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PREFACE 
 

_______ 
 
 

The first part of the book that I publish today is a summary of the lectures that I gave at 
the Sorbonne during the Winters of 1882 and 1885.  I have begun my exposition of the 
Theory of surfaces with the single objective of finding new applications for the theory of 
partial differential equations, which is vast and little known.  I was planning to devote 
barely a year to teaching it, but the interest that the subject presented, and also the 
demands of my listeners, obliged me to impose the limits that I originally established. 
 The first volume is composed of three distinct parts:  The first book treats some 
applications of the theory of relative motion to geometry.  I will have to return to the 
propositions that are presented in it in a later part in which the beautiful formulas of 
Codazzi will be studied in all the necessary detail.  The second book contains the study of 
the different systems of curvilinear coordinates.  In it, I successively consider the systems 
of conjugate lines, whose study has been neglected too often, the asymptotic lines, the 
lines of curvature, and the orthogonal and isothermal systems. 
 The volume concludes with the theory of minimal surfaces, in which I benefit from 
the quite remarkable work that has been published by some eminent geometers in recent 
years; it defines almost half of this volume. Except for the last three chapters, which were 
re-edited at the time of printing, these lectures were taught with two different repetitions 
in 1882 and 1885.  One or two important questions have been omitted.  They would find 
a better place in what follows after I have given the general propositions to which one can 
attach them. 
 Consistent with its usual practice, Gauthier-Villars devoted all of its effort to the 
printing of this book after receiving it.  They receive my most enthusiastic 
acknowledgements here.  I must also extend them to my listeners, who desired to see 
these lectures published, and more especially, to one of our young geometers – namely, 
G. Koenigs, Maître de Conférences à l’École Normale – who kindly assisted me in the 
revision of the proofs. 
 
 14 June 1887. 
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 1.  Consider a solid body or invariable system that moves around a fixed point.   One 
knows that at an arbitrary instant the velocities of the various points of the system are the 
same as if they turned around a line that passes through the fixed point, which is a line 
that has been given the name of instantaneous axis of rotation.  In mechanics, one proves 
that rotations, like forces, can be represented geometrically by lines and can be composed 
or decomposed according to the same law; i.e., if one composes or decomposes the 
rotations like the forces then the velocity that is implied by the resulting rotation at an 
arbitrary point is the resultant of the velocities that will be communicated to that point by 
each of the component rotations in isolation.  One also knows that if one considers a 
point that moves with respect to the invariable system then the absolute velocity of that 
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point is the resultant of its relative velocity and its driven velocity (vitesse 
d’entraînement).  One applies that name to the velocity that a point will have that 
coincides with the moving point at the instant considered, but remains invariably linked 
to the solid system. 
 It results from these propositions that one can construct the velocities of all points of 
the invariable system at an arbitrary instant once one has the magnitude and direction of 
the rotation at that instant.  It seems natural to determine that rotation at each instant by 
its components relative to three rectangular axes that are fixed in space and have the fixed 
point of the solid system for their origin.  In reality, the most important elements (which 
are the only ones that most frequently permit a deeper study of motion) are the 
components of the rotation relative to the moving axes that is carried by the motion of the 
invariable system.  We quickly recall the method that is employed in mechanics. 
 Let OX, OY, OZ be three fixed axes that pass through the fixed point O of the system, 
and let Ox, Oy, Oz be three rectangular axes that are coupled invariably with the moving 
system.  We suppose that the two systems of axes have the same disposition – i.e., that 
they can be made to coincide.  Furthermore, we suppose that the sense of the axes has 
been chosen in such manner that the rotation around OZ that displaces OX to OY will be 
represented by a line that is directed along the positive half of OZ.  We determine the 
moving axes by the cosines of the angle that they form with the fixed axes.  In order to do 
that, we write the table: 

 x y z 

X a b c 

Y a′ b′ c′ 
Z a″ b″ c″ 

 
which shows the cosines of the angles that each of the fixed axes defined with the moving 
axes. 
 One has the relations: 
 

(1)   

2 2 2

2 2 2

1, 0,

1, 0,

, 1,

a b c aa bb cc

a a a ab a b a c

a b c

a b c c b a b c

a b c




 ′ ′ ′+ + = + + =


′ ′′ ′ ′ ′′ ′′+ + = + + =



′ ′′ ′ ′′ ′ ′ ′ = − =
 ′′ ′′ ′′

 

 
to which one must add the ones that one obtains by performing circular permutations of 
the symbols or their indices.  Further recall that the nine cosines can be expressed in 
terms of the three Euler angles by means of the formulas (1): 

                                                
 (1) In these formulas, ψ denotes the angle between OX and the common intersection ON of the xy-plane 
with the XY-plane, and ϕ denotes the angle between Ox and the same line ON.  Finally, θ is the angle 
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(2)   

cos sin sin cos cos ,

cos sin cos cos sin ,

sin sin ,

cos cos sin sin cos ,

cos cos cos sin sin ,

sin cos ,

sin cos ,

sin cos ,

cos .

a

b

c

a

b

c

a

b

c

θ ϕ ψ ϕ ψ
θ ψ ϕ ψ ϕ
θ ψ
θ ψ ϕ ψ ϕ
θ ψ ϕ ψ ϕ
θ ψ
θ ψ
θ ϕ
θ

= +
 = −
 =
 ′ = −
 ′ = +
 ′ =


′′ = −
 ′′ = −
 ′′ =

 

 
Now, denote the components of the rotation at the instant t with respect to the moving 
axes by p, q, r.  Consider a point whose coordinates are x, y, z relative to the moving axes 
and look for the components of its absolute velocity with respect to the same axes.  Upon 
writing that the absolute velocity is the resultant of the relative velocity and the ones that 
are due to the three rotations p, q, r, one will obtain the following expressions for those 
components: 

(3)     

,

,

,

x

y

z

dx
V qz ry

dt
dy

V rx pz
dt
dz

V py qx
dt

 = − −

 = + −

 = + −


 

 
which we will often make use of. 
 We shall now show how one can deduce the expressions for p, q, r as functions of the 
nine cosines and their derivatives with respect to time.  In order to do that, consider the 
point that is taken on the OX axis at a distance of 1.  That point has the relative 
coordinates (i.e., relative to the moving axes) a, b, c.  Upon expressing the idea that its 
velocity is zero and applying formulas (3), we will obtain the fundamental equations: 
 

(4)     

,

,

,

da
br cq

dt
db

cp ar
dt
dc

aq bp
dt

 = −

 = −

 = −


 

 

