that is coupled with the
mirror relate to a simultaneous alteration of thedaggs angles and the frequency.

We shall now study the more interesting problem o&astiation of the mirror normal
to itself. If we take (50) into account then formuld4)(will permit us to write:

(11.51) E:M X = AP
J1- 32 J1- 32
(11.52) A, = AL A= AIPA
1- 32 J1- 32
(11.53) A=A=h=2, A=A =0.

If one divides the corresponding sides of the equsitinii51), replaced, withi A1 / a1,
as before, and introduces the cotangefiisand Y, of the angles of incidence and

reflection, resp., then one will get theativistic law of aberration by reflection:

(11.54) A X _WiBAIA _1-Bla
. _1 X, 1-ipA /A 1+ﬁ/al’

() In his cited thesis, L. DE BROGLIE used purely-kinenadtiarguments that involved the mass-
impulse of the photon.
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- _1-Bla, _ £ _
-y =—"_"1y =(1-2—+... .
=17 ﬁ/al)(l ( . e

Similarly, if one divides the corresponding sidéshe equations in (52) then one will get
therelativistic law of the Doppler Effect by reflection:

A, _ 1+iBA 1A, _1+Ba,

(11.56) = - :
, 1-ipAlA, 1-Ba,

_, _1-pa, _ _

V= v=_01-28a,+---)V.
T+ e =200 )

If one compares (46) and (49) then formulas (5¢) @5) will show that:

1. In full relativistic rigor, there is no equieaice between the relations that couple
the directions and frequencies of incidence anaedn with the relations that couple
the “proper” and “relative” directions and frequessc

2. One recovers the classical equivalence to dirder, so translation of the mirror
normal to itself with velocity, can be replaced by the fictitious translation oarce
with velocity 2, .

[1.11. —The stationary world-wave. The formula for the retarded potatial. — In
this number, we shall make two brief series of mkdhat are independent of each
other.

1. The well-known equation:
Y =asin 277i sin 277ﬁ
T L

is that of a stationary wave that results from sbhperposition of two sinusoidal waves
with the same amplitude, peridd and wave lengths L that propagate in the opposite
sense along the same Galilean a%ig,. Those quantities ardare coupled by (40).

If one adopts Minkowski's hyperbolic diagram, ajorith the customary definitions
(20), then one can write the perfectly symmetripression:

(11.56) w=asin 277%sin 277%

One sees that thetationary world-wavewill admit two series of nodal lines that form a
grid that is orthogonal to the square mesh. Tineltke ones are the world-trajectories of
the ordinary nodes, and the spacelike ones comesfmothe instants=y / c, where the
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entire axisx; = x is at rest. In that way, one can consider theostaty world-wave as
defining its proper Galilean frame in an extended manner.

2. If 8] always denotes the d’Alembertian operator then congigeequation with
the well-known form:

(11.57) dA=a

which presents itself in the course of studying numerougtiegsaand in whiclA anda
are two tensors with the same rank. By definitioe, titnsora is the source density,
which is generally non-zero only in the interiors @rtain space-time domains. It
generateghefield tensorA at any instant-point.

As one knows, Kirchhoff gave the general equation (57%ohéion:

A== [ffia &,

iyr

in which, if the instant-point at which one calcula#ss taken to be the origin, to
simplify, then fa} will denote the value of the source at the currentaimspoint whose
distancer and temporal precedentavill be related by (5§. One will then obtain the
solution that is called theetarded potential. Mathematically, the solution (88 which is
called theadvanced potentialwould be just as suitable, but one cannot know its phlysic
manifestations:

(11.58) r=-ct r=+ct

Physically, if the sourca is thecauseof the tensolA then theretarded potentialwill
translate into the existence of a causality of the tha¢ is usually invoked in order to
pass from the past to the future, while #tvanced potentialepresents a causality that
will point from the future into the past, which is engranconventional.

That being the case, one must verify that formula (87tovariant from the
relativistic viewpoint, and consequently that the expresdioir is an invariant. Always
let " denote the three direction cosines of the diredtian links the origirk = 0, where
one calculated\, to the current source point, and introduce the paisaifopic quadri-
vectors:

(11.59) r"=a"r, rg=xir (@ a,=1).

The — sign corresponds to the retarded potential, and $lgg;+to the advanced potential.
Similarly, if du denotes the ordinary volume elemeai; [dx; dxs] then introduce the new
pair of isotropic quadri-vectors:

(11.60) ca'=d" A, cat=+id,

in which the — sign must be taken in the case of tteeded potential, and the + sign, in
the case of the advanced potential. The two homalgaadri-vectors anddU' are, by
definition, collinear and, at the same time, orthogofnam the fact of their isotropy. In
world geometry, the quadri-vectat represents the segment of the generator of the
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isotropic hypercone that has its summit at the ingtamtt where the one calculatés
and passes through the instant-point where one considefbie quadri-vectoic A is
the dual of the three-dimensional volume elementithaarried by the sheet in question
of the hypercone at the instant-poia}.( Therefore, all of the notions that were invoked
have an intrinsic significance in world geometrgu / r represents the ratio, not of the
lengths of two collinear quadri-vectors (since they aodropic, so the lengths will be
zero), but of their homologous componends./ r is then indeed a relativistic invariant.

Under those conditions, in relativity, we agree tatevthe formula for the retarded
(or advanced) potentials in the form:

(11.61) A:%T.m a{?},

in which the symbol { } is supposed to simultandgusuggest that it is a relativistic
invariant and direct attention to the significarafethat invariant in four-dimensional
geometry; i.e., to the effective fashion by whicteperforms the calculations.

[1.12. —The world quadri-velocity. Examples of the effects of madvn. — Consider
a material point of the universe (viz., an isolateaterial point or fluid “molecule”) that

describes a time-like trajectoffi If V! denote the three components of its ordinary
velocity then introduce the quadri-vectt that is defined by:

(1.62) Vi=aVv, V'=im, | a=——, Viv=-¢.

In the universeg is nothing but the cosine of the angle betweertahgent to7 and the

axis OxX' (egs. 13 and 16), in such a way thatltifdenotes the projection of the proper
time intervaldr onto that axis then one will have:

(11.63) a=—.

The preceding definitions of the quadri-vectdnhen condense into the form:

(11.64) V! =id>& (i=1,2, 3, 4.
dr

Now suppose that one attaches a tensor to thedqinec material point that enjoys
certain properties with respect ¥o'. We then direct our attention to three simplessas
that will be found to be applied several timeshia tourse of this book.
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Quadri-vector X that is tangent to the world-trajectory. This case is
characterized by one or the other of the relations:

(11.65) VIX'—viXi=0,

Xl XZ X3 X4
- b de  dé
One then concludes from this that:

(11.66)

(11.67) x“:x“:—ﬁ or X =-iBX,.

That relation is notably encountered in the contefkthe quadri-vectors oélectric
charge-current density' £ q \V, j* =ic q (no. 11.5) andfinite mass-impulse’s= mV, p* =
ic m (no. IV.7). One can say that the ordinary spatedtor X is “generated” by the
velocity of the “scalar’x®.

Quadri-vector X' normal to the world-trajectory. — This case is characterized by
the relations: _ _
(11.68) XivV=0 or X dX =0,

from which, one concludes that:

Xy dxX' + X, dx = (X, BY +i Xs) c dt=0,
or

(11.69) X* =i(X D).

That relation is notably encountered in the contefxthe power-force density f (nos.
l1.7 and 1V.3) and in the theory of the Dirac elem, in the context of thepin density

g.

Frenkel relation. — Consider a second-rank antisymmetric teddae — X' such that
one has: ) )
(1.70) Xivi=0  or Xidx=0.

It is equivalently characterized by the fact thatthree components™ = — X * are
annulled in the comoving Galilean frame and thé fhat one can exhibit the first three
of (70) explicitly by: _

X dx = X" dy, + X" dx = 0.

The last of (70) is specified by:
X% dx =X*dy, =0,

and that will show thaany of the fou(70) (in which X denotes an antisymmetric tensor)
is a consequence of the other three.
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Now, introduce the two spatial tri-vectors:
Y= X" iz =x"

The preceding relations then give:

YYdX =Y d¥+ ¢cZ dt0 or |Z=Y 0p,

(11.72)
Z,dx' =0 or |ZL[B=0.

Here, one can say that the tri-vecibris generated by the velocity of the tri-vector
according to (74), with (71) as a consequence. Inthe case of a mediumsteadowed
with magnetic polarization, but not electric patation, when it is at rest, that relation is
known by the name of tHerenkel relation[121].

C. —-GENERALITIES ON RELATIVISTIC PHYSICS

[1.13. —Integration elements of various orders and their duals— LetP be an arc

of an arbitrary line that is drawn in the universé.A denotes an arbitrary tensor then
consider the curvilinear integral:

LAd)g.

(Of course, one can assume that one of the inditAgs contractedwith the index of
the integration element.) A frequent special casthat regard is concerned with the
world-circulation of a quadri-vector'A

LA‘ dx .

If the arc-length elementx is timelike then there will exist tangent Galilean frame
in which the differential reduces to its component:

Adxy=ic Adt
If the arc-length elementx is spacelike then there will exist a double irfide of
Galilean frames (which are characterized by theldvdirections of theirOx, axes) in
which the temporal component of that different&abnnulled. In particular, the element
of circulation of a quadri-vector will then reduieits spatial part:

A dx, = A [Mx.

Now let S be a general world-area — i.e., a two-dimensiaoaVilinear manifold.
One can refer them to a system of two curvilineaordinates and then define two
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tangent quadri-vectors, X and & X at each of their points. Now consider the six
determinants that are extracted from the matrix:

ox ox ox ox
oX O, 0, I,X|

each affected with a sign, and denote them by the Sgrftbd d¥], as was explained in
no. 1.8. It will then be clear that the three:

[dX' dX] = 05",

which are the projections of thex dx] onto the coordinate plan@' x’, will be the
components of an elementary area in the usual s8ns&/¢rld geometry adds the three:

[dx' dX] = ic [HX dt
to them in order to constitute a second-rank antisynenemsor. Thedx' dx'] are the

projectionsof the tensordX dx/] onto the coordinate plan€’ x*.
If, by definition, we introduce the dual of the precediggsor:

(1.72) icos’ =[dx dx]
then we will have:

(1.73) &“zééi o= dX dt

Jor &' always denotes the ordinary elementary area.

Now, let V be a general world-volume - i.e., a curvilinear, thdeeensional
manifold. The preceding considerations can be generalaed, one defines the
antisymmetric third-rankvorld-volumetensor fiX dx’ dxX{ at every instant-poiny, and

its component is:
Au = [dx dx’ dx'] = dxt dxé dX,

which is the projection ofdX dx’ d¥] onto the hyperplang, = 0, denotes a volume in
the ordinary sensé)( As before, the other three components can beenritt

[dx' dx’ d¥] = ic [HxX' dx’ dt,

and they represent thojectionsof the tensordX dx’ dxX onto the hyperplaneg' =
const.

() On that subject, see the remarks that will be madaatein the following no.
(®) On that subject, see the remarks that will be mad@atein the following no.
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If, by definition, we introduce the quadri-vector thatlisal to the preceding tensor by
way of:

(1.74) icou =[dx dx dy

then we will get the following interpretation of itsuiocomponents:

(11.75) ou’ :%Ju, ou" =09 dt
|

A always denotes an elementary volume in the ordisenge. _
We shall now show that the quadri-vect@! is orthogonal to the thregx that
define the fix dx dx]. One then deduces from (74) that:

ic AU % =Y. g,x[dx dx d¥,

in which the sum is extended over all permutatignsk, I, each affected with a sign.
The three right-hand sides are identically zero, sitheg are the developments of rank-
four determinants with two identical rows.

Finally, let D be a four-dimensional world-domain, and consider threesponding
integration element:

(11.76) Sy, dx =5w5%[d>% d% di d.

Recall that in no. Il.7, we explained the physical oeasthat allowed us to consider the
expressiordu dtas representing that same quantity. We can then write

(11.77) ou dxX =Judt

Pre-relativistic physics is in the habit of taking itedlinear integrals — whether
surface or volume — “at constant time,” which is a hiipsis that can only belative in
the new kinematics. If one wishes to preserve thatthgses therone must change the
line, surface, or volume integral whenever one changes the Galilean, feanmhdoy that
itself, if one starts with a well-defined tensor dgnsitenone must change the integral
tensor. That habit of pre-relativistic physics is thereforalisaccord with the spirit of
world-geometry. That is what one encounters at thgimoof numerous well-known
difficulties that relate to the reputed non-tensceladracter of various quantities that are
very important physically, such as, for example, thetdi force, the finite kinetic
moment, and temperature (see no. 1V.1%he difficulties in question are raised when
one renounces the demand of simultaneity at a distance and gives the laeg,sand
volume of integratiora priori and independently of the Galilean framéMoreover,
inspired by the theory of relativity, E. Cartan hagadly shown that it can be interesting
in classical mechanics to argue on the basisonfsimultaneoustates of a system of
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points or a fluid. The profound significance and symmefrthe formulas will emerge
more clearly, as well.

Before passing on to another subject, we insist upon tleaving fact: We just saw
that in world-geometry, the three-dimensional volumeéefined to be a quadri-vector —
exactly as in ordinary geometry — and the elementaeg & defined by a tri-vector. It
then follows thatin relativity, the finite and density tensors that relate to theesam
physical quantity will not have the same variance. The variance ahiteequantity will
be one unit less or more (according to whether there is a contraatiaot, resp.) from
that of the density quantityAmong the innumerable examples of that very important
fact, we give the following ones in advance:

Physical quantity Density tensor Finite tensor
Electric charge Quadri-vector Invariant
Force Quadri-vector Second-rank, antisymmetric
tensor 9)
Mass-impulse Second-rank tensof)( Quadri-vector
Kinetic moment Third-rank tensor, antisym.Second-rank, antisymmetric
in 2 or 3 indices tensor

[1.14. — Generalities on fluid kinematics. The hyper-endcap irggral and the
hyper-wall integral. Definition of the proper — or “scalar’ — volume. Definition of
an incompressible fluid.— The variousnoleculesof a continuous medium (or extended

material points, in the purely geometric sense) generatengruencé of trajectories —
or world-streamlines- that are all time-like. Such a hyper-tube of trajeeso which is
bounded by a hyper-wal that is three-dimensional and said totineelike represents
the evolution of thesameportion of matter in the course of time. Now consi@éehree-
dimensional hyper-endcapof that timelike hypertube; i.e., by definition, itgach that

thedx that are tangent to it are spacelike. If that hypecaps is planar and orthogonal

to OX' in the Galilean frameéOX that is used then from classical kinematics it will
represent the state of a fluid droplet that is folldwe the course of its motion at the
instantt. However, it goes without saying that the notionhefdtate of a material fluid

drop is defined only in aelative manner. By definition,we say that a continuous family

() In a series of very recent papers, J. Schwinger systaihaintroduced the consideration obn-
simultaneous statesf a system into quantum electrodynamics. Even éf physical results that are
obtained do not pertain to the new covariant formulatiais author, it will still remain that the latteas
the advantage that it guarantees the demands of relativégch step in argumemiofe added in prodf

() And possibly an asymmetric tensor (see below, ibg.and 111.8).

() Either symmetric or asymmetric (see below, nol#y.
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of arbitrary curvilinear hyper-endcaps- all of which are spacelike — represents a family

of successivetatesof the same fluid drop whose motion is being follow®d (

The laws of fluid kinematics, whether relativistic atassical, are expressed
essentially by density equations at each instant-poirit ish@ccupied by the fluid.
Naturally, one can infer some integral laws from thigt tare stated for the entire fluid
volume “at the instant’ in classical physics. In relativistic physics, timegral laws

must be stated for an arbitrary current hyper-endtaipat is restricted simply by the
demand that it must be everywhere-spacelike. Given ctiisiderable degree of
arbitrariness in the definition &, it is obviousa priori thatone must demand that the
formulation of the integral laws should be invariant when changes the fafmilyper-

endcapst. Physically, that amounts to saying thalativity attaches no importance and

no objective significance to the instants relative to which theouarmolecules of the
extended medium are considered when the corresponding instant-points dre in t
“‘unphysical” region; i.e., it is impossible to link to them with igreal. That is the
manner by which relativity considers the various partnoéxtended systeat once(but

not simultaneously!).

We have explained the sense in which the current hypeeprftlis said to be

spacelike and the hyper-wal timelike. Now, if one introduces the quadri-vectattis

dual to the elementary volume at any instant-point loys¢ hypersurfaces then we
showed in the preceding no. that this quadri-vector will lthogonal to that

hypersurface. Hencéhe quadri-vectorial volume elemedt' of a hyper-endcag is
timelike(and similarly, the quadri-velocity " at that instant-point)The quadri-vectorial
volume elementu” of the hyper-wallP is spacelike and orthogonal to the quadri-
velocity at that same instant-point, moreover:

(11.78) Vi au”

0.

() Consider the case of an infinitely-thin hypertubed &t A be the evaluation of the elementary
volume that is madsimultaneouslyin the classical manner) by a Galilean observer fared-defined

instant-pointX of the mean trajectory. Leli, be thedu that is found by the Galilean obsergythat is

tangent— or proper, and letf be the relative velocity off and G, . One sees effortlessly that those
constant-time volumdsansform according to the law:

A = d..lo\ll—ﬁz ,
whereas, on the contrary, the fourth component ofgtreglri-vector that is dual to the “proper volume”
ou, will transform according to the law:

a= d.,lo\l 1—,82 .
The precedingu’ is then the fourth component of a different quadriseciWhen we said in the preceding
no. thatic Ai* represents an elementary volume in the ordinary serseetiark that we just made was
implicit in it. When the three-dimensional manifoldtimelike, the difference betweel = ic d* and a
volume that is considered simultaneously in the usual maxitidsecome even more significant. Some
similar remarks are true for the case of the double ssimghle integrals that were considered in the
preceding no.
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Let us say, in passing, that it might seem natural teidenthe case in which the quadri-
vectorsV' anddu' are collinear at an instant-point of a hyper-endgafhat will always
be true under the hypothesis of an infinitely-thin hypertddog,in the case of a finite
hypertube, for that to be true, it would be necessarthicongruenc& to be a normal

congruence, which will be true only in the exceptionaésasThere would be no reason
to attach a general theory to an exceptional sitnatiod that is why one must leave both
of the two timelike quadri-vectorg ' and du' completely independent of each other.
Despite that, in certain inductive studies, it canreresting to consider the exceptional

case in which the congruen€as a normal congruence first, and consequently to choose
au' to be everywhere-collinear ¥ (see below, nos. IV.5 and 1V.6).

During the evolution of the material drépthe hyper-wallP is generated by its two-
dimensional contouf. Like &, that contousS is generally curvilinear, in such a way that

the six components of itedf{ dx ] will occur effectively. We shall then prove the
following relation, which will be quite useful in whatliows:

(1.79) ou'=-gs'dx=-09 Y d.

ic du’” always denotes the dual of the elementary voluméehyper-wallP, ic du'”,
that of the elementary of the contatiof the dropf, anddx =V, dr is the element of the
world-trajectoryZ. Passing to dual quantities, one writes:

[dx dx dx] = D dx [dx dy ,

in which the summation extends over all circular peatiomhs. In the right-hand side,
one has the developments of the components of the-tlmeensional volume that is

constructed from two spacelike quadri-vectdi€ and gx that are tangent t§ and the
timelike quadri-vectodX that is tangent t. That is, in fact, a strongly-suggested way

of defining the volume element of the hyper-will

Now consider an infinitely-thin current hypertube, anddétbe the quadri-vector
that represents the magnitude and direction of its Sgadeypersection. Exactly as in
three-dimensional geometry, one will effortlessly ges thescalar product:

(11.80) ou, =V.ou

has an invariant value when one considers the various hypersections teahpasyh
the same mean instant-point that one chooses in the hyperttibee prefers, it ishe

elementary hyper-flux of the quadri-velocity & the proper instant. In the Galilean
frame Gy that is tangent to the mean streamline at the proptmitr, one will have:
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Ao = Voaduy

which is precisely the definition of the value of thelinary volume ongy, when one

takes (62 and (75) into account. With that, one sees that the invadagalso deserves
the name of thelementary proper volumaside of the fluid. If one multiplies the two
sides of (80) bylr then one will get:

(11.80) du, dr = U dx;,

which is a formula that confirms what we said whenest&blished (27) and (76).

Inside of a material mediurtand also in the case ofmaterial pointwhen one
constricts it and passes to the limit), the definitadrthe proper or scalar volume will
permit one give asecond definition of the finite quantities, thanks to which, those
guantities will have the same variances as the homologous density qudtditdsich
they are even homothetic)n several situations, that definition of the #nguantitiesn
the second wafwhich is not general, by virtue of what was pointed ouhégreceding
no.) can nonetheless be of service.

By its very definition, theelementary proper volumie identically zero on a hyper-
wall:

(11.81) ou, =0.

Again by definition, the integral of the expression (8@r a hyper-endcap will be
called théfinite proper volumef the material drop in the stafe

(1.82) uo:mgviaqzmgauo.

Obviously, the expressiom also deserves the namehgfper-flux of the quadri-velocity
V' across the hyper-endcah

If one takes (81) into account then upon integrating theession (80) over the
closed, three-dimensional domain that is composed ofdifferent states&; and &, of
then same fluid drop and the corresponding hyper-wall elertransforming that into a
qguadruple integral that is extended over the domathat is bounded by the preceding
one, by virtue of the general formula [l, eq. (40)] andnigk76) into account, and finally
orienting the two hyper-endcaps in the same senseveelatithe hyper-streamlineg
one will get the formula:

(11.83) Uo(2) —uo(1) = [ jpaivi DU d, .

One will then see thdhe necessary and sufficient condition for the hyper-flux or “scalar
volume” w to be preserved along the entire hypertube is that one must have:

(11.84) V' =0.
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That will be the definition of arincompressible fluid®) that is suggested the most
strongly by relativity.
In infinitesimal form, formula (83) can also be wrnitte

(11.85) ddo =0 V' o dr,
and one recognizes the relativistic extension of tHekmewn classical formula:
dai=divv D dt

For some of the inductive arguments in Chapter 1V, lit ba useful to consider the
case in which one orients the hyper-section of an tefinthin hypertube normally to the
mean streamline. In that case, the quadri-vedtowill be collinear tov', and we shall

call it du,. If one takes the definition (80) into account, as \aseli(62), then one will
find with no difficulty that:

(11.86) 5ug:—c_125uov or 50(,:—?12\; Vay.

Both of those formulas will be useful to us in whatdolé.

We hope that in the course of the present chapteretdder that was not further
familiar with the theory of relativity would be progsegely elevated, without too much
effort, to an understanding of some particular casebefeneral methods that permit
one to enter into the various domains of relativistic sys

Everything that we said in regard to the arbitrary attaraof the hyper-endca$
must be extended from the case of a flowing fluid togéweeral case of a field, which
can, moreover, include singular lines inside of it tlegresent the material trajectories of
material points.

[1.15. — Fluid kinematics (cont.): Three general formulas that vl be useful in
what follows. — Let ® be an arbitrary function of the fluid molecules. E&laas in the
pre-relativistic kinematics of fluids, one sees that denotes the proper time then the
variation® that is concomitant to the evolution of the fluid smlle can be written:

(11.87) dp=Vv,d'o Mr.

One can equivalently write:

(11.87") ' =V;d ®, with o= di D.
4

() For A. Lichnerowicz, the present definition of incamsgsible fluid is “definition A” 151, 152, 153.
For von Laue, that definition is the definition of a “Hudf least compressibility’4, 8 36]. — It is clear that
in relativity the notions ofigid body andincompressible fluidnust accommodate therentz contraction
of moving volume elements.
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® always answers to the preceding definition, and repies$kea fact that for any of
the physical densities that are attached to the fluid,can write:

(11.88) mgz_%cbviaq = [[[] 0:(@V") By, ar,

or further, in infinitesimal form:
(11.88) d@V' d)=0 (PV') D dr=9; (d V') u dt

That formula constitutes the relativistic symmedtian of a formula that we will appeal
to in no. V.2 in order to establish the relatidslynamics of fluids deductively.

Finally, since, by definition, the fluid quadrileeity V' has constant length [eq.
(623)], one can remark that one has:

(11.89) Vi dkV'=0.




CHAPTER IlI

RELATIVISTIC ELECTROMAGNETISM

[1l.1 — Electromagnetism has known the constasince Maxwell, and experiment
soon verified the relation:

e C,
KZ

in which K; andK; denote the fundamental constants of electrostatidsn@agnetism,
respectively. The classics treatkg and K, as universal constants, in theory and in
practice. By convention, they attributed the dimensioreodand the numerical value of
1 to both of them, which resulted in the alternativénaf systems of units E. S. U and E.
M. U, as one knows. Now, the constarplays a role that is perfectly homogeneous to
that of the constants; andK;. In order to avoid the dilemma of E. S. U and E. MitU
will suffice to attribute the dimensiorero and the numerical value of 1 ® i.e., to
establish the physical equivalence between length anel tiat relativity discovered
much later.

It is now commonplace to say that electromagnetiss relativistic to begin with'.
Electromagnetism is developed directly and effortlebglya simple transcription of the
classical formulas into four-dimensional language. Thg oabelty that presents itself
consists of the kinematical variances that arebaited to the usual quantities. Once the
“absolutes” have been supposed, most of those quantitiebecbme “relative,” and
fusions of them will then define world-tensors.

If optics is the root of special relativity then eleatemnetism is its trunk. It was by
means of electromagnetism that relativity specifiedvidrgances that one must attribute
to the force density and the force, the energy deasitlyenergy, and that brief deduction
will provide the point of origin for all of relativistidynamics. On the contrary, in the
classical epoch, the notions of force and energyedisas their essential properties that
were of interest to all of physics, were obtained bamseof dynamics.

