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PREFACE 
 

 In the present volume, Olivier Costa de Beauregard gives a summary of the theory of 
special relativity that especially contains some of the original and important results that 
he obtained in latter years in the course of his research on the subject, and in particular 
in his Doctoral Thesis. 
 The central idea that has guided Costa de Beauregard in his work and in the editing 
of his book has been that of presenting the special theory of relativity in its most general 
tensorial form by constantly assuming the Minkowski view of the universe and avoiding 
“constant-time” slices of that universe as much as possible; i.e., sets of event-points in 
the universe that are simultaneous in this or that Galilean system.  Upon operating in 
that way, one voluntarily adheres rigorously to the mode of presentation that was 
adopted originally by Einstein and was then followed by most of his descendents and 
commentators.  It is permissible to think that the elegant methods of Costa de Beauregard 
cannot replace the usual method for the initiation of the students into the realm of 
relativistic theories, and likewise for their practical use by physicists.  Indeed, it has the 
undeniable advantage that it arises directly from Einstein’s original considerations, 
which are very deep and fundamental considerations that are attached directly to the 
facts of experience and correspond to the natural attitude of the physicist who observes 
the phenomena that those facts manifest.  We would not like to completely abandon the 
consideration of “simultaneous” points in space-time that would lead one to renounce 
the use of Galilean systems with their proper time that is determined by Einstein’s 
process of synchronizing clocks and then consequently forbid the use of the Lorentz 
transformation, the notion of Lorentz contraction, the formula for the relativistic 
composition of velocities, etc.  Such renunciations would obscure the bases for a theory 
that is often difficult and poorly-contrived, and render it far-removed from the intuition of 
physicists without being necessary in the slightest.  However, Costa de Beauregard, who 
is quite aware of all those questions, has brought considerable finesse to their study in 
order to adopt an attitude that is also intransigent, and the goal that he pursues is only to 
prove that upon assuming the intrinsic viewpoint on space-time, one will succeed in 
shedding light upon an entire series of important situations that the usual mode of 
presentation does not highlight clearly.  We cite only this example: The author insists 
upon the fact that one can define integral tensorial quantities that are attached to a 
hyper-endcap in space-time and whose value generally varies with the chosen hyper-
endcap and which cannot be expressed by considering the space-time slices that are 
composed of simultaneous event-points for the same Galilean observer.  That important 
remark appreciably clarifies certain problems that have remained very obscure up to 
now, such as the nature of the proper kinetic moment (i.e., spin). 
 Upon “foliating” space-time with the aid of an arbitrary family of space-like 
hypersurfaces, Costa de Beauregard arrived at some concepts that are close to ones that 
Schwinger recently introduced into the quantum theory of electromagnetic fields, and 
that alone should suffice to show the fecundity of the viewpoint that he has assumed. 
 This treatise of Costa de Beauregard, which is very elegant in form and very 
penetrating at its basis, harmoniously groups for the great pleasure of the informed 
reader an entire series of questions, some of which are well-known already, while others 
are known, but all-to-often left in the dark, and finally some questions that he himself has 



PREFACE ii 

 

explained in his personal research.  The latter category notably contains his new 
relativistic definition of force, his considerations regarding fluids that are endowed with 
spin, and the relationship between spin and the asymmetry of the inertial tensor, his 
relativistic theory of the barycenter, etc.  At the end of this work, one will also find some 
important complements on the hydrodynamics of Eisenhart, Synge, and Lichnerowicz on 
the symmetric presentation of analytical mechanics and the manner by which the ideas 
that are at the basis for wave mechanics relate to those of relativity. 
 One of the features that make the book of Costa de Beauregard particular attractive 
is the number and degree of interest of the remarks that the author presents in the course 
of his presentation.  Indeed, along the way and at the margins of his arguments, he has 
developed, in a very penetrating way, a whole series of reflections that do not fail to 
excite interest in all who meditate upon the foundations of the relativistic theories.  Along 
that order of ideas, one should observe, in particular, the paragraphs that are dedicated 
to the measurement of the velocity of light, the effects of relativistic contraction in 
rotating bodies, the general problem of the relativistic dynamics of systems. 
 In summary: We are in the presence here of a distinguished work of great scientific 
value that does great honor to its author.  By his previous research and the publication of 
this book, Costa de Beauregard is classified today amongst the school of young 
theoretical physicists as an entirely eminent and original specialist in the theory of 
relativity. 
 

 LOUIS DE BROGLIE 

 
__________ 
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 In his Leçons sur les invariants intégraux, E. Cartan emphasized how interesting that 
it can be – even in pre-relativistic mechanics – to treat the problems of fluid mechanics or 
the mechanics of systems of points by taking the various fluid molecules or the various 
points at non-simultaneous time-points.  The formulas and arguments thus acquired great 
generality, and some profound relations exhibit that generality – for example, the one that 
relates the two expressions ∑ pk dxk and W dt for elementary action.  In fact, when 
employed systematically, that way of looking at things will lead one to treat the time 
variable in the same manner as the spatial coordinates, and to generalize all of the 
differential formulas that were considered previously by the addition of terms in dt.  
Those forms, and notably Poincaré’s integral invariants, appear (to use the words of 
Cartan himself) to be the truncated expressions for differential forms that involve the 
space and time variables symmetrically. 
 However, if Cartan’s very general viewpoint does a great service to the theoretical 
presentation of classical mechanics then it goes without saying that it will be in close 
harmony with the profound spirit of the theory of relativity.  One of the guiding 
principles to which we shall always remain faithful in this book is to write all of the 
differential forms in the complete and symmetric form that results from the non-
simultaneous consideration of an extended system.  Whereas that manner of proceeding 
might seem to be a purely-mathematical luxury in the context of pre-relativistic 
mechanics, it almost imposes itself in relativity due to precisely the fact that the notion of 
simultaneity at a distance must be essentially relative.  Hence, integrations at constant 
time, for example, which can seem quite natural in pre-relativistic mechanics, will 
certainly seem arbitrary in relativity.  That is why throughout this book we will 
systematically replace the families of hyperplanes at constant time that have been 
employed in classical physics, each of which is defined by a value of t, with arbitrary 
continuous families of hypersurfaces E (θ) that are everywhere spacelike.  Each of them, 

which is called a pseudo-space, is characterized uniquely by a value of the real parameter 
θ, which is called pseudo-time.  The complete differential forms thus-introduced present 
some supplementary terms with respect to the classical truncated forms that one can 
consider to be corrections for non-simultaneity. 
 If, conforming to the classical custom, one considers the totality of space at constant 
time in any Galilean frame then in relativity that will imply that two different Galilean 
observers cannot utilize the same three-dimensional integration hypersurface.  Hence, if 
one is given a certain physical quantity that is represented by a world-tensor as a density, 
then that will amount to saying that in practice, the integral quantity will not have a 
tensorial character.  Indeed, the integral tensor is defined only relative to the integration 
hypersurface, so one will then see that different Galilean observers will utilize different 
finite tensors to represent that same quantity.  That is an important fact to which L. de 
Broglie has emphatically directed attention in the example of kinetic moment [125, 126].  
Meanwhile, we remark that the preceding disagreeable situation is found to be avoided 
for two quantities among all of the important ones, namely, electric charge and mass-
impulse.  Since electric charge is conservative, its value will be independent of the world 
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hyper-endcap that is used in order to calculate in a given hyper-tube.  Moreover, in an 
infinitely-thin hyper-tube, one easily shows that the mass-impulse quadri-vector is 
independent of the world-orientation of the hypersection considered. 
 Is it physically obligatory that one must consider all of the points of space to be 
simultaneous in a given Galilean frame?  We do not think so.  It is indeed true that, 
despite the effective existence of simultaneous signals, one can calibrate all clocks easily 
in the same Galilean frame with the aid of physical operations in such a manner that they 
will be synchronous in that frame.  However, it is obvious that this possible operation is 
an arbitrary operation whose only merit is to preserve the customs of the old thinkers in a 
completely “relative” manner.  Conversely, must one believe that the choice of one of our 
families E (θ) will unduly specialize the way that one frames space-time?  We expect not.  

The choice of E (θ) is doubly arbitrary, from the form of E, on the one hand, and the 

manner by which θ is graduated, on the other.  We demand only: 
 
 1. The everywhere-spatial character of each E. 

 2. The continual and total sweeping-out of the universe when θ increases from – ∞ 
to + ∞. 
 
 Other than that, the choice of the family of E (θ) is totally free.  In fact, we need only 

the (purely abstract) existence of a family E (θ) in order to give a general form to the 

equations that we write.  Finally, our families E (θ) are just as relative and just as 

arbitrary as a Galilean frame.  Their only merit consists of the fact that they give the 
integral laws a symmetric form in the relativistic sense.  A well-defined Galilean observer 
who has been led to think in terms of families E (θ), instead of simultaneity at a distance, 

will expand his way of thinking, since the various points of an extended system that he 
considered at the same time will no longer be simultaneous.  That observer can 
materialize his reference system, as well as before, by making points out of the clocks 
that are graduated along θ.  He will always know how to pass from the general language 
“in θ” to the classical language “in t,” since the relationship between θ and t that is given 
by the formula θ = θ (x, y, z, t) is bijective at each point (x, y, z) in his proper space. 
 The systematic adoption of the preceding viewpoint will result in a very important 
consequence: If it is always understood that the definition of the integral – or “finite” – 
quantities is a function of the integration hypersurface E (or, if one prefers, it is 

“relative” to E) then any density quantity will be associated with by a tensor that is found 

to be associated with one or more quantities that are each represented by a tensor.  One 
can even further specify: Since the three-dimensional integration element [dx j dxk dxl] in 
the four-dimensional universe is the dual of an infinitesimal quadri-vector that we 
regularly denote by ic dui , we will see that the finite tensors that are associated with a 
density tensor of rank n will have rank n ± 1, according to whether the definition of 
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integral tensor does or does not include a contraction, resp. (1).  Two notorious examples 
of that general situation deal with electric charge, in one case, and mass-impulse, in the 
other.  Charge-current density jk is a quadri-vector, but charge Q is an invariant.  Mass-
impulse density is a second-rank tensor T ij, but mass-impulse is a quadri-vector p j.  As 
another example, we cite the kinetic moment – whether orbital or proper – whose density 
is a third-rank tensor σijk that is antisymmetric in at least i and j, but whose finite form is 
a second-rank tensor [127], if one takes the preceding remarks into account.  A new 
application of that rule is concerned with force: We associate the classical force-power 
density quadri-vector f i with a second-tensor F ij in order to represent the finite force.  We 
have justified that definition by means of two arguments, one of which was mechanical, 
and the other of which was electromagnetic [120, 108], and those arguments will be 
reproduced in the present text, in substance. 
 Along a neighboring train of thought, one poses the problem of the variance of 
temperature, but with the prior complication of needing to discuss the variance of the 
quantity of heat.  Temperature is not a quantity that one can associate with a density, but 
the classical definition of entropy: 

δS = 
Q

T

δ
 

 
is a differential form in which the variance of the heat δQ is fixed in advance.  Moreover, 
entropy, as a pure number and the logarithm of an integer number, is certainly an 
invariant.  As a result of some papers on the subject by Einstein and Planck [137, 139], 
all of the old treatises have refused to give relativistic temperature both invariance and 
tensorial variance [4, §§ 33a and b; see also 143].  Those classical rules of variance of 
temperature are obtained without the least difficulty by calculating the elementary heat 
δQ in two different Galilean frames at constant time and by starting with the proper heat 
density Q0 .  On the contrary, in an entire series of modern books and papers, the 
relativistic temperature appears with a covariant tensorial character.  Its inverse is defined 
by either the fourth component of a quadri-vector θ i or as an invariant θ0 [140, 141, pp. 
676 and pp., 693, 142, pp. 922, 143].  Now, that double result will become obvious when 
one reestablishes the complete form of the differential expression, and if one appeals, 
according to the nature of the problem being treated, to the quadri-vectorial quantity of 
heat, which is homogeneous to an energy-impulse, and which is associated with Van 
Dantzig and Bergmann’s quadri-vector θ i, or even the scalar quantity of heat δQ0 , which 
is homogeneous to a proper energy, and which is associated with Tolman and Eckart’s 
scalar θ0 .  If V i denotes the quadri-velocity of the material medium then the relation: 
 

θ i = θ0 V i ≡ 
0

1

T
V i 

 
will be imposed in a manner that is not absolutely constricting, but will generally be 
reasonable [143]. 

                                                
 (1) True, if the three-dimensional volume is taken in the form [dx j dxk dxl] then one will easily see that 
the ranks n ± 3 of the finite tensor will be added to the indicated ranks n ± 1.  However, that remark does 
not seem to necessarily lead to any interesting physical applications. 
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* 
*   * 

 
 Our presentation of the theory of special relativity and those of kinematics and the 
optics of the vacuum in relativity, which are coupled together in essence and by tradition, 
appears in Chapter II.  Faithful to our rules of conduct, we establish the formulas for the 
change of Galilean frame in the four-dimensional form, which is literally immediate once 
one has acquired certain mathematical facts that are assembled in Chapter I, § B.  We 
make no pretense of originality in that part of the book, so we shall always reason in four-
dimensional form and then recover only the expressions for the laws of relativity in their 
usual forms.  Given the spirit that animates our work, in Chapter II, § C, we have very 
explicitly gathered some general facts of the relativistic kinematics of continuous media 
and some considerations on differential forms.  In particular, one will note that the notion 
of proper or scalar volume element will be defined as a quadri-flux: 
 

u0 = i
iV uδ∫∫∫E , 

 
which can be of service in regard to some questions, and in some special cases, it will 
permit one to associate any density with a finite tensor of the same rank.  For example, it 
perfectly justifies the notion of a finite force quadri-vector that is orthogonal to the world-
trajectory, which certain authors have used in the case of a material point [2, pp. 115-
116]. 
 Chapter III is dedicated to relativistic electromagnetism, although it is very classical 
to begin with.  In § C, we will give our new definition of the finite force as a second-rank 
tensor Fij.  That will come about by arguing directly by imitating the argument that 
establishes the quadri-vectorial character of the force density in a manner that is currently 
classical.  Passing to the case of conduction, we will then give a covariant form to certain 
known results that make contact with Joule heat in relativity, and infer a general 
conclusion from them that is of interest in some questions of the creation or annihilation 
of heat, energy, and mass.  In § D, a very brief and direct argument will give us the 
asymmetric expression for the elastic tensor of the Maxwell-Minkowski field [99, 100, 1] 
that we absolutely prefer to the symmetric forms (which differ from each other) that were 
proposed by Einstein [105] and Abraham [103, 104], since it is the one that is suggested 
naturally by calculation, and it is in harmony with the notion of spin density for the field.  
We shall establish two electromagnetic spin densities that were discovered by E. Henriot 
[107] with our approach to things by attaching them to the definition of another 
asymmetric elastic tensor of the field that we considered in [108]. 
 Chapter IV, which is the most voluminous of the book, is dedicated to relativistic 
dynamics.  Very special care has been afforded to the deduction of relativistic dynamics 
in a classical spirit by starting with the laws of force that electromagnetism teaches us.  
Indeed, we believe that any autonomous, theoretical basis for relativistic dynamics will 
be arbitrary a priori, for the very simple reason that before Einstein mechanics ignored 
the role that is played by the universal constant c in its proper domain.  Once that is 
known, only two methods for founding relativistic dynamics will remain: The inductive 
method, which must be founded on any sort of experiments that manifest the role of c in 
dynamics, such as those of Guye-Lavanchy on the variation of mass [109, 110, 111, 112], 
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those of Davisson-Germer on the relationship between mass and frequency [154], or even 
better, for the generality and symmetry of their arguments, the ones on nuclear 
bookkeeping that the show the universal proportionality between energy and mass [114, 
115].  In that way, the laws of relativistic dynamics will be founded upon a method that is 
entirely analogous to the one that was followed before by Galileo.  Following Einstein 
himself, and with the goal of didactic elegance, we have preferred the deductive method, 
which we believe that one is obligated to follow in electromagnetism.  In the course of 
that deduction, we shall show that the maximum economy in one’s postulates is obtained 
when one argues in the language of continuous media by starting with a less-known, but 
very general, form that one can give to the fundamental laws of fluid mechanics [4, § 28 
b].  The rebuttal will be given later on in the deduction of point dynamics.  We show that 
a supplementary postulate will be required if one would like to base relativistic dynamics 
in terms of a material point.  Our § A also contains a generalization of the theory of 
volume forces, as well as an explicit theory of the force of surface origin that is based 
upon our covariant definition of the finite force. 
 § B will treat the theories of spin and viscosity together, and initially in terms of 
continuous media.  Of course, they are physically quite distinct, since one of them, which 
is macroscopically unknown, is taken into consideration only as a result of the demands 
of quantum physics, and the other one appears to have an essentially statistical and 
microscopically-evanescent sense, but those two questions have an uncontestable 
mathematical parentage.  It is for precisely that reason that we have treated them in the 
same paragraph.  For several years now, we have treated the problem of the relativity of 
spin when it is posed in terms of continuous media, whereas some authors abroad have 
generally attacked the same problem in terms of material points [121, 122, 123, 132, 
134].  Meanwhile, some work that has many common points of contact with our own – 
namely, that of Weyssenhoff and Raabe – came about in almost the same epoch and 
completely independent of our own work [133]. 
 § C is dedicated to the unsolved problem of the relativistic dynamics of systems of N 
interacting points.  There, we shall first point out the mean technique for defining the 
barycenter in a covariant manner that we proposed recently [135].  We then show that a 
relativistic formulation of the general theorems of dynamics will be possible, provided 
that one takes into account some potential phenomena that occur in the field of 
interaction.  As a result of those simple calculations, we think that we should then 
conclude that the true problem of the relativistic dynamics of systems is a field problem 
[136]; i.e., a problem of partial differential equations. 
 § D is concerned with relativistic thermodynamics.  We shall treat only some 
questions of principle, and above all, the question of the variance of temperature.  Two 
very simple applications will be given by way of illustration, one of which bears upon 
Fourier’s law of conduction, while the other one bears upon the law of adiabatic 
compression of a perfect gas [128, pp. 199-200]. 
 Our Chapter V is further dedicated to dynamics, and expressly to our presentation of 
three special topics.  First, to a very ingenious relativistic generalization of the theory of 
vortices in inviscid fluids that is due, in principle, to Synge [149, 150], and into which A. 
Lichnerowicz has introduced the beautiful neatness of the theory of integral invariants 
[151, 152].  It is obvious that we should present that theory in terms of special relativity.  
To conclude, we will show that Lichnerowicz’s “definition B” of an incompressible fluid 
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[153], which is more restrictive than Synge’s hypothesis, constitutes the true relativistic 
extension of the notion of perfect fluid, in which the pseudo-velocity field is derived from 
a double potential of source/sinks and vortex filaments, as well as a potential of the 
potential that generalizes that of Poincaré [128, pp. 203-204].  In § B, we once more 
present our completely-symmetric presentation of the analytical mechanics of the 
material point, in which the world-force is assumed to be derived from a quadri-potential, 
as in electromagnetism [8, IV]. 
 Finally, § C presents Louis de Broglie’s famous initial wave mechanics [163] 
systematically in four-dimensional terms, which is a treatment of light in microphysics, 
and in order to begin it, one must recall everything that is concerned with the relationship 
between the theories of relativity and quanta.  We cannot think of a better way to 
conclude a treatise on special relativity then to embark upon one of the major problems in 
physics today. 
 We do not pretend to have exhausted the true or virtual content of the theory of 
special relativity with the preceding subjects.  We have voluntarily limited ourselves to 
the questions that we have personally pondered.  For example, we see quite well that the 
developments of elasticity or thermodynamics would have their place, and it seems to us 
that our covariant definition of the finite force must permit one to revive the former 
subject.  Despite everything, we think that we have said what is essential, and we hope 
that we have provided a tool that will be useful in everything that is of interest in 
relativity, whether in its own right or as an intermediary in the study of the problems of 
either astrophysics or microphysics. 
 

* 
*  * 

 
 We have directed the preceding remarks to readers that are already familiar with the 
theory so that we could present the reasons that have encouraged us to add several 
excellent treatises or synthetic articles to our modest book.  Now, we would like to say a 
few words to the novice reader, for whom our book is also intended, to our way of 
thinking. 
 We have constantly sought to be very clear, and at the same time, to present the 
questions in a truly relativistic context, which is that of a systematic symmetrization of 
space and time.  Rather than making long speeches, we have profoundly desired to know 
the spirit of relativity, and at the same time, to even show the unique means for seeing 
things absolutely clearly in its questions, which is the use of four-dimensional thinking. 
 Today, more than 40 years after its formulation, special relativity is no longer a 
difficult theory, technically speaking.  Nonetheless, one must think that certain points are 
still misunderstood, judging by the nature of certain objections that are occasionally 
formulated.  Along with the aforementioned caveats, we have then had to precede our 
exposition with a long and detailed introduction, while providing the reader with some 
pure contingencies, moreover; we hope that we have thus given them some useful 
clarifications. 
 § B of the first chapter contains a simple presentation of the required mathematical 
notions.  Principally, they are the definition of tensors in oblique, rectilinear axes in 
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pseudo-Euclidian spaces and the establishment of the general formula for the 
transformation of multiple integrals. 
 In the entire course of this book, with rare exceptions, the same letters will denote the 
same physical quantities.  The bold numbers between brackets refer to the bibliographic 
index.  The chapters and the equations inside of each of the five chapters are numbered.  
The chapter number will be a Roman numeral.  In general, we shall omit that numeral 
prefix in the references that are internal to a given chapter, and enclose references to 
equations in other chapters in square brackets, along with the chapter number. 
 In the entire course of the book, i, j, k, l will denote an arbitrary permutation of the 
world-tensorial indices 1, 2, 3, 4.  u, v, w will denote a circular permutation of the spatial 
indices 1, 2, 3, so the world-indices will then be u, v, w, 4. 
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FIRST CHAPTER 
 

INTRODUCTION  
 

 I.1. – Sub-chapter A of the present chapter will present the epistemological history of 
Newton’s and Einstein’s principles of relativity.  We have sought to give it brevity and 
clarity.  However, we have insisted upon some points whose importance has been 
revealed to us in our discussion with certain adversaries of relativity. 
 At the heads of the last chapters, the novice reader will find some indications 
regarding the manner by which the conversion of the branches of physics in those 
chapters into four-dimensional geometry will be treated. 
 In sub-chapter B, we have compiled some of the mathematical ideas that are 
necessary for understanding the rest of the book.  Since we intend to always refer 
everything to Minkowski space with orthogonal axes of equal measure, we shall have no 
need to summarize either the theory or the rules of the general tensor calculus.  We shall 
give a very simplified, but quite complete, presentation of the notion of tensor and the 
rules of tensorial calculus in planar spaces that are referred to rectilinear axes of constant 
measure.  In order to do that, we shall not at all seek to argue in an axiomatic manner, but 
we shall largely appeal to the reader’s intuition in order to extrapolate the results of 
ordinary geometry to the n-dimensional case.  The knowledge that is required in that 
paragraph is summarized in combinatorial analysis, the theorem of determinants and 
linear equations, and the elementary theory of multiple integrals. 
 
 

A. – THE SUCCESSIVE STATEMENTS OF NEWTON’S AND EINSTEIN’S  
PRINCIPLES OF RELATIVITY. 

 
 I.2. – The “principle of relativity” in Galilean-Newtonian kinematic s and 
dynamics. – One knows that Newton thought that he could base the kinematics and 
dynamics that are called classical or Newtonian today upon the principle of absolute 
space; that was a purely verbal statement.  The principles of relativity that are valid in 
those two respective branches of rational mechanics are, in fact, much broader. 
 Classical kinematics is subject to what one calls the principle of relative motion.  In 
order to understand that principle, one must remember that classical kinematics utilizes 
the notions of a (three-dimensional) Euclidean space and a “universal” time.  On the one 
hand, the theorems of Euclidian geometry are invariant with respect to the group of rigid 
displacements.  On the other hand, the postulate of a universal time signifies that the 
framing of an event in time can be done independently of the motion of the (rigid) system 
of reference.  Finally, the changes of the spatial variables xu (u = 1, 2, 3) and the time t 
that respect the principle of relative motion have the form: 
 
(I.1)    x′u = x′u (xu, xv, xw, t)  t′ = t′ (t), 
 
in which it is assumed that the transformation x → x′ essentially leaves the expressions 
for the spatial distances or their squares invariant: 
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(I.2)     2
ux′∆∑ = 2

ux∆∑ . 

 
 One sometimes says that this essential autonomy of space that is respected by the 
principle of relative motion forms a principle of absolute space.  One should be careful, 
since this new sense is quite different from the original sense, which postulated the 
existence of a privileged frame in space.  Be that as it may, in the original sense, as well 
as in the derived sense that was just mentioned, the principle of absolute space will be 
rejected by relativity, as well as that of universal time. 
 Before Einstein, one considered the principle of relative motion in kinematics as 
having been verified quite well by experiments.  Einstein revealed that this was only an 
approximate truth.  The new kinematics that he promoted assumed only a principle of 
relativity in the large, namely, the one that one knows already from Newtonian 
mechanics. 
 The principle of relativity is presented in detail in all treatises.  It will result from this 
that the fundamental formula F = m γγγγ of point dynamics is a characteristic invariant of the 
group of uniform translations (extended in the classical sense) of the reference xu, t; i.e., 
transformations of the form: 
(I.3)    x′u = xu – vu t,  t′ = t – const. 
 
Those transformations leave the accelerations invariant, and one will assume, as a 
postulate, that the masses and the forces are also transformed as invariants. 
 Physically, Newtonian dynamics must then restrict considerably the principle of 
relative motion that Newtonian kinematics assumes.  The accelerated transformations or 
rotations (which are both uniform) of reference frames (which are assumed to be rigid) 
become absolute.  As one knows, experiments have verified that deduction by exhibiting 
the appearance of ordinary or Coriolis forces of inertia, and consequently permitting the 
effective determination of the group of Galilean frames.  The laws of dynamics will be 
formulated in an equivalently privileged manner relative to that group of frames, which 
are all in uniform translation with respect to each other. 
 
 
 I.3. – Absolute space and the ether from Arago (1818) to Michelson-Morley 
(1887).  The “ether wind” is hidden from optical experimentation. – The only domain 
in classical theoretical science in which Newton’s absolute space is anything but a pipe 
dream is in optical (or electromagnetic) kinematics.  Indeed, consider a monochromatic 
point source that emits isotropic waves of speed c in a certain Galilean frame G0 .  From 

classical ideas, in any other Galilean frame G, the speed of the waves will no longer be 

isotropic, but will have values that are found between c ± v = c (1 ± β); v denotes the 
relative velocity of G and G0, which is assumed to be less than c, and we have set β ≡ v / 

c.  In a less elementary manner, one can insure that the d’Alembert equation or those of 
Maxwell or Lorentz are not invariant under Galilean transformations.  It follows naturally 
from this that in the classical theory, optical or electromagnetic experimentation seems to 
be capable of characterizing the hypothetical absolute framing of space that is further 
called absolute space. 
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 One knows that the great legislators of optics and electromagnetism Fresnel, 
Maxwell, and Lorentz supposed the existence of a medium of propagation for waves that 
they more or less (and in fact, less and less) assumed to be elastic waves.  From the 
definition itself of a medium of propagation, the speed of the waves will be isotropic.  
That hypothetical ether will then be quite naturally identified with the hypothetical 
absolute space.  One then sees that classical science, by the very force of things, had to 
identify a kinematical notion with an optical one, while Einstein’s relativity would 
condemn both of them together.  That was like a contradictory premonition of the close 
kinship that relativity would establish between kinematics and optics. 
 In optics, the most direct effects of the motion of sources and receivers are aberration 
(1728) and the Doppler effect (1842).  They are effects of first order in the velocities, and 
the classical theory, which assumes the ether, explains them easily.  The important point 
is that the first-order terms involve only the relative velocity of the source-observer.  The 
absolute velocities, which exhibit what they called the ether wind in the time of 
Michelson, appear only to second order in β  ≡ v / c.  Up to a very recent date (Ives and 
Stilwell, 1941), the second order in β remained beyond the reach of experiments in that 
domain. 
 From the classical ideas, the ether wind further intervened to first order by altering 
the velocity of light that progresses along a rigid base.  However, that amounts to a totally 
abstract viewpoint, so no apparatus could allow one to test that experimentally.  For 
example, one might wish to measure the time duration of the light trajectory along a rigid 
base AB.  In order to synchronize the chronometers at A and B, no procedure will be any 
better than an exchange of optical (or Hertzian) signals between A and B.  That is 
ultimately equivalent to measuring the time duration of the trajectory along a round trip 
of the base, and that is practically what one does in the classical methods of Fizeau, 
Foucault, and Karolus-Mittelstaedt.  Any effect of the ether wind will then disappear to 
first order in β, which is the only one that can be experimentally attained. 
 In order to measure the speed of light on a one-way trajectory, one can appeal to the 
two closely-related phenomena of the Doppler effect and aberration, and in fact that is 
how the first evaluations of the constant c were obtained.  Indeed, Römer’s observation 
(1676) was mathematically equivalent to the observation of the Doppler effect, in which 
the frequency of emission of a wave train was replaced with the frequency of occultation 
of the satellites of Jupiter.  The second evaluation of c was that of Bradley (1728).  In the 
two cases, any effect of a hypothetical ether wind that blows parallel to the plane of the 
ecliptic would disappear to first order in β, in such a way that the two phenomena 
considered will indeed provide evaluations of the constant c, and none of the evaluations 
of c augmented or diminished the hypothetical ether wind.  We also remark that the 
preceding methods of evaluation of c along a one-way trajectory of light succeed only 
because of the fact that the receiver – namely, Earth – successively occupies different 
Galilean frames (in fact, an infinitude of them, but two will suffice, in principle).  The 
relative velocities of those various Galilean frames must be known directly. 
 However, there is a domain in which the ether wind seems to be manifested to first 
order a priori, from classical ideas: It is the domain of experiments that involve 
transmission in a transparent medium, such as glass or water.  Indeed, if the hypothetical 
ether is not carried along by the material medium in question at all, or completely, then a 
first-order effect will manifest itself – for example, in the observed aberration that is 
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observed with a lunette that is filled with water, and also in the deviation that is due to a 
prism.  Nothing of the sort has been observed.  Notably, the second experiment was 
attempted by Arago in 1818, and repeated in 1872 in a refined way by Mascart, and with 
a perfectly “negative” result.  In 1818, Fresnel showed that the necessary and sufficient 
condition for annulling the ether wind to first order (which was Arago’s experimental 
result) was that one must assume a partial dragging of the ether by the matter in the 
prism according to the well-known formula: 
 

(I.4)     c′ = 2

1
1

c
v

n n
 ± − 
 

. 

 
 Throughout the XIXth Century, Babinet, Fizeau, Angström, Hoek, and Mascart 
accumulated experiments that were equivalent to the preceding ones, in principle.  The 
results were consistently “negative,” but with the exception of a series of experiments by 
Fizeau on the rotation of the plane of polarization in a block of ice.  However, that same 
experiment, which was repeated in a much more precise manner in 1905 by Brace and in 
1907 by Strasser, gave perfectly “negative” results both times.  Among the experiments 
in question, special mention must be made of the ones by which Fizeau (1851), 
Michelson (1886), and Zeeman (1914) verified Fresnel’s dragging formula in a 
completely direct way. 
 As a result of all those experiments, and notably the ones that he himself had 
performed, Mascart was convinced that the optical search for absolute space must be in 
vain.  The group of Galilean frames must enjoy the same privileged equivalence in optics 
that one knows from dynamics.  In purely qualitative terms, that is what one would 
anticipate from Einstein’s thesis.  In the same era (1873-1874), Veltmann, and then 
Potier, brought into plain view the general result that was implied by Fresnel’s formula, 
and which Stokes has pointed out already: Fresnel’s law of dragging of the ether is 
equivalent to the unconditional annulling of any effect of an “ether wind” to first order.  
A little bit later, Lorentz extended that theoretical result to all of electromagnetism.  The 
first campaign in the search for an “ether wind” that was inaugurated by Arago then 
arrived at a totally “negative” result. 
 The second campaign opened with the celebrated second-order experiments of 
Michelson (1881), and then Michelson-Morley (1887).  Once again, the result was 
absolutely “negative.”  This time, the theory countered with an appropriate formula that 
translated into a convenient and universal effect of the supposed “ether wind.”  It was the 
formula for the contraction of length by the ether wind according to law: 
 

(I.5)     l = 2
0 1l β− , 

 
which was proposed by Fitzgerald (1893) and Lorentz (1895).  Epistemologically, the 
Fitzgerald-Lorentz hypothesis has the same very grave defect as the older hypothesis of 
Fresnel: At the same time, it asserts the existence of the ether and the impossibility of 
proving that fact experimentally. 
 Moreover, the theory does not stop with that: With Lorentz and Poincaré, it adds the 
hypothesis of a proper time for each Galilean frame to the preceding one.  Finally, it 
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writes the formula for the change of Galilean frame with the aid of the group of formulas 
that is becoming celebrated: 

(I.6)    x′ = 
21

x vt

β
−
−

,  t′ = 
2

2

/

1

t vx c

β
−

−
, 

 
which agrees with the Galilei formulas, to an approximation that is first-order in 1 / c.  
Einstein’s theory of relativity consists essentially of the adequate interpretation of the 
preceding formulas. 
 Michelson’s experiment was repeated by various authors, and generally with its 
totally “negative” result.  Meanwhile, Miller’s experiments seemed to reveal an “ether 
wind” of 4 or 5 km/s, which is much smaller than the one that was initially sought, and 
varies according to different laws, as well.  However, it does not seem that those 
experiments should be retained, since newer and more precise experiments, one of which 
was due to Kennedy and Illingsworth (1927), and the other of which, to Joos (1930), gave 
totally negative results.  From the latter experiments, the “ether wind” will be less than 1 
or 1.5 km/s (the value of the experimental imprecision), while the speed of the Earth in its 
orbit is of order 30 km/s. 
 Along with the second-order experiments of Michelson type, one must cite the 
electromagnetic experiments of Trouton-Noble type (1903) and Trouton-Rankine type 
(1908).  Those experiments have also been renovated – notably by Chase (1927) and 
Tomashek (1925-1927).  Their results, whose precision could reach 4 or 5 km/s, were 
always negative. 
 Naturally, the concept was calling into question the experiments on the optical effects 
of rotations.  There as well, the effect that was predicted by the classical theory was of 
first order in β, and experiments verified it precisely (Harress, 1912, Sagnac, 1913).  It 
then asserted that rotations have an absolute character, in optics, as well as dynamics.  
The Michelson-Gale experiment (1925, which was less precise, moreover), in which the 
Earth was taken to be a rotating rigid body, is the true optical analogue of the Foucault 
pendulum experiment. 
 
 
 I.4. – Einstein’s relativity postulate. –  
 
 A. – For Einstein, as well as for Mascart and Poincaré before him, the qualitative 
lesson of all the experimentation that was carried out in kinematical optics from Arago to 
Michelson-Morley was this: The law of privileged equivalence of Galilean frames is not 
just a principle of relativity that is intrinsic to dynamics, it is a principle of relativity that 
is universal to all physics.  In particular, the principle of relative motion of classical 
mechanical kinematics and the postulate of absolute space or ether of classical optical 
kinematics are both false; the one, in the very large and the other, in the very small. 
 Here, we must respond to a group of objections against relativity a priori that are 
often posed by the practitioners of rational mechanics. 
 For them, true kinematics must be an integral part of rational mechanics.  They stress 
that one claims to be overhauling kinematics in the name of the laws that were discovered 
by optics.  But, in reality, kinematics is not a special case of mechanics; on the contrary, 
it is the general context in which all physics is inscribed.  By virtue of an uncontestable 
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epistemological view of Duhem, it is not at all excluded a priori then that experimental 
progress in any chapter of physics should retroactively impose a refining of the most 
“primary” postulates of science: namely, those of kinematic type. 
 The objectors in question then ask: “Why give preference to optics in a conflict 
between traditional mechanics and optics?”  First, by virtue of its uncontestable precision.  
The proof of a universal acknowledgement of the superior precision in optics – or, what 
amounts to the same thing, electromagnetism – is provided implicitly by the two facts 
that as of today, all high-precision metrology is subordinate to the spatial standard that is 
defined by light, and all high-precision chronometry is subordinate to the Hertzian time 
standard.  However, there is more: It is not just by its unequaled precision that the science 
of waves naturally dominates geometry and kinematics, but because of the fact that it is 
really the most geometrical and the most kinematical of the physical sciences.  If one 
leaves aside the ancillary questions of intensity then optics essentially treats length (viz., 
wave length), time (viz., period), and pure numbers (viz., phase). 
 Moreover, the final deciding point in this controversy is provided by the formulation 
of wave mechanics.  It is no longer just kinematics, but dynamics, that is subordinate to 
the science of waves.  A synthesis of the kinematics of points and the kinematics of 
waves is found within the context of relativity.  Optics, as is the will of wave mechanics, 
is nothing but the wave mechanics of the photon, which is a corpuscle whose very small 
physical mass is physically indiscernible.  It is solely by virtue of that particular fact that 
the physical speed of light – viz., the group velocity of the photon – is indiscernible from 
the universal constant c.  In truth, the constant c is not at all special to optics; it belongs to 
all physics.  One simply arrives at the fact that from the fact of the vanishing mass of the 
photon, the dynamics of the photon sublimates, so to speak, to the state of pure 
kinematics. 
 In anticipation of what follows to some extent, those are the reasons of an 
epistemological order that oppose the objection of traditional mechanicians, and which 
justify Einstein for having identified kinematics and optics, in a way. 
 
 B. − For Einstein, the law of privileged equivalence of Galilean frames in the optics 
of the vacuum translates thus: The speed of light not only seems isotropic in every 
Galilean frame, it is isotropic.  In opposition to the epistemological frailty of the original 
hypotheses of Fresnel and Fitzgerald-Lorentz, Einstein’s new hypothesis adequately 
translates the homogeneity that stands out in the experiments into a theoretical statement. 
 At this point in the presentation, it is important to examine closely the significance of 
the Michelson-Morley experiment, in order to see and distinguish the conclusions that it 
imposes more clearly, along with the postulates that it permits. 
 The net result of the Michelson-Morley experiment is this: The round-trip speed of 
the optical phase is isotropic, and consequently in independent of the direction of the so-
called ether wind.  Two questions seem to have been left in suspense then, and one must 
demand to know the circumstances under which it is permissible to ask: 
 
 1. Might the round-trip phase velocity be a function of the absolute value of the 
ether wind? 
 2. Might the phase velocity of a one-way trip be a function of the direction of the 
ether wind? 
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 We remark that it is easy to translate those two questions into the language of wave 
length.  First of all, the net result of the Michelson-Morley experiment can be formulated 
equivalently in the following form: The number of stationary waves that are carried by a 
given material yardstick and emitted from a monochromatic source that is at rest with 
respect to that yardstick is isotropic.  Under those conditions, is it permissible to demand 
to know (and then, under what conditions): 
 
 1. Whether that number can be a function of the absolute value of the hypothetical 
ether wind? 
 2. Whether the number of waves that propagate along the yardstick and issue from a 
source that is coupled with it can be a function of the direction of the hypothetical ether 
wind? 
 
 We first address the former question.  When posed in terms of the ether wind, one can 
hardly see how it could make any intelligent sense, because the Michelson-Morley 
experiment showed precisely that if there is an ether wind then its physical behavior will 
differ radically from the properties that a true wind of true ether would have.  Under 
those conditions, it is not indicated that one should continue to appeal to words that evoke 
inexact images, and one agrees to pose the first question in one or the other of the 
following direct forms: Is the number of stationary waves of a well-defined physical 
radiation that are carried by a given yardstick subject to secular variations?  Or even: Is 
the round-trip speed of the optical phase subject to secular variations when it is 
evaluated with the aid of a material standard of length and a standard of time that is the 
period of the source utilized? 
 Before returning to that interesting first question a little bit later, we shall pass on to 
an examination of the second one. 
 Experimentally speaking, it would seem that there is no sense in demanding that the 
speed of light must have a given value along a one-way trip. 
 It results clearly from what was said in the preceding no. that the process of 
measuring the speed of light along a one-way trajectory (which one can, in principle, base 
upon the Bradley effect, or what is equivalent to it, the Römer and Doppler effects) can 
no longer be provided by processes that utilize hypothetical first-order round-trip effects 
of the ether wind.  Similarly, no process can permit one to enumerate the number of 
propagating waves that are carried by a given material ruler by taking into account the 
classical hypothetical effect of the ether wind.  For example, if one places a source at the 
extremity A of the ruler and receives its waves with a grid that is placed at the extremity 
B then the Doppler effect for emission will be compensated by a second Doppler effect 
for reception, in such a way that the apparatus will provide the number of waves that are 
carried by the ruler in the absence of an ether wind, and nothing more.  That experiment 
with a source-grid that is fixed in the laboratory is the one that Angström and Mascart 
performed.  Finally, to address the Michelson-Morley experiment, one cannot learn more 
from the consideration of one-way trajectories than one can from real round-trip 
trajectories. 
 
 C. – As a result of the negative result of the Michelson-Morley experiment, Einstein 
formulated the fundamental postulate of his new kinematics in the following form: The 
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speed of light in vacuo c is an absolute constant.  We shall show (as an application of the 
Duhem’s epistemological viewpoint) that that postulate is not properly imposed by the 
Michelson-Morley experiment, it is the Michelson-Morley experiment that makes it 
possible and suggests it.  We will then show (and this will be an application of Poincaré’s 
epistemological viewpoint) that Einstein’s postulate is equivalent to a definition, namely, 
the “universal” attachment of a standard of time to a standard of length. 
 We refer to the interferential experiments by which Michelson-Benoît, Benoît-Pêrot-
Fabry, and then some other authors, have referred the standard meter to the wave length 
of the red line in cadmium.  It is clear that if the material lengths and optical wave lengths 
are not unconditionally common to each other in comparison to the assumed ether wind – 
which is the net result of experiments of Michelson-Morley type – then the metrological 
comparisons in question can have no sense at all.  They must be accompanied by a 
determination of the direction and speed of the ether wind, which is not the case, in fact 
(1).  The negative result of the experiments of Michelson-Morley type then appears to be a 
necessary condition for the substitution of the optical standard of length for the material 
standard. 
 Now, the red line of cadmium (or any other well-defined line) (2) was chosen to be 
the standard of length (by way of its wave length), but its period can just as well be a 
standard of time, in principle.  It is clear that to make an optical line the standard of 
length, as well as time, is equivalent to assuming that the speed is an absolute constant 
(3).  We have then established the two points that we asserted, and they are closely 
connected. 
 What would happen if the experimental evaluations of the speed of light were to 
reveal a secular variation of that so-called absolute constant?  That is a question that is 
not absolutely Platonic, and several authors – the most eminent of whom is Esclangon – 
have raised it effectively (4).  From the preceding argument, and contrary to what some 
have suggested, it is clear that the eventuality considered will affect nothing in the theory 
of relativity.  Einstein’s postulate rests upon the experimental fact of isotropy, and upon it 
alone.  It then makes c an absolute constant, by definition.  Let ρ1 denote the ratio of the 
standard meter to the wave length of a certain well-defined monochromatic line then, and 
let ρ2 denote the ratio of the sidereal second to the period of the same line.  Assuming 
that the experimental value of c is subject to secular variations is equivalent to assuming 
that at least one of the ratios ρ1 or ρ2 is subject to secular variations.  That question is 
entirely independent of the question of the foundations of special relativity. 

                                                
 (1) The optical method permits one to detect relative variations of the material lengths of order 10−8.  
From classical ideas, it will then permit one to detect values of the ether wind of order 50 km/s, which is  a 
degree precision that is quite inferior to that of experiments of Michelson-Morley type.  The question of the 
principle that was formulated in the text will then continue to exist. 
 (2) The use of the green line of an isotope of mercury with zero nuclear spin has recently been proposed.  
One knows that such lines are particularly fine, all other things being equal, moreover. 
 (3) In the present state of science, one does not know how to get the period of an optical line directly.  
By contrast, in the centimeter and millimeter Hertzian domain, certain molecular lines can be compared to 
the astronomical second directly.  It has already been proposed that the standards of time that are defined 
down to 10−8 to 10−9 in the inversion spectrum of ammonia can be made finer and more stable [77′]. 
 (4) E. ESCLANGON, La notion du temps, Paris, 1938, pp. 16-18. – GHEURY DE BRAY, Nature 133 
(1934), pp. 464 and 948. – EDMONDSON, ibid., pp. 759.  
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 In fact, the most recent measurements of c by Anderson did not confirm the laws of 
variation that were proposed, and it seems that the best interpretation of the set of 
terrestrial measurements that were made in the last hundred years is that of the constancy 
of c [70, 71, 74] (1).  Moreover, nine comparisons of the standard meter with the wave 
length of the red line in cadmium that were spread over fifty years are mutually coherent 
to almost 10−8 [77] (2). 
 
 D. – It results from Einstein’s postulate that the formulas for the change of Galilean 
frame xu, t (u = 1, 2, 3) are no longer the formulas for the Galilei group, but those of the 
Lorentz-Poincaré group.  The proof is found in Einstein’s work, and it was already 
implicit in the work of Lorentz and Poincaré.  We shall give that proof again, in our own 
manner, in no. II.2, where we will link it immediately to the notion of Minkowski’s four-
dimensional space-time. 
 