                                                                                                                                            
between Oz and OZ.  The angle ϕ measures the magnitude of the rotation that one must impart to ON in the 
xy-plane, and in the direct sense, in order to make ON coincide with Ox.  One can then suppose that it 
varies from 0 to 180o.  Similarly, ψ measures the rotation that one must impart to ON in the XY-plane – 
always in the direct sense – in order to make that line coincide with OX; that angle will vary from 0 to 360o. 
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to which, one can add the following ones: 
 

(4′)     

,

,

,

da
b r c q

dt
db

c p a r
dt
dc

a q b p
dt

′ ′ ′= −
 ′ ′ ′= −


′ ′ ′= −


 

 

(4″)    

,

,

,

da
b r c q

dt
db

c p a r
dt
dc

a q b p
dt

′′ ′′ ′′= −
 ′′ ′′ ′′= −


′′ ′′ ′′= −


 

 
which one proves in the same manner. 
 One deduces the following formulas from that: 
 

(5)     

,

,

,

p dt c db b dc

q dt a dc c da

r dt b da a db

 = = −
 = = −
 = = −

∑ ∑
∑ ∑
∑ ∑

 

 
which give the desired values of the rotation.  If one replaces the cosines with their 
expressions as functions of the Euler angles then one will have the system: 
 

(6)     

sin sin cos ,

cos sin sin ,

cos ,

d d
p

dt dt
d d

q
dt dt

d d
r

dt dt

ψ θϕ θ ϕ

ψ θϕ θ ϕ

ϕ ψθ

 = −

 = +

 = −


 

 
which is easy to prove geometrically.  Upon solving that system for the derivatives of the 
angles, one will find that: 

(7)     

sin cos ,

sin cos sin ,

cot ( sin cos ).

d
q p

dt
d

q p
dt
d

r p q
dt

θ ϕ ϕ

ψθ ϕ ϕ

ϕ θ ϕ ϕ

 = −

 = +

 = + +
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 2. Having recalled all of that, we shall study the following problem, which is 
fundamental in our theory: Determine the motion completely when one is given p, q, r as 
functions of time t. 
 It is clear that the question will be solved if one has expressions for the nine cosines 
as functions of time.  Now, it results immediately from formulas (4) that if one separates 
the cosines into three groups that are composed of a, b, c; a′, b′, c′; a″, b″, c″, 
respectively, then the three cosines in each group will be the simultaneous solutions of 
the system: 

(8)     

,

,

.

d
r q

dt
d

p r
dt
d

q p
dt

α β γ

β γ α

γ α β

 = −

 = −

 = −


 

 
 All of the difficulty then reduces to the integration of that system.  The detailed study 
of that integration will be the subject of the following chapter.  For the moment, we shall 
be content to point out the following properties of system (8): 
 First, as a result of its linear form, it will always admit one and only one solution for 
which the initial values of α, β, γ are given. 
 In the second place, if α, β, γ ; α′, β′, γ′  denote two systems of arbitrary solutions 
then the expressions: 
 

α 2 + β 2 + γ 2,  αα′ + ββ′ + γγ′, α′ 2 + β′ 2 + γ′ 2 
 

will be constants.  One easily recognizes that by differentiating them and taking equations 
(8) into account. 
 Those properties permit us to establish that there will always be an infinitude of 
motions under which those three quantities will be the components of the rotation relative 
to the moving axes, no matter what the expressions for p, q, r are as functions of time. 
 Indeed, consider a tri-rectangular trihedron (T0) with the same sense as the trihedron 
OXYZ that is formed from the fixed axes, and let a0, b0, c0, … be the direction cosines of 
OX, OY, OZ with respect to the axes of (T0).  Determine the three systems of solutions of 
equations (8), a, b, c; a′, b′, c′; a″, b″, c″, which correspond to the following initial values 
a0, b0, c0 ; 0a′ , 0b′ , 0c′ ; 0a′′ , 0b′′ , 0c′′ . 
 From the properties of system (8), functions such as: 
 

α 2 + β 2 + γ 2,  αα′ + ββ′ + γγ′, … 
 

that have the initial values 1 or 0 and must remain constant will not cease to keep their 
initial values.  Consequently, at each instant, the nine quantities a, a′, a″, … will be the 
direction cosines of the three rectangular lines that are defined by a moving trihedron (T) 
whose initial position will be (T0).  Since that initial position can be chosen at will, one 
sees that there exists an infinitude of motions for which p, q, r are given functions of 
time. 
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 All of those motions, which depend upon three arbitrary constants, basically depend 
upon just one, but when they are referred to different fixed axes. 
 Indeed, consider the position that is occupied by the moving trihedron at the initial 
instant in any of them, and choose the fixed system of axes to which one refers the 
motion of the moving system.  The initial values of the nine cosines are then 1 or 0, so 
the solution that corresponds to those numerical values will contain no arbitrary constant, 
and will then be well-defined. 
 It results from the preceding that when one has obtained one arbitrary solution of the 
problem – i.e., a system of values for the nine cosines – if one would like to get the most 
general solution then it would suffice to change the fixed axes, which will introduce three 
constants, and then suppose that the new formulas are referred to the old axes. 
 
 
 3. We shall now study the case in which the moving system no longer has a fixed 
point.  One must then add the components of the velocity of the origin O of the moving 
axes, which are always taken relative to the moving axes Ox, Oy, Oz, to the components 
p, q, r ; denote them by ξ, η, ζ.  When combined with the three rotations, they will 
intervene in all questions that relate to the study of motion.  Suppose that one knows the 
expressions for those six quantities as functions of time, and try to find how one can 
determine the motion of the moving trihedron.  Let (T) denote that moving trihedron, and 
let (T′ ) be the trihedron whose origin is an arbitrary fixed point and whose axes are 
parallel to those of (T).  At an arbitrary instant, the two trihedra are animated with the 
same rotation, and consequently, the nine cosines will be determined by means of p, q, r 
as in the preceding case.  Moreover, if X0, Y0, Z0 denote the coordinates of the moving 
origin O with respect to the fixed axes then one will obviously have: 
 

(9)     

0

0

0

,

,

dX
a b c

dt
dY

a b c
dt

dZ
a b c

dt

ξ η ζ

ξ η ζ

ξ η ζ

 = + +

 ′ ′ ′= + +

 ′′ ′′ ′′= + +


 

 
upon projecting the velocity of that origin onto the fixed axes. 
 When one has determined the cosines, these formulas will give one X0, Y0, Z0 by 
simple quadratures, which will introduce three new constants. 
 Here again, all of the possible motions that correspond to different values of the six 
arbitrary constants reduce to one and the same motion that is observed with respect to 
different axes, because the integration introduces no arbitrary constant and gives only one 
motion if one supposes that the fixed axes coincide with the initial position of the moving 
axes. 
 In regard to the case that we just considered, I recall that if x, y, z are the coordinates 
of a point relative to the moving axes then the absolute velocity of that point will have the 
three quantities: 
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(10)    

,

,

x

y

z

dx
V qz ry

dt
dy

V rx pz
dt
dz

V py qx
dt

ξ

η

ζ

 = + − +

 = + − +

 = + − +


 

 
for its components relative to those same axes. 
 For example, consider the points that are invariably linked with the moving system 
and look for the ones for which the velocity is a minimum.  One must determine the 
values of x, y, z that give a minimum to the sum: 
 

(ξ + qz – ry)2 + (η + rx – pz)2 + (ζ + py – qx)2. 
 