Contrary to a prevailing assertion, we will show that possible (and even quite
indicated) to define thenite force to be a tensor that is called a second-rankt¢b@g.
That will allow us to give a very elegant form to relestic point dynamics as a result.
We shall also deduce a formula that will ultimatelyvseas the basis for our symmetric
presentation of analytical dynamics (Chapter V, 8§ B)assihg from the case of
convection to that of conduction, we shall then speaihat one generally says about
Joule heat from the standpoint of variances. The fasnthat will be obtained will
comprise a general elaboration that touches upon tbelepns of the creation and
annihilation of energy or mass, and one will recaiinthlater on in the treatment of
sources and sinks in hydrodynamics (Chapter V, 8§ A). Ilginalgoes without saying
that those formulas can illustrate the definitiond tiedativistic thermodynamics will be

() Langevin has often insisted upon the fact that elewgnetism collectively affords an implicit
verification of relativity. Indeed, the general equasidhat summarize it, and whose consequences are
regularly verified, are not invariant under Galilei sBommations, while they are under those of Lorentz-
Poincaré.
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called upon to pose (Chapter IV, 8 D). At any rates brief paragraph in which
relativity treats force and energy in electromagnetism will apped&etan essential piece
in the entire theory.

The last paragraph of the present chapter addressesa#weeMelastic tensor and the
couple density that are present in polarized media. Wpopeoto introduce another
elastic field tensor]0g and relate that notion to a couple density that E. idetwok
into consideration]07]. To conclude, we recall the two spin densities forfible that
were discovered by Henriot. That entire paragraph caskipped by the novice reader
in relativity, and it will be returned to only after tleeture in the following chapter.

A. — THE GENERAL FIELD EQUATIONS
.2 — Preamble: Review of the general equations of the Maxwelldrentz

theory. — As usualE denotes the electric field afldenotes the magnetic induction, so
the Maxwell equations with no right-hand side can béteri

(11.4) rME+EgB=O, -divB =0,
c ot

and one concludes from this that the vecterand B can be derived from a vector
potentialA and a scalar potentiglaccording to:

(111.2) B = - rotA, E=gradv+ 19 A.
c ot

H. A. Lorentz showed that one can profit from the aabihess that exists in the
definition of the potentials in order to arrange thaytigould satisfy the condition:

(111.3) diva+ 29y =0
c ot

Now, if P andM denote the electric and magnetic polarization densigspectively, of
a material medium then the electric inductidand the magnetic field will be related
to E andB by:

(111.4) D=E+P, H=B-M,

respectively. That being the casg, dlenotes the current density, apthat of the charge
then the Maxwell equations that have a right-handwitlée written ¢):

(1.5) rotH—EiD:j, divD=cqg
cat

() We shall utilize what one calls Heaviside electronwiig units.
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One immediately concludes the continuity equation ftoat:
(1.6) divj + iq =0.

ot

One also defines the “fine” Lorentz current and chamyesities and the polarization
current and charge densities:

10

(M.7) rotB-——E =j1, divE=cq,
c ot

(1.8) - rotM —EEP:jz, divP=cq,
c ot

in such a way that:

(11.9) j =j1+]2, qQ=0+ Q2.

If one takes the Lorentz condition (3) into accourdn one will deduce the following
equations of propagation of the potentials from formulasu@) (5):

(111.10) OB =ji, OV =c q,

and then upon introducing (2) once more, the equations pagation of the field:
. 10.
(1m.112) OB =-rotj,, OE :gradcq1+—ajl.
C

Recall that Kirchhoff gave to the equation of the type:

Ou=¢
the “retarded” solution:

w=o-[[{e} .

Y is the value of the “potential” that is created &t ploint (0, O, 0) at the instant O by the
“distribution” ¢, where {¢} denotes the value at the pokit=r a" at the instant +/ ¢
(o, a"=1,x ¥ =r%. Inll.11, we analyzed the mechanism of relativigti@riance in
that formula.

[11.3 — Relativistic transcription of the general field equations— We now propose
to put equations (1) to (11), inclusive, into a relativiéhien. If u, v, w always denote a
circular permutation of the spatial indices 1, 2, 3 thenimtroduce the system of six
essentially-antisymmetric componefts and the system of six dual componeBitgi, j,
k,1=1, 2, 3, 4) by the formulas:
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(111.12) E"=iB¥=E", E“=iB"=iB"

One effortlessly verifies that the four formulas (@xd to a single tensorial formula,
which we write in the two equivalent forms:

(111.13) 0,E“=0, > a'B"=0.

From the definition of the quadri-operatdror d; , and as a consequence of formula

(I1.1):
P 10
1114 =2 a=10.
(1h.14) “Tlicat

the summatior. extends over all circular permutations of the threlices. One or the
other of formulas (13) show that the two dual systemsibotomponent&’ andB'’ are
tensors that we shall call tireagneto-electric induction field tensor and electromagnetic
induction field tensomespectively, or M. E .I. F and E. M. |. F, to abba¢ei

By reason of their homogeneity, formulas (14) thenmiterus to define the
electromagnetic polarization tensof Bnd its duaM* by ():

(111.15) -P"=iM*"=-P", -P%“=iM"=iM"

as well as theimagneto-electric electric field tensgM. E. I. F.)H* and its duabD” (E.
M. I. F), by:

(111.16) D™=iH*=D", D"=iH "=iH "

Formulas (4) can then be condensed into one or the atthiee equivalent form:

(n.17) Hi=B"“-M" DY=E“+P.

As always, by means of the definitions (14), one thesilyeaerifies that the four
equations (5) can be condensed into the formula:

() Inregard to that point, we remark that the terminolggyich has been, unfortunately, enshrined by
its usage) ofields andinductionsproves to be troublesome. It is contrary to therdesir both simple
names for relativistic tensors and elegance in theidgfformulas. It would seem desirable, if possible, to
invert the two terms in either the electric or thmagnetic domain and to change the sign of the
corresponding polarization.

We have sought to give our defining formulas (12) and (16)mani elegance, so we have writtidkh
and B', where R. Becker, for example, wrofd and H’, respectively. The letteF hardly seems
appropriate in that position because it leaves behinavélyethatE, B, D, H are used pre-relativistically.
On the other hand, we shall need to reserve it fotemsorial definition of the finite force (cinfra, C).

We have likewise changed the sign in the definitiotheftensoM’ with respect to the symbols of R.
Becker B], in order to preserve the similitude of formulas (a@jl (4).
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(11.18) oH" = j,

under the simple condition that one must set:

(111.19) i’ =icq.

One then sees that the charge dergifyses with the three components of the current
density | to constitute a world-quadri-vector that is called thedri-current §, to
abbreviate. As a pre-relativistic theory, one likewikdines the other two quadri-
vectors:

(111.20) 0B =}, oM“=-j;,
in such a way that one has:
(I11.21) “=iitis

j is called thefine (or hidden) quadri-currentand j is the polarization quadri-

current.
One deduces the E. M. I. F. tenﬁirfro_m one or the other of the equivalent formulas

(113). It is derived from a quadri-potenti] and defined up to a quadri-gradiéht, by

O):

(111.20) B' =90 A -9 A.

With the simple condition that one must set:

(111.23) At =iV,

that formula will condense (2), and show that the quasiténtial A' results from the
fusion of the vector potentidl" and the scalar potentidlinto a single geometric entity.
If one substitutes (22) into (20) then one will get:

(11.24) 9| A -0 A =jf.

A" is defined only up to a quadri-gradient, so one (with Lojeram impose the condition
(3), or:

(111.25) 9,A =0.
Indeed, that amounts to the equation:

9,(A-0U)=0 or U =09A,

() That assertion does not constitute anything besidesethtivistic formulation of what one usually
proves in Lorentz’s theory. Here, we have given itranfdation that is symmetric in space-time from the
proof itself.
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which is classical, and which one knows how to solvlhanks to the Lorentz condition
(25), equation (24) takes the form:

(11.26) oA = jf,

which condenses (10), and which shows that the potentiphgates from the sourdg

with the velocityc. Finally, if one again takes (22) into account thern il likewise
give the equation of field propagation that condenses (11):

(111.27) 0/BY =0' j —0“j..

As for equation (18), which condenses the Maxwell equatwith right-hand side,
from the fact that the tenset is antisymmetric, it will imply the equation of comtity:

(111.28) d,j"=0,

which condenses the pre-relativistic form (6). Onelantyideduces from (20) that:

(111.29) 0,jy =0, 0,j5=0.

Finally, before leaving this subject, we point out thmt ¢uadri-vectot' (or its dual
1
(111.30) I'=9,P* =9,D%, IM=-admMk=>adH",

which is non-zero, in general, is referred to asgnetic polarization current.

1.4 — Examples of new variances in relativistic electromagnetism. Some
important invariants. For example, since it is classical, we give the tdvpartially-
reciprocal transformation of the electric field int@ timagnetic induction by a change of
Galilean frame. In the case of a special Lorerdzsfiormation, one has:

E =Ei, B =By,
o _E-PB o BSE

E;:E3+ﬁBZ’ B;:Bs_ﬁEz

We also point out the existence of the relativisti@anmants:
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-E E'=ByB'=2@*-E?, E; B' = 4E [B, AN =A%\
One knows that the first two of these are zeroénddise of a monochromatic plane wave.
As for the third one, ibx is the direction of the rays of the plane wave tthenknown
relation:
AL+V=0

will show that it is positive, and as a consequencajrthariant considered will be made
zero, and the quadri-vectal will be isotropic ).
B. — INVARIANCE AND CONSERVATION OF ELECTRIC CHARGE

[11.5 — Convection current and conduction current.— First consider an unpolarized,
charged fluid that flows through the universe. In thaecane will have:

Hi =8, =

in all space-time. I¥ or v denotes the usual velocity field of the fluid themnir
Lorentz, one will have the formula (31beside which, we rewrite formula (19):

(111.31) i =qv, j*=icq.

If one introduces the proper charge densggyor the value that takes in the locally-
Galilean frame that follows instantaneously, which ihsbeat:

(111.32) q= —%

as well as the quadri-vectbt that is defined by (11.62), then the preceding formulas will
condense into the form:

(111.33) j'=q,V".

In the case that is presently under consideratiortythejuadri-vector§ andV' will then
be collinear, and one will say that the electrifiedtt@r is in a “regime of pure
convection.”

On the contrary, now take a portion of a conductingl fbody, wheré/ denotes its
guadri-velocity field. We say that the body is in a “negiof pure conduction” if the
charge densityyy is zero, but the current is not at the origin of any locally-Galilean
frame that instantaneously follows the fluid. Phy$ycahat amounts to saying that a
flux of electrons crosses the lattice of positivasidhat composes the conducting body
with a mean quadri-velocity that is not coincident with The mass density of that

() In L. de Broglie’sThéorie du photarthe small, positive value for the invariaht is related to that
of the proper mass of the photon. (Paris, Hermann, 1940pp. 169).
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electronic flux is extremely weak, and one can negdtdata schematic treatment of the
problem, which amounts to considering the quadri-currenthef electrons to be
completely immaterial. As for the nullity gp that is assumed, by hypothesis, it results
from the exact compensation of the electronic chargeitgenghich is moving and
negative, by the charge density of the matter, whiclixéesl and positive. Moreover,
nothing will prevent us from relocating it into the cexitof Lorentz’s theory of electrons
and assuming that the conduction quadri-current results tihenaddition of a fine (or
hidden) quadri-current to a polarization quadri-current idalue to the vorticity of the
hidden charges.

The general case of a medium that is both conveatideconductive results from the
superposition of the two preceding notions. If theredscampensation between the
charge density of matter and the electronic charge tgeinsihe co-moving frame then
the excess of the first will general a convection queatrent that is collinear tv* and
has the type that was studied in the first paragraphallf in the general case, the total

quadri-curreni® can be considered to be the sum of two orthogonal goadents j'
and j"*, the former of which is collinear ', while the latter is orthogonal to it.

[11.6. — Invariance and conservation of charge— As in Chapter Il, 8 C, Lef be the
congruence of world streamlines of a fladf; let £ be a current hyper-endcap (which is
generally curvilinear and space-like) that represents id filwop in space-time and
follows its motion, and leP be the lateral hyper-wall of the tube that is gendraiethe
two-dimensional fluid surfac& of the drops. Always letic du* andic & be the duall

tensors with elementslk dx dx] and [dx dx], such thatc &* = & andic & = &'
represent the elementary volume and area, respectineghe usual sense. Finally, recall
the definition [ll, (80)] of theelementary scalar volumef the hyper-endcap and the
expression [ll, (79)] for the elementary volume of biyper-wall.

Now consider the tensorial invariant:

(11.34) X =ji Ak

On a hyper-endcag, one can give it the form:

(11.35) Q. =0qo Ap.

Moreover, under constant-time integration, its expresgidl reduce to the one that is
well-known in classical physics for the “finite elac charge at the instatit

(111.36) X.=qd.

The same result will be obtained in the local frashéhe field V¥ if the quadri-vector$®
and V are collinear, but will no longer be true in the genesse in which we have
placed ourselves, and that remark is closely attached &p@arent paradox that is well-



68 Chapter 11l — Relativistic electromagnetism

known in Minkowski’'s electrodynamicgl| 8 21.c]. In the general case of an arbitrary
hyper-endcapg, if one takes [ll, (75)] into account then the expresgi86) can be
specified by:

(111.36") N=qd+j, & &,

and the significance of the last group of terms will lgarc They amount to three terms
for the flux of electricity when one takes into agnbthe fact that the infinitesimal drop
Al is not considered in a simultaneous manner. If one rgretieat flux constitutes a
correction for non-simultaneity.

On the hyper-wall P, and taking [Il, (79)] into accoulhte invariantdQ can be
written:

(111.37) - Qp=jx Vi &' dr.

From the fact of the antisymmetry of the tensBf, the necessary and sufficient
condition for A, to be zero is that the quadri-vectgeandV, must be collinear. In the

local proper frame, the expression &J, will reduce to:

(111.38) X, =] Edt

Everything that we just said clearly shows that thesdeal invariant (34), when
calculated on a hyper-endcap element, merits the nameadéctric chargewhosestate
corresponds to material drop, and when it is calculated anyper-wall element, it will
merit the name oélectric flux that leaveacross the contour of the same material drop
between two of its consecutigtates. In the two cases, the expression considered is that
of a world hyper-flux with a quadri-vectorj® that crosses a three-dimensional
hypersurface.

Now consider two successigtates€; and & of the same finite drog; i.e., two
hyper-endcaps that are not cut by a hyper-tube that isdbduaterally by a hyper-wall
P, and integrate the expression (34) over the closed woto— & + P. |If one
transforms the quadruple integral:

11T ot a,

when it is extended over the domain that is enclosdterpreceding one, and finally
takes the equation of continuity into account (28), thaes will get the important result
that:

(111.39) Q-Q=-Q.

The variation of the charge of the drégrom the statd to the state is equal to the flux
of electricity that enters through the contauof £.

The necessary and sufficient condition for onddweQ, = Q; (i.e., Q, = 0) is that
the quadri-vector§ andV¥ must be collinear; i.e., that one must be in amegpf pure
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convection. In that case, the charge on a given rahtkop will be independent of the
manner by which one calculates it. Notably, it will e same for a “classical”

integration at constant time and for a “relativisiittegration over an arbitrag;

C. — FORCE DENSITY AND FINITE FORCE

[11.7 — Theory of the Lorentz force in the convection regime- We shall study, in
parallel, on the one hand, an electrified world-fluidos charge density ¢ and on the
other hand, a rigorously point-like char@e We shall show that an argument that is
entirely similar to the one by which one usually defittes world force density to be a
quadri-vector will permit us to define the finite world-ferco be a second-rank
antisymmetric tensor. Obviously, if one is given theddnank variance of the three-
dimensional volume element then those two notions el formally compatible with
each other. Meanwhile, we see that in order to eshatiie correspondence in question,
we essentially suppose that the quadri-velo¥¢itpf the fluidq tends to a limit along an
infinitely-thin world-tube, and that it will coincide i that of the point-like charg®,
which will then describe the mean streamline of the ,tutW¥e pass to the limit by
constricting the tube, and assume essentially tletcharged that is attached to the
tube (with hyper-flux being conserved) does not vary uticer operation. Finally, we
suppose thad = Q.

Consider the well-known formulas that give the lmreforce density and the finite
Lorentz force when they are applied to the flgdand the point-like charg®,
respectively:

(11.40) f=q(cE+v”"B), F=Q(cE+v~"B).

They imply the consequences:
(n.41) f v=cqv [E, FOr=cQv [E,

respectively. With the single condition that one naest

(111.42) fe=lim,
C

which is a formula that imposes the condition uporgilnedri-vectoff ' that:

(111.43) vV ' =0,

and if one takes the definition (12) for the tenBBI(l) into account then formulas (40
and (41) can be condensed into the form:

() Recall that, for homogeneity of notation, and in orepreserve the lettdf, we write B< and
H"where some authors — notably, R. Beclér{write H andF", respectively.
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(111.44) fk=B"j.

We remark that formula (43), which we have posed by hypisthesa consequence of
(44) and (33). That then seems to be a link betweenanhéypotheses (33) and (43)
whose sense will be made precise in the following n@ndd, thewvorld force density
quadri-vector results from the association of the compsneinthe usual force density
with the power density that it provides. For the ctzdsiheory, only the latter quantity
will be relative.

We shall now make an argument in regard to formulag) (46d (4%) that is
completely parallel to the preceding one. Sir@@eis a scalar quantity (tensorial
invariant), in order to give those formulas a covarfantn, we must first multiply them
by dt. By definition, we set the elementamyppulse-energy quadri-vectathat is
provided by the point-like chardg@ equal to:

(111.45) dp’ = Fudt,  dp =IE.7-"D(M EI—C}"N dt

Formulas (40) and (4%) are condensed into the form:
(111.46) dp*=Q B! dx .

By defkilnition, we then set theorld forcethat is applied to the point-like char@eby the
field B" :

(111.47) F¥=QB",
and then:
(111.48) F'=icF“, K'Y=F"™

One sees that andv * K are the Coulomb force and the Laplace force, resmdgtithat
are applied t®:
F=e QE, vrK =Qv~B.

We say — as always, by definition — thatis theforce andK is thecoforcethat are
applied to the poin@Q by the field, and we see that therld forcewill result from the
fusion of theforce and thecoforceinto just one tensor. It is only the fault of n@iving

introduced the motion afoforcethat the relativists have not further explicitly definbed t

finite force to be a tensor. The relation betweenaty@arent forceF (with no definite
variance), the forcg, and thecoforceK is (49), which results from (49:

(111.49) F=F+vOK, FN=FQ.

If one substitutes (47) into (46) then one wiltaib the purely dynamical relation:
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(111.50) dp‘ = F¥dx

By definition, and to abbreviate the discussion, wierotcall the elementary impulse-
energydp® the elementary quadri-workhat is done by the world-forc® under the
quadri-displacemerdx* (in whichdp' is the elementary work, properly speaking, up to a
factor ofi / c). Always by definition, we say thawo world-forces E and F ¥ are
equivalentfor a quadri-displacement dxf they provide the same elementary energy-
impulse;i.e., if one has:

(111.51) (F* —F“)dx =0.

The transcription of that formula into ordinary language

F'-F+vO(K'-K)=0, v0OF-F =0.

Finally, electromagnetism leads us quite naturally tondetine force density to be a
space-like quadri-vectdr, and the finite force to be a second-rank antisymmtsrisor
FI. Formally, those two definitions are perfectly camtr and it seems that it AU’
always denotes the elementary quadri-vectorial voldr@e bne must expect to verify the
formula:

Fl=tlal-fal

Now, if one takes formulas (44), (47), and (34) into accdbhah one can easily be
assured that the tensor:

(111.52) OF" = fdx — f dx

will differ irreducibly from the tensodF’ that was defined by (47), when one performs
the passage to the limit from a thin hyper-tube of cha@@eo a filamentary trajectory by
keepingdQ constant, by hypothesis. Since the hyper-tube and ttécdfia of its hyper-
section are time-like, to say that the hyper-tube mmitefy thin amounts to saying that
the instant-points of the hyper-section are contaimed guadri-parallelepiped whose
dimensions will all vanish when one passes to the.limit

The inequality of the two tensod"’ and J’" seems difficult to justify on first
glance. Howeverif we appeal essentially to the relati¢n3), which one necessarily
introduces into the present theory, as well as the hgsa (which is necessary for the
passage to the limit) that the quadri-vegtan formula (44) and theX in formula (50)
are collinear:
(111.53) j*dX —j dX=0,

then we shall show that the two tensdi and &’ are equivalent in the sense of
formula(51). _

We first calculate the elementary quadri-wat®'' that is provided by the force
OF "I during the quadri-displacemed¥. If one take43) and (52)into accountthen
formula (50) can be written:
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(111.54) A =f &l dx ;

Au! dx = dwis nothing but the dual of the four-dimensional hyper-va@wefement. In
passing, we make an interesting remark that will find p{glieation in what followsif

we do not consider the antisymmetry to be an essential charactefishie second-rank
world-force tensor then we can say that, in the sense of for(bdlg there is an

equivalence between the tensdks’ and OF that are defined b§52) and:

(111.55) OF) =f'au,
respectively.

Now, take the tensadF’ that is defined by (47). We will then be led to repregeat t
force density by a ternary tensor that is antisymmaetrick:

(111.56) f<=B%j,

and to relate the finite force to that density by:

(111.57) OF* =¥, .

Upon comparing them with (44) and (52), formulas (56) and (5T) skhow the
irreducible difference between the tensdf$ and & ". If we take(53) into account
then the quadri-work that that is done by the fa¥kcan be written, in succession:

dop' =B* dx J' au =B j X A,

and consequently, if one takes (44) into account:

(111.58) dop = floddx = fow

As we have said, that expression coincides with tiee(64) for the elementary quadri-
work that is done by’. )

If we replace the field8” as a function of its quadri-potential in (22) in the
expression for the quadri-work done BY in (47) and (50) then that will give the very
important relation:

(111.59) d(p - QA) =- Q" Adx,

which can be used as a basis for all of the relativastalytical dynamics of the point (no.
V.6). If one introduces the useful notion aodtal energy-impulse(inertial +
electromagnetic):

(111.60) P“ = p* - QA
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then one will introducapso factg an asymmetric definition:

(11.61) F¥=-Qo*A
for the finite force.

[11.8 — Case of conduction. Laplace force and Joule heat If one is given a
conducting body that is traversed by a current dengiten the classical expression for
the force density that is applied by the field will be:

(111.62) f=jrB.

The experiment with the Barlow wheel, for examgleows that it is indeed the matter of
the conducting body to which the force density is appliédj" denotes the conduction

qguadri-current, as always, then the expression thatvariant from the four-dimensional
viewpoint and becomes coincident with (62) in the locappr Galilean frame will be:

(11.63) j"=Bj".

Of course, if there also exists a proper charge densigeitise body, and consequently,
a convection quadri-current, then one must add the expresSiowhose theory was

given in the preceding no., tb"*, and one will then set:

(111.64) fl=frk+frk,

in the general caseSincej* = j' +j"*is not collinear with ¥in the present case, the

force f* will no longer satisfy the relatio43). Now, one recalls that it is that relation
that is the basis for the equivalence of the two esgio@s for the finite force [eq. (54)]:

SF'=f'a’-fal and oF'=f'a’

In what follows, it will be shown that, contrary what one might thinla priori, it is the
second, asymmetric, one of the two preceding esijpresthat must be retained.

Now, if r denotes the resistivity of a material medium, andequently 1 f denotes
its conductivity, consider the density expression of OHavis

(111.65) o
Ccr

If one assumes thatis a relativistic invariant then one will see, withriowski, that the
only covariant relation that one can establish betweetetisor®' andjx that will agree
with (65) in the local proper frame is [cf., eq. {12
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(111.66) V.B* =rj".

V¥ always denotes the quadri-velocity field of the condackiady. By definitionVi / r
is thequadri-vectorial conductivityand 1 f is thescalar conductivityof the body under
consideration.

Finally, always in density form, consider the classegiression for the Joule heat
that is released in the elementary voludaeluring the elementary tind ():

(11.67) JdoQ =j% du dt

Naturally, in relativity, we will make sure to presethe scalar character of the universal
constant]. If we first adopt the quadri-vectorial concept ofdoctivity then we will see
that one covariant way of writing it that will agregh (67) locally will be:

(111.68) —CTlrJVk doQ* = | | (3u, dX).

The finite heat is then defined to be the temporal covapboof a certain quadri-vector, as
was done already for energy [eq. /45 The three spatial components of that quadri-
vector (whose world-direction we leave indeterminfdethe moment, and whose study
we shall pursue in no. 1V.20) will obviously deserve the @artaloric impulse.

In no. IV.1, we shall see that it is quite useful tdraethe notion of theproper— or

scalar— energyof a material droig, along with that of quadri-vectorial impulse-energy.
In the case of an infinitesimal drop, the proper enavidlybe nothing but the length of
the energy-impulse quadri-vector. Here, the notioproper heatthat is homogeneous

to the proper energy is introduced quite naturally by istanvith that of the scalar
conductivity; indeed, the notation:

(111.69) %J 439, = ' " (du, dt)

will obviously agree with (67) locally. For a conducting et & or dup = Vi A, the
relation between thguadri-vectorial heatind theproper heatwill be:

(111.70) V, Q" = -39,

Upon taking into account formulas (63) and (66), in sucocessne can write:

() Integrate formula (67) ovetu for a filamentary element of the conductor of lerigihd sectiors,
and take into account the known formulas:
R=rl/s |=g5j
in whichR denotes the resistance, dnthe intensity. One will then get the well-knowneigital formula:
J dQ =RFdt
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(I”?l) Vi f." == jnkjll(l’

in such a way that the expression (69) for the propde Jeat can be further written:

(111.74) [sid] JdoQ, =-V " (Jy dx).

In no. IV.5, we shall see how that result is ipteted in the dynamical theory of
volume forces, and, conforming to what we have saidilliappear that the definition of
the finite force that we must retain is the asymroatéfinition (55).

D. THE ELASTIC TENSORS OF THE FIELD.
SPIN DENSITY AND ELECTROMAGNETIC COUPLE DENSITY ( %).

1.9 — The asymmetric Maxwell-Minkowski tensor and the density of
electromagnetic ponderomotor couples— If BY and D" denote the duals of the two
arbitrary antisymmetric tensok andH; , respectively, then one will effortlessly verify
the identity {):

(11.75) E“D), +B*H' =iE'DJ =18 HJ .

