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PREFACE

The first part of the book that | publish today is a sumnad the lectures that | gave at
the Sorbonne during the Winters of 1882 and 1885. | have begwexposition of the
Theory of surfacewith the single objective of finding new applications fhe theory of
partial differential equations, which is vast and litleown. | was planning to devote
barely a year to teaching it, but the interest thatdiegject presented, and also the
demands of my listeners, obliged me to impose the litdts| originally established.

The first volume is composed of three distinct par®he first book treats some
applications of the theory of relative motion to geomethywill have to return to the
propositions that are presented in it in a later pashich the beautiful formulas of
Codazzi will be studied in all the necessary detaile 3¢cond book contains the study of
the different systems of curvilinear coordinatds it, | successively consider the systems
of conjugate lines, whose study has been neglected toq dieemsymptotic lines, the
lines of curvature, and the orthogonal and isothernségys.

The volume concludes with thieeory of minimal surfacesn which | benefit from
the quite remarkable work that has been published by soinemtngeometers in recent
years; it defines almost half of this volume. Excepttii@r last three chapters, which were
re-edited at the time of printing, these lectures waught with two different repetitions
in 1882 and 1885. One or two important questions have beetedmithey would find
a better place in what follows after | have givendkeeral propositions to which one can
attach them.

Consistent with its usual practice, Gauthier-Villars ated all of its effort to the
printing of this book after receiving it. They receive nmost enthusiastic
acknowledgements here. | must also extend them to stgnéirs, who desired to see
these lectures published, and more especially, to onerojoung geometers — namely,
G. Koenigs, Maitre de Conférences a I'Ecole Normalehe kindly assisted me in the
revision of the proofs.

14 June 1887.
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GENERAL THEORY

OF SURFACES

PART ONE

BOOK |

APPLICATIONSOF THE THEORY
OF RELATIVE MOTIONSTO GEOMETRY

CHAPTER|

ONE-PARAMETER DISPLACEMENTS. APPLICATION TO THE THEORY
OF SKEW CURVES

Displacement of an invariable system. — Applicatiothtatheory of skew curves. Characteristic property
of the helix. — Formulas of J.-A. Serret. — Spherigdicatrix. — Search for the curve whose principal
normals are also principal normals of another curd@evelopments of skew curves.

1. Consider a solid body or invariable system that maveand a fixed point. One
knows that at an arbitrary instant the velocitieshefarious points of the system are the
same as if they turned around a line that passes throadixéld point, which is a line
that has been given the namdnstantaneous axis of rotatioin mechanics, one proves
that rotations, like forces, can be represented ge@atrby lines and can be composed
or decomposed according to the same law; i.e., if omepoees or decomposes the
rotations like the forces then the velocity thatngplied by the resulting rotation at an
arbitrary point is the resultant of the velocitieattvill be communicated to that point by
each of the component rotations in isolation. One kisows that if one considers a
point that moves with respect to the invariable systen the absolute velocity of that
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point is the resultant of its relative velocity ants idriven velocity (vitesse

d’entrainement One applies that name to the velocity that a tpwitl have that

coincides with the moving point at the instant considelpet remains invariably linked
to the solid system.

It results from these propositions that one can coasthe velocities of all points of
the invariable system at an arbitrary instant once osg¢hgmagnitude and direction of
the rotation at that instant. It seems natural to oeber that rotation at each instant by
its components relative to three rectangular axes thdbxad in space and have the fixed
point of the solid system for their origin. In reglithe most important elements (which
are the only ones that most frequently permit a deeper stfidyotion) are the
components of the rotation relative to the moving alkasis carried by the motion of the
invariable system. We quickly recall the method thainployed in mechanics.

Let OX, QY, OZ be three fixed axes that pass through the fixed @woitthe system,
and letOx, Oy, Oz be three rectangular axes that are coupled invariablythé moving
system. We suppose that the two systems of axes havgame disposition — i.e., that
they can be made to coincide. Furthermore, we suppotéhthaense of the axes has
been chosen in such manner that the rotation ar@dnihat displace®©X to OY will be
represented by a line that is directed along the pogiaNeof OZ We determine the
moving axes by the cosines of the angle that they Wwitmthe fixed axes. In order to do
that, we write the table:

X y z
X a b C
Y a b’ c
Z a’ b" c'

which shows the cosines of the angles that eacledittd axes defined with the moving
axes.
One has the relations:

a’+b®> +¢® =1, ad+ bbh+ ct =0,

(1) a’+a’+d?=1  ab+ ab+ 4¢=0,
aboc
a=bcd-¢cb, a b el=1,
a'bc

to which one must add the ones that one obtainebiprming circular permutations of
the symbols or their indices. Further recall ttieg nine cosines can be expressed in
terms of the three Euler angles by means of thautas {):

() In these formulasydenotes the angle betwe®X and the common intersecti@N of thexy-plane
with the XY-plane, andg denotes the angle betwe@x and the same lin®N. Finally, 8 is the angle
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a= cosd siny sigy + cog cas

b= cosfsiny cog—- cag sih

c= sindsiny,

a = cosd cog sip- sy cas
(2) b'= cosf cogy cog+ sy Sip

c'= sinfdcogy ,

a'=-sind cogy ,

b" =-sin@ cosp ,

c'= cosf.

Now, denote the components of the rotation at thenhstaith respect to the moving
axes byp, g, r. Consider a point whose coordinates»ang z relative to the moving axes
and look for the components of @bsolutevelocity with respect to the same axes. Upon
writing that the absolute velocity is the resultanthe relative velocity and the ones that
are due to the three rotatiopsq, r, one will obtain the following expressions for those
components:

:%_qz_ry
o dt ’
dy
3 V, =—+rx-—
() Y=gt Pz,
dz
V. ===+ py-
2= gt py— gx

which we will often make use of.

We shall now show how one can deduce the expressiopsd, r as functions of the
nine cosines and their derivatives with respect to tinmordler to do that, consider the
point that is taken on th@®X axis at a distance of 1. That point has the relative
coordinates (i.e., relative to the moving axasl, c. Upon expressing the idea that its
velocity is zero and applying formulas (3), we will obtdie fundamental equations:

da
— =bhr —-caq,
at q
db
4 — =cp-—ar,
(4) " p
dc
—=aqg-b
at q-op

betweenOzandOZ The anglgp measures the magnitude of the rotation that one impsirt toON in the
xy-plane, and in the direct sense, in order to nakkcoincide withOx. One can then suppose that it
varies from 0 to 180 Similarly, ¢ measures the rotation that one must impa@hbin the XY-plane —
always in the direct sense — in order to make that biresicle withOX; that angle will vary from 0 to 360
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to which, one can add the following ones:

(4)

(4")

?j—?zb’r—c’q,
dd—lfzc’p— ar,
dd—fza’q— bnp
%zb”r—c”q
dd—t?[nzc"p— dar
dd—ctnza"q— b'p

which one proves in the same manner.
One deduces the following formulas from that:

(5)

pdt=> cdb=->" bde
qdt=> adc=-) cda
rdt=> bda=-> adh

which give the desired values of the rotation. otie replaces the cosines with their
expressions as functions of the Euler angles thenmll have the system:

(6)

p =sing sind d cosﬁ%

dt

. dy ., dé@

=cosp sid——+ sip—

q=cosp sing=y =+ sip-
r:%—cosed_w,
dt dt

which is easy to prove geometrically. Upon solvihgt system for the derivatives of the

angles, one will find that:

(7)

dé .

E—qsm¢— pcosp ,
dy _
dt
dg¢ _
i

sin@ gcosp+ p siy ,

r +cotd(p sing +q co® )
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2. Having recalled all of that, we shall study the follogiproblem, which is
fundamental in our theorfpetermine the motion completely when one is given p, g, r as
functions of time t.

It is clear that the question will be solved if one leapressions for the nine cosines
as functions of time. Now, it results immediatétym formulas (4) that if one separates
the cosines into three groups that are composed, &, c; a, b, ¢’; a’, b", c",
respectively, then the three cosines in each groupbeilhe simultaneous solutions of
the system:
da

o Br-y,

dg
dt
dy _
dt

(8) =yp-ar,

aq-p4p.

All of the difficulty then reduces to the integratiohthat system. The detailed study
of that integration will be the subject of the follomy chapter. For the moment, we shall
be content to point out the following properties ofteys(8):

First, as a result of its linear form, it will am&gdmit one and only one solution for
which the initial values o#, £, yare given.

In the second place, &, g5, y; a’, B, ¥ denote two systems of arbitrary solutions
then the expressions:

02+ﬁ2+y2, aa/_l_ﬁﬁ/_l_ VV, a/2+ﬁ/2+yz

will be constants. One easily recognizes that by miffeating them and taking equations
(8) into account.

Those properties permit us to establish that there alilays be an infinitude of
motions under which those three quantities will becttaponents of the rotation relative
to the moving axes, no matter what the expressions tpr are as functions of time.

Indeed, consider a tri-rectangular trihedrdg) (vith the same sense as the trihedron
OXYZthat is formed from the fixed axes, anddgtho, Co, ... be the direction cosines of
OX, OY, OZ with respect to the axes dfigj. Determine the three systems of solutions of
equations (8)a, b, c; &, b, c'; a", b", ¢”, which correspond to the following initial values
a0, bo, Co ; 8,10, G; 85, by, Gy

From the properties of system (8), functions such as:

a’+ B2+ aa’+ BB+ y,

that have the initial values 1 or 0 and must remain eohstill not cease to keep their
initial values. Consequently, at each instant, the quamtitiesa, &', a“, ... will be the
direction cosines of the three rectangular linesahatdefined by a moving trihedron)(
whose initial position will beTp). Since that initial position can be chosen at wille o
sees that there exists an infinitude of motions for wipich, r are given functions of
time.
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All of those motions, which depend upon three arbitramnstants, basically depend
upon just one, but when they are referred to differi@atfaxes.

Indeed, consider the position that is occupied by the ngotihedron at the initial
instant in any of them, and choose the fixed system e$ ax which one refers the
motion of the moving system. The initial values of tiee cosines are then 1 or O, so
the solution that corresponds to those numerical valilesomtain no arbitrary constant,
and will then be well-defined.

It results from the preceding that when one has addaame arbitrary solution of the
problem — i.e., a system of values for the nine cosinkenre would like to get the most
general solution then it would suffice to change thedfiares, which will introduce three
constants, and then suppose that the new formulasfareed to the old axes.

3. We shall now study the case in which the moving systerfomger has a fixed
point. One must then add the components of the vglo€ithe originO of the moving
axes, which are always taken relative to the moving @e®y, Oz to the components
p, g, r ; denote them by, n, { When combined with the three rotations, they will
intervene in all questions that relate to the studsyofion. Suppose that one knows the
expressions for those six quantities as functionsroé tiand try to find how one can
determine the motion of the moving trihedron. LBtdenote that moving trihedron, and
let (T") be the trihedron whose origin is an arbitrary fiygmint and whose axes are
parallel to those ofT)). At an arbitrary instant, the two trihedra are amedawith the
same rotation, and consequently, the nine cosines wilebermined by means pfq, r
as in the preceding case. Moreovendf Yo, Zo denote the coordinates of the moving
origin O with respect to the fixed axes then one will obviouslyeh

dX,
= +n +
o sar +by e,
©) %=a’5+b’/7+c‘(,
dd_Zt[):a"5+ b",7+ d’Z

upon projecting the velocity of that origin ontetlixed axes.

When one has determined the cosines, these fasmuilagive oneXo, Yo, Zo by
simple quadratures, which will introduce three remmstants.

Here again, all of the possible motions that gpoad to different values of the six
arbitrary constants reduce to one and the sameomtitat is observed with respect to
different axes, because the integration introdumecearbitrary constant and gives only one
motion if one supposes that the fixed axes coingitlle the initial position of the moving
axes.

In regard to the case that we just considereécall that ifx, y, z are the coordinates
of a point relative to the moving axes then theoalie velocity of that point will have the
three quantities:
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dx
V, =&+ 09z— ry+—,
X q y at

(20) V, =n+rx- pz+%’,

dz
V,=¢+ py- gxt—
,=¢+py-4q at

for its components relative to those same axes.

For example, consider the points that are invariabketl with the moving system
and look for the ones for which the velocity is a miam. One must determine the
values ofx, y, zthat give a minimum to the sum:

(E+qz—ry)*+ (7 + X —p2)° + ({+ py—agx)°

Upon equating the derivatives with respecxk,tg, andz to zero, one will obtain three
equations that reduce to the following two:

§+qz-ry_n+rx-pz_ {+py-ox
p q r '

These two equations represent a line — viz.,ddmtral axisof the motion at the
instant considered. One easily finds that the conwvabre of the preceding ratios is:

p*nardr
p2+q2+ r.2 !

which gives:
sptnq+dr

for the minimum value of the velocity.
The necessary and sufficient condition for the nmtd the system to reduce to a
simple rotation is then the following one:

sp+tnq+dr=0,
and the axis of rotation in that case will be represgbl the three equations:

¢+ qz-ry=0,
(11) n+ rx-pz=0,
{+py- gx=0,

which indeed characterize the points whose velocitglis,zas formulas (10) show.
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4. In order to now point out an application of the preémggroposition, consider an
arbitrary skew curve and study the motion of the trihnedf that is defined by the
tangent, which we take to be tkexis, the principal normal, which we take to be yhe
axis, when we suppose that it is, for example, diretiecrds the center of curvature,
and the binormal, which will be theaxis, whose sense is defined by the conventions that
were made already.

Take the arc lengthto be the independent variable, or — what amountsetcdime
thing — suppose that:

d_S =1
dt

Here, one has:

f:]_’ /7:0, Z:O’

and ifx, y, z denote the coordinates with respect to fixed axes opoimg of the curve
that is the summit of the trihedron then:

_dx , _ dy . _ dz
a=—, a=—, a'=—.
ds ds ds
The general formulas (4) give us:
(12) da= (br—cg ds db=(cp —al ds dc= (aq —bp ds.

We express the idea that the binormal — whose directisines are, ¢, ¢’ — is
perpendicular to the osculating plane; i.e., to thelimes whose direction cosines ae
a,a anda+da a +dd, a’' + da'. One of the equations will be satisfied by itselid an
the other one will give us the condition:

Y cda= g ds=0.
The componeny must be zero, and formulas (12) will reduce to the fallgvones:

de _

db
13 — =hr, — =cp —ar,
(13) ds P ds

- bp.

It is easy to obtain the geometric significance efribtationg andr.

In fact, draw parallels to the edges of the trihed)ri{rough a fixed point. We will
obtain a trihedronT;) whose rotation is the same at an arbitrary instarthat of the
trihedron ). A point that is situated at the distance 1 fromxfaxis of the trihedron
(T1) will have a velocity whose components are, fronmiolas (3):

0, r, O,

and consequently that point will describe the patls, or — what amounts to the same
thing — the tangent to the curve will turn through the engls when its point of contact



Chapter I. One-parameter displacements. Applicatioretthtbory of skew curves. 9

describes the ards Thus, the componemtwill be equal to the first curvature of the
curve.

Upon taking a point that is situated at the distance them-axis of the trihedron
(T1), one will likewise see that the components ot@city will be:

0, -p, O

and consequently, the osculating plane will turn througtatiige o dswhen the point
of the curve describes the ais In other words;- p will be the torsion of the curve.
One can then set:

(14) r=

(15) —=—, —=—, —=-
ds p ds 1 ds

One recognizes the formulas of J.-A. Serret, wipiay a very important role in the
theory of skew curves.

5. The method that we just established exhibits sprogositions that are easy to
prove in a different way, and which one makes cusatl use of in geometric proofs.

If one is given the skew curv€), and one draws a parallel to the tangent of that
curve that has a length equal to 1 through theirotlien the extremity of that parallel
will describe a spherical curve that we — with Brr&t — call thespherical indicatrixof
the skew curve. It results from the preceding thattangent to the spherical indicatrix
will be parallel to the principal normal of the gar(C), because the point that describes
the indicatrix is the one that is situated at daglise 1 on th&-axis of the trihedronT),
and we have seen that the velocity of that pointgeal to 1 /o and parallel to the
principal normal.

Similarly, if we draw a line of length 1 throughet origin that is parallel to the
binormal then the extremity of that line will bestpoint at a distance 1 on thaxis of
the trihedronT1). That point will have a velocity that is equall / 7 and which will be
again parallel to the principal normal. The sptedricurve that it describes will be
parallel to the indicatrix. One obtains it by m@&asg out a length that is equal to one
guadrant on the great circles that are normal ¢oirtdicatrix in a convenient sense; in
other words, it will be th@olar curveto the spherical indicatrix.

6. We further point out the following theorem, whishvery important?):

() On the subject of this theoresee
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Any curve for which the ratip/ ris constant is a helix that is traced on an arbitrary
cylinder.

Indeed, if we consider the motion of the trihedr®y) (hat is parallel toT) then we
will know that since the componentis zero, the instantaneous axis of rotation will
always be in thexzplane. When the rati@ / 7 or —p / r remains constant, that
instantaneous axis will be fixed with respect to the moaxgs. Now, one knows that
when the instantaneous axis occupies an invariable posiitbrrespect to the moving
system, it will remain fixed in space. The trihedrdn) (will then turn around a fixed
axis. Itsx-axis, which is parallel to the tangent to the curve, milke a constant angle
with that fixed line and generate a cone of revoluti@me recognizes the characteristic
property of the helix that is traced on an arbitraryncidr.

When p and r are constants, that helix will be traced on a cylinderegolution.
Indeed, in that case, the motion of the trihedronwill present a translation and an
invariable rotation at each instant. All points of theving system, and in particular, the
origin of the trihedron, will then describe helicdsatt are traced on right circular
cylinders.

7. Three of the six quantitie§ ..., p, ... will be zero under the motion that we just
studied. We shall show that, conversely, if one has:

n=¢=q=0

then the origin of that trihedron will describe a cuthkat is tangent to the-axis and
admits they-axis for its principal normal. The first point resulmmediately from the
equations:

n=4¢=0.

On the other hand, since the comporegistzero, we will have:

cha: 0.

Thez-axis of the moving trihedron is then normal to the twasecutive positions of
the x-axis. In other words, thgy-plane is the osculating plane of the curve that is
described by the origin of the coordinates.

Upon reducing all velocities by the same ratio, in suamnner thaf becomes equal
to 1, one must replage r withp/ & r / & The curvature and the torsion of the curve
will then be given by the formulas:

(16) =1

¢

N

_p
é

N

PUISEAUX, “Probléme de Géométrie,” Journal de Liowvill) 7. BERTRAND, “Sur la courbe dont
les deux courbures sont constants,” Journal de Liouvill8.(DIOUVILLE, Application de I'’Analyse a la
Géométrieby Monge, % ed., Note I.
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8. The kinematic method that we just presented applias ielegant manner to the
complete solution of the following problem, which was vedl completely by
BERTRAND ¢): Find out whether there exists a curve whose principal normals are also
principal normals to another curve.