 Upon equating the derivatives with respect to x, y, and z to zero, one will obtain three 
equations that reduce to the following two: 
 

qz ry

p

ξ + −
= 

rx pz

q

η + −
= 

py qx

r

ζ + −
. 

 
 These two equations represent a line – viz., the central axis of the motion at the 
instant considered.  One easily finds that the common value of the preceding ratios is: 
 

2 2 2

p q r

p q r

ξ η ζ+ +
+ +

, 

which gives: 

2 2 2

p q r

p q r

ξ η ζ+ +
+ +

 

 
for the minimum value of the velocity. 
 The necessary and sufficient condition for the motion of the system to reduce to a 
simple rotation is then the following one: 
 
     ξ p + η q + ζ r = 0, 
 
and the axis of rotation in that case will be represented by the three equations: 
 

(11)    

0,

0,

0,

qz ry

rx pz

py qx

ξ
η
ζ

+ − =
 + − =
 + − =

 

 
which indeed characterize the points whose velocity is zero, as formulas (10) show. 
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 4. In order to now point out an application of the preceding proposition, consider an 
arbitrary skew curve and study the motion of the trihedron (T) that is defined by the 
tangent, which we take to be the x-axis, the principal normal, which we take to be the y-
axis, when we suppose that it is, for example, directed towards the center of curvature, 
and the binormal, which will be the z-axis, whose sense is defined by the conventions that 
were made already. 
 Take the arc length s to be the independent variable, or – what amounts to the same 
thing – suppose that: 

ds

dt
 = 1. 

 Here, one has: 
ξ = 1, η = 0, ζ = 0, 

 
and if x, y, z denote the coordinates with respect to fixed axes of the point of the curve 
that is the summit of the trihedron then: 
 

a = 
dx

ds
, a′ = 

dy

ds
, a″ = 

dz

ds
. 

 
 The general formulas (4) give us: 
 
(12)  da = (br – cq) ds, db = (cp – ar) ds, dc = (aq – bp) ds. 
 
 We express the idea that the binormal – whose direction cosines are c, c′, c″ – is 
perpendicular to the osculating plane; i.e., to the two lines whose direction cosines are a, 
a′, a, and a + da, a′ + da′, a″ + da″.  One of the equations will be satisfied by itself, and 
the other one will give us the condition: 
 

∑ c da = q ds = 0. 
 

 The component q must be zero, and formulas (12) will reduce to the following ones: 
 

(13)   
da

ds
 = br, 

db

ds
 = cp − ar,  

dc

ds
 = − bp. 

 
It is easy to obtain the geometric significance of the rotations p and r. 
 In fact, draw parallels to the edges of the trihedron (T) through a fixed point.  We will 
obtain a trihedron (T1) whose rotation is the same at an arbitrary instant as that of the 
trihedron (T).  A point that is situated at the distance 1 from the x-axis of the trihedron 
(T1) will have a velocity whose components are, from formulas (3): 
 

0, r, 0, 
 

and consequently that point will describe the path r ds, or – what amounts to the same 
thing – the tangent to the curve will turn through the angle r ds when its point of contact 
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describes the arc ds.  Thus, the component r will be equal to the first curvature of the 
curve. 
 Upon taking a point that is situated at the distance 1 on the z-axis of the trihedron 
(T1), one will likewise see that the components of its velocity will be: 
 

0, − p,    0, 
 
and consequently, the osculating plane will turn through the angle – p ds when the point 
of the curve describes the arc ds.  In other words, − p will be the torsion of the curve.  
One can then set: 

(14)     r = 
1

ρ
,  p = − 1

τ
, 

 
in which ρ and τ denote the radii of curvature and torsion, and formulas (13) become: 
 

(15)   
da

ds
= 

b

ρ
, 

dc

ds
= 

b

τ
, 

db

ds
= − c a

τ ρ
− . 

 
 One recognizes the formulas of J.-A. Serret, which play a very important role in the 
theory of skew curves. 
 
 
 5.  The method that we just established exhibits some propositions that are easy to 
prove in a different way, and which one makes continual use of in geometric proofs. 
 If one is given the skew curve (C), and one draws a parallel to the tangent of that 
curve that has a length equal to 1 through the origin then the extremity of that parallel 
will describe a spherical curve that we – with P. Serret – call the spherical indicatrix of 
the skew curve.  It results from the preceding that the tangent to the spherical indicatrix 
will be parallel to the principal normal of the curve (C), because the point that describes 
the indicatrix is the one that is situated at a distance 1 on the x-axis of the trihedron (T1), 
and we have seen that the velocity of that point is equal to 1 / ρ and parallel to the 
principal normal. 
 Similarly, if we draw a line of length 1 through the origin that is parallel to the 
binormal then the extremity of that line will be the point at a distance 1 on the z-axis of 
the trihedron (T1).  That point will have a velocity that is equal to 1 / τ and which will be 
again parallel to the principal normal.  The spherical curve that it describes will be 
parallel to the indicatrix.  One obtains it by measuring out a length that is equal to one 
quadrant on the great circles that are normal to the indicatrix in a convenient sense; in 
other words, it will be the polar curve to the spherical indicatrix. 
 
 
 6.  We further point out the following theorem, which is very important (2): 

                                                
 (2) On the subject of this theorem, see: 
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 Any curve for which the ratio ρ / τ is constant is a helix that is traced on an arbitrary 
cylinder. 
 