 

B. – MATHEMATICAL INTRODUCTION:  
TENSORS IN PSEUDO-EUCLIDEAN SPACES. 

 
 I.5 – Covariant and contravariant components of an n-vector.  Metric tensor. – 
Consider an n-dimensional space that is referred to a system of n rectilinear axes with 
constant, but not necessarily equal, magnitudes, and which are generally oblique to each 
other.  We shall put ourselves in a very general case that contains the particular case of 
the pseudo-Euclidian space-time – or universe – of the theory of special relativity by 
assuming that the n coordinates ni are complex (i = 1, 2, 3, …, n). 
 Each of the n axes can be defined by its unit director n-vector ui, and the lengths of 
those vectors are not equal, in general [sic].  The most general spatial vector s considered 
can be written uniquely as the sum: 

                                                
 (1) Birge [70, 71] held the best measurements of c to be: 
 1. Rosa-Dorsey (1906, report on the bases for E. S. U. and E. M. U., which was a correction to the 
report on the bases for absolute and international electric units). 
 2. Mercier (1923, stationary radio-electric waves). 
 3. Karolus-Mittelstaedt (1928, beam chopped at very high frequency by a Kerr cell and having a very 
short base). 
 4. Michelson-Pease-Parson (1932, rotating mirror, base of 1 mile in vacuo). 
To them, it is suitable to add: 
 5. Anderson (1941) [74], who ingeniously refined the method in 3. 
 Here is a table of those results: 
 1. (1906) c = 299,781 ± 10 km/s 
 2. (1923)  299,782 ± 30  “ 
 3. (1928)  299,778 ± 10  “ 
 4. (1932)  299,774 ±   4  “ 
 5. (1941)  299,776 ± 14  “ 
 This table does not at all create the impression that there is an ample and rapid secular variation of c, as 
some authors have assumed.  On the contrary, the preceding five results, which were obtained by four very 
different methods and over dates that were spread over 35 years, are remarkably coherent. 
 (2) It was quite recently that a measurement of c was made in the centimeter Hertzian domain by a 
procedure that was equivalent to the simultaneous measurement of the period and wave length of a 
stationary wave.  The precision obtained was equal to or greater than that of the previous methods. 
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(I.7)     s = 
1

n
i

i
i

x
=
∑ u , 

 
in which the n coordinates xi are, as we said, assumed to be complex.  We now introduce 
and utilize the summation over dummy indices convention, which is well-known in tensor 
calculus and consists of this: Whenever the same index appears twice in a monomial – 
once above and once below – one must sum over all values of that index.  The monomial 
in question will then be a polynomial, in reality, and in what follows in this book we shall 
speak indifferently of its term or its terms, according to whether our attention is directed 
spontaneously to its formal aspect or the reality that it implies; we shall see that this will 
introduce no confusion.  We then agree to write the expression (7) in the form: 
 
(I.8)     s = xi ui . 
 
The repeated index i is called dummy because since the summation over i is automatically 
required by the form itself of the right-hand side of (8), that index will not figure 
essentially in the expression for s. 
 Upon scalar-multiplying the vector s by itself, we will get the square of its length, 
which is a number (that is complex, from our general hypothesis), and whose expression 
will be (1): 
(I.9)   s2 = ui uj x

i x j = 1
2 (ui uj + uj ui) x

i x j. 

 
Of course, we shall continue to utilize the convention of summation over dummy indices, 
and ui uj x

i x j, for example, is intended to mean: 
 

1 1

n n
i j

i j
i j

x x
= =
∑∑u u . 

 
 The n complex numbers xi are called contravariant coordinates of the vector s, and 
the n2 numbers: 
(I.10)     gij = 1

2 (ui uj + uj ui), 

 
which are also complex and symmetric in i, j, are called covariant coordinates of the 
metric tensor.  By definition, the n numbers: 
 

(I.11)     j
i ijx g x=  

 
are covariant coordinates of the vector s. 

                                                
 (1) In the Hilbert space that is used by quantum theory, the scalar product of two vectors is defined to be 
what we will call the scalar product of one vector with the conjugate of the other one. 
 In order to pass from first expression in (9) to the second one, one must postulate that the scalar product 
of the two director vectors ui is commutative; some geometries that reject that postulate have been 
proposed. 
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 Equations (11), in which one sums over the dummy index j, are n in number, since i 
can take all of the values from 1 to n.  Depending upon whether we direct our attention 
spontaneously to the vectorial significance or the analytical explanation for a formula 
such as (11), we shall speak indifferently of the equation or equations of the formula that 
is represented; we shall see that no confusion should follow from that. 
 Equations (11) can be regarded as a system of n linear equations in n unknowns xi.  
One then essentially supposes that the determinant of that system: 
 
(I.12)     ∆ = | gij | ≠ 0 
is non-zero. 
 Equations (11) can then be inverted into the form: 
 

(I.13)     ,i ij
jx g x=  

 
in which the gij are the normalized minors of the elements gij of ∆.  By definition, the n2 
numbers gij, which are complex and symmetric in i and j, are called the contravariant 
coordinates of the metric tensor.  Their determinant is found to be equal to ∆, by 
definition, and it will then be non-zero: 
 
(I.14)     | gij | = ∆ ≠ 0. 
 
 The square s2 of the length can successively take on the three forms: 
 

(I.15)    2 .ij i i j
i j i ijs g x x x x g x x= = =  

 
If i

jδ  denotes the well-known Kronecker symbol then the second of those forms can be 

written: 

(I.16)    s2 = j
iδ xi xj ,  j

iδ  = 
0 if ,

1 if .

i j

i j

≠
 =

 

By definition, the n2 real numbers: 
(I.17)     j

ig  ≡ j
iδ  

 
are called the mixed components of the metric tensor. 

 

O x1 u1 x1 u
1 

x2 u2 

x2 u2 

 
Figure 1. 
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 Formulas (11), (13), and: 
xi = i

jδ x j or  xj =
i
jδ xi , 

 
show that the tensors gij, gij , and i

jg ≡ i
jδ  deserve the names of raising and lowering 

operators, and the substitution of the index i, resp. 
 We address the special case of a two-dimensional space with real coordinates and 
seek the geometric interpretation of the covariant coordinates xi of the vector s, it being 
intended that the contravariant coordinates are nothing but the oblique coordinates in 
the usual sense of the term; the reader can pass to the general case effortlessly.  If α 
denotes the angle between the director vectors u1 and u2 then we will have: 
 

g11 = (u1)
2, g22 = (u2)

2, g12 = g21 = u1 u2 cos α, 
and consequently: 
 x1 = u1 (u1 x

1 + u2 x
2 cos α), 

 x2 = u2 (u2 x
2 + u1 x

1 cos α). 
 
We then introduce two vectors u1 and u2 that are collinear to u1 and u2 , resp., and are 
such that the two scalar products u1 u

1 and u2 u
2 are equal to 1.  We will see that the 

extremities x1 u
1 and x2 u

2 are nothing but the orthogonal projections of the extremities of 
the vector s onto the coordinate axes. 
 
 
 I.6 – Formulas for a change of axes.  General definition of a tensor.  Tensorial 
rules of homogeneity. – Take n linearly-independent vectors iu  in the space considered, 

and let j
io  denote the j th contravariant component of the i th vector.  By definition, one has 

the system of relations: 
(I.18)     iu = j

i jo u  

 
between the system of vectors iu  and the basis vectors iu .  Consider the vector that is 

defined by (8) again, and look for its contravariant components in the new system of axes 
that are defined by the n vectors iu ; by definition, one has: 

 
s = i

ix u = j i
i jo x u , 

 
from which, one concludes the formulas: 
 

(I.19)     ,j j i
ix o x=  

 
which express the old contravariant coordinates as functions of the new ones.  Since, by 

hypothesis, the n vectors iu  are linearly independent, the determinant i
jo  will be non-

zero.  Since the ijo  denote the normalized minors, (19) will invert to: 
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(I.20)    j j i
ix o x=  ( i

jo = i
jo  ≠ 0), 

 
and one will then see that the i

jo  represent the j th contravariant components of the vector 

iu  in the system iu . 

 By virtue of the definition itself of the inverse coefficients i
jo , if one starts with the 

direct coefficients i
jo , and if i

kδ  always denotes the Kronecker symbol then one will have 

the double system of identities: 
 

(I.21)    .i j j i i
j k k j ko o o o δ≡ =  

 
 Let i

jo∗  denote the j th covariant component of the i th vector ku , and let ix  denote the 

new covariant components, so formula (19) will permit one to write: 
 

xj = i
j io x∗ . 

 
The latter formula, when combined with (19), permits one to write: 
 

xi x
i ≡ i

ix x = j i k
k j lo o x x∗ , 

 
and one concludes from this that: 

j i
k jo o∗  = l

kδ . 

 
Recalling (21), the latter formula will show that: 
 

j
io∗ = j

io , j
io∗ = j

io ; 

 
i.e., j

io , which is the normalized minor of jio , is nothing but the i th covariant component 

of the j th vector ju  in the system ui .When one compares this result with the preceding 

result, one will see that the j th covariant component of the vector ju  in terms of ui is 

equal to the i th contravariant components of the vector ui in terms of ju .  Finally, (19) 

and (20) imply the consequences: 
 

(I.22)    , ;i i
j j i j j ix o x x o x= =  

 
the reciprocal consequences are established with no difficulty. 
 Let a, b, c, … be a certain number of n-vectors, and consider, for example, an 
expression such as a i b j ck , which is doubly-contravariant and simply-covariant.  It 
transforms according to the law: 
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i j
ka b c  = i j k i j

i j k ko o o a b c′ ′
′ ′ ′ ′ . 

 
By definition, a tensor is a geometric object whose components transform like such 
products, and its rank is the number of n vectors that occur in the product considered.  
For example, the doubly-contravariant, simply-covariant components of a tensor of rank 
3 transform according to the law: 
 

(I.23)    .. .. .i j i j k i j
k i j k kT o o o T ′ ′

′ ′ ′ ′=  

 
As was explained in the preceding no., the operators gil, g

kl, k
ig  = k

iδ  can be applied to 

the two sides of such equations in order to lower, raise, or substitute an index, resp.; i.e., 
in the first two cases, one can turn a covariant index into a contravariant one, and vice 
versa.  Notably, one will then see that a second-rank tensor will have contravariant 
components Tij, covariant components Tij, and “mixed” components i

jT .  By definition, 

one calls the operation that consists of setting i = j and summing over all i from 1 to n the 
contraction of a tensor over a pair of indices i, j, one of which is raised and one of which 
is lowered (if they are not that way already).  For example, the contraction over i, j of the 
preceding tensor T is written: 

i
ikT , 

and that expression is intended to mean: 

1

n
i

ik
i

T
=
∑ . 

 
The contraction i

iT of a second-rank tensor, which is a scalar, is often called its trace.  As 

examples of tensors, we have already encountered scalar magnitudes, which are tensorial 
invariants, and the n-vectors, which are tensors of rank 1.  The square of a quadri-vector 
– namely, xi x

i – is the contraction of the general vectorial product xi xj, and is a scalar, 
moreover. 
 Formally, any tensorial expression presents itself as a polynomial.  Tensorial 
homogeneity demands that all of the indices that are not dummy indices – viz., the 
significant indices – must occur once and only once in each formal monomial, and with 
the same upper or lower position each time.  The reader will have noticed that we have 
appealed to a rule for the placement of the bar that is similar to the one that is utilized in 
the formulas for the change of a system of axes, which one calls a frame, moreover. 
 If all of the expressions with indices in a formal monomial that has tensorial validity 
are tensors except for one of them then one can assert that the latter is a tensor that has 
obvious variances, as one can effortlessly verify thanks to the formula for the change of a 
frame.  In order to abbreviate the discussion, it is in current usage to say covariant, 
contravariant, or mixed tensor, even though rigor would demand that one must speak of 
the set of covariant, contravariant, or mixed components of a certain tensor, resp. 
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 I.7. – Symmetric and antisymmetric tensors.  Dual tensor of a completely-
antisymmetric tensor. – A tensor is called symmetric or antisymmetric with respect to a 
pair of indices i, j (that are both upper or both lower) if one has: 
 
(I.24)     T ij = ± T ji 
 
identically.  Under the hypothesis that the tensor is antisymmetric, one will have T ij = 0 
identically for i = j. 
 Quite often, from the fact that certain symmetries or antisymmetries are known in a 
certain frame, one can conclude a more complete symmetry or antisymmetry of the tensor 
from that.  The following chapters will provide examples of the arguments of that type, 
where at least one of them will imply a conclusion of the greatest physical importance (1). 
 As examples of completely-antisymmetric tensors (i.e., ones that are antisymmetric in 
all of their indices), one has the exterior products of vectors, whose rank is defined in the 
following manner: Suppose that one has p linearly-independent vcctors, and that i

jx  

denotes the j th covariant component of the i th vector (i = 1, 2, …, p, j = 1, 2, …, n).  The 
p
nC  non-zero covariant components of the exterior product of rank p of those vectors are, 

by definition, the determinants of rank p that are extracted from the matrix: 
 

i
jx , 

 
and are each affected with a sign.  By definition, we denote the components in question in 
the form: 
(I.25) [xi xj … xk], 
 
in which the indices i, j, …, k are all different, and there are p of them.  As always by 
definition, the tensor considered will be said to represent the hyper-volume of order p in 
n-dimensional space of the hyper-parallelepiped that is constructed from the p vectors i

jx , 

and its components will measure the projections of that geometric entity onto the pnC  

linear varieties of order p that are defined by the coordinate axes.  The exterior product of 
rank n, which has a sign that is defined by the order of the indices, involves just one non-
zero component and is said to be a pseudo-scalar, which is an expression that will be 
justified in a moment.  The well-known equality from combinatorial analysis: 
 
(I.26) p

nC  = n p
nC −  

 
shows that two completely-antisymmetric tensors of ranks p and n – p will have the same 
number of a non-zero components. 
 All of the non-zero components (contravariant, for example) of a completely-
antisymmetric tensor of rank n have the same modulus, and their signs will be + or – 
according to whether the permutation of indices has even or odd class, resp.; call the 

                                                
 (1) Namely: the universal proportionality between energy and mass that was discovered by special 
relativity. 
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common modulus of those components Ω.  In the case of contravariant components, it 
will clearly result from what was said about the definition of the [xi x j…] that under a 
change of frame, Ω will vary like the evaluation of a hyper-volume of order n with the 
aid of a hyper-volume ω of the n-parallelepiped that is constructed from the director 
vectors of the axes, which will be called the gauge of the frame used.  If A12…n denotes a 
completely-antisymmetric tensor of rank n then the expression with just one component: 
 
(I.27)     A = ω A12…n 

 
will then be a tensorial invariant – or scalar quantity – that is called the dual of the 
completely-antisymmetric tensor Aij…n of rank n. 
 More generally, if Amn…z are the contravariant components of a completely-
antisymmetric tensor of rank p then the covariant components Aab…l of its dual, which is 

completely-antisymmetric and of rank n – p, will be defined by: 
 
(I.28)     Aab…l = ε ω Amn…z. 

 
There are n indices a, b, …, l and m, n, …, z, and they are all different.  ε will equal + 1 
or – 1 according to whether the total permutation a, b, …, z has even or odd class, 
respectively. 
 In order to show that the Aab…l are indeed the covariant components of a tensor, we 

introduce a completely-antisymmetric auxiliary tensor Bab…l of rank n – p and form the 
contracted product: 
(I.29)    Bab…l Aab…l = ω ab l mn zB Aε∑ ⋯ ⋯ . 

 
The sum ∑ extends over all permutations of the n indices a, b, …, z.  The tensor ∑ of 
rank n is completely antisymmetric.  Indeed, let i, j be an arbitrary pair of indices.  The 
sum ∑ is composed of terms for which i and j occur together in one of the two 
permutations a, b, …, l and m, n, …, z and terms for which i and j occur in one and the 
other of those permutations.  Each of the terms of the first kind is antisymmetric in i, j 
and terms of the second kind can be grouped into pairs whose sum is antisymmetric, so 
the two terms in each pair will differ by only the exchange of the indices i and j.  In 
regard to those pairs of terms, each of them will be reproduced in modulus when one 
exchanges i and j, and its sign will change because the total permutation a, b, …, z will 
change class.  The tensor ∑ will then be completely antisymmetric.  Upon comparing 
formula (29) with (27), one will see that the dual of ∑, which is a scalar, is nothing but: 
 

Bab…l Aab…l , 

and since Bab…l is a contravariant tensor, the antisymmetric expressions Aab…l will indeed 

be the components of a covariant tensor.  Q. E. D. 
 
 As a particular example of dual tensors, other than the example of a tensor of rank n 
and an invariant, one has the example of a tensor of rank n – 1 and an n-vector.  For 
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example, in three-dimensional space, the dual of an exterior product of two vectors is a 
vector that is defined with an arbitrariness in its sign.  That is the origin of the distinction 
between “polar vectors” and “axial vectors” that is well-known to physicists.  In three-
dimensional space, the fact that all circular permutations u, v, w of the numbers 1, 2, 3 
have even class will make the passage to duals very simple. 
 In four-dimensional space, which will be that of the theory of relativity, it is easy in 
practice to distinguish the three indices 1, 2, 3 (u, v, w will denote a circular permutation 
of them) from the time index 4.  Passing to duals then comes about according to the 
schema, which refers to those notations: 
 

(I.30)    
, , 4 and , , ,

, , , 4 and ,4, , , .

u v w u v w

u v w w u v

−⋯ ⋯

⋯ ⋯
 

 
 
 I.8. – Tensorial derivation in Cartesian axes. – Let T be a tensor of arbitrary rank 
that is defined in a spatial domain and is an analytic function of the n-point xi .  When one 
passes from the point xi to the point xi + dxi , T will submit to a certain increase dT, and 
one will have: 

dT ≡ 
1

n

i
i i

dx T
x=

∂
∂∑  ≡ 

1

n
i

i
i

dx T
x=

∂
∂∑  

 
identically in any coordinate system, whether rectilinear or curvilinear.  If we set, by 
definition: 

(I.31) , ,i
i i

ix x

∂ ∂∂ ≡ ∂ ≡
∂ ∂

 

 
then when we take the summation over dummy indices convention into account, the 
preceding differential identity can be written: 
 
(I.32)     dT ≡ dxi ∂ i T ≡ dxi ∂i T, 
 
or further, in symbolic or operator form: 
 
(I.33)     d ≡ dxi ∂ i ≡ dxi ∂i . 
 
 Now, make a change of coordinates (or variables) x i − ix ′ , and let ( )i

ix ′  denote the 

partial derivative of xi with respect to ix ′ : 
 

( )i
ix ′ ≡ 

i

i

x

x ′

∂
∂

. 

 
From elementary analysis, the operator dx j ∂i , for example, transforms by invariance, 
since one will have: 
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i ′∂ = ( )i
ix ′ ∂i  

and 
dxi = ( )i i

ix dx ′
′ . 

 
How, one must once more take into account the expression for T as a function of the new 
variables.  In rectilinear axes of constant measures, one will have simply the expressions 
that were deduced in (19), in which the coefficients o are constants [with  i

io ′  ≡ ( )i
ix ′ , 

moreover].  In our particular case of rectilinear axes of constant measure, it will then 
follow that the operators ∂i will not act upon the o, in such a way that the preceding 
analysis will exhibit their variance as a covariant n-vector symbolically; the same 
argument will apply to the contravariant symbols ∂i.  That will not be true at all for 
general curvilinear coordinates.  The analysis that one will then carry out, and which will 
provide the covariant and contravariant definitions of the first-order tensorial derivatives, 
will constitute one of the essential pieces of the general tensorial calculus [18, 19, 20, 
22].  Recall, in passing, that the symbolic vector ∂u is known by the name of nabla in 
three-dimensional space with Cartesian coordinates. 
 Always in Cartesian axes, one will then see by recursion that the operators ∂ i ∂ j or ∂i 

∂j have the symbolic variance of tensors of second rank.  By virtue of the property of the 
commutability of partial derivatives, that symbolic tensor will be symmetric.  By 
definition, we set: 

(I.34)   ij∂  = ji∂  = 
i jx x

∂ ∂
∂ ∂

,  ij∂  = ji∂  = 
i jx x

∂ ∂
∂ ∂

. 

 
The contraction of that second-rank tensorial operator: 
 

(I.35)     i
i∂  ≡ 

1

n

i
i ix x=

∂ ∂
∂ ∂∑  

 
is well-known in three-dimensional space by the name of the Laplacian, and in the four-
dimensional space with x4 = ict by the name of d’Alembertian. 
 The covariant components, for example, of an arbitrary partial derivative of order p 
are written: 

(I.36)     ijk∂
⋯

= 
i j kx x x

∂ ∂ ∂
∂ ∂ ∂

... 

 
 
 I.9 – The general formula for the transformation of multiple integrals (1). –  Let T 
be a certain tensor that is defined in a spatial domain, and consider the definite integral 
that is taken along a curved arc L between an n-point M1 and an n-point M2 : 

 
                                                
 (1) In the argument that follows, we assume that all of the variables are essentially real.  Meanwhile, 
upon reading nos. II.3 and II.4, the reader will understand that the formula that is obtained will be valid in 
pseudo-Euclidian Minkowski space. 
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(I.37)     
2

1

M

iM
∂∫ T dxi = T (M2) – T (M1). 

 
 Now, suppose that the tensor T is interpreted physically as a density of order p; i.e., 
that the integral: 

(I.38)     [ ]j k rT dx dx dx∫∫∫ ∫⋯ ⋯
V

 

 
that is taken over a variety V of order p < n that is generally curvilinear is meaningful.  

The [ ] denotes the general covariant components of the tensor that was defined in no. 8 
whose dual represents the hyper-volume of an infinitesimal hyper-parallelepiped of order 
p that is tangent to V at the n-point xi .  We finally recall that the hyper-volume is 

“automatically” referred to its natural gauge; i.e., to the system of volumes of the p-
parallelepipeds that are defined by the director vectors of the axes. 
 Take a simply-connected curvilinear manifold V of order p < n in the spatial domain 

considered, and let C denote the closed contour of order p – 1 that surrounds it.  Pass a 

curve L that is not contained in V through each of the points of V, and take two points M1 

and M2 on L that are distinct from the point of intersection P of L and V.  We assume that 

the curve L and the two points M1 and M2 will vary continuously when P describes the 

manifold V, and that M1 and M2 will coincide with each other, as well as P, when P varies 

along C.  In that way, the two points M1 and M2 will describe a closed manifold of order 

p, namely, W.  Finally, let D denote a manifold of order p + 1 that is bounded by W. 

 First, argue in orthogonal axes, and take L to be a line that is parallel to one of the 

axes (say, the first one i), take V to be a plane that is parallel to p of the other axes, and 

finally, take D to be contained in the planar subspace that is defined by the p + 1 axes in 

question.  In order to take into account the order in which those axes are enumerated, we 
affect their permutations with convenient signs, which are defined up to an arbitrary 
initial permutation, moreover.  We then consider the equality that was deduced in (37) 
and (38): 

(I.39)  
2

1

( )

( )
[ ]

M P
i

j k iM P
dx dx T dx∂∫ ∫⋯V
	 = 2 1{ [ ( )] [ ( )]}[ ]i jT M P T M P dx dx−∫ ⋯

V
	 . 

 
By the definition itself, we have the following integral of order p + 1 on the left-hand 
side: 

[ ]i
i j kT dx dx dx∂∫ …

D
. 

 
On the right-hand side, we have the difference of two integrals of order p that are taken 
over V, which is equivalent to a single integral that is taken over W.  Since the hyper-

surface W is met by the curves of the congruence L at only two points, it is natural to 
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orient the “upper sheet” M2 in the same sense as V and the “lower sheet” M1 in the 

opposite sense, which would imply replacing the – sign with the + sign.  Finally, formula 
(39) is written: 

(I.40)   
( 1) ( )

[ ] [ ].i
i j k i j kp p

T dx dx dx T dx dx dx
+

∂ =∫ ∫… …  

 
The integral of order p is taken over a closed domain that is met by the parallel to the i-
axis at two points, and the integral of order p + 1 is taken over the domain that is enclosed 
by the preceding one.  As in ordinary differential geometry, one is effortlessly liberated 
from the first restriction, and one extends that formula to more complicated domains.  
Naturally, nothing will prevent one from raising the indices in [ ] and performing 
contractions of the indices in the [ ] with the ones in the tensor T.  Note, as well, that that 
V and the L have disappeared from the result, so the arbitrariness that has seemed to 

prevail in their choice has had no consequences, at least as long as they remain contained 
in the planar subspace that is defined by the p + 1 axes that were considered previously. 
 In order to free ourselves from that restriction, as well as that of the choice of a planar 
D, we begin by making an arbitrary change of rectilinear axes of constant measure.  

Those of the components of [  ] that are zero (namely, the ones that contain indices other 
than those of the p + 1 axes that are considered) will cease to be so.  Formula (40), which 
is formally correct from the tensorial viewpoint, will then be automatically completed by 
terms that are zero.  That being the case, one will easily reduce the case of an arbitrary 
curvilinear D to that of a planar D by dividing that domain into sufficiently small pieces 

and summing them in the well-known manner. 

 In the course of this book, we will indeed often have the dual of [ ] under the 
( )p∫  

sign, instead of [ ].  In that case, the rule to apply will be to differentiate with respect to 
the indices that occur in the dual to [ ], where each term is, of course, affected with a 
convenient sign. 
 As an application of the general formula (40), we shall show that in three-
dimensional space, one in fact recovers the known formulas that are called the Stokes, 
gradient, divergence, and rotation formulas (1) that are classically written as: 
 

 d∫A l  = rot d⋅∫∫ A s , 

 

 V d∫∫ s= grad V du⋅∫∫∫ , 

(I.41) 

 d∧ ⋅∫∫A B s = div( )du∧∫∫∫ A B , 

 

 d∧∫∫A s  = − rot du∫∫∫ A . 

 
 Formula (40) “automatically” gives (u, v, w = 1, 2, 3): 
                                                
 (1) See, for example, R. BRICARD, Calcul vectoriel, Paris, 1932, pp. 140.  
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 v
vA dx∫  = [ ]u v

u vA dx dx∂∫∫ , 

 

 [ ]v wV dx dx∫∫ = [ ]u
u v wV dx dx dx∂∫∫∫ , 

(I.42) 

 [ ]v w
v wA B dx dx∫∫ = [ ]u v w

u v wA B dx dx dx∂∫∫∫ , 

 

 [ ]u
v wA dx dx∫∫  = [ ]u v

u v wA dx dx dx∂∫∫∫ . 

 
The right-hand sides of (422) and (424) consist of only one non-zero term.  The left-hand 
side of (424) consists of only two, and upon introducing the dual dsw to [dxu dxv], one can 
interpret it as an exterior product.  In the right-hand sides of (421), (424), and the left-hand 
side of (423), the antisymmetry of [ ] makes a rotation or an exterior product appear.  
Finally, that same antisymmetry will appear on the right-hand side of (423) as a sum over 
circular permutations of u, v, w and an exterior product, in succession.  Taking that 
remark into account, (42) will be written: 
 

 u
uA dx∫  = 1

2 ( )[ ]u v v u
u vA A dx dx∂ − ∂∫∫ , 

 

 uV ds∫∫ = uV du∂∫∫∫ , 

(I.43) 

 1
2 ( )[ ]v w w v

v wA B A B dx dx−∫∫ = 1
6 ( )u v w w vA B A B du∂ −∑∫∫∫ , 

 

 v u u vA ds A ds−∫∫  = ( )u v v uA A du∂ − ∂∫∫∫ . 

 
(41) and (43) are, in fact, equivalent, by passing to dual tensors, if necessary. 
 The simple verification that we just carried can initiate the novice reader to some of 
calculations that they will find the rest of the book. 
 
 
 I.10 – The very important particular case of orthogonal axes of equal measure.  
Orthogonal linear substitutions. – To conclude with the general considerations, we 
refer our pseudo-Euclidian space to orthogonal axes of equal measure, or Cartesian axes 
in the narrow sense.  The square s2 of the length of a vector will take one or the other 
equivalent form: 
(I.44)    s2 = g δ ij xi xj ≡ g δij x i x j, 
 
in such a way that the values of the covariant and contravariant components of a vector or 
a tensor will always become equal to each other (1).  There is then no longer any reason 
to distinguish between covariant or contravariant components of a tensor.  Nonetheless, 

                                                
 (1) That property is also obvious from Figure 1 and the arguments at the end of no. 6.  
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for clarity in our formulas, we shall continue to write the dummy summation indices with 
one above and one below. 
 Nothing will prevent us from setting: 
 
(I.45)     g = 1 
 
in (44), which amounts to taking the standard of length to be the common measure of all 
the axes.  Under those conditions, the metric tensor (whose general mixed components 
will be i

jδ ) will admit the Kronecker symbols: 

 
(I.46)    gij = δij , gij = δ ij 
 
for its covariant and contravariant components. 
 The expression: 
(I.47)     s2 = δ ij xi xj 
 
can then be written as a sum of squares: 
 

(I.48)     s2 = 2

1

n

i
i

x
=
∑ . 

 
One calls the linear substitutions that preserve that form for s2 (i.e., the orthogonality of 
the axes) when one starts with a system of variables such as one has in (47) orthogonal 
linear substitutions. By hypothesis, the coefficients of such a substitution will satisfy the 
relations: 

(I.49)     
1

n
l i
k l

i

o o
=
∑  = δkl , 

 
which, when compared with (21), will show that an orthogonal linear substitution is 
characterized by the system of relations (1): 
 

(I.50)     .i j
j io o=  

 

It is clear from this that the square of the two determinants i
jo  and j

io  has the same 

value 1, in such a way that those two determinants will simultaneously have the value + 1 
or – 1.  If they equal + 1 then one will say that the two systems of axes (or the initial and 
final n-hedra) have the same sense, and that one passes from one to the other by a 
rotation.  If they equal – 1 then one will say that the two n-hedra have opposite senses, 
and that one passes from one to the other by a reflection. 

                                                
 (1) These relations are obvious if one refers to the geometrical interpretation of the coefficients i

j
o  that 

was given previously. 
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 If one takes g = 1, as was said, then the gauge ω of the system of axes (i.e., the hyper-
volume of the n-cube that is defined by the director vectors of the axes) will be 1 in 
modulus, by definition, and if it equals + 1 then the sense of reference n-hedron will be 
direct, and one can always enumerate the axes in an order such that the permutation of 
the indices will have even class.  If one eliminates the reflections, in order to keep only 
the rotations of the reference n-hedron, then one can always preserve the gauge ω = + 1. 
 
 

___________ 
 

 



 

 

CHAPTER II 
 

RELATIVISTIC KINEMATICS AND OPTICS  
 
 

 II.1. – As one knows, Minkowski was the author of a remark that is essential to both 
the comprehension and the development of the theory of relativity.  Let xu, t (u = 1, 2, 3) 
be a system of four Galilean variables, in the sense that is implied by the Lorentz-
Poincaré formulas (no. I.4).  If c denotes Einstein’s absolute constant then set: 
 

x4 = ict 
 
and complete the tri-rectangular trihedron Oxu to a quadri-rectangular quadrihedron Oxi (i 
= 1, 2, 3, 4).  Any event xu, t will then be referred to a four-dimensional diagram.  One is 
easily assured that the Lorentz-Poincaré formulas express nothing more than a rotation of 
the quadrihedron Oxi.  Thanks to Minkowski, the kinematic law of the privileged 
equivalence of Galilean frames will then take on a perfectly clear interpretation: It is 
identified with the privileged equivalence of Cartesian frames in the narrow sense, which 
is well-known in Euclidian (or pseudo-Euclidian) geometry.  One will also see that the 
expression: 

∆s2 = 2 2 2
nx c t∆ − ∆∑ , 

 
which is called the square of the world-interval, is an invariant of the group in question.  
That is not the case for either the square of the spatial distance or the square of the 
temporal interval. 
 In summary, in the new kinematics, any Galilean frame is a frame that is no longer 
just spatial, but also temporal (Lorentz’s notion of local or proper time).  The solidarity 
between the spatial standard and the time standard that was introduced by Einstein’s 
postulate translates into an effective physical equivalence of space and time, and the 
change of Galilean frame will partially transform one into the other. 
 Furthermore, the whole time that relativity introduces that novel equivalence (which 
is also quite paradoxical from the classical viewpoint), it also mathematically accounts 
for the complete disparity that experiments reveal between space and time, such as the 
characteristic irreversibility of time.  Notably, thanks to the distinction that is established 
between spacelike quadri-vectors and timelike quadri-vectors, the latter can be divided 
into two classes according to the sign of the fourth component.  The well-known 
distinction between past, future, and unphysical (†) forms a body of notions that are 
corollary to the preceding ones.  Those statements, along with some other statements 
about inequalities such as the one that is implied by the bounded character of the speed c, 
define various expressions for what one can call the “second principle” of relativity. 
 True to our rule of always arguing in four-dimensional geometry, we shall deduce 
Minkowski’s kinematical laws directly from Einstein’s postulate.  It will only be in sub-
chapter B, as a prelude to other applications, that we shall show their equivalence with 
the Lorentz-Poincaré form.  The other applications will be concerned with kinematics and 
                                                
 (†) Translator’s note: The original French was d’ailleurs = “elsewhere.”  
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optics indifferently.  For the most part, they will be the ones that are given in the classical 
treatises.  We shall strive to present them in an essentially geometric light. 
 The ends of sub-chapter B, and above all, sub-chapter C, are dedicated to some 
general questions that are indispensible if one is to embark upon the various chapters of 
relativistic physics.  We shall insist upon the benefit that can be derived from treating 
fluids or systems of points in a non-simultaneous manner, which was pointed out by E. 
Cartan; in relativity, that benefit becomes almost a necessity.  It is only then that one can 
insure that the integral or finite quantities have a tensorial character.  Another remark that 
is closely connected with the preceding one, and also quite important, is that in relativity, 
the tensorial ranks of a density quantity and its homologous finite quantity will differ by 
one unit.  That is due to the quadri-vectorial character of the three-dimensional volume 
element. 
 
 

A. – THE NEW EINSTEIN-MINKOWSKI KINEMATICS  
 

 II.2. – The relativistic equivalence of space and time. – Consider a region of the 
vacuum that is traversed by light waves, and let x1, x2, x3, t be a system of four Galilean 
coordinates, in the sense that was specified in no. I.4.  Let dxu (u = 1, 2, 3) be an 
elementary vector that, from Huygens principle, is traversed by light, and in a time 
interval dt.  If c denotes the velocity of light waves then one will have: 
 

3
2

1
u

u

dx
=
∑ − c2 dt2 = 0. 

 
 From Einstein’s postulate, c is an absolute constant, and the preceding formula is 
universally true in any Galilean frame.  In order to make the expression on the left-hand 
side symmetric, with Minkowski, we set: 
 

(II.1)     4 ,x ict=  

 
and when we take the summation convention into account (no. I.5), that will give the left-
hand side the form: 

(II.2)    2 0i
ids dx dx≡ =  (i = 1, 2, 3, 4). 

 
 Also with Minkowski, we refer events to a system of four Galilean axes that are 
orthogonal and of equal measure Ox1 x2 x3 x4 and call the “continuum” thus-defined 
space-time or the universe.  The left-hand side of formula (2) represents the square of a 
world-distance, and by hypothesis, that expression will remain invariant under all 
changes of Galilean frame.  It will then follow that: Galilean frames are represented in 
the Minkowski universe by systems of four orthogonal rectilinear axes of equal measure – 
or Cartesian quadrihedra, in the narrow sense – and only by those systems.  The notion 
of privileged equivalence of Galilean frames, which is well-known in classical dynamics 
and extended universally to physics by means of relativity, will then take on a simple and 
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clear interpretation that is attached to the privileged equivalence of Cartesian frames in 
the narrow sense that is well-known in geometry. 
 Finally, if we take into account what we recalled in Chapter I, § B then the formulas 
for the change of Galilean frame in the Minkowski universe will be those of an 
orthogonal linear substitution: 
 

(II.3) , ,i i j i i j
j jx o x x o x= =   ,i j i j i

j k j k ko o o o δ= =  .i j
j io o=  

 
With such substitutions, the covariant or contravariant coordinates of a vector – or, more 
generally, a tensor – will always be equal to each other, and there will be no reason to be 
preoccupied with distinguishing them.  Nevertheless, in the name of elegance in the 
formulas, as well as in view of their possible extension to general relativity, we shall be 
obliged to respect the rules of tensorial homogeneity rigorously. 
 It is obvious that the system of transformations (3) preserves the form of the 
d’Alembertian operator ii∂ , whose classical expression is: 

 

□  ≡ 
2 23

2 2 2
1

1

u ux c t=

∂ ∂−
∂ ∂∑ , 

 
and that, reciprocally, we can conclude formulas (3) by arguing with the d’Alembertian 
as we did with ds2 ≡ dxi dxi. 
 The preceding set of formulas express various aspects of the equivalence of the 
notions of space and time that relativity established.  That equivalence, which is implied 
from the outset by the universal coupling of the standards of space and time [formula 
(1)], translates into a partial reciprocal transformation of space and time into each other 
under a change of Galilean frame [formula (3)], and also by the introduction of a 
synthetic notion that encompasses the notions of spatial interval and temporal interval in 
a quadratic form, namely: 
(II.4)     ∆s2 ≡ ∆xi ∆xi , 
 
whose expression in classical terms will be: 
 

∆s2 = 
3

2

1
u

u

x
=

∆∑ − c2 ∆t2. 

 
Note that if the ∆xu and ∆t are real then ∆s2 will be real, and it can be positive, negative, 
or zero.  By definition, the quadri-vector ∆xi will be called spacelike, timelike, or 
isotropic, respectively, in those three cases.  The profound significance of those 
distinctions will appear in the following no. 
 For the readers who are not familiar with the theory of relativity, we shall insist a bit 
on the new situations that will appear in Einstein-Minkowski kinematics that are 
consequences of rejecting the notions of absolute space and absolute time.  Two events 
that happen simultaneously at two distant points x(2)u and x(1)u in a certain Galilean frame 
are represented in the universe by two instant-points x(2)i and x(1)i in such that the quadri-
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vector x(2)i − x(1)i is orthogonal to the axis Ox4 .  That property is not absolute, but relative 
to the spatio-temporal frame that is utilized, so it is not preserved under a change of 
Galilean frame, in general.  That amounts to saying that, in general, two events will no 
longer be simultaneous in any Galilean frame besides the initial one, which is a situation 
that was ignored completely by classical kinematics.  Similarly, two events that happen at 
the same point xu in space at two successive instants t1 and t2 in a certain Galilean frame 
will be represented in the universe by the extremities x(1)i and x(2)i of a quadri-vector that 
is parallel to the axis Ox4 .  Since that property is relative, two successive events will not 
take place at the same point in the other Galilean frames, which is a situation that already 
happens in classical kinematics. 
 More generally, the spatial distance, as well as the temporal interval, is a relative 
notion in relativity.  By contrast, the tensorially-invariant spatio-temporal interval, 
whose expression is (II.4), will be absolute.  The spatial distance between two points that 
was first considered in the preceding paragraph will increase, in general, when one 
changes the Galilean frame, and under the same conditions, the temporal interval of the 
two events considered after that will also increase. 
 
 
 II.3. – Mathematical expressions for the distinction between space and time.  
Interpretation of the i

jo . – The relativistic discovery of an equivalence of space and 

time is certainly quite troubling.  One must demand to know if – and how – the radical 
distinction between space and time that our perception establishes will be preserved in 
the formulas, as well as the irreversibility of things that is present in time, but not space. 
 As a result of Einstein, most authors have written that the manner in which relativity 
accounts for the difference in the physical behavior of space and time is by way of the 
negative sign on the temporal square in the ∆s2.  We shall show that, in fact, the special 
character of time follow from that, as well as several corollaries. 
 If the constant c remains essentially real then formulas (1), (3), and (4) will just as 
well be true in complex variables.  We shall now infer the detailed consequences of the 
fact that the four physical variables xu and t are real, and consequently, that the three xu of 
Minkowski are essentially real, and x4 is pure imaginary. 
 Under those conditions, formulas (3) show that the coefficients of the change of 
Galilean frame will be essentially real if they contain the index 4 either zero or two times, 
and imaginary if they contain it once.  That being the case, one will have, in particular: 
 
(II.5)   4 2

4( )o  = 1 − 4
4
u

uo o , ( 4
4o = 4

4o = 4
4o , 4

uo  = 4
uo ), 

 
and since the sum 4

4
u

uo o  is essentially negative, one will conclude that: 

 
4 2
4( )o  ≥ 1, 

and consequently: 
either   4

4o  ≤ − 1 or 4
4o  ≥ + 1. 
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Hence, as in thermodynamics, a second principle is expressed by the inequalities that 
restrict the possibilities that are offered by the principle of equivalence in relativity.  The 
initial group of transformations (3) has now been split into two completely distinct 
families. 
 If one then postulates (as would seem natural) that the transformations that remain 
permissible must again form a group then the first family, which does not contain the 
identity transformation, will be found to have been eliminated.  On the contrary, the 
second family, which does contain the identity transformation, does indeed form a group, 
since, as one can effortlessly see, the transformation ( )i

jo  will produce two 

transformations ( )i
jo′  and ( )i

jo′′ , such that 4
4o′ ≥ 1 and 4

4o′′  ≥ 1, so 4
4o  ≥ 1. 

 Finally, in addition to the conditions that were formulated already in (3), the ijo  of a 

change of Galilean frame must satisfy the inequality: 
 

(II.6)     4
4 1.o ≥  

 
 First, take the hypothesis that 4

4o  = 1.  From (5), the 4
uo  = 4

uo  will then be zero, and 

the transformation will reduce to: 
 
(II.7)   t′  = t,  ux  = u v

vo x  (u, v = 1, 2, 3), 

 
which is interpreted as a simple rotation of a spatial trihedron, and not as a change of 
Galilean frame, properly speaking.  In one blow, the interpretation of the nine coefficients  

u
vo = v

uo  is found to be given in the particular case, as well as the general one (at least, to 

a first approximation). 
 In order to study a true change of Galilean frame, suppose that 4

4o  > 1.  In order to 

“follow the motion” of the origin o of the spatial axes of the frame (xi), set xu ≡ 0 (u = 1, 
2, 3) in (3).  One will then have: 
 
(II.8)    ux = 4

4
uo x , 4x = 4 4

4o x . 

 
If one substitutes x4 from (82) into (81) then one will get the equations of motion of the 
spatial origin o with respect to the Galilean frame ix : 
 

(II.8′)    ux  = 4
44

4

1 uo x
o

≡ 44
4

uic
o t

o
. 

 

One will then see that the three real quantities 44
4

uic
o

o
 (or 44

4

uic
o

o
, for that matter, due to the 

equality of the covariant and contravariant components) are nothing but the components 
of the velocity of the spatial origin o of the “moving” Galilean frame (xu, t) in the “fixed” 
fame ( , )ux t .  In relativity, it is customary to set: 
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(II.9)     
1u uv
c

β ≡  (u = 1, 2, 3), 

 
in such a way that one will finally write: 
 

(II.10)    uv = 44
4

uic
o

o
, uβ = 44

4

ui
o

o
. 

 
Hence, the three components ββββ of the reduced velocity are interpreted as the three 
tangent directors or angular coefficients of the axis Ox4 in the quadrihedron iOx . 
 Now suppose that the matrix of the nine u

vo  is diagonal, which amounts to taking the 

spatial axes to be “parallel” to each other, in the common language of space and time (1).  
Formulas (32) will then show that: 
(II.11)     4

uo = − 4
uo  

 
(the + sign is excluded, due to the fact that the matrix of sixteen i

jo  for a rotation cannot 

be symmetric).  Since 4
uo ≡ 4

uo , one will conclude that: 

 
(II.12)    4

uo = − 4
uo , uv  = − vu. 

 
The speed of the origin o  of the spatial axes of the system iOx with respect to the system 
Oxi is a vector that is “equal to” – v, in the usual language of space. 
 We finally show that the coefficient 4

4o  relates to the absolute value of the reduced 

velocity.  If we form the spatial scalar product βu β u ≡ ββββ    2 and take (8) into account once 
more then we will get: 

(II.13)   β 2 = 
4 2
4

4 2
4

( ) 1

( )

o

o

−
  or 4

4 2

1
.

1
o

β
=

−
 

 
Since 4

4o  is real, one can conclude the following important inequality from that: 

 

(II.14)    2 1β ≤  or 2 2.v c≤  

 
The relative velocity of the spatial origins of two Galilean frames that are “physical” or 
“real” is always less than the universal constant c in modulus.  We already see the 

                                                
 (1) None of the axes Oxu in the universe is parallel to any of the uOx .  However, the axes oxu and uo x  
can be called “parallel,” in the common sense of the term, because if the Galilean observer (xi), for 

example, considers all of the material points that are found along the axis uo x then they will be aligned 
along the axis oxu for him. 
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constant c appear in kinematics here by way of its role as an upper limit on physical 
velocities. 
 We then write the ds2 of the axis Ox2 of the “moving” Galilean frame Oxi in the 
“fixed” quadrihedron 4Ox .  We have: 
 
(II.15)    ds2 = dxu dxu – c2 dt = (v2 – c2) dt2 ≤ 0, 
 
which shows that the temporal axes of physical Galilean frames are all timelike, and 
consequently, their spatial axes will all be spacelike.  We then see the appearance of a 
more concrete interpretation of the distinction between a timelike quadri-vector and a 
spacelike quadri-vector that was pointed out in the preceding no.  A characteristic 
property of the former kind of quadri-vector that exists a certain “proper” Galilean frame 
in which its three spatial components are zero, and a characteristic property of the latter 
kind is that there exist certain Galilean frames in which the temporal component is zero.  
Three linearly-independent spacelike quadri-vectors define a unique proper Galilean 
frame (up to a rotation of the spatial axes), namely, the one in which the temporal axis is 
orthogonal to the other three, and the temporal components of the latter are all zero.  Two 
instant-points – or events – that can be localized at the same spatial point will define a 
timelike quadri-vector, and two events can appear to be simultaneous will define a 
spacelike quadri-vector; the converses are obvious. 
 As a result of the restricting hypothesis that translates into the inequality (6), one sees 
that the sign of the temporal component (1) of a timelike quadri-vector is the same in 
every physical Galilean frame, and that property is characteristic.  If one is given an 
instant-point O as an origin and considers the two sheets of the cone that has that point 
for its summit and isotropic generators (in the sense that was defined no. 3) then the 
universe will be found to have been divided into three regions: The interior of the upper 
sheet contains the extremities of timelike quadri-vectors whose temporal component is 
positive, and is called the future region.  The interior of the lower sheet contains the 
extremities of the timelike quadri-vectors with negative temporal components, and is 
called the past region.  The exterior of the two sheets contains the extremities of the 
spacelike quadri-vectors, and is called the unphysical region. 
 In particular, the temporal axes of all physical Galilean frames are oriented into the 
future.  That will permit one to say that time flows in the same sense in any real Galilean 
frame.  Thus, as was said before, in relativity, one finds, at the same time, a very neat 
distinction between the concepts of space and time, which are now depicted as 
equivalent, and a mathematical formulation of the irreversibility of time.  The preceding 
statements, as well as the inequalities (6) and (14), constitute various consequences of 
something that deserves the name of the second principle of relativity.  That principle 
was initially stated with the aid of the formal demands of physical reality and the fact that 
the transformations must define a group. 
 
 Remark: The quantities 4

4o  and β are related to the angle θ between two temporal 

axes by the formulas: 
(II.16)    cos θ = 4

4o  ≥ 1, β = − i tan θ. 