That being the case, start with Maxwell's equatiensith and without right-hand
sides — namely, (18) and }3resp., as well as Lorentz’'s formula (44). One tt@n
write:

fi :_Bikal H|k+Dik6| E"(’

and if one takes the identity (75) into account then angm@ansform it into:
f = —% Bik 6|H|k +% Ei alDik —% Bkl 0, Hi 5” +% Dik 6|E|k —% Hik alBik +% HkI 0, Bi 5”.

Then set, by definition, the relativistetastic tensor of the fieJdr Maxwell-Minkowski
tensor:

(111.76) M' =4[D*E, -B“H ]=-B'H, +iB HJ.

The result that was obtained can then be written:

() The novice reader of relativity should defer readirig & D until he is familiar with the theory of
inertial tensors of elastic type in Chapter 1V, § A,veadl as that of ponderomotor and proper kinetic
moments in Chapter IV, § B. All of the elements tha&t mecessary for one to establish the relativistic
dynamics in Chapter 1V, 8§ A are contained in the piieae§ C.

() Forizj, takei,j=u,v=1, 2, 3, for example. One will have:

(Huw DV,W_ HU4DV'4) _ (Hu4 DV'4— uva'W) =0.
Fori =j, takei =] = 4, for example. One will have:
H“ D,* +2 H"'Duw =3 H"Dy.
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(1.76) f'=9,M* +1[H"0'B, - B, 0 H"].

To our knowledge, Minkowski was the first to exhibit thegence of th%[i] term in the

right-hand side of the expression fdiin the general casé)(

The Maxwell-Minkowski tensor is defined for any instantsppinside the polarized
matter, as well as outside it; however, the forceitiehsis, of course, zerim vacuo BY
= H in vacuoor in non-polarized matter, and th¢'] will term disappear. The same

thing will be true under the hypothesis that is usually adojht&idin a certain Galilean
frameGp :

D():gEO, BO:ﬂHOl

with £ = const. angt = const.; indeed, since the quadri-vec%ojﬂ is then zero i, it

will be intrinsically zero ). _

It is important to remark thathe tensor Nf is defined only by starting with its
divergence in k; i.e., only up to an additive tensor whose divergankasi zero. The
interpretations of the componentshdf that we shall give, and which are generalizations
of concepts that are due to especially Maxwell and Payr{tiot to mention Abraham
and Poincaré), are physically ambiguous then, in theestad an arbitrary additive
constant will be implied in them. That remark, we repaatves at the same calculation
principle that is found in MaxwelBP]. Hence, in particulaigne can consider the energy
density w of the Maxwell field to be defined only up to an additiveasgnsthat remark,
when combined with the presence of the Minkowski tédffhin formula (77), confers a

somewhat fictitious character upon the set of classiaterpretations that we shall
present as a coherent whole, thanks to relativity. )

Recall the expression (76) for the elastic tensah@funiverseM . Fori =j=u=v
=1, 2, 3, one will get the nine well-known expressianstiie pre-relativistic Maxwell-
Heaviside-Hertz tensor:

(111.78) MY =H"B'+E'D'+1(DE-BMH)d"

fori,j=u, 4, and, j = 4,u, one will get the two Poynting vectors:

(111.79) R, =-iM"“=[DOB]™ R, =-iM*=[EOH "™

The first of them is interpreted as timpulse densityf the field, and the second one is
its energy current densityFinally, fori, j = 4, 4, one will get the well-known expression
for theenergy densityf the field:

() Gott. Nachr., (1908), pp. 53 or Math. Aré& (1910), pp. 472; see also § 13 of the study in question.
(® In the case where the system contains permanegnetiam, the preceding relations between the

fields and the inductions will not be satisfied insideh® magnets, and the te-%[\i] must be taken into

consideration. If one omits it then one will, inrjgeular, arrive at an erroneous expression for theggner
of the system and certain incorrect physical predistiofCourse taught by L. de Broglie in 1948-1949 at
I'Institut Henri Poincaré.Note added during correction of the projfs.
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(111.80) w=-M*=1(DIE+B[H).

In regard to the definition (Zpof the tensoM !, one sees immediately that its trace
M/, which is physically homogeneous to theoper (or scala) energy densityf a
continuous material medium, is zero:

(11.81) M =0.

Moreover, if one constructs theroper ponderomotor couple density of the universe
tensor from the theory of elasticity:

(111.82) u=Mm"-m’
or
(11.83) W =B*H, -B“H,=D"E, -DE,

then one will effectively recognize, with Maxwell aH@aviside, that its components:

(11.84) ("= " =[H OB +E OD] ™

are the well-known components of the density of couplasare applied to the polarized
body. In passing, we point out the expressions:

(111.85) i #*=[D"B—EA"H]"™

[11.10. — Another elastic tensor for the field. Its relationshp to a couple density
that was considered by E. Henriot— We always start from Lorentz’s formula (44) and
substitute in it, not just the Maxwell-Minkowski equationgh a right-hand side, but
also their consequences (28) and (22), respectively. Whrratan

and the last group of equations will be transformed into

— k@ 'A=—1 j d'A=10' (AN i) =% jk 0 'AS
Finally, if we set:
(111.86) N“=AG-1Aj}J

then we will get the following expression for.

(111.87) f' =9 N* +i[ A9 j - j0 A
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The forms of the relations (86) and (87) are curiouslylighta those of (76) and (77),
resp.

Contrary to the Maxwell-Minkowski tensor, the newstiatensolN * is not defined
in vacuq but only in matter where a quadri-current of convecticonduction, or
polarization is present; the same thing will be truelie quadri-vecto%[i], which is not
zero, in generafl.

We study the various components of the temér Fork, | =u, v=1, 2, 3, one will
get the nine components of an elastic tensor in orgs@ace:

(111.88) N = A'j"-(A-cVg o™

Fork, | = u, 4 andk, | = 4, u, one will get animpulse densityector £), and an
electromagnetic energy-current densigctor:

(111.89) Ry =-iN"=cgA, R;=- iN"= V}.

Finally, fork, | = 4, 4, one will recognize the classical expressiontHerelectromagnetic
energy density, which is assumed to be concentratdueinistribution of currents and
charges:

(111.90) w'=-N*=1(A0+cVvg.

Of course, just like the components of the tehd8rone must not consider the preceding
expressions to be those of the “true” physical valuesausecthe tensad® is defined

only up to an additive tensor whose divergencé ig1zero. Moreover, &[i] term is

present in (87) that is not identically zero.
Contrary to the situation for the tenddf', the trace of the tensd is not zero, and
one will have:

(111.91) -N'=Aj =A0-cvq

That expression is homogeneous to what one cgltsger (or scalar) energy densitpf
the distribution.

Finally, consider the tensov®, which is physically homogeneous to a proper
ponderomotor density of the universe:

(111.92) VM = NR - N¥
or

n L. de broglie’'si neorie au otama quadri-current™ = revailed, for which the coefficient
() In L. de Broglie’sThéorie du ph quadri nt“= 4 A prevailed, for which th ffici
4 was very small.

A R(f) is indeed the density quantity that is homologous to lberemagnetic impulse Q A' of a
point-like charge.



D. The elastic tensors of the field. Spin dengiigt alectromagnetic couple. 79

(111.93) V= A=A

That formula can be written explicitly as:

(11.94) VW =y =[A O] V=i (Vj —cqA)-

The three/" correspond to a couple density, properly speaking.

Physically, it is certain that the couple densftyis not manifested, which should not
seem absurd in light of the remarks that were madevetheless, the consideration of
the tensor* is not entirely devoid of interest. E. Henriot ematered that same tensor,
and with the same interpretation, along another d4i# pp. 47].

[11.11. — A formula of E. Henriot. The two spin densities of theelectromagnetic
field. — To conclude these considerations, we shall prove aufaraf E. Henriot in our
manner and generalize it slightly. We start with éferession/* — v* and infer from
(83) and (93) that:

u—vM=— {H'm‘BIi + Aij@} + {symmetric ink, I}.
If one replace8 ' with (22) and * with (18) then one will get:
—{Hs@A -0'A)+ A H'} + {symmetric ink, I}
=- {(6iA' H)-d' (HYA)+ Ad H‘i} + {symmetric ink, 1}
=0,(AH" - AH")d (H'A)-d(H A)- o H -3 H].
However, if one sums over all cyclic permutationsl #&akes into account the definition

(20,) of the magnetic polarization current, as wellMaxwell's equation (13) with a
right-hand side, then:

a| Hki _ak H|i - Zainl + ai Hk| - Iik| +ai Hkl.
Finally, if one takes the Lorentz condition (25oimccount then one can write:

A [al HK — gk Hli] =—A [ 4 0, (Ai Hkl).
Then set:

UP'Z‘)ZAiij — N H¥ Ez,& H -2AH ,

% =H A,

(111.95)

in which the summation is again over all cyclic rpatations, and one will arrive &.
Henriot’s formula[107, pp. 13-14, formula B], which has been generalizgdaking the
magnetic polarization current into consideration:
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(111.96) p -V + AP =0,00 +[9 0y ~9 0,

The antisymmetric tensorg’ and v! are physically homogeneous in the proper
ponderomotor couple densities, while the ternary ted$qay, which is antisymmetric in

i, j, and the quadri-vectad,), is homogeneous in the spin densities of electromagneti
origin. E. Henriot called these two groups of tenstoysjues and momentors
respectively.
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CHAPTER IV

RELATIVISTIC DYNAMICS

IV.1. — If the deduction of relativistic dynamics impogskeat one must appeal to
electromagnetism then that is because, before diimstynamics ignored the role that
was played by in its proper domain'.

The most fundamental intervention of the constamt dynamics is produced by the
law of universal proportionality between mass and gnerg

W=cm

that was deduced by Einstein and Langevin at almost the i@ That law constitutes
the great physical discovery of the theory.

Since Einstein, the traditional manner of basing refiovzidynamics consisted of
imposing the laws of variance of force upon electroratigm. In regard to that, one
remarks that the argument is much more incongruous tleamtich easier one that one
finds upon starting with relativistic electromagnetism.owN to us, that situation is
provideduniquely by the fact that one generally bases relativistic dyosdy starting
with the dynamics of points. On the contrary, wevsligat the deduction in question can
be performed without the least incongruity, dydsimple transcriptionif one works in
terms of continuous media. The equations that one nsgsfor that — whose generality
is perfect — are not usually given in the treatises ontbi@an mechanics. We must then
start by establishing them at the onset of the predeqter by a brief argument from
Newtonian mechanics. To our knowledge, von Laue was itietdi write down those
equations ¢], 28 b and Appendixc). The ease by which one thus founds relativistic
dynamics must be compared with the ease by which oatvigtically transcribes the
Maxwell-Lorentz field theory. Indeed, all of the eqoas of the latter theory are density
equations in which the fields are homogeneous to polanzdgasities. Conforming to a

(™) In his course at the Collége de France (which isprturiately, unpublished), P. Langevin showed
by an ingenious argument that that certain very generabetiee postulates permit one to establish
deductively the expression for this vivaof a material point, and starting from that, aldghamics. If the
kinematics used is that of Galileo then one will gektiache classical expressiom? / 2; on the contrary,

with that of Lorentz, one will get the Einsteinian expies for massn=m,/ \/1-5>.

In his likewise-unedited papers, Allard has generalized hamgearguments considerably. He showed
that the entire theory of the dynamics of a point cancdmestructed abstractly without appealing to
kinematics. After postulating the existence of the viva theorem, he then showed that the theories
kinematics that were still possible were three in numBbeat of Galileo-Newton, that of Lorentz-Poincaré,
with a universal constant that he identified wéftand a symmetric kinematics in which i is positive-
definite.

Along the same order of ideas, an argument that i ex@e general, and is based upon the theory of
groups, was presented by V. Lal@®][ Lalan specified some very general postulates that ichpiither
only classical kinematics or the alternative obslaal kinematics and that of relativity as a consecgien

The interest that these abstract considerationsemreés uncontestable. From the viewpoint of the
theoretical physicist, they amount to constitutingagoosterioriclassification of results that are found by
much simpler inductions.
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remark that is becoming classical, the extreme affingtyveen relativity and the theories
of continuous media and fields is verified once more.

Once we have written the well-known fundamental aqoat of the relativistic
dynamics of fluids, which are found by starting with theiversal laww = c?p in its
density form, we will direct our attention prvoper mass densifg of the fluid. That will
give rise to a double series of inductive generalizatiomg of which concerns the
volumetric force density, and the other of which consahe force density of surface
origin. In the former case, we shall give an absoy#eeralization of a result that was
found in the context of Joule’s theory of heat (Hb8) that relates to the creation and
annihilation of energy or mass. In the latter cage, begin by giving a theory of
isotropic pressure in fluids that will find some applicat later on (nos. IV.21 and V.2).
To conclude sub-chapter A, we will deduce the relatividyieamics of points from that
of continuous media. We put the classical results aaeariant form that is made
possible by our definition of the rank-tvilmite forcetensor (no. I11.7). Recall that in the
relativistic dynamics of points, thes vivatheorem, as well as the variation of mass with
velocity, are essentially kinematical effects, ottwthe established terminologglative
ones.

Our sub-chapter B is dedicated to the problem of théwietic theory of the proper
kinetic moment, ospin Like the other authors that are interested in shidject, and
whose work will be mentioned in the bibliography, itnigturally the interpretation of
certain equations in quantum theergnd mainly Dirac’s theory of the electrerhat we
have in mind. On that subject, the tendency of some euttas been to argue in terms
of integrals, rather than densities. True to oursehopath, we have, on the contrary,
made all of our arguments in terms of continuous mediayder to deduce the case of
the material point as only a result of them. In tiegfard, the work of Weyssenhoff and
Raabe is very close to ours. It is satisfying that imauctive arguments that are
compelled by the nature of things and completely independergach other are
essentially compatible in all of their common resulis that same sub-chapter B, we
have introduced the consideration of general surfacedoot elastic type. The reader
will perhaps be surprised to see a theory of essentiadlyoscopic origin — viz., that of
spin — together with a theory of an essentially macroscapt statistical nature — viz.,
that of elastic forces; the single justification faick an agreement resides in the great
kinship (which is wrong, except as a formal identityen the mathematical concepts
that are implied by one theory and the other. Theddais that are obtained are of great
generality, but it results from the entire systentafrent knowledge that they have two
radically distinct domains of application: On the dwend, the microphysical one, in
which the theory ofictitious probability fluidsessentially ignores the elastic forces, and
on the other hand, the macrophysical one, in which nalpessanifestation oproper
kinetic momentéas ever been confirmed. In that way, the two serfeapplications of
our general formulas will be based upon the identical antidnlaof entire groups of
terms.

In sub-chapte€C, we shall begin the unresolved problem of the relaitvidynamics
of systems of points in interaction. To commenceceomwe have generalized a
fundamental theorem of the theory of torsors into -diorensional terms, we shall give
the mean technique for consistently defining the notiotmpfcenterandmoment about
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the barycente(?). Guided, in turn, by electromagnetism, as is exprebgetie notions
of the density of energy that is distributed throughout the Maxwell fald Abraham-
Poincaré’spotential impulse densitywe shall show that in order to arrive at the
relativistic statement of some classicgeneral theorems one must take into
consideration the distribution and step-by-step transmissicenergy and impulse (as
well as spin) in “potential” form throughout the fieldt will then appear thaby its very
nature, the relativistic dynamics of systems prohibits the approxinsathat permit one
to usegeneral theorems as intermediaries in the reasoning of Newtonian dynamits
turns out that the problem considered must be esdgntiafield problem, which is
gualitatively apparent in thd-body problem of general relativity.

Our last sub-chapter is dedicated to some general caoaiswhsr of relativistic
thermodynamics. That subject seems to have beenwdwmhdorsaken between the
epoch of the fundamental papers of Einstein and Plamicich both appeared in 1907,
and the epoch of the modern work of Tolman, Van Dan&gkhart, Bergmann, and
other authors. Now, there is a curious divergence regpadimain question that appears
between these two series of papers, namely, theiguedtthevariance of temperature.
For Einstein and Planck, the variance of temperatureshais no tensorial character,
seems to be that of the volume of a portion of mattat is considered at a single
moment. On the contrary, the modern authors, whileting all of their attention to the
problem of continuous media, have defined the inversengbdeature. For one group
(Tolman, Eckhart), it was an invariaé, while for the other (Van Dantzig, Bergmann), it
was the@* component of a quadri-vecté&. That dilemma, as well as the one that we
spoke of in the Foreword, presents itself in close occtirewith the one that is posed by
the practice ointegrating at constant timer with the use odomplete differential forms
in the sense of E. Cartan; we shall discuss thatiquest no. IV.19 in a particular case.
Then, in 1V.20, we shall systematically present thewpignt of integral invariants,
which is that of all our work. For the sake of ilkaing some new tensorial definitions
of temperature, IV.21 and V.22 will give covariant expressi for the fundamental
equations of the theory of thermal conduction and thpedect gases, respectively. For
a more adequate development of relativistic thermodyrsmie refer the reader to the
work that is especially devoted to that subject.

A. — GENERAL EQUATIONS OF THE DYNAMICS
OF INVISCID FLUIDS WITHOUT SPIN.
DEDUCTION OF THE DYNAMICS OF POINTS WITHOUT SPIN.

IV.2 — Preamble: General form that one can give to the equations agbntinuous
media in Newtonian mechanics. On the classical principlef the conservation of
mass.— We begin by establishing a general formula from Newtoihugh mechanics that
we shall give several applications of. heor V" (u =1, 2, 3) be the velocity field of a
fluid at the instant, let du be an infinitesimal volume of matter that follows motion,
and let® be an arbitrary function of the fluid molecule; ,i.i.follows the motion from

() We have just been made aware of an interesting, ane mgent, work by H. L. Prycthat is
dedicated to that double question, and thanks to it, the meéstef some prior studies of Fokker and
Papepetrounpte added in correctign
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the geometric standpoint. Indee®, will be the volumetric density of one of the
guantities that are taken under consideration. For orpopas, we must essentially
suppose that the material volurde remains infinitesimal in all of its dimensions in the
course of time, which is a hypothesis that is frequantdgle in fluid mechanics, and that
one can call “anti-ergodic.”
The increases in the functieh and the material voluméu during the infinitesimal
time dt have the expressions:
dod = (v, 0" P +9' D) dt,
d () = divv du dt=ad"v, du dt,

respectively. When combined, these two relations will ¢gineegeneral formula that we
have in mind:
(IvV.1) d (P ) = {0" (P w) +9' P} du dt

We then take the well-known fundamental equations it gtynamics:

(IV.2) Fdt=d (mv), §dM =dw.

We have taken the expressigmt in a form that is appropriate for our purposes, and not
in the formm dv, which is equivalent in Newtonian mechanics. We shall dethee
general equations of continuous media from the precextjogtions by an application of
formula (1). Ultimately, in relativistic dynamics, ve@all proceed in the opposite order
and deduce the equations of a point from those of contima@ohanics.

Let dn be the mass of the droplat, let 0§ be the total ponderomotor force that is

applied to it, letdW be the work that it has done since an arbitraryaihiitme, and define
the corresponding densitigsf, w by:

(IvV.3) oan=pa, &-=Ffa, AN =w Au.
The fundamental equations (2) for the drogletarre written:
(IvV.4) faudt=d(pov i), (fv)Adt=d(w ).

There is no reason to add the corresponding equationsofimemts” to them, becauge
the case considered of an inviscid fluid without spghe kinetic and ponderomotor
moments that relate to the dropdetare infinitely small of fifth order, while all of th@
Al in the problem are of third order.

Upon applying formula (1) to the right-hand side of equmsti@}) and dividing both
sides bydu dt (%), one will get the four equations:

() Recall thatdu dtis a relativistic invariant [no. 11.6, egs. (11), (27)]
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£2=0,(ov"v) +0,(pV),

(IV.5)
fv=a,(wWv) +a,(w).

One sees aimertia tensor ¥ V' enter into them that is symmetric and of rank twal an
which provides a contribution of “elastic” type to the ®mmensity. That tensor has a
degenerate form, moreover, since it is the general prodactvector by itself.

Newtonian mechanics assumes the conservation of teednaf each dropletu as
a principle An application of formula (1) will then immediageprovide the classical
continuity equation:

(IV.6) d,(pv")+0,(p) =0.

From an interesting remark that is due to E. Durandheme take out the quantig/du in

the () on the right-hand side ofij4hat is reputed to be conservative and make it appear
in the () in the right-hand side of;}4so we can treat it likewise. Moreover, we scalar
multiply the two sides of @@ byv, so we will get the relation:

vdv = d[v_vj
P

in a general mannemwhich will give:

(IV.7) W Ev2 + const.
o 2

by integration. We point out that, up to the preseelativity rejects both formulas (6)
and (7).

IV.3. — Deduction of the fundamental laws of the relativistic dynamis of
continuous media.— Our first group of postulates, which is completmilar to the one
that has classically been the basis for relatwisiectromagnetism since Minkowski,
consists of:

@) Taking and preserving density equations sucf{bas

B Employing the notion of the quadri-vector diffeiahd', with:
64 Eia t
ic

However, as has been known since the beginnisgcand group of postulates that
are imposed by the lessons of electromagnetismeessary if one is to base relativistic
dynamics. Here, we take them in the form:
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) The ponderomotor force densityif of purely volumetric origin

J) The power density:
fe=lroy
c

must be associated with the thréeir order to form a quadri-vector' that is found, ipso
facto, to be orthogonal to the quadri-vectgr.V

(1V.8) vV ' =0.

We point out that in the course of some ultimate indast we will liberate ourselves of
the two postulatedand .
By means of this set of postulates, and under the siropl@ition that we set:

TUV - TVU - quVW,

(IV.9) T =icov, T*=Lw,
C

the four equations (5) can be condensed into the form:

(IV.10) f'=0,T",

and one will see that the 16 functiol$ are the components of a second-rank tensor.

Since the ninél" are essentially symmetric, the tenddr is necessarily symmetrié)(
From the fact that:
T u4 — T 4u

one concludes the extremely important relation:

(IV.11) w=Cc’p,

() Indeed, consider the transformation formula:
T"=0'0'T.
The entire contribution from the right-hand side is e8ally symmetric inu’, v’ except perhaps the ones
from the terms:

0o T +q o T
Upon expressing the idea that the latter contributionvigriant under a permutation of andv’, one will

get:
=T
Q.E.D.
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which constitutes the great physical discovery of natsti and which establishes a
universal proportionality in the raticf between the mass and energy (or, what amounts
to the same thing, between their densities). That u@iveetation substitutes for the
universal relation (7) that was established by classiesrth If one likewise takes the
indeterminate classical constant equat’tthen the two relations will coincide when-

0. Upon substituting the fourth of (5) in (11), one will g relation:

(IV.12) 8,(ov") +2,(p) :c_lzf ,

which will replace the classical equation of continui®y. The new right-hand side,
which is extremely small, is definedlativeto the Galilean frame that is used.

Now, introduce theroper valuesp andw, of the mass and energy densities, resp.;
i.e., the values thap and w take in the co-moving Galilean frame locally and
instantaneously. Naturally, the law of equivalence:

(IV.13) W, = C°0,

must be true for thegeroper densities, in particular. It is clear from (9) thatomill
have:

_ B _ W, _V
(IV.14) PEE YR (,[;’— j

If the quadri-vectof\/i is still defined by (11.62) then the expressio®y for the
inertia tensor condense into the form:

(IV.15) T =p, V'V,

One has the following two equivalent expressiomgHetrace of the inertia tensor:

(1V.16) T' =p(V - ) =-Cp,.

Up to the factor —% the trace can then be interpreted as the propersnasisity of the
fluid.

If one takes the expression (15) fof into account then the fundamental equation
(10) can be written: _ o _ _ _
(IvV.17) f'=0;(wV'V)=V'0 (V) + V"

If one multiplies all terms by , while taking into account the hypothesis (8)ttisa
presently adopted, as well as (11.62), one will et relation:

(1vV.18) 0,(p,V') =0,
which will imply that:
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(IV.19) fl=pV’",

when it is substituted in the preceding equation.

One sees that equation (18), which is already in itsitgeiosm, expresses the idea
that there is conservation of proper mass within thil that answers to the present
theory, and that this result will already seem paradxisince from the relativistic
proportionality between mass and energy, it seems ttlaaithe work that is done by the
forces of pressure and viscosity must contribute to tbpgsrmass of the fluid drop. It
will soon appear that the very simple explanatiortiiat paradox is that all of the present
theory ignores the forces of surface origin, in ppfei Upon introducing the theory of
those forces, we will see that formula (18) can bmpleted by a right-hand side of
appropriate form. Before we do that, however, we ngesteralize the theory of
volumetric forces in such a manner that it makes the waséhich there is (at least
approximately) creation or annihilation of energy or snasderstandable, since that takes
place in Joule’s electro-thermal effect, and eveménhydrodynamical theory of sources
and sinks.

As for formula (19), which is a consequence of the theoitg present state, it might
seem seductive at the moment to regard it as somethingyiglds a covariant
generalization of the general formula from Newtomaechanics:

f=py.

In reality, in what follows, it will appear clearthhat this formula hass value here only by
a fortuitous set of compensations that result from dweréstrictive postulates upon
which the theory presently rests.

IV.4 — Continuation of the argument: integral forms. — Multiply both sides of
equation (10) by the four-dimensional eleméatand integrate over the domain that is

enclosed by the lateral hyper-wd&l of a current world-tube and two spacelike hyper-
endcaps: and&, . From what was said at the end of no. 111.7, tkgression:

] o

that appears in the left-hand side is interpreted as thériguark that is done by the
finite world-force; i.e., as the ponderomotor energy-irapul

(IV.20) Ap' = j j L jTaF“dxj .

As always.£ denotes a spacelike current hyper-endcap that must ing@tcide with&;

and finally with&,, and7 is a segment of the general world-streamline. Onae niy

virtue of what was said in no. Ill.7, and essentiallyrtgknto account the hypothesis (8)
that was placed at the head of the entire presentyth@oe can take the tensd¢’ to be



A. — Inviscid fluids without spin. Points without spin. 89

the antisymmetric expression ¢2lor the asymmetric expression {PlIindifferently,
since they arequivalentin the sense of equation (I11.51):

(Iv.21) OoF' =f'ou - 1o, IR, =1fdu.