 Indeed, if we consider the motion of the trihedron (T1) that is parallel to (T) then we 
will know that since the component q is zero, the instantaneous axis of rotation will 
always be in the xz-plane.  When the ratio ρ / τ or – p / r remains constant, that 
instantaneous axis will be fixed with respect to the moving axes.  Now, one knows that 
when the instantaneous axis occupies an invariable position with respect to the moving 
system, it will remain fixed in space.  The trihedron (T1) will then turn around a fixed 
axis.  Its x-axis, which is parallel to the tangent to the curve, will make a constant angle 
with that fixed line and generate a cone of revolution.  One recognizes the characteristic 
property of the helix that is traced on an arbitrary cylinder. 
 When ρ and τ are constants, that helix will be traced on a cylinder of revolution.  
Indeed, in that case, the motion of the trihedron (T) will present a translation and an 
invariable rotation at each instant.  All points of the moving system, and in particular, the 
origin of the trihedron, will then describe helices that are traced on right circular 
cylinders. 
 
 
 7. Three of the six quantities ξ, …, p, … will be zero under the motion that we just 
studied.  We shall show that, conversely, if one has: 
 

η = ζ = q = 0 
 
then the origin of that trihedron will describe a curve that is tangent to the x-axis and 
admits the y-axis for its principal normal.  The first point results immediately from the 
equations: 

η = ζ = 0. 
 

 On the other hand, since the component q is zero, we will have: 
 

∑ c da = 0. 
 
 The z-axis of the moving trihedron is then normal to the two consecutive positions of 
the x-axis.  In other words, the xy-plane is the osculating plane of the curve that is 
described by the origin of the coordinates. 
 Upon reducing all velocities by the same ratio, in such a manner that ξ becomes equal 
to 1, one must replace p, r with p / ξ, r / ξ.  The curvature and the torsion of the curve 
will then be given by the formulas: 

(16)     
1

ρ
= 

r

ξ
, 

1

τ
= 

p

ξ
−

. 

 
                                                                                                                                            
 PUISEAUX, “Problème de Géométrie,” Journal de Liouville (1) 7.  BERTRAND, “Sur la courbe dont 
les deux courbures sont constants,” Journal de Liouville (1) 8.  LIOUVILLE, Application de l’Analyse à la 
Géométrie, by Monge, 5th ed., Note I. 



Chapter I.  One-parameter displacements.  Application to the theory of skew curves. 11 

 8.  The kinematic method that we just presented applies in an elegant manner to the 
complete solution of the following problem, which was solved completely by 
BERTRAND (3):  Find out whether there exists a curve whose principal normals are also 
principal normals to another curve. 
 Let M be a point of the given curve, and let (T) be the trihedron that relates to that 
point.  If one measures out a length MM′ = a on the principal normal then the velocity of 
the point M′ will have the components: 
 

1 – ra, 
da

ds
, pa 

 
along Mx, My, Mz, respectively; that results from formulas (10).  If one desires that the 
curve that is described by the point M′ should be normal to MM′ then it will be necessary 
that one must have: 

da

ds
 = 0; 

 
i.e., a must be constant.  That result should have been obvious a priori, and we could 
have supposed it immediately. 
 The velocity v of M is then perpendicular to My, and if one lets ω denote the angle 
that it makes with Mx then one will have: 
 

(17)    
cos 1 ,

sin .

v ra

v pa

ω
ω

= −
 =

 

 
 The line M′M will then be normal to the curve that is described by the point M′, but it 
will not be the principal normal, in general.  Construct the trihedron (T′ ) that is defined 
by the tangent M′ x′ to the curve that is described by the point M′, the line M′ y′, and the 
perpendicular that is common to those two lines, and remark that the y-axis of that 
trihedron will coincide with the axis of the same name in (T).  One will have a trihedron 
that has the same orientation as (T′ ) by making the trihedron (T) turn through the angle ω 
around its y-axis.  One will then obtain the instantaneous rotation of the trihedron (T′ ) by 
composing the two rotations p, r of the trihedron (T) with a rotation dω / dt around My. 
 Now, as we have seen, the necessary and sufficient condition for the line My or M′ y 
to be the principal normal of the curve that is described by the point M′ is that the rotation 
of (T′ ) around M′ y must be zero.  It will then be necessary that one must have: 
 

d

dt

ω
= 0, 

 

                                                
 (3) J. BERTRAND, “Mémoire sur la théorie des courbes à double courbure,” Journal de Liouville (1) 
15, pp. 332.  See also the paper of Bonnet that was included in the 32nd letter of the Journal de l’École 
Polytechnique, in which the author proved (pp. 134) that if two curves have the same principal normals 
then their osculating planes at the corresponding points will make a constant angle. 
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and, in turn, that the angle ω must be constant.  Thus, the osculating planes of the curves 
that are described by the point M, M′ must cut at a constant angle ω. 
 If one now refers to formulas (17) then one will deduce: 
 

     
sin

a

ω
 = r sin ω + p cos ω, 

 
by eliminating v or, upon replacing r and p with their geometric expressions: 
 

(18)    
sin

a

ω
= 

sin cosω ω
ρ τ

− . 

 
 There is then a linear relation between the two curvatures. 
 
 
 9.  Conversely, if there exists a linear relation between the two curvatures: 
 

C = 
A B

ρ τ
+  

 
then the curve will generally enjoy the indicated property.  One identifies the preceding 
relation with equation (18), and one will have: 
 

a = 
A

C
,  cot ω = − B

A
. 

 
Meanwhile, we point out two exceptional cases: 
 If one has C = 0, without A being zero, then the relationship between the curvatures 
will take the form: 

ρ
τ

= const., 

 
and a will become infinite.  Hence, the second curve, which is the locus of M′, will be 
pushed out to infinity.  The proposed curve will then be a helix. 
 If one has A = 0 – i.e., if the curve has constant torsion – then a will be zero, and the 
two curves that are the loci of M and M′ will coincide. 
 One can have more than two curves that have the same principal normals when: 
 1. The value of a is indeterminate; i.e., if one has A = C = 0.  In this case, the curve 
will be planar. 
 2. There is more than one linear relation between the curvatures; i.e., if the two 
curvatures are constant.  In this case, equation (8) will satisfied for any value of a and 
will give one ω.  There will then be an infinitude of curves that have the same principal 
normals.  The original curve (and consequently, all of the other ones) will be a helix that 
is traced on a right circular cylinder.  The surface that is defined by the principal normals 
will be the skew helicoid with a director plane. 
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 10.  We return to the general case and look for the two curvatures of the curve that is 
the locus of M′.  The trihedron (T′ ) that relates to that curve is invariably linked with the 
trihedron (T).  In order to get the components p′, r′ relative to the trihedron (T′ ), it will 
then suffice to project the rotations p, r onto the axes of (T′ ).  That will give: 
 
 p′ =    p cos ω + r sin ω, 
 r′ = − p sin ω  + r cos ω. 
 