                                                
 (1) When that expression is applied to a pure imaginary quantity, its sense will be self-referent.  
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(162) results from (132).  The angle θ is pure imaginary. 
 
 
 II.4. – Some other relativistic principles. – We shall now state some principles that 
will prepare us for the passage from kinematics to relativistic physics. 
 
 1. Certain phenomena that are ideally capable of being perfectly localized as points 
in space and time have the property that they can be followed in the course of time.  Their 
other properties evolve in a sufficiently continuous manner that one can recognize the 
“same” phenomenon at successive instants.  As very important examples of those 
“persistent phenomena,” one has the classical material point that is endowed with mass, 
as well as the classical fluid molecule, or a geometrical material point of that fluid in its 
motion. 
 In the universe, a persistent point-like phenomenon describes a trajectory T that is 

curvilinear in the general case of an accelerated motion.  Now, it is an experimental fact 
that has been made into a fundamental postulate by the theory of relativity that there is 
always an objective Galilean frame in which the persistent phenomenon is at rest at a 
given instant.  It is the proper Galilean frame, which is also called comoving or tangent, 
because in ordinary space, its motion will be tangent to that of the point-like phenomenon 
in the sense of rational mechanics, and its temporal world-axis will be geometrically 
tangent to the trajectory T of the phenomenon. 

 Hence, any persistent point-like phenomenon is, at each instant, the virtual origin of a 
Galilean trihedron in objective space.  It follows that all of the properties that are proved 
for the origins of Galilean trihedra will extend to persistent phenomena, and notably that: 
 
 α) The speed of propagation of any objective phenomenon cannot exceed the value c. 
 β) The world-trajectories T of objective phenomena are timelike, and their 

curvilinear abscissas are constantly-increasing functions. 
 
 2. Now imagine a point-like observer.  It is a “persistent phenomenon” that is 
endowed with the preceding properties and which possess a conscience, moreover.  
Relativity poses the fundamental postulate that the framework of space and time to which 
the point-like observer spontaneously refers the phenomena that he is aware of must be 
the tangents and the normal three-dimensional hyperplanes, respectively, to his world 
trajectory.  Any material point is considered to be occupied by an observer, and one says 
proper time and proper space of the material point to refer to the preceding two linear 
varieties, which are subtended by the temporal axis Ox4 and the three spatial axes Oxu, 
respectively, of the instantaneously-comoving Galilean frame.  The duration of the 

accelerated material point is obtained by integrating over proper time dT, or what 

amounts to the same thing, the curvilinear abscissa: 
 
(II.17)     ds = ic dτ. 
 
 3. Relativistic physics can be interpreted in terms of four-dimensional geometry, and 
its equations will refer to space-time tensors, vectors, and scalars.  Of course, the usual 
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relations must be recovered from the new relations that can sometimes be predicted, at 
least in the first approximation.  In any event, the various algebraic components of a 
tensorial relation must all be physically interpreted in such a manner that the quantities 
implied are presented with the desired real character.  The latter result will be achieved as 
long as one respects the following rule: Any component of a world-tensor will be real if it 
contains the index 4 zero, two, or four times, and pure imaginary if it contains it one or 
three times.  In particular, the homologous components of two dual antisymmetric tensors 
will be real in one case and pure imaginary, in the other. 

 
 

B. – VARIOUS APPLICATIONS OF AND EXPLANATIONS  
FOR THE NEW KINEMATICS  

 
 II.5. – The Lorentz-Poincaré formulas.  Minkowski’s hyperbolic universe. – For 
the sake of completeness, we return to the considerations that permitted us to write 
formulas (8), (10), (13).  Upon assuming that the spatial axes are mutually “parallel,” in 
the language of ordinary space, and taking the diagonal matrix of nine u

vo  into 

consideration, we can write (3), without the summation convention, in the form: 
 

ux = 4
4

u u u
uo x o x+  = 2 4

41 ( )u u u
uo x o x− + , 

4x = − 4 4
4 4
u uo x o x+∑ . 

 

The sign in front of the  will be + if the homologous axes have the same sense.  
Taking (10) and (13) into account, those equations can be written: 
 

(II.18)  ux = 
2 2

2

1

1

u u ux v tβ β
β

+ − +

−
,  ct = 

21

ct

β
+ ⋅
−

xββββ
; 

 
the inverse equations are obtained by changing the v (or ββββ) into – v (or − ββββ). 
 In the case where one takes the spatial axes oxu and uo x to be “parallel” to the 
relative velocity, in addition to the preceding hypotheses, one will have: 
 

β v = − vβ  = 0, β w = − wβ  = 0, 
 
so (18) and their inverses will take on the form that has become quite familiar today: 
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(II.19)   
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As we said, those equations were obtained from Lorentz and Poincaré in their 
interpretation of Michelson’s experiment. 
 In some applications of the preceding “planar problem,” it is advantageous to utilize 
some formulas that make the relativistic symmetry between space and time more 
apparent than (19) do, and meanwhile refer to nothing but real variables.  To that end, it 
is natural to set: 
(II.20)     x = xu,  y = ct 
and 
(II.21)   1

1o  = 4
4o  = cosh ϕ, 1

1o  = 4
4o = − 1

1o  = − 4
4o  = sinh ϕ, 

 
which will lead to the formulas: 
 

(II.22)   
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sinh cosh ,

x x y

y x y
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ϕ 
x 

x′ 

y y′ 

 
 

Figure 2. 
 
 If one then considers two equilateral hyperbolas that have the same asymptotes and 
the same moduli (which is taken to be 1) for their real semi-axes then each pair of 
Galilean axes will be represented by a pair of conjugate diameters, and the director 
vectors of each axis will describe the corresponding hyperbola.  A double mesh of such 
hyperbolas will provide the standard of length for the spacelike and timelike world-
vectors, and a double mesh of their conjugate diameters will likewise provide a standard 
for the measurement of the angle between two world-vectors. 
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 That hyperbolic model for the universe is advantageous whenever one must 
effectively draw a figure.  One explicitly recovers the three past, future, and unphysical 
regions that were defined previously.  One has the relations: 
 
(II.23)    β = tanh ϕ, θ = i ϕ 
 
between the real parameter ϕ in (21) and (22) and the parameter θ that is defined by (16). 
 
 
 II.6. – The slowing of clocks.  Lorentz contraction.  An expression for the four-
dimensional volume element. – Consider two successive events that happen at the same 
material point along its motion; for example, two successive beats of a tiny point-like 
clock.  In the proper Galilean frame iO x , they will be separated by a certain proper time 

interval ∆t0 = t∆  = 4 /x ic∆ .  One assumes that the time interval ∆t0 is sufficiently brief 
that the corresponding arc of the world-trajectory can be considered to be a small line 
segment.  In any Galilean frame Oxi, with respect to which the material point has the 
reduced velocity β at the mean proper instant considered, the projection of the proper 
interval ∆t0 onto Ox4 will have the value: 
 

(II.24)     ∆t = 4
4o  ∆t0 = 0

21

t

β
∆
−

. 

 
∆t is greater than ∆t0 , because 4

4o  = cos θ is greater than unity. 
 That phenomenon of the slowing-down of clocks by their motion, which is a 
phenomenon that is relative to the Galilean reference system, is one of the most direct 
consequences of the new kinematics.  It manifests itself quite neatly in the elongation of 
the mean lifetime of the meson in cosmic rays [85, 86]. 
 Now consider two material points that are simultaneously at rest at two distant points 
p  and q  in a certain Galilean frame iO x ; for example, they might be the extremities of 

a yardstick.  Those two world-points will generate two rectilinear trajectories that are 
parallel to the axis 4O x , and their simultaneous spatial manifestations p and q in an 
arbitrary Galilean frame Oxi will be the traces of those lines in a hyperplane x4 = const.  
Since 4

4o  = cos θ is greater than 1, the vector q p−
������

  will have a length that is less than or 

equal to that of q p−
������

. 

 Decompose the vector q p−
������

 into components that are “parallel” and “perpendicular” 
to the translation velocity v.  By arguing four-dimensionally, one will effortlessly see that 
the transverse component has the same length as it did at rest, and the longitudinal 
component will be contracted by the ratio: 
 

(II.25)     ∆x = 21x β∆ − . 
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For example, a body that presents itself as a motionless rigid sphere in a certain proper 
Galilean frame will appear to be an ellipsoid that has flattened in the direction of motion 

by the ratio of 21 β−  in any other frame.  If the velocity of the body can attain the 
value c then it will reduce to a disc that is normal to the displacement. 
 That is the contraction of material lengths that Lorentz and Michelson quite 
justifiably imposed upon the elements that comprised the Michelson interferometer, when 
it is explained by a purely kinematical theory, and it can be considered to be verified 
directly by the experiment in question.  In Lorentz’s original way of thinking, that 
contraction, which was assumed to be absolute, was attributed to a physical effect of the 
ether wind.  However, due to the fact that the Lorentz formulas, when completed by 
Poincaré, will become those of group, that way of thinking is not admissible, because the 
Lorentz contraction will become reciprocal, and consequently, relative.  Two Galilean 
observers that are animated with respect to each other with a velocity v and each make 
use of two equal rules of measurement when one juxtaposes them at rest will each find 

that the other’s ruler has been shortened by the ratio 21 β−  when they compare the 

lengths in motion when they have been placed “parallel” to v. 
 Now consider a material droplet inside a moving fluid, and let δu denote the 
evaluation of a volume that is made at a given instant in a certain Galilean frame.  Let δu0 
be the “proper” value of δu; i.e., the value that δu takes in the Galilean frame that follows 
the mean point of the droplet.  Moreover, let dt be the evaluation of a certain “proper time 
duration” dt0 that is attached to the mean molecule of the droplet.  It results from the 
preceding that if δu and dt vary according to the law: 
 

(II.26)    dt = 0

21

dt

β−
,  δu = δu0 

21 β−  

 
then the product δu dt will be a relativistic invariant.  Obviously, ic δu dt is the evaluation 
of the elementary four-dimensional volume element [dx1 dx2 dx3 dx4], or more precisely, 
its dual ic δω: 

(II.27)    1 2 3 4

1
[ ].u dt dx dx dx dx

ic
δ δω= ≡  

 
In the course of this book, we will often appeal to that formula. 
 
 
 II.7. – The composition of velocities in relativity.  The Fresnel-Fizeau law of 
dragging. – Recall that the laws of classical kinematics are integrally conserved by 
special relativity inside a given Galilean frame. 
 The present problem is the following one: If one is given three spatial Galilean 
trihedra (I), (II), (III), and one knows the velocities v2 = v (III, II) and v1 = v (II, I), then 
find the velocity v = v (III, I).  Formulas (3) or (19) permit one to treat that problem 
completely, and one confirms that the relativistic correction has second order in ββββ1 and ββββ2 
in comparison to classical kinematics.  Here, we shall treat the case of parallel velocities 
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v1 and v2 , which leads to a very interesting physical application that was pointed out by 
Von Laue [91]. 
 The composition of two world-velocities relative to a Galilean trihedron translates 
into the “product” of two quadrihedral rotations whose magnitudes are defined by the 
angles θ1 and θ2 , which are coplanar here.  One will then have: 
 

  tan θ = tan (θ1 + θ2) = 1 2

1 2

tan tan

1 tan tan

θ θ
θ θ
+

−
, 

 
and thus, the relativistic law for the composition of parallel velocities: 
 

(II.28)    v = 1 2

1 21

v v

β β
+

+
= (v1 + v2) (1 – β1 β2 + …). 

 
Naturally, that law is symmetric in v1 and v2 , and it will coincide with the classical law 
up to second order in β1 and β2 . 
 If one of the velocities – for example, v1 − equals c then one will find that v = c, as 
would be necessary a priori.  Hence, any velocity, when composed with the limiting speed 
c, will once again give the limiting speed c. 
 Now suppose that the velocity v2 is the speed of propagation of light in an isotropic 
material medium of index n that is at rest in a certain Galilean frame and is naturally 
taken to be a reference rigid body for the evaluation of that velocity.  From classical 
optics, one has: 

v2 = 
c

n
 

in every direction. 
 Now, if v1 = v denotes the speed of translation of the medium with respect to an 
arbitrary Galilean frame then the longitudinal values of the speed of light relative to the 
latter frame will be, from (28): 
 

c′ = 
/

1 /

c n v

v nc

±
±

= 1
c v

v
n nc
  ± +  
  

∓ ⋯ . 

 
Upon retaining only the first two terms, one will recover the celebrated law that was 
stated by Fresnel on the basis of Arago’s experiment and verified directly by Fizeau later 
on: 

(II.29) 
2

1
1 .

c
c v

n n
 ′ = ± − 
 

 

 
According to Fresnel, the term v / n2 accounts for the dragging of the ether by the 
transparent body.  Basically, the old experiments of Arago and Fizeau, even before that of 
Michelson, were experiments that virtually revealed the laws of relativistic kinematics, 
and were justly entitled to a purely kinematical explanation.  Fresnel’s idea of the 
dragging of the ether by transparent bodies, like Lorentz’s idea of the contraction of 
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length by the ether wind, were only provisional expedients, and not very satisfying in 
their own right a priori.  Each of them, while asserting the existence of the ether, had the 
goal and the effect of rendering it experimentally inaccessible. 
 
 
 II.8. – Some words about the kinematics of rotating rigid bodies (1). –  
 
 1. To begin with, consider a continuous set of material points that define a rigid 
body P that rotates with a uniform angular velocity ω around a fixed axis when it is 

referred to a certain Galilean system G.  To abbreviate the discussion, we shall call that 

rotating rigid body a planet.  We demand to know what kind of geometry (or, if one 
prefers, geodesy) that the inhabitants of that planet (which are assumed to be point-like) 
will construct for themselves. 
 First of all, the planet P will be considered to be a rigid body by its inhabitants; 

indeed, let p be a point that follows it.  In the spatial domain of the inhabitant that is 
stationed at p, take three local axes pξ1, which is radial, p ξ2, which is tangential, and 
pξ3, which is parallel to the axis of rotation, or vertical.  The standards of length pξ1 and 
pξ3 for that inhabitant will be the same as they are for the Galilean observer that regards 
the planet as turning.  By contrast, from the fact of Lorentz contraction, the standard pξ2 

will be 1 / 21 β−  times greater for the inhabitant of the planet than it is for the Galilean 

observer.  One has: 

(II.30)     β = 
r

c

ω
, 

 
in which r denotes the radius of the parallel that is described by p when it is evaluated in 
the Galilean frame G.  Since, on the one hand, the three spatial axes pξ1ξ2ξ3  move with 

P, and on the other hand, the Lorentz contraction constantly affects only the axis pξ2 , in 
the same way, the matter of the planet will indeed seem to be indeformable to the 
inhabitant p.  He cannot exhibit the rotation of his planet by purely local geodesic 
operations.  Nonetheless, from the principles of relativity, that rotation will certainly have 
some absolute kinematical consequences. 
 Now suppose that our inhabitant sets about the step-by-step measurement of the 
length and radius of a parallel on his planet, while provisionally assuming that he has 
characterized that parallel, moreover.  He will find: 
 

(II.31)     l = 0

21

l

β−
 

 
for the length of that parallel, in which l0 denotes the length that is measured by the 
Galilean observer.  Similarly, he will find: 

                                                
 (1) For a theory that is phrased in terms of general relativity, the reader can refer to P. LANGEVIN, C. 
R. Acad. Sci. 173 (1921), pp. 831; ibid. 200 (1935), pp. 48; ibid. 205 (1937), pp. 304. 
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(II.32)     r = r0 
 
for the radius.  Since one will certainly have: 
 
  l0 = 2π r0 
 
in the Galilean frame G0 , the inhabitant of P will find the relation: 

 

(II.33)     l = 
2 2 2

2

1 /

r

r c

π
ω−

 

 
between the length and the radius of a parallel.  Hence, the geometry that is valid on the 
planet is not Euclidian (Ehrenfest and Pfaff), and one will see that some extended 
geodesic operations that are performed on the planet will permit its inhabitants (who are 
assumed to be familiar with the theory of relativity) to determine the axis and the angular 
velocity of the absolute rotation. 
 But that is not all: Complete the trihedron pξu with the temporal axis pξ4 that is 
tangent to the world-helix that is described by p.  Since the congruence of helices p does 
not admit an orthogonal trajectory, there exists no system of world-coordinates that are 
coupled with the planet and realize the separation of space and time in an extended way.  
It is obvious that a coordinate system ξi will be called coupled with the planet if the three 
equations ξu = const (u = 1, 2, 3) define a world-trajectory for a point of the planet.  It 
follows from this that there is no time that is valid for the entire planet collectively, but 
only a local time at each point p.  As a corollary, one sees that relativity rejects the 
classical notion of a rotating body as an absurdity. 
 We leave to the reader the task of verifying that if two inhabitants of the planet 
traverse the same parallel in the opposite senses with the same speed w, which is 
measured with respect to the Sun with the aid of their respective chronometers, then 
when those inhabitants return to their common starting point p0, they will disagree with 
each other by: 

∆l = 2l0 2

rw

c

ω
 

 
in regard to the length of the parallel, such that the excess will be found by the one that 
travels to the east, and their returns to p0 will no longer be simultaneous, but will differ 
by: 

∆t =
l

w

∆
  or ∆t = 

2

4 w

c

A
, 

 
in which A denotes the area of the parallel that is evaluated by the Galilean observer. 

 
 2. Another important problem is concerned with the kinematics of a rotating rigid 
body: What will happen when one takes a rigid body P that is initially at rest in a certain 
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Galilean frame G, and one progressively puts it into uniform rotation in that same frame?  

Let l 0 and r 0 denote the length and radius, respectively, of a future parallel of P when 

evaluated in G, so one will have: 

l 0 = 2π r 0. 
 
 Now put the body P into rotation.  When viewed in G, each element of the parallel 

will be subject to the Lorentz contraction if no tension is applied to its extremities, and 
the circumference will then collectively suffer a dislocation at any arbitrarily fine scale.  
However, one must naturally think that the cohesion of matter would be opposed to such 
a phenomenon.  Putting P into rotation must then cause a tension to appear along each 

parallel, which is a tension that will be easy to calculate as a function of the 
corresponding elastic modulus of the matter, as well as the formula for the Lorentz 
contraction.  Those tensions of relativistic origin, whose value will increase with β, and 
therefore with r, will tend to shorten the circumference of the parallels, and thus, to 
contract their radii r.  They will then induce radial, centripetal forces according to the 
process that is well-known in artillery by the name of shrinking (frettage).  If the matter 
of P possesses neither radial cohesion nor mass density (which is an entirely schematic 

case) then no force could oppose the tensions considered, which will cancel themselves 
after having transformed the initial length l 0 into: 
 

(II.34)     l0 = 0 21l β− , 
 
and consequently, the initial radius r 0 into: 
 

(II.35)     r0 = 0 21r β− . 

 
With that schematic hypothesis, one will then have: 
 

(II.36)    l = l 0,  r = 0 21r β− , 

 
in which l and r always denote the results of surveys that are made by an inhabitant of P.  

We also remark that if one takes the expression (30) for β into account then one will 
have: 

(II.37)    | ω r | = 
2

2 2
0

1

c

c

rω
+

 < c, 

 
which shows that upon communicating an arbitrarily large angular velocity to a rigid 
body P that is initially arbitrarily large, the linear speed will remain less than c at every 

point of P. 
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 In reality, neither the forces of cohesion nor the centrifugal forces of inertia of matter 
on P will be zero.  They will largely surpass the very weak centripetal forces of 

relativistic origin, which remain far below the scale of any possible experiments. 
 
 
 II.9. – Theory of the Haress and Sagnac experiments. – The almost 
contemporaneous experiments of Harress (1912) and Sagnac (1913) are experiments that 
have first-order in β, and therefore do not permit one to distinguish between classical and 
relativistic kinematics, so they will answer to the same theory.  There is some interest to 
proving the absolute character of rigid rotations by optics, just as the Foucault pendulum 
experiment did by dynamics (1). 
 In those experiments, one causes two optical rays that traverse the same material 
circuit in opposite directions to interfere when they both follow the uniform rotation of a 
disc, and the circuit is composed of a broken line that is defined by planar mirrors.  In the 
Harress experiment, the light traveled through prisms of index n that followed the 
rotation, and in that of Sagnac, through air, which corresponds to a vacuum.  When the 
disc turned with an angular velocity ω, the two experiments showed that the optical delay 
∆t was given by the same formula, independently of the index n: 
 

(II.38)     
2

4
.t

c

ω∆ = A
 

 
A denotes the area of the projection of the mean circuit L onto a plane that is normal to 

the axis of rotation, and that mean circuit will be well-defined if the interfering rays are 
thin.  We shall justify that result. 
 Take an arbitrary Galilean frame G, and neglect the component of the velocity that is 

normal to the disc.  Since classical and relativistic kinematics are equivalent to first order, 
everything will happen at that order as if the disc were turning as a unit with an angular 
velocity ω around an instantaneous center I, which is the instantaneously-fixed point in 
G.  Set r  = P – I, where P denotes an arbitrary point of the circuit L. 

 By virtue of Einstein’s postulate, the speed of light will be isotropic (i.e., the ether 
wind will be absent) in the Galilean frame that instantaneously follows P and at the point 
P.  In the Harress experiment, it equaled c / n, and in the Sagnac experiment, it was c.  
One can devise a simultaneous theory of the two experiments by setting n = 1 in the 
Sagnac case. 
 Now let v be the component of the velocity of the material point P that is tangent to L 

in the Galilean frame G that instantaneously follows an arbitrary point I of the disc.  If t 

denotes the unit vector that is tangent to L then it will have the expression: 

 
v = (ωωωω ^ r) t ≡ ωωωω (r  ^ t). 

                                                
 (1) One can read a study of the optical effects of a rectilinear acceleration of the reference system from 
the pen of E. DURAND.  Annales de Physique, 20 (1945), 535-544 and ibid. 1 (1946), 216-231. 
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 Along that same axis, and in the same sense, the speed of light will be given by the 
Fresnel-Fizeau law (29), which is a direct consequence of the relativistic law for the 
composition of velocities, and which will give c in the Sagnac experiment.  Upon 
subtracting  ± c from that formula, one will get two speeds of light with respect to the 
disc, when evaluated in the Galilean frame that instantaneously follows I: 
 

c1 = 1
c

n n

β − 
 

, c2 = 1
c

n n

β + 
 

. 

 
Consequently, for a small element of the circuit dl that is placed at P, one will get the 
following two unequal time durations for the traversal (always evaluated in G): 

 

dl1 = 1
ndl

c n

β + + 
 

⋯ , dl2 = 1
ndl

c n

β − + 
 

⋯ . 

 
Upon taking their difference, the index n will be eliminated to first order, and if dA 

denotes the area of the sector I, dl then one will get the following partial expression for 
the optical delay: 

δt = 
2

2
v dl

c
 = 

2

( )
2

d

c

∧r tωωωω
 = 

2

4

c

ω
dA . 

 
One will indeed obtain the stated formula (38) when one integrates this along L. 

 It goes without saying that, physically, one does not observe a difference in time ∆t, 
but a displacement of the interference fringes that corresponds to an optical delay ∆t.  
Obviously, since the optical frequency is the same for the two rays at any point that 
follows L, the preceding theory will agree verbatim with an argument that makes the 

number of stationary waves occur explicitly. 
 One must remark that to first order, the relativistic theory coincides exactly with the 
classical theory that one devises by supposing that the ether is at rest in the Galilean 
frame that is used.  That confirms, in a particular example, the general assertion that 
everything happens in relativity as if the classical ether were at rest in every Galilean 
frame. 
 The preceding theory permits one confirm that there exists an optical anisotropy on 
the rotating rigid body that is proportional to: 
 
 α) The distance from the point considered to the point that is occupied by the 
observer. 
 β) The angular velocity ω. 
 
That is no contradiction with Einstein’s fundamental postulate, since that anisotropy will 
disappear when: 
 
 α) r → 0; i.e., at the point that is occupied by the observer. 
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 β) ω → 0; i.e., at all points of a “Galilean rigid body.” 
 
 Remark:  The experiments of Dufour and Prunier. – Dufour and Prunier have 
complicated the experiment of Harress-Sagnac type by constituting their closed optical 
circuit from an element that is fixed in the laboratory and an element that follows the 
rotation of the disc [82] (1).  The theory of that experiment that we proposed several years 
ago [92] will no longer be suitable when, as the aforementioned authors have since 
realized, the “fixed” part of the circuit has a complicated form that possibly involves 
some prisms of index n. 
 It goes without saying that the theory of the experiment in question can be given in an 
arbitrary Galilean frame, and by virtue of the general theory of Veltmann-Potier (or, if 
one prefers, by some properties of the Lorentz-Poincaré transformation), that theory will 
not differ at all (to first order) from the classical theory that one constructs with an 
“ether” at rest.  Naturally, the Fresnel-Fizeau formula for the dragging of the frames must 
be used for the portions of the circuit that involve prisms of index n. 
 Here, we shall give a theory of those experiments from the viewpoint of an observer 
that is coupled with the disc. 

 Let �ASB be the portion of the circuit that is dragged by the disc, in which S denotes 
the point of the disc that is occupied by a window that separates the two interfering rays 
at the start and superimposes them when they return.  Let G be the Galilean frame that is 

materialized by the laboratory.  Two events that happen simultaneously at the points A 
and B relative to G will no longer be simultaneous for an observer that follows the disc.  

Moreover, their temporal shift ∆t will be a function of the comoving path around which 

the synchronizing signals circulate.  Along the arc �ASB, one will have (to first order): 
 

c2 ∆t = 
B

A
d∫ v s = ( )

B

A
d∫ r sωωωω  = 2ω A, 

 
by virtue of the Lorentz formulas, and with the same notations as before.  A denotes the 

area in which one sees the comoving portion �ASB of the circuit from the center of 
rotation of the disc.  Now, if the events considered A and B are no longer simultaneous in 
G then the preceding ∆t will remain the expression for the supplementary shift that is due 

to the rotation of the disc.  Furthermore, if the events in question are caused by a signal 
that is emitted by a point that follows S then the preceding ∆t must be doubled in order to 
give the total delay that is caused by the rotation of the disc.  One will then indeed predict 
the: 

∆t = 
2

4

c

ωA
 

 
that was found experimentally, from the viewpoint of the comoving observer. 
 
 
                                                
 (1) See also Arch. Sci. Phys. Nat. (5) 28 (1946), pp. 73, et seq.  
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 II.10. – The spatio-temporal frequency quadri-vector.  Aberration and Doppler 
Effect.  Reflection from a moving mirror. – Consider a planar, monochromatic light 
wave.  The vectorial quantities that characterize it depend upon the spatial variables xu 
and time t by the phase function, which is expressed by: 
 

(II.39)     ϕ = 
1u

ux

L T

α − . 

 
The αu are the three direction cosines of the light ray – viz., the normal to the wave 
planes ϕ (xu, t) = const.  The constants L and T – namely, the period and wave length – 
are related to each other by: 
(II.40)     L = c T. 
 
 The phase, which is a pure number, enters into formulas by way of the exponent of 
the number e.  It can only be a relativistic invariant, in such a way that one sets: 
 

(II.41)    4

1
, .u u

i

L cT
λ α λ= =  

Equation (39) transcribes into: 

(II.42)     ,i
i xϕ λ=  

 
and one sees that the four λi are the components of a quadri-vector that is isotropic, 
moreover, by virtue of (40): 

(II.43)     0.i
iλ λ =  

 
That quadri-vector, which was systematically considered by L. de Broglie in his thesis 
[163], obviously deserves the name of the spatio-temporal frequency (each of its spatial 
components is nothing but the number of waves per unit length in that direction).  By 
definition, the quadri-vector λi has the direction of the isotropic light world-ray.  The 
hyperplanes ϕ = const. are the world-hyperwaves, which are likewise isotropic and are 
both orthogonal to λi and contain λi . 
 
 2. We shall now give the relativistic theory of aberration and the Doppler Effect by 
appealing to the notion of the quadri-vector λi . 
 Take two Galilean frames whose spatial axes are “parallel,” with their relative 
velocity being directed along ox1 and 1ox , and apply the Lorentz-Poincaré formulas (19) 

to the quadri-vector λi : 
 

(II.44)  1λ  = 1 4

21

iλ βλ
β

−
−

, 4λ  = 4 1

21

iλ βλ
β

+
−

, 2λ  = λ2 , 3λ = λ3 . 
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If we let α1 denote the cosine of the angle between the ray and the relative velocity then, 
by virtue of (40) and (41), we can replace λ4 with i λ1 / α1 in (441), and then divide both 
sides by: 

+ 2 2
2 3λ λ+  = + 2 2

2 3λ λ+ . 

 
One brings about the cotangents 1χ  and χ1 of the angles between the ray and the relative 

velocity, and one will get the relativistic law of aberration: 
 

(II.45)     1χ  = 1
12

1 /

1

β α χ
β

+
−

. 

 
If the plane waves emanate from a distant source that is fixed in the unprimed system 
then α1 / χ1 will be the sine of the angle between the ray and the apparent velocity of the 
source, in such a way that α1c / χ1 will be the transverse component of the velocity along 
the ray, namely, ct .  The preceding formula will then be further written: 
 

(II.46)     1
1 2

/
,

1
tv cχχ

β
+=
−

 

 

and this will coincide with the well-known classical formula when one lets 21 β−  go 
to 1. 
 If one takes (40), (41) into account, as well as the usual definition for the frequency: 
 

(II.47)     v = 
1

T
, 

 
and if α1 always denotes the cosine of the angle between the ray and the relative velocity 
then formula (44) can be written: 

(II.48)     ν  = 1

2

1

1

α β ν
β

+
−

. 

 
That is the relativistic law of the transformation of frequencies; i.e., the Doppler Effect.  
Always assuming that the plane waves emanate from a distant source that is at rest in the 
unprimed system, α1β will be nothing but the radial component of the reduced 
translational velocity – namely, βr – and the preceding formula can be further written: 
 

(II.49)     
2

1
.

1
rβν ν

β
+=
−

 

 

This will agree with the well-known classical formula when one lets 21 β−  go to 1. 
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 In the early days of relativity, one could find that the new explanation for aberration 
and the Doppler Effect was less simple and less direct than the old one and invoke the 
analogy with sound in which the old explanation was phrased.  Indeed, that analogy was 
not correct, because sound propagates in a medium that, by the very fact of its existence, 
defines a privileged reference system.  If one then remarks that the so-called absolute 
velocities occur in the classical formulas only to first order then one must concede that 
aberration and the Doppler Effect speak in favor of relativity, and not against it, at least 
to first order. 
 But there is more: Some recent experiments have permitted us to exhibit the 

intervention of the relativistic factor 21 β− , which expresses, in short, the slowing-

down of clocks.  Recall formula (49).  Set: 
 

βr = 0 
 
in it; i.e., suppose that the velocity of the source is normal to the direction of observation.  
One will get: 

(II.49)     ν  = 
21

ν
β−

, 

 
which is the formula for the transverse Doppler Effect, which is a relativistic effect that 
was not predicted by the classical theory; in the latter, one simply sets: 
 

ν  = v. 
 
Now, the recent experiments of Ives and Stilwell [83, 84, 86] have permitted us to exhibit 
the transverse Doppler Effect, which is a second-order effect that is in perfect accord with 
the relativistic formulas. 
 If one sets: 

βr = ± β 
 
in formula (49′) – i.e., if one considers a source velocity that is purely radial – then one 
will get the relativistic law for the purely-longitudinal Doppler Effect: 
 

(II.49″)    ν  = 
1

1

βν
β

±
∓

, 

 

which differs from the classical law by a factor of 21 β− . 
 
 3. We shall now study the aberration and Doppler Effect that are obtained by 
reflection from a moving mirror.  In the classical books on relativity, that question, like 
the preceding one, was generally treated by means of electromagnetic theory, which has 
the inconvenience that it masks the purely-kinematical nature of the problem to some 
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extent (1).  As before, we shall argue directly on the basis of the law of transformation for 
the quadri-vector λ i. 
 In classical optics, the set that is composed of a point-like source that is fixed in the 
reference system and a plane mirror that translates with a component of the velocity vr 
that is normal to that mirror is equivalent to a point-like source s′ that is symmetric to s at 
each instant, and thus animated with a velocity of 2vr .  We shall show that those 
properties persist in relativity to first order. 
 First, take a Galilean frame p x1 x2 x3, t that is fixed in the mirror, with px1 being 
directed along the normal.  From Descartes’ first law, the planes of incidence and 
reflection will coincide; let x3 = 0 be that plane, to simplify matters.  From Descartes’ 
second law, the angles of incidence and reflection will be equal.  Finally, from wave 
optics, there will be conservation of frequency.  In the proper system of the mirror, the 
two quadri-vectors λ i and λ′i, which relate to the incident and reflected wave, 
respectively, will then satisfy the proper laws of reflection: 
 
(II.50)   iλ′ = − λi , 2λ′ = λ2  ≠ 0, 3λ′ = λ3  = 0, 4λ′ = λ4 . 

 
 We seek to know what those laws will become in a Galilean frame that is not proper.  
First of all, we verify effortlessly that a translation of the mirror parallel to itself that does 
not move with the source will leave the classical laws unaltered.  The only second-order 
differences between the present reference system and the one that is coupled with the 
mirror relate to a simultaneous alteration of the Descartes angles and the frequency. 
 We shall now study the more interesting problem of a translation of the mirror normal 
to itself.  If we take (50) into account then formulas (44) will permit us to write: 
 

(II.51)   1λ  = 1 4

21

iλ βλ
β

−
−

, 1λ′  = 1 4

21

iλ βλ
β

− −
−

, 

 

(II.52)   4λ  = 4 1

21

iλ βλ
β

+
−

, 4λ′  = 4 1

21

iλ βλ
β

−
−

, 

 
(II.53)   2λ = 4λ′ = λ2 = 2λ′ , 3λ = 3λ′  = 0. 

 
If one divides the corresponding sides of the equations in (51), replaces λ4 with i λ1 / α1 , 
as before, and introduces the cotangents 1χ  and 1χ ′  of the angles of incidence and 

reflection, resp., then one will get the relativistic law of aberration by reflection: 
 

(II.54)   − 1

1

λ
λ

′
= − 1

1

χ
χ

′
 = 4 1

4 1

1 /

1 /

i

i

β λ λ
β λ λ

+
−

 = 1

1

1 /

1 /

β α
β α

−
+

, 

 

                                                
 (1) In his cited thesis, L. DE BROGLIE used purely-kinematical arguments that involved the mass-
impulse of the photon. 
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1
1 1 1

1 1

1 /
(1 2 ) .

1 /

β α βχ χ χ
β α α

−′− = = − +
+

⋯  

 
Similarly, if one divides the corresponding sides of the equations in (52) then one will get 
the relativistic law of the Doppler Effect by reflection: 
 

(II.56)    4

4

λ
λ′

= 1 4

1 4

1 /

1 /

i

i

β λ λ
β λ λ

+
−

 = 1

1

1

1

β α
β α

+
−

, 

 

1
1

1

1
(1 2 ) .

1

βαν ν βα ν
βα

−′ = = − +
+

⋯  

 
 If one compares (46) and (49) then formulas (54) and (55) will show that: 
 
 1. In full relativistic rigor, there is no equivalence between the relations that couple 
the directions and frequencies of incidence and reflection with the relations that couple 
the “proper” and “relative” directions and frequencies. 
 
 2. One recovers the classical equivalence to first order, so translation of the mirror 
normal to itself with velocity vr can be replaced by the fictitious translation of a source 
with velocity 2vr . 
 
 
 II.11. – The stationary world-wave.  The formula for the retarded potential.  – In 
this number, we shall make two brief series of remarks that are independent of each 
other. 
 
 1. The well-known equation: 

ψ = a sin 2π 
t

T
sin 2π 1

L

α
 

 
is that of a stationary wave that results from the superposition of two sinusoidal waves 
with the same amplitude, period T, and wave lengths ± L that propagate in the opposite 
sense along the same Galilean axis 1 1x x′ .  Those quantities and T are coupled by (40). 

 If one adopts Minkowski’s hyperbolic diagram, along with the customary definitions 
(20), then one can write the perfectly symmetric expression: 
 

(II.56)    ψ = a sin 2π 
x

L
sin 2π 

y

L
. 

 
One sees that the stationary world-wave will admit two series of nodal lines that form a 
grid that is orthogonal to the square mesh.  The timelike ones are the world-trajectories of 
the ordinary nodes, and the spacelike ones correspond to the instants t = y / c, where the 
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entire axis x1 = x is at rest.  In that way, one can consider the stationary world-wave as 
defining its proper Galilean frame in an extended manner. 
 
 2. If i

i∂  always denotes the d’Alembertian operator then consider the equation with 

the well-known form: 

(II.57)     ,i
i A a∂ =  

 
which presents itself in the course of studying numerous equations, and in which A and a 
are two tensors with the same rank.  By definition, the tensor a is the source density, 
which is generally non-zero only in the interiors of certain space-time domains.  It 
generates the field tensor A at any instant-point. 
 As one knows, Kirchhoff gave the general equation (57) the solution: 
 

A = 
1

{ }
4

u
a

rπ
∂

∫∫∫ , 

 
in which, if the instant-point at which one calculates A is taken to be the origin, to 
simplify, then {a} will denote the value of the source at the current instant-point whose 
distance r and temporal precedence t will be related by (581).  One will then obtain the 
solution that is called the retarded potential.  Mathematically, the solution (582), which is 
called the advanced potential, would be just as suitable, but one cannot know its physical 
manifestations: 
(II.58)     r = − c t, r = + c t. 
 
Physically, if the source a is the cause of the tensor A then the retarded potential will 
translate into the existence of a causality of the type that is usually invoked in order to 
pass from the past to the future, while the advanced potential represents a causality that 
will point from the future into the past, which is entirely unconventional. 
 That being the case, one must verify that formula (57) is covariant from the 
relativistic viewpoint, and consequently that the expression δu / r is an invariant.  Always 
let α u denote the three direction cosines of the direction that links the origin xi = 0, where 
one calculates A, to the current source point, and introduce the pair of isotropic quadri-
vectors: 
(II.59)    ru = αu r, r4 = ± ir   (αu αu = 1). 
 
The – sign corresponds to the retarded potential, and the + sign, to the advanced potential.  
Similarly, if δu denotes the ordinary volume element [dx1 dx2 dx3] then introduce the new 
pair of isotropic quadri-vectors: 
 
(II.60)    c δuu = αu δu,  c δu4 = ± i δu, 
 
in which the – sign must be taken in the case of the retarded potential, and the + sign, in 
the case of the advanced potential.  The two homologous quadri-vectors r i and δui are, by 
definition, collinear and, at the same time, orthogonal, from the fact of their isotropy.  In 
world geometry, the quadri-vector r i represents the segment of the generator of the 
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isotropic hypercone that has its summit at the instant-point where the one calculates A 
and passes through the instant-point where one considers a.  The quadri-vector ic δui is 
the dual of the three-dimensional volume element that is carried by the sheet in question 
of the hypercone at the instant-point (a).  Therefore, all of the notions that were invoked 
have an intrinsic significance in world geometry.  δu / r represents the ratio, not of the 
lengths of two collinear quadri-vectors (since they are isotropic, so the lengths will be 
zero), but of their homologous components.  δu / r is then indeed a relativistic invariant. 
 Under those conditions, in relativity, we agree to write the formula for the retarded 
(or advanced) potentials in the form: 
 

(II.61)    
1

,
4

u
A a

r

δ
π

 =  
 

∫∫∫  

 
in which the symbol { } is supposed to simultaneously suggest that it is a relativistic 
invariant and direct attention to the significance of that invariant in four-dimensional 
geometry; i.e., to the effective fashion by which one performs the calculations. 
 
 
 II.12. – The world quadri-velocity.  Examples of the effects of motion. – Consider 
a material point of the universe (viz., an isolated material point or fluid “molecule”) that 
describes a time-like trajectory T.   If vu denote the three components of its ordinary 

velocity then introduce the quadri-vector V i that is defined by: 
 

(II.62)  4, ,u uV v V icα α= =  α = 
2

1

1 β+ −
, 2.i

iV V c= −  

 
In the universe, α is nothing but the cosine of the angle between the tangent to T and the 

axis Ox4 (eqs. 13 and 16), in such a way that if dt denotes the projection of the proper 
time interval dτ onto that axis then one will have: 
 

(II.63)     α = 
dt

dτ
. 

 
The preceding definitions of the quadri-vector V i then condense into the form: 
 

(II.64)    
1i iV dx

dτ
=  (i = 1, 2, 3, 4). 

 
 Now suppose that one attaches a tensor to the preceding material point that enjoys 
certain properties with respect to V i.  We then direct our attention to three simple cases 
that will be found to be applied several times in the course of this book. 
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 Quadri-vector Xi that is tangent to the world-trajectory.  This case is 
characterized by one or the other of the relations: 
 
(II.65)     V j X i – V i X j = 0, 
 

(II.66)     
1

1

X

dx
= 

2

2

X

dx
 = 

3

3

X

dx
 = 

4

4

X

dx
. 

One then concludes from this that: 
 

(II.67)    Xu = X4
4

udx

dx
  or 4.i X= −X ββββ  

 
That relation is notably encountered in the context of the quadri-vectors of electric 
charge-current density ju = q vu, j4 = ic q (no. III.5) and finite mass-impulse pu = mvu, p4 = 
ic m (no. IV.7).  One can say that the ordinary spatial vector X is “generated” by the 
velocity of the “scalar” X4. 
 
 Quadri-vector Xi normal to the world-trajectory.  – This case is characterized by 
the relations: 
(II.68)    Xi V

i = 0 or Xi dxi = 0, 
 
from which, one concludes that: 
 

Xu dxu + X4 dx4 ≡ (Xu β u + i X4) c dt = 0, 
or 

(II.69)     4 ( ).X i= ⋅X ββββ  

 
That relation is notably encountered in the context of the power-force density f i (nos. 
III.7 and IV.3) and in the theory of the Dirac electron, in the context of the spin density 
σ i. 
 
 Frenkel relation. – Consider a second-rank antisymmetric tensor Xij ≡ − Xji such that 
one has: 
(II.70)    Xij Vj = 0 or Xij dxj = 0. 
 
It is equivalently characterized by the fact that its three components Xu4 ≡ − X 4u are 
annulled in the comoving Galilean frame and the fact that one can exhibit the first three 
of (70) explicitly by: 

Xui dxi ≡ Xuv dvu + Xu4 dx4 ≡ 0. 
 
The last of (70) is specified by: 

X4i dxi ≡ X4u dvu ≡ 0, 
 

and that will show that any of the four (70) (in which Xij denotes an antisymmetric tensor) 
is a consequence of the other three. 
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 Now, introduce the two spatial tri-vectors: 
 

Yw = Xuv, i Zu = Xu4. 
 
The preceding relations then give: 
 

(II.71)   
,0 or

0.0 or

w v v w u

u
u

Y dx Y dx cZ dt

Z dx

= ∧− + =
⋅ ==

Z Y

Z

ββββ
ββββ

 

 
Here, one can say that the tri-vector Z is generated by the velocity of the tri-vector Y 
according to (711), with (712) as a consequence.  In the case of a medium that is endowed 
with magnetic polarization, but not electric polarization, when it is at rest, that relation is 
known by the name of the Frenkel relation [121]. 

 
 

C. – GENERALITIES ON RELATIVISTIC PHYSICS  
 

 II.13. – Integration elements of various orders and their duals. – Let P be an arc 

of an arbitrary line that is drawn in the universe.  If A denotes an arbitrary tensor then 
consider the curvilinear integral: 

iAdx∫L . 

 
(Of course, one can assume that one of the indices of A is contracted with the index i of 
the integration element.)  A frequent special case in that regard is concerned with the 
world-circulation of a quadri-vector Ai: 
 

i
iA dx∫L . 

 
 If the arc-length element dxi is timelike then there will exist a tangent Galilean frame 
in which the differential reduces to its component: 
 

A dx4 ≡ ic A dt. 
 
If the arc-length element dxi is spacelike then there will exist a double infinitude of 
Galilean frames (which are characterized by the world-directions of their Ox4 axes) in 
which the temporal component of that differential is annulled.  In particular, the element 
of circulation of a quadri-vector will then reduce to its spatial part: 
 

Au dxu ≡ A ⋅⋅⋅⋅ dx. 
 
 Now let S be a general world-area – i.e., a two-dimensional curvilinear manifold.  

One can refer them to a system of two curvilinear coordinates and then define two 
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tangent quadri-vectors δ1 x
i and δ2 x

i at each of their points.  Now consider the six 
determinants that are extracted from the matrix: 
 

1 2 3 4
1 1 1 1

1 2 3 4
2 2 2 2

x x x x

x x x x

δ δ δ δ
δ δ δ δ

, 

 
each affected with a sign, and denote them by the symbols [dxi dxj], as was explained in 
no. I.8.  It will then be clear that the three: 
 

[dxu dxv] = δ sw, 
 
which are the projections of the [dxi dx j] onto the coordinate planes Oxu xv, will be the 
components of an elementary area in the usual sense (1).  World geometry adds the three: 
 

[dxu dx4] = ic ⋅⋅⋅⋅ dxu dt 
 
to them in order to constitute a second-rank antisymmetric tensor.  The [dxu dx4] are the 
projections of the tensor [dxi dx j] onto the coordinate planes Oxu x4. 
 If, by definition, we introduce the dual of the preceding tensor: 
 

(II.72) [ ]ij
k lic s dx dxδ =  

then we will have: 

(II.73) 4 1
, .u u vw us s s dx dt

ic
δ δ δ= =  

 
δs or δsu always denotes the ordinary elementary area. 
 Now, let V be a general world-volume – i.e., a curvilinear, three-dimensional 

manifold.  The preceding considerations can be generalized, and one defines the 
antisymmetric third-rank world-volume tensor [dxi dx j dxk] at every instant-point V, and 

its component is: 
δu = [dxu dxv dxw] ≡ dx1 dx2 dx3, 

 
which is the projection of [dxi dx j dxk] onto the hyperplane x4 = 0, denotes a volume in 
the ordinary sense (2).  As before, the other three components can be written: 
 

[dxu dxv dx4] = ic ⋅⋅⋅⋅ dxu dxv dt, 
 
and they represent the projections of the tensor [dxi dx j dxk]  onto the hyperplanes xu = 
const. 