The quadruple integral that is provided by the right-hand sidequation (10) is
transformed into a triple integral that is taken otle contour& — & + P of the
preceding domain, which is written (for the third forme £q. 11.80):

HJT“ 5uj=j” PV V! Su = Hj o,V S, .

The scalar produdt’ &y is identically zero on the hyper-wa# so the contribution oP
to the triple integral will be identically zero, anchat will finally remain in the right-

hand side is:
Il T eu =]l 7oy

Suppose, first of all, that in the Galilean frame tisabeing used, the current hyper-
endcap that represents the material dfogs it follows it in its motion is planar and

horizontal; i.e., that thstate of the currens definedat constant time By definition, we
therefore provisionally place ourselves under the “femeity hypothesis” that we shall
have to consider in what follows with several repetisi Of the foudy; , only:

A= L= 2k dR
IC IC

will be zero then, in such a way that if one takesr{®) account, as well as (11) then the
four components of the triple integral considered cawiitéen simply:

(IV.22) p“:jﬂpv“éu, p4:icjﬂ,05usicﬂjém,

One recognizes the classical definitions of the indrtipulse and mass of the drop€,

resp., in this. In the general case where the culrgmér-endcapt is arbitrary (but
spacelike), one can continue to say that, by definitlointegral:

(IV.23) p‘:J'J'LT”cSuj EJJJEpOVVO_qEJJJg,OO\i/O_ld

represents the inertial mass-impulse of the malteiap £&. Taking into account (11.75),
and in infinitesimal form, that relation can be maadelicit as follows:
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(IV.24) pU = m (V' du+pVVas di, m= m (pdu+pV'as dj.

Just as was true for equation (llI'B&he last groups of terms can be interpretedfasca
of impulsion and energy, resp., and correspond telativistic correction from non-
simultaneity.

Finally, if one integrates in the way that wag jescribed and takes into account the
definitions (20) and (23), equation (10) can beten:

(IV.25) AP = Py = Py
or if one prefers, more explicitly:
wvao) [ [T raw=[]_Tew =l oV vay=[_aveu

On the left-hand side, one has the ponderomotipeesgion for the energy-impulse that
is provided to the drog between the stateand the stat®, and on the right-hand side,

one has the variation of its inertial mass-imputsgween those same two states. That
equation then summarizes the fundamental theoreimsnpulse and energy in a
relativistic form.

Now, take equation (18), and integrate it over phreceding four-dimensional
domain. The left-hand side will then transfornoittte triple integral:

.U.[gz—glw VoY = J..ng—glm Po Oy

and for the same reason as before, the contribofighto that integral will be identically

zero. On a current hyper-endcé&p the expressiorV 'du = dlp is nothing but the

elementary scalafor propen material volume(eq. 11.80). It is then clear that the
expression:

(IV.27) m):jﬂg,ooviéq E”L,Ooé_q)

deserves the name pifoper (or scalar) massof the drop€, because each of the elements:

(IV.28) amo = o Ao

can be interpreted as the proper mass of the drdilei.e., as the value that is taken by
that mass in the co-moving Galilean frame.

Finally, the integration of equation (18) for atevaal drop along its motion yields the
result:

(IV.29) m, = const.

This is, in fact, theonservation of proper masisat we have stated.
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We return to the expressions (23) for the mass-imuildee dropf. If one takes the
expression (28) for the proper mass into account thecamevrite:

(IV.30) p = j j Lv‘cst.

It is important to remark that thguadri-vector pis a function of the integration
hyper-endcagf. Two different Galilean observers that would likedefine the quadri-

vectorp' in the same current world-hypertubg an integration at constant time will be in
disaccord, not only in regard to the componentg' pfvhich is obviousput also in
regard to the quadri-vector itselfThe necessary and sufficient condition for such
observers to be identically in accord is that thadyi-vectorp' must remain invariant in
the course of the evolution of the system; i.aaf the must have the four relations:

o, Ti=0.

In other words, théorm and position of the hyper-endcap are not disjoint concepts,

sincethe non-invariance of the definition of and the non-conservation of are two

related facts. If such circumstances are not realized in thdlera of electric charge (no.
[11.6) then that is solely by virtue of the equatiof continuity (111.28). Here, we have a
very clear illustration of what we said in no. #,lnamely, that the integrals of relativity

must be invariant with respect to the form of thpdr-endcaps, and that they must then

be capable of being taken arbitrarily.
Before we leave this subject genre, we make ostertamark. It is clear that the
tensorial invariant:

(IV.31) A= jT 1] L op'dx

constitutes the relativistic definition of actiorBy virtue of (23), and taking (11.8)
(11.76), and (11.624) into account, we can write:

(IV.32) A=-c? j j j j 04000

L. de Broglie made use of that remark in his thexfrihe electron’j.

IV.5. — Two inductions that generalize the preceding theory of vame force. -
Considering the state that was attained by the de@utheory of the two preceding nos.,
we propose to free ourselves of the restrictiveoliypsis (8) that was essential to its
basis. This time, we take our point of departwebé the integral formulas of the
preceding no., and we will be led quite naturadlyconsider two successive hypotheses,

() L'électron magnétiqueParis, 1934, pp. 223-224.
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according to which the finite force is defined by i(2dr (2L), resp. In fact, those two
definitions cease to bEguivalentunder the present hypothesis:

(1V.33) V. f' 20,

We begin with the first one; i.ewe adopt the antisymmetric definiti¢2l1;) for the
finite force. The fundamental dynamical law:

(IV.34) jm{aF“dxj—ai(po\/vi)m}:o
will then be written:
(IV.35) mj{fi—ai(povivj)}&u:jTij f,dxiau.

From the form of its right-hand side, it will hatlee inconvenience of needing to keep
the integral form, and of not being able to tak#easity form that is analogous to (10).
To avoid that difficulty, we shall reason by indioct

Under the name of “hypothesis Hgbnsider the case in which the streamlinés
admit orthogonal trajectories,, and suppose that one has taken two of tidgse be &

and & . The quadri-volumedu, will then be collinear with/ ' on the initial and final

hypercaps and will be provided by formula (lLBéhat we established for that situation,
moreover. The preceding right-hand side is thetiem:

- SV,

in such a way that the equation considered carub@o the density form:

1

(1V.36) f‘+?fjv"vi =0,(p, V V).

The stated induction consistspdstulating that the forrB86) is true in the general case,
and consequently, that the integral fo(8b) that we appealed to as an intermediary in
our argument is valid only approximately in generdlts validity will become rigorous
under the previously-formulated “hypothesis H.”) eWall the foregoing postulate
“postulate P.” We shall employ the same mode dtiative reasoning several times in
what follows and appeal to “postulate P” and “hymsstis H” that we just discussed.

Hence, if, under the new hypothes(83), we adopt (as an approximation) the
antisymmetric definition(21;) of the finite force then the fundamental dynamical
equation will have the for(86), and its right-hand side will always decompoge the
same form as in (17). If we then multiply all tertoy Vi , and take (1.6 into account
thenwe will find once more that the la{#8) of the conservation of proper mass is a
consequence of that equati(86); by contrast, formula (19) will become:
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(IV.37) f‘+C—12fkv"v‘:pov".

We shall now — always under the new hypoth¢33 —likewise attempt to use the
asymmetric definition21,) of the finite force. This time, the integral form of the
dynamical law will differ from (35) by a zero right4mé side, in such a way th#s
density form will remain identical to the old fo(t0). Upon multiplying all of its terms
by Vi , we will get the law:

(IV.38) 8,(oN) =~V 1,

CZ

instead 0f18), and furthermore, (37), instead of (19).
Therefore, along with formula (38), recall the intégralculation in no. 1V.4 that

gave the variation of the proper mass of a materigl frbetween amitial state £&; and

a final state&,, which are represented by two hyper-endcaps of the samenicworld-
tube. One will get:

(1V.39) My~ Moy == [[[ [ V F

or, in infinitesimal form:

(1V.40) dom, = —0—12\/ f dew.

This result is quite interesting. Indedtl,one takes into account the relativistic
equivalence of mass and energy and the thermodynamic equivalence of energgtand he
then it will coincide with formullll.74) for the Joule heatWe then assume, as is quite
natural, thaformulas(21,), (33),and(38) agree in all cases where the there is creation
or annihilation of heat, energy, or mass. The scalar produtt Will not be zero in the
corresponding regions of space-time. It will be negative or positieerding to whether
one is dealing with creation or annihilation, respectiveAn example of the creation of
heat was given in no. 111.8 by Joule’s electro-therefééct. An example of the creation
or annihilation of mass in hydrodynamics is given by tbasideration of volumetric
distributions of sources or sinks (see below, no. .V.Phereforejn order to be able to
take into account of the phenomena of creation or annihilation of mass or energy, w
must no longer adopt the antisymmetric defini{{@hy) or (I11.52) for the finite force that
appeared to begin with, but precisely the asymmetric defin{dg or (111.55). An
entirely similar situation will appear later on in ttieory of viscous surface forces. We
remark, in passing, that in this second and last inductienmust bring into play our
“postulate P” and “hypothesis H,” which amounts to saying the starting integral
formula, and consequently, formy[&l,), are rigorously valid here.

Finally, the most general fluid without spin that is subject to the actiooroé$ of
purely volumetric origin will satisfy equatiof38), whose right-hand side will be non-
zero only in the regions of space-time that are ruled by distributiosswtes and sinks.
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Outside of those regions, equation (38) will reduce tdaha (18), which can be written
equivalently: _
Po 0 V! + ;= 0.

One will then see upon referring to the purely kinemadinition (11.84) of the
incompressible fluid that an equivalent definition is that

(IvV.41) Lo = const.

along the trajectorie®. More generally, ifo = const. in all of space-time then one will
have the relation (11.84), and one will have the right say that the fluid is
incompressible.

We then make one last remark, which is due, in principlds. Durand. With the
dynamical definition (41) of an incompressible fluide trelation (10), which the case
that we are considering must satisfy, by hypothesisbeamritten:

fl=m(oV' + 6" V).
We have set, by definition:

o=o,Vvl, @'=dlvi-9'Vl
Indeed, the expressi@nd ' V! = 0 follows from the fact tha;, V! = - %

IV.6. — Introduction and theory of surface force in the simple caseof one
pressure.— As always, letc & be the dual of the world-area elemedx [dx], so the
threeic &™ = [dx, dx,] will represent area in the usual sense. It is dlearthe classical
definition:

OF=-wd

of the normal pressumwill admit the four-dimensional generalization:

(1IV.42) OF' =-wadd .

Here again, the elementary foree= ! is essentially antisymmetric. As in classical
theory,we say, by definition, that the fluidiisviscid if the elementary surface force on it
has essentially the for@2).

Therefore, letC be the two-dimensional contour of a spacelike three-iseal
domain £ that represents a fluid drop. If one integrates thgression (42) over the
contourC and transforms it into a triple integral then oné get the formula:

(IV.43) J'jccSF‘i = —mg[aiw‘mi -d'@au],
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which, when compared to (1 will permit one, in a sense, to consider the quaglctor:
(IV.44) fl=-0'w

to be the volumetric force density of surface origin.

Although the twdorce system®F " andf ' have the same sum, as we just saw, they
are not integrallyequivalent in the sense that they do not yield the same el@men
quadri-work for the deformation of a dropl@'. In pre-relativistic elasticity, we recall
that this situation is true only for work, properly speak{). Indeed, to simplify, take

the proper timel7 to be equal along all trajectoridghat issue frong. The quadri-force
of the surface forces is written:

(IV.45) dr“cvj OF = —dr mgv,.(f‘aui - fJ‘éd)—drijm(a‘vjaui -9V au);

the last integral represents the stated difference.
As always, letP be the lateral hyper-wall that is generated bycithtourC of £, and

let & and&; be aninitial stateand afinal stateof the drop€, respectively. The left-hand

side of (46) is nothing but another form of the-lednd side of (45) when it is integrated
overdr, and if one takes (I1.79) into account then aegnal transformation will permit
one to write:

(IV.46) —mpméui = —jj” 6‘m5w+J‘J‘LZ_SLLU5u" .

Upon assuming, for the moment, that the forces wffase origin are the only
ponderomotive forces that act upon the fluid, tlnedmental dynamical equation will
permit one to replace the left-hand side of thiswwhe quadruple integral:

mjaj(povivi)aw.

We then find ourselves confronting a problem tisasimilar to the one that we posed
with equation (35), namely, that of an integral &tpn that does not admit an equivalent
density equation. We shall eliminate that difftgudy the same inductive process that we
used before, by appealing to thgpothesis Hand postulate Pthat were formulated on
that occasion.

In the particular case where th@dmit orthogonal trajectorie€% , and one takes two
& to be& and&,, the volume elemendu, on & will admit the expression (1.85 An

() For a finite, material drop, the classical expressi the total surface force, its impulse, and its
work are:

—[Jwos=—[[[ gradidwou, - dt[fwds= - dt[ff gradiddu,
—dt[fwvos=-dt [[[ div{wv)du= - dt[fwds= - dt[[| gradiaoi ou — dt [[[ wdiv¥du,

respectively. The situation that was stated in thkie $eems to be, in fact, a direct consequence of the
classical notion ofiniversal time.
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integral transformation will then permit one to replabe]| in the right-hand side of
(46) with:

=l o@vv)sw.

In this particular case, formula (46) will then admit:

(IV.47) dw+0, {(po +gjv‘vj } =0

as an equivalent density form. By virtue of “postulatew® shall assume the general
validity of (47), while that of (46) is rigorous only unddypothesis H.” Formula (46)
will then serve as only an intermediary in the inducvgument. In formula (47), one
will recover the homogeneity between pressure and energy densitg thalt-known in
classical physics.In regard to equation (10) (in which the force densitpfiproper
volume origin), equation (47) presents a new termwirc®. It is that term, which has the
very small coefficient 1 £* as a factor, whose presence must impliagation of the
proper mass that is due to the work that is done by surface forces.

The relation (47) can be transformed into:

d'w+V' o {()Vi+()V'=0.
If one multiplies this by’ and takes (11.62) and (11.87into account then one will get:
w-c9{()V}=0,
and since: _ _
0 ((UVI) —wo; V' +w,

the new relation can be finally written:

(IV.48) 3.(oV') = —Ci‘Zaiv‘.

If one takes the existence of pressure forces into account thers ttieg new law of
adiabatic compression that replacé8). If one continues to call a fluid such thmt=
const. in all of space-timéencompressible,by definition, then if one discards the
physically-uninteresting hypothesig= — ¢’ = const. in all of space-time, one will see
that a fluid will continue to be characterized by fora(l1.84).

If one integrates (47) over the usual four-dimensionalalo that is enclosed by the

hyper-contou, — & + P then one will get:

[ @ai= ], oo+ a+ZJvau)
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Similarly, if one integrates (48) then one will get gwuation of the variation of proper
mass:

(IV.49) Mo ~mow == []] @0, (du“ax).
which can be further written:
(IV.50) Moy = My = Ci [[{@ &y

when one takes (11.85) into account. The expresBibmrd d, , which is analogous to
the classical p dv, deserves the name séalar work that is done by pressurés one
would naturally expecthe variation of the proper mass of the di®s related directly
to the scalar work that is done by pressure.

IV.7. —Deduction of some general equations of the dynamics of a powithout
spin. — We return to the integral calculation of no. IV.4daake an infinitely-thin
current hypertube with a scalar hypersectdp, as well as two infinitely-close initial
and final hypersection§uél) and Juéz) . Either of the hypotheses that were made in no.

IV.5 for the general casé f' # 0 (eq. 33) will yield the same integral formula:
Fldy=dd.

The only difference is that with the first hypothesie tensodF’ will be antisymmetric,
and with the second one, it will be asymmetdg;denotes the mean trajectory element
of the elementary hypertube. In the right-hand saii'er,epresents the inertial expression
for the mass-impulse that is attached to the currergrhypll &'. If one takes (22) into
account and lets" denote the mean value of the ordinary velocity onhy@er-endcap
A then, under the hypothesis of simultaneity, one catewr

d'=omv, H*=icam

Moreover, ifV ' likewise denotes the mean value of the quadri-velamitythe hyper-
endcapdl, and dn denotes the proper mass that is attached to that hypeapetitin,
by virtue of (23) and (28), one will generally have:

d =V'am.

If one then passes to the limit by constricting the hyberdu, , and supposes that
the various quantitied keep their finite values then the preceding equatiohdesome:

(IV.51) Fldx, = dp,

(IV.52) p'=mv, ¢=icm
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(1V.53) p =mV,

respectively, in whichm denotes the mass of the material point considered hwino
longer an invariant in relativity, and which is relatedhe proper (or scala) mass m
by:

(IV.54) m=—1b

Ji-8%

The quadri-vectop', when defined by (52) or (53), obviously deserves the ndmess-
impulse quadri-vector of the material poinfOne sees that this mass-impulse quadri-
vectorp' is essentially defined to be tangent to the mean hypeent lineV ' of the
hypertube that we started with; i.e., as téwegent to the world-trajectory at the point.
Furthermore, at a given instant-point on the hyperttitlength of that quadri-vector is
independent of the orientation of the hyper-sectioin because as we observed in no.
11.14, the proper volumely, is invariant under these conditions. In the left-haide of
equation (51), one has the expression foreleenentary ponderomotive quadri-wahat

is done by thevorld-force F.

The necessary and sufficient condition for the proper magsem the length of the
quadri-vectomp') to be conserved is that the tensot fust be anti-symmetricOne will
see that immediately in equation (51) when one redadisthe quadri-vectong anddx
are collinear, and infers the consequence that:

b dg = F p .

One can also see that from equation (53), when onensetarthe considerations of no.
IV.5 and remembers that the condition for the consemeof proper mass within the
fluid is the antisymmetry of the tenser. )

Consider equation (51) more closely in the case whereetisoiF’ is antisymmetric,
and refer to the definitions (111.49) of tlierce F andco-forceK. The tensorial equation
(51) can be made explicit in the form:

(IV.55) (F+vOK)dt=d(nv), dW=FOM = & dm

(55,) are nothing but the well-known fundamental equationdyofamics, when put into
the generalized form that relativistic covariance demft@d. As for equation (5§, it
expresses the relativistic equivalence of mass and\emeppint-like language.

One can then pose an entirely natural quesiidould one be unable to deduce the
relativistic equations of point dynami¢49) or (55) directly from the theory of finite
forces that is given by equatio(l.47) and the following ones?The necessary and
sufficient condition for that to be true is that anast be able to infer equation gpZom
(521) deductively. Now, one can pass from (2o (52) by an induction that is not
equivalent to a deduction if it is to be extremely ratur When we reasoned with
continuous media in nos. V.2 and IV.3, that induction wadeed replaced by a
deduction, thanks to the symmetry that was imposed onetisrT '. That is why,
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conforming to what we said, part of the induction will béused when one establishes
relativistic dynamics by starting with continuous media.

By virtue of (51), if the derivatives', X", ... are taken with respect ® one will
have: _ _ _ _
(1v.56) p=mx', p'=mx".

Formula (49) can then be written: )
(IV.57) Flp=n¢X'.

That is the covariant expression for a formula teatsed quite currently in the study of
the curved trajectories of electrified particles in ggn&ic field. Upon assuming that the
force F is zero in the Galilean frame that is used, and th®re K(x) is constant in
time, the world-trajectory will be a helix, and one camewvthe formula:

N — 2 " — 2 "
KAp=nmx; = mx,.

It is used constantly in order to determine the proper magarticles in the Wilson
chamber when one knows their impulse, aicg versain the form:

(IV.58) K=p1p,

in which p denotes the curvature of the cylinder around which theiasgaglix is
wrapped, ang; is the constant modulus of the projection of theufee normal to the
generators.

To conclude, here is one last form for the equatidroot dynamics that is used
occasionally. Return to formula (9), whishwritten essentially under the hypothg8is
Conforming to a remark in no. Il.14, we introduce fimete force of the second type
whose elementary definition is:

(IV.59) OF" = f'du,,

and which is collinear with the quadri-vectal’ or V/'. It is with that definition, which

is generally posed explicitly, that some classicaatises on relativity have introduced
the finite force (], pp. 115-166). If one takes (28) into account and passes tortih
as before then the fundamental equation of point dynamiicske the form:

(IV.60) Fl=mV'=¢d,

in which the derivatives are taken with respect to prtper 7. That formula generalizes
a classical three-dimensional formula into four-disienal form in a very simple
manner.
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IV.8. — Applications of relativistic point dynamics. Purely kinematicl
interpretation of the vis viva theorem. Deviations from Newtonian dynamics at
large velocities.— Formula (54) is developed into:

(IV.61) m:mo(1+%,32+~-) where W=mcé+imv+.

The classicalis viva theorems then recovered in the first approximation, witie
remarkable situation that the integration constayt’ is kept fixed. One should note the
very new interpretation that thas vivatheorem takes on in relativityt amounts to a
purely kinematical theoremsince the kinetic energy appears when one isimahe
proper system of the point. In the final analysig®t new interpretation is much more
satisfying than the old one. In classical theong hardly sees how thelative character
of the velocity — and consequently, the kineticrgge- is consistent with the alleged
absolutecharacter of the force, mass, and energy, in géner

In relativity, a material point that is animatediwthe limiting velocityc will have an
infinitely large energy. In order to acceleratgiven proper mass point up to the velocity
¢, one must provide an infinite amount of energyttoOne sees that in the dynamical
confirmations of the limiting character of the ctamt c in all physical velocities.

Recall the formula:

d

= a(m\/),

which involves ordinary force and velocity, and élep it, while taking into account the
fact that the mass is now variable:

__dv dm
S§=m—+—V.
dt dt

That form suggests the decomposition of force, ldaeeleration, tangentially and
normally to the trajectory. If one takes the welbwn formula:

dv
=— =V
=

into account then one will the following expressidar the “longitudinal force” and the
“transversal force”:
Si=mv+my, St=mpk.

The expression fam' is provided by (54) as follows:

Lo mBB _mpg B
(1_ﬁ2)3/2 1_ﬁ2 ! 1_ﬁ2 '

Finally, the desired laws for longitudinal acceteya and transversal acceleration are:



A. — Inviscid fluids without spin. Points without spin. 101

_myl . my 3.,
g'_1—ﬁ2_(1—ﬁ2)3’2_%y(1+2ﬁ ! j

=my=— 04— Ly
St_m}'{_(l_ﬁz)l/z mo}{(l‘*'2ﬁ+ j

In the early days of relativity, one called the taazreleration coefficients:

mE g My
the longitudinal and transversal maseespectively. The only interesting notion in the
present theory is the relativistic masghat we have used up to now, and which one can
call theMaupertuisian mass

Be that as it may, the preceding formulas proyidectical expressions for the laws of
acceleration of a material point of given propeissat large velocities. One knows that
the study of large velocities in the dynamics &d &#lectron has plainly confirmed the
relativistic dynamics of a material poirt]2 113 117).

IV.9 — Another application of the relativistic dynamics of points: e collision of
two particles with large velocities.— Consider two particles, which are first assuneed t
be point-like, and are found to coincide in spaoeetat an instant-point. Before and
after that encounter, they are assumed to be ugbrmon-interacting, in such a way that
they each describe a rectilinear world-trajectofyhe two trajectories will break at the
instant-pointx, and there will be an exchange of mass-impulsedsst the two particles.
If those particles have no spin then their massdisgwill certainly be collinear to their
world-trajectory. Later on, we shall see thatshene thing is true for particles with spin
in the particular case of uniform, rectilinear maoti

We have four mass-impulsqS'W to consider. The indextakes the values 1 or 2

according to the particle considered is before fterahe collision, resp. There is
obviously conservation of total mass-impulse urilercollision, which is written:

(IV.62) Pt By = Pt Po

when the four quadri-vectors are concurrent. dfititernal characteristics of the particles
are not altered by the collision then one will have

(IV.63) Pl =1psl, | Py | =1 Pay |,
moreover.

If one sets:
(IV-64) Api = piz - plll’ Aplz = plzz - plzl’

by definition, then (62) can be written:
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(1V.65) Ap, +Ap, = 0.

As always, by definition, we say that the spacelike #xd is defined by the quadri-
vector Ap; or —Ap, is theinstantaneous axis of the collision.
2.,3.,/4

Take that axis to be th®x' axis, and complete the tetrahedrom’x>Cx* to be
timelike. One will have:

(1V.66) Apf+Ap,=0 and  Apf =Aps =0 for k=23, 4.

One concludes from (gpthatfor each particle, there is conservation of the component
of mass-impulse that is normal to the instantaneous dkisne takes that into account,
along with (63), then it will result from (gpthat one must have:

PL=€PL,  Pn =P, with e=+1.

Only the case of = — 1 will correspond to an actual collision. We then, dBt
definition:
(1V.67) PL="P. =P,  Pn="Pn= P,

so (6) will show that one has:
(IvV.68) pi+ p; = 0.

Therefore,the collision exchanges components that are, moreover, equal in modulus
between the components of the mass-impulse that are parallel to theanstarg axis

).

P2,
- Py

: X1

«— before the < afterthe
collision collision

Figure 3.

() One effortlessly recognizes the analogy betweerntviioepreceding relativistic statements and the
Newtonian statements that were used by the kinetic trifaggses. (See, for example, E. BORELaité
de Calcul des Probabilites. II, fasc. Ill, Paris, 1925, pp. 36-40.)
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We recapitulate all of these results by giving the ftmadri-vectorsp‘w the same

origin X. The trianglesp},, pl, and p),, p,, are isosceles, with bases that are parallel in

space-time. It then results that the four extresigiee contained in the same world-plane
77 which we take to be the plane of the figure, and onto hwwe project the instant-
point X of the collision fromO. The instantaneous axis of the collision projects onto
X, % parallel to the two bases. Inthe general case wheravb corpuscles have unequal

proper masses, the axdy, which is perpendicular to thestantaneous axiand directed
along the quadri-vector:

pi21_ pi12: pizz - pill’

can be either timelike or spacelike. If the two corpstiave equal proper masses then
the axisOy will necessarily be spacelike, and the podinill project fromO to the center

of the rectanglep‘ﬂv. If the two corpuscles arnadistinguishable in the quantum sense,

then the question of knowing what the true associatioeneergent trajectories with
incident ones will be absurd, and the two possible modeasebciation will be
equivalent. Each set of four trajectories will thenrrespond to two possible
instantaneous axahat are mutually orthogonal in space-time and praetd /7 along

the symmetry axes of the rectang‘Jg.