 Now, from formulas (16), one will have: 
 

p′ = − v

τ ′
, r′ = 

v

ρ ′
, 

 
if one denotes the two curvatures of the curve that is the locus of (M) by 1 / ρ′, 1 / τ′. 
 When one substitutes the expressions for p, q, p′, q′, the preceding relations will then 
give us: 

(19)    

cos sin
,

sin cos
,

v

v

ω ω
τ τ ρ

ω ω
ρ τ ρ

 = − ′

 = +
 ′

 

 
which are formulas that one add to the following system, which is obtained by replacing r 
and p with their expressions in formulas (17): 
 

(20)    
cos 1 ,

sin .

a
v

a
v

ω
ρ

ω
τ

 = −

 = −


 

 
 Formulas (19) and (20) contain all of the relations between the two curves.  One 
deduces from them, for example, that: 
 

cos sinω ω
τ ρ

+
′ ′

= − sin

a

ω
, 

 
which is a linear relation between the two curvatures of the new curve whose existence 
was obvious a priori.  Moreover, system (19) can be replaced with the following one: 
 

(21)    

cos
1 ,

sin
,

a

v

a

v

ω
ρ

ω
τ

 − = + ′

 =
 ′
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which is much simpler (4). 
 One of the more interesting particular cases was pointed out already by Monge (5): It 
is the one in which the osculating planes of the two curves are perpendicular; one will 
then have: 

ρ = a, ρ′ = − a. 
 

Each of the two curves will be the locus of the centers of curvature of the other one, and 
also the locus of the centers of the osculating spheres of the other one. 
 
 
 12.  The results that were obtained by Bertrand immediately give the solution to a 
problem that has been treated quite a lot: Determine all skew surfaces whose radii of 
curvature are equal and opposite in sign at each point. 
 Indeed, the desired skew surfaces must have an equilateral hyperbola for an indicatrix 
at each point, and consequently, their curvilinear asymptotic lines must cut the rectilinear 
generators at a right angle.  Since the osculating plane of an asymptotic line is the tangent 
plane to the surface, one sees that the rectilinear generators must be the principal normals 
of all the asymptotes.  From the result that was proved previously, those asymptotes can 
only be helices, and the ruled surface must be a helicoid with a director plane.  One sees, 
moreover, (no. 9) that the surface indeed enjoys the stated property.  Thus: The skew 
helicoid with a director plane is the only ruled surface whose radii of curvature are equal 
and opposite in sign at each point. 
 
 
 12.  We conclude our discussion of the subject by giving the determination of the 
developables of a skew curve. 
 Consider the trihedron (T) that relates to a point M.  The developable must be 
generated by a point N in the yz-plane, and that point must chosen in such a manner that 
the tangent to the curve that it described must pass through M at each instant. 
 Call its coordinates y and z.  The components of its velocity are: 
 

                                                
 (4) See a note “Sur les courbes qui ont les mémes normales principales,” that was submitted by 
Mannheim to the Comptes rendus 85, pp. 212, in which some relations are proved that one can deduce from 
the formulas that were established here.  
 (5) MONGE, “Supplément oú l’on fait voir que les équations aux différences ordinaires, pour lesquelles 
les conditions d’intégrabilité ne sont pas satisfaites, sont susceptibles d’une véritable intégration et que 
c’est de cette intégration que dépend celle des équations aux dérivées partielles élevées,” Mémoire de 
l’Académie Royale des Sciences for the year 1784, pp. 536, et seq. 
 As its title implies, this beautiful work completes the celebrated “Mémoire sur le Calcul intégral des 
équations aux différences partielles,” which was published in the same volume (pp. 118), and in which one 
finds the first research by Monge on the partial differential equation of minimal surfaces.  In the 
Suppplément, Monge showed that if a curve has a constant radius of curvature then the locus of centers of 
curvature will enjoy the same property and will have its centers of curvature on the original curve.  
Moreover, the osculating planes to the two curves at the corresponding points will be rectangular.  
However, the process that Monge described for the determination of the equation in finite terms of the 
curves whose curvature is constant is obviously incorrect.  In fact, the finite equations that the illustrious 
geometer gave contained two arbitrary functions that Monge regarded as independent, although he had 
proved some pages before that they were coupled to each other by a differential equation. 
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(22)    1 – ry,  
dy

ds
 − pz, 

dz

ds
 + py. 

 
Express the idea that the velocity is directed towards the point M.  We will have the two 
equations: 

 y = 
1

r
 = r,  

dy pz ds

dz py ds

−
+

 = 
y

z
, 

or 

2 2

z dy y dz

y z

−
+

= p ds = − ds

τ
. 

 
Upon integrating, we will find that: 
 

 arc tan 
y

z
= 

ds

τ∫
. 

We will then have: 

(23)    
,

tan .

y

ds
z y

ρ

τ

=

 = ∫

 

 
Those equations contain the entire theory of developables.  One sees that the angle V that 
is defined by the principal normal and the line that joins the point of the development to 
the corresponding point of the curve will have the value: 
 

     V =
ds

τ∫
. 

 
Hence, the normals to the curve that envelop two different developments will define a 
constant angle between them.  Conversely, if two normals to the curve make a constant 
angle, and if one of them envelops a development of the curve then the same thing will be 
true for the other one.  We will make frequent use of these propositions. 
 The first of formulas (23) further shows us that the developments are traced 
completely on the polar surface, which is the envelope of the normal planes to the 
proposed curve.  Indeed, it results from formulas (22) in relation to the velocity of the 
point (y, z) that all of the points in the normal plane that are situated on the line y = ρ 
have their velocities directed into that plane.  Hence, that line will be the generator of 
contact of the plane with its envelope, which is the polar surface.  Moreover, the 
osculating plane of the development that contains the tangent to the proposed curve is, by 
that fact itself, normal to the polar surface. 
 

__________ 
 



CHAPTER II 
 

ON THE INTEGRATION OF THE LINEAR SYSTEM THAT PRESENTED 
ITSELF IN THE PRECEDING THEORY. 

 
 

Linear systems that possess a second-degree integral. – Their integration reduces to that of a Riccati 
equation. – General remarks on that equation. 