                                                
 (1) On that subject, see the remarks that will be made in a note in the following no. 
 (2) On that subject, see the remarks that will be made in a note in the following no.  
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 If, by definition, we introduce the quadri-vector that is dual to the preceding tensor by 
way of: 

(II.74) [ ]j k lic u dx dx dxδ =  

 
then we will get the following interpretation of its four components: 
 

(II.75)    4 1
, .w wu u u s dt

ic
δ δ δ δ= =  

 
δu always denotes an elementary volume in the ordinary sense. 
 We shall now show that the quadri-vector δui is orthogonal to the three δux

i that 
define the [dxj dxk dxl].  One then deduces from (74) that: 
 

ic δui δu xi = [ ]u i j k lx dx dx dxδ∑ , 

 
in which the sum is extended over all permutations i, j, k, l, each affected with a sign.  
The three right-hand sides are identically zero, since they are the developments of rank-
four determinants with two identical rows. 
 Finally, let D be a four-dimensional world-domain, and consider the corresponding 

integration element: 

(II.76) 1 2 3 41
[ ].i

iu dx dx dx dx dx
ic

δ δω= ≡  

 
Recall that in no. II.7, we explained the physical reasons that allowed us to consider the 
expression δu dt as representing that same quantity.  We can then write: 
 

(II.77) .i
iu dx u dtδ δ≡  

 
 Pre-relativistic physics is in the habit of taking its curvilinear integrals – whether 
surface or volume – “at constant time,” which is a hypothesis that can only be relative in 
the new kinematics.  If one wishes to preserve that hypothesis then one must change the 
line, surface, or volume integral whenever one changes the Galilean frame, and by that 
itself, if one starts with a well-defined tensor density then one must change the integral 
tensor.  That habit of pre-relativistic physics is therefore is disaccord with the spirit of 
world-geometry.  That is what one encounters at the origin of numerous well-known 
difficulties that relate to the reputed non-tensorial character of various quantities that are 
very important physically, such as, for example, the finite force, the finite kinetic 
moment, and temperature (see no. IV.19).  The difficulties in question are raised when 
one renounces the demand of simultaneity at a distance and gives the line, surface, and 
volume of integration a priori and independently of the Galilean frame.  Moreover, 
inspired by the theory of relativity, E. Cartan has already shown that it can be interesting 
in classical mechanics to argue on the basis of non-simultaneous states of a system of 
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points or a fluid.  The profound significance and symmetry of the formulas will emerge 
more clearly, as well (1). 
 Before passing on to another subject, we insist upon the following fact: We just saw 
that in world-geometry, the three-dimensional volume is defined to be a quadri-vector – 
exactly as in ordinary geometry – and the elementary area is defined by a tri-vector.  It 
then follows that in relativity, the finite and density tensors that relate to the same 
physical quantity will not have the same variance.  The variance of the finite quantity will 
be one unit less or more (according to whether there is a contraction or not, resp.) from 
that of the density quantity.  Among the innumerable examples of that very important 
fact, we give the following ones in advance: 
 
Physical quantity 

 
Density tensor Finite tensor 

 

Electric charge 
 

Quadri-vector 
 

Invariant 
 

Force 
 

Quadri-vector 
 

Second-rank, antisymmetric 
tensor (2) 

 

Mass-impulse 
 

Second-rank tensor (3) 
 

Quadri-vector 
 

Kinetic moment 
 

Third-rank tensor, antisym. 
in 2 or 3 indices 

 

Second-rank, antisymmetric 
tensor 

 
 
 II.14. – Generalities on fluid kinematics.  The hyper-endcap integral and the 
hyper-wall integral.  Definition of the proper – or “scalar” – volume.  Definition of 
an incompressible fluid. – The various molecules of a continuous medium (or extended 
material points, in the purely geometric sense) generate a congruence T of trajectories – 

or world-streamlines – that are all time-like.  Such a hyper-tube of trajectories, which is 
bounded by a hyper-wall P that is three-dimensional and said to be timelike, represents 

the evolution of the same portion of matter in the course of time.  Now consider a three-
dimensional hyper-endcap E of that timelike hypertube; i.e., by definition, it is such that 

the dxi that are tangent to it are spacelike.  If that hyper-endcap E is planar and orthogonal 

to Ox4 in the Galilean frame Oxi that is used then from classical kinematics it will 
represent the state of a fluid droplet that is followed in the course of its motion at the 
instant t.  However, it goes without saying that the notion of the state of a material fluid 
drop is defined only in a relative manner.  By definition, we say that a continuous family 

                                                
 (1) In a series of very recent papers, J. Schwinger systematically introduced the consideration of non-
simultaneous states of a system into quantum electrodynamics.  Even if the physical results that are 
obtained do not pertain to the new covariant formulation of this author, it will still remain that the latter has 
the advantage that it guarantees the demands of relativity at each step in argument (note added in proof). 
 (2) And possibly an asymmetric tensor (see below, nos. III.7 and III.8). 
 (3) Either symmetric or asymmetric (see below, no. IV.12).  
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of arbitrary curvilinear hyper-endcaps E – all of which are spacelike – represents a family 

of successive states of the same fluid drop whose motion is being followed (1). 
 The laws of fluid kinematics, whether relativistic or classical, are expressed 
essentially by density equations at each instant-point that is occupied by the fluid.  
Naturally, one can infer some integral laws from this that are stated for the entire fluid 
volume “at the instant t” in classical physics.  In relativistic physics, the integral laws 
must be stated for an arbitrary current hyper-endcap E that is restricted simply by the 

demand that it must be everywhere-spacelike.  Given the considerable degree of 
arbitrariness in the definition of E, it is obvious a priori that one must demand that the 

formulation of the integral laws should be invariant when changes the family of hyper-

endcaps E.  Physically, that amounts to saying that relativity attaches no importance and 

no objective significance to the instants relative to which the various molecules of the 
extended medium are considered when the corresponding instant-points are in the 
“unphysical” region; i.e., it is impossible to link to them with a signal.  That is the 
manner by which relativity considers the various parts of an extended system at once (but 
not simultaneously!). 
 We have explained the sense in which the current hyper-endcap E is said to be 

spacelike and the hyper-wall P, timelike.  Now, if one introduces the quadri-vector that is 

dual to the elementary volume at any instant-point on those hypersurfaces then we 
showed in the preceding no. that this quadri-vector will be orthogonal to that 
hypersurface.  Hence, the quadri-vectorial volume element δui of a hyper-endcap E is 

timelike (and similarly, the quadri-velocity V i at that instant-point).  The quadri-vectorial 

volume element δu* i of the hyper-wall P is spacelike and orthogonal to the quadri-

velocity at that same instant-point, moreover: 
 
(II.78)     Vi δu* i ≡ 0. 
 

                                                
 (1) Consider the case of an infinitely-thin hypertube, and let δu′ be the evaluation of the elementary 
volume that is made simultaneously (in the classical manner) by a Galilean observer for a well-defined 
instant-point xi of the mean trajectory.  Let δu0 be the δu that is found by the Galilean observer G0 that is 

tangent – or proper, and let β be the relative velocity of G and G0 .  One sees effortlessly that those 

constant-time volumes transform according to the law: 

δu′ = δu0
21 β− , 

whereas, on the contrary, the fourth component of the quadri-vector that is dual to the “proper volume” 

0

iuδ  will transform according to the law: 

δu = δu0
21 β− . 

The preceding δu′ is then the fourth component of a different quadri-vector.  When we said in the preceding 
no. that ic δu4 represents an elementary volume in the ordinary sense, the remark that we just made was 
implicit in it.  When the three-dimensional manifold is timelike, the difference between δu = ic δu4 and a 
volume that is considered simultaneously in the usual manner will become even more significant.  Some 
similar remarks are true for the case of the double and simple integrals that were considered in the 
preceding no. 
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Let us say, in passing, that it might seem natural to consider the case in which the quadri-
vectors V i and δu i are collinear at an instant-point of a hyper-endcap E.  That will always 

be true under the hypothesis of an infinitely-thin hypertube, but in the case of a finite 
hypertube, for that to be true, it would be necessary for the congruence T to be a normal 

congruence, which will be true only in the exceptional cases.  There would be no reason 
to attach a general theory to an exceptional situation, and that is why one must leave both 
of the two timelike quadri-vectors V i and δu i completely independent of each other.  
Despite that, in certain inductive studies, it can be interesting to consider the exceptional 
case in which the congruence E is a normal congruence first, and consequently to choose 

δu i to be everywhere-collinear to Vi (see below, nos. IV.5 and IV.6). 
 During the evolution of the material drop E, the hyper-wall P is generated by its two-

dimensional contour S.  Like E, that contour S is generally curvilinear, in such a way that 

the six components of its [dxi dx j] will occur effectively.  We shall then prove the 
following relation, which will be quite useful in what follows: 
 

(II.79)    .i ij ij
j ju s dx s V dδ δ δ τ∗ ∗ ∗= − ≡ −  

 
ic δu j* always denotes the dual of the elementary volume of the hyper-wall P, ic δuij*, 

that of the elementary of the contour S of the drop E, and dxj ≡ Vj dτ is the element of the 

world-trajectory T.  Passing to dual quantities, one writes: 

 
[dxj dxk dxl] = [ ]j k ldx dx dx∑ , 

 
in which the summation extends over all circular permutations.  In the right-hand side, 
one has the developments of the components of the three-dimensional volume that is 
constructed from two spacelike quadri-vectors δ1x

i and δ2x
i that are tangent to S and the 

timelike quadri-vector dxi that is tangent to T.  That is, in fact, a strongly-suggested way 

of defining the volume element of the hyper-wall P. 

 Now consider an infinitely-thin current hypertube, and let δui be the quadri-vector 
that represents the magnitude and direction of its spacelike hypersection.  Exactly as in 
three-dimensional geometry, one will effortlessly see that the scalar product: 
 

(II.80)     0
i

iu V uδ δ≡  

 
has an invariant value when one considers the various hypersections that pass through 
the same mean instant-point that one chooses in the hypertube.  If one prefers, it is the 
elementary hyper-flux of the quadri-velocity V i at the proper instant τ.  In the Galilean 
frame G0 that is tangent to the mean streamline at the proper instant τ, one will have: 
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δu0 = V04
4
0uδ , 

 
which is precisely the definition of the value of the ordinary volume on G0 when one 

takes (621) and (751) into account.  With that, one sees that the invariant δu0 also deserves 
the name of the elementary proper volume inside of the fluid.  If one multiplies the two 
sides of (80) by dτ then one will get: 

(II.80′)     0 0,
iu d u dxδ τ δ≡  

 
which is a formula that confirms what we said when we established (27) and (76). 
 Inside of a material medium (and also in the case of a material point when one 
constricts it and passes to the limit), the definition of the proper or scalar volume will 
permit one give a second definition of the finite quantities, thanks to which, those 
quantities will have the same variances as the homologous density quantities (to which 
they are even homothetic).  In several situations, that definition of the finite quantities in 
the second way (which is not general, by virtue of what was pointed out in the preceding 
no.) can nonetheless be of service. 
 By its very definition, the elementary proper volume is identically zero on a hyper-
wall: 
(II.81)     0uδ ∗  ≡ 0. 

 
 Again by definition, the integral of the expression (80) over a hyper-endcap E will be 

called the finite proper volume of the material drop in the state E: 

 

(II.82)    u0 = i
iV uδ∫∫∫E ≡ 0uδ∫∫∫E . 

 
Obviously, the expression u0 also deserves the name of hyper-flux of the quadri-velocity 
V i across the hyper-endcap E. 

 If one takes (81) into account then upon integrating the expression (80) over the 
closed, three-dimensional domain that is composed of two different states E1 and E2 of 

then same fluid drop and the corresponding hyper-wall element, transforming that into a 
quadruple integral that is extended over the domain D that is bounded by the preceding 

one, by virtue of the general formula [I, eq. (40)] and taking (76) into account, and finally 
orienting the two hyper-endcaps in the same sense relative to the hyper-streamlines T, 

one will get the formula: 

(II.83)    u0(2) – u0(1) = i k
i kV u dxδ∂ ⋅∫∫∫ ∫D . 

 
One will then see that the necessary and sufficient condition for the hyper-flux or “scalar 
volume” u0 to be preserved along the entire hypertube is that one must have: 
 
(II.84)     ∂i V i ≡ 0. 
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That will be the definition of an incompressible fluid (1) that is suggested the most 
strongly by relativity. 
 In infinitesimal form, formula (83) can also be written: 
 
(II.85)    d δu0 = ∂i V i ⋅⋅⋅⋅ δu0 dτ , 
 
and one recognizes the relativistic extension of the well-known classical formula: 
 

d δu = div v ⋅⋅⋅⋅ δu dt. 
 

 For some of the inductive arguments in Chapter IV, it will be useful to consider the 
case in which one orients the hyper-section of an infinitely-thin hypertube normally to the 
mean streamline.  In that case, the quadri-vector δu i will be collinear to V i, and we shall 
call it 0

iuδ .  If one takes the definition (80) into account, as well as (62), then one will 

find with no difficulty that: 
 

(II.86)   0 0 02 2

1 1
or .i i i i j

ju u V u V V u
c c

δ δ δ δ= − = −  

 
Both of those formulas will be useful to us in what follows. 
 We hope that in the course of the present chapter, the reader that was not further 
familiar with the theory of relativity would be progressively elevated, without too much 
effort, to an understanding of some particular cases of the general methods that permit 
one to enter into the various domains of relativistic physics. 
 Everything that we said in regard to the arbitrary character of the hyper-endcap E 

must be extended from the case of a flowing fluid to the general case of a field, which 
can, moreover, include singular lines inside of it that represent the material trajectories of 
material points. 
 
 
 II.15. – Fluid kinematics (cont.): Three general formulas that will be useful in 
what follows. – Let Φ be an arbitrary function of the fluid molecules.  Exactly as in the 
pre-relativistic kinematics of fluids, one sees that if τ denotes the proper time then the 
variation Φ that is concomitant to the evolution of the fluid molecule can be written: 
 
(II.87)     dΦ ≡ Vi ∂i Φ ⋅⋅⋅⋅ dτ. 
One can equivalently write: 

(II.87′)    Φ′ ≡ Vi ∂i Φ, with Φ′ ≡ 
d

dτ
Φ. 

 

                                                
 (1) For A. Lichnerowicz, the present definition of incompressible fluid is “definition A” [151, 152, 153].  
For von Laue, that definition is the definition of a “fluid of least compressibility” [4, § 36].  – It is clear that 
in relativity the notions of rigid body and incompressible fluid must accommodate the Lorentz contraction 
of moving volume elements. 
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 Φ always answers to the preceding definition, and represents the fact that for any of 
the physical densities that are attached to the fluid, one can write: 
 

(II.88)    
2 1

i
iV uδ

−
Φ∫∫∫E E

≡ 0( )i
i V u dδ τ∂ Φ ⋅∫∫∫ ∫ , 

 
or further, in infinitesimal form: 

(II.88′)   d (Φ V i δui) ≡ ∂i (Φ V i) ⋅⋅⋅⋅ δu0 dτ ≡ ∂i (Φ V i) ⋅⋅⋅⋅ δu dt. 

That formula constitutes the relativistic symmetrization of a formula that we will appeal 
to in no. IV.2 in order to establish the relativistic dynamics of fluids deductively. 
 Finally, since, by definition, the fluid quadri-velocity iV  has constant length [eq. 
(623)], one can remark that one has: 
(II.89)     Vi  ∂k

iV ≡ 0. 
 
 

___________



  

 

CHAPTER III 
 

RELATIVISTIC ELECTROMAGNETISM 
 

 III.1 – Electromagnetism has known the constant c since Maxwell, and experiment 
soon verified the relation: 

1

2

K

K
= c, 

 
in which K1 and K2 denote the fundamental constants of electrostatics and magnetism, 
respectively.  The classics treated K1 and K2 as universal constants, in theory and in 
practice.  By convention, they attributed the dimension of zero and the numerical value of 
1 to both of them, which resulted in the alternative of two systems of units E. S. U and E. 
M. U, as one knows.  Now, the constant c plays a role that is perfectly homogeneous to 
that of the constants K1 and K2 . In order to avoid the dilemma of E. S. U and E. M. U, it 
will suffice to attribute the dimension zero and the numerical value of 1 to c; i.e., to 
establish the physical equivalence between length and time that relativity discovered 
much later. 
 It is now commonplace to say that electromagnetism was relativistic to begin with (1).  
Electromagnetism is developed directly and effortlessly by a simple transcription of the 
classical formulas into four-dimensional language.  The only novelty that presents itself 
consists of the kinematical variances that are attributed to the usual quantities.  Once the 
“absolutes” have been supposed, most of those quantities will become “relative,” and 
fusions of them will then define world-tensors. 
 If optics is the root of special relativity then electromagnetism is its trunk.  It was by 
means of electromagnetism that relativity specified the variances that one must attribute 
to the force density and the force, the energy density and energy, and that brief deduction 
will provide the point of origin for all of relativistic dynamics.  On the contrary, in the 
classical epoch, the notions of force and energy, as well as their essential properties that 
were of interest to all of physics, were obtained by means of dynamics. 
 Contrary to a prevailing assertion, we will show that it is possible (and even quite 
indicated) to define the finite force to be a tensor that is called a second-rank tensor [108].  
That will allow us to give a very elegant form to relativistic point dynamics as a result.  
We shall also deduce a formula that will ultimately serve as the basis for our symmetric 
presentation of analytical dynamics (Chapter V, § B).  Passing from the case of 
convection to that of conduction, we shall then specify what one generally says about 
Joule heat from the standpoint of variances.  The formulas that will be obtained will 
comprise a general elaboration that touches upon the problems of the creation and 
annihilation of energy or mass, and one will recall them later on in the treatment of 
sources and sinks in hydrodynamics (Chapter V, § A).  Finally, it goes without saying 
that those formulas can illustrate the definitions that relativistic thermodynamics will be 

                                                
 (1) Langevin has often insisted upon the fact that electromagnetism collectively affords an implicit 
verification of relativity.  Indeed, the general equations that summarize it, and whose consequences are 
regularly verified, are not invariant under Galilei transformations, while they are under those of Lorentz-
Poincaré. 
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called upon to pose (Chapter IV, § D).  At any rate, the brief paragraph in which 
relativity treats force and energy in electromagnetism will appear to be an essential piece 
in the entire theory. 
 The last paragraph of the present chapter addresses the Maxwell elastic tensor and the 
couple density that are present in polarized media.  We propose to introduce another 
elastic field tensor [108] and relate that notion to a couple density that E. Henriot took 
into consideration [107].  To conclude, we recall the two spin densities for the field that 
were discovered by Henriot.  That entire paragraph can be skipped by the novice reader 
in relativity, and it will be returned to only after the lecture in the following chapter. 
 
 

A. – THE GENERAL FIELD EQUATIONS 
 

 III.2 – Preamble: Review of the general equations of the Maxwell-Lorentz 
theory. – As usual, E denotes the electric field and B denotes the magnetic induction, so 
the Maxwell equations with no right-hand side can be written: 
 

(III.4)    rot E + 
1

c t

∂
∂

B = 0,  − div B = 0, 

 
and one concludes from this that the vectors E and B can be derived from a vector 
potential A and a scalar potential V according to: 
 

(III.2)    B = − rot A,  E = grad V + 
1

c t

∂
∂

A . 

 
H. A. Lorentz showed that one can profit from the arbitrariness that exists in the 
definition of the potentials in order to arrange that they should satisfy the condition: 
 

(III.3)     div A + 
1

V
c t

∂
∂

 = 0. 

 
Now, if P and M  denote the electric and magnetic polarization densities, respectively, of 
a material medium then the electric induction D and the magnetic field H will be related 
to E and B by: 

(III.4)    D = E + P, H = B – M , 
 
respectively.  That being the case, if j denotes the current density, and q that of the charge 
then the Maxwell equations that have a right-hand side will be written (1): 
 

(III.5)    rot H − 
1

c t

∂
∂

D= j , div D = c q. 

 

                                                
 (1) We shall utilize what one calls Heaviside electromagnetic units.  
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One immediately concludes the continuity equation from that: 
 

(III.6)     div j  + q
t

∂
∂

 = 0. 

 
 One also defines the “fine” Lorentz current and charge densities and the polarization 
current and charge densities: 
 

(III.7)    rot B − 1

c t

∂
∂

E  = j 1 , div E = c q1 , 

 

(III.8) −  rot M  − 
1

c t

∂
∂

P= j 2 , div P = c q2 , 

in such a way that: 
(III.9)    j  = j 1 + j 2 ,  q = q1 + q2 . 
 
If one takes the Lorentz condition (3) into account then one will deduce the following 
equations of propagation of the potentials from formulas (2) and (5): 
 
(III.10)    B□  = j 1 ,  V□ = c q1, 

 
and then upon introducing (2) once more, the equations of propagation of the field: 
 

(III.11)    B□  = − rot j1 , E□  = grad c q1 + 1

1

c t

∂
∂

j . 

 
 Recall that Kirchhoff gave to the equation of the type: 
 

ψ□ = ϕ 

the “retarded” solution: 

ψ = { }1

4

u

r

δϕ
π ∫∫∫

. 

 
ψ is the value of the “potential” that is created at the point (0, 0, 0) at the instant 0 by the 
“distribution” ϕ, where {ϕ} denotes the value at the point xu = r α u at the instant – r / c 
(αu α u ≡ 1, xu x

u ≡ r2).  In II.11, we analyzed the mechanism of relativistic invariance in 
that formula. 
 
 
 III.3 – Relativistic transcription of the general field equations. – We now propose 
to put equations (1) to (11), inclusive, into a relativistic form.  If u, v, w always denote a 
circular permutation of the spatial indices 1, 2, 3 then we introduce the system of six 
essentially-antisymmetric components Eij, and the system of six dual components Bkl (i, j, 
k, l = 1, 2, 3, 4) by the formulas: 
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(III.12)    4 4, .vw u u u vw uE iB E E iB iB≡ = ≡ =  

 
One effortlessly verifies that the four formulas (1) lead to a single tensorial formula, 
which we write in the two equivalent forms: 
 

(III.13)     0, 0.ik i ik
k E B∂ = ∂ =∑  

 
From the definition of the quadri-operator ∂i or ∂i , and as a consequence of formula 
(II.1): 

(III.14)     ∂u ≡ 
ux

∂
∂

, ∂4 ≡ 
1

ic t

∂
∂

; 

 
the summation ∑ extends over all circular permutations of the three indices.  One or the 
other of formulas (13) show that the two dual systems of six components Eij and Bij are 
tensors that we shall call the magneto-electric induction field tensor and electromagnetic 
induction field tensor, respectively, or M. E .I. F and E. M. I. F, to abbreviate. 
 By reason of their homogeneity, formulas (14) then permit us to define the 
electromagnetic polarization tensor Pij and its dual Mkl by (1): 
 

(III.15) 4 4, ,vw u u u vw uP iM P P iM iM− ≡ = − − ≡ =  

 
as well as their magneto-electric electric field tensor (M. E. I. F.) Hkl and its dual Dij (E. 
M. I. F), by: 

(III.16)    4 4, .vw u u u vw uD iH D D iH iH≡ = ≡ =  

 
Formulas (4) can then be condensed into one or the other of the equivalent form: 
 

(III.17)    4 , .ij u u kl ki klH B M D E P≡ − ≡ +  

 
As always, by means of the definitions (14), one then easily verifies that the four 
equations (5) can be condensed into the formula: 

                                                
 (1) In regard to that point, we remark that the terminology (which has been, unfortunately, enshrined by 
its usage) of fields and inductions proves to be troublesome.  It is contrary to the desire for both simple 
names for relativistic tensors and elegance in the defining formulas.  It would seem desirable, if possible, to 
invert the two terms in either the electric or the magnetic domain and to change the sign of the 
corresponding polarization. 
 We have sought to give our defining formulas (12) and (16) maximum elegance, so we have written Hij 
and Bij, where R. Becker, for example, wrote Fij and Hij, respectively.  The letter F hardly seems 
appropriate in that position because it leaves behind the way that E, B, D, H are used pre-relativistically.  
On the other hand, we shall need to reserve it for our tensorial definition of the finite force (cf., infra, C). 
 We have likewise changed the sign in the definition of the tensor Mij with respect to the symbols of R. 
Becker [6], in order to preserve the similitude of formulas (17) and (4). 
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(III.18)     ,kl k
l H j∂ =  

 
under the simple condition that one must set: 
 

(III.19)     4 .j icq=  

 
One then sees that the charge density q fuses with the three components of the current 
density ju to constitute a world-quadri-vector that is called the quadri-current jk, to 
abbreviate.  As a pre-relativistic theory, one likewise defines the other two quadri-
vectors: 

(III.20)    1 2, ,kl k kl k
l lB j M j∂ = ∂ = −  

in such a way that one has: 

(III.21)     1 2 .k k kj j j= +  

 

1
kj  is called the fine (or hidden) quadri-current, and 2

kj  is the polarization quadri-

current. 
 One deduces the E. M. I. F. tensor Bij from one or the other of the equivalent formulas 
(13).  It is derived from a quadri-potential Ai, and defined up to a quadri-gradient ∂iU, by 
(1): 

(III.20) .ij i j j iB A A= ∂ − ∂  

 
With the simple condition that one must set: 
 

(III.23)     4 ,A iV=  

 
that formula will condense (2), and show that the quadri-potential Ai results from the 
fusion of the vector potential Au and the scalar potential V into a single geometric entity. 
 If one substitutes (22) into (20) then one will get: 
 
(III.24)     l k k l

l lA A∂ − ∂  = 1
kj . 

 
Ak is defined only up to a quadri-gradient, so one (with Lorentz) can impose the condition 
(3), or: 

(III.25)     0.l
l A∂ =  

Indeed, that amounts to the equation: 
 

0( )l i
l A U∂ − ∂ = 0 or l

lU∂ = 0
l

l A∂ , 

                                                
 (1) That assertion does not constitute anything besides the relativistic formulation of what one usually 
proves in Lorentz’s theory. Here, we have given it a formulation that is symmetric in space-time from the 
proof itself. 
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which is classical, and which one knows how to solve.  Thanks to the Lorentz condition 
(25), equation (24) takes the form: 

(III.26)     1 ,l k k
l A j∂ =  

 
which condenses (10), and which shows that the potential propagates from the source 1

kj  

with the velocity c.  Finally, if one again takes (22) into account then that will likewise 
give the equation of field propagation that condenses (11): 
 

(III.27) 1 1.
i kl i k k i
i B j j∂ = ∂ − ∂  

 
 As for equation (18), which condenses the Maxwell equations with right-hand side, 
from the fact that the tensor Hkl is antisymmetric, it will imply the equation of continuity: 
 

(III.28)     0,k
k j∂ =  

 
which condenses the pre-relativistic form (6).  One similarly deduces from (20) that: 
 

(III.29) 1 20, 0.k k
k kj j∂ = ∂ =  

 
 Finally, before leaving this subject, we point out that the quadri-vector il (or its dual 

jkll ): 

(III.30)   , ,i ik ik jkl l jk l jk
k kl P D l M H= ∂ ≡ ∂ = − ∂ ≡ ∂∑ ∑  

 
which is non-zero, in general, is referred to as the magnetic polarization current. 
 
 
 III.4 – Examples of new variances in relativistic electromagnetism.  Some 
important invariants.   For example, since it is classical, we give the law of partially-
reciprocal transformation of the electric field into the magnetic induction by a change of 
Galilean frame.  In the case of a special Lorentz transformation, one has: 
 
 1E′  = E1 ,  1B′= B1, 

 

 2E′  = 2 3

21

E Bβ
β

−
−

, 2B′ = 2 3

21

B Eβ
β

+
−

, 

 

 3E′  = 3 2

21

E Bβ
β

+
−

, 3B′= 3 2

21

B Eβ
β

−
−

. 

 
We also point out the existence of the relativistic invariants: 
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− Eij E
ij ≡ Bkl B

kl = 2 (B2 – E2), Eij B
ij = 4 E ⋅⋅⋅⋅ B, Ai A

i = A2 – V2. 
 
One knows that the first two of these are zero in the case of a monochromatic plane wave.  
As for the third one, if ox1 is the direction of the rays of the plane wave then the known 
relation: 

A1 + V = 0 
 
will show that it is positive, and as a consequence, the invariant considered will be made 
zero, and the quadri-vector Ai will be isotropic (1). 
 

 
B. – INVARIANCE AND CONSERVATION OF ELECTRIC CHARGE  

 
 III.5 – Convection current and conduction current. – First consider an unpolarized, 
charged fluid that flows through the universe.  In that case, one will have: 
 

Hij = Bij, jk = 1
kj  

 
in all space-time.  If v or vu denotes the usual velocity field of the fluid then, from 
Lorentz, one will have the formula (311), beside which, we rewrite formula (19): 
 
(III.31) ju = qvu, j4 = ic q. 
 
If one introduces the proper charge density q0, or the value that q takes in the locally-
Galilean frame that follows instantaneously, which is such that: 
 

(III.32)     q = 0

21

q

β−
, 

 
as well as the quadri-vector Vl that is defined by (II.62), then the preceding formulas will 
condense into the form: 

(III.33)     0 .l lj q V=  

 
In the case that is presently under consideration, the two quadri-vectors j l and Vl will then 
be collinear, and one will say that the electrified matter is in a “regime of pure 
convection.” 
 On the contrary, now take a portion of a conducting fluid body, where Vl denotes its 
quadri-velocity field.  We say that the body is in a “regime of pure conduction” if the 
charge density q0 is zero, but the current j 0 is not at the origin of any locally-Galilean 
frame that instantaneously follows the fluid.  Physically, that amounts to saying that a 
flux of electrons crosses the lattice of positive ions that composes the conducting body 
with a mean quadri-velocity that is not coincident with Vl.  The mass density of that 

                                                
 (1) In L. de Broglie’s Théorie du photon, the small, positive value for the invariant Ai Ai is related to that 
of the proper mass of the photon.  (Paris, Hermann, 1940, v. I, pp. 169). 
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electronic flux is extremely weak, and one can neglect it in a schematic treatment of the 
problem, which amounts to considering the quadri-current of the electrons to be 
completely immaterial.  As for the nullity of q0 that is assumed, by hypothesis, it results 
from the exact compensation of the electronic charge density, which is moving and 
negative, by the charge density of the matter, which is fixed and positive.  Moreover, 
nothing will prevent us from relocating it into the context of Lorentz’s theory of electrons 
and assuming that the conduction quadri-current results from the addition of a fine (or 
hidden) quadri-current to a polarization quadri-current that is due to the vorticity of the 
hidden charges. 
 The general case of a medium that is both convective and conductive results from the 
superposition of the two preceding notions.  If there is no compensation between the 
charge density of matter and the electronic charge density in the co-moving frame then 
the excess of the first will general a convection quadri-current that is collinear to Vk and 
has the type that was studied in the first paragraph.  Finally, in the general case, the total 
quadri-current jk can be considered to be the sum of two orthogonal quadri-currents kj ′  

and kj ′′ , the former of which is collinear to Vk, while the latter is orthogonal to it. 
 
 
 III.6. – Invariance and conservation of charge. – As in Chapter II, § C, Let T be the 

congruence of world streamlines of a flow Vk, let E be a current hyper-endcap (which is 

generally curvilinear and space-like) that represents a fluid drop in space-time and 
follows its motion, and let P be the lateral hyper-wall of the tube that is generated by the 

two-dimensional fluid surface S of the drop E.  Always let ic δu1 and ic δskl be the dual 

tensors with elements [dxi dxj dxk] and [dxi dxj], such that ic δu4 ≡ δu and ic δsu4 ≡ δsu 
represent the elementary volume and area, respectively, in the usual sense.  Finally, recall 
the definition [II, (80)] of the elementary scalar volume of the hyper-endcap and the 
expression [II, (79)] for the elementary volume of the hyper-wall. 
 Now consider the tensorial invariant: 
 
(III.34)     δQ = jk δuk. 
 
On a hyper-endcap E, one can give it the form: 

 
(III.35)     δQE = q0 δu0

 . 

 
Moreover, under constant-time integration, its expression will reduce to the one that is 
well-known in classical physics for the “finite electric charge at the instant t”: 
 
(III.36)     δQE = q δu . 

 
The same result will be obtained in the local frame of the field Vk if the quadri-vectors jk 
and Vk are collinear, but will no longer be true in the general case in which we have 
placed ourselves, and that remark is closely attached to an apparent paradox that is well-
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known in Minkowski’s electrodynamics [4, § 21.c].  In the general case of an arbitrary 
hyper-endcap E, if one takes [II, (75)] into account then the expression (36) can be 

specified by: 
(III.36′)    δQ = q δu + ju δsu δt, 
 
and the significance of the last group of terms will be clear: They amount to three terms 
for the flux of electricity when one takes into account the fact that the infinitesimal drop 
δu is not considered in a simultaneous manner.  If one prefers, that flux constitutes a 
correction for non-simultaneity. 
 On the hyper-wall P, and taking [II, (79)] into account, the invariant δQ can be 
written: 
(III.37)     − δQP = jk Vl δskl dτ. 

 
From the fact of the antisymmetry of the tensor δskl, the necessary and sufficient 
condition for δQP to be zero is that the quadri-vectors jk and Vl must be collinear.  In the 

local proper frame, the expression for δQP will reduce to: 

 
(III.38)     δQP = j  ⋅⋅⋅⋅ δs dt. 

 
 Everything that we just said clearly shows that the tensorial invariant (34), when 
calculated on a hyper-endcap element, merits the name of an electric charge whose state 
corresponds to material drop, and when it is calculated over a hyper-wall element, it will 
merit the name of electric flux that leaves across the contour of the same material drop 
between two of its consecutive states.  In the two cases, the expression considered is that 
of a world hyper-flux with a quadri-vector jk that crosses a three-dimensional 
hypersurface. 
 Now consider two successive states E1 and E2 of the same finite drop E; i.e., two 

hyper-endcaps that are not cut by a hyper-tube that is bounded laterally by a hyper-wall 
P, and integrate the expression (34) over the closed contour E2 – E1 + P.  If one 

transforms the quadruple integral: 
k

k j δω∂∫∫∫ ∫ , 

 
when it is extended over the domain that is enclosed in the preceding one, and finally 
takes the equation of continuity into account (28), then one will get the important result 
that: 

(III.39) 2 1 .Q Q Q− = −
P

 

 
The variation of the charge of the drop E from the state 1 to the state 2 is equal to the flux 

of electricity that enters through the contour S of E. 

 The necessary and sufficient condition for one to have Q2 ≡ Q1 (i.e., QP ≡ 0) is that 

the quadri-vectors jk and Vk must be collinear; i.e., that one must be in a regime of pure 
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convection.  In that case, the charge on a given material drop will be independent of the 
manner by which one calculates it.  Notably, it will be the same for a “classical” 
integration at constant time and for a “relativistic” integration over an arbitrary E. 

 
 

C. – FORCE DENSITY AND FINITE FORCE  
 

 III.7 – Theory of the Lorentz force in the convection regime. – We shall study, in 
parallel, on the one hand, an electrified world-fluid whose charge density is q, and on the 
other hand, a rigorously point-like charge Q.  We shall show that an argument that is 
entirely similar to the one by which one usually defines the world force density to be a 
quadri-vector will permit us to define the finite world-force to be a second-rank 
antisymmetric tensor.  Obviously, if one is given the third-rank variance of the three-
dimensional volume element then those two notions will be formally compatible with 
each other.  Meanwhile, we see that in order to establish the correspondence in question, 
we essentially suppose that the quadri-velocity Vi of the fluid q tends to a limit along an 
infinitely-thin world-tube, and that it will coincide with that of the point-like charge Q, 
which will then describe the mean streamline of the tube,  We pass to the limit by 
constricting the tube, and assume essentially that the charge δQ that is attached to the 
tube (with hyper-flux being conserved) does not vary under that operation.  Finally, we 
suppose that Q = δQ. 
 Consider the well-known formulas that give the Lorentz force density and the finite 
Lorentz force when they are applied to the fluid q and the point-like charge Q, 
respectively: 
(III.40)    f = q (c E + v ^ B), F = Q (c E + v ^ B). 

 
They imply the consequences: 
 
(III.41)    f ⋅⋅⋅⋅ v = cq v ⋅⋅⋅⋅ E, F ⋅⋅⋅⋅ v = cQ v ⋅⋅⋅⋅ E, 

 
respectively.  With the single condition that one must set: 
 

(III.42)     4 ,
i

f
c

= ⋅f v  

 
which is a formula that imposes the condition upon the quadri-vector f i that: 
 

(III.43)     0,i
iV f =  

 
and if one takes the definition (12) for the tensor Bij (1) into account then formulas (401) 
and (411) can be condensed into the form: 

                                                
 (1) Recall that, for homogeneity of notation, and in order to preserve the letter F, we write Bkl and 
Hklwhere some authors – notably, R. Becker [6] – write Hkl and Fkl, respectively. 
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(III.44)     .k kl
lf B j=  

 
We remark that formula (43), which we have posed by hypothesis, is a consequence of 
(44) and (33).  That then seems to be a link between the two hypotheses (33) and (43) 
whose sense will be made precise in the following no.  Hence, the world force density 
quadri-vector results from the association of the components of the usual force density 
with the power density that it provides.  For the classical theory, only the latter quantity 
will be relative. 
 We shall now make an argument in regard to formulas (402) and (412) that is 
completely parallel to the preceding one.  Since Q is a scalar quantity (tensorial 
invariant), in order to give those formulas a covariant form, we must first multiply them 
by dt.   By definition, we set the elementary impulse-energy quadri-vector that is 
provided by the point-like charge Q equal to: 
 

(III.45)   4, .u u i i
dp dt dp d dt

c c
= = ⋅ ≡ ⋅M vF F F  

 
Formulas (402) and (412) are condensed into the form: 
 
(III.46)     dpk = Q Bkl dxl . 
 
By definition, we then set the world force that is applied to the point-like charge Q by the 
field Bkl : 

(III.47)     ,kl klF Q B=  

and then: 

(III.48)    4, .u u u vwF ic F K F= =  

 
One sees that F and v ^ K  are the Coulomb force and the Laplace force, respectively, that 
are applied to Q: 

F = e Q E, v ^ K  = Q v ^ B. 
 
We say – as always, by definition – that F is the force and K  is the coforce that are 
applied to the point Q by the field, and we see that the world force will result from the 
fusion of the force and the coforce into just one tensor.  It is only the fault of not having 
introduced the motion of coforce that the relativists have not further explicitly defined the 
finite force to be a tensor.  The relation between the apparent force F (with no definite 

variance), the force F, and the coforce K  is (491), which results from (492): 
 

(III.49)    , .= + ∧ ⋅ = ⋅F v K v F vF F  

 
 If one substitutes (47) into (46) then one will obtain the purely dynamical relation: 
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(III.50)     .k kl
ldp F dx=  

 
By definition, and to abbreviate the discussion, we often call the elementary impulse-
energy dpk the elementary quadri-work that is done by the world-force Fkl under the 
quadri-displacement dxk (in which dp4 is the elementary work, properly speaking, up to a 
factor of i / c).  Always by definition, we say that two world-forces Fkl and F′ kl are 
equivalent for a quadri-displacement dxl if they provide the same elementary energy-
impulse; i.e., if one has: 

(III.51) ( ) 0.kl kl
lF F dx′ − =  

 
The transcription of that formula into ordinary language is: 
 

( )F F K K′ ′− + ∧ −v = 0, v ⋅⋅⋅⋅ F F′ −  = 0. 
 
 Finally, electromagnetism leads us quite naturally to define the force density to be a 
space-like quadri-vector f i, and the finite force to be a second-rank antisymmetric tensor 
Fij.  Formally, those two definitions are perfectly coherent, and it seems that if ic δul 
always denotes the elementary quadri-vectorial volume then one must expect to verify the 
formula: 

δFij = f i δuj – f j δui. 
 

Now, if one takes formulas (44), (47), and (34) into account then one can easily be 
assured that the tensor: 

(III.52) ij i j j iF f dx f dxδ ′ = −  

 
will differ irreducibly from the tensor δFij that was defined by (47), when one performs 
the passage to the limit from a thin hyper-tube of charge δQ to a filamentary trajectory by 
keeping δQ constant, by hypothesis.  Since the hyper-tube and the dual ic δul of its hyper-
section are time-like, to say that the hyper-tube is infinitely thin amounts to saying that 
the instant-points of the hyper-section are contained in a quadri-parallelepiped whose 
dimensions will all vanish when one passes to the limit. 
 The inequality of the two tensors δFij and δF′ ij seems difficult to justify on first 
glance.  However, if we appeal essentially to the relation (43), which one necessarily 
introduces into the present theory, as well as the hypothesis (which is necessary for the 
passage to the limit) that the quadri-vector j l in formula (44) and the dxl in formula (50) 
are collinear: 
(III.53)     jk dxl – jl dxk = 0, 
 
then we shall show that the two tensors δFij and δF′ ij are equivalent in the sense of 
formula (51). 
 We first calculate the elementary quadri-work dδp′i that is provided by the force 

ijFδ ′ during the quadri-displacement dxi.  If one takes (43) and (52) into account then 
formula (50) can be written: 
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(III.54)     dδp′i = f i δu j dxj ; 
 
δu j dxj ≡ δω is nothing but the dual of the four-dimensional hyper-volume element.  In 
passing, we make an interesting remark that will find its application in what follows: If 
we do not consider the antisymmetry to be an essential characteristic of the second-rank 
world-force tensor then we can say that, in the sense of formula (51), there is an 
equivalence between the tensors δF′ ij and 1

ijFδ  that are defined by (52) and: 

 

(III.55)     1 ,ij i jF f uδ δ=  

respectively. 
 Now, take the tensor δFij that is defined by (47).  We will then be led to represent the 
force density by a ternary tensor that is antisymmetric in i, k: 
 

(III.56)     ,ikl ik lf B j=  

 
and to relate the finite force to that density by: 
 

(III.57)     .ik ikl
lF f uδ δ=  

 
Upon comparing them with (44) and (52), formulas (56) and (57) will show the 
irreducible difference between the tensors δFij and δF′ ij.  If we take (53) into account 
then the quadri-work that that is done by the force δFij can be written, in succession: 
 

dδpi = Bik dxk ⋅⋅⋅⋅ j l δul = Bik jk ⋅⋅⋅⋅ dxl δul , 
 
and consequently, if one takes (44) into account: 
 

(III.58)    .i i k i
kd p f u dx fδ δ δω= ≡  

 
As we have said, that expression coincides with the one (54) for the elementary quadri-
work that is done by δFij. 
 If we replace the field Bij as a function of its quadri-potential Ak in (22) in the 
expression for the quadri-work done by Fik in (47) and (50) then that will give the very 
important relation: 

(III.59)    ( ) ,k k k l
ld p QA Q A dx− = − ∂  

 
which can be used as a basis for all of the relativistic analytical dynamics of the point (no. 
V.6).  If one introduces the useful notion of total energy-impulse (inertial + 
electromagnetic): 

(III.60)     k k kP p QA≡ −  
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then one will introduce, ipso facto, an asymmetric definition: 
 
(III.61)     1

klF ′ = − Q δ k Al 

for the finite force. 
 
 
 III.8 – Case of conduction.  Laplace force and Joule heat. – If one is given a 
conducting body that is traversed by a current density j  then the classical expression for 
the force density that is applied by the field will be: 
 
(III.62)     f = j  ^ B . 
 
The experiment with the Barlow wheel, for example, shows that it is indeed the matter of 
the conducting body to which the force density is applied.  If kj ′′  denotes the conduction 
quadri-current, as always, then the expression that is covariant from the four-dimensional 
viewpoint and becomes coincident with (62) in the local proper Galilean frame will be: 
 
(III.63)     kj ′′ = Bkl

lj ′′ . 
 
Of course, if there also exists a proper charge density inside the body, and consequently, 
a convection quadri-current, then one must add the expressionkf ′ , whose theory was 

given in the preceding no., to kf ′′ , and one will then set: 
 
(III.64)     f k = k kf f′ ′′+ , 
 
in the general case.  Since jk = k kj j′ ′′+ is not collinear with Vk in the present case, the 
force f k will no longer satisfy the relation (43).  Now, one recalls that it is that relation 
that is the basis for the equivalence of the two expressions for the finite force [eq. (54)]: 
 

ijFδ ′ = f i δu j – f j δui  and  1
ijFδ = f i δu j. 

 
In what follows, it will be shown that, contrary to what one might think a priori, it is the 
second, asymmetric, one of the two preceding expressions that must be retained. 
 Now, if r denotes the resistivity of a material medium, and consequently 1 / r denotes 
its conductivity, consider the density expression of Ohm’s law: 
 

(III.65)     
1

cr
E = j . 

 
If one assumes that r is a relativistic invariant then one will see, with Minkowski, that the 
only covariant relation that one can establish between the tensors Bij and jk that will agree 
with (65) in the local proper frame is [cf., eq. (121)]: 
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(III.66)     .ik i
kV B r j′′=  

 
Vk always denotes the quadri-velocity field of the conducting body.  By definition, Vk / r 
is the quadri-vectorial conductivity, and 1 / r is the scalar conductivity of the body under 
consideration. 
 Finally, always in density form, consider the classical expression for the Joule heat 
that is released in the elementary volume δu during the elementary time dt (1): 
 
(III.67)     J dδQ = j 2 δu dt. 

 
Naturally, in relativity, we will make sure to preserve the scalar character of the universal 
constant J.  If we first adopt the quadri-vectorial concept of conductivity then we will see 
that one covariant way of writing it that will agree with (67) locally will be: 
 

(III.68)    
2

1
( ).k l k

k l kJ V d j j u dx
c r

δ δ′′ ′′− =Q  

 
The finite heat is then defined to be the temporal component of a certain quadri-vector, as 
was done already for energy [eq. (452)].  The three spatial components of that quadri-
vector (whose world-direction we leave indeterminate, for the moment, and whose study 
we shall pursue in no. IV.20) will obviously deserve the name of caloric impulse. 
 In no. IV.1, we shall see that it is quite useful to define the notion of the proper – or 
scalar – energy of a material drop E, along with that of quadri-vectorial impulse-energy.  

In the case of an infinitesimal drop, the proper energy will be nothing but the length of 
the energy-impulse quadri-vector.  Here, the notion of proper heat that is homogeneous 
to the proper energy is introduced quite naturally by starting with that of the scalar 
conductivity; indeed, the notation: 
 

(III.69)    0

1
( )l k

l kJ d j j u dx
r

δ δ′′ ′′=Q  

 
will obviously agree with (67) locally.  For a conducting droplet δuk or δu0 ≡ Vk δuk,  the 
relation between the quadri-vectorial heat and the proper heat will be: 
 

(III.70) 2
0.

k
kV cδ δ= −Q Q  

 
 Upon taking into account formulas (63) and (66), in succession, one can write: 

                                                
 (1) Integrate formula (67) over du for a filamentary element of the conductor of length l and section s, 
and take into account the known formulas: 

R = rl / s,       I = sj, 
in which R denotes the resistance, and I, the intensity.  One will then get the well-known integral formula: 

J dQ = RI2 dt. 
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(III.71)     i
iV f ′′  = − k

kr j j′′ ′′ , 
 
in such a way that the expression (69) for the proper Joule heat can be further written: 
 

(III.74) [sic]   0 ( ).i k
i kJ d V f u dxδ δ′′= −Q  

 
 In no. IV.5, we shall see how that result is interpreted in the dynamical theory of 
volume forces, and, conforming to what we have said, it will appear that the definition of 
the finite force that we must retain is the asymmetric definition (55). 
 