Let M be a point of the given curve, and &) pe the trihedron that relates to that
point. If one measures out a len®tivl ' = a on the principal normal then the velocity of
the pointM "will have the components:

l-ra, —, pa
S

alongMx, My, Mz, respectively; that results from formulas (10). mieadesires that the
curve that is described by the polit should be normal t&M“then it will be necessary
that one must have:

i.e., a must be constant. That result should have been obaiqusori, and we could
have supposed it immediately.
The velocityv of M is then perpendicular tely, and if one letsv denote the angle
that it makes witiMx then one will have:
vcosw= l-ra,
a7 { .
vsinw= pa.

The lineM M will then be normal to the curve that is describedngygointM’, but it
will not be the principal normal, in general. Constrile trihedronT”) that is defined
by the tangenM X to the curve that is described by the pdiht the lineM’y, and the
perpendicular that is common to those two lines, andamerthat they-axis of that
trihedron will coincide with the axis of the same namé€Tl). One will have a trihedron
that has the same orientation &s$)(by making the trihedro} turn through the angle
around itsy-axis. One will then obtain the instantaneous rotatiothe trihedronT’) by
composing the two rotations r of the trihedronT) with a rotatiordw/ dt aroundMy.

Now, as we have seen, the necessary and suffioediton for the lineMy or M’y
to be the principal normal of the curve that is descriipethe pointM’is that the rotation
of (T”) aroundM "y must be zero. It will then be necessary that ond has:

dw_
dt

() J. BERTRAND, “Mémoire sur la théorie des courbesoaibte courbure,” Journal de Liouville (1)
15, pp. 332. Seealso the paper of Bonnet that was included in tH8 [8Rer of the Journal de I'Ecole
Polytechnique, in which the author proved (pp. 134) that df twrves have the same principal normals
then their osculating planes at the corresponding poifitsiake a constant angle.
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and, in turn, that the ange must be constant. Thuke osculating planes of the curves
that are described by the point M,”Rust cut at a constant angle
If one now refers to formulas (17) then one will deduce

sinw )
—— =rsinw+pcosw
a

by eliminatingv or, upon replacing andp with their geometric expressions:

Sinw _ sinw_ cosw
a 0 r

(18)

There is then a linear relation between the two curvatures.

9. Conversely, if there exists a linear relationN®n the two curvatures:

C:é-}-E

o T

then the curve will generally enjoy the indicatedperty. One identifies the preceding
relation with equation (18), and one will have:

A

a=—,
C

B
cotw=- —.
A

Meanwhile, we point out two exceptional cases:
If one hasC = 0, withoutA being zero, then the relationship between the turea
will take the form:
p
T

= const.,

anda will become infinite. Hence, the second curvejohhs the locus oM’, will be
pushed out to infinity. The proposed curve wiénhbe a helix.

If one hasA = 0 — i.e., if the curve has constant torsionentawill be zero, and the
two curves that are the loci b andM " will coincide.

One can have more than two curves that have the pancipal normals when:

1. The value oé is indeterminate; i.e., if one has=C = 0. In this case, the curve
will be planar.

2. There is more than one linear relation betwd®n curvatures; i.e., if the two
curvatures are constant. In this case, equatipnviiBsatisfied for any value o& and
will give one . There will then be an infinitude of curves thatve the same principal
normals. The original curve (and consequentlypfithe other ones) will be a helix that
is traced on a right circular cylinder. The suefdbat is defined by the principal normals
will be the skew helicoid with a director plane.
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10. We return to the general case and look for the tweatures of the curve that is
the locus oM". The trihedronT”) that relates to that curve is invariably linked with th
trihedron ). In order to get the componets r' relative to the trihedronr(), it will
then suffice to project the rotatiopsr onto the axes off("). That will give:

p'= pcosw+rsing
I=—psinw +r cosw

Now, from formulas (16), one will have:

U ! V
p ===, r=-—,
r Y
if one denotes the two curvatures of the curve thaeidocus of 1) by 1 /p’, 1 /7.
When one substitutes the expressiongfay, p', ', the preceding relations will then
give us:
V _COSw  sinw

Il H

4 [

(19) | P
l - SiInw COosw
p T o

which are formulas that one add to the followingteyn, which is obtained by replacing
andp with their expressions in formulas (17):

a
vcosw= 1—— ,
(20) P

. a
vsinw=-—.
T

Formulas (19) and (20) contain all of the relasidvetween the two curves. One
deduces from them, for example, that:

cosw Sinw __ sinw

T Yo, a

which is a linear relation between the two curvesuof the new curve whose existence
was obvious priori. Moreover, system (19) can be replaced with tlewing one:

COosSw a
— _1+_"
(21) Vv P
SINw a




14 Lessons on the general theory of surfaces. Book I.

which is much simpler?.

One of the more interesting particular cases wast@oiout already by Mongé){ It
is the one in which the osculating planes of the twves are perpendicular; one will
then have:

p=a, p'=-a

Each of the two curves will be the locus of the centd curvature of the other one, and
also the locus of the centers of the osculating gshefrthe other one.

12. The results that were obtained by Bertrand immelgiafee the solution to a
problem that has been treated quite a etermine all skew surfaces whose radii of
curvature are equal and opposite in sign at each point.

Indeed, the desired skew surfaces must have an equilaypeabola for an indicatrix
at each point, and consequently, their curvilinear asynepiings must cut the rectilinear
generators at a right angle. Since the osculatizwgepbf an asymptotic line is the tangent
plane to the surface, one sees that the rectiliraargtors must be the principal normals
of all the asymptotes. From the result that was prevediously, those asymptotes can
only be helices, and the ruled surface must be a heheibh a director plane. One sees,
moreover, (no9) that the surface indeed enjoys the stated property. Tesskew
helicoid with a director plane is the only ruled surface whose radiuofature are equal
and opposite in sign at each point.

12. We conclude our discussion of the subject by giving theraation of the
developables of a skew curve.

Consider the trihedronT] that relates to a poimtl. The developable must be
generated by a poii in theyzplane, and that point must chosen in such a manner that
the tangent to the curve that it described must pasaghM at each instant.

Call its coordinateg andz. The components of its velocity are:

(") Seea note “Sur les courbes qui ont les mémes normalesigales,” that was submitted by
Mannheim to the Comptes rendE pp. 212, in which some relations are proved that oneleduce from
the formulas that were established here.

() MONGE, “Supplément ou I'on fait voir que les équations différences ordinaires, pour lesquelles
les conditions d'intégrabilité ne sont pas satisfaisemt susceptibles d’'une véritable intégration et que
c'est de cette intégration que dépend celle des équationdéawées partielles élevées,” Mémoire de
I’Académie Royale des Sciences for the year 1784, pp.eb3eg.

As its title implies, this beautiful work completes thedebrated “Mémoire sur le Calcul intégral des
équations aux différences partielles,” which was publishéde same volume (pp. 118), and in which one
finds the first research by Monge on the partial difftial equation of minimal surfaces. In the
SuppplémentMonge showed that if a curve has a constant radius wétcue then the locus of centers of
curvature will enjoy the same property and will have aenters of curvature on the original curve.
Moreover, the osculating planes to the two curves atctireesponding points will be rectangular.
However, the process that Monge described for the detation of the equation in finite terms of the
curves whose curvature is constant is obviously incorrén fact, the finite equations that the illustrious
geometer gave contained two arbitrary functions that Meergarded as independent, although he had
proved some pages before that they were coupled to eactbpthalifferential equation.
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d d
(22) 1y, Yoz Sy
ds ds

Express the idea that the velocity is directed towtrdgointM. We will have the two
equations:

y=1op dy-pzds_y
ro dz+ pyds z’
or
zdy- ydz _ds
y2+22 —pds

Upon integrating, we will find that:

arc tanX: d_s
z T
We will then have:
y=p0,
23
(23) z= ytanJ'd—S.
T

Those equations contain the entire theory of dgpadites. One sees that the angkhat
is defined by the principal normal and the linet joéns the point of the development to
the corresponding point of the curve will have va&ie:

Hence, the normals to the curve that envelop tvilerént developments will define a
constant angle between them. Conversely, if twonats to the curve make a constant
angle, and if one of them envelops a developmetiteoturve then the same thing will be
true for the other one. We will make frequent asthese propositions.

The first of formulas (23) further shows us thae tdevelopments are traced
completely on thepolar surface which is the envelope of the normal planes to the
proposed curve. Indeed, it results from formula®) (in relation to the velocity of the
point (y, 2 that all of the points in the normal plane the¢ aituated on the ling = p
have their velocities directed into that plane. néte that line will be the generator of
contact of the plane with its envelope, which ig folar surface. Moreover, the
osculating plane of the development that contdirgangent to the proposed curve is, by
that fact itself, normal to the polar surface.



CHAPTERIII

ON THE INTEGRATION OF THE LINEAR SYSTEM THAT PRESENTED
ITSELF IN THE PRECEDING THEORY.

Linear systems that possess a second-degree integfaileir-integration reduces to that of a Riccati
equation. — General remarks on that equation.

13. It remains for us to study the integration of the syste

da
- = r— ,
pm Br-m

1) 9B _ p-ar,
dy _

a —
at a-5p

that the three groups of cosines satisfy in a detailethera We have already pointed out
one fundamental property of that system: It admitsde®nd-degree integral:

(2) a?+ %+ y? = const.,

and the existence of that integral implies a seriepropositions as corollaries that
facilitate the integration of that system in somsesa

Before commencing with the study of equation (1), | wdukt like to show that any
linear system of the form:

99 -y +BB +0y,
dt

(3 ?j—’f=A’a+ BA +Cy,
dd—ty:A"a+B”ﬁ+C”y’

in whichA, B, C, ... are functions of, can be reduced to the form (1) whenever it admits
a second-degree integral:

(4) #(a, B, ) = const.,

in which ¢ denotes a homogeneous function of degree two with cdnstavariable
coefficients.
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Indeed, one can convert equation (4) (except in spexsakovhere the functighis a
sum of two squares, which one can easily treat) tootime: f

(5) a?+ B?+y? = const.

by a linear substitution that obviously will not change form of equations (3). If one
expresses the idea that the left-hand side of thatiequatan integral of system (3) then
one will obtain the equations:

A=B =C'=B+A =C+A"=C +B" =0,

which indeed shows that the system (3) reduces to the(fgrm

The system (1) then appears to have the typeredoiced form- of an entire class of
systems that exhibit the property of admitting a second-demtegral that one
frequently encounters in applications. That particalaracter of the equations that we
shall study deserves to be pointed out, and it will seffio justify the scope of the
developments that we shall pursue.

14. | would first like to show that whenever one knowsagticular solution €o, /%,
)) of system (1), one can append the first-degree integral:

aa+ [+ yw=const.

to the second-degree integral that was given already.
Indeed, if one has an arbitrary solutian @, )) of system (1) then one can deduce a
more general solution:

a + kao, B+ kb, Y+ K,

in which k denotes an arbitrary constant, from the properties ofinegr system. One
must then have:

(a +kao)? + (B + k) + (B + kf%)? = const.

for all values ok, or upon development:
a?+ By v X(aao+ B+ yw) + I (ai+ 5 +yg) = const.

Since the first and last terms of the left-hand sr@ecanstant, the same thing will be
true for:
aam+ Bty
as one can prove.
It obviously results from this that if one knows onlyotparticular solutionsdp, S,
W), (1, B, ) of the system (1) then one can immediately write mdiae general
solutions, which will be defined by the equations:



18 Lessons on the general theory of surfaces. Book I.

& + B%+ y? =const.,
aam+ LK+ yyw =const.,
am+ LS+ y) =const.

These equations can be solveddo, y; and give the values:

a=Gca,+tca+ Cz(ﬁon_ﬁYC)’
(6) :8200:80+C1:81+ Cz(y(ﬁl_ao‘/D’
Y=y, tcy,t 02(0'031—0'18()

in which ¢y, ¢, C; denote arbitrary constants. However, one can obtaiara complete
proposition and show that if one knows just one smiubbf system (1) then one
guadrature will suffice to give its general integral.

15. In order to establish this essential result, we rkriat the most general values
of a, B, ymust satisfy the relation:

a?+B%+ y? = const.

We first begin by discarding the case in which the cohsarero. One can always
suppose that one has:
(7) a’+p%+yP=1

by dividing those values by a suitable constant.

We likewise remark that in the particular problem thathave to treat, sincg g, y
are three direction cosines, they must necessaatlgfg that relation. It is natural to
expressa, B, y as functions of two independent variables in such a mata¢ the
preceding relation is always satisfied, and to seeHifferential equations that those two
variables must satisfy.

Now, if one regardsr, S, yas the coordinates of a point in space then equation (7)
will represent a sphere of radius 1 that has its cattéhe coordinate origin. Consider
that sphere to be a ruled surface that admits a doysdtiens of imaginary generators and
take the variables to be two quantities that remaintaoh®n the generators of each
system, respectively. In order to do that, we set:

a+if _ 1+y _
1-y _a—i,[z’_
a-if _1+y _ 1
1-y a+ig y'

(8)

which will give:

.1+ x X+

() a=—"2  p=i—2Y =22
X-y X-y X-y
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We remark that, from formulas (8,andy will be imaginary whera, 5, yare real,
and in addition, the conjugate imaginarytwill be — 1 /y.

If we substitute the values (9) @f, £, yin the differential equation then those
equations will reduce to two, as one would expect, and sdtere simple calculations,
one will obtain the system:

dx_ o a-ip, arip,
(10) gy q2|p q-f|p

L =—iry+—= 2

aa YTy T Y

x andy must then be two different solutions to the same equation

(11) do_ —irg+3°P Ip LY

dt 2 2

and the integration of the proposed system will be reddoethat of just that one
equation. Two distinct particular solutions of that emumatvill always give real or
imaginary values ofr, 5, ythat verify the system (1) by the use of formulas (9Ye
likewise remark that whep, g, r are real functions, it will suffice to know a pautiar
solution g of equation (11) in order to deduce a solutiong, )) of the proposed system.
Indeed, leto” denote the conjugate imaginary @f | would like to show that — 1d” is
again a particular solution of equation (11).
In order to do that, changénto —i in that equation and get:
do’ _ —irg’ +atip IIO q-1p IP ,
2 2

and consequently:
. . 2
1(_%:_” (_ij +w+w[_ij |
dt\ o ag 2 2 ag

It will suffice to compare equation (11) in orderrecognize that — 14" is indeed a
particular solution to that equation.

16. The equation irobelongs to the group of equations of the form:

(13) O(Ij—f—a+ o+ co?,

in whicha, b, ¢ are arbitrary functions df They are the next simplest ones after linear
equations. Since one frequently encounters thetheirapplications, one gives them the
name ofRiccati equationsbecause they include the equation:
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d—0=a02+btm
dt

as a particular case, which was the only one thatheasubject of research of the Italian
geometer. We shall rapidly recall their principal prtips.

First, they do not change form when one performs aidisabstitution oro — i.e.,
when one replaceswith the variablel that is defined by the equation:

1= Po+Q
Ro+S’

in whichP, Q, R, Sare arbitrary functions df
In the second place, one can integrate them as so@mea knows one particular
solution. Indeed, letv= oy be one such solution. Set:

o=+ 1
A )
and obtain the linear equation far
(14) %§=—c—2@%+MA,

whose integration will require only two quadratures thatprformed in succession.
One of the fundamental properties of the Riccati egnagsults from this. Since the
general value ofl is linear in the arbitrary consta@tand of the form:

PC+Q,
one sees that the general integral of the Riccati iquaill be of the form:

RC+ S
o= )
PC+Q

in which P, Q, R, S are functions of the independent variableOne deduces from this
thatthe anharmonic ratio of four solutions to the egoiatis constant and equal to that of
the four values of the arbitrary constant that spond to those solutions.

17. If one then knows three particular solutiams oi, o> then the general integral
will be given by the formula:
o-o0, 0-0, _

: C,
0,-0, 0,0,

which does not contain any quadrature.
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If one knows only two solutionsp, gi then one quadrature will suffice. Here is the
fastest procedure for obtaining that solution: Set:

o-o,
o,-0,

A=

sSo one has:

lda_, 1 (d_a_daoj_ 1 (E_dalj
Adt  o-g,\dt dt ) o-g,\ dt dt)’
do do, do;

or, upon replacingd—t, prafian

with their values that are inferred from equat(®8):

iﬂ=c(ao—0)
A dt v

A will then be obtained by a simple quadrature, amelwill have:

(15) 1= o-0, —C e[c(ao—ao)dt’
o-o,

in which C denotes an arbitrary constant.

The Riccati equation then possesses one of thdafental properties of linear
equations, and knowing each particular solutiort pekmit one to make one more step
towards the general solution. Indeed, it is e@sgdnvert its integration into that of a
second-order linear equation.

Here is the procedure for proving that last pramsthat seems the most elegant to
us:

18. Set:
o=£
vV
so the equation becomes:
du dv
V= —pu— =a v+ 2uv+c
at e v+ o 4

and that single equation can obviously be replagédthe following ones:

d
——= +(b+ ,
ot av+(b+ hu

(16) dv
—=—cu+(b-hv,
g c#+(=h



22 Lessons on the general theory of surfaces. Book I.

in which h denotes a function that one chooses arbitratily Klow, the elimination of:
or v will obviously lead to a second-order linear equation.
If one taked =D, for example, then one will have:

—_1ldv
cdt’
andv will satisfy the equation:
2
(17) d—;’—(2b+£jﬂ’ +acv=0.
dt c/ dt

If vi andv, denote two particular solutions of that equatioentone will have:

1v,+Cv.
(18) g=-=-1_="2

cv,+Cy,
in which C denotes an arbitrary constant.

19. We have seen that the anharmonic ratio of fobitrary particular solutions to
the Riccati equation is constant. It is easy tal#ish that this property is characteristic —
i.e., it belongs to just that one equation.

Indeed, ifa, 01, o» are three particular solutions then the gener@gmal of the
equation considered will be given by the formula:

o-o, 0,-0,
o-0, 0,-0,

= C,
and the elimination o€ by one differentiation will lead to a Ricatti eqioa.

20. We apply these general propositions that relatéhé Riccati equation to our
equation (11) ino. Whenever one knows a solution to the systenmfddwhich the
constant sunw 2 + 8% + y? is non-zero, one can reduce that sum to unity,farmulas
(8) will then show us two particular solutions bétequation iro; let g, —1/0;,> denote
those two solutions. In order to determine theegainntegral of the equation oy it will

suffice to perform just one quadrature. The appibe of formula (15) will lead us to the
equation:

() It is good to remark that although the complete irtiégn of the system (16) implies that of the
Riccati equation, without it being necessary to perfarquadrature, the converse is not true. When one
has integrated the Riccati equation once, one will haletbe ratioy / v; the determination gff or v by
equations (16) will demand another quadrature.
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e Ll +i
ag - 0'0 —j(lr +qu—2p—aoq—2p]dt

=Ce
1+ oo,

by some simple transformations, or furthermore:

_j[lﬂfocfb] a-ip_a+ip)
? g, 0O,

o-o, _
1+ oo,

UO
T

in which C denotes the arbitrary constant.
The quadrature that appears in these formulas will invaluweal function whenever
the rotation9, g, r, and the particular solution that one starts withreed becausen, o,

will be conjugate imaginary then, and the function undher| sign in the preceding
formulas will have the form®, whereO is real.