If one is given two concurrent mass-impulses befoeectillisiona priori then how
are the possiblenstantaneous axedistributed? First of all, it is clear that the ivars

possible planesrare spacelike hyperplanes that contains the two inptants p}, and
p,,. One of them, which we call tigincipal one, contains the two quadri-vectops§

and p,,. If that is the case then every plamavill contain one and only one possible
instantaneous axis. It is the axis that passes throegbrdfectiorO of X' and is such that
the components op;, and p,, along that axis will be opposite.

That is then the analysis of the collision of twarpuscles whose proper masses
remain unaltered in four-dimensional geometry. To our kedge, that process has
yielded two good verifications of the relativistic dynamiéghe electron. One of them,
which was only qualitative, was by means of a plate faowiilson chamber that was due
to Joliot. The other one, which was quantitative, wasnigans of a Wilson plate of
Leprince-Ringuet 116 117. In the two cases, one is dealing with the coltisaf an
electron with an electron at rest. The three ¢tajges — viz., that of the incident particle
and those of the emergent particles — are curved by a kn@agnetic field, which gives
one a means of calculating the three impulses, asasdhe three velocities, or even
better, the three correspondigts; one deduces the three corresponding values of the
relativistic mass from them. One can, moreovertendown the conservation laws for
the two components in question of the impulses withificwlty, as well as that of the
masses, and calculate the angle that must exist bettheetwo emergent Wilson
trajectories. If the two proper masses are equaldhenwill find that this angle is such
that ([L17, eq. 12):

(IV.69) cosf= \/ (M, = m)(M,~ M) | 9] <7—2T,

(M, + m)(m,+ m '
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and consequently, it will be acute and will get more aest¢hefss get larger. In the
Newtonian approximation, one will have:

(IV.70) cos= 4, |6]=

N Y

which is a result that is easy to establish by dioadtulation. Formula (69) has been
verified in a very satisfactory way in a plate optiace-Ringuet?).

IV.10 —Finite kinetic and orbital ponderomotor moments and their censities.—
Recall the fundamental equation of point dynamics (I\,.8&ppt an arbitrary origin in
space-time, and form the expression:

X F*—x F™ dx. = dd — x dp.

For the point without spin that we are presently studying, the quadibnged and p
will be collinear, and the preceding equation can also be written:

(IV.71) (XF*=XFYdx=dXxp- X D.

We shall study the two sides of this equation in suazessi

The second-rank antisymmetric tensbip ' — x' p' deserves the name ofbital
barycentric and kinetic momendr more simply,orbital kinetic world-momenbf the
material point. Indeed, its three components, w1

uv
C(O)

— XU pV _ )a/ pu
are nothing but those of the ordinary orbital kinetic motmevhile its three components
in u, 4 can be written:

Cipy =x'p* =X p'=ic m(x’' —V't).
If t =0 — i.e., if the material point is considered simétausly with the coordinate origin
of space-time — then one will recognize the three coepisnof the barycentric moment
in the usual sense in the latter expression. Thatmaetith persist when one takes an
infinitesimal valuedt for t, because the three dx' = — v" dt will then constitute an
obvious “correction for non-simultaneity.” In the geslecase where is arbitrary, the

() One should note that the two emergent trajectoriemdistinguishablein the quantum sense; i.e.,
nothing will permit one to attribute them to the incidelgctron and the electron that was initially at rest i
the Wilson chamber. Formula (69) accounts for thatlfgdts symmetry il andm; .

It is easy to make a four-dimensional diagram ofghenomenon by taking the plane of the Wilson
figure to be Galilean space, and the time axis to thregponding time. One will then see that the spatial
trajectory of the electron that is put into motion wibincide with the spatial projection of the
instantaneous axishat is defined in the text. Furthermore, the ambygiit assigning the emerging
trajectories is recovered in the definition of the @ctipn of the axis.
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three C** will constitute a generalized definition of the claskioarycentric moment.
Finally, the tensor:

(IV.72) Chy=Xp -Xp

indeed deserves the name that we have given it.
As for the third-rank tensor, which is essentiallyisythmetric ini, j (no matter what
definition is adopted foF" ):

(IV.73) Mg, =X F* =X P,

it is easy to convince oneself that it deserves the rafroebital ponderomotor world-
moment. Indeed, if one takes the antisymmetric definitiorFdf to simplify, which is
suitable for a point with a conservative proper mdsa forij = uy, the left-hand side of
formula (71) can be written:

{x~[F+v~K]} dt

Forij =u4, one will get another vectorial expression that Newan mechanics does not
take into consideration:

{t (F +Vv"K) —C—lzx (F Ov)} dt

Fort = 0, the latter expression is interpreted as an ieBmbal barycentric moment of the
ponderomotor work

Finally, formulas (72), (73), and (71) clearly constitute télativistic generalization
of the definitions oforbital kinetic momentorbital ponderomotor momentand the
theorem of kinetic momerds it is written for a point without spin, resp. (€bndenses
into the form:

(IV.74) M g, dx = dCJ,,.

We now pass on to the study of the same question in tdromntinuous media, and
in order to do that, we recall equation (10), whichadvfor a continuous medium that is
subject to forces of volumetric origin. One assuthes the relation (8) is verified in all
of the fluid, except perhaps in certain regions of spmee-that contain sources and
sinks.

We then form the expression:

X fl—x fl=x aijk—xjakT"‘.

If one takes into account the facts thak = g/ and that the tensor ¥ is symmetric in
the present casten that equation will admit the equivalent form:

(IV.75) X fl-xf =9, (X7 - %T1).
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If one takes the four-dimensional integral of botlesidf this inside of a doma# — &
+ P of the usual type, transforms the right-hand side antaple integral and takes into

account the fact that, due to the form (15)rdf the contribution from the hyper-wah
to that triple integral will be zero, then one carnteur

(IV.76) [Tt =X fyow= [ (xXT*-XT)ay.

That is obviously the relativistic expression foe theorem of orbital kinetic moment
when it is written for the entire material drép One then sees that the second-rank
antisymmetric tensor:

(IV.77) L =X =X f

and the third-rank antisymmetric tensot,if

(IV.78) o =XTF AT

deserve the name a@frbital ponderomotor moment densind orbital kinetic world-
moment densityesp. With those notations, equation (75) cawiiten:

(IV.79) Moy = 0,00

In a sense, it might seem more logical to havdistlthe force- density and finite-
in no. Il.7 of the chapter that was devoted tcceEamagnetism and the ponderomotor
moment — density and finite — in no. 1V.10 of tHeapter that was devoted to dynamics.
In fact, that is a better way of presenting thingiace the study of the ponderomotor
moment seems clearer when one couples it with tindy f the kinetic moment. The
remarks that we just made constitute an indispéngiteparation for the problems that
we will treat in the next paragraph.
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B. —-GENERAL EQUATIONS OF THE DYNAMICS OF VISCOUS FLUID S
ENDOWED WITH SPIN.
DEDUCTION OF THE DYNAMICS OF POINTS ENDOWED WITH SPIN .

IV.11. —The introduction of proper kinetic moments into fluid dynamics.— It is
well-known in classical elasticity that the densitypohderomotor force does not suffice
to account for the existence of proper ponderomotor mbdensity, and that the theory
of the latter must be introduced by itself. Similailyis easy to convince oneself that the
distribution of translational force densities of inenvithin the fluid does not permit one
to account for the existence of a distribution of prdpeetic moment density that one
can postulate. Since the moment of inertia of a homemes spherical droplet relative to
an axis that issues from its center is infinitely Bro& fifth order, the corresponding
kinetic moment density will be infinitely small of sew order and tend to zero at the
same time that the radin®f the droplet does.

We then postulate (as we certainly have the riglddpthat classical fluids do not
provide us with an illustration of the fact that a progmretic moment density exists
within certain material fluids. Due to the homogepneitthe definition (78) of the orbital
kinetic moment densitwé{‘)‘), we assume that the proper kinetic moment density is a
third-rank tensomo;, that is essentially antisymmetriciirj, and whose integral must be
taken in the form of:

(IV.80) Cio = [[], athy o,

The integral tensoC(‘ip) , which we call theoroper barycentric and kinetic world-moment

of the material droplet, will then be defined to be afk two and antisymmetric, in
accord with the definition (72) of the orbital kinetioment.

We study the proper kinetic mome@jﬂp) when the drofg passes from state 1 to state

2. An integral transformation will permit one to verfupon taking formula (11.79) into
account]:

(IV.81) JI].... oty ou= [[[ ooty aw=][[ ot du,ds.

A reference to formulas (76) and (71) then shows théténquadruple integrab, of

can be interpreted as a volume density of proper ponderomotment, and that in the
triple integral in the right-hand side, g(} is interpreted as a surface density of proper
ponderomotor moment. Taking both of these ponderomotoremisnmto consideration

is necessary if one is to account for the existencevandtion of the proper kinetic
moment.

As one knows, the physical reasons that impose dhsideration of proper kinetic
moments are of quantum origin. Dirac’s theory of éectron contains, among other
things, a theory of a fictitious statistical fluid ths endowed with a proper kinetic
moment — or dynamical spin— and a proper electromagnetic moment — or
electromagnetic spin It was the need to understand the sense of the equatidhat
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theory that induced various authors to study the relatvistnamics of media that are
endowed with spin for its own sake.

From the outset, Dirac defined the proper kinetic mordensityc™ in his theory as
a completely-antisymmetric third-rank tensor thac@jsequently, the dual of a quadri-
vector g'. Tetrode defined the inertia tensbr in Dirac’s theory 1) to be asymmetric
and proved the two relations on that occasion:

(IV.82) Ti-Th=9a™ 9TV =0TV=1"

f ' denotes the symbolic Lorentz force density that isiegb the fictitious electronic
fluid by the prevailing field. If one takes into accouhe twell-known homogeneity
between an inertia tensor and an elastic tensor.etisae the homogeneity betweén
o' and a proper ponderomotor moment density then Tetrodesifar(83) will appear
to be quite natural from the standpoint of the classibabry of elasticity. The
asymmetry of the inertia tensor and the existencespfradensity seem to be linked in a
fashion that is convenieatpriori.

It is the second equality in formula ¢32hat proves to be essential. (We shall return
to this point in the following nos.) The first one, amshsequently, the equality of the two
divergences of the asymmetric inertia tensor, is not sepdy abstract dynamics, and
can then be considered from that viewpoint as being &ylarttrait of Dirac’s theory.
From what was said above, the same thing will be truthtocomplete antisymmetry of
the tensow™. Only the antisymmetry in j is imposed by abstract dynamics. Now, it is
easy to see that these two particular traits ofdsrtheory are linked with each other in a
necessary and sufficient manner. If one compares @tieetother then Tetrode’s two
tensors will, in fact, permit one to write:

ajk O'ijk = 0,

and since the symbolic tensgy is essentially symmetric, that relation will be eglent
to the essential antisymmetry of the tengdt in j, k.

Along with the well-known spin density’™, another spin density™ is introduced
into Dirac’s theory. E. Durand was first to point d@stexistence and proved the relation
(): o
(IV.83) Oik r'k = u,

ijk

in which " denotes the proper ponderomotor moment density that i®adigaily
applied to the fictitious polarized medium by the electrgmedic field [cf., (111.83)].
Now, without there being any need for us to insist updwerie, moreover, we agree that
ferromagnetism, which is due to the spin of the eadegtroffers a macroscopic
manifestation of the Durand’s couple, and thereforeofalts physical importance, as
well. Conforming to the general model that is provided kstrabt dynamics, we finally
point out that Durand’s densiy™ is anti-symmetric in only the indicés.

() Zeit. Phys49 (1928), pp. 858.
() C.R. Acad. Sci218(1944), pp. 36, eq. (8).



B. — Fluids with spin and viscosity. Points with spin. 109

Formulas (82) and (83) of Dirac’s theory essentiallystitute the formulas that
physically justify the study of the dynamics of continuonesdia that are endowed with
spin. Notably, their precise interpretation is the gufahll of the theory that we shall
now present.

IV.12. —Hypothesis of an asymmetric inertia tensor and a mass-impuld@at is
oblique to the trajectory. — We return to the equations of Newtonian mechanics (), b
postulate the existence of not only the kinematic vilogi or V", but also apseudo-
velocityu or u that is not collinear with the preceding one, andighghat equations (5)
must be generalized in the form:

(IV.84) { f=0,(pu'u")+0,(ou’),

fv=0a,(wv)+0d,(w.

We will see later on that the vectpru intervenes globally in the expression for the
impulse op of a dropletdu, and that this vector is oblique to the trajectory. Ry,
each of the elemenggandu are then defined only up to a factor, and that factdrbsil
chosen in such a manner that it will simplify thenfiitas.

With (84), the generalized expressions for the compsradrihe inertia tensor, which
IS now asymmetric, will become:

TUV :puUVV,
(IV.85) T =icpu’, T=Lw,
C
T =-w

This tensor then seems to be the general product gttwri-vector world-velocity:

Vi=aV, V'=ica
with another quadri-vector:

mU' =W, U = —w.
ac

With these generalized definitions, the law of univigpsaportionality:
w=c?p

will no longer be posed deductively. In order to recayeone must postulate that the
threeu” are the direction cotangents of the quadri-vegko ', which will then imply
that:
ic
mU4==p
a
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That postulate amounts to making an appropriate definitibothe mass density.
Similarly, in order to define the proper mass dengfy one must postulate that the
length of the quadri-vectds ' is such that:

(1V.86) UV =-¢.

Finally, the covariant expression for the teriBdmwill be:

(1V.87) T =pUV',

and one will have two expressions for its trace:

(1V.88) T =pulv-c’)=-Cp,

At some points, we shall insist upon the new and curiagsirastances that result
from the preceding definitions. One will naturally conno assume that the quantities
Lo andp are essentially positive; since one has:

(IV.89) p=-pU*V?

and since the quadri-vectdt is essentially timelikes i V * will be essential positive, the
second postulate will imply that i-U  is essentially positive, and therefore that is
also timelike ). Under these conditions, there effectively existeeond Galilean frame
such thato = m ; the threeU" will be zero in that frame. With those postulatese
easily convinces oneself that one essentially ha$ ¢ ¢, and consequently (since the
scalar producati [ is capable of taking on negative values):

(IV.90) -F<ulv<+cA

Therefore, the lower bound on the possible values of:

_ P
(IvV.91) p= i
1- 2
C

will no longer beo, but, in fact,o / 2.

The minimum value ofi [v in the set of Galilean frames that have a givestaint-
point for their origin is obviously attained forcartain direction 0Ox; that is coplanar to
U'andV' and interior to the angle between those quadters. For the Galilean
frames that satisfy that condition, withdenoting a constant, argf] a real variable, one
can set:

() Recall that in Dirac’s theory the Gordon quadri-curreviiich must be contrasted with the present
quadri-vectolU ' in several regards, is not essentially timelike.. (Wérdon, Zeit. Phy$0 (1928), pp. 630.
0. Costa de Beauregard, Jour. de Math221943), pp. 113 and 174.]
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v=ctanh @ -9, u=ctanh @+ 9).
One will then effortlessly see that the desired minimvalue is:

_2 1-coshd <0

ulv <
1+ coshd

and that it is attained whe@x, is the lower bisector off ' andV '. The minimum
minimorum is then attained only in the limiting casés= £ « . By contrast, the
maximum value of  0v) in the Galilean frame that is being considered is never
bounded.

The preceding equations imply that the fundamental farfarl the dynamics of the
medium under consideration, when it is subject toaitt®on of only volumetric forces,
will be:

(1V.92) f'=0,T" =0,(0U'V").

If one takes the quadruple integral of the two sidekisfihside the usual domada — &;

+ P and transforms it into a triple integral then thatcibution of the hyper-wall will still
be zero, as in the classical case, and one willhsgehe expression:

(IV.93) p' :J'J'L LUV EHL pOU‘cfuoEHL Uom

represents the mass-impulse of the material dfopThe single, but still essential,
difference between this and the classical case tisaha dropletduy, themass-impulse:
(IV.94) d =dnpUu'’

is no longer collinear with the quadri-vector'V If one so desires, one can decompose
this oblique mass-impulsimto alongitudinal componenthat is collinear withV ' and a
transversal componettat is orthogonal t&'. We also note that at a given instant-point
in an infinitesimal hypertubethe length of the quadri-vectadp' will remain defined

independently of the orientation of the hypersectio
Equation (92) can be developed in the form:

(IV.95) fl=U'9, (V) +mU",
so one can conclude, upon taking (86) into account, that:
Vifl==c?9, (V) +mViU'=-0 (mV)-mU' V.

The necessary and sufficient condition for form(@@) (which we have considered to be
characteristic of continuous media that are subjectotonvetric forces and admit the



112 Chapter IV — Relativistic dynamics.

possible presence of sources and sirtksponce more resulis that one must have
essentially:

(IV.96) U Vv'"=0;

i.e., the quadri-vector U— V', which is already orthogonal to Mor x”'), must also be
orthogonal to V (orx”'). By means of that hypothesis, the entire theogroper mass
in fluids that was developed in no. IV.5 will persisthe present case.

We shall now give a new form to the definition (87)tlé tensofT ” that will be
useful in what follows. Speaking kinematically, the quagtor U ' has no real
existence. It then seems natural to attach its diefinib that of the quadri-vect®#' by
setting:

(1V.97) PN, =0V,

as the definition of a new second-rank tensbithat is called théensorial mass density
and supposing that is it asymmetric, in general. Thaitief (87) then becomes:

(IV.98) TV =gV,

and it will result from (86) that one has:

(1V.99) O'VV =-¢2.

Just like the tensoF !, the tensoc? p is homogeneous to an elastic tensor, and what
follows will show that this homogeneity is not puréymal.

IV.13. — The bases for the theory of surface forces of elastic type When one
develops the relativistic theory of surface forcethm case of an arbitrary elastic tensor
E", one will encounter serious difficulties when onekseto preserve the hypothesis that
the second-rankvorld-forcetensorF ' must be antisymmetric. The four-dimensional
extension of the well-known formula:

d: u — EUV &v ,
will then be, in fact:
F=g%ss,-E*Js,,

and if, as alwaysdu, denotes the hyper-wall volume elemedt dx then one will have:
d ' =V dx =E “ou, - E*ds} dx

as an expression for the elementary quadri-work thédne by the surface force. When
one starts with that formula and seeks to extenduttpements and formulas of no. 1V.6,
the presence of the second group of terms in the rgind-Iside will imply numerous
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difficulties in calculation and interpretation. Fuetmore, that same presence will imply
that the value of the expressidnp' will not be independent of the world-orientation of
the initial and finals’. Now, all of the experience that we have acquired upote in
relativistic theories makes us consider that situatbdme quite unsatisfactory in itself.

The simple and radical means of avoiding all of thiiffeulties isto assume that the
tensord-’ is no longer antisymmetric in the general elastic caBkat idea seems much
more acceptable to us than the volumetric theory tleatvere already led to in the case
where we desire to be able to account for the existefwaurcesor sinks(no. IV.5). We
then assume that the expression:

(IV.100) OF" =E*0s,

will give the general definition of surface force adstic origin. For:
Eik — mé"‘

that formula will coincide with formula (42), which wagven for the case of normal
pressure. Inthe general case, it will imply that:

(1V.101) oF'dx, = B0y’

as the expression for the elementary quadri-work, in hykis alwaysdu,’ denotes the

hyper-wall volume element @ that is expressed by (11.79).

Without wishing to explicitly extend some resultsnfroéhe simple case of pressure,
and for which the concomitant considerations are prigsealid mutatis-mutandisin the
following no., we shall extend formula (46), as welltas analogous one that one can
write down for the moments. Indeed, those formulasadnsolutely fundamental to the
theory that we have in mind.

IV.14. — General fundamental equations for the dynamics of continuaimedia
endowed with spin and viscosity— We shall give a generality to the formulas that we
shall now establish that is complete in regard to fathe preoccupations that we have
had since the beginning of Chapter IV. The present thetiryhen have the maximum
level of comprehensiveness that we have claimed thaawegive it.

From the inertial viewpointwe shall assume that the fluid considered enjoys:

— A volumetric mass-impulse densihat is represented by asymmetric tensathat
responds to the equivalent definitions (87) or (99).

— A volumetric proper kinetic moment densithiose theory was given in no. IV.11,
and is represented by a third-rank tengthat is antisymmetric in j.

From the ponderomotor viewpoimie shall assume that this fluid is subject to:
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- Forces ofvolumeorigin that are derived from @ensity f that is not orthogonal to
the quadri-velocity/ ' in the regions of space-time where there exist souncsisks, and
whose theory was given in no. IV.5 (second hypothesis).

— Forces ofsurfaceorigin that are derived from aglastic tensor Eand conform to
the theory that was just given in the preceding no.

— Moments of volume origin that are derived fronpraper ponderomotor moment
density that are represented by an antisymmetric tepsgrfor which one physical
example is provided by the classical polarized electroptagmedia.

— Moments of surface origin that are derived fronsuaface density of proper
ponderomotor moment * that is, as we have seen, homogeneous to a voluméydehsi
spin, and whose presence proves to be indispensibie ifsoto equilibrate the presence
of the spin density precisely.

We begin by writing the dynamical equation that relabethe sum of forces — both
inertial and ponderomotive — that are applied to the nat#mop. In integral form, one
will obviously have:

Ji{J o aw=If[ 1w+ [ E*ou.

The triple integral, which relates to the quadri-worke&dy surface forces, transforms

(] ao-Jf,_ e,

Just as we did in no. V.6 for the case of pressure hat tsansform the lattdf] into [[f]
by appealing to “hypothesis H” and “postulate P,” which wstiagged in 1V.5. Under
“hypothesis H,” one will have:
1
Aok =~ ?Vk Vi &,

in such a way that if one takes into account the obviaassking of a hyper-wall integral
then the triple integral in question can be written:

e

Finally, if one takes “postulate P” into account, aslwslthe expression (99) fdr,
then one will have:

(IV.102) 0,T“=0"(0“V, V)= f +0, B —C—lza' (B \V V)
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for the desired equation. Conforming to what we have stidre is physical
homogeneity between the three tensbtsc? p', andE ",

We now write down the dynamical equations for momeand, first in integral form.
If we take into account the balance of everything thad stated before then we will
have:

T G =T %3y
] 00 1 b0 [ (1B - X E 50 )54,

Taking into account the obvious vanishing of a mypall integral, thell[ on the left-
hand side will be transformed into:

[[]] 0udxTH =X T + 0™} dw-[[] o™ 4.

Similarly, under “hypothesis H,” and taking intocacnt the obvious vanishing of a
hyper-wall integral, the first two terms in tljﬁp will transform into:

II[]|adxer -x ey -Zot ke - k8 v Vo,
Finally a ij will remain on both sides of the equation, and omest necessarily

have:
(IV.103) o™ -g* =0

identically at every instant-point of the contauiof the drop, which amounts to saying
thatin a medium that is endowed with spitf, the simple fact of considering an isolated
portion £ of the medium demands that for dynamical equuiorito exist, one must
fictitiously apply a surface density of ponderomatmment that is precisely opposite to
the volume density of spin to all of the cont6Uf127], pp. 127). From everything that

was said before, it is clear that the two meanfogshe densityo™ are compatible from
the standpoint of dimensional analysis.

Once the twoj j jp are assumed, they will cancel identically, from wheaas just
said, and what will remain for the equation thatase studying in its density form is:
O AX Tk _xI Tk + gy
=X flox!fl+y" +9dX EX —x! E‘k}—iza'{(x‘ EX_xEM Vi VL
c

The various expressions of the fodpx A¥... ord, ¥ A ... transform according to the
schema:
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X Ak . =x oAk + A
=X oAk + Al

If one takes equation (98) into account then what willaienof the equation in question
will be simply:

T/ =T +0,0 =[p"V -F V] +3,"
(IV.104)

= +E B BV -EV] Y

In the absence of proper kinetic moments, the two tenso
Th_ Tl and o'

which are antisymmetric in j, will be zero identically. Similarly, in pre-relatstic
elasticity, the two tensors:
u’  and E'-E!

which are antisymmetric in, j, will be zero identically in the absence of proper
ponderomotor moments. In relativity, we must correat fatement slightly by referring
to the two tensors: o o

u" and E'-E'-[E'V'-E'V'] WKk.

Under those conditionsin the absence of proper moments (whether kinetic o
ponderomotor), equatiofl04) will be satisfied identicallywhich amounts to saying that
the equation of dynamical equilibrium for the moises a consequence of the equation
for the resultants That is a well-known result of pre-relativistic hgdynamics, and that
justifies a posteriorithe fact that we have given all of our theory in § Bhaut being
preoccupied with moments.

It is quite easy for us to interpret the two equationg)(&2d (83) of Dirac’s theory
the first of which is due to Tetrode, and second of whlDurand- with the aid of the
general equation (104). One obtains Tetrode’s equation hylliagnthe entire right-
hand side of (104), and that amounts to saying that Birgpin density is defined
independently of any consideration of ponderomotor momeMsre precisely:The
Dirac spin density is the spin density that is ioed by the asymmetry of the inertia
tensor. The Durand equation is obtained similarly by annulling thmdehat contain the
inertia tensor, and of course, the ones that cont&retastic tensor. That amounts to
saying thatThe Durand spin density globally contains all oé ttiynamical effects that
result from the (fictitious) application of the elemagnetic ponderomotor couple
density to the electronic fluid.

IV.15. —Deduction of the dynamics of a point endowed with spin. $umary of a
theory of Weyssenhoff and Raabe— As we did in no. IV.7 in order to deduce the
dynamics of a point without spin, we shall now essdlgtsuppose in what follows that
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there are no forces of surface origin. Exactly derlee we will deduce the relation (51),
which we now write: S
(IV.105) dp =F' dx .

This time, by virtue of (93), the quadri-vector:

(IV.106) p' =mU

will not be collinear with the quadri-vectdf . One can decompose it parallel and
orthogonal tov' (i.e., by virtue of (86), alony' andU ' — V') into alongitudinal mass-
impulseand atransverse mass-impulséiere, we rewrite the relation (86) in the form:

(1V.107) Vp=-cm.