 

D.  THE ELASTIC TENSORS OF THE FIELD. 
SPIN DENSITY AND ELECTROMAGNETIC COUPLE DENSITY ( 1). 

 
 III.9 – The asymmetric Maxwell-Minkowski tensor and the density of 
electromagnetic ponderomotor couples. – If Bkl and Dkl denote the duals of the two 
arbitrary antisymmetric tensors Eij and Hij , respectively, then one will effortlessly verify 
the identity (2): 

(III.75)   1 1
, , 2 2 .ik j jk i kl ij kl ij
k k kl klE D B H E D B Hδ δ+ ≡ ≡  

 
 That being the case, start with Maxwell’s equations − with and without right-hand 
sides – namely, (18) and (131), resp., as well as Lorentz’s formula (44).  One can then 
write: 

f i = − Bik ∂l Hlk + Dik ∂l Elk , 
 
and if one takes the identity (75) into account then one can transform it into: 
 

f i = − 1
2 Bik ∂lHlk + 1

2 Elk ∂lDik − 1
4 Bkl ∂l Hlk δ ij + 1

2 Dik ∂lElk − 1
2 Hlk ∂lBik + 1

4 Hkl ∂l Blk δ ij. 
 

Then set, by definition, the relativistic elastic tensor of the field, or Maxwell-Minkowski 
tensor: 

(III.76)   1 1
, , ,2 4[ ] .ij ik j ik j ik j kl ij
k k k klM D E B H B H B H δ= − ≡ − +  

 
The result that was obtained can then be written: 
 

                                                
 (1) The novice reader of relativity should defer reading this § D until he is familiar with the theory of 
inertial tensors of elastic type in Chapter IV, § A, as well as that of ponderomotor and proper kinetic 
moments in Chapter IV, § B.  All of the elements that are necessary for one to establish the relativistic 
dynamics in Chapter IV, § A are contained in the preceding § C. 
 (2) For i ≠ j, take i, j = u, v = 1, 2, 3, for example.  One will have: 

(Huw Dv
,w – Hu4Dv

,4) − (Hu4 Dv
,4 – uwDv

,w) ≡ 0. 
For i = j, take i = j = 4, for example.  One will have: 

Hu4 Du
4 + 1

2  Hvw Dvw ≡ 1
2 Hkl Dkl . 
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(III.76)    1
4 [ ].i ik kl i i kl

k kl klf M H B B H= ∂ + ∂ − ∂  

 
To our knowledge, Minkowski was the first to exhibit the presence of the 14 [ i] term in the 

right-hand side of the expression for f i in the general case (1). 
 The Maxwell-Minkowski tensor is defined for any instant-point, inside the polarized 
matter, as well as outside it; however, the force density f i is, of course, zero in vacuo.  Bkl 
= Hkl in vacuo or in non-polarized matter, and the 1

4 [ i] will term disappear.  The same 

thing will be true under the hypothesis that is usually adopted that in a certain Galilean 
frame G0 : 

D0 = ε E0 , B0 = µ H0 , 
 
with ε = const. and µ = const.; indeed, since the quadri-vector 1

4 [ i] is then zero in G0 , it 

will be intrinsically zero (2). 
 It is important to remark that the tensor Mik is defined only by starting with its 
divergence in k; i.e., only up to an additive tensor whose divergence in k is zero.  The 
interpretations of the components of Mik that we shall give, and which are generalizations 
of concepts that are due to especially Maxwell and Poynting (not to mention Abraham 
and Poincaré), are physically ambiguous then, in the sense that an arbitrary additive 
constant will be implied in them.  That remark, we repeat, arrives at the same calculation 
principle that is found in Maxwell [99].  Hence, in particular, one can consider the energy 
density w of the Maxwell field to be defined only up to an additive constant.  That remark, 
when combined with the presence of the Minkowski term 1

4 [ i] in formula (77), confers a 

somewhat fictitious character upon the set of classical interpretations that we shall 
present as a coherent whole, thanks to relativity. 
 Recall the expression (76) for the elastic tensor of the universe M ij.  For i = j = u = v 
= 1, 2, 3, one will get the nine well-known expressions for the pre-relativistic Maxwell-
Heaviside-Hertz tensor: 

(III.78)    1
2 ( ) ;uv u v u v uvM H B E D δ= + + ⋅ − ⋅D E B H  

 
for i, j = u, 4, and i, j = 4, u, one will get the two Poynting vectors: 
 

(III.79)   4 4
(1) (2)[ ] , [ ] .u u vw u u vwR i M R i M≡ − = ∧ ≡ − = ∧D B E H  

 
The first of them is interpreted as the impulse density of the field, and the second one is 
its energy current density.  Finally, for i, j = 4, 4, one will get the well-known expression 
for the energy density of the field: 
                                                
 (1) Gott. Nachr., (1908), pp. 53 or Math. Ann. 68 (1910), pp. 472; see also § 13 of the study in question. 
 (2) In the case where the system contains permanent magnetism, the preceding relations between the 

fields and the inductions will not be satisfied inside of the magnets, and the term4
1 [i] must be taken into 

consideration.  If one omits it then one will, in particular, arrive at an erroneous expression for the energy 
of the system and certain incorrect physical predictions.  (Course taught by L. de Broglie in 1948-1949 at 
l’Institut Henri Poincaré.  Note added during correction of the proofs.) 
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(III.80)    44 1
2 ( ).w M≡ − = ⋅ + ⋅D E B H  

 
 In regard to the definition (762) of the tensor M ij, one sees immediately that its trace 

i
iM , which is physically homogeneous to the proper (or scalar) energy density of a 

continuous material medium, is zero: 

(III.81) 0.i
iM =  

 
Moreover, if one constructs the proper ponderomotor couple density of the universe 
tensor from the theory of elasticity: 

(III.82)     ij ji ijM Mµ = −  

or 

(III.83) ij jk i ik j jk i ik j
k k k kB H B H D E D Eµ ⋅ ⋅ ⋅ ⋅= − ≡ −  

 
then one will effectively recognize, with Maxwell and Heaviside, that its components: 
 

(III.84)    [ ]w uv uvµ µ≡ = ∧ + ∧H B E D  

 
are the well-known components of the density of couples that are applied to the polarized 
body.  In passing, we point out the expressions: 
 
(III.85)     i µu4 = [D ^ B – E ^ H]vw. 
 
 
 III.10. – Another elastic tensor for the field.  Its relationship to a couple density 
that was considered by E. Henriot. – We always start from Lorentz’s formula (44) and 
substitute in it, not just the Maxwell-Minkowski equations with a right-hand side, but 
also their consequences (28) and (22), respectively.  We can write: 
 

f i = (∂ kA i – ∂ iAk) jk = ∂k
 (A i jk) – jk ∂ iAk, 

 
and the last group of equations will be transformed into: 
 

– jk ∂ iAk = – 1
2  jk ∂ iAk − 1

2 ∂i (A k jk) – 1
2  jk ∂ iAk. 

Finally, if we set: 

(III.86)     1
2

kl k l i ij
iN A j A j δ= −  

 
then we will get the following expression for f i : 
 

(III.87)    1
2 [ ].i ik k i i k

k k kf N A j j A= ∂ + ∂ − ∂  
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The forms of the relations (86) and (87) are curiously parallel to those of (76) and (77), 
resp. 
 Contrary to the Maxwell-Minkowski tensor, the new elastic tensor N ik is not defined 
in vacuo, but only in matter where a quadri-current of convection, conduction, or 
polarization is present; the same thing will be true for the quadri-vector 12 [ i], which is not 

zero, in general (1). 
 We study the various components of the tensor N kl.  For k, l = u, v = 1, 2, 3, one will 
get the nine components of an elastic tensor in ordinary space: 
 

(III.88)    1
2 ( ) .uv u v uvN A j cVq δ= − ⋅ −A j  

 
For k, l = u, 4 and k, l = 4, u, one will get an impulse density vector (2), and an 
electromagnetic energy-current density vector: 
 

(III.89)   4 4
(1) (2), .u u u u u uR iN cqA R iN Vj∗ ∗≡ − = ≡ − =  

 
Finally, for k, l = 4, 4, one will recognize the classical expression for the electromagnetic 
energy density, which is assumed to be concentrated in the distribution of currents and 
charges: 

(III.90)    44 1
2 ( ).w N cVq∗ ≡ − = ⋅ +A j  

 
Of course, just like the components of the tensor Mkl, one must not consider the preceding 
expressions to be those of the “true” physical values, because the tensor Nkl is defined 
only up to an additive tensor whose divergence in l is zero.  Moreover, a 12 [i] term is 

present in (87) that is not identically zero. 
 Contrary to the situation for the tensor Mkl, the trace of the tensor Nkl is not zero, and 
one will have: 

(III.91)    .i k
i kN A j cVq− = = ⋅ −A j  

 
That expression is homogeneous to what one calls a proper (or scalar) energy density of 
the distribution. 
 Finally, consider the tensor vkl, which is physically homogeneous to a proper 
ponderomotor density of the universe: 
 

(III.92) kl lk klN Nν = −  

or 

                                                
 (1) In L. de Broglie’s Théorie du photon, a quadri-current j k = 2

0
µ Ak prevailed, for which the coefficient 

2

0
µ  was very small. 

 (2) 
(1)

uR∗  is indeed the density quantity that is homologous to the electromagnetic impulse c Q Au of a 

point-like charge.  
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(III.93)     .kl l k k lA j A jν = −  

 
That formula can be written explicitly as: 
 

(III.94)   [ ] ,w uv uvν ν≡ = ∧A j  vu4 = i (V j  – cq A)u. 

 
The three vw correspond to a couple density, properly speaking. 
 Physically, it is certain that the couple density vw is not manifested, which should not 
seem absurd in light of the remarks that were made.  Nevertheless, the consideration of 
the tensor vkl is not entirely devoid of interest.  E. Henriot encountered that same tensor, 
and with the same interpretation, along another path [107, pp. 47]. 
 
 
 III.11. – A formula of E. Henriot.  The two spin densities of the electromagnetic 
field. – To conclude these considerations, we shall prove a formula of E. Henriot in our 
manner and generalize it slightly.  We start with the expression µ kl – ν kl and infer from 
(83) and (93) that: 

µ kl – ν kl = − { }k li i k
i jH B A ⋅
⋅ +  + {symmetric in k, l}.  

 
If one replaces B kl with (22) and j  k with (18) then one will get: 
 

− { }( )k i l l i l ki
i iH A A A H⋅ ∂ − ∂ + ∂  + {symmetric in k, l} 

= − { }( ) ( )i l ki l ki l ki
i iA H H A A H∂ − ∂ + ∂  + {symmetric in k, l} 

= ( ) ( ) ( ) [ ]k li l ki l ki k li l ki k li
i i i iA H A H H A H A A H H∂ − ∂ − ∂ − ∂ − ∂ . 

 
However, if one sums over all cyclic permutations and takes into account the definition 
(202) of the magnetic polarization current, as well as Maxwell’s equation (13) with a 
right-hand side, then: 

∂l Hki − ∂k Hli = i klH∂∑ + ∂i Hkl = l ikl + ∂i Hkl. 

 
Finally, if one takes the Lorentz condition (25) into account then one can write: 
 

Ai [∂l Hki − ∂k Hli] = − Ai l
ikl + ∂i (A

i Hkl). 
Then set: 

(III.95)   
(2)

(2)

2 ,

,

ijk i jk j ik k ij k ij

i ik
k

A H A H A H A H

H A

σ

σ

 = − ≡ −



=


∑
 

 
in which the summation is again over all cyclic permutations, and one will arrive at E. 
Henriot’s formula [107, pp. 13-14, formula B], which has been generalized by taking the 
magnetic polarization current into consideration: 



80 Chapter III – Relativistic electromagnetism 

 

(III.96)    (1) (2) (2)[ ].ij ij ijk ijk j i i j
k kA lµ ν σ σ σ− + = ∂ + ∂ − ∂  

 
The antisymmetric tensors µ ij and v ij are physically homogeneous in the proper 
ponderomotor couple densities, while the ternary tensor σijk

(1) , which is antisymmetric in 
i, j, and the quadri-vector σi

(2), is homogeneous in the spin densities of electromagnetic 
origin.  E. Henriot called these two groups of tensors torques and momentors, 
respectively. 
 

____________ 
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CHAPTER IV 
 

RELATIVISTIC DYNAMICS  
 
 

 IV.1. – If the deduction of relativistic dynamics imposes that one must appeal to 
electromagnetism then that is because, before Einstein, dynamics ignored the role that 
was played by c in its proper domain (1). 
 The most fundamental intervention of the constant c in dynamics is produced by the 
law of universal proportionality between mass and energy: 
 

W = c2 m 
 

that was deduced by Einstein and Langevin at almost the same time.  That law constitutes 
the great physical discovery of the theory. 
 Since Einstein, the traditional manner of basing relativistic dynamics consisted of 
imposing the laws of variance of force upon electromagnetism.  In regard to that, one 
remarks that the argument is much more incongruous than the much easier one that one 
finds upon starting with relativistic electromagnetism.  Now, to us, that situation is 
provided uniquely by the fact that one generally bases relativistic dynamics by starting 
with the dynamics of points.  On the contrary, we show that the deduction in question can 
be performed without the least incongruity, and by simple transcription, if one works in 
terms of continuous media.  The equations that one must use for that – whose generality 
is perfect – are not usually given in the treatises on Newtonian mechanics.  We must then 
start by establishing them at the onset of the present chapter by a brief argument from 
Newtonian mechanics.  To our knowledge, von Laue was the first to write down those 
equations ([4], 28 b and Appendix c).  The ease by which one thus founds relativistic 
dynamics must be compared with the ease by which one relativistically transcribes the 
Maxwell-Lorentz field theory.  Indeed, all of the equations of the latter theory are density 
equations in which the fields are homogeneous to polarization densities.  Conforming to a 

                                                
 (1) In his course at the Collège de France (which is, unfortunately, unpublished), P. Langevin showed 
by an ingenious argument that that certain very general energetic postulates permit one to establish 
deductively the expression for the vis viva of a material point, and starting from that, all of dynamics.  If the 
kinematics used is that of Galileo then one will get back to the classical expression mv2 / 2; on the contrary, 

with that of Lorentz, one will get the Einsteinian expression for mass m = m0 / 21 β− . 
 In his likewise-unedited papers, Allard has generalized Langevin’s arguments considerably.  He showed 
that the entire theory of the dynamics of a point can be constructed abstractly without appealing to 
kinematics.  After postulating the existence of the vis viva theorem, he then showed that the theories 
kinematics that were still possible were three in number: That of Galileo-Newton, that of Lorentz-Poincaré, 
with a universal constant that he identified with c, and a symmetric kinematics in which the ds2 is positive-
definite. 
 Along the same order of ideas, an argument that is even more general, and is based upon the theory of 
groups, was presented by V. Lalan [89].  Lalan specified some very general postulates that implied either 
only classical kinematics or the alternative of classical kinematics and that of relativity as a consequence. 
 The interest that these abstract considerations present is uncontestable.  From the viewpoint of the 
theoretical physicist, they amount to constituting an a posteriori classification of results that are found by 
much simpler inductions. 
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remark that is becoming classical, the extreme affinity between relativity and the theories 
of continuous media and fields is verified once more. 
 Once we have written the well-known fundamental equations of the relativistic 
dynamics of fluids, which are found by starting with the universal law w = c2ρ in its 
density form, we will direct our attention to proper mass density ρ0 of the fluid.  That will 
give rise to a double series of inductive generalizations, one of which concerns the 
volumetric force density, and the other of which concerns the force density of surface 
origin.  In the former case, we shall give an absolute generalization of a result that was 
found in the context of Joule’s theory of heat (no. III.8) that relates to the creation and 
annihilation of energy or mass.  In the latter case, we begin by giving a theory of 
isotropic pressure in fluids that will find some applications later on (nos. IV.21 and V.2).  
To conclude sub-chapter A, we will deduce the relativistic dynamics of points from that 
of continuous media.  We put the classical results into covariant form that is made 
possible by our definition of the rank-two finite force tensor (no. III.7). Recall that in the 
relativistic dynamics of points, the vis viva theorem, as well as the variation of mass with 
velocity, are essentially kinematical effects, or with the established terminology, relative 
ones. 
 Our sub-chapter B is dedicated to the problem of the relativistic theory of the proper 
kinetic moment, or spin.  Like the other authors that are interested in that subject, and 
whose work will be mentioned in the bibliography, it is naturally the interpretation of 
certain equations in quantum theory − and mainly Dirac’s theory of the electron − that we 
have in mind.  On that subject, the tendency of some authors has been to argue in terms 
of integrals, rather than densities.  True to our chosen path, we have, on the contrary, 
made all of our arguments in terms of continuous media, in order to deduce the case of 
the material point as only a result of them.  In that regard, the work of Weyssenhoff and 
Raabe is very close to ours.  It is satisfying that two inductive arguments that are 
compelled by the nature of things and completely independent of each other are 
essentially compatible in all of their common results.  In that same sub-chapter B, we 
have introduced the consideration of general surface forces of elastic type.  The reader 
will perhaps be surprised to see a theory of essentially microscopic origin – viz., that of 
spin – together with a theory of an essentially macroscopic and statistical nature – viz., 
that of elastic forces; the single justification for such an agreement resides in the great 
kinship (which is wrong, except as a formal identity) between the mathematical concepts 
that are implied by one theory and the other.  The formulas that are obtained are of great 
generality, but it results from the entire system of current knowledge that they have two 
radically distinct domains of application: On the one hand, the microphysical one, in 
which the theory of fictitious probability fluids essentially ignores the elastic forces, and 
on the other hand, the macrophysical one, in which no possible manifestation of proper 
kinetic moments has ever been confirmed.  In that way, the two series of applications of 
our general formulas will be based upon the identical annihilation of entire groups of 
terms. 
 In sub-chapter C, we shall begin the unresolved problem of the relativistic dynamics 
of systems of points in interaction.  To commence, once we have generalized a 
fundamental theorem of the theory of torsors into four-dimensional terms, we shall give 
the mean technique for consistently defining the notions of barycenter and moment about 
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the barycenter (1).  Guided, in turn, by electromagnetism, as is expressed by the notions 
of the density of energy that is distributed throughout the Maxwell field and Abraham-
Poincaré’s potential impulse density, we shall show that in order to arrive at the 
relativistic statement of some classical general theorems, one must take into 
consideration the distribution and step-by-step transmission of energy and impulse (as 
well as spin) in “potential” form throughout the field.  It will then appear that by its very 
nature, the relativistic dynamics of systems prohibits the approximations that permit one 
to use general theorems as intermediaries in the reasoning of Newtonian dynamics.  It 
turns out that the problem considered must be essentially a field problem, which is 
qualitatively apparent in the N-body problem of general relativity. 
 Our last sub-chapter is dedicated to some general considerations of relativistic 
thermodynamics.  That subject seems to have been somewhat forsaken between the 
epoch of the fundamental papers of Einstein and Planck, which both appeared in 1907, 
and the epoch of the modern work of Tolman, Van Dantzig, Eckhart, Bergmann, and 
other authors.  Now, there is a curious divergence regarding a main question that appears 
between these two series of papers, namely, the question of the variance of temperature.  
For Einstein and Planck, the variance of temperature, which has no tensorial character, 
seems to be that of the volume of a portion of matter that is considered at a single 
moment.  On the contrary, the modern authors, while directing all of their attention to the 
problem of continuous media, have defined the inverse of temperature.  For one group 
(Tolman, Eckhart), it was an invariant θ0, while for the other (Van Dantzig, Bergmann), it 
was the θ 4 component of a quadri-vector θ i.  That dilemma, as well as the one that we 
spoke of in the Foreword, presents itself in close connection with the one that is posed by 
the practice of integrating at constant time, or with the use of complete differential forms, 
in the sense of E. Cartan; we shall discuss that question in no. IV.19 in a particular case.  
Then, in IV.20, we shall systematically present the viewpoint of integral invariants, 
which is that of all our work.  For the sake of illustrating some new tensorial definitions 
of temperature, IV.21 and IV.22 will give covariant expressions for the fundamental 
equations of the theory of thermal conduction and that of perfect gases, respectively.  For 
a more adequate development of relativistic thermodynamics, we refer the reader to the 
work that is especially devoted to that subject. 

 
 

A. – GENERAL EQUATIONS OF THE DYNAMICS  
OF INVISCID FLUIDS WITHOUT SPIN. 

DEDUCTION OF THE DYNAMICS OF POINTS WITHOUT SPIN.  
 

 IV.2 – Preamble: General form that one can give to the equations of continuous 
media in Newtonian mechanics.  On the classical principle of the conservation of 
mass. – We begin by establishing a general formula from Newtonian fluid mechanics that 
we shall give several applications of.  Let v or vu (u = 1, 2, 3) be the velocity field of a 
fluid at the instant t, let δu be an infinitesimal volume of matter that follows its motion, 
and let Φ be an arbitrary function of the fluid molecule; i.e., it follows the motion from 
                                                
 (1) We have just been made aware of an interesting, and quite recent, work by H. L. Pryce that is 
dedicated to that double question, and thanks to it, the existence of some prior studies of Fokker and 
Papepetrou (note added in correction). 
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the geometric standpoint.  Indeed, Φ will be the volumetric density of one of the 
quantities that are taken under consideration.  For our purposes, we must essentially 
suppose that the material volume δu remains infinitesimal in all of its dimensions in the 
course of time, which is a hypothesis that is frequently made in fluid mechanics, and that 
one can call “anti-ergodic.” 
 The increases in the function Φ and the material volume δu during the infinitesimal 
time dt have the expressions: 

dΦ = (vu ∂u Φ + ∂t Φ) dt, 
d (δu) = div v δu dt ≡ ∂u vu δu dt, 

 
respectively.  When combined, these two relations will give the general formula that we 
have in mind: 
(IV.1)    d (Φ δu) = {∂u (Φ vu) + ∂t Φ} δu dt. 
 
 We then take the well-known fundamental equations of point dynamics: 
 
(IV.2)    F dt = d (m v),  F dM  = dW. 

 
We have taken the expression F dt in a form that is appropriate for our purposes, and not 

in the form m dv, which is equivalent in Newtonian mechanics.  We shall deduce the 
general equations of continuous media from the preceding equations by an application of 
formula (1).  Ultimately, in relativistic dynamics, we shall proceed in the opposite order 
and deduce the equations of a point from those of continuum mechanics. 
 Let δm be the mass of the droplet δu, let δ F be the total ponderomotor force that is 

applied to it, let δW be the work that it has done since an arbitrary initial time, and define 
the corresponding densities ρ, f, w by: 
 
(IV.3)    δm = ρ δu, δF = f δu, δW = w δu. 

 
The fundamental equations (2) for the droplet δu are written: 
 
(IV.4)    f δu dt = d (ρ v δu), (f ⋅⋅⋅⋅ v) δu dt = d (w δu). 
 
There is no reason to add the corresponding equations “in moments” to them, because in 
the case considered of an inviscid fluid without spin, the kinetic and ponderomotor 
moments that relate to the droplet δu are infinitely small of fifth order, while all of the Φ 
δu in the problem are of third order. 
 Upon applying formula (1) to the right-hand side of equations (4) and dividing both 
sides by δu dt (1), one will get the four equations: 
 

                                                
 (1) Recall that δu dt is a relativistic invariant [no. II.6, eqs. (11), (27)].  
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(IV.5)    
( ) ( ),

( ) ( ).

u u v v
v t

u
u t

f v v v

wv w

ρ ρ= ∂ + ∂
⋅ = ∂ + ∂f v

 

 
One sees an inertia tensor vu vv enter into them that is symmetric and of rank two, and 
which provides a contribution of “elastic” type to the force density.  That tensor has a 
degenerate form, moreover, since it is the general product of a vector by itself. 
 Newtonian mechanics assumes the conservation of the mass δm of each droplet δu as 
a principle.  An application of formula (1) will then immediately provide the classical 
continuity equation: 

(IV.6)    ( ) ( ) 0.u
u tvρ ρ∂ + ∂ =  

 
From an interesting remark that is due to E. Durand, we then take out the quantity ρ δu in 
the ( ) on the right-hand side of (41) that is reputed to be conservative and make it appear 
in the ( ) in the right-hand side of (42) so we can treat it likewise.  Moreover, we scalar 
multiply the two sides of (41) by v, so we will get the relation: 
 

v dv = 
w

d
ρ

 
 
 

 

in a general manner, which will give: 
 

(IV.7) 21
 const.  

2

w
v

ρ
= +  

 
by integration.  We point out that, up to the present, relativity rejects both formulas (6) 
and (7). 
 
 
 IV.3. – Deduction of the fundamental laws of the relativistic dynamics of 
continuous media. – Our first group of postulates, which is completely similar to the one 
that has classically been the basis for relativistic electromagnetism since Minkowski, 
consists of: 
 
 α) Taking and preserving density equations such as (5). 
 
 β) Employing the notion of the quadri-vector differential ∂i, with: 
 

∂4 ≡ 1

ic
∂ t. 

  
 However, as has been known since the beginning, a second group of postulates that 
are imposed by the lessons of electromagnetism are necessary if one is to base relativistic 
dynamics.  Here, we take them in the form: 
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 γ) The ponderomotor force density f u is of purely volumetric origin. 
 
 δ) The power density: 

f 4 = 
i

c
f ⋅⋅⋅⋅ v 

 
must be associated with the three f u in order to form a quadri-vector f i that is found, ipso 
facto, to be orthogonal to the quadri-vector Vi : 
 

(IV.8)     0.i
iV f =  

 
We point out that in the course of some ultimate inductions, we will liberate ourselves of 
the two postulates δ and γ. 
 By means of this set of postulates, and under the simple condition that we set: 
 

(IV.9)    4 4

44

,

, ,

,

uv vu u w

u u u u

T T v v

i
T ic v T wv

c
T w

ρ

ρ

= =

= =

= −

 

 
the four equations (5) can be condensed into the form: 
 

(IV.10)     ,i ij
jf T= ∂  

 
and one will see that the 16 functions ijT  are the components of a second-rank tensor.  
Since the nine uvT  are essentially symmetric, the tensor ijT  is necessarily symmetric (1).  
From the fact that: 

T u4 = T 4u, 
 
one concludes the extremely important relation: 
 

(IV.11)     2 ,w c ρ=  

                                                
 (1) Indeed, consider the transformation formula: 

u v
T

′ ′
= u v ij

i j
o o T

′ ′
. 

The entire contribution from the right-hand side is essentially symmetric in u′, v′, except perhaps the ones 
from the terms: 

4 4

4 4

u v u u v u

u u
o o T o o T

′ ′ ′ ′
+ . 

Upon expressing the idea that the latter contribution is invariant under a permutation of u′ and v′, one will 
get: 

Tu4 = T4u. 
   Q. E. D. 
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which constitutes the great physical discovery of relativity, and which establishes a 
universal proportionality in the ratio c2 between the mass and energy (or, what amounts 
to the same thing, between their densities).  That universal relation substitutes for the 
universal relation (7) that was established by classical theory.  If one likewise takes the 
indeterminate classical constant equal to c2 then the two relations will coincide when v → 
0.  Upon substituting the fourth of (5) in (11), one will get the relation: 
 

(IV.12)    
2

1
( ) ( ) ,u

u tv
c

ρ ρ∂ + ∂ = ⋅f v  

 
which will replace the classical equation of continuity (6).  The new right-hand side, 
which is extremely small, is defined relative to the Galilean frame that is used. 
 Now, introduce the proper values ρ0 and w0 of the mass and energy densities, resp.; 
i.e., the values that ρ and w take in the co-moving Galilean frame locally and 
instantaneously.  Naturally, the law of equivalence: 
 

(IV.13)     2
0 0w c ρ=  

 
must be true for these proper densities, in particular.  It is clear from (9) that one will 
have: 

(IV.14)   ρ = 0
21

ρ
β−

 , w = 0
21

w

β−
 

v

c
β = 
 

. 

 
 If the quadri-vector V i is still defined by (II.62) then the expressions (9) for the 
inertia tensor condense into the form: 

(IV.15)     0 .ij i jT V Vρ=  

 
One has the following two equivalent expressions for the trace of the inertia tensor: 
 

(IV.16) 2 2 2
0( ) .i

iT v c cρ ρ= − = −  

 
Up to the factor – c2, the trace can then be interpreted as the proper mass density of the 
fluid. 
 If one takes the expression (15) for ijT  into account then the fundamental equation 
(10) can be written: 
(IV.17)    f i = ∂j (ρ0 V i V j) = V i ∂j (ρ0 V j) + ρ0 V′ i . 
 
If one multiplies all terms by Vi , while taking into account the hypothesis (8) that is 
presently adopted, as well as (II.62), one will get the relation: 
 

(IV.18)     0( ) 0,j
j Vρ∂ =  

which will imply that: 
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(IV.19) f i = ρ0 V′ i, 
 
when it is substituted in the preceding equation. 
 One sees that equation (18), which is already in its density form, expresses the idea 
that there is conservation of proper mass within the fluid that answers to the present 
theory, and that this result will already seem paradoxical, since from the relativistic 
proportionality between mass and energy, it seems clear that the work that is done by the 
forces of pressure and viscosity must contribute to the proper mass of the fluid drop.  It 
will soon appear that the very simple explanation for that paradox is that all of the present 
theory ignores the forces of surface origin, in principle.  Upon introducing the theory of 
those forces, we will see that formula (18) can be completed by a right-hand side of 
appropriate form.  Before we do that, however, we must generalize the theory of 
volumetric forces in such a manner that it makes the case in which there is (at least 
approximately) creation or annihilation of energy or mass understandable, since that takes 
place in Joule’s electro-thermal effect, and even in the hydrodynamical theory of sources 
and sinks. 
 As for formula (19), which is a consequence of the theory in its present state, it might 
seem seductive at the moment to regard it as something that yields a covariant 
generalization of the general formula from Newtonian mechanics: 
 

f = ρ γγγγ    . 
 
In reality, in what follows, it will appear clearly that this formula hass value here only by 
a fortuitous set of compensations that result from the too-restrictive postulates upon 
which the theory presently rests. 
 
 
 IV.4 – Continuation of the argument: integral forms. – Multiply both sides of 
equation (10) by the four-dimensional element δω and integrate over the domain that is 
enclosed by the lateral hyper-wall P of a current world-tube and two spacelike hyper-

endcaps E1 and E2 .  From what was said at the end of no. III.7, the expression: 

 
if δω∫∫∫ ∫  

 
that appears in the left-hand side is interpreted as the quadri-work that is done by the 
finite world-force; i.e., as the ponderomotor energy-impulse: 
 

(IV.20)     ∆pi = ij
jF dxδ∫∫∫ ∫E T
. 

 
As always, E denotes a spacelike current hyper-endcap that must initially coincide with E1 

and finally with E2 , and T is a segment of the general world-streamline.  Once more, by 

virtue of what was said in no. III.7, and essentially taking into account the hypothesis (8) 
that was placed at the head of the entire present theory, one can take the tensor δFij to be 



A. – Inviscid fluids without spin.  Points without spin. 89 

 

the antisymmetric expression (211) or the asymmetric expression (212) indifferently, 
since they are equivalent in the sense of equation (III.51): 
 

(IV.21)   (1), .ij i j j i ij i jF f u f u F f uδ δ δ δ δ= − =  

 
 The quadruple integral that is provided by the right-hand side of equation (10) is 
transformed into a triple integral that is taken over the contour E2 − E1 + P of the 

preceding domain, which is written (for the third form, see eq. II.80): 
 

ij
jT uδ∫∫∫ = 0

i j
jV V uρ δ∫∫∫ = 0 0

iV uρ δ∫∫∫ . 

 
The scalar product V j δui is identically zero on the hyper-wall P, so the contribution of P 

to the triple integral will be identically zero, and what will finally remain in the right-
hand side is: 

2 1

ij ij
j jT u T uδ δ−∫∫∫ ∫∫∫E E

. 

 
Suppose, first of all, that in the Galilean frame that is being used, the current hyper-
endcap that represents the material drop E as it follows it in its motion is planar and 

horizontal; i.e., that the state of the current is defined at constant time.  By definition, we 
therefore provisionally place ourselves under the “simultaneity hypothesis” that we shall 
have to consider in what follows with several repetitions.  Of the four δuj , only: 
 

δu4 = 
1

ic
δu = 

1

ic
dx1 dx2 dx3  

 
will be zero then, in such a way that if one takes (9) into account, as well as (11) then the 
four components of the triple integral considered can be written simply: 
 

(IV.22)   pu = uv uρ δ∫∫∫ , p4 = ic uρ δ∫∫∫ ≡ ic mδ∫∫∫ , 

 
One recognizes the classical definitions of the inertial impulse and mass m of the drop E, 

resp., in this.  In the general case where the current hyper-endcap E is arbitrary (but 

spacelike), one can continue to say that, by definition, the integral: 
 

(IV.23)   0 0 0
i ij i j i

j jp T u V V u V uδ ρ δ ρ δ= ≡ ≡∫∫∫ ∫∫∫ ∫∫∫E E E
 

 
represents the inertial mass-impulse of the material drop E.  Taking into account (II.75), 

and in infinitesimal form, that relation can be made explicit as follows: 
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(IV.24)  pu = ( )u u v
vv u v v s dtρ δ ρ δ+∫∫∫ , m = ( )u

uu v s dtρ δ ρ δ+∫∫∫ . 

 
Just as was true for equation (III.36′), the last groups of terms can be interpreted as a flux 
of impulsion and energy, resp., and correspond to a relativistic correction from non-
simultaneity. 
 Finally, if one integrates in the way that was just described and takes into account the 
definitions (20) and (23), equation (10) can be written: 
 
(IV.25)     ∆pi = (2) (1)

i ip p− , 

or if one prefers, more explicitly: 
 

(IV.26)  
2 1 2 1 2 1

0 0 0.
i ij i j i

j jf T u V V u V uδω δ ρ δ ρ δ
− − −

= ≡ =∫∫∫ ∫ ∫∫∫ ∫∫∫ ∫∫∫E E E E E E
 

 
On the left-hand side, one has the ponderomotive expression for the energy-impulse that 
is provided to the drop E between the state 1 and the state 2, and on the right-hand side, 

one has the variation of its inertial mass-impulse between those same two states.  That 
equation then summarizes the fundamental theorems of impulse and energy in a 
relativistic form. 
 Now, take equation (18), and integrate it over the preceding four-dimensional 
domain.  The left-hand side will then transform into the triple integral: 
 
 

2 1
0

i
iV uρ δ

− +∫∫∫E E P
≡ 

2 1
0 0uρ δ

− +∫∫∫E E P
, 

 
and for the same reason as before, the contribution of P to that integral will be identically 

zero.  On a current hyper-endcap E, the expression V iδui ≡ δu0 is nothing but the 

elementary scalar (or proper) material volume (eq. II.80).  It is then clear that the 
expression: 

(IV.27)    0 0 0 0
i

im V u uρ δ ρ δ= ≡∫∫∫ ∫∫∫E E
 

 
deserves the name of proper (or scalar) mass of the drop E, because each of the elements: 
 
(IV.28)     δm0 = ρ0 δu0 
 
can be interpreted as the proper mass of the droplet δui ; i.e., as the value that is taken by 
that mass in the co-moving Galilean frame. 
 Finally, the integration of equation (18) for a material drop along its motion yields the 
result: 

(IV.29)     0 const.m =  

 
This is, in fact, the conservation of proper mass that we have stated. 
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 We return to the expressions (23) for the mass-impulse of the drop E.  If one takes the 

expression (28) for the proper mass into account then one can write: 
 

(IV.30)     0.
i ip V mδ= ∫∫∫E  

 
 It is important to remark that the quadri-vector pi is a function of the integration 
hyper-endcap E.  Two different Galilean observers that would like to define the quadri-

vector pi in the same current world-hypertube by an integration at constant time will be in 
disaccord, not only in regard to the components of pi, which is obvious, but also in 
regard to the quadri-vector itself. The necessary and sufficient condition for such 
observers to be identically in accord is that the quadri-vector pi must remain invariant in 
the course of the evolution of the system; i.e., that one must have the four relations: 
 

∂j T ij = 0. 
 

In other words, the form and position of the hyper-endcap E are not disjoint concepts, 

since the non-invariance of the definition of pi and the non-conservation of pi are two 
related facts.  If such circumstances are not realized in the problem of electric charge (no. 
III.6) then that is solely by virtue of the equation of continuity (III.28).  Here, we have a 
very clear illustration of what we said in no. II.14, namely, that the integrals of relativity 
must be invariant with respect to the form of the hyper-endcaps E, and that they must then 

be capable of being taken arbitrarily. 
 Before we leave this subject genre, we make one last remark.  It is clear that the 
tensorial invariant: 

(IV.31)     A = i
ip dxδ∫ ∫∫∫T E
 

 
constitutes the relativistic definition of action.  By virtue of (23), and taking (II.80′), 
(II.76), and (II.624) into account, we can write: 
 

(IV.32)     2
0 .c ρ δω= − ∫∫∫ ∫A  

 
L. de Broglie made use of that remark in his theory of the electron (1). 
 
 
 IV.5. – Two inductions that generalize the preceding theory of volume force. – 
Considering the state that was attained by the deductive theory of the two preceding nos., 
we propose to free ourselves of the restrictive hypothesis (8) that was essential to its 
basis.  This time, we take our point of departure to be the integral formulas of the 
preceding no., and we will be led quite naturally to consider two successive hypotheses, 

                                                
 (1) L’électron magnétique, Paris, 1934, pp. 223-224. 
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according to which the finite force is defined by (211) or (212), resp.  In fact, those two 
definitions cease to be equivalent under the present hypothesis: 
 

(IV.33)     0.i
iV f ≠  

 
 We begin with the first one; i.e., we adopt the antisymmetric definition (211) for the 
finite force.  The fundamental dynamical law: 
 

(IV.34)    { }0( )ij i j
j iF dx V Vδ ρ δω− ∂∫∫∫ ∫ = 0 

will then be written: 

(IV.35)   { }0( )i i j
if V Vρ δω− ∂∫∫∫ ∫  = j i

jf dx uδ∫ ∫∫∫T E
. 

 
From the form of its right-hand side, it will have the inconvenience of needing to keep 
the integral form, and of not being able to take a density form that is analogous to (10).  
To avoid that difficulty, we shall reason by induction. 
 Under the name of “hypothesis H,” consider the case in which the streamlines T 

admit orthogonal trajectories E0, and suppose that one has taken two of those E0 to be E1 

and E2 .  The quadri-volume 0
iuδ  will then be collinear with V i on the initial and final 

hypercaps and will be provided by formula (II.861) that we established for that situation, 
moreover.  The preceding right-hand side is then written: 
 

− 
2

1 j i
jf V V

c
δω∫∫∫ ∫ , 

 
in such a way that the equation considered can be put into the density form: 
 

(IV.36)    02

1
( ).i j i i j

j jf f V V V V
c

ρ+ = ∂  

 
The stated induction consists of postulating that the form (36) is true in the general case, 
and consequently, that the integral form (35) that we appealed to as an intermediary in 
our argument is valid only approximately in general.  (Its validity will become rigorous 
under the previously-formulated “hypothesis H.”)  We call the foregoing postulate 
“postulate P.”  We shall employ the same mode of inductive reasoning several times in 
what follows and appeal to “postulate P” and “hypothesis H” that we just discussed. 
 Hence, if, under the new hypothesis (33), we adopt (as an approximation) the 
antisymmetric definition (211) of the finite force then the fundamental dynamical 
equation will have the form (36), and its right-hand side will always decompose into the 
same form as in (17).  If we then multiply all terms by Vi , and take (II.624) into account 
then we will find once more that the law (18) of the conservation of proper mass is a 
consequence of that equation (36); by contrast, formula (19) will become: 
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(IV.37)     f i + 
2

1

c
fk V k V i = ρ0 V′ i. 

 
 We shall now – always under the new hypothesis (33) – likewise attempt to use the 
asymmetric definition (212) of the finite force.  This time, the integral form of the 
dynamical law will differ from (35) by a zero right-hand side, in such a way that its 
density form will remain identical to the old form (10).  Upon multiplying all of its terms 
by Vi , we will get the law: 

(IV.38)     0 2

1
( ) ,i i

i iV V f
c

ρ∂ = −  

 
instead of (18), and furthermore, (37), instead of (19). 
 Therefore, along with formula (38), recall the integral calculation in no. IV.4 that 
gave the variation of the proper mass of a material drop E between an initial state E1 and 

a final state E2, which are represented by two hyper-endcaps of the same current world-

tube.  One will get: 

(IV.39)    0(2) 0(1) 2

1
,i

im m V f
c

δω− = − ∫∫∫ ∫  

or, in infinitesimal form: 

(IV.40)     0 2

1
.i

id m V f
c

δ δω= −  

 
 This result is quite interesting.  Indeed, if one takes into account the relativistic 
equivalence of mass and energy and the thermodynamic equivalence of energy and heat 
then it will coincide with formula (III.74) for the Joule heat.  We then assume, as is quite 
natural, that formulas (212), (33), and (38) agree in all cases where the there is creation 
or annihilation of heat, energy, or mass.  The scalar product Vi f 

i will not be zero in the 
corresponding regions of space-time.  It will be negative or positive according to whether 
one is dealing with creation or annihilation, respectively.  An example of the creation of 
heat was given in no. III.8 by Joule’s electro-thermal effect.  An example of the creation 
or annihilation of mass in hydrodynamics is given by the consideration of volumetric 
distributions of sources or sinks (see below, no. V.2).  Therefore, in order to be able to 
take into account of the phenomena of creation or annihilation of mass or energy, we 
must no longer adopt the antisymmetric definition (211) or (III.52) for the finite force that 
appeared to begin with, but precisely the asymmetric definition (212) or (III.55).  An 
entirely similar situation will appear later on in the theory of viscous surface forces.  We 
remark, in passing, that in this second and last induction, we must bring into play our 
“postulate P” and “hypothesis H,” which amounts to saying that the starting integral 
formula, and consequently, formula (212), are rigorously valid here. 
  Finally, the most general fluid without spin that is subject to the action of forces of 
purely volumetric origin will satisfy equation (38), whose right-hand side will be non-
zero only in the regions of space-time that are ruled by distributions of sources and sinks.  
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Outside of those regions, equation (38) will reduce to the form (18), which can be written 
equivalently: 

ρ0 ∂j V j + 0ρ ′ = 0. 

 
One will then see upon referring to the purely kinematic definition (II.84) of the 
incompressible fluid that an equivalent definition is that: 
 
(IV.41)     ρ0 = const. 
 
along the trajectories T.  More generally, if ρ0 = const. in all of space-time then one will 

have the relation (II.84), and one will have the right to say that the fluid is 
incompressible. 
 We then make one last remark, which is due, in principle, to E. Durand.  With the 
dynamical definition (41) of an incompressible fluid, the relation (10), which the case 
that we are considering must satisfy, by hypothesis, can be written: 
 

f i = ρ0 (σ V i + θ ij Vj). 
We have set, by definition: 
 

σ = ∂j V j, θ ij = ∂ j V i − ∂ i V j. 
 
Indeed, the expression ∂j ∂ i V j = 0 follows from the fact that Vj V j = − c2. 
 
 
 IV.6. – Introduction and theory of surface force in the simple case of one 
pressure. – As always, let ic δskl be the dual of the world-area element [dxi dxj], so the 
three ic δsu4 = [dxv dxw] will represent area in the usual sense.  It is clear that the classical 
definition: 

δ F = − ϖ δs 
 
of the normal pressure ϖ will admit the four-dimensional generalization: 
 

(IV.42)     .ij ijF sδ ϖ δ= −  

 
Here again, the elementary force δ F ij is essentially antisymmetric.  As in classical 
theory, we say, by definition, that the fluid is inviscid if the elementary surface force on it 
has essentially the form (42). 
 Therefore, let C be the two-dimensional contour of a spacelike three-dimensional 

domain E that represents a fluid drop.  If one integrates the expression (42) over the 

contour C and transforms it into a triple integral then one will get the formula: 

 

(IV.43)    ijFδ∫∫C = − [ ]i j j iu uϖ δ ϖ δ∂ − ∂∫∫∫E , 
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which, when compared to (211), will permit one, in a sense, to consider the quadri-vector: 
 
(IV.44)     f i = − ∂ i ϖ 
 
to be the volumetric force density of surface origin. 
 Although the two force systems δ F ij and f i have the same sum, as we just saw, they 
are not integrally equivalent, in the sense that they do not yield the same elementary 
quadri-work for the deformation of a droplet δu i.  In pre-relativistic elasticity, we recall 
that this situation is true only for work, properly speaking (1).  Indeed, to simplify, take 
the proper time dτ to be equal along all trajectories T that issue from E.  The quadri-force 

of the surface forces is written: 
 

(IV.45) dτ ij
jV Fδ∫∫C = − dτ ( )i j j i

jV f u f uδ δ−∫∫∫E – dτ ( )i j j i
j jV u V uϖ δ δ∂ − ∂∫∫∫E ; 

 
the last integral represents the stated difference. 
 As always, let P be the lateral hyper-wall that is generated by the contour C of E, and 

let E1 and E2 be an initial state and a final state of the drop E, respectively.  The left-hand 

side of (46) is nothing but another form of the left-hand side of (45) when it is integrated 
over dτ, and if one takes (II.79) into account then an integral transformation will permit 
one to write: 

(IV.46)   − juϖ δ∫∫∫P = −
2 1

i juϖ δω ϖ δ
−

∂ +∫∫∫ ∫ ∫∫∫E E
. 

 
Upon assuming, for the moment, that the forces of surface origin are the only 
ponderomotive forces that act upon the fluid, the fundamental dynamical equation will 
permit one to replace the left-hand side of this with the quadruple integral: 
 

0( )i j
j V Vρ δω∂∫∫∫ ∫ . 