It is then proved that whenever one knows one paaticadlution to the system (1)
for which the constarr > + 82 + y? is non-zero, the general solution of that system will
be obtained by a simple quadrature.

21. Now, suppose that the particular solutiamsg, y that are being considered
satisfy the relation:
0,2 +,82 + y2 =0.

We begin by remarking that at least one of the quastiti 5, y must be imaginary.
Upon exhibiting the real and imaginary parts, one wilhthave:

a=a’+ia’, B=p0+ip" y=y+iy"

Having said that, ip, g, r are real functions df thena’, 8, y anda”, 5” y” will
obviously constitute two different systems of real sohg of the system (1) for which
the suma? + 8% + y? is non-zero. The application of formulas (6) wileh show the
complete solution to the system (1) without integration

Now, suppose that, g, r are imaginary functions. One can then set:

a+i,3:_x_ y

(19) ; p?

and upon introducing a proportionality facigrone will have:

(20) a=p(1-x), B=ip (1 +x), y= 20X

The substitution of those values in the system @ddais to the two equations:
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(21) B i+ A7, AP
dt 2 2
22) 19P _y _@gepx
p dt

Hence x must be a solution of equation (11). Moreoveoné sets:

1
O=X——
A
then that equation will take the form:

dA _q+ip . .
— = ——+[ir—@Q+ip) X 1,
ot > [ir—@+ip) ¥

or, upon taking formula (22) into account:

dt\ p 20

One will then getd, and consequently, by just one quadrature. Hence:

In any case, knowing just one system of solutiorsquationg1) will permit us to
obtain the complete integration of those equatimnfust one quadrature.

The particular systems of solutions for which sena? + 82 + y? is zero play an
essential role in the important work of Hermitetbae rotation of a solid body)(

22. Euler, who was the first to study the motion lodid body, proved the preceding
result by an entirely different method. We havensthat he expressed the nine cosines
by means of just three angles, and we know thatrdteionsp, g, r are expressed as
functions of those angles and their derivativehweéspect to time by formulas (6) [pp.
4]. If one then supposes that the rotations amwknthen those three formulas will
constitute a system of differential equations thdt replace the system (1) and will
suffice to determine the anglésg, (. In truth, the lack of symmetry in these equation
hardly allows one to employ them in a general manhéeanwhile, one can deduce the
fundamental property of system (1) from them venypdy.

Indeed, le@", b", c" be the particular values of g, ythat verify system (1), which
are assumed to be known. If we take the @&#g0 be the line whose direction cosines
area’, b", ¢’ then will getd and ¢ from the last three of formulas (2) [pp. 3]. Théme
last of formulas (6) or the second of formulas[fp. 4] will permit us to determing by

() HERMITE, Sur quelques applications des fonctions elliptiqiesis, Gauthier-Villars, 1885.
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one quadrature. Knowing the three Euler angles wilhtbee us three particular
solutions of the system (1), and consequently, the ges@tdlon, as well.

It is easy to see that the quadratures to be performids two methods will reduce
to each other, and will differ by only some exactly-ingdaye quantities.



CHAPTER 111

GEOMETRIC INTERPRETATION OF THE METHOD THAT WAS
DEVELOPED IN THE PRECEDING CHAPTER

Study of the symmetric coordinates in the case of the spheiGeometric interpretation of a linear
substitution that is performed simultaneously on thedemrdinates. — Formulas of Euler and Olinde
Rodrigues that relate to coordinate transformation. —eReptation of the imaginary variable by a
point on the sphere according to Riemann’s method.

23. From the preceding developments, one sees thattdgration of any system of
linear equations with three unknowns that admits a honsges, second-degree integral
will be converted into that of a Riccati equation — iugto that of the most general linear
system in two unknowns. It seems interesting to usgtify and explain that result by
some considerations of pure geometry. In order to dowleashall make a rapid study of
the system of curvilinear coordinates/ that determine the points of the sphere of radius
1, and which are defined by formulas (9).

By an elementary calculation, those formulas ig@ld us to the following result:

4dxdy

(1) da?+dB?+dy?= .
(X=y)

which gives the differential of the arc length thatdescribed by the point whose
curvilinear coordinates are y. One sees that this arc length will be zero wbee
displaces along one or the other of the rectilimgarerators of the sphere. That is a well-
known result; however, formula (1) will lead ussimme other consequences.

24. lts right-hand side enjoys the property of beiegroduced when one subjegts
andy to the same linear substitution. Indeed, set:

) X:a><l+b y_ayl+b

cx+d’ cy,+d’
in whicha, b, ¢, d are constants; we will find that:

4dxdy _ 4dx dy
x=9" (x-w*

It results from this that if one considers twoufigs that are described on the sphere,
one of which F) is at the pointx, y), while the other oneH) is at the pointxj, yi1), then
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the distance between two arbitrary, infinitely-clgs®nts on one of the figures will be
equal to the distance between the corresponding pdinte @ther one. Consequently,
the infinitely-small triangles that correspond in the figures and have three equal sides
will be equal or symmetric, arttie two figures will then be equal or symmetric, rebp.:
say that they are equal.

Indeed, vary, b, ¢, d in formulas (2) from their present values to thdofeing ones:
1, 0, 0, 1 in a continuous manner. The figu¥g ill displace in a continuous manner,
and since it is always equal or symmetricE, (t will always remain superposable with
its original position. Now, for extreme valuesapb, c, d, the substitution (2) will reduce
to the following one:

The figure F1) will coincide with ), and consequently, the two figures will be
equal.
The right-hand side of formula (1) will also be reprodlde one employs the
substitution:
3) X:ayl+b’ :axl+b.
cy,+d cx +d

However, it is clear that this substitution resultenf the composition of the
substitution (2), which replaces any figuf® (vith an equal figure, with the following
one:

Y =X, X=Vy1.

It suffices to refer to formulas (9) [pp. 18] in order recognize that the latter
substitution replaces a point of the sphere with thendtrically-opposite point — i.e., the
figure (F) with a symmetric figure. The same thing will thentiue for the more general
substitution that is defined by formulas (3).

25. The preceding results have been deduced from equatiowliioh gives the
distance between two infinitely-close points. Howevere oan also obtain them by the
use of the formula that expresses the distance bettweearbitrary points of the sphere
in thex, y coordinate system.

Indeed, leM, M’ be two points with coordinatesy ; x’, y’. Upon denoting the arc of
the great circle that joins them MM, one will have:

@ oM = 22X = 0= Y= §)
==Yy

hence, one will deduce that:

02 MM _ (= X)(y= ¥) G2 MM _ (= y)(y= %)

() : = :
2 (x=9(X-Y) 2 (x=9(X-Y)
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Those formulas, which | gave already in 18%2 #long with some other ones, can be
further written in the form:

cog MTM: R Y, X,y), sirf MTM'= R, X, Y, V),

in whichR (a, b, ¢, d) denotes the anharmonic ratio of the quantdids c, d. It is clear
that these expressions will remain invariable when one exppine or the other of the
substitutions (2) or (3) to the coordinates of the two pointOne sees that these
substitutions do not change the spherical distance betweearbitrary points. They can
only replace a figureH) with an equal or symmetric figure then, which confirthe
proposition that was obtained already.

It results from the preceding that if one considets &bitrary pointdv, M, M”, M "™
on the surface of the sphere then the anharmonic ahtioe values of the coordinaxe
that relate to those four points will remain constahen one displaces the invariable
figure that is defined by those four points in an arbitragnner. In other words, that
anharmonic ratio depends upon only the form of the quadalat&dne knows various
expressions for it that | shall not stop to establighwill suffice for us to know that it
remains constant when the quadrilateral is displacdwutitdeforming.

26. After that, we return to the system (1) of the prewpdhapter, and consider,
[, yto be the coordinates of a point on the sphere ifc@ch particular solution of the
system (1) will correspond to a certain curve on thepthat is described by that point.
It results from the propositions that were establishteth@ outset (nol4) that if two
points of the sphere represent two different particstdutions of the system then they
will always remain at an invariable distance fromheather. Hence, if four points
describe curves that correspond to four different paaticslutions in their motion then
they will define an invariable figure, and the anharmoni raf the four particular
values ofx that corresponds to those four points will be constige, x must satisfy a
Riccati equation (nal9) when considered as a functiontof

It remains for us to explain why the second coordinatestisfies the same equation
as the first one. In order to do that, it will scéfto remark that if a poii of the sphere
gives a solution of the system (1) then the same thifigoeitrue for the diametrically-
opposite point, which corresponds the same valuas @& ); but with opposite signs.
Now, one passes from one of those points to the otietbyg switchingk andy; those
coordinates must then satisfy the same differentialtegqua

27. The analytical results of the preceding chaptertlaea explained completely.
We shall not pursue the complete study ofxhg coordinate system now, and we shall
be content to point out how one determines the digplaat that corresponds to a linear
substitution that is performed on the two coordinates samebusly.

() G. DARBOUX, “Mémoire sur une classe remarquableolerbes et de surfaces algébriques,” pp.
212.
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Recall the formulas:

1+ xy X+y
6 a= , =—,
(6) =y B =y =y

which gives the rectangular coordinatess, yas functions ok, y. If one performs the
substitution orx andy that is defined by the formulas:

(= My+n o my+n

(7) : ,
PXx+q Pyt q

and if one letsr, £, )4 denote the rectangular coordinates that corresptund, yi, one
will find, from a calculation that offers no diffidty, that:

a=ag+adp+dy,
(8) B =ba+bp+Hy,
y,=ca+cp+cy,

in whicha, b, ¢, ... have the following values:

a:q2+n12—n2— "4 azi nf+ - g- ¢ .__pg_mn
2B ’ 2B ' B
2 2P
9) a':iq +n’ -t pz, b = m+ i+ F}+ d, cd=i P& m1r
2B 2B B
g = 9= mp b = —j_ TP nq o -_md nq
B B B

in whichB is the determinant of the substitution:
B=mqgq-np

It is easy to see that these nine quantities laeecbefficients of an orthogonal
substitution with determinant 1, which proves onec®re the theorem that was
established above (n24).

If one replaces, n, p, q with the following expressions:

m=-p+Iv, n =—u+iA,
q=-p-iv, p= putil
then upon setting:
(10) B=A+ 1 +V + [,

to abbreviate, one will find that:
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Ba =p°+A°—u*—V? Bb =2(ud+pV), Bc =200 v pu),
(11) Ba =2(ul - vp), BO =p*+u?—-A%— V', Bt=2(uv+Ap),
Ba' = 2(Av+ up), BY = 2(uv - Ap) Bé=p0"+ V-A"— >

These are the well-known expressions for the nosnes in homogeneous form, which
are due to Euler and Olinde Rodrigues.

28. Since formulas (7) define a real or imaginaryptisement — i.e., a finite rotation
— we propose to determine the axis and magnitudleabfrotation. One will obtain those
two elements in the following manner:

The points where the rotational axis meets thermgphvill remain immobile during
the motion. They must then satisfy the relations:

X=Xy, Y=VY1;
consequentlyx, y will be the roots of the equation:
(12) pX +(@-mx-n=0,
which define the double elements of the linear subb®n. Letx, y’be the two roots of

that equation, which we assume to be differente €ges that the motion will leave the
four points

(13)

1

{ X=X, X= ¥y, X=X X ¥
y=Y, y=X, y= X y

b

invariable.

The first two are at a finite distance and diamatly-opposite to each other: They
are the points where the rotational axis cuts giee. The other two satisfy the relation
x =y, and consequently, from formulas (6), they will & the circle at infinity. That
will define a displacement from the projective vmnt. It is a homographic
transformation of the sphere that leaves four pgoinvariable, two of which are at
infinity, while the other two are diametrically opgite. Those four points define the
summits of a skew quadrilateral that is situatedhensphere entirely.

As for the magnitude of the rotation, one will @hine it in the following manner:
Write down the equation (7) in the canonical form:

(14) XX g %mX Yy wm X
X=y -y y-y iy

That form is obviously preserved if one performdigplacement of the set — i.e., if
one subjects all of the variablesy, X, ... to the same linear substitutiorSuppose that
the displacement is chosen in such a manner tegtdmtx = X', y =y is placed on the
positive half of the-axis. x' will then become equal o, y will become 0, and formulas
(14) will become:
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(15) X1 = kX, y1 = ky,

or, upon returning to the rectangular coordinates andgéalie rectilinear coordinates of
the two corresponding positions of the same pai®, y; a1, (i, )i -

al+i,[;’1:ka+i,3 a-if _la-ip
1-y, 1-y 1+y,  k 1+y

These formulas obviously agree with a rotation ado@z through an anglé that is
defined by the equation: _
(16) ef=k.

One will recognize that fact immediately upon cdesing the points in they-plane for
which one has:

y=1n=0.

Hence, the magnitude of the rotation will be dmieed unambiguously by formula
(16). As far as the value & is concerned, as one knows, it will be given by the
equation:

k= m- px

T m-py’

or, if one would like to obtain it without passit@the values of', y', by the equation:

(LY _ (m+ g7

18 :
(18) k mg-— np

29. The displacement that is defined by formulas i€/)not real, in general.
However, the various methods in the foregoing peame to show the conditions under
which the displacement will be real. Indeed, weehseen that if two real points have the
coordinates, y andx,, yi1, respectively, then the imaginary varialtesg; will have — 1 /

y, — 1 /y; for their conjugates, resp. Upon then changimgo —i in the first of equations
(7) and denoting the quantities that are conjugate, n, p, q by my, no, Po, o, one will
have:

_12 “Mmthy
Y BtV

and before that relation can be true wheneygrare coordinates of a real point, it must
necessarily be identical to the second of form(ifas That will give the conditions:

Po_=G%h_ "M _ Ny

n m q P
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which permits one to write down formulas (7) in thenfor

mx + n _ my+n

(19) X= ————, e
~NeX +1m, “Noy, +m

in whichmy, no denote the conjugate imaginariesoéndn.

30. It is easy to recognize that when one represents aginary variable by a point
of the sphere following Riemann’s method, the quantity @ denote by will be
affixed to the pointd, S, ).

Indeed, Riemann’s method consists of first representimgariablez = X' + iy’ with
the point &, y) in the xy-plane, as Gauss and Cauchy did. One then makes a
stereographic projection of that plane onto the sphieradaus 1 that has its center at the
origin by taking the pole of the point on that spherbdaituated along the positive half
of thezaxis. If we denote the coordinates of that stereogragbjection bya, £, ythen
an elementary calculation will give us:

= a+if
1-y

=X +iy’'=2z
which justifies our remark.

31. In the theory of functions and various studiege@ometry, it can be advantageous
to modify thex, y coordinate system slightly and replaceith the variable:

1
X=-=.
y

One will then have the following expressions &5, y:

(20) = X% i XX o X%TL
1+ X%, 1+ X%, X%, +1’

and equation (1) will take the form:

4dx dx,

21 da?+dB? +dy? = .
(21) a®+dg°+dy L 30’
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With that new system, the coordinatesx, of any real point will be conjugate
imaginaries. However, a displacement will no longerrepresented the samdinear
substitution that is performed on both variab®s (

() For everything that concerns the relationship betwdisplacements and linear substitutions, one
can consult the important papers of F. Klein that wectuded in volumes IX and Xll of Mathematische
Annalen, in which those relationships were expanded upon i to the solution of some problems
with a more advanced interest to them.



CHAPTER IV

APPLICATIONS OF THE PRECEDING THEORY.

Extension of Poinsot’s theory. — Determination of th@ions in which there are two relations between th
rotations that are given in advance. — Determinatioihn@fskew curves whose curvature and torsion
satisfy a given relation. — Study of the case in whidkt relation is linear. — Curves with constant
torsion.

32. Before continuing with the exposition of the genéhabry, we shall make some
applications of the preceding propositions. Recall yiseem:

da dags dy
1 —=[r—-yq, —= —-ar, —=aq-
1) it Br-yq el 4 a2 Bp

that must be satisfied by the cosines of the angésatfixed axis makes with the moving
axes. One knows that when a solid body moves aroumxed point without being
subject to any force, the preceding system will be ieekiff one replacesg, £, ywith the

derivativesﬂ ,ﬂ ,%of a functionf (p, q, r) that is homogeneous of degree two, and

op 0q
which represents one-half the tota vivaof the body.
We look for all of the motions that enjoy an analogprgperty — i.e., ones for which
the system (1) admits the solution:

_of _of

of
a_ - H - .
oq or

(2) sy

B

However,f (p, g, r) will no longer be subject to being homogeneous and gifegdetwo
now. Sincea, B, y; and the derivatives dftransform by the same substitution when one
performs a change of moving axes, it will be obvious thatpreceding property will be
independent of the choice of axes.

Upon writing down the idea that the system (1) is \extiby the values (2) af, 5, y,
we will have the equations:

dfat)_ of _ ot
dt\ ap dq or’
dfof)_ _of of
dt{ dq ar dp
93]l 20
dt\ or op  9q’

3)

hence, we will deduce:
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p ﬂ +qdﬂ +rd(ﬂj:0_
ap 0q or

(4) pﬂ +qﬂ +r%+f: const.

ap 0q

One then gets:

upon integrating, which is an equation to which one must apperiditowing one:

BEEEE
op daq or

which expresses the idea tlmts, yare direction cosines.

Upon substituting the values pf q as functions of that are inferred from these
equations (4) and (5) in one of equations (3), one will ige¢ by a quadrature. After
having thus obtained the expressionsgog, r as functions of time, one will achieve the
integration of the system (1) by means of just one quadiaand one already knows the
particular solution that is provided by equations (2).

As one sees, the solution is entirely analogous tornkethat one gives in the study of
motion of a solid body that is left to itself. Hewer, the analogy will become even more
complete if one supposes that the functioe homogeneous. Equation (4) will then
reduce to the following one:

f(p, g, r) = const.,

and one can represent the motion by rolling the surfatastiavariably coupled to the
moving axes, and whose equation is:
f(x,y,2=1

with respect to those axes, on a fixed plane. If one sgpihatf is entire and of degree
two then one will recover Poinsot’s solution.

33. As a second application, we propose to determinentdt®ns in which there are
two relations between the three rotations that arengivadvance:

(6) f(p.a,r) =0, $(p.q,r)=0.