If one essentially adopts the hypothesis that the world-foréeissantisymmetric
(which is a hypothesis that corresponds to the one where is conservation of proper
mass, in the language of continuous media) then ondezhute from formula (105) that:

(IV.108) V; dp = 0.

Upon comparing formulas (107) and (108), one will then seethiganecessary and
sufficient condition for there to be conservation of proper masss rthat the quadri-
vector U' — V', which is already orthogonal to'Ymust also be orthogonal to'V/

(IV.109) p'dV=0.

That corroborates what we said in no. IV.12 precisely.
Now, consider the density formula (104), which we reawipon neglecting the terms
of surface origin and making the expression for theoteh$ explicit from (87):

(IV.110) oo UV U V) + g =gl

and then multiply all of the terms by the elementaaja volumedy, . In the left-hand
side, one will get the proper masg as a factor, and if one takes (106) into account then
that term can be written:

P'Vi-p'vi
The second term:
d—lr oo™ i dr
can be replaced with:
4 (@™ an = acy,
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in which JC(",")) denotes the elementary proper kinetic world-moment lamderivative is
taken with respect to the proper time. In order to @b, thne performs a transformation
of the quadruple integral into a triple integral at thignitesimal scale, and one neglects
the hyper-wall integral by virtue of what was said in tha&tert of formula (103).
Ultimately, thefinite proper ponderomotor moment, as defined in the secondneay

11.14):
(IV.111) oM =1/ du,

will appear in the right-hand side of equation (110). Rmafl one passes to the usual
limit then one will see that the density formula (1a@jmits the equivalent integral:

(1V.112) pVi-pvV+C =M.

That is the one formula that several authors have pseldypothesis, as the basis for
the dynamics of a point that is endowed with spit3f, eq. (2), L34, pp. 28, eq. (11)}.
Here, we obtain that formula deductively. One theeefarifies once more the primacy
that relativity accords the density theorems with resjoethe finite theories.

If one sets:

(IV.113) oM™ = 1/ SU¢

for the general definition of the finite ponderomotor moment then ieotakes the
definition (11.80) of the elementary scalar volume irgocount, one will see that the
relation (112) can be further written:

(IV.114) pldd—pidxi+Ci=Mky,
or, if one prefers:
(IV.115) pldX - pdk+ d® = M dx

Under the hypothesis that the world-forcd 5 antisymmetridcf., (108)], it is clear
that formula (60), which uses tli@ite force of the second kindill remain valid. We
rewrite it as:
and we can then effortlessly conclude that:

(IV.116) x'pd-xipi=x'Fl-xIF",

Upon adding corresponding sides of (112) and (116), we w#liobhe formula:

(IV.117) (xX'g-Xp+C&)y=kF-xF+ M,
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which conforms to the reasoning of the cited authorsisma accord with those of the
previous no., or equivalently, upon returning to the ordinéinte force and
ponderomotor moment:

(1V.118) dX g-xp+C)=(XxE - X E+ N) dx

That is the complete set of fundamental formulaste dynamics of a point that is
endowed with spin. We point out that in the followingggraph some reasons will
appear for assuming that the general relation:

(IV.119) Cip=0

exists between the spi@ ' and the mass-impulsg of a material point, by virtue of
which the three componenB™ of the barycentric moment will be annulled in the
Galilean frame in which the thrgwg are zero. As far as that is concerned, Weyssenhoff
and Raabe have made another hypothesis, and we shalasamtheir theory]33 134
to conclude.

Instead of the preceding relation, one postulates that ltas essentially (the
Weyssenhoff-Raabe postulate

(IV.120) C'v; =0
and consequently: } ;
(IV.121) CPVi+Clvi=0.

If one multiplies all of the terms in (112) b , under the hypothesis thit ' = 0, and
takes into account the definition (107), as well as (12@)) tme will get:

1

(IV.122) p=mV' +?cij Vi,

and then, with no difficulty, the relation (108), whidiosvs thatthe proper mass gwill
then be constant.One deduces from the same formula (112), as always,rtue \of
(120) and under the hypothesis that = 0, that:

(IV.123) c;c’'=0, C;C"=const,

which shows thatunder the hypotheses that were made, the proper kinetic moment is
preserved in modulus.

Under the hypothesis th&t' = 0, the quadri-vectop' will remain constant. With
Weyssenhoff and Raabe, we then agree to call thee@alftames. in which the threg"
are annulled th@roper system of the circleln that frame, and by virtue of (107), one
will have:

pi=—icm1-5,
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from which, one will conclude that:
B.=const, V.'=const.

Weyssenhoff and Raabe called the constant quantity:
M =nmp 1_,3:

the proper mass of the circleSinceV, is zero in the framé€., the expressions for the
threep”, which are zero, will reduce to:

MoV + SCV = 0,
C

or furthermore, if one transforms the derivativethwiespect to proper time for the
particle into a derivative with respect to “propiene of the circle” then:

wov + Lo =0
C

If we then return to the ordinary velocity=V,/1- #° and the notation of the common
vector calculus then the preceding relation will@ten:

MoV +-—=C AV = 0,
C

in which C denotes a constant vector, akgd is a constant. The integration of that
equation is classical. One finds very easily thahe frameg., and with a well-defined

angular velocityw= c*M;/C, one has a circular helix with an axis that isafiar to C

and has a radius= Cv/(¢M,) that is proportional te. On that subject, Weyssenhoff

and Raabe observed that no macroscopic materiait poil enjoy the preceding
properties. They then assumed that certain reagonkl oblige the radiug, to remain
extremely small.

Those authors completed their theory by treatiegdase in which the particle was a
pre-quantum electron that was endowed with a promsgnetic moment (Uhlenbeck,
Goudsmit, Frenkel), and then the case in which plagticle has a vanishing proper mass,
and consequently, a velocity that would be indgtishable front.
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C. —ON THE PROBLEM OF THE DYNAMICS OF SYSTEMS
OF INTERACTING POINTS.

IV.16. — Four-dimensional extension of a theorem from the theory oforsors.
Combined definitions of the barycenter and moment aroundthe barycenter. —
Consider a system &f torsors, each of which is, by definition, composed cdsalltant
shift p and acouple s' =-s'". Suppose, to fix ideas, that all of the quadri-vecpbese
timelike, with positive temporal components. By the migifin of the sum P of the
systenof N torsors, set:

(1V.124) P'=>p.

As soon as we have determined its line of actioaxis P' will be theresultant shiftof
the resultant torsor By virtue of the indicated restriction, the quadri-ved®mwill
certainly be timelike with a positive temporal component.

Now letX ' be the four coordinates of the point of applicatiom efuadri-vector that
is equipollent tdP ', and letS"” = — S* be the six components of an antisymmetric tensor,
to which we impose tha priori condition:

(IV.125) S'P =0,

which is expressed by four equations, only three of whiehiratependent. Then define
the instant-poinX ' and the tensd8"” together by means of the tensorial equation:

(IV.126) XP-XP+38=>(xp-x'pt's,

which is equivalent to six algebraic equations. IfRHare determined by (124) then one
will see that (125) and (126) define a linear system of ramk in the ten unknownx'
andS".

We provisionally place ourselves in the Galilean fragnén which, from (125), the
threeP", as well as the thre®*, are annulled:

(IV.127) P'=0, §*=0.

In Go, equations (126) will reduce to:

(IV.128) { S =208r- X e+ ¢,

XoR =2 %/~ %+ $].

The tenso” is determined completely by (137nd (128), and the line of action of the
quadri-vectorP' is determined by (128 Of the ten unknown; and S}, only theX;
remain arbitrary, for the moment.
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Finally, equations (124), (125), and (126) completely deterthieeesultant torsor
of thesystenof N torsorsp', s’ = - s in terms itsresultant shift Pand itscouple S/ = -
st

We now (and optionally) suppose that Meuadri-vectorg' no longer slide, but are
linked. It will then also be possible to link the quadrétee P' by virtue of the new
equation:

(IV.129) X,P=Y xp,
which is written:
(IV.130) XaB =2 % P

in the frameG,, and determine the tenth unknow{. One sees that the equations (125),

(126), and (129) form a linear system of rank ten in theitmownsX ' andS".

The preceding calculations provide the means for definingf, the total mass-
impulse Pin a covariant manner, then collectivethe barycenter Xand themoment
about the barycenter Sof asystem of material pointhat are endowed with sp# in
the general case. The fact that the last two noticmsa@mbined with each other is what
makes the remark that was made in no. 1V.10 stanchquiori, namely, that the three
components im, 4 of the tensox p' — x! p' generalize the classical notiontrycentric
momentbf a material point about the origin of the universe.

In order to define the barycenter of a swarnNomaterial pointan the large we
temporarily assume that they are non-interacting amidusly regard each of them as
sliding along a timelike axis that is collinear with itase-impulse' (hence, not tangent
to its world-trajectory in the general case of spiBy definition, thesum P will be the
total mass-impulsef the swarm, while theouple S’ will be its kinetic, barycentric
moment about the barycenteand finally, theaxis will be the world-locus of the
barycenters X. The justification for those definitions resultsrfrdhe fact that if one
sets:

(IV.131) P*=ic M
then (124) can be written:
(IV.132) Pi=>p", M=>m,

as well as the fact that, @y, the (128) define thekinetic moment about the barycenter
(so thebarycentric momenwill then be zero), and that (note well!) itirdependent of
the origin of spacesince the thred)’ are zero, and finally that (always §) equations
(128) generalize the usual definition of the barycenter by:

MoXY = z{mo(x;—v; el %4},

which is a formula that will coincide with the céasal formula exactly if all of the points
are taken at the same instat O and in the absence of spin.

In order to define the barycenter in 8tact manner, one links each of tNepoints of
the swarm to the instant-point of @gisand its world-trajectory (in the general case, not
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all of those instant-points are takeimultaneously In Gy, equation (129) can then be
written:

MO-rO:Z:(m)to_C_];)%J mj,

and thetime of the barycentergE X /ic will then appear like the weighted mean of the

times of the points of the swarm, up to a very $m@irection term that corresponds to
the virial of those points. Hence, even if one takes athefpoints at the same instant,
their barycenter, when defined in te&ict manner, will not be at that instant. That
unsettling fact will seem quite singular to theqtitéooners of Newtonian mechanics. If
one prefers, one can avoid it by appealing to #gimition of the barycentan the large.
The spirit of Newtonian mechanics, as well as tdfdhe quantum theory of particles
with spin will be respected if we fictitiously ca# the mass-impulse of the barycenter
andS' thespin of the barycenterNote well that even if the constituent points desoid
of spin, the barycenter will have spin, which via# nothing but the classicaloment of
the system about the barycentefo us, that remark seems to justify the necessdita
relativistic study of points with spin (no. IV.18ven in the absence of the results of
guantum mechanics.

IV.17. — The potential energy-impulse and the potential spin of theield.
Statement of some general theorems of dynamics.As we have said in the Foreword
to this Chapter, according to what we have learabdut electromagnetism from
Maxwell, Abraham, Poincaré (and even, we might d&aan the paper by E. Henriot that
relates to the couple density of the fieldT]), we shall assume that the existence of a
field of interaction betweeN material points translates, in the entire univens® the
existence of a continuous distribution opatential mass-impulse density’ Twhich is
asymmetric in the general case of spin) angogential spin densityg™ (which is
essentially antisymmetric in j). To commence, replace th¢ filamentary hyper-
trajectories withN infinitely-thin material world-hypertubesWe assume that each of the
two tensorsT ! and o™ each take the form of a sum of two tensors, tts¢ 6if which —
which is called thenertial or material part — is not identically zero only inside of the
preceding hypertubes and suffers a discontinuitynupaversing their hyper-walls, and
the second of which — which is called fiedd part — is continuous in the whole universe.
From the definitions that were given in the prengdparagraphs, the elementangss-
impulseandspinthat are attached to a hyper-section of one optbeeding hypertubes
will be attached to their material tensors by therulas:

¥ =T*ou, & =g ou,.
That being the case, and by virtue of formulag @@l (104), which we rewrite)(

the force density f and theproper ponderomotor moment densjty will have the
following expressions at every instant-point:

() The second one, by annulling all of the terms of il@stgin identically.
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flzaTh  pi=TI—Ti+9 0™

Now, from d’Alembert’s principle, théorce densityand thecouple density(orbital +
proper) must be identically zero at any instant-point, vigonritten:

fl=0, X —xf'+uyl=o0.

If one takes the obvious relation:
T o x' =T"

into account then the equations above will admit tflewing two consequences:
(1IV.133) aT* =0, H{XTKk-XT*k+g"=0.

Those are the twpurely localgeneral equations that express dynamic equilibrium,ein th
d’Alembert sense, of the matter + field system asraand amoment We shall infer the
relativistic statements of the general theorems of miye&from them.

We arbitrarily introduce a continuous family of three-dimensional, cepke

hypersurfaceg (6 of the usual kind. Suppose that when one goes to infilatygaan

arbitrary direction on & (6), the mean density of matter decreases in such a \aayfth

the intensity of the interaction field decreasedisiehtly fast with the distance from the
matter then the two density tensdrd and o™ will decrease sufficiently fast at spatial

infinity. Then take a closed, four-dimensional domairt ties between tw& — e.g.,£

(6) and€ (&) — and inside of a hyper-wdh that does not meet any material hypertube.
Integrate (133) in that domain, transform it into alérimtegral, and stretch the hyper-
wall P out to spatial infinity in all directions. From the hypeses that were made, the

triple hyper-wall integral will tend to zero, and if@orientsg (6) and€ (&) in the same

sense relative to the time axis then one will getftiiewing two integral equations,
which are equivalent to (133):

.U.L(e)Tikéuk = Fg’

(IV.134) NP, )
ITIK _ J —
JIoo XTH =X T+ 10y = @,
which are equations in which the right-hand sid@sand C!= - CJ are constant
tensors.

Now, make thematerial terms ind' and & ! of the corresponding tensors appear
under thel] sign, and then constrict the hypertubes in ordereturn to the case of
material points. In that passage to the limit, one supposes ealighat:

a) Thep =& ands’ = &' that are attached to each hypertube remain finite.
b) Theinterior portions of the integrals of the field tend to zewad theirexterior
portion remains finite.
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(134) will then take on the form:

S+ [mou}, =

S{ixp —x p+ 81+l xt - x'r+diay = ¢

(IV.135)

The terms i - or kinetic terms— relate to the material points of the swarm whose
mass-impulses ag and whose spins ag& The terms iff][ - or potential terms- relate

to the interaction field. P, and C} = - C/' are two tensorial constants. The indi¢es
signify that the triple integrals are calculated oaeturrent hypersurface of the family
&(H and that all points of the swarm are taken from Haahe hypersurface. The two

tensorial equations (135) contain a condensed statemelm¢ geheral theorems of the
relativistic dynamics of those systems of points.
In the absence of spione will have, on the one hand:

gk=0, d=0,

where the second equation is a finite consequenceedirh one, and likewise (cf., the
end of IV.15): ) ) o o
T'-T"'=0, X'p'-x'p'=0.

One will then effortlessly see that the second of (I8%) consequence of the first one,
with:
Ci =X'P-XB,

X denotes the current instant-point of a certaiis that is collinear with the constant
covectorP; .

We return to the general case in order to infer thailddtstatements of thgeneral
theoremghat were stated from (135). We arbitrarily decomposetinrent hypersurface

&(H) into elementsau that are infinitely small in all of their dimensionsdavary as a

function of @ in a continuous manner. It will result from (135) and theory that was
developed in no. 1V.16 thahe resultant torsor PS" of the system of N torsors g and
o torsors T du. , ™ du. is conservative.lt is conservative in the double sense that it

will not be altered by either a change&inside the family&(6) or by a change of the
family £(6). That will amount to saying th#te resultant dynamical torsor is:

a) Conservative throughout the mechanical evolution of the system pdiald.
b) Defined independently of the choice of faré(l§).

In passing, we insist upon the essential importancehbateicond result haspriori, and
we come to the detailed explanation for the first one.
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THEOREM I. - In the absence of external forces, the total mass-impulse of the
system points field — which is called thenass-impulse of the barycenter, moreover — is
conservative.

Fori = 4, one will then obtain both the statement of theorem(and not the
principle) of the conservation of total maasd that of thevis viva theorem.The main
novelty of the classical theorem consists of attaclamptential masgo the field of
interaction that correlates with tip@tential energywhoseconstantis then found to be
fixed. Thepotential massamust obviously be negative in a stable system, and as one
knows, that is an established result of nuclear chem{8try The secondary novelty
consists of the fact thahe law of distribution of that mass or that potential energy in the
field is physically well-defined.

Fori =u=1, 2, 3, Theorem | generalizes the classitglulse theorem Since it is
certaina priori, the older equality of action and reaction at a deganill have to be
rejected as absurd. Correlatively, one introducesdhiens of gpotential-impulseéhat is
distributed throughout the field as a density.

THEOREM II. - In the absence of external forces, the kinetic and barycentric
moment about the barycenter of the system peaifitdd — which is called thespin of the
barycenter, moreover is conservative.

Fori,j=u,v=1, 2, 3, one will then obtain the extension of ¢fessicatheorem of
kinetic moments Along with thekinetic spinthat is due to the points patential spin(®)
that is coupled with the field will come about. Ead¢hlmse two moments will itself be
the sum of amrbital momentnd aproper momenin the general case of spin.

Fori, j = u, 4, the same statements can be repeated for theebétg moment.

THEOREM IIl. — When @ varies, the instant-point'Xhat is associated with the
strict definition of each hypersurfac&é) in no.1V.16 will describe a fixed axis that is

collinear with the constant quadri-vectot B the universe. One will then have every
right to say that in the absence of external forces, the quadri-veNcitf the world-
barycenter of the system pointdield will be conservative and collinear with the total
mass-impulse (which is itself conservative by virtue of Thebremoreover.

One clearly recognizes that this is an extension ef dlassicaltheorem of the
barycentey and that it has a very interesting specializatiortie theory of the point with
spin. Since the barycenter, conforming to the spirihechanics — whether classical or
guantum — is considered fictitiously to be a materiahipthat is endowed with spin, one
would not expect that its mass-impulse and its world-wglogould be collinear, in
general. However, it will result from the corollahat is implied in Theorem Il than
the very important special case of the free motion of a systentwo quadri-vectors'V
and P are collinear (and constant, moreover)t seems quite natural to inductively

() We have already mentioned that the mass-energydealamuclear chemistry provides an excellent
verification of the theory of relativitylfl4, 115 117.

() Unfortunately, the words in the two expressikimetic kinetic momerandpotential kinetic moment
clash with each other.
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extend that result to the case of an elementaryt ploat is endowed spin. One knows
that in the wave mechanics of particles with spin, iarithe very important special case
of the monochromatic plane wave, the mass-impulsecfwisi well-defined) is collinear
with the world-rays. That fact constitutes the quantuamsposition of the preceding
result.

All of the preceding theory was formulated under the bygsis of the absence of
external forces. In order to pass to the general @ame must necessarily superimpose
the previously-consideredteraction fieldwith anexternal action fieldwhose resultant

torsor will be valid with the change of the hypersurfd¢é). The resultant torsor of the

torsor that is “interior to the system” and the ‘@&xial action” torsor must be
conservative.

IV.18. — Limitations of the preceding theory. Some words on the geral
problem of the relativistic dynamics of systems- In the preceding two nos., we have
successively been able to make relativistic extensibtieedasic notions that permit one
to characterize a system dynamically and the statsnensomegeneral theoremsf
dynamics. It now seems clear that we have done fitthre than to clear the path to the
true problem, namely, the field problem that Newtonian me&ckdreats by passing over
it by making a whole group of physical approximations, namely:

- Instantaneous transmission of the interactiasich is the postulate that the entire
system is taken at the same instawftthe so-callediniversal time.

— Equality of action and reaction at a distancghich is a hypothesis that is
conceivable only in the case whiversal timewhich is a consequence of the preceding
one, and will render the notion opatential impulseiseless.

— The absence of an equivalent mass to the potential enetagh will render the
specification of its law of distribution inside the @leliseless for the definition of the
barycenter, for example.

All of those approximations amount to lettiog- oo, in various forms, and that itself
will show one the corresponding ways that the constaetters into dynamics. They
form a perfectly-coherent body amongst themselvas kbeps its value as a technical
method for the treatment of a whole group of problemawever,by its very nature,
relativity forbids the use of that body of approximationsis essentially their use that
permits Newtonian mechanics to appeal t@éseral theoremas logical intermediaries
in the treatment of some problems, and it is the suppressitheir use in relativity that
will imply the suppression of thgeneral theorems.Indeed, in order for thgeneral
theoremsin relativity to be able to serve as logical interraeds, one must previously
know the law of evolution of the field of interactidwyt that will be controlled by the law
that allows one to find the system of points.

Hence, the field problem that Newtonian dynamics solvesnigsion comes to the
fore in relativity, and is the one that essentiatinstitutes the problem of tlig'namics of
systems To be sure, that class of problems has been encedrtefore, notably in the
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electromagnetism of Maxwell-Abraham-Poincaiéand also in the relativistic theory of
gravitation ¢). It appears as an obligatory consequence of takingcimsideration a
finite velocity of propagation for that interaction.o Touch upon the advantage that the
present problem can infer from the example of analogousdgms, we think that by the
power and generality of the methods that are brougbtpiaty, it is, above all, the study
of general relativity in which that example can be pabfe.

It seems to us that here we have a strong argumeptiori in favor of the
introduction of a metric in order to treat the probldrattwe considertn relativity, the
motion of a force of interaction between two points as a function offthg& separation
is a priori as unacceptable as that of the equality of action and reaction at a distance.
However, consider the problem in Newtonian mechanicsnvof inaterial points that
attract each other by the intermediary omassiveelastic filament. The force of
interaction is transmitted between them in the steptbg-sense, by waves and at finite
velocity. One can say that it exists virtually atrgveoint of the filament. In fact, it is
realized only at the extremitiés and B, where there is no equality between action and
reaction (except in the limiting case where the lirsisnsity of the filament tends to zero
and the wave velocity tends to infinity). Moreover dahis is the point that we are
trying to reach), thdocal law of tension in the filament will yield, step-by-step, a
substitute for the motion of a force of attractioattls a function of thénite separation
distance. Furthermore, nothing is easier than to putpilwdilem into equations: One
defines goroper metric for the filamerty graduating it into equal divisiotisat pertain
to its moleculesvhen it is taken at rest. Létbe that gradation, whiléx and g are the
proper abscissasf the extremities (which are constant, by hypothegisy the linear
density of the filament relative to the proper gradatforand y is the coefficient of
elasticity. To simplify, argue with just one Galiledimensionx to space, so one will
effortless arrive at the equation of evolution of ¥it@ating string:

9°x  po*x_
7"~z 0
082 y ot

which is rigorously valid for large deformations of thiarhent, due to the precautions
that were taken. Moreover, ifix, and mg denote the Newtonian masses of the two
material points then the two equations of condition:

ox ox [ +m, for £=¢,
'065'652 -m, for &=§&,

must be satisfied at the extremities.

() On that subject, one should read RICHARDS@Ne electron theory of matte€ambridge, 1914,
chaps. XI and Xll. A very important phenomenon thatgies to the case of the electromagnetic field is
the irreversible creation of radiation by acceleratealges.

(® On that subject, one might read G. DARMOIS, Mém. Bieith. 25, 1927. RACINH,a probléme
des n corps dans la théorie de la relatiyitéaris, 1934. LICHNEROWICZSur certains problémes
globaux relatifs au systéeme des équations d’EinsRanis, 1939, and J. de Math. 28)(1944), 37.
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It seems to us that the preceding problem of Newtonrhamnics provides a pretty
fair simplified picture of what the relativistic probleof the dynamics of systems of
interacting points must be, which is a problem that mghtnswerable to the methods of
general relativity.

Despite that suggestion, we hope that our very modestilsution to the question —
namely, the relativistic extension of some notiond elassical results of the Newtonian
mechanics of systems of points — might lead to more vibeikg done on the true
problem.

D. — ON THE FOUNDATIONS OF RELATIVISTIC THERMODYNAMI CS

IV.19. —On heat and temperature in relativity: classical definitiors of Planck-
Einstein and modern covariant definitions.— Consider a bodg in uniform, rectilinear
translation (hence, it is indeformable) whose propersraasabsolute zero gy . If it
has theproper temperature ¢l'in the proper Galilean syste@y then it will acquire a

certainquantity of proper heaf,, whose mass equivalentJ®,/ ¢®. Its proper mass
will then be increased, and it will become:

(|V136) Mg = Mgo + AMp , AMg = C—]; JOy .

Now let P ' be the mass-impulse of the bodyand let P! be the value oP ' at
absolute zero. ' denotes the constant quadri-velocity of the b6dyen:

P'=MoV', P =MgV,

in such a way that the contribution to the mass-ingthist is due to the proper h&ag
is:

(IV.137) AP'=JQ'=AM; DV, Qi:C—:LZQoVi.

We agree to call the quadri-vect@r thecaloric-heat-impulse.
In an arbitrary Galilean framé # Gy, the threeAP" will represent an impulse that

must be provided to the bodyin order to keep its velocity' constant when its proper

temperature passes from absolute zerdoto When that impulse has a well-defined
direction, it will correspond to a certain amount ofrko

AM, [V

J1-8°

(IV.138) T=v,AP' =
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Upon subtracting from the energpW = — ic AP* that is provided to the bod¥during

the transformation in question, one will get a cermergyJQp with no associated

impulse — namely, the “disordered energy” — that gets atiéde terms in the pre-
relativistic theory. It is th®lanck heatwhich satisfies the relations:

(1V.139) JOp +T=AW, Op= Qg +/1-.

The transformation law for Planck heat under angkain Galilean frame, which is
inverse to that of a temporal component of the guagttor, is the same as that of a

material volume considered simultaneously (l})26/Ne agree to call the expressiQn=
- ic Q*that is defined by (1372) tlmvariant heatand if one takes (I1.62) into account,
it will transform according to the law:

(IV.140) 9=_%

Ji-8°

It is indeed clear that there is an equivalendgvéen being given the thre@" and

0*=(i/¢) Q, on the one hand, and being given the whith its direction, andp, on
the other. (137) and (139) will always permit dagpass from one language to the other
invertibly. Being given the worl{ and the Planck he&p is more physical, in the sense

that the notiorQpr conforms more rigorously to the notion of a héat is defined to be a

disordered energyBy contrast, being given thmloric-heat-impulsejuadri-vectorQ' is

more mathematical, and one will see that only thatdri-vector lends itself to writing
the formulas in a tensorial way.