 
We then find ourselves confronting a problem that is similar to the one that we posed 
with equation (35), namely, that of an integral equation that does not admit an equivalent 
density equation.  We shall eliminate that difficulty by the same inductive process that we 
used before, by appealing to the hypothesis H and postulate P that were formulated on 
that occasion. 
 In the particular case where the T admit orthogonal trajectories E0 , and one takes two 

E0 to be E1 and E2, the volume element 0
iuδ  on E0 will admit the expression (II.862).  An 

                                                
 (1) For a finite, material drop, the classical expression for the total surface force, its impulse, and its 
work are: 

− ϖ δ∫∫ s= − grad uϖ δ⋅∫∫∫ , − dt ϖ δ∫∫ s= − dt grad uϖ δ⋅∫∫∫ , 

− dt ϖ δ∫∫ v s= − dt div ( ) uϖ δ⋅∫∫∫ v = − dt ϖ δ∫∫ s= − dt grad uϖ δ⋅ ⋅∫∫∫ v − dt div uϖ δ⋅∫∫∫ v , 
 
respectively.  The situation that was stated in the text seems to be, in fact, a direct consequence of the 
classical notion of universal time. 
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integral transformation will then permit one to replace the ∫∫∫ in the right-hand side of 
(46) with: 

−
2

1
( )i j

i V V
c

ϖ δω∂∫∫∫ ∫ . 

 
In this particular case, formula (46) will then admit: 
 

(IV.47)    0 2
0i i j

i V V
c

ϖϖ ρ  ∂ + ∂ + =  
  

 

 
as an equivalent density form.  By virtue of “postulate P,” we shall assume the general 
validity of (47), while that of (46) is rigorous only under “hypothesis H.”  Formula (46) 
will then serve as only an intermediary in the inductive argument.  In formula (47), one 
will recover the homogeneity between pressure and energy density that is well-known in 
classical physics.  In regard to equation (10) (in which the force density is of proper 
volume origin), equation (47) presents a new term in ϖ / c2.  It is that term, which has the 
very small coefficient 1 / c2 as a factor, whose presence must imply a variation of the 
proper mass that is due to the work that is done by surface forces. 
 The relation (47) can be transformed into: 
 

∂ iϖ + V i ∂j { ( ) V j} + ( ) V′ i = 0. 
 
If one multiplies this by V i and takes (II.62) and (II.87′) into account then one will get: 
 

ϖ′ − c2 ∂j { ( ) V j} = 0, 
and since: 

∂i (ϖ V i) = ϖ ∂i V i + ϖ′, 
 
the new relation can be finally written: 
 

(IV.48)    0 2( ) .i i
i iV V

c

ϖρ∂ = − ∂  

 
If one takes the existence of pressure forces into account then that is the new law of 
adiabatic compression that replaces (18).  If one continues to call a fluid such that ρ0 = 
const. in all of space-time incompressible, by definition, then if one discards the 
physically-uninteresting hypothesis ϖ = − c2ρ0 = const. in all of space-time, one will see 
that a fluid will continue to be characterized by formula (II.84). 
 If one integrates (47) over the usual four-dimensional domain that is enclosed by the 
hyper-contour E2 – E1 + P then one will get: 

 

− iuϖ δ∫∫∫P = 
2 1

0 02
i iu V u

c

ϖϖ δ ρ δ
−

  + +  
  

∫∫∫E E
. 
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Similarly, if one integrates (48) then one will get the equation of the variation of proper 
mass: 

(IV.49)    m0(2) – m0(1) = −
2

1
( )k

i ku dx
c

ϖ δ∂∫∫∫ ∫ ,  

which can be further written: 

(IV.50)    0(2) 0(1) 02

1
m m d u

c
ϖ δ− = − ∫∫∫ ∫  

 
when one takes (II.85) into account.  The expression ∫∫∫∫ ϖ d δu0 , which is analogous to 
the classical ∫ p dv, deserves the name of scalar work that is done by pressure.  As one 
would naturally expect, the variation of the proper mass of the drop E is related directly 

to the scalar work that is done by pressure. 
 
 
 IV.7. – Deduction of some general equations of the dynamics of a point without 
spin. – We return to the integral calculation of no. IV.4, and take an infinitely-thin 
current hypertube with a scalar hypersection δu0, as well as two infinitely-close initial 
and final hypersections (1)

iuδ  and (2)
iuδ  .  Either of the hypotheses that were made in no. 

IV.5 for the general case Vi f 
i ≠ 0 (eq. 33) will yield the same integral formula: 

 
δF ij dxj = d δpi. 

 
The only difference is that with the first hypothesis, the tensor δFij will be antisymmetric, 
and with the second one, it will be asymmetric; dxj denotes the mean trajectory element 
of the elementary hypertube.  In the right-hand side, δpi represents the inertial expression 
for the mass-impulse that is attached to the current hyper-wall δui.  If one takes (22) into 
account and lets vu denote the mean value of the ordinary velocity on the hyper-endcap 
δui then, under the hypothesis of simultaneity, one can write: 
 

δpu = δ mvu, δp4 = ic δm. 
 
Moreover, if V i likewise denotes the mean value of the quadri-velocity on the hyper-
endcap δui, and δm0 denotes the proper mass that is attached to that hyper-endcap then, 
by virtue of (23) and (28), one will generally have: 
 

δpi = V i δm0 . 
 
 If one then passes to the limit by constricting the hypertube δu0 , and supposes that 
the various quantities δ keep their finite values then the preceding equations will become: 
 

(IV.51)     ,ij i
jF dx dp=  

(IV.52) 4, ,u ip mv p icm= =  
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(IV.53)     0 ,i ip m V=  

 
respectively, in which m denotes the mass of the material point considered, which is no 
longer an invariant in relativity, and which is related to the proper (or scalar) mass m0 
by: 

(IV.54)     0

2
.

1

m
m

β
=

−
 

 
The quadri-vector pi, when defined by (52) or (53), obviously deserves the name of mass-
impulse quadri-vector of the material point.  One sees that this mass-impulse quadri-
vector pi is essentially defined to be tangent to the mean hyper-current line V i of the 
hypertube that we started with; i.e., as the tangent to the world-trajectory at the point.  
Furthermore, at a given instant-point on the hypertube, the length of that quadri-vector is 
independent of the orientation of the hyper-section δui, because as we observed in no. 
II.14, the proper volume δu0 is invariant under these conditions.  In the left-hand side of 
equation (51), one has the expression for the elementary ponderomotive quadri-work that 
is done by the world-force F ij. 
 The necessary and sufficient condition for the proper mass m0 (i.e., the length of the 
quadri-vector pi) to be conserved is that the tensor F ij must be anti-symmetric.  One will 
see that immediately in equation (51) when one recalls that the quadri-vectors pj and dxj 
are collinear, and infers the consequence that: 
 

pi dpi = Fij pi dxj . 
 
One can also see that from equation (53), when one returns to the considerations of no. 
IV.5 and remembers that the condition for the conservation of proper mass within the 
fluid is the antisymmetry of the tensor F ij. 
 Consider equation (51) more closely in the case where the tensor Fij is antisymmetric, 
and refer to the definitions (III.49) of the force F and co-force K .  The tensorial equation 
(51) can be made explicit in the form: 
 

(IV.55)   2( ) ( ), .dt d m dW d c dm+ ∧ = ≡ ⋅ =F v K v F M  

 
(551) are nothing but the well-known fundamental equations of dynamics, when put into 
the generalized form that relativistic covariance demands [120].  As for equation (552), it 
expresses the relativistic equivalence of mass and energy in point-like language. 
 One can then pose an entirely natural question: Would one be unable to deduce the 
relativistic equations of point dynamics (49) or (55) directly from the theory of finite 
forces that is given by equations (III.47) and the following ones?  The necessary and 
sufficient condition for that to be true is that one must be able to infer equation (522) from 
(521) deductively.  Now, one can pass from (521) to (522) by an induction that is not 
equivalent to a deduction if it is to be extremely natural.  When we reasoned with 
continuous media in nos. IV.2 and IV.3, that induction was indeed replaced by a 
deduction, thanks to the symmetry that was imposed on the tensor T ij.  That is why, 
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conforming to what we said, part of the induction will be reduced when one establishes 
relativistic dynamics by starting with continuous media. 
 By virtue of (51), if the derivatives x′i, x″i, … are taken with respect to τ, one will 
have: 
(IV.56)    pi = m0 x′i, p′i = m0 x″i. 
 
Formula (49) can then be written: 
(IV.57)     F ij pj = 2

0
im x′′ . 

 
That is the covariant expression for a formula that is used quite currently in the study of 
the curved trajectories of electrified particles in a magnetic field.  Upon assuming that the 
force F is zero in the Galilean frame that is used, and the co-force K (x) is constant in 
time, the world-trajectory will be a helix, and one can write the formula: 
 

K  ^ p = 2
0m τ′′x  = 2

tm ′′x . 

 
It is used constantly in order to determine the proper mass of particles in the Wilson 
chamber when one knows their impulse, and vice versa, in the form: 
 
(IV.58)     K = p1 ρ, 
 
in which ρ denotes the curvature of the cylinder around which the spatial helix is 
wrapped, and p1 is the constant modulus of the projection of the impulse normal to the 
generators. 
 To conclude, here is one last form for the equations of point dynamics that is used 
occasionally.  Return to formula (9), which is written essentially under the hypothesis (8).  
Conforming to a remark in no. II.14, we introduce the finite force of the second type, 
whose elementary definition is: 

(IV.59)     0,ij iF f uδ δ=  

 
and which is collinear with the quadri-vector ixτ′′  or iVτ′ .  It is with that definition, which 

is generally posed explicitly, that some classical treatises on relativity have introduced 
the finite force ([2], pp. 115-166).  If one takes (28) into account and passes to the limit 
as before then the fundamental equation of point dynamics will take the form: 
 

(IV.60)     0 ,ij i iF m V p′ ′= =  

 
in which the derivatives are taken with respect to proper time τ.  That formula generalizes 
a classical three-dimensional formula into four-dimensional form in a very simple 
manner. 
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 IV.8. – Applications of relativistic point dynamics. Purely kinematical 
interpretation of the vis viva theorem.  Deviations from Newtonian dynamics at 
large velocities. – Formula (54) is developed into: 
 

(IV.61)  m = m0 ( )21
21 β+ +⋯   where  2 21

0 02W m c m v= + +⋯  

 
The classical vis viva theorem is then recovered in the first approximation, with the 
remarkable situation that the integration constant m0 c

2 is kept fixed.  One should note the 
very new interpretation that the vis viva theorem takes on in relativity: It amounts to a 
purely kinematical theorem, since the kinetic energy appears when one is not in the 
proper system of the point.  In the final analysis, that new interpretation is much more 
satisfying than the old one.  In classical theory, one hardly sees how the relative character 
of the velocity – and consequently, the kinetic energy – is consistent with the alleged 
absolute character of the force, mass, and energy, in general. 
 In relativity, a material point that is animated with the limiting velocity c will have an 
infinitely large energy.  In order to accelerate a given proper mass point up to the velocity 
c, one must provide an infinite amount of energy to it.  One sees that in the dynamical 
confirmations of the limiting character of the constant c in all physical velocities. 
 Recall the formula: 

F = 
d

dt
(mv), 

 
which involves ordinary force and velocity, and develop it, while taking into account the 
fact that the mass is now variable: 

F = 
d dm

m
dt dt

+v
v . 

 
That form suggests the decomposition of force, like acceleration, tangentially and 
normally to the trajectory.  If one takes the well-known formula: 
 

γl = 
dv

dt
 = v′ 

 
into account then one will the following expressions for the “longitudinal force” and the 
“transversal force”: 

Fl = mv′ + m′ v, Ft = m γt . 

 
The expression for m′ is provided by (54) as follows: 
 

m′ = 0
2 3/2(1 )

m ββ
β

′
−

 = 21

mββ
β

′
−

, m′v = mv′ 
2

21

β
β−

. 

 
Finally, the desired laws for longitudinal acceleration and transversal acceleration are: 
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Fl = 21

m lγ
β−

= 0
2 3/2(1 )

lm γ
β−

= m0 γl 
23

1
2

β + + 
 

⋯ , 

 

Ft = mγt = 0
2 1/ 2(1 )
tm γ

β−
= m0 γt 

21
1

2
β + + 

 
⋯ . 

 
In the early days of relativity, one called the two acceleration coefficients: 
 

ml = 0
2 3/2(1 )

m

β−
, mt = 0

2 1/ 2(1 )

m

β−
 

 
the longitudinal and transversal mass, respectively.  The only interesting notion in the 
present theory is the relativistic mass m that we have used up to now, and which one can 
call the Maupertuisian mass. 
 Be that as it may, the preceding formulas provide practical expressions for the laws of 
acceleration of a material point of given proper mass at large velocities.  One knows that 
the study of large velocities in the dynamics of the electron has plainly confirmed the 
relativistic dynamics of a material point [112, 113, 117]. 
  
 
 IV.9 – Another application of the relativistic dynamics of points: the collision of 
two particles with large velocities. – Consider two particles, which are first assumed to 
be point-like, and are found to coincide in space-time at an instant-point xi.  Before and 
after that encounter, they are assumed to be rigorously non-interacting, in such a way that 
they each describe a rectilinear world-trajectory.  The two trajectories will break at the 
instant-point xi, and there will be an exchange of mass-impulse between the two particles.  
If those particles have no spin then their mass-impulse will certainly be collinear to their 
world-trajectory.  Later on, we shall see that the same thing is true for particles with spin 
in the particular case of uniform, rectilinear motion. 
 We have four mass-impulses ipµν  to consider.  The index v takes the values 1 or 2 

according to the particle considered is before or after the collision, resp.  There is 
obviously conservation of total mass-impulse under the collision, which is written: 
 
(IV.62)     11 21

i ip p+  = 12 22
i ip p+  

 
when the four quadri-vectors are concurrent.  If the internal characteristics of the particles 
are not altered by the collision then one will have: 
 
(IV.63)    11| |ip  = 12| |ip ,  21| |ip  = 22| |ip , 

moreover. 
 If one sets: 
(IV.64)    1

ip∆  = 12 11
i ip p− , 2

ip∆  = 22 21
i ip p− , 

 
by definition, then (62) can be written: 
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(IV.65)     1 2
i ip p∆ + ∆  = 0. 

 
As always, by definition, we say that the spacelike axis that is defined by the quadri-
vector 1

ip∆  or − 2
ip∆  is the instantaneous axis of the collision. 

 Take that axis to be the Ox1 axis, and complete the tetrahedron Ox1x2x3x4 to be 
timelike.  One will have: 
 
(IV.66)  1 1

1 2p p∆ + ∆ = 0 and 1
kp∆  = 2

kp∆  = 0 for k = 2, 3, 4. 

 
One concludes from (662) that for each particle, there is conservation of the component 
of mass-impulse that is normal to the instantaneous axis.  If one takes that into account, 
along with (63), then it will result from (661) that one must have: 
 

1
11p  = 1

12pε , 1
21p  = 1

22pε  with ε = ± 1. 

 
Only the case of ε = − 1 will correspond to an actual collision.  We then set, by 
definition: 
(IV.67)   1

11p  = − 1
12p  = 1

1p , 1
21p  = − 1

22p  = 1
2p , 

 
so (661) will show that one has: 
(IV.68)     1 1

1 2p p+  = 0. 

 
Therefore, the collision exchanges components that are, moreover, equal in modulus 
between the components of the mass-impulse that are parallel to the instantaneous axis 
(1). 

 

O x1 

y 

1x′  
before the 
collision 

after the 
collision 
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22
ip  21

ip  

12
ip  

 
Figure 3. 

 

                                                
 (1) One effortlessly recognizes the analogy between the two preceding relativistic statements and the 
Newtonian statements that were used by the kinetic theory of gases. (See, for example, E. BOREL, Traité 
de Calcul des Probabilités, t. II, fasc. III, Paris, 1925, pp. 36-40.) 
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 We recapitulate all of these results by giving the four quadri-vectors ipµν  the same 

origin xi.  The triangles 11
ip , 12

ip  and 21
ip , 22

ip  are isosceles, with bases that are parallel in 

space-time.  It then results that the four extremities are contained in the same world-plane 
π, which we take to be the plane of the figure, and onto which we project the instant-
point xi of the collision from O.  The instantaneous axis of the collision projects onto 

1 1x x′  parallel to the two bases.  In the general case where the two corpuscles have unequal 

proper masses, the axis Oy, which is perpendicular to the instantaneous axis and directed 
along the quadri-vector: 

21 12
i ip p− = 22 11

i ip p− , 

 
can be either timelike or spacelike.  If the two corpuscles have equal proper masses then 
the axis Oy will necessarily be spacelike, and the point xi will project from O to the center 
of the rectangle ipµν . If the two corpuscles are indistinguishable, in the quantum sense, 

then the question of knowing what the true association of emergent trajectories with 
incident ones will be absurd, and the two possible modes of association will be 
equivalent.  Each set of four trajectories will then correspond to two possible 
instantaneous axes that are mutually orthogonal in space-time and project onto π along 
the symmetry axes of the rectangleipµν . 

 If one is given two concurrent mass-impulses before the collision a priori then how 
are the possible instantaneous axes distributed?  First of all, it is clear that the various 
possible planes π are spacelike hyperplanes that contains the two instant-points 11

ip  and 

21
ip .  One of them, which we call the principal one, contains the two quadri-vectors 11

ip  

and 21
ip .  If that is the case then every plane π will contain one and only one possible 

instantaneous axis.  It is the axis that passes through the projection O of xi and is such that 
the components of 11

ip  and 21
ip  along that axis will be opposite. 

 That is then the analysis of the collision of two corpuscles whose proper masses 
remain unaltered in four-dimensional geometry.  To our knowledge, that process has 
yielded two good verifications of the relativistic dynamics of the electron.  One of them, 
which was only qualitative, was by means of a plate from a Wilson chamber that was due 
to Joliot.  The other one, which was quantitative, was by means of a Wilson plate of 
Leprince-Ringuet [116, 117].  In the two cases, one is dealing with the collision of an 
electron with an electron at rest.  The three trajectories – viz., that of the incident particle 
and those of the emergent particles – are curved by a known magnetic field, which gives 
one a means of calculating the three impulses, as well as the three velocities, or even 
better, the three corresponding β’s; one deduces the three corresponding values of the 
relativistic mass from them.  One can, moreover, write down the conservation laws for 
the two components in question of the impulses with no difficulty, as well as that of the 
masses, and calculate the angle that must exist between the two emergent Wilson 
trajectories.  If the two proper masses are equal then one will find that this angle is such 
that ([117], eq. 12): 

(IV.69)    cos θ = 12 0 22 0

12 0 22 0

( )( )

( )( )

m m m m

m m m m

− −
+ +

, | θ | < 
2

π
, 
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and consequently, it will be acute and will get more acute as the β's get larger.  In the 
Newtonian approximation, one will have: 

(IV.70)     cos ≈ θ , | θ | ≈ 
2

π
, 

 
which is a result that is easy to establish by direct calculation.  Formula (69) has been 
verified in a very satisfactory way in a plate of Leprince-Ringuet (1). 
 
 
 IV.10 – Finite kinetic and orbital ponderomotor moments and their densities. – 
Recall the fundamental equation of point dynamics (IV.51), adopt an arbitrary origin in 
space-time, and form the expression: 
 
 (xi F jk – x j F ik) dxk = xi dpj – x j dpi. 

 
For the point without spin that we are presently studying, the quadri-vectors dxi and pi 
will be collinear, and the preceding equation can also be written: 
 

(IV.71)    ( ) ( ).i jk j ik i j j i
kx F x F dx d x p x p− = −  

 
We shall study the two sides of this equation in succession. 
 The second-rank antisymmetric tensor xi p j – x j pi deserves the name of orbital 
barycentric and kinetic moment, or more simply, orbital kinetic world-moment of the 
material point.  Indeed, its three components in u, v: 
 

(0)
uvC  = xu pv – xv pu 

 
are nothing but those of the ordinary orbital kinetic moment, while its three components 
in u, 4 can be written: 

4
(0)
uC  = xu p4 – x4 pu = ic m (xu – vu t). 

 
If t = 0 – i.e., if the material point is considered simultaneously with the coordinate origin 
of space-time – then one will recognize the three components of the barycentric moment 
in the usual sense in the latter expression.  That notion will persist when one takes an 
infinitesimal value dt for t, because the three – dxu = − vu dt will then constitute an 
obvious “correction for non-simultaneity.”  In the general case where t is arbitrary, the 

                                                
 (1) One should note that the two emergent trajectories are indistinguishable in the quantum sense; i.e., 
nothing will permit one to attribute them to the incident electron and the electron that was initially at rest in 
the Wilson chamber.  Formula (69) accounts for that fact by its symmetry in m12 and m22 . 
  It is easy to make a four-dimensional diagram of the phenomenon by taking the plane of the Wilson 
figure to be Galilean space, and the time axis to the corresponding time.  One will then see that the spatial 
trajectory of the electron that is put into motion will coincide with the spatial projection of the 
instantaneous axis that is defined in the text.  Furthermore, the ambiguity in assigning the emerging 
trajectories is recovered in the definition of the projection of the axis. 
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three Cu4 will constitute a generalized definition of the classical barycentric moment.  
Finally, the tensor: 

(IV.72)     (0)
ij i j j iC x p x p= −  

 
indeed deserves the name that we have given it. 
 As for the third-rank tensor, which is essentially antisymmetric in i, j (no matter what 
definition is adopted for Fij ): 

(IV.73)     (0) ,ij i jk j ikM x F x F= −  

 
it is easy to convince oneself that it deserves the name of orbital ponderomotor world-
moment.  Indeed, if one takes the antisymmetric definition of F ij, to simplify, which is 
suitable for a point with a conservative proper mass, then for ij  = uv, the left-hand side of 
formula (71) can be written: 
      {x ^ [F + v ^ K ]} dt. 

 
For ij  = u4, one will get another vectorial expression that Newtonian mechanics does not 
take into consideration: 

 { t (F + v ^ K ) –
2

1

c
x (F ⋅⋅⋅⋅ v)} dt. 

 
For t = 0, the latter expression is interpreted as an infinitesimal barycentric moment of the 
ponderomotor work 
 Finally, formulas (72), (73), and (71) clearly constitute the relativistic generalization 
of the definitions of orbital kinetic moment, orbital ponderomotor moments, and the 
theorem of kinetic moment, as it is written for a point without spin, resp.  (71) condenses 
into the form: 
(IV.74)     (0)

ijk
kM dx = (0)

ijdC . 

 
 We now pass on to the study of the same question in terms of continuous media, and 
in order to do that, we recall equation (10), which is valid for a continuous medium that is 
subject to forces of volumetric origin.  One assumes that the relation (8) is verified in all 
of the fluid, except perhaps in certain regions of space-time that contain sources and 
sinks. 
 We then form the expression: 
 

xi f j – x j f i = xi ∂k T jk – x j ∂k T ik. 
 
If one takes into account the facts that ∂k x

i ≡ i
kδ  and that the tensor T ik is symmetric in 

the present case then that equation will admit the equivalent form: 
 

(IV.75)    ( ).i j j i i jk j ik
kx f x f x T x T− = ∂ −  
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If one takes the four-dimensional integral of both sides of this inside of a domain E2 – E1 

+ P of the usual type, transforms the right-hand side into a triple integral and takes  into 

account the fact that, due to the form (15) of T ij, the contribution from the hyper-wall P 

to that triple integral will be zero, then one can write: 
 

(IV.76)   ( )i j j ix f x f δω−∫∫∫ ∫  = 
2 1

( )i jk j ik
kx T x T uδ

−
−∫∫∫E E

. 

 
That is obviously the relativistic expression for the theorem of orbital kinetic moment, 
when it is written for the entire material drop E.  One then sees that the second-rank 

antisymmetric tensor: 

(IV.77)     (0)
ij i j j ix f x fµ = −  

 
and the third-rank antisymmetric tensor in i, j: 
 

(IV.78)     (0)
ijk i jk j ikx T x Tσ = −  

 
deserve the name of orbital ponderomotor moment density and orbital kinetic world-
moment density, resp.  With those notations, equation (75) can be written: 
 
(IV.79)     (0)

ijµ  = (0)
ijk

kσ∂ . 

 
 In a sense, it might seem more logical to have studied the force − density and finite − 
in no. III.7 of the chapter that was devoted to electromagnetism and the ponderomotor 
moment – density and finite – in no. IV.10 of the chapter that was devoted to dynamics.  
In fact, that is a better way of presenting things, since the study of the ponderomotor 
moment seems clearer when one couples it with the study of the kinetic moment.  The 
remarks that we just made constitute an indispensible preparation for the problems that 
we will treat in the next paragraph. 
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B. – GENERAL EQUATIONS OF THE DYNAMICS OF VISCOUS FLUID S  
ENDOWED WITH SPIN.   

DEDUCTION OF THE DYNAMICS OF POINTS ENDOWED WITH SPIN . 
 

 IV.11. – The introduction of proper kinetic moments into fluid dynamics. – It is 
well-known in classical elasticity that the density of ponderomotor force does not suffice 
to account for the existence of proper ponderomotor moment density, and that the theory 
of the latter must be introduced by itself.  Similarly, it is easy to convince oneself that the 
distribution of translational force densities of inertia within the fluid does not permit one 
to account for the existence of a distribution of proper kinetic moment density that one 
can postulate.  Since the moment of inertia of a homogeneous spherical droplet relative to 
an axis that issues from its center is infinitely small of fifth order, the corresponding 
kinetic moment density will be infinitely small of second order and tend to zero at the 
same time that the radius r of the droplet does. 
 We then postulate (as we certainly have the right to do) that classical fluids do not 
provide us with an illustration of the fact that a proper kinetic moment density exists 
within certain material fluids.  Due to the homogeneity in the definition (78) of the orbital 
kinetic moment density (0)

ijkσ , we assume that the proper kinetic moment density is a 

third-rank tensor ( )
ijk
pσ  that is essentially antisymmetric in i, j, and whose integral must be 

taken in the form of: 

(IV.80)     ( )
ij
pC = ( )

ijk
p kuσ δ∫∫∫E . 

 
The integral tensor ( )

ij
pC , which we call the proper barycentric and kinetic world-moment 

of the material droplet, will then be defined to be of rank two and antisymmetric, in 
accord with the definition (72) of the orbital kinetic moment. 
 We study the proper kinetic moment ( )

ij
pC  when the drop E passes from state 1 to state 

2.  An integral transformation will permit one to write [upon taking formula (II.79) into 
account]: 

(IV.81)   
2 1

( )
ijk
p kuσ δ

−∫∫∫E E
= ( ) ( )

ijk ijk l
k p p klu dsσ δω σ δ∂ −∫∫∫ ∫ ∫∫∫P . 

 
A reference to formulas (76) and (71) then shows that in the quadruple integral, ( )

ijk
k pσ∂  

can be interpreted as a volume density of proper ponderomotor moment, and that in the 
triple integral in the right-hand side, − ( )

ijk
pσ  is interpreted as a surface density of proper 

ponderomotor moment.  Taking both of these ponderomotor moments into consideration 
is necessary if one is to account for the existence and variation of the proper kinetic 
moment. 
 As one knows, the physical reasons that impose the consideration of proper kinetic 
moments are of quantum origin.  Dirac’s theory of the electron contains, among other 
things, a theory of a fictitious statistical fluid that is endowed with a proper kinetic 
moment – or dynamical spin – and a proper electromagnetic moment – or 
electromagnetic spin.  It was the need to understand the sense of the equations of that 
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theory that induced various authors to study the relativistic dynamics of media that are 
endowed with spin for its own sake. 
 From the outset, Dirac defined the proper kinetic moment density σ ijk in his theory as 
a completely-antisymmetric third-rank tensor that is, consequently, the dual of a quadri-
vector σ i. Tetrode defined the inertia tensor T ij in Dirac’s theory (1) to be asymmetric 
and proved the two relations on that occasion: 
 
(IV.82)   T ij − T ji = ∂k σ ijk, ∂j T ji = ∂j T ij = f i. 
 
f i denotes the symbolic Lorentz force density that is applied to the fictitious electronic 
fluid by the prevailing field.  If one takes into account the well-known homogeneity 
between an inertia tensor and an elastic tensor, as well as the homogeneity between ∂k 

σ ijk and a proper ponderomotor moment density then Tetrode’s formula (821) will appear 
to be quite natural from the standpoint of the classical theory of elasticity.  The 
asymmetry of the inertia tensor and the existence of a spin density seem to be linked in a 
fashion that is convenient a priori. 
  It is the second equality in formula (822) that proves to be essential. (We shall return 
to this point in the following nos.) The first one, and consequently, the equality of the two 
divergences of the asymmetric inertia tensor, is not imposed by abstract dynamics, and 
can then be considered from that viewpoint as being a particular trait of Dirac’s theory.  
From what was said above, the same thing will be true for the complete antisymmetry of 
the tensor σ ijk.  Only the antisymmetry in i, j is imposed by abstract dynamics.  Now, it is 
easy to see that these two particular traits of Dirac’s theory are linked with each other in a 
necessary and sufficient manner.  If one compares one to the other then Tetrode’s two 
tensors will, in fact, permit one to write: 
 

∂jk σ ijk = 0, 
 
and since the symbolic tensor ∂jk is essentially symmetric, that relation will be equivalent 
to the essential antisymmetry of the tensor σ ijk in j, k. 
 Along with the well-known spin density σ ijk, another spin density τ ijk is introduced 
into Dirac’s theory.  E. Durand was first to point out its existence and proved the relation 
(2): 
(IV.83)     ∂jk τ ijk = µ ij, 
 
in which µ ij denotes the proper ponderomotor moment density that is symbolically 
applied to the fictitious polarized medium by the electromagnetic field [cf., (III.83)].  
Now, without there being any need for us to insist upon it here, moreover, we agree that 
ferromagnetism, which is due to the spin of the electron, offers a macroscopic 
manifestation of the Durand’s couple, and therefore all of its physical importance, as 
well.  Conforming to the general model that is provided by abstract dynamics, we finally 
point out that Durand’s density τ ijk is anti-symmetric in only the indices i, j. 

                                                
 (1) Zeit. Phys. 49 (1928), pp. 858.  
 (2) C. R. Acad. Sci. 218 (1944), pp. 36, eq. (8). 
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 Formulas (82) and (83) of Dirac’s theory essentially constitute the formulas that 
physically justify the study of the dynamics of continuous media that are endowed with 
spin.  Notably, their precise interpretation is the goal of all of the theory that we shall 
now present. 
 
 
 IV.12. – Hypothesis of an asymmetric inertia tensor and a mass-impulse that is 
oblique to the trajectory. – We return to the equations of Newtonian mechanics (4), but 
postulate the existence of not only the kinematic velocity v, or vu, but also a pseudo-
velocity u or uu that is not collinear with the preceding one, and is such that equations (5) 
must be generalized in the form: 
 

(IV.84)    
( ) ( ),

( ) ( ).

u u v u
v t

u
u t

f u u u

wv w

ρ ρ = ∂ + ∂
 ⋅ = ∂ + ∂ f v

 

 
We will see later on that the vector ρ u intervenes globally in the expression for the 
impulse δ p of a droplet δu, and that this vector is oblique to the trajectory.  Physically, 
each of the elements ρ and u are then defined only up to a factor, and that factor will be 
chosen in such a manner that it will simplify the formulas. 
 With (84), the generalized expressions for the components of the inertia tensor, which 
is now asymmetric, will become: 
 

(IV.85)    4 4

44

,

, ,

.

uv u v

u u u u

T u v

i
T ic u T wv

c
T w

ρ

ρ

 =

 = =


= −

 

 
This tensor then seems to be the general product of the quadri-vector world-velocity: 
 

V u = α vu, V4 = ic α 
with another quadri-vector: 

ρ0 U
u = ρ uu, ρ0 U

4 = 
i

cα
w. 

 
With these generalized definitions, the law of universal proportionality: 
 

w = c2 ρ 
 
will no longer be posed deductively.  In order to recover it, one must postulate that the 
three uu are the direction cotangents of the quadri-vector ρ0 U i, which will then imply 
that: 

ρ0 U 4 = 
ic

α
ρ. 
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That postulate amounts to making an appropriate definition of the mass density.  
Similarly, in order to define the proper mass density ρ0 , one must postulate that the 
length of the quadri-vector U i is such that: 
 

(IV.86)      2.i
iU V c= −  

 
 Finally, the covariant expression for the tensor T ij will be: 
 

(IV.87)     0 ,ij i jT U Vρ=  

 
and one will have two expressions for its trace: 
 

(IV.88)    2 2
0( ) .i

jT c cρ ρ= ⋅ − = −u v  

 
 At some points, we shall insist upon the new and curious circumstances that result 
from the preceding definitions.  One will naturally continue to assume that the quantities 
ρ0 and ρ are essentially positive; since one has: 
 
(IV.89)     c2 ρ = − ρ0 U 4 V 4, 
 
and since the quadri-vector V i is essentially timelike, − i V 4 will be essential positive, the 
second postulate will imply that – i U 4 is essentially positive, and therefore that U i is 
also timelike (1).  Under these conditions, there effectively exists a second Galilean frame 
such that ρ = ρ0 ; the three Uu will be zero in that frame.  With those postulates, one 
easily convinces oneself that one essentially has | u | < c, and consequently (since the 
scalar product u ⋅ v is capable of taking on negative values): 
 
(IV.90)     − c2 < u ⋅ v < + c2. 
 
Therefore, the lower bound on the possible values of: 
 

(IV.91)     ρ = 0

21
c

ρ
⋅− u v

 

will no longer be ρ0, but, in fact, ρ0 / 2. 
 The minimum value of u ⋅ v in the set of Galilean frames that have a given instant-
point for their origin is obviously attained for a certain direction of Ox4 that is coplanar to 
U i and V i, and interior to the angle between those quadri-vectors.  For the Galilean 
frames that satisfy that condition, with δ denoting a constant, and ϕ, a real variable, one 
can set: 
                                                
 (1) Recall that in Dirac’s theory the Gordon quadri-current, which must be contrasted with the present 
quadri-vector U i in several regards, is not essentially timelike.  [W. Gordon, Zeit. Phys. 50 (1928), pp. 630.  
O. Costa de Beauregard, Jour. de Math. (2) 22 (1943), pp. 113 and 174.] 
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v = c tanh (ϕ – δ), u = c tanh (ϕ + δ). 
 
One will then effortlessly see that the desired minimum value is: 
 

u ⋅ v = c2 
1 cosh

1 cosh

δ
δ

−
+

 ≤ 0, 

 
and that it is attained when Ox4 is the lower bisector of U i and V i.  The minimum 
minimorum is then attained only in the limiting cases δ = ± ∞ .  By contrast, the 
maximum value of (u ⋅ v) in the Galilean frame that is being considered is never 
bounded. 
 The preceding equations imply that the fundamental formula for the dynamics of the 
medium under consideration, when it is subject to the action of only volumetric forces, 
will be: 

(IV.92)    0( ).i ij i j
j jf T U Vρ= ∂ ≡ ∂  

 
If one takes the quadruple integral of the two sides of this inside the usual domain E2 – E1 

+ P and transforms it into a triple integral then the contribution of the hyper-wall will still 

be zero, as in the classical case, and one will see that the expression: 
 

(IV.93)   0 0 0 0
i i j i ip U V U u U mρ ρ δ δ= ≡ ≡∫∫∫ ∫∫∫ ∫∫∫E E E

 

 
represents the mass-impulse of the material drop E.  The single, but still essential, 

difference between this and the classical case is that for a droplet δu0, the mass-impulse: 
 
(IV.94)     δpi = δm0 U i 
 
is no longer collinear with the quadri-vector V i.  If one so desires, one can decompose 
this oblique mass-impulse into a longitudinal component that is collinear with V i and a 
transversal component that is orthogonal to V i.  We also note that at a given instant-point 
in an infinitesimal hypertube, the length of the quadri-vector δpi will remain defined 
independently of the orientation of the hypersection. 
 Equation (92) can be developed in the form: 
 
(IV.95)    f i = U i ∂j (ρ0 V i) + ρ0 U′ i, 
 
so one can conclude, upon taking (86) into account, that: 
 

Vi f 
i = − c2 ∂j (ρ0 V j) + ρ0 Vi U′ i ≡ − c2 ∂j (ρ0 V j) − ρ0 U i iV′ . 

 
The necessary and sufficient condition for formula (38) (which we have considered to be 
characteristic of continuous media that are subject to volumetric forces and admit the 
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possible presence of sources and sinks) to once more result is that one must have 
essentially: 

(IV.96)     0;i
iU V ′ =  

 
i.e., the quadri-vector U i – V i, which is already orthogonal to V i (or x′ i), must also be 
orthogonal to V i (or x″ i).  By means of that hypothesis, the entire theory of proper mass 
in fluids that was developed in no. IV.5 will persist in the present case. 
 We shall now give a new form to the definition (87) of the tensor T ij that will be 
useful in what follows.  Speaking kinematically, the quadri-vector U i has no real 
existence.  It then seems natural to attach its definition to that of the quadri-vector V i by 
setting: 

(IV.97)     0
ij

i jU Vρ ρ=  

 
as the definition of a new second-rank tensor ρ ij that is called the tensorial mass density 
and supposing that is it asymmetric, in general.  The definition (87) then becomes: 
 

(IV.98)     ,ij ik j
kT V Vρ=  

 
and it will result from (86) that one has: 
 

(IV.99)     2.ij
i jV V cρ = −  

 
Just like the tensor T ij, the tensor c2 ρ ij is homogeneous to an elastic tensor, and what 
follows will show that this homogeneity is not purely formal.  
 
 
 IV.13. – The bases for the theory of surface forces of elastic type. – When one 
develops the relativistic theory of surface forces in the case of an arbitrary elastic tensor 
E ij, one will encounter serious difficulties when one seeks to preserve the hypothesis that 
the second-rank world-force tensor F ij must be antisymmetric.   The four-dimensional 
extension of the well-known formula: 

δF u = Euv δsv , 
will then be, in fact: 

δF ij = E ik j
ksδ ⋅ − E jk i

ksδ ⋅ , 

 
and if, as always, kuδ ∗  denotes the hyper-wall volume element δskl dxl then one will have: 

 
d δpi ≡ δF ij dxj = E ik kuδ ∗  − E jk i

ksδ ⋅ dxj 

 
as an expression for the elementary quadri-work that is done by the surface force.  When 
one starts with that formula and seeks to extend the arguments and formulas of no. IV.6, 
the presence of the second group of terms in the right-hand side will imply numerous 
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difficulties in calculation and interpretation.  Furthermore, that same presence will imply 
that the value of the expression d δpi will not be independent of the world-orientation of 
the initial and final δsij.  Now, all of the experience that we have acquired up to now in 
relativistic theories makes us consider that situation to be quite unsatisfactory in itself. 
 The simple and radical means of avoiding all of those difficulties is to assume that the 
tensor δFij is no longer antisymmetric in the general elastic case.  That idea seems much 
more acceptable to us than the volumetric theory that we were already led to in the case 
where we desire to be able to account for the existence of sources or sinks (no. IV.5). We 
then assume that the expression: 

(IV.100)    ij ik j
kF E sδ δ ⋅=  

 
will give the general definition of surface force of elastic origin.  For: 
 

Eik = ϖ δ ik, 
 
that formula will coincide with formula (42), which was given for the case of normal 
pressure.  In the general case, it will imply that: 
 

(IV.101)    ij ik
j kF dx E uδ δ ∗=  

 
as the expression for the elementary quadri-work, in which, as always, kuδ ∗  denotes the 

hyper-wall volume element of P that is expressed by (II.79). 

 Without wishing to explicitly extend some results from the simple case of pressure, 
and for which the concomitant considerations are presently valid mutatis-mutandis, in the 
following no., we shall extend formula (46), as well as the analogous one that one can 
write down for the moments.  Indeed, those formulas are absolutely fundamental to the 
theory that we have in mind. 
 
 
 IV.14. – General fundamental equations for the dynamics of continuous media 
endowed with spin and viscosity. – We shall give a generality to the formulas that we 
shall now establish that is complete in regard to all of the preoccupations that we have 
had since the beginning of Chapter IV.  The present theory will then have the maximum 
level of comprehensiveness that we have claimed that we can give it. 
 From the inertial viewpoint, we shall assume that the fluid considered enjoys: 
 
 − A volumetric mass-impulse density that is represented by an asymmetric tensor that 
responds to the equivalent definitions (87) or (99). 
 
 − A volumetric proper kinetic moment density whose theory was given in no. IV.11, 
and is represented by a third-rank tensor σijk that is antisymmetric in i, j. 
 
 From the ponderomotor viewpoint, we shall assume that this fluid is subject to: 
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 − Forces of volume origin that are derived from a density f i that is not orthogonal to 
the quadri-velocity V i in the regions of space-time where there exist sources or sinks, and 
whose theory was given in no. IV.5 (second hypothesis). 
 
 − Forces of surface origin that are derived from an elastic tensor Eij and conform to 
the theory that was just given in the preceding no. 
 
 − Moments of volume origin that are derived from a proper ponderomotor moment 
density that are represented by an antisymmetric tensor µ ij, for which one physical 
example is provided by the classical polarized electromagnetic media. 
 
 − Moments of surface origin that are derived from a surface density of proper 
ponderomotor moment σ* ijk that is, as we have seen, homogeneous to a volume density of 
spin, and whose presence proves to be indispensible if one is to equilibrate the presence 
of the spin density precisely. 
 
 We begin by writing the dynamical equation that relates to the sum of forces – both 
inertial and ponderomotive – that are applied to the material drop E.  In integral form, one 

will obviously have: 
ik

kT δω∂∫∫∫ ∫  = i ik
kf E uδω δ ∗+∫∫∫ ∫ ∫∫∫P . 

 
The triple integral, which relates to the quadri-work done by surface forces, transforms 
into: 

2 1

ik ik
k kE E uδω δ

−
∂ −∫∫∫ ∫ ∫∫∫E E

. 

 
Just as we did in no. IV.6 for the case of pressure, we shall transform the latter ∫∫∫ into ∫∫∫∫ 
by appealing to “hypothesis H” and “postulate P,” which were stated in IV.5.  Under 
“hypothesis H,” one will have: 

δu0k = − 
2

1

c
Vk Vl δul, 

 
in such a way that if one takes into account the obvious vanishing of a hyper-wall integral 
then the triple integral in question can be written: 
 

−
2

1 l ik
k lE V V

c
δω∂∫∫∫ ∫ . 

 
Finally, if one takes “postulate P” into account, as well as the expression (99) for T ij, 
then one will have: 

(IV.102)  
2

1
( ) ( )ik l ik i ik l ik

k k i k k lT V V f E E V V
c

ρ∂ ≡ ∂ = + ∂ − ∂  
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for the desired equation.  Conforming to what we have said, there is physical 
homogeneity between the three tensors T ij, c2 ρ ij, and E ij. 
 We now write down the dynamical equations for moments, and first in integral form.  
If we take into account the balance of everything that was stated before then we will 
have: 

2 1

( )i jk j ik ijk
kx T x T uσ δ

−
− +∫∫∫E E

 

= ( ) ( )i j j i ij i jk j ik ijk
kx f x f x E x E uµ δω σ δ∗ ∗− + + − +∫∫∫ ∫ ∫∫∫P . 

 
Taking into account the obvious vanishing of a hyper-wall integral, the ∫∫∫ on the left-
hand side will be transformed into: 
 

{ }i jk j ik ijk ijk
k kx T x T uσ δω σ δ ∗∂ − + −∫∫∫ ∫ ∫∫∫P . 

 
Similarly, under “hypothesis H,” and taking into account the obvious vanishing of a 

hyper-wall integral, the first two terms in the ∫∫∫P will transform into: 

 

2

1
{ } { }i jk j ik l i jk j ik

k k lx E x E x E x E V V
c

δω ∂ − − ∂ −  
∫∫∫ ∫ . 

 

 Finally a ∫∫∫P will remain on both sides of the equation, and one must necessarily 

have: 

(IV.103)    0ijk ijkσ σ∗ − =  

 
identically at every instant-point of the contour C of the drop, which amounts to saying 

that in a medium that is endowed with spin σ ijk, the simple fact of considering an isolated 

portion E of the medium demands that for dynamical equilibrium to exist, one must 

fictitiously apply a surface density of ponderomotor moment that is precisely opposite to 
the volume density of spin to all of the contour C ([127], pp. 127).  From everything that 

was said before, it is clear that the two meanings for the density σ ijk are compatible from 
the standpoint of dimensional analysis. 

 Once the two ∫∫∫P are assumed, they will cancel identically, from what was just 

said, and what will remain for the equation that we are studying in its density form is: 
 

∂k { xi T jk – x j T ik + σ ijk} 

= xi f j – x j f i + µ ij + ∂k{ xi E jk – x j E ik} −
2

1

c
∂l{( xi E jk – x j E ik) Vk Vl }. 

 
The various expressions of the form ∂k x

i A jk… or ∂k x
j A ik … transform according to the 

schema: 



116 Chapter IV – Relativistic dynamics. 

 

 ∂k x
i A jk… = xi ∂k A jk… + i jk

k Aδ … 

  = xi ∂k A jk… + jiA … 
 
If one takes equation (98) into account then what will remain of the equation in question 
will be simply: 

(IV.104)  
2

[ ]

1
[ ] .

ji ij ijk jk i ik j ijk
k k k

ij ji ij jk i ik j
k

T T V V V

E E E V E V V
c

σ ρ ρ σ

µ

− + ∂ ≡ − + ∂

= + − − −
 

 
 In the absence of proper kinetic moments, the two tensors: 
 

T ji – T ij and  σ ijk, 
 
which are antisymmetric in i, j, will be zero identically.  Similarly, in pre-relativistic 
elasticity, the two tensors: 

µ ij   and  E ji – E ij, 
 
which are antisymmetric in i, j, will be zero identically in the absence of proper 
ponderomotor moments.  In relativity, we must correct that statement slightly by referring 
to the two tensors: 

µ ij   and  E ji – E ij – [E ji V i – E ij V j] Vk . 
 

Under those conditions, in the absence of proper moments (whether kinetic or 
ponderomotor), equation (104) will be satisfied identically, which amounts to saying that 
the equation of dynamical equilibrium for the moments is a consequence of the equation 
for the resultants.  That is a well-known result of pre-relativistic hydrodynamics, and that 
justifies a posteriori the fact that we have given all of our theory in § A without being 
preoccupied with moments. 
 It is quite easy for us to interpret the two equations (821) and (83) of Dirac’s theory − 
the first of which is due to Tetrode, and second of which, to Durand − with the aid of the 
general equation (104).  One obtains Tetrode’s equation by annulling the entire right-
hand side of (104), and that amounts to saying that Dirac’s spin density is defined 
independently of any consideration of ponderomotor moments.  More precisely: The 
Dirac spin density is the spin density that is induced by the asymmetry of the inertia 
tensor.  The Durand equation is obtained similarly by annulling the terms that contain the 
inertia tensor, and of course, the ones that contain the elastic tensor.  That amounts to 
saying that: The Durand spin density globally contains all of the dynamical effects that 
result from the (fictitious) application of the electromagnetic ponderomotor couple 
density to the electronic fluid. 
 