We shall first give a geometric method for indicatiing degree of difficulty of that
problem. In the Poinsot representation, the motiosbisined when one rolls the cone
(1, which is the locus of the instantaneous axis of kmain the moving body, on the
fixed cone C). Now, the preceding two equations, which determineldbes that is
described in the body by the extremity of the instantasiexis, show us the conp by
that fact in its own right. As for the con€)( we take it arbitrarily, but in such a manner
that the section of that cone by the sphere of ratliigsthe spherical development of an
arbitrary curve that traced on that sphere, which peunits obtain the arc length of that
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section with no quadratures; one must then roll the dphe@n the cone ). The
equations that we have to write in order to expressnibéibn will obviously contain the
guadrature that gives the arc length of the curve ofsettion of the coney) with the
sphere of radius 1. For an arbitrary position of theedg), the instantaneous axis will be
the generator of contact of that cone with the cd)e gnd the ratios ob, g, r will be
known. Equations (6) then show us the magnitudes of timdggons. Upon expressing
the idea that the cong)(rolls with the velocity thus-obtained at each instane will
have to perform a new quadrature that will determine the. i

Hence, the calculation can be directed in such a mahateohe must perform only
two quadratures. One will arrive at equivalent resulthbyfallowing analytical method.

34. Suppose that three of the nine cosines b; ¢, for example — are expressed as
functions of the two variablesandy by formulas (6) [pp. ?]. &, b, c are real thex and
y will be imaginaries of the form:

x =h +Ki, y=—"-—.

One will get two relations upon expressing the idea ttieege two quantities verify
the Riccati equation (11) [pp. ?]; they are identical e bnes that one obtains by
substituting only the value afand equating the real parts and the imaginary parts:

dh_ ok + 9@ k) - phk
dt 2

(7) dk 0
— =—rk+ghk—-=(1+ K - If).
dt ahke=> ¢ )

If we eliminatep, g, r from equations (6) and (7) then we will be led to an eguatf

the form:
F[h, 4 ,d_kj - 0.
dt dt

Moreover, if one takek to be — for example — an arbitrary functionhothen that
equation will tell us the timé by one quadrature. We know three of the ninenassi
namely,a, b, c. One last quadrature will tell us the other siks one sees, the results
thus-obtained will coincide with the ones that gie@metrical method provides us with.

35. We have seen that if one considers an arbitteew s£urve, and if one studies the
motion of the trihedron that is defined by the tamgy the principal normal, and the
binormal at a point then upon supposing that thgiroof that trihedron describes a unit
arc length in a unit time, one will have that:
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Q-

p=-—, q=0, r

1
T
in which p and 7 denote the radii of curvature and torsion. Weppse to determine all

of the curves for which there is a relation betwdencurvature and torsion that is given

in advance:
f (E’ij =0.
r p

That will amount to determining the motion of dé&dron in which one has two relations:

(8) q=0, f(-=p.1)=0
between the two rotations.

Upon applying the general method that was givavabone will get expressions for
the nine cosines that determine the position ofmo@ing trihedron as a function of the
arc length of the curve, which is equal to timeation, here. One then determines the
rectangular coordinatesy, z of the point on the curve that is the summit @f thhedron
by the formulas:

dx _ dy dz _

—=a, — =4, — =a",

ds ds ds
which will give:

x:fads y:fa'ds z:fa"ds

36. The method that we just pointed out, which isegal is susceptible to some
simplifications in certain special cases.

For example, suppose that one demands that theesurave constant torsion.
Serret’s formulas:

dczg
ds 7’

@b v
ds 7' ds 1

will give usb, b', b" as functions of the derivatives @f If one substitutes those values in
the relations between the nine cosines:

a=b'c"-cb", a =b"c-Mc, a’'=bc —cb

(,,dc’ ,dd’j

=7r|c"—-c—|,
ds ds
( dc’ dcj
=r|c—-cd—|,
ds ds

. (,dc ddj
a'=r|c—-c—|.

then one will find that:

Q
|

Q,
[

ds ds
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One will, in turn, have the formulas:

x=|a ds ] (¢ de—cde),
y=la ds= 7] d¢ - ¢ do,
z:Ja”ds: rf(c’ dc—c df

for the rectangular coordinates of a point on the cumveyhichc, c', ¢’ are three
functions of only one variable that are subject tosihgle condition:

C2 + C’ 2 + C" 2 = 1.
If, for example, one sets:
c_c_c 1

h k | [h2+k2+|2

o ldk - kI
h* + K>+ 1%’
hdi-Idh

©) = e
_ jkdh—hdk
R

then one will have:

These formulas coincide, up to notations, with the dnasJ.-A. Serret gave in the
5™ edition ofApplication de I'’Analyse & la Géométriey Monge, pp. 566.

37. An analogous method applies to the determinations afuhes whose radius of
first curvature is constant. Indeed, recall the foesul

dx _ da _
__a, —_ =

ds ds

Do

One deduces that:

%S: J da? + dd? + dd?
from this, and consequently:
dx=ap  da’+ dd?+ dd? .

One will then have:
x:pja do,
(10) y:pjd do,

z:,o.[a: do
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for the three coordinates of a point of the desired cumvewhich do denotes the
differential of the arc length of the spherical curliattis described by the poird, @',
a"). The center of curvature will have the followingues for its coordinates:

da
=x+bp=p2ipla o,
X, p=p_+p|

da
(11) y1=y+Up=pE+pjd o,

dd’ "
=z+Bp=p—+p| a o,
2 p=p+h|

and it is easy to verify that the locus of that pasnalso a curve whose first curvature is
constant and equal to that of the first one, which comdéao the results of ndo0.

38. Finally, if one seek the curves that enjoy the propéray was pointed out by
Bertrand (no8), and whose two curvatures are linked by the equation:

(12) myh_q
0

NS

then one will set:

ma+nc=a+ M+ A,
(13) md+né =a'y M+ A,
md +nd =a"y M+ A,

in which a, a’, o' are three functions that are obviously subject todlaion:

a’+a’?+a?=1.
The Serret formulas:

da_b  de_b
ds p’ ds 1
will give us:
1a) Jme+ 99 -y, e+ 2 99—y e+ 2 99
ds ds ds

if we take the relation (12) into account.
One will then have:
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na—mc= nbé- cH- rh'a- 'b'y
15 I n
( ) :(m2+n2)(and_0_aydij’
ds ds
and similarly:
na - mé=(f+ ﬁ)(addi—a"%j,
(15) ds . °
na - mé = (M + ﬁ)(a'—”—a—”j.
ds ds

The relations (13) and (15) permit us to determaireg, a’; c, ¢, ¢’, and give us:

m ( . da’ daj
a=——a+na -a— |
NI S ds
(16) a=—1 g4 n(adi—a"ﬂj,
m + ds ds
; m ; ( : chj
a'= a'+na—-a—
m’ + rf S ds

Moreover, we will deduce that:

ds’ = (m? +n? (da? +da’?+ da" 9
from formulas (14).
One will then get the rectangular coordinates of atpufithe curve by the use of the
equations:

x:fads y:fa'ds z:Ja”ds

which will lead to the definitive result:

do =/ da?+ da'?+ da"?,
X = mja do+ rj(a" &' -a' &),
y=mla' dr+ (@ &' -a" a),
z= mja" W+ rj(a' &r-a dr).

(17)

One will recover formulas (9) or (10), accordingwbether one makeas or n equal to
zero. Moreoverg, o, @' are, as we have seen, three functions of justvanable that
are subject to the single relation:

(18) a’+a?+a?=1
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The preceding formulas also established very easitiidyse of geometry.

39. Of the three systems (9), (10), (17), the simpleshexh is the system (9), which
determines the curves whose torsion is constant. \Aleagbply it to the search for the
curve of constant torsion whose spherical indicatrix spherical conic. One will easily
recognize that if one draws a parallel to the binormaugh the center of the sphere of
radius 1 then that parallel will cut the sphere atiatpehose coordinates will bg ¢', c”,
and which will describe a spherical ellipse that is supplgary to the spherical
indicatrix.

Upon choosing the axes suitably, one can then ob&xinsimple expressions fox,

K, I:
he [La@p) | _ [ bb-p) | _ [_clc=p)
(a-b(a-¢ (b-a)(b-9g (c-a)(c-b
which agrees with the curve that is situated on the:cone

2 2
X
X, Y.,
a b

o|'\L,

:O,

and upon substituting these valuestipk, | in formulas (9), one will get the system:

x:£ bc J» do

2\ (@-o)(c- 3! Jb-p)c-p)
19 =L ac dp ,
(19) S sy By ey oy

Z:E ab J» do
2\ (a-o)(c- b J(@-p)b-p)

which will define the desired curve.

We do not know of any real, algebraic curve whosdadors constant. It would be
interesting to examine whether all of the curves ofstamt torsion are necessarily
transcendental, or if they are algebraic, to deterthaeimplest ones.




CHAPTER V

DISPLACEMENTSWITH TWO INDEPENDENT VARIABLES,

Differential relations between two systems of ratasi. Determination of the motion when those roteti
are known. Application to the case in which they arefions of only one variable.

40. In the preceding chapters, we saw how one could attechheory of skew
curves to the study of the motion of a trihedron. Otlesearch in geometry, and in
particular the work that referred to the theory of sudackemanded that one should
consider moving systems whose various positions depended tpondistinct
parameters. We shall undertake the study of such sysa@ochs) order to first study the
properties of rotations, we shall begin by supposingtti@imoving system has a fixed
point, which will be the origin of both the fixed and mayiaxes, as before.

The nine cosines that determine the positions of thgingoaxes will then be
functions of two independent variableandv. By starting from each of its positions, the
moving system can take on an infinitude of motions thatespond to the various
relations that one can establish betwaeandv. We introduce two different systems of
rotations here. One of them, which we denotepy, r, refers to the displacements
under which only varies. They give rise to the system:

(1) — =pr-yq,

=adq-— ,
Py q-B8p

oa (074 y
— =yp-ar, -
ou P ou

which must admit the three cosines from each group d&swar solutions. The other

ones, which we denote Ip4, qi, r1, relate to the case in which onlyvaries. They

likewise give rise to the system:

0 0
(1) — = -yq, _’Bzypl_a'rl, —y:aql—,[a’pl,
0 ov ov

which is entirely similar to the first one. It rdésuimmediately from this that if one
considers a displacement of the system in whiandv are given functions dfthen one
will have:

da dg dy
— =B8R -y0Q, = =yP-aR 2 =aQ-P,
ot BR-yQ ot y it Q-4

in which P, Q, R have the values:

du dv du dv du dv
3 P=p— +p;—, =q— +q1—, R=r— +r;—,
(3) pdt P1 at Q th a1 at at 1
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and consequently those three quantiBe®), R will be rotations relative to the motions
considered. The projections onto the moving axes of ttleqrahe infinitely-small arc
that is described by a point under that motion whose auate$i relative to those axes are
X, ¥, zwill have the values:

dx+(qdut+ qdy z( rdu- ,rdyv .y
4) dy+(rdu+ rdy x-( pdu+ p dy
dz+(pdut pdy y( qde g gv.:

We shall first establish certain partial differengguations that the six rotations must
satisfy.

2
We equate the two values Sqf% that one can obtain by differentiating the first two
uov

equations of the systems (1) and (2). After replacingddvesatives off, y with their
values that we infer from these two systems, wehaile:

ar or dq dq j
—-—L-pg+ =yl ———2L-rp,+pr, |.
B (GV au PG qgj y(@v au P+ PR

Since that relation must be true when one replg&cgsvith eitherb, c, orb', ¢', orb”,
c’, it is necessary that the coefficients/énd y must be separately zero. We will then

2 2
have two equations. Upon likewise equating the two valtﬁesa—g, oy
dudv duodv

deduced from the systems (1) and (2), one will obtainojnstnew equation, and one will
be led to the system:

that are

op dp,
——-—==qr, —rq,
v au qr, —ro,
0q _0q,

S — ———=Ip,—pr,

) N oy PP
ﬂ_%:p -q
v ou PaTR

which plays a fundamental role in the thedf.(

41. Conversely, whenever one knows six quantiges|, r, pi, ¢, ri1 that satisfy
equations (5), there will exist a motion for whitfose six quantities are rotations. In
order to establish that result, it will obviouslyffice to show that one can obtain the

(*% These equations were obtained by Combescure [AnnaléSodée Normale (14, pp. 108], who
was the first to employ kinematic considerations ia gnoof of formulas that related to the theory of
surfaces and orthogonal systems. We personally prestrem before the publication of Combescure’s
paper in a course that we gave in 1866-67 at the Collégeadedras a substitute for J. Bertrand.
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values of the nine coefficients that satisfy bothaystems (1) and (2). The proof of that
essential proposition can be deduced from general theotbat relate to partial
differential equations, but one can also obtain #atly in the following manner:

| first say that upon supposing that equations (5) arsfisati one can deduce a new
solution of equations (1) from any system of valugs/, )) that satisfies equations (1),
but not equations (2).

Indeed, set:

0
A:_a—ﬁrl+yql,
ov

B —ypmtars,

_98
ov
c=%
\'%

0
—aq+pBp:.
0
We shall show that the quantitidsB, C, which are not all zero, by hypothesis, verify

equations (1).
Indeed, one has:

a—A\ = 620' - %—q a_y_ﬁ%_ %
ou  dudv ‘du Au " adu " au
0 s oy or, 0q,
= (Br-y)-r L —q—-L-B Lty
av(ﬁ ya) Lau qlau 'Bau yau

08 dy

or, upon replacinga—, u with their values and taking equations (5) into account:
u ou

0A

(6) — =Br-Cq

ou
One will likewise have:

%8 =Cp- Ar,

(6) ou
oC
—=Ag-Bp
ou

upon performing some permutations, and consequehtlg, C will indeed give a new
solution to system (1). Since system (6) has degreabmeespect to the derivatives of
the functionsA, B, C, it will obviously admit just one solution for whichetlinitial values
of those functions that correspond to a given vabuef u will be quantitiesAy, Bo, Co
that are given in advanc&" It is also obvious that if those initial valueg aero then

(Y The proposition that we just assumed here, and in teatenents that will follow- namely, that
when a first-order system of differential equations Igexbwith respect to the derivatives of the unknown
functions, it will admit just one solution for whichet initial values of the unknown functions are givea —
due, as one knows, to Cauchy, who proved it in full getyrali truth, he assumed some exceptions that
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the unique solution that they will correspond to is the thag is determined by the
equations:
A=B=C=0.

We can then state the following proposition:

If one knows one solution of the syst@mnthat will satisfy equation§2) when it is
substituted in them and one gives a particular valgeow then it will likewise satisfy
them for any value of u.

42. Having made that point, suppose that one desires totlfie most general
solutions that are common to both equations (1) and (2)shalesee that there exists an
infinitude of values fora, £, y that satisfy those equations, and that each system of
common solutions is determined completely when one dgheesaluesrn, &, )6 of a, £,

y that correspond to the initial valuas vo of u andv.

Indeed, suppose that one replagesith up in a, 5, v The desired solutions will
reduce to functionsr’, ', y of v. Now, those functions of are plainly determined by
the condition that they must satisfy equations (2) wdr@replaces with up and assume
the initial valuesao, (b, )6 for v=vy . On the other handy, £, yare functions ot that
must satisfy equations (1) and reducextof’, y foru =up. They themselves are also
determined completely by that double condition, and it sulfifice for us to show that
those functionsr, S, ylikewise satisfy system (2).

Now, that fact is almost obvious, because if ondacesu with ug thena, G, ywill
reduce toa’, £, y and satisfy equations (2) for that particular value.ofConsequently,
they will satisfy them for all values of from the proposition that we just proved.

43. There is then an infinitude of different systemscommon solutions, and the
most general solution depends on three arbitrary cosstastone sees. On the other
hand, ifa, B, y; ;, [, 4 denote two different systems of solutions then thetions:

a’+ B2+ yP aay + BB+ W, al + B +y?

will remain constant for all values afandv. The proof of this is the same as in the case
of one variable. As a result, if we take three dédférsystems of solutiorss b, c; &, b,
c ;a’, b", ¢" whose initial values are the nine cosines that deterthm position of a tri-
rectangular trinedronTg) with respect to the fixed axes then we will havatiehs such
as the following ones:

a?+b*+c?=1, aa +bb +cc =0

corresponded to the cases in which the derivatives afrtkeown functions were presented, wholly or in
part, in an indeterminate or infinite form. Howeveg @bviously do not have to be preoccupied with those
exceptional cases in the questions that we shall address.
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for all values olu andv, and for all values af andv, our three systems of solutions will
define the position of a moving trihedron for which the iotet will be the given
quantitiesp, g, r ; p1, qi, 1, precisely.

Here again, as in the case of just one variable f élleosolutions that one can obtain
will be deduced from one of them by a simple change of coates. One will always
have the same displacement, but it will be referradifterent axes.

41. As an application, we propose to look for the motiansler which the six
rotations depend upon just one variableEquations (5) then become:

0
0
) A =rp, - pr,
ov
a——p q
v G~ dn.
One deduces from this that:
op _0dq _or
—+g—+r—=20,
pav qav ov

and consequently, sintels a constant:
p2+q2+r2:h2.

One already sees that the systems (1) and (2) adnsbtation:

a=

Slo

-4q _r
B ’ y=—.

We can take that solution to represaht b”, ¢’, and upon appealing to Euler's
formulas, we will have:

p

—-sin@dsing = —sin@dcosg¢ :%, cos@=—

r
h )
which already shows th#&and ¢ are functions of the single variable

If we refer to formulas (7) [pp. ?], which give the tatas, then here we will have:

siné aw—psm¢+qcos¢

sind — o _ =p1Sing +q; cosg,
ov
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and consequently:
oy __, O0¢__pn+aq
) - 2 2 )
ou ov h—r

which will give:
Y=-hu+V,

in whichV denotes a function of Conversely, formulas (6) [pp. ?] show us thad, i
do not contairu, and if ¢ contains it only linearly then the six rotations wilteed be
functions of the single variable

45. In the preceding example, the six rotations were tiong of one of the
independent variables. We propose to seek, in a more gararaer, all of the cases in
which they are functions of any of thenp, q, r; p1, qi, r1 can then be regarded as
functions of one certain variabl@ which will depend on the variablesandv in an
arbitrary manner.

If we denote the derivatives @f g, ... with respect tod by p', ¢, ..., resp., then
equations (5) will give us:

p 20429 g1
av Py BT
06 08
8 '— - —=rp,— pt,
(8) a5, 45,7 PP
9% 199 = pa, ~qp
ov ‘ou - %

If one can infer the values e%g ? from any two of these equations then those
u ov

values will have the form:

060 060

E =f (9, E = ¢ (6),

and those two equations will lead to an expressio@@drthe form:
6=F (au — by,

in which a andb are two constants. Upon replacing the variablesnd v with the
following ones:
up =au — by vi =av — by

one will come back to the preceding case.
It only remains for us to examine the case in whichetipgations (8) can be solved

for ? ? and in which one has, consequently:
v

u
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U ! I U ! I

r r
©) P_d_ P-4 _

poqg qL-rq, rp,—pL, pPg-dp

One first deduces from the relations that:

pPp+gq+rr=0.
pp+tdgrnn=0
and upon integrating:
p? + o +r’ = const.,
p? +of + r’= const.