Let S be the entropy of the body From kinetic theory, it is a pure humber, angl th

logarithm of a whole number; it can vary only bysaete (as well as quite small)
guantities, and since the formulas for the chanfj&alilean frame are continuous
formulas, one will see thalhe entropy S is necessarily a relativistic scaléfr& denotes

the inverse of theproper temperature o of the bodyC then, from pre-relativistic
thermodynamics, one can write:

(IV.141) ds:Ti @©, =6, 2,
0

That being the case, introduce the definitionheftemperature quadri-vectof' of
the bodyC by way of:

(IV.142) g =6V,

and call the expression:

(1V.143) 1. Lot T=To 1P
T c
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thetemperatureor Planck temperaturelt is clear from the preceding that the elementary
entropy dS can be expressed as a function of the quantities tkeattéached to an

arbitrary Galilean fram¢ in the following two forms:

(IV.144) dsS=-6 @,
(IV.145) ds= %dQP ,

the first of which has a tensorial form, while the@®d one, which is classical, does not.
The new form (144) can be specified by:

(1V.146) dS=- 4,dg" +?1dQ,

and if one compares that with (145) then one will saétéking the temperature quadri-
vector @' into consideration is an obligatory corollary to the quadri-vectoridirmigon
of heat.

Before passing on to other subjects, we make one lastk:elned go be the density of

proper heat that is contained in the bd@dyif one integrates the expressigat constant
time over the entire bodyby way of:

Q=[] 5 0v

then the expression that will be obtained is nothing theitRlanck heat, by virtue of the
transformation law (11.62 for a material volume when it is considered simultarsty.
On the contrary, if one introduces the notion deasorial heat densityodv ' V' and
takes the integral:

¢o'= [V Vioy =V

over an arbitrary spacelike hypersurfacten the expression that is obtained will be the

caloric-heat-impulseuadri-vector, up to the factof.

Having thus specified the distinctions that one musbésktabetween th€lanck heat
and thecaloric-heat-impulsequadri-vector, as well as between flanck temperature
and theVan Dantzig-Bergmann temperatuyaadri-vector in a particularly simple case —
first from the finite viewpoint, and then from the déwsiiewpoint — in the rest of our
presentation, we shall utilize only the last two natiornTheir physical interpretation is
perhaps less direct that that of the notions thaewlefined by Planck and Einstein, but
they are the only notions that permit one to writenptete differential forms, which is a
rule that we shall be inclined to respect in the emtingrse of this book.
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IV.20. — General covariant definitions of heat and temperature.— The first
principle of thermodynamicasserts thequivalenceof heat and energy. It is from it that
any definition of energy — whether finite or as a density — wilttjely correspond to a
homologous definition of heatn particular, one then introducesaoric inertia tensor

T that is homogeneous ", as well as alensity of proper heaw) = cp?’ that is

homogeneous*t__o theensity of proper energy 0¥ ¢® o . It is quite natural to assume
that the tensof "’ takes the form (82), which we write:

(IV.147) TV=pu'v], UV =vivVi=-¢ T'=-cp).

Indeed, in a heat-conducting material medium, one willehtav distinguish the heat
quadri-current) ' from the quadri-velocity ' of the medium.

Upon integrating the densiti@s’ and g}’ = w'/ ¢ over a spacelike hyper-end-cap,
one will cause thealoric-energy-impulse- or caloric heat-impulse- quadri-vector to

appear, as well as thmoper caloric energy- or proper heat— of a finite portion of the
medium, which we write in infinitesimal form:

(IV.148) P =TVuy=p)V' dip= oM’V

(cﬂ)m =Lowe=l chQj,
C C

(IV.149) omp= piV' du= pfldug
(5pﬂ‘ =Lowe=L .JcFQj.
Cc C

We have letoQ denote the&ovariant quantity of heahat is attached to a material droplet

A, when evaluated in an arbitrary Galilean frame, ahd® denote thequantity of

proper heatin that same droplet. It is interesting to remark ttigh the definition(147)

of the caloric tensor, the caloric-heat-impulse duavector &' of a given material
droplet will be defined independently of the oraiun of the hyper-sectiodu' of the
infinitesimal hypertube that is described by thedplet. Moreover,it is collinear to the
total heat quadri-current (convectionconduction):

(IV.150) u'sv'+U'-V)),
which seems completely satisfactory.

From thesecond principlef thermodynamics — and above all, from its intergreta
in terms of statistical mechanics — the entropy:

5= [[j 2
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is certainly a scalar quantity. Indeed,kifdenotes the Boltzmann constant then the
“reduced entropyS/ k will be the logarithm of a probability — i.e., a pure memthat is
the logarithm of a whole number. Since the componehts t®nsor are continuous

functions of 0} under a change of Galilean frame, and since the variafica whole

number cannot be continuous, it is necessary3khbuld be a tensorial invariant.

If one recalls the classical definition in the definitions (148) and (149) céloric-
heat-impulseand proper heatthen one will be naturally led to write the elemeytar
entropy in one or the other of the covariant forms:

2
(IV.151) 582—%6{5;1 5S=%6?05 .

From the first one, which is specified by:
-1 B= 6,6+ 6,80,

the inverse of the temperatufeis defined to be the temporal component of a quadri-
vector. From the second, the temperature is defined godoalar quantityy :

ic 1
IV.152 8=—, 6, =—.
( ) T %Y

Hence, in relativity, one will be quite naturalgd to distinguish the two notions of
temperatureand proper temperaturewhich are defined in connection witieat and
proper heat respectively. Moreover, if one takes the lagiression (148) fodp" into
account then one have:

(IV.153) JB=-U'4onf =c* & ony,

which will very strongly suggest that one must assuhe relation:

(IV.154) g =6V

when one takes into account that V; = — ¢>. By means of that hypothesis, the three
spatial components of the quadri-vec®rwill be annulled in the Galilean frame that
follows the hot body, and the notion foper temperaturevill be found to be justified

in the usual sense.

IV.21. —Relativistic form of the fundamental equations of the theoy of thermal
conduction. — In the theory of thermal conduction, heat iasted with a conservative
fluid whose densitylqwe denote byv. If one considers the particular case in whiah th
conducting body is a rigid body at rest in a cert@alilean frame that one can take to be
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a reference frame. Let be the velocity of thealoric fluid relative to that frame, and
then let y (T) and C (T) be essentially positive quantities, namely, the faoeht of
conduction and the specific heat of the medium, resmdygti Naturally, T denotes the
absolute temperature. The fundamental equations ofébeytare ¥):

(IV.155) W U = — y(T) gradLT,
(IV.156) W= jTC(T) dT,
(IV.157) divOQw u) + %w* =0.

In the particular case where:
(IV.158) y(T) = y=const., C(T)=C=const.,

one will see that the temperature satisfies the equtiat is calledhe heat equation:

Co S
IV.159 ——T= —T.
( ) y ot ; ox’

We remark that if, as one always implicitly assunmethe classical theoryl, y; andC
are considered to be invariant under a change of Galitaare then thdieat equation
will not be covariant. Moreover, all of the tre&ts on analysis show that this equation
does not attribute a finite speed of propagation to temperatf all of the caloric energy
at the instan© is assumed to be contained in a finite donfaimen the density (dt) at
the instandt will no longer be nowhere-zero. Those two remarksisblearly that the
classical formulas are certainly truncated forms efridativistic formulas that are being
sought.

Let V' be the quadri-velocity of a conducting medium that ®iaeed to be a fluid,
for sake of generality, lef' be the Van Dantzig-Bergmann temperature quadri-vector,
and let & be the Tolman-Eckhart scalar. Taking our inspiratimmf Minkowski's
theory of electric conduction, and upon remarking thatdghadri-vectord' 8’ -9’ ")

V; is essentially orthogonal ¥', we will first generalize (155) into the form:

(IV.160) iU -V =-k(8,)@F -3 8)V = X8,)(d 90+C—126"' ),
with
(IV.161) Kk (&) = Tg y(To).

U ' denotes the quadri-velocity of the “caloric fluid,” whish by hypothesis, such that:

UV =VvV =-¢&

() See, for example, J. BOUSSINESK® théorie analytique de la chaleuParis, Gauthier-Villars,
1901, eqs. (40), pp- 120, (109), pp. 168, (133), pp. 194.
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so if one recalls the covariant four-dimensional foem(160) for the classical three-
dimensional formula (155) then one will see that reigtiintroduces a very small
correction termd”' / ¢ (*). Moreover, we generalize the classical formula (140)

(IV.162) ¢pi=[ " C(T,) dT,

That being the case, from an integral transformaboe will have:
O pi i _ Oy i _ O i
], . A0 =Vhau = [[[[o,(esu") qudt-[[[_pU oy
The last integral, which can also be written:
- [[], A0 -VHoy,,

if one prefers, is immediately interpreted as tkatHlux that enters into the portion of
matter€ that is between its statg and its stat&, (see no. III.6, eq. 111.39). As for the

last integral on the left-hand side, under ilgpothesis Hhat was utilized many times in
the course of this chapter (see no. IV.5), it canvbitten:

”Lz—apomvi oy = mgz-ap%”w

and it can then be interpreted as the augmentafitite proper heatof the material drop
£ between its stat&; and its statef, . By hypothesis P we assume that this
interpretation will remain valid in the general eas

We then make the hypothesis that theat current quadri-density p/U' is

conservativewhich is the generalization of the classical hiests (157). One will
have:

(1V.163) 0.(oU") =0,
or
(IV.164) 0{p,(U' =V} +9( p,V) =0;

i.e., if one takes (160) and (162) into account:

(IV.165) 9, {K(BO) (a‘eo +C—12 g" j} +C(T)T,+ 00,V =0.

That is the equation that generalizes Fourier’sagqn (159) in relativity.

() Compare this with142, eq. (37), while taking (12) and (15) into account.
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Indeed, suppose that the conducting medium is incompressibt neglect the
relativistic termd; («x 8’') ¢*:

(IV.166) V=0, C—lzai (k&)= 0.
If one takes (161) into account then what will remain is:
(IV.167) C (To) To= 0{ y(To) 0'To},

or further, under the hypothesis that:

(IV.168) C (Tp) =C =const., y(To) = y= const.
one will have:
(IV.169) EiT0 =0 T,.

y dr

If one remembers that the classical formula (159) nttem essentially in the Galilean
frame that is linked with the conducting body, which isiagsd to be rigid, then the left-

hand sides of (159) and (169) will be equivalent. Furtherntoegterm- 0! T,/ ¢* in the
right-hand side of (169) can be interpreted as a veryl sieddtivistic correction.”
Formula (169) — or even better, formula (165), which ig foé the restrictions (166),
(167), and (168) — will then indeed constitute the relativigineralization of Fourier’s
formula (159).

IV.22. — Some words on the relativistic transposition of the theory of grfect
gases— To commence, we seek the covariant form of thékmelwn equation of state:

p v=NKT,
in which N denotes the number of molecules that are containdte imolumev, andk is

the Boltzmann constant. If the temperature is not umifonside of the volume
considered then one must obviously write:

([

That expression is invariant under all transformatitias affect a gaseous volume that is
composed of the saniemolecules.
In no. IV.6, we defined the relativistic notion of thealar work done by pressubs.

Jiff @do
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and indicates that it translates the cIassiJ:apIdv exactly, in whichdv denotes the

variation of a finite material volumeduring the timedt. Thanks to the preceding notion,
as well as that of theroper —or scalar — temperaturéhat was defined in no. IV.19, the
covariant form of the equation of state of the perfect gas:

(IV.170) mg wkin =N

will present itself. N denotes the number (which is conservative) of modsctiat form
the same gaseous volume and follows its motion — the.,conservative number of

trajectories that encircle the hyper-tube that is gerdrbye.

From the viewpoint of the kinetic theory of gases, dguadri-velocityV ' that is
implicitly contained indup has only a statistical significance. It is the eélp of the
origin of the Galilean frame with respect to which kheal mean impulse of the droplet
Ay is zero. To simplify, suppose that all of the molesuwdre identical. Laty be their
proper mass, and leh be the local mean value of their relativistic matssha proper
temperaturdy in the preceding Galilean frame. We suppose that ttmgerature is high
enough that the quantum degeneracies will be masked, aasswae that the molecules
are rigorously rigid. The expressich(m — m) represents the mean kinetic energy of a
molecule — i.e., the thermal energy per moleculeontkinetic theory, it is a simple
multiple of the proper temperature that has the fdjm (

(IV.171) KT, =§v§( m- rg).

One will havev =1, 2, 1, according to whether the gas is mono-, di-, or tnvétoresp.

Then letdu, be the mean scalar molecular volume. By definiobbthe proper mass
densitym of that volume, one will have:

(1V.172) m=p dlp, M=o Mo .

We have lejoo denote the value thab takes at absolute zero; i.e., in the absence of any
thermal agitation to the molecules. Moreover,gfaation of state provides the relation:

) A precise analysis of the question shows Kk is equal, not to the true mean kinetic enexgy
p Y; q q

(m — ng), but to amean pseudo-kinetic energ"s;zK [146 pp. 31-32]. Those two expressions are equivalent

to each other, up td"brder ing, as the following calculation shows:

Lmv=cfm-cim (1-34) =cm - Emo(1-37) (1-57)
=c’m - émy(1-38°+-) .
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(|V173) kTo=wdyp .

When substituted into (171), the latter relations withpie one to write:

(IV.174) w _

CZ

wIiN

V(0 = Poo)-

That equation expresses the proper mass of the molecules universally.,,— v
independently of the temperature — and from the molecular concentration, one can
express the pressurgof the gas as a function of its proper thermal energy derfsijs ¢

— Poo).

This is the place for a very satisfying illustrationdawerification of both the
thermodynamic formula that one arrives at with falan(174) and the theory of forces of
surface tension in no. IV.6Upon substituting(174) into the general formulg48) of
adiabatic compression, one will recover the well-known law of adiabatigression of
perfect gases.

By virtue of the equation of state (170), the pressmi®zero at absolute zero. It will
then result from the considerations that were develapew. IV.3 that one must have
the relation:

(IV.175) 9 (oo V') = 0.

Under those conditions, the formula that is obtaibgdsubstituting (174) into (48) is
written:

3

—v‘aim+(ﬁ+1jmaiv‘ =0.
2v 2v

From kinetic theory, as always, one then sets:

(IV.176) y:1+:—23v,

and upon taking the kinematical formulas (lI)74nd (I11.73) into account, one will
indeed see the expected relation:

d_(U + y—d5U0 = O,
w ou,
which will be written:
(IV.177) w(du,) = const.

when it is integrated. One will haye= 5/3, 7/5, 4/3, according to whether the gas is
mono-, di-, or tri-atomic, resp.
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REMARK. — If V' denotes thetatistical — or macroscopic — velocitf the gas in
the sense that was just indicated then one can inteathectemperature quadri-vectr
= & V' and put the equation of state (170) into the form:

(IV.178) jj L@ =kN



CHAPTER V

COMPLEMENTS TO RELATIVISTIC DYNAMICS

V.l. — The sub-chapters of the last chapter were coadewith some physical
guestions that were very distinct, but mathematicallyegsimilar. Sub-chapter A dealt
with the relativistic hydrodynamics of perfect fluidghose principles are due to
Eisenhart 148 and Synge 149 15(, and to which A. Lichnerowicz gave a very elegant
form [151, 157. Sub-chapter B dealt with the analytical mechanicaroklectrically-
charged point that is subject to the action of a quadripatewhich we presented some
years ago in a symmetric relativistic for8j po. IV].

The hydrodynamics of Eisenhart-Synge-Lichnerowicz isgntesl by those authors
as being essentially a general-relativistic theoryfatn, it is upon adopting a particular
metric that one will give its equations the maximungafee. Of course, that beautiful
theory remains valid in the particular case of speadtivity. It would seem to be
unduly frustrating to the reader to not present it in efearg terms at the end of a book
that does not appeal to the methods of the generalrteakulus. As we have already
pointed out, we shall deduce its starting equation from cuergétheory of pressure (no.
IV.6). The relativistic extension of the hydrodynamicd.afrange-Helmholtz will then
be found to be attached to an authentic theory of sigeessure. We shall conclude our
presentation by pointing out how a hypothesis that is evae mestrictive than that of
Synge (and is calledefinition B for the incompressible fluid by Lichnerowicz) will
permit us to extend to relativity the entire classitedory of velocity fields that are
induced by point-sources or vortex filaments, as well ascBeé’s notion of the vortex
potential.

The symmetric presentation of the analytical meclsaniccharged points that are
subject to the action of a quadri-potential that we gagBnconstitutes the natural form
for relativistic analytical point mechanics. In thegeding chapter, we have shown that
it is possible in relativity to define the world-forceaths applied to a material point as an
antisymmetric second-rank tensBtf, and then that that relativistic force, which is
defined in a general manner, will follow the laws of tliwentz force (notably, see nos.
1.7 and 1V.7). It should not be surprising then tha tase for which that tendét is a
world-rotation constitutes the natural extension ofdlassical case in which the forgé
is a gradient. Speaking physically, the symmetric prasent of analytical point
mechanics has the advantage that it lets us seettisahot by virtue of some happy
accident that a charged point that is subject to thieraof a quadri-potential will obey
the equations of analytical mechanics.

L. de Broglie (who, as one knows, established his thebwave mechanici 1924)
has been to a large extent guided by the formal andlugyexists between analytical
mechanics and geometrical optics. We have oriented ésemation in our 8 B in such
a way as to prepare the reader for the guiding ideasawé vinechanics, and will insist
especially upon the compatibility of the most importéeiorems of analytical mechanics
with the quantum conditionghat are demanded by the pre-wave form of the Planck-
Bohr-Sommerfeld theory.

Our § C is dedicated to a brief survey of the principles. de Broglie’s 163 first
wave mechani¢ahich, as one knows, has given the go-ahead to a etam@novation



A. — Inviscid fluids and the Eisenhart-Synge-Lichnerowi@otly of vortices. 141

of thetheory of quanta.Despite first appearances, we have followed the praisen that
the author himself gave very closely. It seems tdhasih an era when one of the major
problems that been posed by theoretical physics is thdesdribing the relationships
between the theories of relativity and quanta, any acmerewill no longer point to a
presentation of special relativity, as much as it velate to the elegant theory of L. de
Broglie, which is both essentially relativistic andesggally quantum. With it, one can
even say that relativity has returned to its roots, artdubfas Einstein came to know of
the optical constant, dynamics, with L. de Broglie, had effectively discoag the
intervention of waves in their proper domain.

A. —INVISCID FLUIDS AND THE EISENHART-SYNGE-LICHNEROWIC Z
THEORY OF VORTICES.

V.2. —Basic hypotheses. Synge’s hypothesisConsider an inviscid fluid, inside of
which a normal pressumg of surface origin is exerted, and which conforms tattleery
of no. IV.6, and is such that a force densityules in certain space-time domains, which
is collinear with the quadri-velocity ' and corresponds to the presence of volume
distributions of sources or sinks (no. IV.5). From whas said in no. 1V.1, the
fundamental equation of dynamics will be written:

(V.1) -f'+9' w+a, (uV'V)=0
under those conditions, with:

w
(VZ) /j = pO +—2.

C

Then letF and G be two functions of instant-points that are undetermif@dthe
moment, and are such that one has:
(V.3) FG =y,

and define the twpseudo-quadri-velocities UandW', which are collinear witN'', by:

(V.4) U'=FV, W=GV,

SO:

(V.5) uV'VI =UW
Then set:

(V.6) o=0W', r'=0'U-dU.

With those definitions, the fundamental equation (1)kmmritten and developed into:
fl_d'm=0,(U'W)=sU' +7r"W+Wa U"

Taking account of the fact that V' = - ¢ as well as (4) and (3), the last term in the
right-hand side can be transformed into:
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G\/,-(VjaiF+F6iV"):—CZGaiF=—02,ua?|:.

It is then quite natural to arrange things in such a watthimterm cancels the last term
in the left-hand side identically, which first demandst ttiee fluid must satisfy an
equation of state of isothermal type:

(V.7) U= (.

That being the case, the necessary and sufficiewlitemmfor the result to be true is that,
with Synge, one must set:

o dw
2 1

(V.8) F= expl:jw0 i

hence G= expl:j:: %

With that choice oF andG, the fundamental dynamical equation will reduce to:

(V.9) (oU'-f)+7'W, =0.

Since one of the two quadri-vectors that are preseieiteft-hand side is collinear with
V' and the other one is orthogonal to it, each of theust be separately zero. If one
considers the first one then one will see that therdence of the pseudo-velocity' is
zero, in general, except in the space-time regionsiohwone finds sources or sinks:

0 ingeneral,

(V.10) W's= . . — _
o in the regions of the unverse in whidusces or sinks preve
Obviously, that is the generalization of a fundamentasulte from classical
hydrodynamics.
If one then considers the second quadri-vector, ondaxk the relation:

(V.11) (@'U' -du’)dx =0,

from which, we, with Lichnerowicz, will infer the gemdization of the entire classical
Lagrange-Helmholtz theory of vortices.

V.3. —Some general theorems. Existence of a potential for a pskuvelocity U '
in the irrotational case.— Let d; be a spacelike quadri-displacement. Equation (11) will
then imply the consequence:

rVdx &= 177 [dx o —dx d] = 17" [dx dx]" =0,
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in which [dx d)g]* denotes a two-dimensional area elentetiat is formed by a sheet of
streamlines/. Conversely, since the quadri-displacem@nts arbitrary, the relation:

(V.12) ri[dxdx] =@'U'-0' Ul [dxdx] =0
will imply the relation (11). If one sets, quite natiyra
(V.13) du'=a' U’ dx and d'=0d'U' ¥

then the preceding relation will assume the equivdbent:

(V.14) dU'dx —dU' dx =0,

in which thed relate to a displacement along a world-streamlinettad to a change of
streamline. The left-hand side of (14) isabsolute integral invariantin the Poincaré-
Cartan sensé)(

The fundamental equation (11) is written:

du'=0'uU’dx.

When it is integrated along one traject@ryrom an instant-point [1] to an instant-point
[2], it will become:
(V.15) Ugyy ~Ujy= [ 007 dx; .

If we then associate the current instant-poinZafith a spacelike quadri-displacement
o that is a continuous function of and suppose that each contojuﬁx (or £) is
closed. One will then conclude from (167) that:

Juiox -] Udx=dx [ 0U'dx =0,

in which the symbob always relates to a change of trajectory. Finalhg sees thahe
circulation of the pseudo-velocity 'lalong a closed, spacelike streamline that is eatri
by the fluid is conservative:

(V.16) J'EU 'Ox = const.

(viz., the Poincaré-Cartaslative integral invariank

() An integral invariant is calledbsoluteor relative according to whether it must be calculated on an
arbitrary contour or a closed contour in order for trenula to be true.
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Now, let C be a two-dimensional endcap that is encircled by theedneg linear
contourL. The relation (16) transforms into:

(V.17) jjcajui[dx dx] = %jjc(aju‘ ~dU")[dx dx] = const,,

and one will conclude from that, as with (12):

(V.18) [[ 6P @,X - 5,PB,% = const.

(viz., anabsolute integral invariant Hence,the flux of the rotation of the pseudo-
velocity U' that crosses a two-dimensional fluid surface is conservative.
Conversely, in order to return to (17) or (18) from (11)wiil suffice to take the

integral (17) over a closed two-dimensional coni@u C; — £ [where£ always has the
sense that was defined by (12)], and remark that the dramsd triple integral:

maikui[dx dx dx]

will be identically zero (sinced ¥ is symmetric inj, k while [dx dx dx] is
antisymmetric).
Set:

(V.19) do =U'dx

as the definition of aymbolic actior®® along the streamling The symbolic actiom is

extremal along the streamlifé A classical calculation from the calculus ofigéions
will permit one to write:

U = 700" d+ [0 5= (0" 02— U 80:+ [*(@U!d - o).

Since the initial and final instant-points are @ixeéhe necessary and sufficient condition
for the variationdto be zero is that one must have the relation (14)

If that relation is now assumed to be satisfiedd if, by hypothesis, the quadri-
displacement}; X is such that one will have (20then it will result from the preceding
calculation that one has (20 _ _

(V.20) U'ax=0 U'&x=0.

One concludes from this that the congruence of/ admits a three-dimensional
orthogonal trajectory¢ then it will be a normal congruence.
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Finally, we adopt that hypothesend take® = constant on the hypersurfaée.
(That is obviously a definition that will change nothingrimsically.) It will then result
from the preceding calculation that thevhose orthogonal trajectories are theill be

the hypersurfaces:
@ = const.,

and (19) will show that one will have:
(V.21) U=o'o.

That particular case is nothing but the case of iramati motion, so equation (24) will
imply that: o o
(V.22) o'u'-a'u’=0,
and conversely.

One will then arrive at the relativistic statemehthe two well-known theorem3he
irrotational motion of characterized by the existence of a potential Hfer gseudo-
velocity U'. If the motion of an inviscid fluid is irrotational on a certain spacettkee-

dimensional hypersurfacg then it will be irrotational in all of space-time.

V.4. —The relativistic formulation of the Lagrange-Helmholtz theory of vortices
by A. Lichnerowicz. — With A. Lichnerowicz, define the spacelike vorticityagiui-
vector7' as the dual of the completely-antisymmetric rank-3den

(V.23)

N

= iz v
ic

the summation is extended by circular permutation. hénlbcally-Galilean frame that
instantaneously follows the fluid, one will have:

=15, 7;=0,

which justifies the term of the quadri-vectdrand helps us see that one has the relation:

(V.24) V.r' =0.

The differential equation for the vortex lines is oloaly:
(V.25) Dx'-rxi=0 or ™Mx=0.
If one takes the definition (23) into account then onehaive:

r Vo + TR V- T VI =0,
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which is a relation whose first term is zero, fromatvwas just said. If one multiplies the
remaining terms by the streamline elemexqthen it will follow that:

r*dx o V' - ™% dVidx =0,

which is a relation whose first term is zero, by virtdavhat was said in the preceding
no. Since the expression’ dx is essentially non-zero, one will finally see thia¢
differential equation for the vortex lines is formally identical tee tone for the
streamlineg11):

(V.26) (@'U'-duU’)dx, =0.