 
_________ 

 
 

 13.  It remains for us to study the integration of the system: 
 

(1)     

,

,

d
r q

dt
d

p r
dt
d

q p
dt

α β γ

β γ α

γ α β

 = −

 = −

 = −


 

 
that the three groups of cosines satisfy in a detailed manner.  We have already pointed out 
one fundamental property of that system: It admits the second-degree integral: 
 
(2)     α 2 + β 2 + γ 2 = const., 
 
and the existence of that integral implies a series of propositions as corollaries that 
facilitate the integration of that system in some cases. 
 Before commencing with the study of equation (1), I would first like to show that any 
linear system of the form: 

(3)     

,

,

,

d
A B C

dt
d

A B C
dt
d

A B C
dt

α α β γ

β α β γ

γ α β γ

 = + +

 ′ ′ ′= + +

 ′′ ′′ ′′= + +


 

 
in which A, B, C, … are functions of t, can be reduced to the form (1) whenever it admits 
a second-degree integral: 
(4)      ϕ (α, β, γ) = const., 
 
in which ϕ denotes a homogeneous function of degree two with constant or variable 
coefficients. 
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 Indeed, one can convert equation (4) (except in special cases where the function ϕ is a 
sum of two squares, which one can easily treat) to the form: 
 
(5)     α 2 + β 2 + γ 2 = const. 
 
by a linear substitution that obviously will not change the form of equations (3).  If one 
expresses the idea that the left-hand side of that equation is an integral of system (3) then 
one will obtain the equations: 
 

A = B′ = C″ = B + A′ = C + A″ = C′ + B″ = 0, 
 
which indeed shows that the system (3) reduces to the form (1). 
 The system (1) then appears to have the type – or reduced form – of an entire class of 
systems that exhibit the property of admitting a second-degree integral that one 
frequently encounters in applications.  That particular character of the equations that we 
shall study deserves to be pointed out, and it will suffice to justify the scope of the 
developments that we shall pursue. 
 
 
 14.  I would first like to show that whenever one knows a particular solution (α0, β0, 
γ0) of system (1), one can append the first-degree integral: 
 

α α0 + β β0 + γ γ0 = const. 
 
to the second-degree integral that was given already. 
 Indeed, if one has an arbitrary solution (α, β, γ) of system (1) then one can deduce a 
more general solution: 

α + kα0, β + kβ0, γ + kγ0, 
 
in which k denotes an arbitrary constant, from the properties of any linear system.  One 
must then have: 

(α + kα0)
2 + (β + kβ0)

2 + (β + kβ0)
2 = const. 

 
for all values of k, or upon development: 
 

α 2 + β 2 + γ 2 + 2k (α α0 + β β0 + γ γ0) + k2 ( 2 2 2
0 0 0α β γ+ + ) = const. 

 
 Since the first and last terms of the left-hand side are constant, the same thing will be 
true for: 

α α0 + β β0 + γ γ0, 
as one can prove. 
 It obviously results from this that if one knows only two particular solutions (α0, β0, 
γ0), (α1, β1, γ1) of the system (1) then one can immediately write down the general 
solutions, which will be defined by the equations: 
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    α2  +  β 2 +   γ 2  = const., 
 α α0 + β β0 + γ γ0 = const., 
 α α1 + β β1 + γ γ1 = const. 
 
These equations can be solved for α, β, γ, and give the values: 
 

(6)    
0 0 1 1 2 0 1 1 0

0 0 1 1 2 0 1 0 1

0 0 1 1 2 0 1 1 0

( ),

( ),

( )

c c c

c c c

c c c

α α α β γ β γ
β β β γ α α γ
γ γ γ α β α β

= + + −
 = + + −
 = + + −

 

in which c0, c1, c2 denote arbitrary constants.  However, one can obtain a more complete 
proposition and show that if one knows just one solution of system (1) then one 
quadrature will suffice to give its general integral. 
 
 
 15.  In order to establish this essential result, we remark that the most general values 
of α, β, γ must satisfy the relation: 
 
      α 2 + β 2 + γ 2 = const. 
 
 We first begin by discarding the case in which the constant is zero.  One can always 
suppose that one has: 
(7)      α 2 + β 2 + γ 2 = 1 
 
by dividing those values by a suitable constant. 
 We likewise remark that in the particular problem that we have to treat, since α, β, γ 
are three direction cosines, they must necessarily satisfy that relation.  It is natural to 
express α, β, γ as functions of two independent variables in such a manner that the 
preceding relation is always satisfied, and to seek the differential equations that those two 
variables must satisfy. 
 Now, if one regards α, β, γ as the coordinates of a point in space then equation (7) 
will represent a sphere of radius 1 that has its center at the coordinate origin.  Consider 
that sphere to be a ruled surface that admits a double system of imaginary generators and 
take the variables to be two quantities that remain constant on the generators of each 
system, respectively.  In order to do that, we set: 
 

(8)     

1
,

1

1 1
,

1

i
x

i

i

i y

α β γ
γ α β

α β γ
γ α β

+ + = = − −
 − + = = −
 − +

 

which will give: 

(9)    α = 
1 xy

x y

−
−

, β = i 
1 xy

x y

+
−

, γ = 
x y

x y

+
−

. 
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 We remark that, from formulas (8), x and y will be imaginary when α, β, γ are real, 
and in addition, the conjugate imaginary to x will be – 1 / y. 
 If we substitute the values (9) of α, β, γ in the differential equation then those 
equations will reduce to two, as one would expect, and after some simple calculations, 
one will obtain the system: 

(10)    

2

2

,
2 2

.
2 2

dx q ip q ip
i rx x

dt
dy q ip q ip

i ry y
dt

− + = − + +
 − + = − + +


 

 
x and y must then be two different solutions to the same equation in σ: 
 

(11)    
d

dt

σ
= − irσ + 2

2 2

q ip q ipσ− ++ , 

 
and the integration of the proposed system will be reduced to that of just that one 
equation.  Two distinct particular solutions of that equation will always give real or 
imaginary values of α, β, γ that verify the system (1) by the use of formulas (9).  We 
likewise remark that when p, q, r are real functions, it will suffice to know a particular 
solution σ of equation (11) in order to deduce a solution (α, β, γ) of the proposed system.  
Indeed, let σ′ denote the conjugate imaginary of σ.  I would like to show that – 1 / σ′ is 
again a particular solution of equation (11). 
 In order to do that, change i into – i in that equation and get: 
 

d

dt

σ ′
= − irσ′ + 2

2 2

q ip q ipσ+ − ′+ , 

and consequently: 

1d

dt σ
 − ′ 

= − ir  1

σ
 − ′ 

 +
2

1

2 2

q ip q ip

σ
− +  + − ′ 

. 