 
 IV.15. – Deduction of the dynamics of a point endowed with spin.  Summary of a 
theory of Weyssenhoff and Raabe. – As we did in no. IV.7 in order to deduce the 
dynamics of a point without spin, we shall now essentially suppose in what follows that 
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there are no forces of surface origin.  Exactly as before, we will deduce the relation (51), 
which we now write: 
(IV.105)    dpi = Fij dxj . 
 
This time, by virtue of (93), the quadri-vector: 
 

(IV.106)    0
i ip m U=  

 
will not be collinear with the quadri-vector V i.  One can decompose it parallel and 
orthogonal to V i (i.e., by virtue of (86), along V i and U i – V i) into a longitudinal mass-
impulse and a transverse mass-impulse.  Here, we rewrite the relation (86) in the form: 
 

(IV.107)    2
0.

i
iV p c m≡ −  

 
 If one essentially adopts the hypothesis that the world-force F ij is antisymmetric 
(which is a hypothesis that corresponds to the one where there is conservation of proper 
mass, in the language of continuous media) then one can deduce from formula (105) that: 
 
(IV.108)    Vi dpi = 0. 
 
Upon comparing formulas (107) and (108), one will then see that the necessary and 
sufficient condition for there to be conservation of proper mass m0 is that the quadri-
vector U i – V i, which is already orthogonal to V i, must also be orthogonal to V′ i : 

 
(IV.109)    p i dVi = 0. 
 
That corroborates what we said in no. IV.12 precisely. 
 Now, consider the density formula (104), which we rewrite upon neglecting the terms 
of surface origin and making the expression for the tensor T ij explicit from (87): 
 
(IV.110)   ρ0 (U j V i – U i V j ) + σ ijk = µ ij, 
 
and then multiply all of the terms by the elementary scalar volume δu0 .  In the left-hand 
side, one will get the proper mass m0 as a factor, and if one takes (106) into account then 
that term can be written: 

δp j V i − δp i V j . 
The second term: 

1

dτ
∂kσ ijkδu0 dτ 

can be replaced with: 
d

dτ
(σ ijk δu0) ≡ ( )

ij
pCδ ′ , 

 



118 Chapter IV – Relativistic dynamics. 

 

in which ( )
ij
pCδ ′  denotes the elementary proper kinetic world-moment and the derivative is 

taken with respect to the proper time.  In order to do that, one performs a transformation 
of the quadruple integral into a triple integral at the infinitesimal scale, and one neglects 
the hyper-wall integral by virtue of what was said in the context of formula (103).  
Ultimately, the finite proper ponderomotor moment, as defined in the second way (no. 
II.14): 

(IV.111)    0
ij ijM uδ µ δ=  

     
will appear in the right-hand side of equation (110).  Finally, if one passes to the usual 
limit then one will see that the density formula (110) admits the equivalent integral: 
 

(IV.112) .j i i i ij ijp V p V C M′− + =  

 
That is the one formula that several authors have posed, by hypothesis, as the basis for 
the dynamics of a point that is endowed with spin {[132], eq. (2), [134], pp. 28, eq. (11)}.  
Here, we obtain that formula deductively.  One therefore verifies once more the primacy 
that relativity accords the density theorems with respect to the finite theories. 
 If one sets: 

(IV.113)    ijk ij kM uδ µ δ=  

 
for the general definition of the finite ponderomotor moment then if one takes the 
definition (II.80) of the elementary scalar volume into account, one will see that the 
relation (112) can be further written: 
 
(IV.114)   p j dxi – p i dx j + C′ ij = M ijk Vk , 
or, if one prefers: 

(IV.115)   .j i i i ij ij
kp dx p dx dC M dx′− + =  

 
 Under the hypothesis that the world-force F ij is antisymmetric [cf., (108)], it is clear 
that formula (60), which uses the finite force of the second kind, will remain valid.  We 
rewrite it as: 

p′ i = F i, 
 
and we can then effortlessly conclude that: 
 
(IV.116)   x i p′ j – x j p′ i = x i F j – x j F i . 
 
Upon adding corresponding sides of (112) and (116), we will obtain the formula: 
 

(IV.117)  ( ) ,j i i i ij j i i i ijx p x p C x F x F M′− + = − +  
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which conforms to the reasoning of the cited authors and is in accord with those of the 
previous no., or equivalently, upon returning to the ordinary finite force and 
ponderomotor moment: 
 

(IV.118)  ( ) ( ) .j i i i ij i jk j ik ijk
kd x p x p C x F x F M dx− + = − +  

 
 That is the complete set of fundamental formulas for the dynamics of a point that is 
endowed with spin.  We point out that in the following paragraph some reasons will 
appear for assuming that the general relation: 
 
(IV.119)    C ij pj = 0 
 
exists between the spin C ij and the mass-impulse pj of a material point, by virtue of 
which the three components Cu4 of the barycentric moment will be annulled in the 
Galilean frame in which the three pu are zero.  As far as that is concerned, Weyssenhoff 
and Raabe have made another hypothesis, and we shall summarize their theory [133, 134] 
to conclude. 
 Instead of the preceding relation, one postulates that one has essentially (the 
Weyssenhoff-Raabe postulate): 

(IV.120)    0ij
jC V =  

and consequently: 
(IV.121) C′ ij Vj + C ij V′j = 0. 
 
If one multiplies all of the terms in (112) by Vj , under the hypothesis that M ij ≡ 0, and 
takes into account the definition (107), as well as (120), then one will get: 
 

(IV.122)    pi = m0 V i +
2

1

c
C ij V′j , 

 
and then, with no difficulty, the relation (108), which shows that the proper mass m0 will 
then be constant.  One deduces from the same formula (112), as always, by virtue of 
(120) and under the hypothesis that M ij ≡ 0, that: 
 
(IV.123)    Cij C′ ij = 0, Cij C ij = const., 
 
which shows that under the hypotheses that were made, the proper kinetic moment is 
preserved in modulus. 
 Under the hypothesis that F i ≡ 0, the quadri-vector pi will remain constant.  With 
Weyssenhoff and Raabe, we then agree to call the Galilean frame Gc in which the three pu 

are annulled the proper system of the circle.  In that frame, and by virtue of (107), one 
will have: 

4
cp = − ic m0 

21 cβ− , 
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from which, one will conclude that: 
 

βc = const.,  4
cV = const. 

 
Weyssenhoff and Raabe called the constant quantity: 
 

Mc = m0
21 cβ−  

 
the proper mass of the circle.  Since 4V′  is zero in the frame Gc , the expressions for the 

three pu, which are zero, will reduce to: 
 

m0 V
u + 

2

1 uv
vC V

c
′  = 0, 

 
or furthermore, if one transforms the derivative with respect to proper time for the 
particle into a derivative with respect to “proper time of the circle” then: 
 

M0 V
u +

2

1 uv
vC V

c
′  = 0. 

 

If we then return to the ordinary velocity vu = Vu 21 β−  and the notation of the common 
vector calculus then the preceding relation will be written: 
 

M0 v +
2

1

c
C ^ v′ = 0, 

 
in which C denotes a constant vector, and M0 is a constant.  The integration of that 
equation is classical.  One finds very easily that in the frame Gc , and with a well-defined 

angular velocity ω = 2
0 /c M C′ , one has a circular helix with an axis that is parallel to C 

and has a radius r = 2
0/( )Cv c M  that is proportional to v.  On that subject, Weyssenhoff 

and Raabe observed that no macroscopic material point will enjoy the preceding 
properties.  They then assumed that certain reasons would oblige the radius r0 to remain 
extremely small. 
 Those authors completed their theory by treating the case in which the particle was a 
pre-quantum electron that was endowed with a proper magnetic moment (Uhlenbeck, 
Goudsmit, Frenkel), and then the case in which that particle has a vanishing proper mass, 
and consequently, a velocity that would be indistinguishable from c. 
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C. – ON THE PROBLEM OF THE DYNAMICS OF SYSTEMS  
OF INTERACTING POINTS.  

 
 IV.16. – Four-dimensional extension of a theorem from the theory of torsors.  
Combined definitions of the barycenter and moment around the barycenter. – 
Consider a system of N torsors, each of which is, by definition, composed of a resultant 
shift pi and a couple s ij ≡ − s ji.  Suppose, to fix ideas, that all of the quadri-vectors pi are 
timelike, with positive temporal components.  By the definition of the sum Pi of the 
system of N torsors, set: 

(IV.124)    .i iP p=∑  

 
As soon as we have determined its line of action or axis, Pi will be the resultant shift of 
the resultant torsor.  By virtue of the indicated restriction, the quadri-vector Pi will 
certainly be timelike with a positive temporal component. 
 Now let X i be the four coordinates of the point of application of a quadri-vector that 
is equipollent to P i, and let S ij = − S ji be the six components of an antisymmetric tensor, 
to which we impose the a priori condition: 
 

(IV.125)    0,ij
jS P =  

 
which is expressed by four equations, only three of which are independent.  Then define 
the instant-point X i and the tensor S ij together by means of the tensorial equation: 
 

(IV.126)  ( ),i j j i ij i j j i ijX P X P S x p x p s− + = − +∑  

 
which is equivalent to six algebraic equations.  If the P i are determined by (124) then one 
will see that (125) and (126) define a linear system of rank nine in the ten unknowns X i 
and S ij. 
 We provisionally place ourselves in the Galilean frame G0 in which, from (125), the 

three Pu, as well as the three Su4, are annulled: 
 
(IV.127) 0

uP  = 0, 4
0
uS = 0. 

 
In G0, equations (126) will reduce to: 

 

(IV.128) 0 0 0 0 0 0
4 4 4 4

0 0 0 0 0 0 0

[ ],

[ ].

uv u v v u uv

u u u u

S x p x p s

X P x p x p s

 = − +
 = − +

∑
∑

 

 
The tensor S ij is determined completely by (1272) and (1281), and the line of action of the 
quadri-vector Pi is determined by (1282).  Of the ten unknowns 0

iX  and 0
ijS , only the 0

iX  

remain arbitrary, for the moment. 
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 Finally, equations (124), (125), and (126) completely determine the resultant torsor 
of the system of N torsors pi, s ij ≡ − s ji in terms its resultant shift Pi and its couple S ij ≡ − 
S ji. 
 We now (and optionally) suppose that the N quadri-vectors pi no longer slide, but are 
linked.  It will then also be possible to link the quadri-vector Pi by virtue of the new 
equation: 

(IV.129)    ,i i
i iX P x p=∑  

which is written: 
(IV.130) 0 0

i
iX P  = 0 0

i
ix p∑  

 
in the frame G0, and determine the tenth unknown 40X .  One sees that the equations (125), 

(126), and (129) form a linear system of rank ten in the ten unknowns X i and S ij. 
 The preceding calculations provide the means for defining, first, the total mass-
impulse Pi in a covariant manner, then collectively, the barycenter Xi and the moment 
about the barycenter S ij of a system of material points that are endowed with spin sij in 
the general case.  The fact that the last two notions are combined with each other is what 
makes the remark that was made in no. IV.10 stand out a priori, namely, that the three 
components in u, 4 of the tensor xi p j – x j pi generalize the classical notion of barycentric 
moment of a material point about the origin of the universe. 
 In order to define the barycenter of a swarm of N material points in the large, we 
temporarily assume that they are non-interacting and fictitiously regard each of them as 
sliding along a timelike axis that is collinear with its mass-impulse pi (hence, not tangent 
to its world-trajectory in the general case of spin).  By definition, the sum Pi will be the 
total mass-impulse of the swarm, while the couple S ij will be its kinetic, barycentric 
moment about the barycenter, and finally, the axis will be the world-locus of the 
barycenters X i.  The justification for those definitions results from the fact that if one 
sets: 
(IV.131)    P4 = ic M 
then (124) can be written: 
(IV.132)   Pu = up∑ , M = m∑ , 

 
as well as the fact that, in G0 , the (1281) define the kinetic moment about the barycenter 

(so the barycentric moment will then be zero), and that (note well!) it is independent of 
the origin of space, since the three 0

uP  are zero, and finally that (always in G0) equations 

(1282) generalize the usual definition of the barycenter by: 
 

0 0
uM X  = 4

0 0 0 0 0

1
( )u u um x v t s

ic
 − + 
 

∑ , 

 
which is a formula that will coincide with the classical formula exactly if all of the points 
are taken at the same instant t0 = 0 and in the absence of spin. 
 In order to define the barycenter in the strict manner, one links each of the N points of 
the swarm to the instant-point of its axis and its world-trajectory (in the general case, not 
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all of those instant-points are taken simultaneously).  In G0 , equation (129) can then be 

written: 

M0 T0 = 0 0 0 02

1 u
um t x p

c
 − 
 

∑ , 

 
and the time of the barycenter T0 = 4

0 /X ic  will then appear like the weighted mean of the 

times of the points of the swarm, up to a very small correction term that corresponds to 
the virial  of those points.  Hence, even if one takes all of the points at the same instant, 
their barycenter, when defined in the strict manner, will not be at that instant.  That 
unsettling fact will seem quite singular to the practitioners of Newtonian mechanics.  If 
one prefers, one can avoid it by appealing to the definition of the barycenter in the large. 
 The spirit of Newtonian mechanics, as well as that of the quantum theory of particles 
with spin will be respected if we fictitiously call Pi the mass-impulse of the barycenter 
and Sij the spin of the barycenter.  Note well that even if the constituent points are devoid 
of spin, the barycenter will have spin, which will be nothing but the classical moment of 
the system about the barycenter.  To us, that remark seems to justify the necessity of a 
relativistic study of points with spin (no. IV.15), even in the absence of the results of 
quantum mechanics. 
 
 
 IV.17. – The potential energy-impulse and the potential spin of the field.  
Statement of some general theorems of dynamics. – As we have said in the Foreword 
to this Chapter, according to what we have learned about electromagnetism from 
Maxwell, Abraham, Poincaré (and even, we might add, from the paper by E. Henriot that 
relates to the couple density of the field [107]), we shall assume that the existence of a 
field of interaction between N material points translates, in the entire universe, into the 
existence of a continuous distribution of a potential mass-impulse density T ij (which is 
asymmetric in the general case of spin) and a potential spin density σ ijk (which is 
essentially antisymmetric in i, j).  To commence, replace the N filamentary hyper-
trajectories with N infinitely-thin material world-hypertubes.  We assume that each of the 
two tensors T ij and σ ijk each take the form of a sum of two tensors, the first of which – 
which is called the inertial or material part – is not identically zero only inside of the 
preceding hypertubes and suffers a discontinuity upon traversing their hyper-walls, and 
the second of which – which is called the field part – is continuous in the whole universe.  
From the definitions that were given in the preceding paragraphs, the elementary mass-
impulse and spin that are attached to a hyper-section of one of the preceding hypertubes 
will be attached to their material tensors by the formulas: 
 

δpi = 1
ik

kT uδ ,  δsij = 1
ijk

kuσ δ . 

 
 That being the case, and by virtue of formulas (10) and (104), which we rewrite (1), 
the force density f i and the proper ponderomotor moment density µ ij will have the 
following expressions at every instant-point: 

                                                
 (1) The second one, by annulling all of the terms of elastic origin identically.  



124 Chapter IV – Relativistic dynamics. 

 

f i ≡ ∂k T ik, µ ij ≡ T ji – T ij + ∂k σ ijk. 
 
Now, from d’Alembert’s principle, the force density and the couple density (orbital + 
proper) must be identically zero at any instant-point, which is written: 
 

f i ≡ 0,  xi f i – x j f i + µ ij ≡ 0. 
 
If one takes the obvious relation: 

T ik ∂k x j ≡ T ij 
 
into account then the equations above will admit the following two consequences: 
 
(IV.133)  ∂k T ik = 0, ∂k {xi T jk − xj T ik + σ ijk} = 0. 
 
Those are the two purely local general equations that express dynamic equilibrium, in the 
d’Alembert sense, of the matter + field system as a sum and a moment.  We shall infer the 
relativistic statements of the general theorems of dynamics from them. 
 We arbitrarily  introduce a continuous family of three-dimensional, spacelike 
hypersurfaces E (θ) of the usual kind.  Suppose that when one goes to infinity along an 

arbitrary direction on a E (θ), the mean density of matter decreases in such a way that if 

the intensity of the interaction field decreases sufficiently fast with the distance from the 
matter then the two density tensors T ij and σ ijk will decrease sufficiently fast at spatial 
infinity.  Then take a closed, four-dimensional domain that lies between two E – e.g., E 

(θ1) and E (θ2) – and inside of a hyper-wall P that does not meet any material hypertube.  

Integrate (133) in that domain, transform it into a triple integral, and stretch the hyper-
wall P out to spatial infinity in all directions.  From the hypotheses that were made, the 

triple hyper-wall integral will tend to zero, and if one orients E (θ1) and E (θ2) in the same 

sense relative to the time axis then one will get the following two integral equations, 
which are equivalent to (133): 

(IV.134)   
0( )

0( )

,

[ ] ,

ik i
k

i jk j ik ijk ij
k

T u P

x T x T u C

θ

θ

δ

σ δ

 =



− + =


∫∫∫

∫∫∫

E

E

 

 
which are equations in which the right-hand sides 0

iP  and 0
ijC ≡ − 0

jiC  are constant 

tensors. 
 Now, make the material terms in δpi and δs ij of the corresponding tensors appear 
under the ∫∫∫ sign, and then constrict the hypertubes in order to return to the case of 
material points.  In that passage to the limit, one supposes essentially that: 
 
 a) The pi = δpi and sij = δsij that are attached to each hypertube remain finite. 
 b) The interior portions of the integrals of the field tend to zero and their exterior 
portion remains finite. 
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(134) will then take on the form: 
 

(IV.135) 
{ }
{ }

0

0

,

[ ] [ ] .

i ik i
k

i j j i ij i jk j ik ijk ij
k

p T u P

x p x p s x T x T u C

θ

θ

δ

σ δ

 + =



− + + − + =


∑ ∫∫∫

∑ ∫∫∫
 

 
The terms in ∑  − or kinetic terms – relate to the material points of the swarm whose 
mass-impulses are pi and whose spins are sij.  The terms in ∫∫∫ − or potential terms – relate 
to the interaction field.  0

iP  and 0
ijC  ≡ − 0

jiC  are two tensorial constants.  The indices θ 

signify that the triple integrals are calculated over a current hypersurface of the family 
E(θ) and that all points of the swarm are taken from that same hypersurface.  The two 

tensorial equations (135) contain a condensed statement of the general theorems of the 
relativistic dynamics of those systems of points. 
 In the absence of spin, one will have, on the one hand: 
 

σ ijk ≡ 0, sij ≡ 0, 
 
where the second equation is a finite consequence of the first one, and likewise (cf., the 
end of IV.15): 

T ji – T ij ≡ 0, x′i p j − x′ j p i ≡ 0. 
 
One will then effortlessly see that the second of (135) is a consequence of the first one, 
with: 

0
ijC  = 0 0

i j j iX P X P− , 

 
Xi denotes the current instant-point of a certain axis that is collinear with the constant 
covector 0

iP . 

 We return to the general case in order to infer the detailed statements of the general 
theorems that were stated from (135).  We arbitrarily decompose the current hypersurface 
E(θ) into elements δuk that are infinitely small in all of their dimensions and vary as a 

function of θ in a continuous manner.  It will result from (135) and the theory that was 
developed in no. IV.16 that the resultant torsor Pi, S ij of the system of N torsors pi, sij and  
∞ torsors Tik δuk , σijk δuk is conservative.  It is conservative in the double sense that it 
will not be altered by either a change of E inside the family E(θ) or by a change of the 

family E(θ).  That will amount to saying that the resultant dynamical torsor is: 

 
 a) Conservative throughout the mechanical evolution of the system points + field. 
 b) Defined independently of the choice of family E(θ). 

 
In passing, we insist upon the essential importance that the second result has a priori, and 
we come to the detailed explanation for the first one. 
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 THEOREM I.  – In the absence of external forces, the total mass-impulse of the 
system points + field – which is called the mass-impulse of the barycenter, moreover – is 
conservative. 
 
 For i = 4, one will then obtain both the statement of the theorem (and not the 
principle) of the conservation of total mass and that of the vis viva theorem.  The main 
novelty of the classical theorem consists of attaching a potential mass to the field of 
interaction that correlates with the potential energy, whose constant is then found to be 
fixed.  The potential mass must obviously be negative in a stable system, and as one 
knows, that is an established result of nuclear chemistry (1).  The secondary novelty 
consists of the fact that the law of distribution of that mass or that potential energy in the 
field is physically well-defined. 
 For i = u = 1, 2, 3, Theorem I generalizes the classical impulse theorem.  Since it is 
certain a priori, the older equality of action and reaction at a distance will have to be 
rejected as absurd.  Correlatively, one introduces the notions of a potential-impulse that is 
distributed throughout the field as a density. 
 
 THEOREM II.  – In the absence of external forces, the kinetic and barycentric 
moment about the barycenter of the system points + field – which is called the spin of the 
barycenter, moreover – is conservative. 
 
 For i, j = u, v = 1, 2, 3, one will then obtain the extension of the classical theorem of 
kinetic moments.  Along with the kinetic spin that is due to the points, a potential spin (2) 
that is coupled with the field will come about.  Each of those two moments will itself be 
the sum of an orbital moment and a proper moment in the general case of spin. 
 For i, j = u, 4, the same statements can be repeated for the barycentric moment. 
 
 THEOREM III.  – When θ varies, the instant-point Xi that is associated with the 

strict definition of each hypersurface E(θ) in no. IV.16 will describe a fixed axis that is 

collinear with the constant quadri-vector Pi in the universe.  One will then have every 
right to say that in the absence of external forces, the quadri-velocity Vi of the world-
barycenter of the system points + field will be conservative and collinear with the total 
mass-impulse (which is itself conservative by virtue of Theorem I), moreover. 
 
 One clearly recognizes that this is an extension of the classical theorem of the 
barycenter, and that it has a very interesting specialization for the theory of the point with 
spin.  Since the barycenter, conforming to the spirit of mechanics – whether classical or 
quantum – is considered fictitiously to be a material point that is endowed with spin, one 
would not expect that its mass-impulse and its world-velocity would be collinear, in 
general.  However, it will result from the corollary that is implied in Theorem III that in 
the very important special case of the free motion of a system, the two quadri-vectors Vi 
and Pi are collinear (and constant, moreover).  It seems quite natural to inductively 
                                                
 (1) We have already mentioned that the mass-energy balance in nuclear chemistry provides an excellent 
verification of the theory of relativity [114, 115, 117]. 
 (2) Unfortunately, the words in the two expressions kinetic kinetic moment and potential kinetic moment 
clash with each other.  
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extend that result to the case of an elementary point that is endowed spin.  One knows 
that in the wave mechanics of particles with spin, and in the very important special case 
of the monochromatic plane wave, the mass-impulse (which is well-defined) is collinear 
with the world-rays.  That fact constitutes the quantum transposition of the preceding 
result. 
 All of the preceding theory was formulated under the hypothesis of the absence of 
external forces.  In order to pass to the general case, one must necessarily superimpose 
the previously-considered interaction field with an external action field, whose resultant 
torsor will be valid with the change of the hypersurface E (θ).  The resultant torsor of the 

torsor that is “interior to the system” and the “external action” torsor must be 
conservative. 
 
 
 IV.18. – Limitations of the preceding theory.  Some words on the general 
problem of the relativistic dynamics of systems. – In the preceding two nos., we have 
successively been able to make relativistic extensions of the basic notions that permit one 
to characterize a system dynamically and the statements of some general theorems of 
dynamics.  It now seems clear that we have done little more than to clear the path to the 
true problem, namely, the field problem that Newtonian mechanics treats by passing over 
it by making a whole group of physical approximations, namely: 
 
 − Instantaneous transmission of the interaction, which is the postulate that the entire 
system is taken at the same instant t of the so-called universal time. 
 
 − Equality of action and reaction at a distance, which is a hypothesis that is 
conceivable only in the case of universal time, which is a consequence of the preceding 
one, and will render the notion of a potential impulse useless. 
 
 − The absence of an equivalent mass to the potential energy, which will render the 
specification of its law of distribution inside the field useless for the definition of the 
barycenter, for example. 
 
 All of those approximations amount to letting c → ∞, in various forms, and that itself 
will show one the corresponding ways that the constant c enters into dynamics.  They 
form a perfectly-coherent body amongst themselves that keeps its value as a technical 
method for the treatment of a whole group of problems.  However, by its very nature, 
relativity forbids the use of that body of approximations.  It is essentially their use that 
permits Newtonian mechanics to appeal to its general theorems as logical intermediaries 
in the treatment of some problems, and it is the suppression of their use in relativity that 
will imply the suppression of the general theorems.  Indeed, in order for the general 
theorems in relativity to be able to serve as logical intermediaries, one must previously 
know the law of evolution of the field of interaction, but that will be controlled by the law 
that allows one to find the system of points. 
 Hence, the field problem that Newtonian dynamics solves by omission comes to the 
fore in relativity, and is the one that essentially constitutes the problem of the dynamics of 
systems.  To be sure, that class of problems has been encountered before, notably in the 
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electromagnetism of Maxwell-Abraham-Poincaré (1) and also in the relativistic theory of 
gravitation (2).  It appears as an obligatory consequence of taking into consideration a 
finite velocity of propagation for that interaction.  To touch upon the advantage that the 
present problem can infer from the example of analogous problems, we think that by the 
power and generality of the methods that are brought into play, it is, above all, the study 
of general relativity in which that example can be profitable. 
 It seems to us that here we have a strong argument a priori in favor of the 
introduction of a metric in order to treat the problem that we consider: In relativity, the 
motion of a force of interaction between two points as a function of their finite separation 
is a priori as unacceptable as that of the equality of action and reaction at a distance.  
However, consider the problem in Newtonian mechanics of two material points that 
attract each other by the intermediary of a massive elastic filament.  The force of 
interaction is transmitted between them in the step-by-step sense, by waves and at finite 
velocity.  One can say that it exists virtually at every point of the filament.  In fact, it is 
realized only at the extremities A and B, where there is no equality between action and 
reaction (except in the limiting case where the linear density of the filament tends to zero 
and the wave velocity tends to infinity).  Moreover (and this is the point that we are 
trying to reach), the local law of tension in the filament will yield, step-by-step, a 
substitute for the motion of a force of attraction that is a function of the finite separation 
distance.  Furthermore, nothing is easier than to put that problem into equations: One 
defines a proper metric for the filament by graduating it into equal divisions that pertain 
to its molecules when it is taken at rest.  Let ξ be that gradation, while ξA and ξB are the 
proper abscissas of the extremities (which are constant, by hypothesis), ρ is the linear 
density of the filament relative to the proper gradation ξ, and γ is the coefficient of 
elasticity.  To simplify, argue with just one Galilean dimension x to space, so one will 
effortless arrive at the equation of evolution of the vibrating string: 
 

2 2

2 2

x x

t

ρ
ξ γ

∂ ∂−
∂ ∂

= 0, 

 
which is rigorously valid for large deformations of the filament, due to the precautions 
that were taken.  Moreover, if mA and mB denote the Newtonian masses of the two 
material points then the two equations of condition: 
 

2

2:
x xρ
ξ ξ

∂ ∂
∂ ∂

 = 
for ,

for
A A

B B

m

m

ξ ξ
ξ ξ
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must be satisfied at the extremities. 

                                                
 (1) On that subject, one should read RICHARDSON, The electron theory of matter, Cambridge, 1914, 
chaps. XI and XII.  A very important phenomenon that pertains to the case of the electromagnetic field is 
the irreversible creation of radiation by accelerated charges. 
 (2) On that subject, one might read G. DARMOIS, Mém. Sci. Math. 25, 1927.  RACINE, La problème 
des n corps dans la théorie de la relativité, Paris, 1934.  LICHNEROWICZ, Sur certains problèmes 
globaux relatifs au système des équations d’Einstein, Paris, 1939, and J. de Math. (1) 23 (1944), 37. 
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 It seems to us that the preceding problem of Newtonian mechanics provides a pretty 
fair simplified picture of what the relativistic problem of the dynamics of systems of 
interacting points must be, which is a problem that might be answerable to the methods of 
general relativity. 
 Despite that suggestion, we hope that our very modest contribution to the question – 
namely, the relativistic extension of some notions and classical results of the Newtonian 
mechanics of systems of points – might lead to more work being done on the true 
problem. 
 

 
D. – ON THE FOUNDATIONS OF RELATIVISTIC THERMODYNAMI CS 

 
 IV.19. – On heat and temperature in relativity: classical definitions of Planck-
Einstein and modern covariant definitions. – Consider a body C in uniform, rectilinear 

translation (hence, it is indeformable) whose proper mass at absolute zero is M00 .  If it 
has the proper temperature T0 in the proper Galilean system G0 then it will acquire a 

certain quantity of proper heat Q0, whose mass equivalent is JQ0 / c
2.  Its proper mass 

will then be increased, and it will become: 
 

(IV.136)   M0 = M00 + ∆M0 , ∆M0 = 
2

1

c
 JQ0  . 

 
 Now let P i be the mass-impulse of the body C, and let 0

iP  be the value of P i at 

absolute zero.  If V i denotes the constant quadri-velocity of the body C then: 

 
P i = M0 V i, 0

iP  = M00 V i, 

 
in such a way that the contribution to the mass-impulse that is due to the proper heat Q0 

is: 

(IV.137)  ∆P i ≡ J Q i = ∆M0 ⋅⋅⋅⋅ V i, Q i = 
2

1

c
Q0 V i. 

 
We agree to call the quadri-vector Q i the caloric-heat-impulse. 

 In an arbitrary Galilean frame G ≠ G0 , the three ∆Pu will represent an impulse that 

must be provided to the body C in order to keep its velocity vu constant when its proper 

temperature passes from absolute zero to T0 .  When that impulse has a well-defined 
direction, it will correspond to a certain amount of work: 
 

(IV.138)    T ≡ vu ∆Pu = 
2

0

21

M v

β
∆ ⋅

−
. 
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Upon subtracting T from the energy ∆W = − ic ∆P4 that is provided to the body C during 

the transformation in question, one will get a certain energy JQP with no associated 

impulse – namely, the “disordered energy” – that gets added to the terms in the pre-
relativistic theory.  It is the Planck heat, which satisfies the relations: 
 

(IV.139)   JQP + T = ∆W, QP = Q0 
21 β− . 

 
 The transformation law for Planck heat under a change in Galilean frame, which is 
inverse to that of a temporal component of the quadri-vector, is the same as that of a 
material volume considered simultaneously (II.262).  We agree to call the expression Q = 

− ic Q4 that is defined by (1372) the covariant heat, and if one takes (II.62) into account, 
it will transform according to the law: 

(IV.140)    Q = 0

21 β−
Q

. 

 
 It is indeed clear that there is an equivalence between being given the three Qu and 

Q
4 = (i / c) Q, on the one hand, and being given the work T, with its direction, and QP, on 

the other.  (137) and (139) will always permit one to pass from one language to the other 
invertibly.  Being given the work T and the Planck heat QP is more physical, in the sense 

that the notion QP conforms more rigorously to the notion of a heat that is defined to be a 

disordered energy.  By contrast, being given the caloric-heat-impulse quadri-vector Qi is 

more mathematical, and one will see that only that quadri-vector lends itself to writing 
the formulas in a tensorial way. 
 Let S be the entropy of the body C.  From kinetic theory, it is a pure number, and the 
logarithm of a whole number; it can vary only by discrete (as well as quite small) 
quantities, and since the formulas for the change of Galilean frame are continuous 
formulas, one will see that the entropy S is necessarily a relativistic scalar.  If θ0 denotes 
the inverse of the proper temperature T0 of the body C then, from pre-relativistic 

thermodynamics, one can write: 

(IV.141) 0 0 0
0

1
.dS d d

T
θ= =Q Q  

 
 That being the case, introduce the definition of the temperature quadri-vector θ i of 
the body C by way of: 

(IV.142)    0 ,i iVθ θ=  

and call the expression: 

(IV.143)   
1

T
= − 4i

c
θ , T = T0

21 β−  
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the temperature or Planck temperature.  It is clear from the preceding that the elementary 
entropy dS can be expressed as a function of the quantities that are attached to an 
arbitrary Galilean frame G in the following two forms: 

 

(IV.144)    ,i
idS dθ= − Q  

(IV.145) dS = 
1

T
dQP , 

 
the first of which has a tensorial form, while the second one, which is classical, does not.  
The new form (144) can be specified by: 
 

(IV.146)    dS = − θu dQ
u +

1

T
dQ, 

 
and if one compares that with (145) then one will see that taking the temperature quadri-
vector θ i into consideration is an obligatory corollary to the quadri-vectorial definition 
of heat. 
 Before passing on to other subjects, we make one last remark: Let q0 be the density of 
proper heat that is contained in the body C.  If one integrates the expression q0 at constant 

time over the entire body C by way of: 

 

QP = 
0

0i i
q uδ

=∫∫∫  

 
then the expression that will be obtained is nothing but the Planck heat, by virtue of the 
transformation law (II.622) for a material volume when it is considered simultaneously.  
On the contrary, if one introduces the notion of a tensorial heat density q0 V i V j and 
takes the integral: 

c2 Q i = 0
i j

jq V V uδ∫∫∫E  = Q0 V i, 

 
over an arbitrary spacelike hypersurface E then the expression that is obtained will be the 

caloric-heat-impulse quadri-vector, up to the factor c2. 
 Having thus specified the distinctions that one must establish between the Planck heat 
and the caloric-heat-impulse quadri-vector, as well as between the Planck temperature 
and the Van Dantzig-Bergmann temperature quadri-vector in a particularly simple case – 
first from the finite viewpoint, and then from the density viewpoint – in the rest of our 
presentation, we shall utilize only the last two notions.  Their physical interpretation is 
perhaps less direct that that of the notions that were defined by Planck and Einstein, but 
they are the only notions that permit one to write complete differential forms, which is a 
rule that we shall be inclined to respect in the entire course of this book. 
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 IV.20. – General covariant definitions of heat and temperature. – The first 
principle of thermodynamics asserts the equivalence of heat and energy.  It is from it that 
any definition of energy – whether finite or as a density – will bijectively correspond to a 
homologous definition of heat.  In particular, one then introduces a caloric inertia tensor 
T* ij that is homogeneous to T ij, as well as a density of proper heat 0w∗  ≡ 2

0cρ ∗  that is 

homogeneous to the density of proper energy W0 ≡ c2 ρ0 .  It is quite natural to assume 
that the tensor T*ij takes the form (82), which we write: 
 
(IV.147)  T* ij = 0ρ ∗ U i V j, (Ui V i = Vi V i = − c2, i

iT ∗ = − c2 ρ*). 

 
Indeed, in a heat-conducting material medium, one will have to distinguish the heat 
quadri-current U i from the quadri-velocity V i of the medium. 
 Upon integrating the densities T ij and 0ρ ∗  = 2

0 /w c∗  over a spacelike hyper-end-cap, 

one will cause the caloric-energy-impulse – or caloric heat-impulse – quadri-vector to 
appear, as well as the proper caloric energy – or proper heat – of a finite portion of the 
medium, which we write in infinitesimal form: 
 
(IV.148)   δp* i = T* ij uj = 0ρ ∗ V i δu0 = 0

im Vδ ∗  

i i i
p W J

c c
δ δ δ∗ ∗ = = 
 

Q , 

 
(IV.149) 0mδ ∗ = 0ρ ∗ V i δu = 0ρ ∗ δu0 

i i i
p W J

c c
δ δ δ∗ ∗ = = 
 

Q . 

 
We have let δQ denote the covariant quantity of heat that is attached to a material droplet 

δui, when evaluated in an arbitrary Galilean frame, and let δQ0 denote the quantity of 

proper heat in that same droplet.  It is interesting to remark that with the definition (147) 
of the caloric tensor, the caloric-heat-impulse quadri-vector δpi of a given material 
droplet will be defined independently of the orientation of the hyper-section δui of the 
infinitesimal hypertube that is described by that droplet.  Moreover, it is collinear to the 
total heat quadri-current (convection + conduction): 
 
(IV.150)    U i ≡ V i + (U i – V i), 
which seems completely satisfactory. 
 From the second principle of thermodynamics – and above all, from its interpretation 
in terms of statistical mechanics – the entropy: 
 

S = 
T

δ
∫∫∫

Q
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is certainly a scalar quantity.  Indeed, if k denotes the Boltzmann constant then the 
“reduced entropy” S / k will be the logarithm of a probability – i.e., a pure number that is 
the logarithm of a whole number.  Since the components of a tensor are continuous 
functions of i

jσ  under a change of Galilean frame, and since the variation of a whole 

number cannot be continuous, it is necessary that S should be a tensorial invariant. 
 If one recalls the classical definition of S in the definitions (148) and (149) of caloric-
heat-impulse and proper heat then one will be naturally led to write the elementary 
entropy in one or the other of the covariant forms: 
 

(IV.151) 
2

0 0

1
, .i

i

c
S p S m

J J
δ θ δ δ θ δ ∗= − =  

 
From the first one, which is specified by: 
 

− J δS = θu δpu + 
i

c
θ4 δQ, 

 
the inverse of the temperature T is defined to be the temporal component of a quadri-
vector.  From the second, the temperature is defined to be a scalar quantity T0 : 
 

(IV.152) 4 0
0

1
, .

ic

T T
θ θ= =  

 
 Hence, in relativity, one will be quite naturally led to distinguish the two notions of 
temperature and proper temperature, which are defined in connection with heat and 
proper heat, respectively.  Moreover, if one takes the last expression (148) for δp*i into 
account then one have: 
(IV.153)   J δS = − U i θi 0mδ ∗  = c2 θ0 0mδ ∗ , 

 
which will very strongly suggest that one must assume the relation: 
 

(IV.154)    0
i iVθ θ=  

 
when one takes into account that U i Vi = − c2.  By means of that hypothesis, the three 
spatial components of the quadri-vector θ i will be annulled in the Galilean frame that 
follows the hot body, and the notion of proper temperature will be found to be justified 
in the usual sense. 
 
 
 IV.21. – Relativistic form of the fundamental equations of the theory of thermal 
conduction. – In the theory of thermal conduction, heat is associated with a conservative 
fluid whose density Jq we denote by w*.  If one considers the particular case in which the 
conducting body is a rigid body at rest in a certain Galilean frame that one can take to be 
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a reference frame.  Let u be the velocity of the caloric fluid relative to that frame, and 
then let γ (T) and C (T) be essentially positive quantities, namely, the coefficient of 
conduction and the specific heat of the medium, respectively.  Naturally, T denotes the 
absolute temperature.  The fundamental equations of the theory are (1): 
 
(IV.155)    w* u = – γ (T) grad ⋅⋅⋅⋅ T, 

(IV.156)       w* = ( )
T
C T dT∫ , 

(IV.157)    div ⋅⋅⋅⋅ (w* u) + 
t

∂
∂

w* = 0. 

In the particular case where: 
(IV.158)   γ (T) = γ = const., C (T) = C = const., 
 
one will see that the temperature satisfies the equation that is called the heat equation: 
 

(IV.159)    
C

tγ
∂
∂

T = 
23

2
1u u

T
x=

∂
∂∑ . 

 
We remark that if, as one always implicitly assumes in the classical theory, T, γ, and C 
are considered to be invariant under a change of Galilean frame then the heat equation 
will not be covariant.  Moreover, all of the treatises on analysis show that this equation 
does not attribute a finite speed of propagation to temperature.  If all of the caloric energy 
at the instant O is assumed to be contained in a finite domain D then the density w* (dt) at 

the instant dt will no longer be nowhere-zero.  Those two remarks show clearly that the 
classical formulas are certainly truncated forms of the relativistic formulas that are being 
sought. 
 Let V i be the quadri-velocity of a conducting medium that is assumed to be a fluid, 
for sake of generality, let θ i be the Van Dantzig-Bergmann temperature quadri-vector, 
and let θ0 be the Tolman-Eckhart scalar.  Taking our inspiration from Minkowski’s 
theory of electric conduction, and upon remarking that the quadri-vector (∂ i θ  j – ∂ j θ i) 
Vj is essentially orthogonal to V i, we will first generalize (155) into the form: 
 

(IV.160) 2
0 0 0 0 2

1
( ) ( )( ) ( )( ),i i i j j i i i

jc U V V x
c

ρ κ θ θ θ θ θ θ∗ ′− = − ∂ − ∂ ≡ ∂ +  

with 
(IV.161)    κ (θ0) ≡ 2

0T γ (T0). 

 
U i denotes the quadri-velocity of the “caloric fluid,” which is, by hypothesis, such that: 
 

Ui V i = Vi V i = − c2, 
 

                                                
 (1) See, for example, J. BOUSSINESQ, La théorie analytique de la chaleur, Paris, Gauthier-Villars, 
1901, eqs. (40), pp. 120, (109), pp. 168, (133), pp. 194.  
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so if one recalls the covariant four-dimensional formula (160) for the classical three-
dimensional formula (155) then one will see that relativity introduces a very small 
correction term θ′ i / c2 (1).  Moreover, we generalize the classical formula (140) to: 
 

(IV.162)    
02

0 0 0( ) .
T

c C T dTρ ∗ = ∫  

 
 That being the case, from an integral transformation, one will have: 
 

2 1
0 ( )i i

iU V uρ δ∗

−
−∫∫∫E E

= 0 0( )i i
i iU u dt U uρ δ ρ δ∗ ∗∂ −∫∫∫ ∫ ∫∫∫P . 

 
The last integral, which can also be written: 
 

− 0 ( )i i
iU V uρ δ∗ −∫∫∫P , 

 
if one prefers, is immediately interpreted as the heat flux that enters into the portion of 
matter E that is between its state E1 and its state E2 (see no. III.6, eq. III.39).  As for the 

last integral on the left-hand side, under the hypothesis H that was utilized many times in 
the course of this chapter (see no. IV.5), it can be written: 
 

2 1
0

i
iV uρ δ∗

−∫∫∫E E
≡ 

2 1
0 0uρ δ∗

−∫∫∫E E
, 

 
and it can then be interpreted as the augmentation of the proper heat of the material drop 
E between its state E1 and its state E2 .  By hypothesis P, we assume that this 

interpretation will remain valid in the general case. 
 We then make the hypothesis that the heat current quadri-density 0

iUρ ∗ is 

conservative, which is the generalization of the classical hypothesis (157).  One will 
have: 

(IV.163)    0( ) 0,i
i Uρ ∗∂ =  

or 
(IV.164)   0 0{ ( )} ( )i i i

i iU V Vρ ρ∗∂ − + ∂  = 0; 

 
i.e., if one takes (160) and (162) into account: 
 

(IV.165)  0 0 0 0 02

1
( ) ( ) 0.i i i

i iC T T V
c

κ θ θ θ ρ  ′∂ ∂ + + + ∂ =  
  

 

 
That is the equation that generalizes Fourier’s equation (159) in relativity. 

                                                
 (1) Compare this with [142], eq. (37), while taking (12) and (15) into account. 
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 Indeed, suppose that the conducting medium is incompressible, and neglect the 
relativistic term ∂i (κ θ′ i) c2 : 

(IV.166)   ∂i V i ≡ 0, 
2

1

c
∂i (κ θ′ i) ≈ 0. 

 
If one takes (161) into account then what will remain is: 
 
(IV.167)   C (T0) T0 ≈ ∂i{ γ (T0) ∂iT0}, 
 
or further, under the hypothesis that: 
 
(IV.168)  C (T0) = C = const., γ (T0) = γ = const. 
one will have: 

(IV.169)    0

C d
T

dγ τ
 ≈ 0

i
i T∂ . 

 
If one remembers that the classical formula (159) is written essentially in the Galilean 
frame that is linked with the conducting body, which is assumed to be rigid, then the left-
hand sides of (159) and (169) will be equivalent.  Furthermore, the term − 2

0 /i
i T c∂  in the 

right-hand side of (169) can be interpreted as a very small “relativistic correction.”  
Formula (169) – or even better, formula (165), which is free of the restrictions (166), 
(167), and (168) – will then indeed constitute the relativistic generalization of Fourier’s 
formula (159). 
 
 
 IV.22. – Some words on the relativistic transposition of the theory of perfect 
gases. – To commence, we seek the covariant form of the well-known equation of state: 
 

p v = NkT, 
 
in which N denotes the number of molecules that are contained in the volume v, and k is 
the Boltzmann constant.  If the temperature is not uniform inside of the volume 
considered then one must obviously write: 
 

p dv

kT∫∫∫ = N. 

 
That expression is invariant under all transformations that affect a gaseous volume that is 
composed of the same N molecules. 
 In no. IV.6, we defined the relativistic notion of the scalar work done by pressure by: 
 

0d uϖ δ∫∫∫ ∫  
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and indicates that it translates the classical p dv∫  exactly, in which dv denotes the 

variation of a finite material volume v during the time dt.  Thanks to the preceding notion, 
as well as that of the proper – or scalar – temperature that was defined in no. IV.19, the 
covariant form of the equation of state of the perfect gas: 
 

(IV.170)    0

0

u
N

kT

ϖ δ =∫∫∫E  

 
will present itself.  N denotes the number (which is conservative) of molecules that form 
the same gaseous volume and follows its motion – i.e., the conservative number of 
trajectories that encircle the hyper-tube that is generated by E. 

 From the viewpoint of the kinetic theory of gases, the quadri-velocity V i that is 
implicitly contained in δu0 has only a statistical significance.  It is the velocity of the 
origin of the Galilean frame with respect to which the local mean impulse of the droplet 
δu0 is zero.  To simplify, suppose that all of the molecules are identical.  Let m0 be their 
proper mass, and let m be the local mean value of their relativistic mass at the proper 
temperature T0 in the preceding Galilean frame.  We suppose that this temperature is high 
enough that the quantum degeneracies will be masked, and we assume that the molecules 
are rigorously rigid.  The expression c2 (m – m0) represents the mean kinetic energy of a 
molecule – i.e., the thermal energy per molecule.  From kinetic theory, it is a simple 
multiple of the proper temperature that has the form (1): 
 

(IV.171)    2
0 0

2
( ).