All of the calculations of no. V.3 can then be rafeel for the spacelike vortex tubes.
Notably, one will then setle circulation of the pseudo-velocity' dround a vortex tube,
and that its flux along a vortex tube is conservatiltewill necessarily follow from this
that the vortex tubes are either closed or they extgmto spatial infinity or up to
timelike endcaps that form a channel for the flowinggfiu

It is clear that any quadri-vectAx; that is coplanar with the two orthogonal elements

dx and ox , such that the former is collinear with the strened 7, and the latter is
collinear with the vortex lineg, will satisfy the relation:

(V.27) e'uU'-a'U)Ax=0

identically. Conversely, it results from the theofyforms with exterior multiplication
that noAx; that is coplanar tdx and J; will satisfy that relation). Equation (27) will

then define a family of two-dimensional manifolds thathe support a sheet of lin@s

and a sheet of lines In relativity, one will then recover the classipaoperty from
whichthe vortex lineg are fluid lines.

If we combine the preceding results with the ones ilvii® then we will see thahe
circulation and the flux that are attached to a vortex tube and follow iteomautll be
conservative.One thus achieves the relativistic generalizatiothefclassical Lagrange-
Helmholtz theory of vortices.

Finally, in an inviscid fluid, it is permissible to consider a flow tiaicollectively
irrotational, except in the interior of certain “conservative” domaing., ones that are
bounded by sheets of streamlines.

() In the particular case under consideration, we seethmiwesult can be proved in a more elementary
manner.

Recall that any antisymmetric determinant of eveteiois a perfect square, and if it has odd order then it
will be zero. It follows from this that in four-dimens@ space, the rank of a system of linear equations:

Alx=y,

in which theA! are antisymmetric, can be 4, 2, oaQriori. The rank of system (27) I is not 4, since,
from (11) and (26), one knows two systems of non-zehatiens of those equations. It is not O either,
since all of the componendd U' —d' U’ would be zero then. It will then be 2, and consequeaitlpf the
solutionsAx; to (27) will be mutually linearly dependent. Q. E. D.
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V.5. — A hypothesis that is more restrictive than that of Synge: elativistic
extension of the classical theory of perfect fluids- Now make the hypothesis that the
two pseudo-velocities Uand W' that are defined b{#) are identically equipollenti.e.,
that one will have:

(V.28) u'=w F=G=+/u.
(8) shows that this hypothesis is equivalent to:
(V.29) ¢? o = w= const.

along the streamlines. Lichnerowicz called a fluid that satisfies that comditian
incompressible fluid Band showed that such a fluid is characterized by thetiat the
speed of pressure waves in itcifl53. If one would like to have an intrinsic definition
then one might assume that the relation (29) isfeatiglentically in the whole universe.

For us, an inviscid relativistic fluid that satisfies thedinition of Synge and the more
restrictive definition (28), as well, will be calledparfect fluid Indeed, we shall show
that its properties generalize the properties of tresal fluid with that name exactly.

It results from the hypothesis (28), as well as whad wontained in nos. V.2, 3, and
4, that the single pseudo-veloclty' that characterizes thgerfect fluidwill satisfy the
two relations:

(V.30) ou'=0, dU'-dU’ =7 .

The scalar density is zero in space-time, in general, except for certagions of
arbitrary form that contain density distributionssolurces and sinks. The antisymmetric
tensor density ", which satisfies the relation:

(V.31) > oark=0

identically, in which the summation is extended by wa&c permutation, can also be
considered to be zero, in general, except inside odioetorticial” fluid volumes that
extend to temporal infinity in both directions. Thesjpatial hypersections are either
closed or extend to infinity or up to a timelike wallttlmakes a channel for the world-
flow.

We shall show that it is possible to derive thedfiguadri-vectorU ' from two
potentials, one of which is a scaRrwhile the other one is an antisymmetric terRdr
that satisfies the condition:

(V.32) D> 0'R*=0
identically, by way of:
(V.33) U'=d'P+0 R

If one substitutes (33) in (30) and takes into account thendal hypothesis (32) then
one will indeed get the generating formulas for the patisnt
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(V.34) 0P=0, OR"=r",

Finally, upon applying the d’Alembertian expressidnto the terms in (33) and taking
(34) into account, one will get:

(V.35) U =9c+9o,1".

Formulas (34) and (35) admetarded solutions of the well-known type. The various
preceding equations generalize the well-known ones otldesical theory of perfect
fluids. As for the electromagnetic field, the relatic calculations are performed with
the greatest of ease in the general case of variablaegg

It is also easy to extend Poincaré’s notion of aevopotential to the present theory,
and in relativity, it will likewise be a source/sink potaht The fundamental hypothesis
(32) shows thaR * is a rotation whose generating quadri-vector is naturalipeip to
a quadri-gradient. Upon solving the equation:

0Y=P-0A),

one will be in a position to have both:

(V.36) P=0,A, R=0 A-d A.

Finally, one concludes the generating formula for the¢@wé potentialj from (36) and
(33):

(V.37) oA =U.

That is the relativistic extension of all the claasequations of the theory of perfect
fluids that are valid in the most general case anddoable regimes. In pre-relativistic
physics, one knows that that entire theory presenemtgformal analogies with
electromagnetism, such that the theory of sources'siesembles electrostatics, and the
theory of vortices resembles the electrodynamicpesfmanent regimes. That analogy
will disappear in the tensorial language of the univesisee the so-called “homologous”
guantities will not have the same variances, and theaked “homologous” equations
will be differenta fortiori. Here again, the theory that one constructs irrefagivistic
context seems to be perfectly clear.

B. —THE ANALYTICAL MECHANICS OF A MATERIAL POINT SUBJECT TO
THE ACTION OF A FORCE DERIVED FROM A QUADRI-POTENTI AL.

V.6. — Establishing the starting formula. Some words about first ntegrals. —
Consider a material point — with or without spin — thatsibject to the action of an

() The quadri-divergence & will be zero in the absence of source/sinks.
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antisymmetric forceF’ that is a function of a pre-determined instant-poirdt tis
independent of the world-trajectory of a point, and whglthe rotation of a certain
quadri-vector that is called theorld-potentia] moreover. For example, one deals with
an electrically-charged poir@ that is subject to the forc® H "' that is due to a pre-
established fieldH ' =9 A" =9 ‘Al

The fundamental dynamical equation of motion of sugoiat is equation (l11.59),
which we write as: _ _ o
(V.38) dp'=Q (dA -0'A'dy).

In the right-hand side, we have the ponderomotive egjnegor the elementary energy-
impulse. On the left-hand side, we assume that wedeseding with the inertial
expression for that same quantity (nos. IV.7 and 1V.15).

| now say that whether the material point does osdue have spin, one will have
the right to assume the presence of a term on fhdad side of (38) that is identically
zero, namely- @' p’ dx. It is initially necessary that a term of thatrfoshould make
sense. Now, one of the essential traits of arw@lypoint mechanics is precisely that it
should associate an entire congruence of virtual tcajestto a real trajectory, which is
also contained in that congruence. Under those congitible mass-impulsg of the
point will be a quadri-vector field, so it will make semsespeak of its derivatives.

For the point without spin, on the one ha[idls collinear withdx, and on the other
hand, its lengthicmy is constant. It will then be clear that the terrd ' p! dx will be
zero. For the point without spin, we assume, as expdained in no. 1V.15, that the
projection ofp onto the quadri-velocity ' is constant, and thqit is orthogonal to the
normal acceleratio’', moreover. Under those conditions, one will have:

plVi=-p'V =0. Q.E.D
Finally, we indeed have the right to replace form8B) (ith the formula®):
df-0'p'dx=Q (dA-a'Aldx)

in a general way, in which:
(V.39) 0'p'dx =0.

We then set, by definition, thetal energy-impulseof the point (viz.,inertial +
electromagneticto:

(V.40) P =p - QA.

The preceding formula will then be written:

() In the case of a point with spin, the present theeglatts the proper ponderomotor couple that
results from the interaction of the ambient field wvifie proper electromagnetic moment of the point.
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(V.41) dP -9'P dx =( P-d P) dx=0,

and that will be our starting formula. It is formaitentical to formula (11), and all of
the calculations of no. V.3 can be repeated verbatim.

Before we do that, we stop for a moment to consilercase in which the quadri-
potential A' remains invariant in magnitude and direction along a dralany of the
four axesOX: o
(V.42) 0'P'=0 for a well-defined.

It then results from (41) that one will have:
(V.43) P'=p'—QA = const. for the precedirig

A well-known example of that state of affairs is pomd by the case of a permanent
field:

d'PI=0,
in which:

m—EQV: const.  with m=my (®+ 1V + ...).
c

By definition, one says that under the hypothesis (42@1),ctirmponen1Pi of the total
mass-impulsés afirst integral of the motion {).

V.7. — Some general theorems. The Hamilton-Jacobi theorem: As we said,
consider a congruence of virtual world-trajectorfethat one can fictitiously regard as

the streamlines of a hypothetigadssibility fluid;as one knows, it is a sort of preliminary
representation of therobability fluid of wave mechanics.

Of course, the quadri-vect® is not tangent to th& here, so all of the calculations
of no. V.3 can be repeated verbatfth (One will then see th#te double integral:

[[ @P - P)dx dx]
is identically zero on one sheet fBfand conservative over an endcap that follows the
possibility fluid. Conversely, one knows how to pass from thoseersiants to the

starting formulas (41) and (40). The precedinggmal will then be equivalent to:

[[ dPox-aP dx

() Since we have neglected the theory of kinetic and prapegieromotor moments in this present § B,
we shall not treat first integrals that are kinetiements here. . .

(® By contrast, the calculations of no. V.4, which asisély assume thaV' is collinear withdx, will
no longer be valid here.
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on a sheet of, and one will have:
[[ aP'S,x~8,Po,x

on a fluid endcap.
Theactionalong the trajectories will be defined by:

(V.44) do = P dx.

As in the context of (16), one proves thhe action along a closed fluid line is
conservativeand one can conversely get back to (41).

One also proves thahe action along the trajectories &f is extremal(i.e., the
relativistic generalization of Hamilton’s theorenand thatif the congruence of total

energy-impulse 'Hines admits a (three-dimensional) orthogonal trajectory then itheill
a normal congruencé.e., the generalization of Jacobi’'s theorem). Updopting the
latter hypothesis, one will make the hypersurfaces:

@ = const.
coincide with the orthogonal trajectories in questiohicl will imply the relation:

(V.45) d'd=P=p-QA

In the particular case of a point without spimhich is such thap p' = - c*ny, one will
conclude the following partial differential equation fr¢45):

(V.46) (0,2 +QA)0'P+ QA)=- ¢ rj.

That is therelativistic Jacobi equationwhich is a generalization to four indices of the
well-known equation of geometrical optics. Its solutidns const. will be calleavorld
hypersurfaces wave mechanics.

Recall that the theory of quanta, in its pre-wavenfomposes the restriction on the
integrals:

J.gpidx, J./:Piax, J’J’ 51Pi52)§_52|j51)|(

that they must be integer multiples of the universaistanth. As one seesglativistic
point mechanicsvill then becompatible with the quantum condition would not be
surprising at all then that relativistic point mechanicsvipled L. de Broglie with the
basis for some ideas that allowed him to inauguratevéiie mechanics 1924, which
was a complete renovation of ttheeory of quanta.

V.8. —Lagrange equations. On the Hamilton equations= In order to integrate the
equations of motions, one can suppaspriori that theP' andx can be expressed as
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functions of a single parameter, in such a way that the elementary action will be
written:

(V.47) dd =P X' d7 =L (1) dn,

with, by definition, thed_agrange functioror Lagrangian(tensorial invariant):

(V.48) X'= = L=PX.

It is classical to considet to be a function ofy by the intermediary of the andx'.

If we letd '£ andd''L denote the partial derivatives with respect to thoset emfiables
then, from a well-known calculation, and by virtue @rhilton’s theorem:

SJ ap= [1@'Lox+0"coX ) dy
= ["(@'Lox dp+0"L doX)

i 2 el g d . _
= (o £5>g)1+j2{a c—a(a c)}ax d7 = 0.

For the same reasons as before, the Lagrange @ugiatiill result from this in the
perfectly-symmetric “parametric form” that was peith out by de Dondel], pp. 176]:

4 oL _oc

(V.49) 235

Conversely, in order to pass from (49) to the Amdntal equation (41), if one takes
the definition (48) into account then one can write

0'L=x0P=x0p+Qxd A,
'L=P +x0"P=P+x0p.

As we explained in no. V.6, the termsd' P and x 8" p* are zero, in such a way:

: d :
V.50 — L =P, — L =Q0 AY.
(V.50) ox Qo'A'X

If one substitutes those expressions into (49) dmenwill indeed recover (41).

More generally, the authors take ordinary titré® be the parameter. If one then
introduces the three componemnts of ordinary velocity, andn, always denotes the
proper mass then one will get the very asymmetagrangian:
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L=pV-M-QA"vy—cV)=-CFmy1-5> —cQ(V-B[D).

On the contrary, if one adopts proper timas the parameter then upon introducing
the four componentg' of the world-velocity, one will have the symmetktiagrangian:

L=PV =myViV' -QA V'

However, as a result of certain particular simplifications, onel wdrify that this
symmetric Lagrangian is not appropriate for the deduction of the equationstiohmR.
Becker B, pp. 380] replaced it with the arbitrarily-poseagangian:

L'=L-3m ViV

However, one can no longer believe that the claksieory has been transposed into
four-dimensional language then.

Return to the general Lagrangié(v;) and assume that it is no longer expressed as a

function of theX andx’, but ofX andP'. We leave to the reader the task of verifying tha
if one defines thélamiltonian invariantoy:

H K, P)=L-PX
then one willformally arrive at the equations in Hamiltonian form:

oH _ d oH_ d

=R o= %

ox dn oP' dn
by a simple transposition of the classical calcotst. However, that result is purely
fictitious, since the functio® is identically zero.R. Becker ¢, pp. 380], who employed
proper timer as the parameter, showed that one can utilize sighmetric equations of
the preceding type, on the condition that one megaceH with:

H =L -Px=H-1mV V"

However, one must then take into account onlydbethat the functiori' is identically

constant in the calculation, and not replac@A with its constant value c?.
For an asymmetric relativistic formulation of tHamiltonian theory that corresponds
to a literal transposition of the classical thearg, refer the reader to Von Lauk E§ 27

e, f, g. Even then, the constant %czmo must be introduced arbitrarily when the
parameter is proper timd,[pp. 238-239].
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Finally, the literal search for a relativistic transition of Lagrange-Hamilton theory
leaves a rather artificial impression. In our seiise,essence of relativistic analytical
point mechanics, and what is most interesting from theipalviewpoint, is provided by
the general theorems that we have recalled in thegireg no. {).

C. —LOUIS DE BROGLIE'S FIRST WAVE MECHANICS.

V.9. — The profound analogies between analytical mechamdsgeometric optics
have not escaped the classit5§-16Q. Those analogies are due to the existence of a
physical link whose formulation, which was discovered byde Broglie in the years
leading up to 1924, involves the universal constamquanta and of special relativity
in an essential waylp3. As an application of his theory, L. de Broglie reeced
Bohr’s atomic quantization rule, and as a special ¢aseformula that Einstein gave for
the photon. Soon after that, the experiments onrelediffraction by Davisson-Germer,
G. P. Thomson, Ponte, and other authors afforded a west @nd increasingly precise
verification of the concepts and formulas of theorye ®so point out that Heisenberg
illustrated his celebrated proof of thacertainty relationdy some considerations from
classical wave optics that were associated with tineldmental ideas of L. de Broglie
[167, pp. 15-19,168, and that L. de Broglie’s thesis based one of itsreégdestarting
points upon some memorable work of Schrédinger (

In the realm of optics, properly speaking, and in th&texd of special relativity that
he himself had to create, in 1905, Einstein stated theiplenaf a quantum synthesis of
the traditionalwave-likeandcorpuscularconceptions of lightl61, 162. It is, moreover,
quite interesting to see, by following L. de Broglie, hdw possibility itself of a parallel
synthesis will depend upon the formulation of the relstic theses of relativistic
dynamics 1), and expressly, the concept ofgaantum of light or photon Einstein
postulated that the energy of a light wave that is grlaend monochromatic with
frequency will transport theguantumof energyhv at the velocityc. From relativity, the
proper mass of thodght quanta(which were callegphotonsonly later) must be zero or
negligible, while their kinetic mass is given by thenfiola:

(V.50) c¢’m= hv

That formula accounts for the newly-discovered pHetiigc effect, as well as the laws
of thermal radiation that were discovered by Planck900; it received a remarkable
confirmation from the work of Bohr (1913).

The profound idea of L. de Broglie consisted of the fhet if it is necessary to
introduce mechanics into optics then, conversely, @lgse necessary to introduce optics
into mechanics. To L. de Broglie’s way of thinking, thecrete numbers that Planck and
Bohr found in their formulas for the quantization of élewic oscillators — whether linear

() Nevertheless, we point out that Dirac gave a symmeteiativistic extension of Hamilton’s theory
by starting with théoisson bracketfAnnales de I'Institut Henri Poincagé 2 (1939), 29-31].

() Mémoires sur la mécanique ondulatgiFe. trans., Paris, 1933.

() In addition to the celebratefihésethat was cited above, one should also readmécanique
ondulatoire du photarParis, 1940, pp. 36.
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or turning — evoked the discrete numbers that one enasuntéhe theory of stationary
waves. Those remarks can only give great weight tofahmal analogy between
analytical mechanics and geometrical optics. Effelstivewas by making each of them
play precisely that role that L. de Broglie gave themiglation of his famousvave
mechanicsn 1924, and its fundamental equations contained Einsiguiation (50) as a
special case.

V.10. —Generalizations of the notion of world-hyper-wave. Phase velogitand
group velocity. — Consider a family of hypersurfac@sof the equation:

(V.51) # (X) = const.

By hypothesis, thehaseg of thehyperwaveD will determine certain physical properties
at the instant-point by the intermediary of the complex function:

(V.52) Ww=A€&"?

in such a way that those properties will be periodicaproduced when one changes the
hyperwaveO in the universe by varying by a whole number. One can give an arbitrary
direction to the quadri-displacement in the identity:

(V.53) dg=0'¢gdx,

and one will see that the projection of the quadri-gradie'¢ onto that direction will
measure th@umber of wavethat are encountered per unit length, while ghare in an
arithmetic progression with difference 1. For thatsoea the quadri-vecta? '¢ merits
the name ofwave number quadri-vectdhat L. de Broglie gave to it, or also that of
spatio-temporal frequency quadri-vectoDne then sets, by definition:

(V.54) A=0'g.

We letR denote the congruence of curves that are orthogomhétbypersurface®
and are directed by the quadri-vector fieldand call themworld-rays; until further
notice, the rays iR will not necessarily be timelike.

If @ denote the three direction cosines of the spatieption ofA' then thewave

length Land theperiod T will always be defined as functions of the componentd' of
according to formulas (11.41), which we write as:

(V.55) A==gY At=—.
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However, in the general case that we are treating, hbee quadri-vectoni IS not
isotropic, and one will no longer have the relation4Q). By virtue of a classical

definition, the modulus of the ratlo/ T will be thephase velocity wf the waveO:

(V-56)

If the @" denote the three components of that phase veltgtyone will obviously have:

(V.57) a”zlvv“,
w
and consequently:
ic c?
V.58 — A =—w,.
(V.58) A

Moreover, it results from relativistic kinematidsat if V! denotes [at least, symbolically
(] the ordinary velocity of a fluid whose world-ieatories aréR then one will have:

(V.59) Loa=w.
A

It will then appear thathe two spatial tri-vectors"vand W are collinear, and that their
moduli will satisfy the relation:

(V.60) viw= 2.

That is one of the essential laws that L. de Beogliated. One should recall that in
world-geometry, the threé' can be interpreted as the direction cotangentseoR at
each instant-point. Analogously, the thrgecan be interpreted as the inverses of the
slope coefficients of thé relative to the axi©x*.

Now imagine that the quadri-vectdfris affected with a certaitispersion d' at each
instant-point that does not alter its length; iseigh that:

(V.61) AtdA = 0.

It is obvious that the wave figure will not be adté by means of that condition. The
phase shiftlg that is implied by the precedint)' at each instant-point will be:

(V.62) dg =x dA',

() For the moment, we have not imposed the constraint iygocongruenc® that it must be timelike.

We shall also insist upon the fact that the “hydrodyieath image that we have just suggested is
meaningful only in th@geometrical optics approximatiaf wave mechanics.
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in such a way that the most general quadri-displaceefdr which thatdg has a well-
defined value must satisfy the condition:

(V.63) o(dg) = o dA' = 0.

In order for that condition to be sufficient for asgrt of dispersiomi', it is necessary
and sufficient that the quadri-displaceme®t must be collinear withi. Now, since,
from the definition itself of thevave groupor wave packetit must displace with constant
phase, it will result from the preceding argument te quadri-velocity Vthat is
attached to the ray congruen@éis nothing but the group quadri-velocity of the wé&ve

That is another very remarkable law that L. de Brogigzovered in the context of his
wave mechanics.

V.11. —Identification of the notion of phase and action. Wave mechanics Now
that the theory of the world-hyperwave has been gemedaln the manner that was just
described, recall the results that were obtained in $edgarding analytical point
mechanics. Moreover, appeal to the fact that, froamék and Bohr’sheory of quanta
action® is counted in integer multiples of the universal constantlhen set:

(V.64) ® = hg,

and one will see thahere is a complete parallelism between the hypeea@ and their

world-raysR of no.V.10, on the one hand, and the equal-action hypersuréaetheir

orthogonal trajectories of noV.7, in the other. In order to realize the physical
identification that appeals to that analogy quitec@lly, it will suffice to set, with L. de
Broglie [163 pp. 51]:

(V.65) P=p-QA=Hh;

i.e., one must institute a universal proportionality @ftio h between the total energy-
impulse quadri-vector of a material point and tipatso-temporal frequency of the wave
that wave mechanics associates with it, by hypathd&hat relation, from the way that it
was established, essentially amounts to the gemalediptics approximation. Naturally,
one of the primary goals of the new mechanics e bo go on to theave-likelevel
upon starting from the Newtonian arena — or evetehdhe classical relativistic one.

In the case of the free material poirti.e., in the absence of a governing quadri-
potential — the formula of L. de Broglie will receito:

(V.66) p =hi'.

That is the wave-like expression for the law ofrtia which bijectively couples the

uniform, rectilinear motion of a material point tvithe monochromatic-planar character
of the associated wave. As one knows, ever sineenEl's classical calculations and the
application of the Fourier integral to the phenoanen diffraction and interference, the
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latter phenomena have been treated by the superpositmarafchromatic plane waves.

It is in that way that L. de Broglie’s formula (60) ingully predicted the phenomena of

the diffraction and interference of material corpesclthat Davisson and Germer
exhibited for electrons that crossed a crystal, asasethe fact that Heisenberg and Bohr
could infer the classical proofs of the celebratadertainty relation$167, 168.

Always in the absence of a governing quadri-potential, anthe very important
special case of a monochromatic plane wave (viz., “omifaectilinear motion”), the
quadri-velocity of a point will be tangent to the worlgseof the associated wavd),(
which will then be timelike. It will then result fno what was said in the preceding no.
that the phase velocity of thataterial wavels greater than, but that is no contradiction
with the principles at the basis of relativity, sifcem what was said in the preceding
no., the phase velocity does not have the significarice kinematical velocity for the
point. Moreover, the group quadri-velocity of the warldterial-wavethat was defined
in the preceding no. will then coincide with the quadroeél of the point, and will be
timelike. That is one of the remarkable results thate obtained by L. de Broglie in his
thesis.

Now, return to the general case and substitutd'tire(65) in the expression (52) for
the phase, so theave functiorcan be written:

(V.67) Y= Aeh

Upon applying the operateéLak to this, one will find that:
7i

h
(V.68) 570l =Py

That remark, when duly generalized, is the origin offtioe that wave mechanics makes
the notion of energy-impulse correspond to the quadri-aneg%t_—ak ).

One knows that, mathematically speaking, the passage deometrical optics to
wave optics consists of replacing the first-order,oadcdegree, partial differential
equation that is called tlgeeometrical opticequation with the second-order, first-degree,
partial differential equation that one calls the emumabf wave optics If one briefly
applies that process to the relativistic expression {@6)he Hamilton-Jacobi equation
then one will get the Gordon equation:

h .« k h -

() That will be true for a point with or without spino(nlV.17). In the particular case of the point
without spin, which is physically less interestimge will not demand the monochromatic-planar character
of the wave.

() Up to certain difficulties that relate to the fourthmponent that we shall not dwell upon here.
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which was proposed independently by several theoreticiad®46, and which L. de
Broglie himself utilized in order to describe the poinare without spin relativistically
and as a wave.

For various reasons, one of which is experimental thedothers of which are
theoretical, it was soon recognized that this equatias mot appropriate to the general
case in which a quadri-potential was present. By conttastvalid for the free point,
and in that case, it can serve to give a theorytefference and diffraction phenomena.
It will then be written:

(V.70) (—

h? 2 _
4ﬂzai+mo czjt//—O,

and it will obviously admit monochromatic plane solaso

== p; x

(V.71) w=Ae" ",

which will permit one to reconstruct the general cassupgerposition.

Physically speaking, one of the main reasons that leaemied the Gordon equation
from becoming accepted has been the fact that it igremies by the origin itself of the
train of reasoning that led up to H).( In summation, spin is a foreign element thas wa
introduced arbitrarily in the sequence of experimentakfacivave mechanics up to the
year 1925, just as the notion of polarization itself haehder a long time in optics. It
was the work of Dirac in 1927 that definitively formulatdd wave mechanics of the
relativistic electronwith spin In 1930 and 1936, L. de Broglie was then led to that from
histheory of the photgnn which the notion opolarizationplayed an integral role.

() In its place, we have pointed out that the relativistenilton-Jacobi equation is written essentially
for a point without spin.
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