Upon multiplying the variableg andv by suitably-chosen constants, one can write:

p2+q2+r2:1’
g =1,

and consequently, the extremitigs , r), (p1, Qi, r1) of the two rotational axes will
describe two curveL, (C") that are situated on the sphere of radius 1 wipeaet to
the moving axes.

It results from the first of equations (9) that thae® curves will have parallel
tangents for each value éf They are then two mutually-parallel curves, and & on
supposes (as is obviously permissible) that one has kerbe the arc length of the
curve C) when one starts from a fixed origin then one can set

p, = pcosh+ sinh (f - rq ),
(10) g, = gcosh+ sinh (rg - pr),

r,=r cosh + sirh g —qgp ).
in whichh is a constant angle.

46. One can deduce a geometric representation of motmm these results.
Consider the curve that is described in space by the eigrehone of the instantaneous
axes; for example, by the poim, @, r). If one letsa, b, ¢, &, ... denote the nine cosines
that determine the position of the moving system, andXle¥s Z denote the coordinates
of that point relative to the fixed axes then ond halve:

X=ap+bg +cr,
Y=ap +bq +c',
Z=a'p+b'g+c'.

Totally differentiate the first of these equationsl aeplaceda, db, dc with their
values that are deduced from (1), (2). Upon then replagjreg, r1 with their values that
one infers from equations (10), we will obtain:



Chapter V. — Displacements with two independent variables. 49

dX=(@p +bg +cr')d(@+vsinh).

That formula shows us that, Y, Z depend upon the same varialfle+ v sin h.
Consequently, the pole(Y, Z) will describe a curvel() in space that is traced on the
sphere of radius 1, and which will always be in contadt wie curve €). We will then
be led to the following result:

Consider two curved) and () on the sphere of radius 1. If we displace the curve
(C), while requiring it to remain tangent to the curlg, then a curve@) that is parallel
to (C) and is carried along by its motion will always remiingent to a fixed curve )
that is parallel tol{). The displacement of the two curv&® @nd C') is precisely the
one that we propose to define. When anlyaries, the curveQ) will roll with a constant
velocity on (), and similarly whew only varies, C') will roll on (I'") with a velocity that
is also constant.




CHAPTER VI

SIMULTANEOUSINTEGRATION OF THE LINEAR SYSTEM S
THAT WERE ENCOUNTERED IN THE PRECEDING THEORY.

Reduction of the problem to the simultaneous integnatictwo Riccati equations. — Various propositions
that relate those two equations. — Another methodlafisn that is based upon the determinatios, of

a,a'.

47. Now that we recognize the existence of common sokitiorthe systems (1) and
(2), we shall indicate how one can determine them. eSowe must consider only
solutions for which one has:

(1) af+pi+yi=1

in the question that we address, one can exgreSsy as functions of th& y by means

of formulas (9) [pp. ?], and from the results that wastined in nol5, the variables,
y must both satisfy the two equations:

q-ip_qtip

g . 2
E:_”’U'i' 2 2 g,
@) do q-ip, , g, tip
—=-iro+ e ey, o
ov 2 2

which are obviously compatible, like the systems thataeduces from them.

48. We are then led to the following problem in analysisidg the simultaneous
integration of the two equations of the form:

a—Uza +2bo +co?,
ou

Jdo )
—=a+2bo+co”,
5y athora

3)

in whicha, b, ¢ ; ai, by, ¢; are given functions af andv.

2
Upon equating the two values %?% that one can deduce from these equations,
uov

one will be led to the relation:

2 co+b)(a+ 2y o+ 1)) — 2 CLo+by)(a+ 2bo+ cdd)
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+ %—a_ai+20(ﬂ)—%j+gz(@—a_qj = 0,
ov ou v du Jov du

which has degree two with respectdo

If that relation is not true identically then ttveo equations (3) can admit at most two
common solutions. Hence, if one demands thatysies (3) should have a solution that
contains an arbitrary constant then it will be ssegy that the coefficients of the various
powers ofain the preceding equation should be zero, whidhgiie:

da 0Ja
——-—2+2ba —-2ah =0,
ov du 4 g
ob db
4 ——-—+ ca - ag=0,
“) ov adu A E
oc adc
——-—2+2ch -2bg = 0.
ov du g g

When these relations are applied to equationgt{@y, will reproduce formulas (5) of
the preceding chapter. Consequently, we can sepghas they are verified in the rest of
our discussion.

49. Conversely, we shall show that when the coeffitsi@, b, ¢ ; a;, bi, ¢; satisfy
conditions (4), the proposed equations (3) will @adncommon solution that contains an
arbitrary constant. In order to do that, wededenote an arbitrary solution of the first of
those equations and set:

(5) =99 - dno—ci 0
ov
Moreover, one has:
a—a—al— 2)10'—C1 0'2 =0.
ou

Differentiate the preceding equation with respgeat and equation (5) with respect to
u, and subtract the two relations thus-obtained. orUpaking the identities (4) into
account, as well as the preceding two equationsyidave:

06

(6) — =2(o+b) 6
ou
which will give:
zjul(cmb)du
(7) =& e™

by integration, in whicl& denotes the value @for u =u, . Hence, iféis zero foru =
Up then the same thing will be true for all valuesiof
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Having established that point, set up in the second of equations (3) and determine
the functiono’ of v that satisfies that equation and reducestfmr v =vy . One will then
have:

a—a=a1+ o0 +¢ 0"2
ov
foru=up.

Consider the first of equations (3), in turn, and deterthadunctiono that satisfies
that equation and reduces do for u = up . From what we just proved, that function
will satisfy two equations, because the value of thetfan that we have denoted I8y
relative to the solution thus-determined will be zerouer Uy, and consequently, it will
remain zero for all values af. The functiono that satisfies the two equations will
contain the arbitrary constaag, moreover.

All of the operations that were just indicated arespie and require no quadrature
when one knows how to separately integrate each of egs&{3). Thus, one will know
how to determine the common solution to the two equatmtisout integration when
one has obtained the integral of each of them.

50. We shall now prove some propositions that make thalsineous integration of
equations (3) simpler.
First, suppose that one knows a common solution &ethwo equations=x. Upon
setting:
1
g=X—-—,
w

one will be led to two linear equations of the form:

6_0) =P w +Q,
ou
ow =Piw+ Qq,
ov

and the general value afwill be obtained by the formula:
(8) = e[(Pdu+ E’dv)J‘ e—j( Pdu Pd)/(Q du—0Q, dv),

which contains only exact differentials, as one easbures oneself.

It is pointless to dwell upon the case in which onetivasor three common solutions;
the method that we followed in n&7 will apply without modification. However, it is
convenient to examine the hypothesis that one has aartsolution of one of the
equationghat does not satisfy the other on@ne can append the following result to the
ones that were just establish€he can determine the general integral from those of the
equations without integration when one knows a particular solution.
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For example, lex be a value oty that satisfies the firstquation and not the second
one. Set:
1
O=X——.
w

If we substitute that value @fin the first of equations (3) then it will become:

a_a):_z b+cxX) w—c.
ou

Introduce the functio® that is defined by equation (5) when one replazesth X,
and which, from formula (6), will verify the equation:

%:2(b+cx) g.
ou

The equation thadwmust satisfy can be exhibited in the following form:

0(af) _
ou

9) cd=0.

Now, an easy calculation will lead to the identity:

0 (10logd
= -cx—h |.
ou\2 ov G hj

-9 _9 01
C@—E(CX+ b) au(qx+ o)} (

Upon substituting the value o in equation (9), we will find that:

0 10logé
—| Wl +— -cx—h | =0,
6u( 2 ov G Qj

and upon integrating:
(10) = 0 :clx+b1—£aloge+

Ca
g—-X 2 ov

in which C denotes the arbitrary constant, which can be etimmofv. The formula that
shows one the general integral of the first equmationtains no quadrature sign, as we
have asserted.

The proposition that was just established, whenhined with the ones that preceded
it, will permit us to conclude that if one knowgarticular solution to each of the two
equations (3) that does not satisfy the other twea it will be possible to obtain the
general solutions to those two equations with nmaoquadratureand consequently
their common solutions, as well.
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51. In conclusion, we will show how one can define wasi differential equations
whose integration will imply that of the system (3jheut quadrature by appealing to the

latter result.
Add equations (3), after multiplying them Oy anddyv, respectively. We will have:

do— (@ du+ai dv) —2 p du+ by dv) o— (c du+cy dv) g2 = 0.

Now, imagine the two differential equations that we reefoy replacings with the
two functionsai, ¢ in successionyhich are chosen at will:

11) { do,-adu- gdv-2(bdy pdw,—( cdu ,cw? =0,

do,-adu- adw2( bdy pdw,-( cdu ,cilg’=0.

Suppose that one knows how to integrate each of thesdifferential equations. |
say that one can integrate the system (3) with no quae
Indeed, let:

¢, Vv)=a

be the integral to the first equation (11) and let:

Y v) =4

be that of the second equation. Make a change ofolesiand substitute, £ for u and
v. From the definition ofr andg itself, one will have:

%:aa_u+aiﬂ+2(b@+qﬂj0'l+[ aU ﬂjgi,
o 0B “oB o3 "op 6,6’ a,e

A L L Eo
Jda Jda Jda Jda Jda Jda

(12)

As for the system (3), it will take the form:
90 _ou, dv ofpou ov) f du oV,
0B 6/3 0B 0B 6/3 6/3 0B

60 aa_u+aiﬂ+2(bﬂ+q j (Cﬂl.{_ qﬂja‘z
da " oa oa oa

(13)

Equations (12) express the idea tgt o> are particular solutions to the first and
second of equations (13), respectively. Consequentlyy fuhat we proved, one can
integrate the system (13) completely, which is equivdtethe system (3).

In order to apply the last proposition, we return ® phoposed system of equations
(2), and take:
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o =1, o =-1.
The two equations (11) will become:

gdu+qgdv+i(rdu+rydv) =0,
gdu+qgdv—i(rdu+rydv) =0,
here.

The integration of these two equations will then yniplat of the system (2). We
shall explain that result by introducing a new means ef fitegrating the system of
equations (1) and (2) in the preceding chapter that is coehplifferent from the one
that we just studied.

52. One always denotes the nine cosines that satis$g tguations (1) and (2) by
b, ... One will have:

da=(br-cq du+( br- cg dy
(14) db=(cp— an du+( cp— a) dy
dc=(ag- bp du-( ag- bp d

and the analogous relations that one will obtain by pugimges ona, b, c. If one
combines the first of these equations with the onegithatd, da’ then one will obtain:

(15) da’ + da? +da"? = (q du— gz dv)® + (r du—ry dv)?.
Now, sincea, &, @' are coupled by the equation:
a2 + alz + a"2 = 1’

they will be the coordinates of a point in a sphere @ is likewise obvious that the
sphere will be the one that is described by a point $heituated at a distance 1 from the
moving axisOx. Here again, if one consider that sphere to be a rukégce, and if one
sets:

+' I _' I
(16) atia'_ =~ a-ia_

1

" ! "

1-a 1-a
then equation (15) will take the form:

4dxdy

(X=y)° = (q du+q: dv)® + (r du + r dv)2.

(17)

If one can deduce y from that equation as functionswandv then one will have,
a, a’, and formulas such as the following ones:
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oda oda
— =br-c —=br;—c
au . FYARREI

will show one the six cosines that remain to be deterd by elementary calculations.
Hence, everything comes down to finding the values afidy as functions oti andv
that satisfy equation (17).

We decompose the left-hand side of that equation inboféstors that we equate to
zero. We will then have two differential equations:

18) { qdu+ g dw (rdu+ ydy=0,
gdu+ gdv { rdut+ ydy=0.
Let:
(19) guv)=a yuv) =4

be the integrals of those two equations. If we makdéange of variables, and if we
replaceu andv with the functionsa, S then the right-hand side of formula (17) will take
the form:

4 Adadg,

in which A is a known function ofr and S, and the equation to be solved will become:

4dxdy _

20
(0) (x=y)®

Ada dB

It can clearly admit only one of the following twsolutions:

X=A, y
X =B, y

B
Aa

in which A denotes a function af, andB denotes a function ¢i.
A must then have the value:

_ AB
(21) = e

and it will be necessary to deduce the values afidB from that equation.
If one eliminates the functions andB by a well-known process then one will see
that A satisfies the partial differential equation:

2
(22) 0°logA _ _ ),
dadps

which will be useful to us. However, if one woulkk to obtain the expression féror
B then one will be presented with a difficulty uptaking into account that, from a



Chapter VI. — Simultaneous integration of linear systems 57

remark that was made before, the expressionl farll not change when one replac&s
andB with:
m+nA m+ nB

p+gA’ p+gB’

respectively, in whichm, n, p, g are constants. It then seems that the most general
expression forA that can satisfy equation (21) must contain three caisstamd
consequently can be determined only by integrating a third-diffierential equation.

Indeed, let us attempt to determide Upon taking the logarithmic derivative with
respect tar of the two sides of equation (21), we will have:

(23) i'_ 2K _ alog)ll
A A+B oa

A new differentiation with respect will permit us to eliminatd3, and will lead to
the equation:

n2 " 2 2

(24) e
A A oa Ada

We shall see that the integration of that equat&mbe performed with no difficulty.

Since the right-hand side is equal to the left,cannot depend upog, and
consequently, it cannot change when one giveslatnaly constant valug, to S.

Let Ao be the corresponding value af Equation (24) will obviously admit the
solution:

A=, A=[Joda,
or, upon taking equation (22) into account:

__10dlogA

2 004,

and it will suffice to substitute that value Afin equation (23) in order to deduce the
corresponding value d.

53. Hence, all of the difficulty in our new methodnsists of integrating the two
equations (18). Itis clear that if one has tewkse consideb, b', b" ; c, ¢/, ¢, instead of
a, &, a’, then one will have to integrate two equationsnfiane of the following groups:

(25) { pdu+ gdw (rdu+ ydy=0,

pdu+ pdv- {rdu rdy=0,
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(26) pdu+ pdw (qdu- ¢dy=0,
pdu+ pdv- ( qdut ¢dy=0.
There is obviously a great advantage to having a freeelodithese three different
groups.

54. We add a further remark that purely relates to the fofrthe two equations (3).
One can reduce their simultaneous integration to that of just one Riegaftion.
Indeed, suppose that one must find the common solutiorose thguations that reduces
toamforu=up, v=vy. Set:

Uu=up+ut, V=Vy+Vt,

in which u', v denote constants.owill become a function of that must satisfy the
equation:
do _odo do

— =2 u+—V=au+aV +2 U +b V) o+ (cU +c1V) o’
dt ou ov

in which the coefficients are now functionstof
It will then be determined by that condition, combinechwitat of reducing tax for
t = 0. Suppose that one has determined that function:

o=F (up, Vo, U, v, t) .
In order to obtain the desired solution, it will sufficesett = 1 and replace’, v’ with u —
Uo, V — \b, respectively.

Upon taking that purely theoretical remark into accoomng can say that:

The simultaneous integration of the systéih)sand (2) of the preceding chapter will
reduce to that of just one Riccati equation.



CHAPTER VII

DISPLACEMENTSIN TWO VARIABLESIN THE CASE WHERE
THE MOVING SYSTEM HASNO FIXED POINT.

Introduction of six translations. — Differential relatthat they must satisfy. — Infinitely-small moson
that reduce to rotations. — Theorem of Schénemann and Manrh®articular case in which one has
an instantaneous center of rotation. — Ribaucour’s ¢éneor

55. After having treated the case in which the moving systasnahfixed point, it
remains for us to examine the hypothesis in which the tioime@@) moves through space
in an arbitrary manner. We must then append six new gesarb the six rotations. We
let & n, { denote the components of the velocity of the origithefmoving axes relative
to those axes when onlyvaries, and le€;, /71, {1 denote the same components when
only v varies. If one leto, Yo, Zo denote the coordinates of the origin of the moving
axes with respect to the fixed axes then one will have:

(1) X4 =aé+bn+cl, 9%, =aé +bn +cdi,
ou ov

2
. ) X
and analogous equationsYgs Zo. Equate the two values ef—g 60 that one can deduce
uov

from those formulas. After replacing the derivatieéshe cosines with their values, we
will obtain an equation that must be true when one ceglg b, c with the other systems
a,b,c;a" b c" and will decompose into the following thréé){

0 0
6_5_ (;3 = Q¢ —q¢ — ),
0 0

) a—Z—a—Zl=r<i—rlf—pzl+p;,
0 04 o,

56. Conversely, when the twelve quantit&®, ... satisfy equations (2), at the same
time as equations (5) in chapter V, there will egiglisplacement for which they will be
rotations and translations, because we already kifatv one can determine the nine

(*) One can compare these formulas with the analogousttueiesere given by Kirchhoff in the fourth
and fifth lecture invorlesungen tiber Mathematische Phy$&76.
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cosines, and furthermore, that equation (1), which willcoenpatible by virtue of
equations (2), will provide the coordinates of the origintleé moving axes by
guadratures. It is pointless to repeat here all of th@onsthat are obtained by reducing
to basically just one motion that is observed wigpeet to different axes.

It is obvious that if, instead of considering all of thesipons of the moving system
that correspond to the different valuesuafndv, one supposes thatandv are functions
of just one parametar then the rotations and translations that relate tortizgion will
be:

3)

and the projections onto the moving axes of the elepfahie curve that is described by
an arbitrary poinM whose coordinates axgy, zwith respect to the moving axes will be:

dx+&du+é dw(qdur gav z( rde ,rgv,)
(4) dy+n duts, dw(rdut ydy x( pde pdv,
dz+¢ dut, dv-( pdu pdv y( qdu g

In other words, ifa is the time then one will get the components of taleaity with
respect to moving axes upon dividing the preceding three expnesbyda . We will
often make use of that remark, which dispenses with mdnyeo calculations and
permits one to leave aside everything that is concemitbédixed axes.

Upon concluding these preliminary notions on motion heeeshall be content to
remark that the method that is followed will apply witih modification to the case in
which the position of the moving system depends upon tbres/en more, parameters.

57. We shall make use of the preceding results in ordgrdee an important
theorem that relates to displacements in two varigbes

If one considers the moving system in a well-defined jposthen it can leave that
position in an infinitude of ways; the rotations andhstations that correspond to the
most general motion that it can take on are given fel@). We seek to know whether
one of the infinitely-small motions that one thus aigacan be reduced to a simple
rotation.