 
 It will suffice to compare equation (11) in order to recognize that – 1 / σ′  is indeed a 
particular solution to that equation. 
 
 
 16. The equation in σ belongs to the group of equations of the form: 
 

(13)    
d

dt

σ
= a + 2bσ + cσ 2, 

 
in which a, b, c are arbitrary functions of t.  They are the next simplest ones after linear 
equations.  Since one frequently encounters them in the applications, one gives them the 
name of Riccati equations, because they include the equation: 
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d

dt

σ
= aσ 2 + b t m 

 
as a particular case, which was the only one that was the subject of research of the Italian 
geometer.  We shall rapidly recall their principal properties. 
 First, they do not change form when one performs a linear substitution on σ – i.e., 
when one replaces σ with the variable λ that is defined by the equation: 
 

λ = 
P Q

R S

σ
σ

+
+

, 

 
in which P, Q, R, S are arbitrary functions of t. 
 In the second place, one can integrate them as soon as one knows one particular 
solution.  Indeed, let σ = σ0 be one such solution.  Set: 
 

σ = σ0 + 
1

λ
, 

and obtain the linear equation for λ: 
 

(14)    
d

dt

λ
= − c – 2 (cσ0 + b) λ, 

 
whose integration will require only two quadratures that are performed in succession. 
 One of the fundamental properties of the Riccati equation results from this.  Since the 
general value of λ is linear in the arbitrary constant C and of the form: 
 

PC + Q, 
 
one sees that the general integral of the Riccati equation will be of the form: 
 

σ = 
RC S

PC Q

+
+

, 

 
in which P, Q, R, S are functions of the independent variable t.  One deduces from this 
that the anharmonic ratio of four solutions to the equation is constant and equal to that of 
the four values of the arbitrary constant that correspond to those solutions. 
 
 
 17.  If one then knows three particular solutions σ0, σ1, σ2 then the general integral 
will be given by the formula: 

0

1 0

σ σ
σ σ

−
−

: 2

1 2

σ σ
σ σ

−
−

= C, 

 
which does not contain any quadrature. 
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 If one knows only two solutions σ0, σ1 then one quadrature will suffice.  Here is the 
fastest procedure for obtaining that solution: Set: 
 

λ = 0

1 0

σ σ
σ σ

−
−

, 

so one has: 
1 d

dt

λ
λ

= + 0 1

0 1

1 1d dd d

dt dt dt dt

σ σσ σ
σ σ σ σ

   − − −  − −   
, 

 

or, upon replacing 
d

dt

σ
, 0d

dt

σ
, 1d

dt

σ
 with their values that are inferred from equation (13): 

 

     
1 d

dt

λ
λ

= c (σ0 − σ1) . 

 
λ will then be obtained by a simple quadrature, and one will have: 
 

(15)    λ = 0

1

σ σ
σ σ

−
−

 = C 0 0( )c dt
e

σ σ−∫ , 

 
in which C denotes an arbitrary constant. 
 The Riccati equation then possesses one of the fundamental properties of linear 
equations, and knowing each particular solution will permit one to make one more step 
towards the general solution.  Indeed, it is easy to convert its integration into that of a 
second-order linear equation. 
 Here is the procedure for proving that last proposition that seems the most elegant to 
us: 
 
 18.  Set: 

σ = 
µ
ν

, 

so the equation becomes: 
d d

dt dt

µ νν µ−  = a v2 + 2bµν + c µ2, 

 
and that single equation can obviously be replaced with the following ones: 
 

(16)    
( ) ,

( ) ,

d
av b h

dt
d

c b h
dt

µ µ

ν µ ν

 = + +

 = − + −
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in which h denotes a function that one chooses arbitrarily (6).  Now, the elimination of µ 
or v will obviously lead to a second-order linear equation. 
 If one takes h = b, for example, then one will have: 
 

µ = − 1 d

c dt

ν
, 

and v will satisfy the equation: 
 

(17)    
2

2 2
d v c dv

b
dt c dt

′ − + 
 

 + acv = 0. 

 
 If v1 and v2 denote two particular solutions of that equation then one will have: 
 

(18)     σ = − 1 2

1 2

1 C

c C

ν ν
ν ν

′ ′+
+

, 

 
in which C denotes an arbitrary constant. 
 
 
 19.  We have seen that the anharmonic ratio of four arbitrary particular solutions to 
the Riccati equation is constant.  It is easy to establish that this property is characteristic – 
i.e., it belongs to just that one equation. 
 Indeed, if σ0, σ1, σ2 are three particular solutions then the general integral of the 
equation considered will be given by the formula: 
 

0

1

σ σ
σ σ

−
−

: 2 0

2 1

σ σ
σ σ

−
−

 = C, 

 
and the elimination of C by one differentiation will lead to a Ricatti equation. 
 
 
 20.  We apply these general propositions that relate to the Riccati equation to our 
equation (11) in σ.  Whenever one knows a solution to the system (1) for which the 
constant sum α 2 + β 2 + γ 2  is non-zero, one can reduce that sum to unity, and formulas 
(8) will then show us two particular solutions of the equation in σ ; let σ0, − 2

01/σ ′  denote 

those two solutions.  In order to determine the general integral of the equation in σ, it will 
suffice to perform just one quadrature.  The application of formula (15) will lead us to the 
equation: 

                                                
 (6) It is good to remark that although the complete integration of the system (16) implies that of the 
Riccati equation, without it being necessary to perform a quadrature, the converse is not true.   When one 
has integrated the Riccati equation once, one will have only the ratio µ / v; the determination of µ or v by 
equations (16) will demand another quadrature. 



Chapter II.  On the integration of the linear system.  23 

0

01

σ σ
σσ
−

′+
= 

0 02 2

q ip q ip
ir dt

C e
σ σ− + ′− + − 

 ∫
 

 
by some simple transformations, or furthermore: 
 

0

01

σ σ
σσ
−

′+
= 

0 0

0 0

1

?0

0

q ip q ip
dt

C e
σ σ

σ σσ
σ

′  + − + − −   ′  
∫

′
, 

 
in which C denotes the arbitrary constant. 
 The quadrature that appears in these formulas will involve a real function whenever 
the rotations p, q, r, and the particular solution that one starts with are real, because σ0, 0σ ′  

will be conjugate imaginary then, and the function under the ∫ sign in the preceding 
formulas will have the form i Θ, where Θ is real. 
 It is then proved that whenever one knows one particular solution to the system (1) 
for which the constant α 2 + β 2 + γ 2 is non-zero, the general solution of that system will 
be obtained by a simple quadrature. 
 