3
kT vc m m= −  

 
One will have v = 1, 3

5 , 1
2 , according to whether the gas is mono-, di-, or tri-atomic, resp. 

 Then let δu0 be the mean scalar molecular volume.  By definition of the proper mass 
density ρ0 of that volume, one will have: 
 
(IV.172)    m = ρ0 δu0 , m0 = ρ00 δu0 . 
 
We have let ρ00 denote the value that ρ0 takes at absolute zero; i.e., in the absence of any 
thermal agitation to the molecules.  Moreover, the equation of state provides the relation: 
 

                                                

 (1) A precise analysis of the question shows that 0
3
2
kT

v
 is equal, not to the true mean kinetic energy c2 

(m – m0), but to a mean pseudo-kinetic energy 
2

2
mv

 [146, pp. 31-32].  Those two expressions are equivalent 

to each other, up to 4th order in β, as the following calculation shows: 
 

 1
2 mv2 ≡ c2m – c2m ( )21

21 β−  = c2m – c2m0 ( ) ( ) 1/ 22 21
21 1β β

−
− −  

 = c2m – c2m0 ( )41
41 β− +⋯ . 
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(IV.173)    k T0 = ϖ δu0 . 
 
When substituted into (171), the latter relations will permit one to write: 
 

(IV.174) 0 002

2
( ).

3
v

c

ϖ ρ ρ= −  

 
That equation expresses the proper mass of the molecules universally – viz., 
independently of the temperature – and from the molecular concentration, one can 
express the pressure ϖ of the gas as a function of its proper thermal energy density c2 (ρ0 
– ρ00). 
 This is the place for a very satisfying illustration and verification of both the 
thermodynamic formula that one arrives at with formula (174) and the theory of forces of 
surface tension in no. IV.6.  Upon substituting (174) into the general formula (48) of 
adiabatic compression, one will recover the well-known law of adiabatic compression of 
perfect gases. 
 By virtue of the equation of state (170), the pressure ϖ is zero at absolute zero.  It will 
then result from the considerations that were developed in no. IV.3 that one must have 
the relation: 
(IV.175)    ∂i (ρ00 V

i) = 0. 
 
Under those conditions, the formula that is obtained by substituting (174) into (48) is 
written: 

3 3
1

2 2
i i

i iV V
v v

ϖ ϖ ∂ + + ∂ 
 

 = 0. 

 
From kinetic theory, as always, one then sets: 
 

(IV.176)    
2

1 ,
3

vγ = +  

 
and upon taking the kinematical formulas (II.74′) and (II.73) into account, one will 
indeed see the expected relation: 

0

0

d ud

u

δϖ γ
ϖ δ

+ = 0, 

which will be written: 

(IV.177)    0( ) const.uϖ δ =  

 
when it is integrated.  One will have γ = 5/3, 7/5, 4/3, according to whether the gas is 
mono-, di-, or tri-atomic, resp. 
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 REMARK.  – If V i denotes the statistical – or macroscopic – velocity of the gas in 
the sense that was just indicated then one can introduce the temperature quadri-vector θ i 
= θ0 V i and put the equation of state (170) into the form: 
 

(IV.178)    i
iuϖ θ δ∫∫∫E = k N. 

 
 

__________ 
 

 



 

 

CHAPTER V 
 

COMPLEMENTS TO RELATIVISTIC DYNAMICS  
 

 V.I. – The sub-chapters of the last chapter were concerned with some physical 
questions that were very distinct, but mathematically quite similar.  Sub-chapter A dealt 
with the relativistic hydrodynamics of perfect fluids, whose principles are due to 
Eisenhart [148] and Synge [149, 150], and to which A. Lichnerowicz gave a very elegant 
form [151, 152].  Sub-chapter B dealt with the analytical mechanics of an electrically-
charged point that is subject to the action of a quadri-potential, which we presented some 
years ago in a symmetric relativistic form [8, no. IV]. 
 The hydrodynamics of Eisenhart-Synge-Lichnerowicz is presented by those authors 
as being essentially a general-relativistic theory.  In fact, it is upon adopting a particular 
metric that one will give its equations the maximum elegance.  Of course, that beautiful 
theory remains valid in the particular case of special relativity.  It would seem to be 
unduly frustrating to the reader to not present it in elementary terms at the end of a book 
that does not appeal to the methods of the general tensor calculus.  As we have already 
pointed out, we shall deduce its starting equation from our general theory of pressure (no. 
IV.6).  The relativistic extension of the hydrodynamics of Lagrange-Helmholtz will then 
be found to be attached to an authentic theory of surface pressure.  We shall conclude our 
presentation by pointing out how a hypothesis that is even more restrictive than that of 
Synge (and is called definition B for the incompressible fluid by Lichnerowicz) will 
permit us to extend to relativity the entire classical theory of velocity fields that are 
induced by point-sources or vortex filaments, as well as Poincaré’s notion of the vortex 
potential. 
 The symmetric presentation of the analytical mechanics of charged points that are 
subject to the action of a quadri-potential that we gave in § B constitutes the natural form 
for relativistic analytical point mechanics.  In the preceding chapter, we have shown that 
it is possible in relativity to define the world-force that is applied to a material point as an 
antisymmetric second-rank tensor Fij, and then that that relativistic force, which is 
defined in a general manner, will follow the laws of the Lorentz force (notably, see nos. 
III.7 and IV.7).  It should not be surprising then that the case for which that tensor Fij is a 
world-rotation constitutes the natural extension of the classical case in which the force Fij 
is a gradient.  Speaking physically, the symmetric presentation of analytical point 
mechanics has the advantage that it lets us see that it is not by virtue of some happy 
accident that a charged point that is subject to the action of a quadri-potential will obey 
the equations of analytical mechanics. 
 L. de Broglie (who, as one knows, established his theory of wave mechanics in 1924) 
has been to a large extent guided by the formal analogy that exists between analytical 
mechanics and geometrical optics.  We have oriented the presentation in our § B in such 
a way as to prepare the reader for the guiding ideas of wave mechanics, and will insist 
especially upon the compatibility of the most important theorems of analytical mechanics 
with the quantum conditions that are demanded by the pre-wave form of the Planck-
Bohr-Sommerfeld theory. 
 Our § C is dedicated to a brief survey of the principles of L. de Broglie’s [163] first 
wave mechanics, which, as one knows, has given the go-ahead to a complete renovation 
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of the theory of quanta.  Despite first appearances, we have followed the presentation that 
the author himself gave very closely.  It seems to us that in an era when one of the major 
problems that been posed by theoretical physics is that of describing the relationships 
between the theories of relativity and quanta, any achievement will no longer point to a 
presentation of special relativity, as much as it will relate to the elegant theory of L. de 
Broglie, which is both essentially relativistic and essentially quantum.  With it, one can 
even say that relativity has returned to its roots, and that just as Einstein came to know of 
the optical constant c, dynamics, with L. de Broglie, had effectively discovered the 
intervention of waves in their proper domain. 
 
 

A. – INVISCID FLUIDS AND THE EISENHART-SYNGE-LICHNEROWIC Z 
THEORY OF VORTICES.  

 
 V.2. – Basic hypotheses.  Synge’s hypothesis. – Consider an inviscid fluid, inside of 
which a normal pressure ϖ of surface origin is exerted, and which conforms to the theory 
of no. IV.6, and is such that a force density f i rules in certain space-time domains, which 
is collinear with the quadri-velocity V i and corresponds to the presence of volume 
distributions of sources or sinks (no. IV.5).  From what was said in no. IV.1, the 
fundamental equation of dynamics will be written: 
 
(V.1)    − f i + ∂ i ϖ + ∂i (µ V i V j) = 0 
under those conditions, with: 

(V.2)     0 2 .
c

ϖµ ρ= +  

 
 Then let F and G be two functions of instant-points that are undetermined, for the 
moment, and are such that one has: 
(V.3) FG ≡ µ, 
 
and define the two pseudo-quadri-velocities U i and W i, which are collinear with V i, by: 
 
(V.4)    U i = F V i, W i = G V i, 
so: 

(V.5)     .i j i jV V U Wµ ≡  

Then set: 

(V.6)    , .i ij j i i j
iW U Uσ τ≡ ∂ ≡ ∂ − ∂  

 
With those definitions, the fundamental equation (1) can be written and developed into: 
 

f i – ∂ iϖ = ∂j (U i W j) = s U i + τ ij Wj + Wj ∂ j U i. 
 
Taking account of the fact that Vi V i = − c2, as well as (4) and (3), the last term in the 
right-hand side can be transformed into: 
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G Vj (V j ∂ i F + F ∂ i V j) = − c2 G ∂ i F = − c2 µ 
i F

F

∂
. 

 
It is then quite natural to arrange things in such a way that this term cancels the last term 
in the left-hand side identically, which first demands that the fluid must satisfy an 
equation of state of isothermal type: 
(V.7)     µ = µ (ϖ). 
 
That being the case, the necessary and sufficient condition for the result to be true is that, 
with Synge, one must set: 
 

(V.8)   F = exp ⋅⋅⋅⋅
0

2

d

c

ϖ

ϖ

ϖ
µ∫ , hence  G = exp ⋅⋅⋅⋅

0

0dϖ

ϖ

ρ
µ∫ . 

 
 With that choice of F and G, the fundamental dynamical equation will reduce to: 
 

(V.9) ( ) 0.i i ij
jU f Wσ τ− + =  

 
Since one of the two quadri-vectors that are present in the left-hand side is collinear with 
V i and the other one is orthogonal to it, each of them must be separately zero.  If one 
considers the first one then one will see that the divergence of the pseudo-velocity W i is 
zero, in general, except in the space-time regions in which one finds sources or sinks: 
 

(V.10)     ∂i W i = 
0 in general,

in the regions of  the unverse in which sources or sinks prevail.σ




 

 
Obviously, that is the generalization of a fundamental result from classical 
hydrodynamics. 
 If one then considers the second quadri-vector, one will have the relation: 
 

(V.11) ( ) 0,j i i j
jU U dx∂ − ∂ =  

 
from which, we, with Lichnerowicz, will infer the generalization of the entire classical 
Lagrange-Helmholtz theory of vortices. 
 
 
 V.3. – Some general theorems.  Existence of a potential for a pseudo-velocity U i 
in the irrotational case. – Let δxi be a spacelike quadri-displacement.  Equation (11) will 
then imply the consequence: 
 

τ ij dxj δxi ≡ 1
2 τ ij [dxj δxi – dxi δxj] = 1

2 τ ij [dxi dxj]
* = 0, 
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in which [dxi dxj]
* denotes a two-dimensional area element S that is formed by a sheet of 

streamlines T.  Conversely, since the quadri-displacement δxi is arbitrary, the relation: 

 
(V.12)   τ ij [dxi dxj]

* ≡ (∂ j U i – ∂ i U j) [dxi dxj]
* = 0 

 
will imply the relation (11).  If one sets, quite naturally: 
 
(V.13)   dU i = ∂ j U i dxj and δUi = ∂ j U i δxj  
 
then the preceding relation will assume the equivalent form: 
 

(V.14) 0,i i
i idU x U dxδ δ− =  

 
in which the d relate to a displacement along a world-streamline, and the δ, to a change of 
streamline.  The left-hand side of (14) is an absolute integral invariant, in the Poincaré-
Cartan sense (1). 
 The fundamental equation (11) is written: 
 

dU i = ∂ i U j dxj . 
 
When it is integrated along one trajectory T from an instant-point [1] to an instant-point 

[2], it will become: 

(V.15)     (2) (1)
i iU U− = i j

jU dx∂∫ . 

 
If we then associate the current instant-point of T with a spacelike quadri-displacement 

δxi that is a continuous function of xi and suppose that each contour ixδ∫ (or L) is 

closed.  One will then conclude from (167) that: 
 

(2) (1)

i i
i iU x U xδ δ−∫ ∫ = dxi 

i j
jU xδ∂∫L ≡ 0, 

 
in which the symbol δ always relates to a change of trajectory.  Finally, one sees that the 
circulation of the pseudo-velocity U i along a closed, spacelike streamline that is carried 
by the fluid is conservative: 

(V.16)     const.i
iU xδ =∫L  

 
(viz., the Poincaré-Cartan relative integral invariant). 

                                                
 (1) An integral invariant is called absolute or relative according to whether it must be calculated on an 
arbitrary contour or a closed contour in order for the formula to be true.  
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 Now, let C be a two-dimensional endcap that is encircled by the preceding linear 

contour L.  The relation (16) transforms into: 

 

(V.17)   [ ]i
j i jU dx dx∂∫∫C  ≡ 1

2 ( )[ ]j i i j
i jU U dx dx∂ − ∂∫∫C  = const., 

 
and one will conclude from that, as with (12): 
 

(V.18)    1 2 2 1 const.i i
i iP x P xδ δ δ δ⋅ − ⋅ =∫∫C  

 
(viz., an absolute integral invariant).  Hence, the flux of the rotation of the pseudo-
velocity U i that crosses a two-dimensional fluid surface is conservative. 
 Conversely, in order to return to (17) or (18) from (11), it will suffice to take the 
integral (17) over a closed two-dimensional contour C2 – C1 – L [where L always has the 

sense that was defined by (12)], and remark that the transformed triple integral: 
 

[ ]jk i
i j kU dx dx dx∂∫∫∫  

 
will be identically zero (since ∂ jk is symmetric in j, k, while [dxi dxj dxk] is 
antisymmetric). 
 Set: 

(V.19)     j
jd U dxΦ =  

 
as the definition of a symbolic action Φ along the streamline T.  The symbolic action Φ is 

extremal along the streamline T.  A classical calculation from the calculus of variations 
will permit one to write: 
 

2

1

i
iU xδ∫  = 

2 2

1 1

i i
i iU dx U d xδ δ+∫ ∫ = (U i δxi)2 – (U i δxi)1 + 

2

1
( )i i

i iU dx dU xδ δ−∫ . 

 
Since the initial and final instant-points are fixed, the necessary and sufficient condition 
for the variation δ to be zero is that one must have the relation (14). 
 If that relation is now assumed to be satisfied, and if, by hypothesis, the quadri-
displacement δ1 x

i is such that one will have (201) then it will result from the preceding 
calculation that one has (202): 
(V.20)     U i δ1 xi = 0, U i δ2 xi = 0. 
 
One concludes from this that if the congruence of T admits a three-dimensional 

orthogonal trajectory E then it will be a normal congruence. 
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 Finally, we adopt that hypothesis and take Φ = constant on the hypersurface E1 .  

(That is obviously a definition that will change nothing intrinsically.)  It will then result 
from the preceding calculation that the E whose orthogonal trajectories are the T will be 

the hypersurfaces: 
  Φ = const., 
 
and (19) will show that one will have: 
 
(V.21)     U i = ∂ i Φ. 
 
That particular case is nothing but the case of irrotational motion, so equation (24) will 
imply that: 
(V.22) ∂ j U i − ∂ i U j ≡ 0, 
and conversely. 
 One will then arrive at the relativistic statement of the two well-known theorems: The 
irrotational motion of characterized by the existence of a potential for the pseudo-
velocity U i.  If the motion of an inviscid fluid is irrotational on a certain spacelike three-
dimensional hypersurface E0 then it will be irrotational in all of space-time. 

 
 
 V.4. – The relativistic formulation of the Lagrange-Helmholtz theory of vortices 
by A. Lichnerowicz. – With A. Lichnerowicz, define the spacelike vorticity quadri-
vector τ i as the dual of the completely-antisymmetric rank-3 tensor: 
 

(V.23)     1
2 τ jkl ≡ 

1 jk lV
ic

τ∑ ; 

 
the summation is extended by circular permutation.  In the locally-Galilean frame that 
instantaneously follows the fluid, one will have: 
 
  0

wτ = 0
uvτ , 4

0τ = 0, 

 
which justifies the term of the quadri-vector τ i and helps us see that one has the relation: 
 

(V.24) 0.i
iV τ ≡  

 
 The differential equation for the vortex lines is obviously: 
 
(V.25) τ j δx i – τ i δx j = 0 or τ jkl δxk = 0. 
 
If one takes the definition (23) into account then one will have: 
 
  τ ij V k δxk + τ jk δxk V i − τ ik δxk V j = 0, 
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which is a relation whose first term is zero, from what was just said.  If one multiplies the 
remaining terms by the streamline element dxj then it will follow that: 
 

τ jk dxj δxk V i − τ ik δxk V j dxj = 0, 
 

which is a relation whose first term is zero, by virtue of what was said in the preceding 
no.  Since the expression V j dxj is essentially non-zero, one will finally see that the 
differential equation for the vortex lines is formally identical to the one for the 
streamlines (11): 

(V.26) ( ) 0.j i i j
jU U xδ∂ − ∂ =  

 
 All of the calculations of no. V.3 can then be repeated for the spacelike vortex tubes.  
Notably, one will then see the circulation of the pseudo-velocity U i around a vortex tube, 
and that its flux along a vortex tube is conservative.  It will necessarily follow from this 
that the vortex tubes are either closed or they extend up to spatial infinity or up to 
timelike endcaps that form a channel for the flowing fluid. 
 It is clear that any quadri-vector ∆xj that is coplanar with the two orthogonal elements 
dxj and δxj , such that the former is collinear with the streamlines T, and the latter is 

collinear with the vortex lines τ, will satisfy the relation: 
 
(V.27)     (∂ j U i − ∂ i U j) ∆xj = 0 
 
identically.  Conversely, it results from the theory of forms with exterior multiplication 
that no ∆xj that is coplanar to dxj and δxj will satisfy that relation (1).  Equation (27) will 
then define a family of two-dimensional manifolds that each support a sheet of lines T 

and a sheet of lines τ.  In relativity, one will then recover the classical property from 
which the vortex lines τ are fluid lines. 
 If we combine the preceding results with the ones in no. V.3 then we will see that the 
circulation and the flux that are attached to a vortex tube and follow its motion will be 
conservative.  One thus achieves the relativistic generalization of the classical Lagrange-
Helmholtz theory of vortices. 
 Finally, in an inviscid fluid, it is permissible to consider a flow that is collectively 
irrotational, except in the interior of certain “conservative” domains; i.e., ones that are 
bounded by sheets of streamlines. 
 

                                                
 (1) In the particular case under consideration, we see how that result can be proved in a more elementary 
manner. 
  Recall that any antisymmetric determinant of even order is a perfect square, and if it has odd order then it 
will be zero. It follows from this that in four-dimensional space, the rank of a system of linear equations: 

Aij xj = yi, 
in which the Aij are antisymmetric, can be 4, 2, or 0, a priori.  The rank of system (27) in ∆xj is not 4, since, 
from (11) and (26), one knows two systems of non-zero solutions of those equations.  It is not 0 either, 
since all of the components ∂ j U i – ∂ i U j would be zero then.  It will then be 2, and consequently, all of the 
solutions ∆xj to (27) will be mutually linearly dependent.  Q. E. D. 
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 V.5. – A hypothesis that is more restrictive than that of Synge: relativistic 
extension of the classical theory of perfect fluids. – Now make the hypothesis that the 
two pseudo-velocities U i and W i that are defined by (4) are identically equipollent; i.e., 
that one will have: 

(V.28)    U i ≡ W i, F = G = + µ .  

 
(8) shows that this hypothesis is equivalent to: 
 
(V.29)     c2 ρ0 = ϖ = const. 
 
along the streamlines.  Lichnerowicz called a fluid that satisfies that condition an 
incompressible fluid B and showed that such a fluid is characterized by the fact that the 
speed of pressure waves in it is c [153].  If one would like to have an intrinsic definition 
then one might assume that the relation (29) is satisfied identically in the whole universe. 
 For us, an inviscid relativistic fluid that satisfies the definition of Synge and the more 
restrictive definition (28), as well, will be called a perfect fluid.  Indeed, we shall show 
that its properties generalize the properties of the classical fluid with that name exactly. 
 It results from the hypothesis (28), as well as what was contained in nos. V.2, 3, and 
4, that the single pseudo-velocity U i that characterizes the perfect fluid will satisfy the 
two relations: 

(V.30)    0, .i j i i j ij
iU U U τ∂ = ∂ − ∂ =  

 
The scalar density σ is zero in space-time, in general, except for certain regions of 
arbitrary form that contain density distributions of sources and sinks.  The antisymmetric 
tensor density τ ij, which satisfies the relation: 
 
(V.31) i jkτ∂∑ = 0 

 
identically, in which the summation is extended by circular permutation, can also be 
considered to be zero, in general, except inside of certain “vorticial” fluid volumes that 
extend to temporal infinity in both directions.  Their spatial hypersections are either 
closed or extend to infinity or up to a timelike wall that makes a channel for the world-
flow. 
 We shall show that it is possible to derive the field quadri-vector U i from two 
potentials, one of which is a scalar P, while the other one is an antisymmetric tensor R ij 
that satisfies the condition: 

(V.32)     0i jkR∂ =∑  

identically, by way of: 

(V.33) .i i ik
kU P R= ∂ + ∂  

 
If one substitutes (33) in (30) and takes into account the essential hypothesis (32) then 
one will indeed get the generating formulas for the potentials: 
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(V.34) , .i i jk jk
iP Rσ τ∂ = ∂ =  

 
Finally, upon applying the d’Alembertian expression i

i∂  to the terms in (33) and taking 

(34) into account, one will get: 

(V.35) .i k k kl
i lU σ τ∂ = ∂ + ∂  

 
Formulas (34) and (35) admit retarded solutions of the well-known type.  The various 
preceding equations generalize the well-known ones of the classical theory of perfect 
fluids.  As for the electromagnetic field, the relativistic calculations are performed with 
the greatest of ease in the general case of variable regimes. 
 It is also easy to extend Poincaré’s notion of a vortex potential to the present theory, 
and in relativity, it will likewise be a source/sink potential.  The fundamental hypothesis 
(32) shows that R jk is a rotation whose generating quadri-vector is naturally defined up to 
a quadri-gradient.  Upon solving the equation: 
 

i
iY∂ = P − 0

i
i A∂ , 

 
one will be in a position to have both: 
 

(V.36)    , .i ij j i i j
iP A R A A= ∂ = ∂ − ∂  

 
Finally, one concludes the generating formula for the Poincaré potential (1) from (36) and 
(33): 

(V.37)     .i k k
i A U∂ =  

 
 That is the relativistic extension of all the classical equations of the theory of perfect 
fluids that are valid in the most general case and for variable regimes.  In pre-relativistic 
physics, one knows that that entire theory presents great formal analogies with 
electromagnetism, such that the theory of sources/sinks resembles electrostatics, and the 
theory of vortices resembles the electrodynamics of permanent regimes.  That analogy 
will disappear in the tensorial language of the universe, since the so-called “homologous” 
quantities will not have the same variances, and the so-called “homologous” equations 
will be different a fortiori.  Here again, the theory that one constructs in the relativistic 
context seems to be perfectly clear. 
 
 
B. – THE ANALYTICAL MECHANICS OF A MATERIAL POINT SUBJECT  TO 

THE ACTION OF A FORCE DERIVED FROM A QUADRI-POTENTI AL.  
 

 V.6. – Establishing the starting formula.  Some words about first integrals. – 
Consider a material point – with or without spin – that is subject to the action of an 

                                                
 (1) The quadri-divergence of Ai will be zero in the absence of source/sinks. 
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antisymmetric force Fij that is a function of a pre-determined instant-point that is 
independent of the world-trajectory of a point, and which is the rotation of a certain 
quadri-vector that is called the world-potential, moreover.  For example, one deals with 
an electrically-charged point Q that is subject to the force Q H ij that is due to a pre-
established field H ij = ∂ jAi – ∂ iA j. 
 The fundamental dynamical equation of motion of such a point is equation (III.59), 
which we write as: 
(V.38)     dp i = Q (dAi − ∂ i A j dxj). 
 
In the right-hand side, we have the ponderomotive expression for the elementary energy-
impulse.  On the left-hand side, we assume that we are dealing with the inertial 
expression for that same quantity (nos. IV.7 and IV.15). 
 I now say that whether the material point does or does not have spin, one will have 
the right to assume the presence of a term on the left-hand side of (38) that is identically 
zero, namely, − ∂ i p j dxj .  It is initially necessary that a term of that form should make 
sense.  Now, one of the essential traits of analytical point mechanics is precisely that it 
should associate an entire congruence of virtual trajectories to a real trajectory, which is 
also contained in that congruence.  Under those conditions, the mass-impulse pi of the 
point will be a quadri-vector field, so it will make sense to speak of its derivatives. 
 For the point without spin, on the one hand, pi is collinear with dxi, and on the other 
hand, its length icm0 is constant.  It will then be clear that the term − ∂ i p j dxj  will be 
zero.  For the point without spin, we assume, as was explained in no. IV.15, that the 
projection of pi onto the quadri-velocity V i is constant, and that pi is orthogonal to the 
normal acceleration V′ i, moreover.  Under those conditions, one will have: 
 

p′ j Vj = − j
jp V′  = 0.     Q. E. D. 

 
 Finally, we indeed have the right to replace formula (38) with the formula (1): 
 

dpi − ∂ i p j dxj = Q (dAi − ∂ i A j dxj ) 
 

in a general way, in which: 

(V.39)     0.i j
jp dx∂ ≡  

 
 We then set, by definition, the total energy-impulse of the point (viz., inertial + 
electromagnetic) to: 

(V.40)     .i i iP p QA= −  

 
The preceding formula will then be written: 
 

                                                
 (1) In the case of a point with spin, the present theory neglects the proper ponderomotor couple that 
results from the interaction of the ambient field with the proper electromagnetic moment of the point. 
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(V.41) ( ) 0,i i j j i i j
j jdP P dx P P dx− ∂ ≡ ∂ − ∂ =  

 
and that will be our starting formula.  It is formally identical to formula (11), and all of 
the calculations of no. V.3 can be repeated verbatim. 
 Before we do that, we stop for a moment to consider the case in which the quadri-
potential Ai remains invariant in magnitude and direction along a parallel to any of the 
four axes Oxi: 
(V.42)    ∂ i P j ≡ 0 for a well-defined i. 
 
It then results from (41) that one will have: 
 
(V.43)   P i = p i – Q Ai = const. for the preceding i. 
 
A well-known example of that state of affairs is provided by the case of a permanent 
field: 

∂ i P j = 0, 
in which: 

m – 
1

c
QV = const. with m = m0 (c

2 + 1
2 v2 + …). 

 
By definition, one says that under the hypothesis (42), the component Pi of the total 
mass-impulse is a first integral of the motion (1). 

 
 
 V.7. – Some general theorems.  The Hamilton-Jacobi theorem. – As we said, 
consider a congruence of virtual world-trajectories T that one can fictitiously regard as 

the streamlines of a hypothetical possibility fluid; as one knows, it is a sort of preliminary 
representation of the probability fluid of wave mechanics. 
 Of course, the quadri-vector Pi is not tangent to the T here, so all of the calculations 

of no. V.3 can be repeated verbatim (2).  One will then see that the double integral: 
 

( )[ ]j i i j
i jP P dx dx∂ −∂∫∫  

 
is identically zero on one sheet of T, and conservative over an endcap that follows the 

possibility fluid.  Conversely, one knows how to pass from those statements to the 
starting formulas (41) and (40).  The preceding integral will then be equivalent to: 
 

i i
i idP x P dxδ δ−∫∫  

                                                
 (1) Since we have neglected the theory of kinetic and proper ponderomotor moments in this present § B, 
we shall not treat first integrals that are kinetic moments here. 
 (2) By contrast, the calculations of no. V.4, which essentially assume that V i is collinear with dxi, will 
no longer be valid here. 
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on a sheet of T, and one will have: 

1 2 2 1
i i

i iP x P xδ δ δ δ−∫∫  

on a fluid endcap. 
 The action along the trajectories will be defined by: 
 

(V.44)     .i
id P dxΦ =  

 
As in the context of (16), one proves that the action along a closed fluid line is 
conservative, and one can conversely get back to (41). 
 One also proves that the action along the trajectories of T is extremal (i.e., the 

relativistic generalization of Hamilton’s theorem), and that if the congruence of total 
energy-impulse Pi lines admits a (three-dimensional) orthogonal trajectory then it will be 
a normal congruence (i.e., the generalization of Jacobi’s theorem).  Upon adopting the 
latter hypothesis, one will make the hypersurfaces: 
 

Φ = const. 
 
coincide with the orthogonal trajectories in question, which will imply the relation: 
 
(V.45) ∂ i Φ = Pi = pi – Q Ai. 
 
In the particular case of a point without spin, which is such that pi p

i = − 2 2
0c m , one will 

conclude the following partial differential equation from (45): 
 

(V.46) 2 2
0( )( ) .i i

i iQA QA c m∂ Φ + ∂ Φ + = −  

 
That is the relativistic Jacobi equation, which is a generalization to four indices of the 
well-known equation of geometrical optics.  Its solutions Φ = const. will be called world 
hypersurfaces in wave mechanics. 
 Recall that the theory of quanta, in its pre-wave form, imposes the restriction on the 
integrals: 

i
iP dx∫E , i

iP xδ∫L , 1 2 2 1
i i

i iP x P xδ δ δ δ−∫∫  

 
that they must be integer multiples of the universal constant h.  As one sees, relativistic 
point mechanics will then be compatible with the quantum conditions.  It would not be 
surprising at all then that relativistic point mechanics provided L. de Broglie with the 
basis for some ideas that allowed him to inaugurate his wave mechanics in 1924, which 
was a complete renovation of the theory of quanta. 
 
 
 V.8. – Lagrange equations.  On the Hamilton equations. – In order to integrate the 
equations of motions, one can suppose a priori that the Pi and xi can be expressed as 
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functions of a single parameter η, in such a way that the elementary action will be 
written: 
(V.47)    dΦ = Pi x′i dη = L (η) dη, 

 
with, by definition, the Lagrange function or Lagrangian (tensorial invariant): 
 

(V.48)    x′i = 
idx

dη
, .iiP x′=L  

 
 It is classical to consider L to be a function of η by the intermediary of the xi and x′i.  
If we let ∂ i

L and ∂′iL denote the partial derivatives with respect to those eight variables 

then, from a well-known calculation, and by virtue of Hamilton’s theorem: 
 

2

1
dδ η∫ L = 

2

1
( )i i i

ix x dδ δ η′ ′∂ + ∂∫ L L  

 = 
2

1
( )i i

i ix d d xδ η δ′∂ + ∂∫ L L  

 = ( ) 12

1 2
( )i i i

i i

d
x x d

d
δ δ η

η
 ′∂ + ∂ − ∂ 
 

∫L L L  = 0. 

 
For the same reasons as before, the Lagrange equations will result from this in the 
perfectly-symmetric “parametric form” that was pointed out by de Donder [21, pp. 176]: 
 

(V.49)     .
i i

d

d x xη
∂ ∂=

′∂ ∂
L L

 

 
 Conversely, in order to pass from (49) to the fundamental equation (41), if one takes 
the definition (48) into account then one can write: 
 
 ∂ i L = i k

kx P′ ∂ = i k i k
k kx p Q x A′ ′∂ + ∂ , 

 ∂′i L = Pi + i k
kx P′ ′∂ = Pi + i k

kx p′ ′∂ . 

 
As we explained in no. V.6, the terms i k

kx p′ ∂  and i k
kx p′ ′∂  are zero, in such a way: 

 

(V.50)    
ix

∂
′∂
L = Pi,  

ix

∂
∂
L = i k

iQ A x′∂ . 

 
If one substitutes those expressions into (49) then one will indeed recover (41). 
 More generally, the authors take ordinary time t to be the parameter.  If one then 
introduces the three components vu of ordinary velocity, and m0 always denotes the 
proper mass then one will get the very asymmetric Lagrangian: 
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L = pu v
u – c2 m – Q (Au vu – c V) = − c2 m0 

21 β−  – c Q (V – ββββ ⋅⋅⋅⋅ A). 
 

 On the contrary, if one adopts proper time τ as the parameter then upon introducing 
the four components V i of the world-velocity, one will have the symmetric Lagrangian: 
 

L = Pi V i = m0 Vi V i – Q Ai V i. 
 
However, as a result of certain particular simplifications, one will verify that this 
symmetric Lagrangian is not appropriate for the deduction of the equations of motion.  R. 
Becker [6, pp. 380] replaced it with the arbitrarily-posed Lagrangian: 
 

L′ = L – 1
2 m0 Vi V i. 

 
However, one can no longer believe that the classical theory has been transposed into 
four-dimensional language then. 
  Return to the general Lagrangian L(η) and assume that it is no longer expressed as a 

function of the xi and x′i, but of xi and Pi.  We leave to the reader the task of verifying that 
if one defines the Hamiltonian invariant by: 
 

H (xi, Pj) = L – k
kP x′  

 
then one will formally arrive at the equations in Hamiltonian form: 
 

ix

∂
∂
H

= i

d
P

dη
,  

iP

∂
∂
H

= − i

d
x

dη
 

 
by a simple transposition of the classical calculations.  However, that result is purely 
fictitious, since the function H is identically zero.  R. Becker [6, pp. 380], who employed 

proper time τ as the parameter, showed that one can utilize eight symmetric equations of 
the preceding type, on the condition that one must replace H with: 
 

H′ = L′ − Pk xk = H − 1
2 m0 Vi V i. 

 
However, one must then take into account only the fact that the function H′ is identically 

constant in the calculation, and not replace Vi V i with its constant value – c2. 
 For an asymmetric relativistic formulation of the Hamiltonian theory that corresponds 
to a literal transposition of the classical theory, we refer the reader to Von Laue [4, §§ 27 
e, f, g].  Even then, the constant – 1

2 c2m0 must be introduced arbitrarily when the 

parameter is proper time [4, pp. 238-239]. 
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 Finally, the literal search for a relativistic transposition of Lagrange-Hamilton theory 
leaves a rather artificial impression.  In our sense, the essence of relativistic analytical 
point mechanics, and what is most interesting from the physical viewpoint, is provided by 
the general theorems that we have recalled in the preceding no. (1). 

 
 

C. – LOUIS DE BROGLIE’S FIRST WAVE MECHANICS.  
 

 V.9. – The profound analogies between analytical mechanics and geometric optics 
have not escaped the classics [156-160].  Those analogies are due to the existence of a 
physical link whose formulation, which was discovered by L. de Broglie in the years 
leading up to 1924, involves the universal constants h of quanta and c of special relativity 
in an essential way [163].  As an application of his theory, L. de Broglie recovered 
Bohr’s atomic quantization rule, and as a special case, the formula that Einstein gave for 
the photon.  Soon after that, the experiments on electron diffraction by Davisson-Germer, 
G. P. Thomson, Ponte, and other authors afforded a very direct and increasingly precise 
verification of the concepts and formulas of theory.  We also point out that Heisenberg 
illustrated his celebrated proof of the uncertainty relations by some considerations from 
classical wave optics that were associated with the fundamental ideas of L. de Broglie 
[167, pp. 15-19, 168], and that L. de Broglie’s thesis based one of its essential starting 
points upon some memorable work of Schrödinger (2). 
 In the realm of optics, properly speaking, and in the context of special relativity that 
he himself had to create, in 1905, Einstein stated the principle of a quantum synthesis of 
the traditional wave-like and corpuscular conceptions of light [161, 162].  It is, moreover, 
quite interesting to see, by following L. de Broglie, how the possibility itself of a parallel 
synthesis will depend upon the formulation of the relativistic theses of relativistic 
dynamics (3), and expressly, the concept of a quantum of light, or photon.  Einstein 
postulated that the energy of a light wave that is planar and monochromatic with 
frequency v will transport the quantum of energy hv at the velocity c.  From relativity, the 
proper mass of those light quanta (which were called photons only later) must be zero or 
negligible, while their kinetic mass is given by the formula: 
 

(V.50)     2 .c m hv=  

 
That formula accounts for the newly-discovered photoelectric effect, as well as the laws 
of thermal radiation that were discovered by Planck in 1900; it received a remarkable 
confirmation from the work of Bohr (1913). 
 The profound idea of L. de Broglie consisted of the fact that if it is necessary to 
introduce mechanics into optics then, conversely, it is also necessary to introduce optics 
into mechanics.  To L. de Broglie’s way of thinking, the discrete numbers that Planck and 
Bohr found in their formulas for the quantization of electronic oscillators – whether linear 
                                                
 (1) Nevertheless, we point out that Dirac gave a symmetric, relativistic extension of Hamilton’s theory 
by starting with the Poisson brackets [Annales de l’Institut Henri Poincaré 9, 2 (1939), 29-31]. 
 (2) Mémoires sur la mécanique ondulatoire, Fr. trans., Paris, 1933. 
 (3) In addition to the celebrated Thése that was cited above, one should also read La mécanique 
ondulatoire du photon, Paris, 1940, pp. 36. 
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or turning – evoked the discrete numbers that one encounters in the theory of stationary 
waves.  Those remarks can only give great weight to the formal analogy between 
analytical mechanics and geometrical optics.  Effectively, it was by making each of them 
play precisely that role that L. de Broglie gave the formulation of his famous wave 
mechanics in 1924, and its fundamental equations contained Einstein’s equation (50) as a 
special case. 
 
 
 V.10. – Generalizations of the notion of world-hyper-wave.  Phase velocity and 
group velocity. – Consider a family of hypersurfaces O of the equation: 

 
(V.51)     ϕ (xi) = const. 
 
By hypothesis, the phase ϕ of the hyperwave O will determine certain physical properties 

at the instant-point xi by the intermediary of the complex function: 
 
(V.52)     ψ = A e2πi ϕ, 
 
in such a way that those properties will be periodically reproduced when one changes the 
hyperwave O in the universe by varying ϕ by a whole number.  One can give an arbitrary 

direction to the quadri-displacement in the identity: 
 
(V.53)     dϕ = ∂ iϕ dxi , 
 
and one will see that the projection of the quadri-gradient ∂ iϕ onto that direction will 
measure the number of waves that are encountered per unit length, while the ϕ are in an 
arithmetic progression with difference 1.  For that reason, the quadri-vector ∂ iϕ merits 
the name of wave number quadri-vector that L. de Broglie gave to it, or also that of 
spatio-temporal frequency quadri-vector.  One then sets, by definition: 
 
(V.54)     λi = ∂ iϕ. 
  
 We let R denote the congruence of curves that are orthogonal to the hypersurfaces O 

and are directed by the quadri-vector field λi and call them world-rays; until further 
notice, the rays in R will not necessarily be timelike. 

 If αu denote the three direction cosines of the spatial projection of λi then the wave 
length L and the period T will always be defined as functions of the components of λi 
according to formulas (II.41), which we write as: 
 

(V.55)    
1

, .u u u i

L cT
λ α λ= =  
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However, in the general case that we are treating here, the quadri-vector λi is not 
isotropic, and one will no longer have the relation (II.40).  By virtue of a classical 
definition, the modulus of the ratio L / T will be the phase velocity w of the wave O: 

(V.56)     .L wT=  

 
If the αu denote the three components of that phase velocity then one will obviously have: 
 

(V.57)      α u = 
1

w
wu, 

and consequently: 

(V.58)     
4

u

ic λ
λ

 = 
2

2 u

c
w

w
. 

 
Moreover, it results from relativistic kinematics that if vu denotes [at least, symbolically 
(1)] the ordinary velocity of a fluid whose world-trajectories are R then one will have: 
 

(V.59)     
4

u

ic λ
λ

= vu . 

 
It will then appear that the two spatial tri-vectors vu and wu are collinear, and that their 
moduli will satisfy the relation: 

(V.60)     2.v w c⋅ =  

 
That is one of the essential laws that L. de Broglie stated.  One should recall that in 
world-geometry, the three vu can be interpreted as the direction cotangents of the R at 

each instant-point.  Analogously, the three wu can be interpreted as the inverses of the 
slope coefficients of the O relative to the axis Ox4. 

 Now imagine that the quadri-vector λi is affected with a certain dispersion dλi at each 
instant-point that does not alter its length; i.e., such that: 
 
(V.61)     λi dλi = 0. 
 
It is obvious that the wave figure will not be altered by means of that condition.  The 
phase shift dϕ that is implied by the preceding dλi at each instant-point xi will be: 
 
(V.62)     dϕ = xi dλi, 
 

                                                
 (1) For the moment, we have not imposed the constraint upon the congruence R that it must be timelike.   

We shall also insist upon the fact that the “hydrodynamical” image that we have just suggested is 
meaningful only in the geometrical optics approximation of wave mechanics. 
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in such a way that the most general quadri-displacement δxi for which that dϕ has a well-
defined value must satisfy the condition: 
 
(V.63)     δ (dϕ) = δxi dλi = 0. 
In order for that condition to be sufficient for any sort of dispersion dλi, it is necessary 
and sufficient that the quadri-displacement δxi must be collinear with λi.  Now, since, 
from the definition itself of the wave group or wave packet, it must displace with constant 
phase, it will result from the preceding argument that the quadri-velocity Vi that is 
attached to the ray congruence R is nothing but the group quadri-velocity of the wave O.  

That is another very remarkable law that L. de Broglie discovered in the context of his 
wave mechanics. 
 
 
 V.11. – Identification of the notion of phase and action.  Wave mechanics. – Now 
that the theory of the world-hyperwave has been generalized in the manner that was just 
described, recall the results that were obtained in § C regarding analytical point 
mechanics.  Moreover, appeal to the fact that, from Planck and Bohr’s theory of quanta, 
action Φ is counted in integer multiples of the universal constant h.  Then set: 
 

(V.64)     ,hϕΦ =  

 
and one will see that there is a complete parallelism between the hyperwaves O and their 

world-rays R of no. V.10, on the one hand, and the equal-action hypersurface and their 

orthogonal trajectories of no. V.7, in the other.  In order to realize the physical 
identification that appeals to that analogy quite crucially, it will suffice to set, with L. de 
Broglie [163, pp. 51]: 

(V.65) ;i i i iP p QA hλ≡ − =  

 
i.e., one must institute a universal proportionality of ratio h between the total energy-
impulse quadri-vector of a material point and the spatio-temporal frequency of the wave 
that wave mechanics associates with it, by hypothesis.  That relation, from the way that it 
was established, essentially amounts to the geometrical optics approximation.  Naturally, 
one of the primary goals of the new mechanics has been to go on to the wave-like level 
upon starting from the Newtonian arena – or even better, the classical relativistic one. 
 In the case of the free material point – i.e., in the absence of a governing quadri-
potential – the formula of L. de Broglie will reduce to: 
 

(V.66)     .i ip hλ=  

 
That is the wave-like expression for the law of inertia, which bijectively couples the 
uniform, rectilinear motion of a material point with the monochromatic-planar character 
of the associated wave.  As one knows, ever since Fresnel’s classical calculations and the 
application of the Fourier integral to the phenomena of diffraction and interference, the 
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latter phenomena have been treated by the superposition of monochromatic plane waves.  
It is in that way that L. de Broglie’s formula (60) implicitly predicted the phenomena of 
the diffraction and interference of material corpuscles that Davisson and Germer 
exhibited for electrons that crossed a crystal, as well as the fact that Heisenberg and Bohr 
could infer the classical proofs of the celebrated uncertainty relations [167, 168]. 
 Always in the absence of a governing quadri-potential, and in the very important 
special case of a monochromatic plane wave (viz., “uniform, rectilinear motion”), the 
quadri-velocity of a point will be tangent to the world-rays of the associated wave (1), 
which will then be timelike.  It will then result from what was said in the preceding no. 
that the phase velocity of that material wave is greater than c, but that is no contradiction 
with the principles at the basis of relativity, since from what was said in the preceding 
no., the phase velocity does not have the significance of a kinematical velocity for the 
point.  Moreover, the group quadri-velocity of the world material-wave that was defined 
in the preceding no. will then coincide with the quadri-velocity of the point, and will be 
timelike.  That is one of the remarkable results that were obtained by L. de Broglie in his 
thesis. 
 Now, return to the general case and substitute the λi in (65) in the expression (52) for 
the phase, so the wave function can be written: 
 

(V.67)     ψ = 
2 k

k
i
P x

hAe
π

. 
 

Upon applying the operator 
2 k

h

iπ
∂  to this, one will find that: 

 

(V.68)     
2 k

h

i
ψ

π
∂ = Pk ψ. 

 
That remark, when duly generalized, is the origin of the fact that wave mechanics makes 

the notion of energy-impulse correspond to the quadri-operator 
2 k

h

iπ
∂ (2). 

 One knows that, mathematically speaking, the passage from geometrical optics to 
wave optics consists of replacing the first-order, second degree, partial differential 
equation that is called the geometrical optics equation with the second-order, first-degree, 
partial differential equation that one calls the equation of wave optics.  If one briefly 
applies that process to the relativistic expression (46) for the Hamilton-Jacobi equation 
then one will get the Gordon equation: 
 

(V.69)   2 2
02 2

k k
k k

h h
Q A Q A m c

i iπ π
   ∂ + ∂ + +   
   

ψ = 0, 

 

                                                
 (1) That will be true for a point with or without spin (no. IV.17).  In the particular case of the point 
without spin, which is physically less interesting, one will not demand the monochromatic-planar character 
of the wave. 
 (2) Up to certain difficulties that relate to the fourth component that we shall not dwell upon here.  
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which was proposed independently by several theoreticians in 1926, and which L. de 
Broglie himself utilized in order to describe the point charge without spin relativistically 
and as a wave. 
 For various reasons, one of which is experimental and the others of which are 
theoretical, it was soon recognized that this equation was not appropriate to the general 
case in which a quadri-potential was present.  By contrast, it is valid for the free point, 
and in that case, it can serve to give a theory of interference and diffraction phenomena.  
It will then be written: 

(V.70)     
2

2 2
024 i

h
m c

π
 

− ∂ + 
 

ψ = 0, 

 
and it will obviously admit monochromatic plane solutions: 
 

(V.71)     ψ = 
2 j

j
i
p x

hAe
π

, 
 
which will permit one to reconstruct the general case by superposition. 
 Physically speaking, one of the main reasons that has prevented the Gordon equation 
from becoming accepted has been the fact that it ignores spin, by the origin itself of the 
train of reasoning that led up to it (1).  In summation, spin is a foreign element that was 
introduced arbitrarily in the sequence of experimental facts in wave mechanics up to the 
year 1925, just as the notion of polarization itself had been for a long time in optics.  It 
was the work of Dirac in 1927 that definitively formulated the wave mechanics of the 
relativistic electron with spin.  In 1930 and 1936, L. de Broglie was then led to that from 
his theory of the photon, in which the notion of polarization played an integral role. 
 
 
 

___________ 
 

 

                                                
 (1) In its place, we have pointed out that the relativistic Hamilton-Jacobi equation is written essentially 
for a point without spin. 
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