In order to do that, it is necessary that one magé Ifino.3):

(**) This theorem was stated by Mannheim in 1866 in the Jodenhlouville (2)11, and since then it
has been the subject of deep study. In that epoch, thelpakest the fact that it had been stated eleven
years before by Schénemann in an article that wasemqess to the Berlin Academy by Steiner
(Monatsberichte, 1855). It was Geiser whose calleshtidh to the paper of Schonemann in 1880 and had
the theorem reprinted in Crelle’s Jour8@) pp. 39-48.
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5) { (pdu+ g dy(¢$ dur¢, dy

+(qdu+ q dy(7 durg, dy+( rde r (¢ dud, gw0.

That equation provides two values fou / dv, which are generally different. In
general, there will then be two different (real oragmary) motions that reduce to a
rotation. The axis of rotation that corresponds to edd¢he motions will be defined by
the equations:

fdu+&dv+(qdur g dy z( rdw ,rdv %0,
(6) ndu+ngdv+(rdut+ rdy x( pd¢ pav z0,
{du+ddv+( pdu pdy y( qdtt ,qdv =0,

in which one replacedu / dv with the root of equation (5) that corresponds to theano
considered.

The preceding result has an important consequence teasysto verify by a direct
calculation. Since two of the motions reduce to rotataround two lines, which we call
D, A:

The normal to the surface that is described by an arbitrary point ofntreriable
system must meet each of those two Jlines

because since that normal is perpendicular to all ofdibplacements of the point
considered, it will be perpendicular to the ones thateothe point, in particular, and
consequently it will necessarily meet the axes o$¢hmtations.

58. Equation (5) has degree two with respeallud dv. It can then have imaginary
roots, and the two motions that reduce to rotations kelhtbe certainly imaginary; it can
also have equal roots. We shall not discuss all ofdsescthat can present themselves,
but we shall study the displacements for which one lsmpriori that there exist two
displacements that reduce to rotations around two distindtconcurrent lines. Upon
starting with that hypothesis, Ribacour obtained an eletmurem t%) that we shall
prove.

It is easy to recognize that in the case that we asldegsation (5) can be an identity.
Indeed, denote the two values tHat/ dv can take relative to the rotations considered by
du/dv, &/ dv; one will necessarily have:

(pdu+pidyv) (Sdu+édy) + ... =0,
(Pa+prov) (fdu+éydv) +...=0.

The axes of those rotations are defined by formulasTBe condition for those axes
to intersect can be written in the very symmetricineat:

(Y RIBAUCOUR, “Sur la déformation des surfaces,” Compéesius70, pp. 330.



62 Lessons on the general theory of surfaces. Book I.

(p du+p.dv) (Fdu+ & dv) + (p i +py &) (Fdu+ &) + ... =0

The three equations that we just obtained can reduce foltbwing type:

Adu +2Bdudw Cd¥=0,
(7) AdU* +2BJoud v+ CIV =0,
Aduou+ Hdw w Cdd )+ Cd¥ %0,

in which A, B, C have the values:

A=pé+..,
B=pé+pé+...,
C :p151+...

If one considers the three equations (7) as detangithe unknown#\, B, C then their
determinant will bedu & — dvdu)?, and by hypothesis, it will not be zero. One wiktn
have:

A=B=C=0,

and consequently equation (5) will be satisfiedhia=lly.

One can arrive at the same conclusions by a mugtles argument. If the two lines
D, A meet then their point of intersection will have zaro velocity under all
displacements. If one let§, y', Z denote the coordinates of that point relativeh® t
moving axes then one must then have:

E+qZ-ry =0, §+qz-1y=0,
(8) n+x'=pZ=0,  n+rX-pz=0
{+py-agX=0, ¢ +py- g%=0,

and it is not difficult to deduce the equations:
A=0,B=0,C=0

from this. However, here is the consequence thhit constitutes Ribaucour’s theorem:

Suppose that there are values<ofy’, Z that satisfy equation (8) for all values wof
andv. The point X, Y, Z), which is considered to be belong to the movigsgteam,
describes a surface) (that we regard as being a part of that systefroné refers the
same point to fixed axes then it will describe daste §. Give incrementslu, dvto u
andv. The points will be displaced on the surfa&e gnd will describe an infinitely-
small arc whose projections onto the moving axdschwvare given by formulas (4), will
be,upon taking equation@) into account:

dx, dy, dz.
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Now, these are the projections onto the same axésegpath that is described by the
point considered on the surfasg. (Those two paths always have the same direction and
magnitude, so one sees that the two surfayemnfl § are not only tangent, but also roll
on each other in such a manner that the paths thataaersed by the point of contact of
the two surfaces will always have the same length aedtabn.

In other words, the two surfaces correspond point-by-poiatich a manner that the
two corresponding curves will have the same lengtme @en says that they can be
mappedo each other.

59. We can add the following properties:
We infer the values of, ..., &, ... from equations (8), and substitute them into
equations (2). We obtain the relations:

oz dy 97z Y
Z 2L -g=—"+r2=0,
qav v qlau 'ou
o o7 ox, 02
v dv ‘du  ‘du
oy’ 11)'¢ 0 0z
_y—q_— Iq_y+ q_u:O’

(9)

from an easy calculation, which will lead to an impottconsequence. Multiply these

relations bya—x,ﬂ ,a_z, and add them. We will have:
ov ov ov

P4
x oy o2
du du du
ox oy 07
v oV AV

If A andzs are two conveniently-chosen functions then we can set

_ ox ., 0X
S TR 7
(10) g =1L+,
ou ov

r,=—MU a—Z’+Aa—z.

S VIRV

We will similarly have:

p= A a_X'+’u%

You T ov’
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and analogous equationsgnr. Moreover, if we substitute the values of the rotations
equations (9) then we will obtain the complementarydd¢am:

(11) A=— A,

in such a way that we will get the following values fiog, r:

p:—Aa_X'+’u%

ou oV’

oy’ oy

12 ===+ pu—=,
(12) q PR
07 07z

r=-A—+pu—,

au Hav

which will replace formulas (4) and (9) when we combimeEnt with equations (10).

60. The geometric interpretation of equations (10) and (42)bvious. Since the
derivatives of<, y', Z with respect tas andv are proportional to the direction cosines of
the two tangents to the surface that is the locussthntaneous centers, the two rotations
whose components a q, r andps, 01, r1 will be in the tangent plane to that surface.
The same thing will obviously be true for the rotationt tbarresponds to an arbitrary
simultaneous rotation af andv; one will get that from formulas (3), which give the
components of that rotation. We can then statedif@ning proposition:

If it happens that two infinitely-close motions thake the system to an infinitely-
close position reduce to two rotations around axes thataareurrent at that point for
each position of the moving system then any other tefijrclose motion of the system
will reduce to a rotation around an axis that passes thrinegbame point, which one can
call the instantaneous center of rotation.The two surfaces that are loci of the
instantaneous centers in the moving system and in spadeecarapped to each other.
They will always be in contact, in such a manner #rat motion of the moving system
will reduce to the rolling of one of the surfaces on theepbne, while the instantaneous
axis of rotation will pass through the point of contacthef two surfaces at each instant
and will be found in their common tangent plane.

It remains for us to give the geometric interpretatdrequation (11). One easily
recognizes that it expresses the idea that the redaiprbetween the direction of the
curve that is followed by the instantaneous pole anddh#te corresponding axis of
rotation is reciprocal. That is, if, after considgrian infinitely-small displacement for
which the axis of instantaneous rotation has a certiagttcbn, one can imagine the
displacement under which that direction becomes thtiteopath that is followed by the
instantaneous center then the axis of rotation for nkat displacement will have the
same direction as the path of the center under tbedite. Here, one can construct a
theory that is entirely similar to that of conjugatedents and the Dupin indicatrix. One
will likewise find two series of lines that are analogdoighe asymptotic lines and are
characterized by the property that when the rolling ofttve surfaces on each other is
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performed in such a manner that the instantaneous aegeribes one of those curves,
the rotation will be directed along the tangent to thee at each instant. Consequently,
the two corresponding curves that are then the pattheaenter on the two surfaces will
have the same curvature and osculating plane at eatdni. We leave the task of
developing those suggestions to the reader.

61. Conversely, whenever one knows two surfa@®s () that can be mapped to
each other, if one locates the surfager{ such a manner that one of its points coincides
with the homologous point of5|, and the homologous curves of the two surfaces that
pass through that point are tangent, then all of theéigas that one will thus obtain for
the surfaced) will depend upon two parameters, and the displacememtanvariables
that is defined by these various positions will enjoyadlthe properties that we just
pointed out.

For example, consider all of the surfacestifat are symmetric td5( with respect to
its tangent planes. They obviously constitute all ofpibgitions of a surfaces)(that rolls
on (5. One can apply all of the preceding propositiondi&d inotion. The surfaces that
are trajectories of the various points of the movingiesy will then be homothetic to the
(podaireg of the various points of space with respectowhen the homothety ratio is
2.



CHAPTER VIII

FIRST NOTIONS ON CURVILINEAR COORDINATES

Surfaces of revolution. — Alysseid. — Pseudo-sphericadserft Isothermal systems. — Ruled surfaces. —
Developable surfaces. — Determination of all surfacasd¢an be mapped to the plane by the method
of O. Bonnet.

62. In the first chapter, we saw that one could attaehtieory of skew surfaces to
the study of the motion of a trihedron. Similarlpetpropositions that relate to the
displacements in two variables find an important appdicain the theory of surfaces.
However, before developing that application, we Islige some extended notions on the
systems of curvilinear coordinates that Gauss employedsystematic manner for the
first time in the fundamental paper “Disquisitiones gafer circa superficies curvas”
that was published in 1828 in v. VI of Nouveaux Mémoires dokiétés de Goettingue.

As one knows, there are two ways of defining a surfd@ee can determine it by its
equation — i.e., by the relation that exists betweenctimedinates of any of its points.
However, one can also suppose that those three comslimave been expressed in terms
of two independent variables that we aalandv. That second way of defining the
surface is even more general than the first one, bechase takes andv to be two of
the three rectangular coordinates then the expressiotiné third one will be precisely
the equation for the surface when it is solved for tbatdinate.

A system of rectangular coordinates can be reprasgaemetrically. It suffices to
trace the two families of curves on the surface thatlze loci of points for which one or
the other of the variablag v remains constant. However, it is important to rénthat
the system of coordinates is not defined completelyéf gives only the two families of
coordinate curves. Without changing those curves, onelsaously replaces andv
with the variablesi;, vi, which are arbitrary functions of the first ones:

Uy = ¢ (), vi = ¢ (u).

That is a remark that one makes frequent use of, &mchvsometimes permits great
simplifications.

63. Gauss’s method rests essentially upon the expressiathefaarc length of an
arbitrary curve that is traced on the surface.

Suppose that the rectangular coordinatgs z of a point of the surface are expressed
as functions of the two variablesandv. The expression of an arc of the curve that is
traced on the surface will be given by the formula:

(1) ds’ = E df + 2D du dv+ G dV/,
in which one has:
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2 2 2

==(5) (50 (50
ou ou oJu

F o Oxdx dydy 020z

Judy oOudy dudy

2 2 2
o3 6
ov ov ov

We call the line elemenmnts to abbreviate. We also put it into the form:

(2)

(3) ds’ = A2 dU? + 2AC cosa du dv+ C 2 dV/,

and we will consequently have:

F
4 A= E, C=yG, cosSa = ——.
(4) N N e

Formulas (2) show tha duis the arc length of the curve= const.,C dvis the arc
length of the curvau = const., and finallyga is the angle at which those two curves
intersect at the point considered. One will thameh

F=0

whenever one employs rectangular curvilinear coattés. It likewise results from
formulas (2) that the surface element of the serfail have the expression:

ACsinadu dv= +/ EG- F? du du

Before going further, we shall give some examplahis mode of representation.

64. First, consider the surfaces of revolution, angp®se that one has taken the
axis to be the axis of the surface. If one césdistance from a point on the meridian to
the axisr then the equation of the surface will be:

z=1().

Introduce the angle that thexzplane makes with the meridian that passes through
the point considered. We will have the followingeessions for thg, y coordinates:

X=rcosv, Yy=rsiny,

and we will deduce the following formula for thadielement from them:
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(5) ds’ =dr? (1 +f'2) +r? dv2.

Here, the curves = const. are parallels; the curwes const. are the meridians. If
one sets:

dr/1+ f'? =du

thenr will become a function af and equation (5) will take the form:
(6) ds = di? + ¢ (U) dV2.
The significance ot is obvious: It is the arc length of the meridiahew it is measured

by starting from a fixed parallel.
One can put that expression for the element irton@ewhat different form. Set:

du _ _ dr

Jow  rfief?

@ (u) will become a functiof(u;) andu,, and equation (6) will give us:

ds = F(uy) (du? +dv).

65. Whenever the line element of a surface can beezted into the form:
d$ = A (da? +dB?),

one says that the coordinate curves formsathermalor isometricnet. The former term
is borrowed from the theory of heat, while thedativhich is due to Bonnet, is explained
by the following remarks:

Imagine that one traces all of the coordinate esiron a surface that correspond to
values of the parametess S that increase according to an arithmetic progoessaith an
infinitely-small increment:

a, a+da, a+2da,

B, B+dB [+ 2dS

One will thus decompose the surface into a serigsfimitely-small rectangles whose
edges will be equal if one takder = dS. One then says thé#te surface is divided into
infinitely-small squares.Without a doubt, that is not rigorously exactf the ratio of
their adjacent edges of the curvilinear rectantiies are defined by the coordinate lines
considered will get closer to unity when the incestda is chosen to be smaller.

In the case of surfaces of revolution, one seast ttie meridians and the parallels
constitute an isothermal system.
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66. In particular, consider the surface of revolutiort ie@enerated by the revolution
of a hanging chairchainettg¢ around its base. Here, one will have:

r= %(ez/a+e—ﬂa),

and one will find, with no difficulty, that:

Consequently, formula (6) will give us:
(7) ds’ =du? + (? + @) dv?

for the line element of the surface.

That very remarkable surface has received the namaéysdeidor catenoid Since
the hanging chain is the only curve whose radii of cureatuie equal and opposite in
sign to the normal, the alysseid is the only surfaceewadlution for which the principal
radii of curvature at each point are equal and opposisggin  One gives the name of
minimal surfaceso all of the ones whose radii of curvature are calphe that relation.
The alysseid is then the only minimal surface of ratioih.

z

Figure 1.

One knows that if one considers a hanging chain &lhase i€z and one drops a
perpendiculaPQ from the footP of the ordinate of the poifd to the tangent d¥l then
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the arc length of the chain, when measured by startitigeadummitS will be equal to
the line segmen¥1Q; consequently, the poi@ will describe one of the developments of
the chain.

SincePQ is constant and equal to the paramatef the chain, the locus of the point
Q will be the curve of equal tangentstractrix. Upon denoting the angRMQ by ¢, the
arc that is described by the po@twheng is increased bgg will have the value:

do=MQ dg¢ =acotg dg.
Since the perpendicular that is dropped @i Oz will have the expression:
r=asing,

moreover, one will see that the line element of sheface that is generated by the
revolution of the curve of equal tangents aroQ@advill be given by the formula:

ds’ =dd? +r? dv? = a (cof ¢ dg > + sirf ¢ dVA).

Set:
cot ¢ d¢ =du,
which will give:
sing =¢€",
and we will have:
(8) ds’ = &% (du? + € dVf).

We remark, moreover, that in the rectangular triaR§i&/, one will have:

MQ QR=a%

The principal centers of curvature of the surface &rgoasly the pointdM andR;
therefore, the principal radii of curvature will satigifye relation:

RR =-&.

However, although that property in no way characterihessurface, it is easy to
prove.

Indeed, we propose to determine all the surfaces ofluteo whose radii of
curvature are coupled by the preceding relation. By a ladilon that we shall not insist
upon here, one finds that the varialdesdr must satisfy the differential relation:

B b2_r2
©) az=\ e O

in which b denotes an arbitrary constant that can take all pessdlues. The line
element of the surface is given by the formula:
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_afdr? 2 42
de = a1 +r? dv2

First, suppose thdt is equal toa. One then recovers the surface whose meridian is
the curve of equal tangents. We give it the name gfskado-spherical surface.

If b is smaller thara then the radius can take all values that are lower thmrand
one will obtain a surface that, like the preceding afs® has a parallel of regressiBg@.
However, all of the meridians mustit the axis of the surface at the same péirdt a
finite angle whose tangent has the value:

aZ _ b2
b?
z
B C
A
z
Figure 2.
If one then sets:
e -e" av
r=.a’-b , Ve ——
2 a?-b?

then one will obtain the expression:

(10) dg = &2 {duz +(eu _ZGJ d\iz}

for the line element.

On the contrary, ib is larger thara thenr will have a minimumy/b® - a’, and the

meridians will no longer meet the axis. The swfaall then admit two parallels of
regression and a throat circtee(cle de gorgeDE (Fig. 3). If one sets:

e'+e" av
2 b? - &
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then the line element will become:

u Ju 2
(11) dg = a2 {du%(e +2€ j dvﬂ.
z
B C
D/ O E X
B' C
Figure 3.

67. After surfaces of revolution, we examine the verypamant group that is
composed of ruled surfaces. They can be defined by theehrations:

X=au+ N,
(12) y=a,u+h,
z=au+ b,

in whicha, b, ... must be considered as functions of one parametdf one supposes
that:

R

thenu will denote the length measured along each rectilineaergéor of the surface
when one starts from the curve that is defined by thetieqsa

(13) X= b]_, y-= bz, Z= b3 .
One deduces the following expression for the line elefmemt formulas (12):
(14) ds’ =du? + 2D du dv+ (A F + 2B u + C) dV/,

in whichA, B, C, D are functions o¥ that are defined by the relations:

A:ai2+a’22+a:32, C:b112+b122+t{32,
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B=ah+ab+4ah D=ab+ab+ah

If one supposes that the cunve 0 that is defined by equations (13) has been chosen
from the orthogonal trajectories of the generataes ttne will have:

D=0,
and the line element will take the simpler form:
(15) ds’ =du? + (A ¥ + 2B u+C) dV.
In this case, the system of coordinates will be @effiny the rectilinear generators
const. and their orthogonal trajectories.

In order to convert the general line element thagiven by formula (14) to the form
(15), it will suffice to substitute the following varialdter u:

u':u+,[de.

One also recognizes that the orthogonal trajectoffiebe rectilinear generators will
be determined by a simple quadrature for all ruled surfaces.

68. For example, consider the surface that is definedhdyptincipal normals to the
helix, or theskew helicoid with director plandt is defined by the three equations:

z=ay

(16) X =UCOSV,
y=usiny;

one then deduces that:

(17) ds’ = (@ + %) dV* + dif.

The comparison of formulas (7) and (17) shows thahé makes the points on the
helicoid and the alysseid for which the valuesiahdv are the same correspond then the
arcs of the two corresponding curves will be rigorously bglrathat case, one says that
the two surfaces can be mapped to each otledeed, it is clear that if one considers a
surface to be a flexible and inextensible membrane, famlei admits the possibility of
deforming that surface without tearing or duplicating it ttlenlength of each curve that
is traced on the surface will remain invariable unded#fermation. Without examining
the question of knowing whether it is possible to malkefitist surface coincide with the
second one by a continuous sequence of deformationsagsehat two surfaces can be
mapped to each other when they satisfy the geometiimitabef that we just gave. The
problem of the search for surfaces that can be mappedjitcela surface is one of the
more interesting ones (but also one of the morecdiffones) that one encounters in the
application of analysis to geometry. In the casewetre treating, the helicoid can be



74 Lessons on the general theory of surfaces. Book I.

mapped to the alysseid, so the rectilinear generatohe dirst surface will correspond to
the meridians of the second one, and the helicesetpdtallels.

69. We return to the ruled surfaces. When one has onlgxjeession (15) for the
line element, it is easy to distinguish the skew susféwem the developable surfaces.
Indeed, one has identically:

A+ 2Bu+C=(gu+lf)?+(d ur B)*+(§ u B

One then sees that the trinomial on the left-hadd will be a sum of squares, and
one will have:

B*-AC<0,
although the equations:
(18) 4.-%_%
b b B

will not be satisfied. Now, these latter equation ae true only in the case where the
surface is developable.
Indeed, equations (12) will give us:

dx=a du+ (a u+h) dv,
dy=a,du+ (a,u+b,) dy,
dz=azdu+ (a;u+id) dv.

Express the idea that there exists a point on the @f@nehat describes a curve that is
tangent to the generator. It is necessary that onelraust

when one takeg to be a suitable function @f which will give:

autl _gu+B _au+h
8 8 %

upon replacinglx, dy, dzwith their values.

If one takes the equatidh = O into account then one will find that the commorugal
of the three preceding ratios must be equal to zero.

One must then have:

_U———_:_,
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and consequently equations (18) will express the neceardrgufficient conditions for
the surface to be developable.

Finally, one can reduce the coefficiedtto unity by replacingv with a suitable
function ofv. One will then have:

(19) ds’ =d? + [(u—a) % + B2 dV
for the reduced form of the element in the case of skevaces and:
(20) ds =d? + (U —0a) > dV
in the case of developable surfaces, in whicnd 3 denote functions of (*%).
70. One easily deduces that the developable surfaces camapyeed to the plane
from the form of the line element.

Indeed, recall formula (20) and decompose the right-hdedrgo two factors:

du+i(u-a)dy,
du—i (u-a)dwv.

If one multiplies these factors &), e™, respectively, then they will become exact
differentials, and one can set:

(21) { ?ilv[dl,H' :(u—a) dy= dx ?d,y
e"[du- {(u-a) dy= dx idy

One will have, upon integrating:

x+iy=uéd - i'[a ' dy
(22) . .
Xx—iy=ue" + ija e" dv

Moreover, upon multiplying corresponding sides of form(2dg, one will obtain:

ds = d¥ +dy

for the line element of the developable surface, whidhpnove the stated property.
Formulas (22) can be replaced with the following ones:

(**) However, that theory passes over the imaginary ruledasf for which one has:

&+ +a =0,

and which are generated by lines that meet the imagiiraty at infinity.
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X= ucosv+ja sinvdv
(23)
y = usin v—ja cosvdv.

One sees that the rectilinear generators of thecautfet are defined by the relation
= const. correspond to the lines in the plane. Cons#guthe orthogonal trajectories of
the generators have parallel curves for transformsatebrthogonal trajectories to the
lines in the plane. The edge of regression a of the developable corresponds to the
envelope of all lines in the plane. All of these ressuihich we shall not stop to verify,
are in good agreement with the mechanical operations bghwhine realizes the
developments of that class of very important surfaces.

71. We just indicated a way of mapping a developable surfatte @mplane. It is
natural to demand to know whether there is no other ame whether, for example, one
cannot realize that map of the surface by making thdineetr generators of the surface
correspond to curved lines in the plane. The followirgyarent will give the answer to
that question:

Suppose that one has mapped the developable onto tharptaredifferent ways —
i.e., that one has exhibited its line elements in tleefosms:

d€ = dx + dy?, ds? = dx? + dy?;

one will then deduce that:
(24) A + dy? = dx? + dy?.

It is easy to solve that equation in the most genergl wadeed, one can replace it by
one or the other of the systems:

(25) { dX =cosa dx— sinr dy, dk= cog dx sior dy

dy =sinag dx+ cosx dy, dy= simr dx cos dy

in which a is an auxiliary unknown, and which are deduced from e#loér by changing
y into —y. For example, consider the first one. Upon writilgyvn the idea that the
right-hand sides of the equations are exact differentigdsyill obtain the relations:

. Ja oa Jda . oa
sinag — = cosa —, cosa — =-sing —,
oy 0x oy 0x
which will give:
oa _ Ja -0

ox oy
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a will then be constant. Upon integrating formulas (2&)d denoting the two new
constants by, Yo, one will have:

X =Xxcosa-ysin a+Xxo,
y’=Xxsin a+ycosa+yp.

These are the formulas for the coordinate transfooma As a resultx, y andx’, y’can

be considered to be the coordinates of the same poitite plane when referred to
different axes, and the two representations of theldpable surface cannot be regarded
as truly distinct.

72. Another very interesting question presents itseteheWe just saw that the
envelope of a moving plane can be mapped to the plariee tonverse is also true, and
is any surface that can be mapped to the plane itselénkelope of a moving plane?
That proposition was already assumed by Monge and hiee geometers of his epoch to
be the justification for the nantevelopable surfaciself, which was originally given as
the envelope of a moving plan&)( That is an immediate corollary of the general
propositions that we will develop in what follows. Hewer, at present, we can prove it
by giving a very simple, direct proof that is due to O. ietrf’).

Letx, y, z be the coordinates of a point on the desired surfatedhabe mapped to a
plane, and letr, 5 be those of the corresponding point on the plane. mMust have:

(26) d +dy? + dZ =da? + dB?,

which gives the three equations:
2 2 2
EREIRER
oa oa oa
2 2 2
(27) % + ﬂ + E = 1’
op s op

Ox ox, 0yody, K 0z0z_,
da 0 dadf daof

Differentiate the first two of these equations; enk get:

(*°) See in particular, the chapter on developable surfaceslange’s Application de I'Analyse a la
Géométrie
() Annali di Matematica (2], pp. 61.
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ﬁazx+ ﬂazy+ 0z0°z_
da da’ da da® da da’

%62X+ ﬂazy+ 020°z
0B 0p* 0Bop B 0,3
0x 0°x Loy 0%y L0z 0%z

oa aaaﬁ da dadf Oda aaaﬁ
ox 0°x L9y 9%y L0z 0%z
6,6’ aaaﬁ s aaaﬁ 6,6’ aaaﬁ

(28)

Now, differentiate the last of equations (27); upon takimgdreceding into account, we
will find:

X 0°X L9y 62y 0z0°z
a0 0a 0B 9a 0B’
ox 0°X L9y 62y 0z0°z
03 0p3° 5,35,3 5,35,3

(29)

Upon comparing equations (28) and (29), we will see thatrarst have:

9°x 2%y 9°z
da®> _ da® _ _da?
A = =
*) 9°x 0%y 9°z

0adB dadf  0adf

9°x 9’y 0°z
(B) 0a9B _ dadp _ dadp
9°x 0%’y 0’z

0p° 0p° 0p°

System A) tells us that— ;)x ::Zr g; are functions of the same variable, and sys&m (
establishes that the same thing is true—are{ % E However, as a result of the last
0B 0B’ B

equation (27) or one of equations (29), the two variables uploichwthese two
derivatives depend will be functions of each other, andaxqurently, the six derivatives
of x, y, zwill be functions of the same variable, which we w#note by.

Having said that, if one denotes the derivativez @ivhich is considered to be a
function ofx andy) by p andg thenp andq will be determined by the equations:

92 _ 9% g 9z _,0x Y
da " da oa’ o o 0B’
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which shows thafp and g are functions ot. Hence,p is a function ofg, which
characterizes the enveloping surface of a moving plareeaknows.
The termdevelopablehat is given to those surfaces is then plainly fiesti




CHAPTERIX

SURFACESTHAT ARE DEFINED BY KINEMATIC PROPERTIES.

General helicoids. — Bour’s theorem. — Surfaces of releoldbhat can be mapped to each other. — Surfaces
that are generated by the motion of an invariable curvRolling surfaces. — Maurice Levy’s spiral
surfaces.

73. Surfaces of revolution enjoy an important kinematic pryp&hey do not cease
to slide on themselves when one imagines that a satdtmotion around the axis has
been imposed upon them. That property that they posseigs, -of being able to be
displaced without ceasing to coincide with themselvelse- laelongs to cylinders and a
more extensive class of surfaces, namely, the helicaiigh include cylinders and
surfaces of revolution as limiting cases.

Indeed, consider a solid system that is animated aviiblicoidal motion. We know
that all points of that system describe helices \lign same axis and the same pitch.
Each of those helices is animated with a motion undech it will not cease to slide to
its original position. Thus, if one associates alldesl that meet a given curv€)(then
they will form a surface that can be generated by thedmal motion of the curveQ),
and which will obviously possess the property of slidingtself under the motion. That
surface is general helicoid We shall give the equations that determine it and fook
its line element.

The helices that are described by the permanent helico@#on are defined by the
equations:

X= pcos/, ,
(1) y = psiny,,
z=7+ v,

in which h denotes the common pitch of the helices, divided Aoy I2 one takes, to be
an arbitrary function ofo then the coordinates, y, z will become functions of two
variablesr andv; . The preceding formulas define the most general hetlicBet:

=9 (o),
and calculate the line element of the helicoid. Wd:fi

ds = (L +¢'3) do’+ 2h ¢’ dodw + (0* + h®) d\2.

Upon transforming the right-hand side, one will obtain:
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2 412 h
(2) d§:(1+§fh jdp +(p°+h )[d\“ ¢d,0j .

24+

If one introduces the two new variablas v that are defined by the following
quadratures:

12
du=dp /1+ '0¢h2,
3) P

dv=dy+ he' d,zz
p°+h

then, + h? will become a function afi that we denote by 2 and the line element will
be converted into the form:

(4) d€ =d? + U2 dV2

The curveau = const. are the helices that are traced in thlag) and in turn, the
curvesv = const. are the orthogonal trajectories of theede. One also recognizes that
those trajectories are determined by a simple Gad.

74. The form (4) of the line element is identicalttee one that we have obtained
already for the surfaces of revolution (rél). Moreover, one knows that the latter
surfaces can be considered to be limiting fornthefgeneral helicoids that correspond to
the case in which the common pitch of the helicesoimes zero. One can then foresee
that the helicoids should be capable of being magpesurfaces of revolution. That
beautiful theorem is due to Bour, who establishiéd his “Mémoire sur la déformation
des surfaces,” Journal de 'Ecole Polytechniqu B®er, pp. 82. In order to prove fit,
we will see that the form (4) of the line elemeshich is givena priori, is suited to an
infinitude of helicoids, among which, one alwaysd surfaces of revolution.

Formulas (1), in which one considesgo be a function op, define the most general
helicoid, and formula (2) exhibits the line elemarftthat surface. In order make it
identical to the line element that is given by dqua(4), it will obviously sufficdo set:

2 412
[1+p€fh2jdp2:du2,

2

(p*+ hz)[dv + 2¢+dr':)j =U?dV,

or, upon extracting the square roots:
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2 2

du=+ | dp?+ 299"

(5) p2+h2
PRI VI

p*+h? _\/,02+h2

The first of these formulas shows thais a function ofi. In order for the second one

.. : .U
to be true, it is obviously necessary that the ré\\feﬁ must be equal to a constant,
p-+h

which we denote by 1mh. One will then have:

J P2 +h*>=+mu,

6
(6) v, + hdg _ dv

o +h*> m

Formulas (5) and (6) lead us to the following esldor p, dg, dv; by some simple
eliminations:

_ m’Udu 204 oy I

d¢‘mJ“ A-mU -7
_dv_hdp _dv.  hdu o0 o R

(7) T m uma- Ry Y YT

p =+ MU - 2.

All of the quantities that appear in formulas gt thus expressed as functionsiof
andyv; the proposed question is then resolved completely

75. The helicoids that we just determined depend upanarbitrary parameteis
andm. It is easy to insure that they are not supetpesaln particular, consider the case
in which one has:

U 2 — u2 + a‘2,

and suppose that= 1. The preceding formulas become:

o =Ju+a’-h,
[L2 _ 2
d¢:a—h u*+a® du,

u? + a2 - h?
hdg

u?+a?’

dV1 =dv-
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If one gives all of the values between 0 antb h then one will get a continuous
series of helicoids that can all be mapped to each.otffleey all present forms that are
intermediate to the alysseid and the skew helicoid withirector plane, which are the
extreme terms in that series, and they correspotitetvalues O and of the arbitranyh,
respectively.

76. Return to the general formula (7). If one dets0 then one will obtain surfaces
of revolution that can all be mapped to each other,edisas to general helicoids that are
defined by those equation. They are determined by the vapjessystem:

\%
x=aucos—,
a

(8) y=au sinx,

a
z:.[«ll— aU?dy

in whicha replacesn.

When one varies the paramegeione obtains a continuous sequence of surfaces; we
point out, without proof, the following properties, which wél attach to some general
theorems later on.

If one considers the points that correspond to theesaatues ofu on all of those
surfaces:

1. The product of the principal radii of curvature at éhpsints will be the same for
all surfaces.

2. The tangent to the meridian will also have the esdength for all points
considered when it is prolonged to the point at whichaets the axis.

Later on, we shall point out an application of théelaproperty, and we shall study two
particular examples of it.
77. First set:
U = sinu,

which will give surfaces of revolution that map to theese.
Here, formulas (8) will become:

. v

X=asinucos- ,
a
. .V

(9) y =asinusin—,
a

z:I 1- & co€ udu
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First, suppos@® < 1;u can take on all possible values without the expredsion
ceasing to be real. The porti@CA of the meridian that corresponds to all values of
that are found between O armvill have the form depicted in (Fig. 4).

z
A
C
@) X
Figure 4.

The angles that the meridian makes with the axiS ahdA are finite and become
right angles only whea is equal to 1. The meridian will then become a sarle, and
it will generate the sphere.

The variabless andv, which determine a point on the surface of the sphere &a
very simple significance: They are tbelatitudeandlongitudeof that point. From that
remark, we can easily determine the limits and the fdrtheoportion of the sphere that
can be mapped precisely onto any surface that is geddrgtthe complete revolution of
the branclfOCA of the meridian.

Indeed, for an arbitrary value af formulas (9) show that the angle that the
meridian that passes through the pointy of the surface makes with a fixed meridian
has the value:

(10) Vi =

o<

Consequently, whew varies from O to Z v will increase to 2a. Hence, the surface
that is generated by the complete revolution of theA&® can be mapped to the wedge
of the sphere that is included between two meridiangsldhat make an angle ofz2
One sees that the wedge will become infinitely thinvieny small values dd.

If a is great than unity then the meridian will change fmompletely, because
can take on only values that satisfy the inequality:

1

cou< .
a
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Let Ao be the acute angle that is defined by the formula:

COSAg = 1.
a
z
A
C
B
O X
Figure 5.

One must then makevary betweem, and 77— Ao. The meridian will have the form
that is represented in (Fig. 5). The surface that i®rgésd by that meridian can be
mapped onto the zone of the sphere that is found bettieetwo colatitude circled,
and 71— Ao . However, formula (10) shows us that it will sudfito rotate the meridian
ACB through an angle that is equal tar2a in order to obtain all of the portion of the
surface that maps point-by-point onto the spherical #uattewe just defined.

If a gets larger then that zone will diminish indefinit@lgd reduce to an infinitely-
thin band about the equator of the sphere.

The detailed discussion that we just made had the tolgeof exhibiting one
interesting fact: Consider a piece (of arbitrary fommyreover) of the surface of the
sphere. When the sphere is deformed in such a mannercasmtide successively with
the various surfaces that are defined by formulas () pthvéion of the spherical surface
that we have chosen will displace and deform in ditoous manner while remaining
mappable to its initial position. However, that motionrea be indefinitely continuous
without producing a rip, because we have seen that ipdnemetera increases after
starting from 1 and growing indefinitely then the only pmrtof the sphere that can be
mapped onto the surface that corresponds to those sirgezalues o& will reduce to a
zone that surrounds the equator whose area is as snwalegdeases. Consequently, if
one considers a finite portion of the sphere then th@mof deformation of that portion
will cease to be possible oneehas attained an upper limit, which obviously depends
upon the form of that portion.

78. At least in the example that we just studied, athefsurfaces that are defined by
formulas (9), and for which? is less than or equal to unity, enjoy the property they t
represent the line element completely — i.e., theyalineal points that correspond to all
real values ol andv. That will no longer be true in the following exampl

Suppose that one sets:



86 Lessons on the general theory of surfaces. Book I.

U=¢
in the general formulas.
The line element will have the expression:

(11) ds’ =du? + € dV,

and equations (8) will give us:

(12) x=a ¢ cos, y=aésin, z= j 1-a’e™ du,
a a

here.

These formulas define surfaces that are all equalubedgtone sets:

(13) aé=sing, v=aw
then they will become:

X =sing coy, ,
(14) y =sing siny, ,

z=cosg + log tar%

and no longer contaia. We will then have only one surface, which camizpped to
itself in an infinitude of ways, and the formulasit realize that map are:

aég=¢, v=ayv,

in which u', v’ denote the coordinates of the point that corredpda the pointy, v).
That result is obvious, moreover, from the formelit®f the line element (11). It follows
from that and the properties that we pointed ootval{no.76) that:

1. The meridian can only be therve of equal tangents tractrix.

2. The product of the principal radii of curvatusethe same at all points of the
surface.

One recognizes the properties of the pseudo-spalhesicface that we have just studied
directly, and upon comparing the expressions ferlitie element with the one that was
given (no0.65), one sees that the product of the radii of cumeabf the surface is equal to
-1.

Here, is an important fact that should be mendote order for the values of y, z
that are given by formulas (12) to be real, itesessary that the angteshould be real;
i.e., that one should have:

aetl<1.

No matter what the given value of the paramater there will always be sufficiently
large values ofu that are associated with arbitrary values Worand which do not
correspond to any point of the surfacEonsequently, if it is true that the pseudo-spher
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can be mapped to itself in an infinitude of ways then noihnthe solutions that one
chooses can give a complete geometric representdtiba ne element.

79. The surfaces that we just studied have a common profgdrey can all be
considered to be generated by an invariable curve of a faatoves according to a
given law. We now propose to study the most generdhses that satisfy that
definition.

Consider a curveQ) and a moving system of axes that are coupled invarialbly wi
the curve. Suppose that the position of the curve andhttving axes depends upon a
parametew that plays the role of time, and I&t n, {; p, g, r be the translations and
rotations of the moving system. Those six quantitiesuaretions ofv. Letx, y, zdenote
the coordinates of an arbitrary poMtof the curve with respect to the moving axgsy,
zwill be given functions of a parameter

If the moving axes are displaced, and at the samethienpointM displaces along the
curve in an arbitrary manner then the projections of itfi@itely-small arc that is
described by the point will be:

dx+(&+qgz— ny) dy
(15) dy+ (7 +rx- p2 dv
dz+(J + py- gy dy

Set:

%: ¢ ﬂ:y’, E:z’,
du du du

to abbreviate. The square of the line element of tHamithat is generated by the curve
will be expressed by the sum of the squares of those gimojections; i.e.:

ds? = (X2 + y2+ 2% dd
Xy z
(16) +2| XE+yYn+ 2+ x y z|/| dudv
pqr
+(E+gz— ) +(7+ rx= p3°+({+ py- ox] d¥

80. It will suffice to introduce some conveniently-chosprecial hypotheses into that
formula in order to recover all the preceding results.

Suppose, for example, that one would like to obtairitkeeelement of ruled surfaces.
One takes the-axis of the moving trihedron to be the rectilinear gewerat the surface,
and one describes the origin of the trihedron by an ortleddoajectory of the generator.
That will give the conditions:

x=y=0, z=u, (=0,

and in turn, formula (16) will reduce to the following one:
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(17) ds’ =duf + [(€+qu)® + (7 - pY’] V2.
If one would like to express the idea that the surfacgevelopable then one must

consider the projections (15) of the arc that is desdrlipe an arbitrary point of the
surface. Here, they become:

(+qudv, (7-pydy, du
The tangent plane to the porw u will then have the equation:

_¢+qu
n-p

< | <
[

with respect to the moving axes.
In order for the same thing to be true at all pointa gknerator, it is necessary that
one must have:

i.e., the coefficient otV in formula (17) should be a perfect square. That igehalt
that was established already (66).

81. Now, consider the new case in which the motiorhefrhoving curve@) reduces
to a translation. One must then set:
p=g=r=0
in formula (16), and consequently:

(18) d = (X2 +y?+Z2)di +2 X E+yn+ZQ dudv+t (E2+ 7 + 7P dV.
One will arrive at an identical result by the follogidirect method: Let:
x=U, y = Uy, z=U;

be the equations that determine the curve with respetetmbving axes, in whicb,

U1, U, denote functions of the same parameteiSuppose that the fixed axes have been
chosen to be parallel to the moving axes, an¥,|&f;, V., denote the coordinates of the
origin of the moving axes with respect to the fixed akXe3/;, V. will be functions of a
parameter. The coordinates of an arbitrary point of the desirethsarwith respect to
the fixed axes will obviously be the following expressions

X=U+V,
(19) Y=U+Y,
Z=U,+V,
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The symmetry of these formulas shows us immediatedy the surface can be
generated in two different ways by the translation ofresariable curve, and that the
coordinate curves of each of the two systemsa(id ¢) are deduced from each other by
a simple motion of translation.

82. One can further interpret formulas (19) in the follegvmanner: Consider the
two curves that are defined by the equations:

X =2U, y = 2Uq, z=2U;,
and
X=2V, y = 2V, z=2N,.

The locus of the midpoints of all the chords that @ipoint of the first one to a point
of the second is the surface in question. That definitidmch is due to Lie, exhibits the
double mode of generation of the surface quite nicel\suffices to associate all of the
chords that pass through either a point of the firstecarva point of the second one in
order to recover the two systems of invariable generators.

Suppose, to fix ideas, that the functidnsV are real, and that one has taken arc
lengths on the two curves:

U, y= Ui, z=Uo>,
V, y= Vl, Z= V2

X

X

to be the parametetsv. The line element of the surface will take the form:
dg =du +dv? + 2 UV + UV, +U.V,))du dv

If one then sets:

a+pf

u= ) a=u+ty,

B

N

a

\'

, L=u-V

N ‘

then the expression for the line element will become:

4 = 1+U'V'+U V/+ UV, da? + 1-U'V'-UV/-U,V,

2
(20) > : dg2.

That formula will exhibit a system of rectangular atinates on the surface, because
the line element will reduce to the form:

(21) ds’ = A do? + C dB?,
and similarly, with the condition:
AP +C*=1.
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83. We have to further mention a geometric propertyhefdurfaces that we consider
that is completely general. However, in order to pribveve must begin by recalling a
theorem that relates to conjugate tangents.

We say that two families of lines that are tracecdh@urface areonjugatewhen the
tangents to the lines of the two families that passugh an arbitrary point of the surface
are conjugate (with Dupin’s definition). Here is how cae express that relation:

Let u andv be the two parameters of the two families of curaes, suppose that one
knows the expressions for the rectilinear coordin&tgs z of an arbitrary point of the
surface as functions afandv. If one letsX, Y, Z denote the current coordinates then the
equation of the tangent plane to the surface at the Pbfrty, 2) will be:

(22) Z-z=p(X-=X+q (Y-},

in which p andq denote the derivatives afwith respect tx andy, according to custom.
Suppose that one displaces along the Vimeconst. From the theory of envelopes, the
intersection of the tangent plane with its infinitelpse position will be defined by
equation (22), combined with the one that one obtains ftooy differentiation with
respect tay; i.e.:
_ 0z _0p N oq
ou au(x ) au(Y y-p

0x ay
ou qau ’

or, upon suppressing the terms that cancel:
(23) @(X—@+a—q(Y—y:0.
ou ou

In order to express the idea that the curvgsa(d ¢) are conjugate, one must write
down that equations (22), (23) are verified when one replcex Y — y Z — zwith

ox Oy 9 in them. That will give the two equations:

ov ' ov v
0z _ 0dx 0y
—=pP—*tq=,
(24) ov ov oV
9pOx 0qoy_.
duov duodv

The first of them is always satisfied, because gresses the obvious fact that the
tangent to the curve = const. is found in the tangent plane. As forgéeond one, it is
identical to the following one:

22 ) p K (2
Ju\ ov 0v oudv JdWw\
or, more simply:
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9%z 9°x 0%y _
-p -q =0
Juov Judov o0wv

(25)
If one now remarks that andq are determined by the equations:
(26) - = P —*t04 -, = P—*t0a=

then one can eliminageandq from equations (25) and (26), and one will be led to the
equation:

0°x  9x 90X
dudv du av
27) 0y Oy dy|_g
dudv du dv
0°z 0z 0z
dudv du AV

which is symmetric with respect to the three coordinat@fat relation— which is,
moreover, necessaryis also sufficient, because it expresses the iddathle values ob
and g satisfy equations (25) and (26), and from formulas (P6and q will be the
derivatives oz when it is considered to be a functiorxandy.

84. One can formulate the condition that we found inffarént form. Equation (27)
is obviously the result of the elimination AfandB from the three equations:

Juov Ej R/

2
0°X aX—BaX:O,

2
(28) 9y AW g%
ouov Ju ov
2
0’z _,02_poz_
ouov Ju ov

We then obtain the following proposition:

The necessary and sufficient condition for the liugsnd (V) to be conjugate is that
the expressions for the three rectangular coordinates as functionaraf v must satisfy
the same linear equation:

(29)

2
a e = A%— B%,
Juov ou ov
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in which A, B denote arbitrary functions of u and v.

That proposition plays a very important role in theary of surfaces, and we shall
have to return to it in order to complete and generilize

If we apply it to the surfaces that we are dealing wi#n we will see immediately
that the three coordinates will satisfy the equation:

2
(30) 09 _o,
ouov

and consequently the two systems of invariable curvegydrarate the surface here will
be conjugate lines. Moreover, geometry also permitstonebtain that result very
simply.

In fact, consider the two families of curvag @nd ¢). Under the translation of a
curve (1), each pointM of that curve will describe a curve)( On the other hand, the
tangent to the curveul at M will keep an invariable direction during the translatidn.
will then follow that the developable that is circunised by the surface at all points of
the curve ¥) that is described by the poikt will be the cylinder that is generated by the
tangent to the curveul at M. That simple remark will suffice to prove that ttveo
families of curvesy) and {) form a conjugate system, and one sees, moreover, that

The developables that are circumscribed by the surface at all poinoiseodf those
curves are cylinders that are generated by the tangents to the cutive other family
that are drawn from the point where they meet the curve consi¢f&ed

85. Finally, we treat the case in which the moving cur@ that generates the
surface is a plane, and in which the velocities of falisopoints are normal to the plane.
We suppose that one has taken the plane of the curvethe kg plane of the moving
trihedron. One must then introduce the hypotheses:

(31) z=0, {(=n=r=0
into formulas (15) and (16).
If one assumes, moreover, that one has choserbe the arc length of the curvg)(
then one will again have:
X'2 +y;2 — 1’
and the expression for the line element will become:

(32) d€ =diP + (¢ +py — g3 dVA.

As for the projections of the arc that is describedahyarbitrary pointM of the
surface, from formulas (15), they will be:

(*®) S. LIE, “Beitrage sur Theorie der Minimalflachen,’aM. Ann.14, pp. 332-337.
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dx, dy, ({+py—gjydv.

The normal to the surface will be in the plane ef¢hrve, and that plane will roll on
a certain developable surface.

One recognizes the surfaces that were studied by Morgdetailed mannet).

The lines of curvature of one of the systems arevéin®us positions of the moving
curve; those of the second system are the trajeciribe various points of that curve.

86. In particular, consider the case in which the pldrde moving curve rolls on a
cylinder. If we suppose that theaxis of the moving trihedron has been taken to be
parallel to the generators of the cylinder then thatiamt of the system will take place
around a parallel to theaxis, and one will have:

g=0.

The line element that is given by formula (32) will tdke form:

2
d€ = di? + [£+yj p? dv?,
p
or, upon changing the notations:
(33) ds’ =du? + (U - V)2 dV,

in whichU andV denote functions that depend upoandyv, respectively.

One can give rolling surfaces another definition thaginspler than the preceding
one, in some respects.

When the plane of the curv€)(rolls on the cylinder, the trajectories of its wars
points will obviously be planar curves whose planesparallel to cross sections of the
cylinder, and those trajectories will be normal to gtene of the curveQ) at each
instant, moreover. From this, it is obvious that thmgwjections onto the plane of the
cross section of the cylinder will constitute a famifyparallel plane curves that admit
the cross section of the cylinder for their common @gable. The following mode of
generating these rolling surfaces will result from that:

One gives a family of parallel curves in a planikone imparts a finite translation to
each of those curves that is normal to the plare\aries according to a given law when
one passes from one curve to the other one thenahepositions of all of those curves
will define the rolling surface.

87. Upon appealing to that definition, one can show thatform (33) of the line
element always agrees with an infinitude of rolling stefa

(*) MONGE, Application de I'Analyse & la GéométriB" ed., pp. 322: “De la surface courbe dont
toutes les normales sont tangentes & une méme surfatepip@ble quelconque.”
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Indeed, write down the expression isf in the form:
dg =dU?+ (U=-V)?dV* + (1 —U’?) d~.

The first two terms, taken in isolation, constittihe line element of a developable
surface, and we have seen (). that upon setting:

x=U cosv+J' V sinvdv
(34)
y:Usinv—J' V cosv dv

one will have:

d +dy* =dU? + (U = W)? d\2.

The surface that is defined by formulas (34), combined thétollowing one:
(34Y z= j 1-U"? du,

will then have the line element that is expressed oydda (33).

If one remarks that this line element will not chang&®srm when one replaceswith
av then one will recognize the possibility of introducing abitrary constant into the
preceding formulas, and one will find, upon repeating theutations, that:

\Y; .V
x=aUcos—+I V sin— dv
a a

(35) y=au sinx—.[ \% cos—v dv.
a a

zzj 1-aU?du

These formulas define a family of rolling surfaces et be mapped to each other
completely {°).

88. The kinematic method that we just applied to numergamples extends to the
case in which one considers a curve that varies in &rthe same time that it is carried
along by the motion of the moving axes. Indeed, it wilfise to regard, y, z, no longer
as functions of only the variable but as functions ofi andv in formulas (15), which
give the projections of the displacement onto the ngpaixes.

For example, we propose to apply that method to thamasfthat are generated by
the motion of a circle. The plane of that circlél wnvelop a developable surface. We
study the motion of the trihedron that is defined by #mgént, the principal normal, and

(*% BOUR, “Théorie de la déformation des surfaces,” Jduted’Ecole Polytechnique, 39 etter, pp.
89.
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the binormal at a point on the edge of regression ofdbeaelopable. Upon taking the
independent variable to be the arc length of the cuneewilhhave (no4):

¢=1, n=0, ¢

= O,
p=- E, q= 0, r = 1
r Y
here, in whicho andr are the radii of curvature and torsion of the eur\rhe projections
of the displacement of a point whose coordinatexay, z relative to the moving axes
will have the expressions:
dx+ (1 —ry) dy,
dy+ (rx — p2 dv,
dz+ py dy

in whichv denotes the arc length of the edge of regression.
The circle that generates the surface is fountharxy-plane, so one can express the
coordinates of one of its points by the formulas:

X =a+Rcosg,
y=b+Rsing,
z=0,

in which a, b, R are functions o, and in whichg is the variable that determines a point
on each circle. Upon substituting those values fgy z, one will have:

- Rsingdg + (@ +1—br+Rcosg—rR sing) dv,
Rcosgdg + (b +ra + R’sing +rR cos¢g) dv,
(pb+ pRsin ¢) dv

for the projections of the displacement, and the& sdi the squares of those projections
will give the line element of the surface in thenfio*):

d¥ =Rdg? + 2R[rR + (b’ +ra) cosg — @ — br+ 1) sing] du dv
+ [(pb+ pRsing) + (@ + 1 —br + R’cos¢ —IR sin ¢)?
+ (' +ra+R’sing +rR cosg)?] dv.

89. To conclude this chapter in which we have studied, above all, surfaces that
enjoy kinematic properties we shall give the definition of a class of surfat¢kat are
consistent with the preceding viewpoint, and whigre first studied by Maurice Lévy

(22).

(® Surfaces with a circular generator have been studiedthedsy Demartres [Annales de I'Ecole
Normale (3)2, pp. 123].

(** MAURICE LEVY, “Sur le développement des surfaces dongitént linéaire est exprimable par
une fonction homogéne,” Comptes ren8udspp. 788.
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Consider a system that is displaced, but at the smmeevaries in magnitude while
remaining similar to itself, and propose to seek the lamttie velocities at all of its
points at an arbitrary instant. LBg, P; be two infinitely-close positions. Construct the
figure B, which is homothetic td®,, by taking the origin of the coordinates to be the

center of homothety, while the ratio of homothetgush thatR' is equal tdP,. One can
pass fronP, to P, by:
1. Aninfinitely-small displacement that tak@sto B’ .

2. A homothetic transformation that has the origin ifs center of homothety and
transformsk to P;.

It follows from this that the velocities of all pogbf the system will be the resultant of
the ones that are produced in the displacement arahdwethat are due to the homothety
transformation. The former will have the well-knowxpressions:

a+qz-ry p[+rx—pz y+py-ogx

As for the ones that are due to the homothetic tamsition, since they have the
effect of reducing the coordinates by the same ratio, whléjave the expression:

hx, hy, hz

In summary, the components of the velocities of antpof the system under the
motion considered will have the values:

V., =a+hx+qz ry
(36) V, = B+hy+ rx- pz
V, =y+hz+ py- gx

If we let k denote the ratio of similitude of the moving system taikeits present
position to the same system taken in a well-definedipaghen we will obviously have:

(37) h=-22

As long as the parametieiis not zero — i.e., as long as the system varies gnituale
— one can transport the origin of coordinates at a paich shat the termsr, S5, y
disappear from formulas (36). The interpretation oséhformulas will then exhibit the
following result: The velocities are the same as & blody turned around a line and, at
the same time, experienced a homothetic transformatith respect to a point of that
line. If one chooses the axis of rotation to be the maxis then formulas (36) will
simplify and reduce to the following form:
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V, = hx-ry,
(38) V, = hy+rx
V,=hz

90. Let us study the case in which the axis of rotationthadcenter of homothety
remain fixed during all of the motion, while the paramgteandr remain constant. The
successive positions of a well-defined point of the movirsgesy will be defined by the
differential equations:

%:hx_ry, ﬂ:hy+rx, d—Z:hZ
dt dt dt

Upon integrating them, one will have:
z=7z¢",
(39) x = r,e" cosg, + rt),
y=re"sin(w, + rt).
Each point of the system will describe a curve th&raced on a cone of revolution:

X2+y2

z

= const.

that has the origin for its summit and the axigaghtion for its axis. The projection of
the trajectory onto thay-plane will be a logarithmic spiral that has thegor of the
coordinates for its pole. If one considers theaskpiral that is described by the point to
belong to the moving system and vary in magnitudté w then it will slide on itself
during all of the motion in precisely the same vaaythe helices that are described by the
various points of an invariable system under tHedieal motion.

As a result, the surfaces that admit the curvasate defined by the formulas (39) for
their generators are obviously the analogues ofh#leoidal surfaces and surfaces of
revolution in the theory that we are addressing.

Takero, ap, 7o to be arbitrary functions of a parameter Formulas (39), which give
expressions fox, y, z as functions of and g, define the surface that we have proposed to
study. If we seek its line element then we willdfia result of the form:

(40) ds’ =™ (A dt® — 2B dt &9+ C d6?),

in whichA, B, C are functions oBthat are defined by the equations:
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A=r’h?+rir7+h%z}
(41) B=hz 2+ hy{+ rea,
C=r’a+z7+r1?2

We shall transform that expression for the lireednt. Set:

dt+2do = Lavy,
A%

which will give, upon integrating:
%

t+j7'ide:h

The line element will become:
ds’ = (A dV? + C dg?),

in whichA" andC' are also functions of. Finally, replaced with the variableu that is
defined by the relation:
u=[JcC’ dg,

in which A is a functionJ 2 of u, and we will have:
(42) ds’ =€ (df + U 2 dv?)
for the definitive form of the line element.

We call the surfaces that we just definguiral surfaces. They agree with the
logarithmic spiral in one essential property thegults from their definition: Like that

curve, they can be enlarged by an arbitrary ratibomt ceasing to be superposable with

themselves.

Maurice Lévy showed that Bour’s theorem extendthtse surfaces, so there is an
infinitude of them that admit the same line elemanid consequently can be mapped to
each other. One establishes that proposition talauilation that we shall omit, because

it would be entirely analogous to the one that eeetbped in the case of the helicoids.