 
 21.  Now, suppose that the particular solutions α, β, γ  that are being considered 
satisfy the relation: 

α 2 + β 2 + γ 2 = 0. 
 
 We begin by remarking that at least one of the quantities α, β, γ must be imaginary.  
Upon exhibiting the real and imaginary parts, one will then have: 
 

α = α′ + i α″,  β = β′ + i β″,  γ = γ′ + i γ″. 
 
 Having said that, if p, q, r are real functions of t then α′, β′, γ′ and α″, β″, γ″ will  
obviously constitute two different systems of real solutions of the system (1) for which 
the sum α 2 + β 2 + γ 2 is non-zero.  The application of formulas (6) will then show the 
complete solution to the system (1) without integration. 
 Now, suppose that p, q, r are imaginary functions.  One can then set: 
 

(19)    
iα β

γ
+

= − x = 
i

γ
α β−

, 

 
and upon introducing a proportionality factor ρ, one will have: 
 
(20)   α = ρ (1 – x2),  β = iρ (1 + x2),  γ = 2ρ x. 
 
 The substitution of those values in the system (1) leads us to the two equations: 
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(21)    
dx

dt
 = − irx + 2

2 2

q ip q ip
x

− ++ , 

 

(22)    
1 d

dt

ρ
ρ

 = ir  – (q + p) x. 

 
 Hence, x must be a solution of equation (11).  Moreover, if one sets: 
 

σ = x − 
1

λ
 

then that equation will take the form: 
 

d

dt

λ
 = 

2

q ip+
+ [ir  – (q + ip) x] λ, 

 
or, upon taking formula (22) into account: 
 

(23)     
d

dt

λ
ρ

 
 
 

 = 
2

q ip

ρ
+

. 

 
 One will then get λ, and consequently σ, by just one quadrature.  Hence: 
 
 In any case, knowing just one system of solutions to equations (1) will permit us to 
obtain the complete integration of those equations by just one quadrature. 
 
 The particular systems of solutions for which the sum α 2 + β 2 + γ 2 is zero play an 
essential role in the important work of Hermite on the rotation of a solid body (7). 
 
 
 22.  Euler, who was the first to study the motion of a solid body, proved the preceding 
result by an entirely different method.  We have seen that he expressed the nine cosines 
by means of just three angles, and we know that the rotations p, q, r are expressed as 
functions of those angles and their derivatives with respect to time by formulas (6) [pp. 
4].  If one then supposes that the rotations are known then those three formulas will 
constitute a system of differential equations that will replace the system (1) and will 
suffice to determine the angles θ, ϕ, ψ.  In truth, the lack of symmetry in these equations 
hardly allows one to employ them in a general manner.  Meanwhile, one can deduce the 
fundamental property of system (1) from them very simply. 
 Indeed, let a″, b″, c″ be the particular values of α, β, γ that verify system (1), which 
are assumed to be known.  If we take the axis OZ to be the line whose direction cosines 
are a″, b″, c″ then will get θ and ϕ from the last three of formulas (2) [pp. 3].  Then, the 
last of formulas (6) or the second of formulas (7) [pp. 4] will permit us to determine ψ by 

                                                
 (7) HERMITE, Sur quelques applications des fonctions elliptiques, Paris, Gauthier-Villars, 1885.  
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one quadrature.  Knowing the three Euler angles will then give us three particular 
solutions of the system (1), and consequently, the general solution, as well. 
 It is easy to see that the quadratures to be performed in the two methods will reduce 
to each other, and will differ by only some exactly-integrable quantities. 
 
 

__________ 



CHAPTER III 
 

GEOMETRIC INTERPRETATION OF THE METHOD THAT WAS 
DEVELOPED IN THE PRECEDING CHAPTER 

 
Study of the symmetric coordinates in the case of the sphere. – Geometric interpretation of a linear 

substitution that is performed simultaneously on the two coordinates. – Formulas of Euler and Olinde 
Rodrigues that relate to coordinate transformation.  – Representation of the imaginary variable by a 
point on the sphere according to Riemann’s method. 

 
________ 

 
 

 
 23.  From the preceding developments, one sees that the integration of any system of 
linear equations with three unknowns that admits a homogeneous, second-degree integral 
will be converted into that of a Riccati equation – i.e., into that of the most general linear 
system in two unknowns.  It seems interesting to us to justify and explain that result by 
some considerations of pure geometry.  In order to do that, we shall make a rapid study of 
the system of curvilinear coordinates x, y that determine the points of the sphere of radius 
1, and which are defined by formulas (9). 
 By an elementary calculation, those formulas will lead us to the following result: 
 

(1)     dα 2 + dβ 2 + dγ 2 = 2

4

( )

dx dy

x y−
, 

 
which gives the differential of the arc length that is described by the point whose 
curvilinear coordinates are x, y.  One sees that this arc length will be zero when one 
displaces along one or the other of the rectilinear generators of the sphere.  That is a well-
known result; however, formula (1) will lead us to some other consequences. 
 
 
 24.  Its right-hand side enjoys the property of being reproduced when one subjects x 
and y to the same linear substitution.  Indeed, set: 
 

(2)     x = 1

1

ax b

cx d

+
+

,  y = 1

1

ay b

cy d

+
+

, 

 
in which a, b, c, d are constants; we will find that: 
 

2

4

( )

dx dy

x y−
= 1 1

2
1 1

4

( )

dx dy

x y−
. 

 
 It results from this that if one considers two figures that are described on the sphere, 
one of which (F) is at the point (x, y), while the other one (F1) is at the point (x1, y1), then 
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the distance between two arbitrary, infinitely-close points on one of the figures will be 
equal to the distance between the corresponding points of the other one.  Consequently, 
the infinitely-small triangles that correspond in the two figures and have three equal sides 
will be equal or symmetric, and the two figures will then be equal or symmetric, resp.: I 
say that they are equal. 
 Indeed, vary a, b, c, d in formulas (2) from their present values to the following ones: 
1, 0, 0, 1 in a continuous manner.  The figure (F1) will displace in a continuous manner, 
and since it is always equal or symmetric to (F), it will always remain superposable with 
its original position.  Now, for extreme values of a, b, c, d, the substitution (2) will reduce 
to the following one: 

x = x1,  y = y1 . 
 

 The figure (F1) will coincide with (F), and consequently, the two figures will be 
equal. 
 The right-hand side of formula (1) will also be reproduced if one employs the 
substitution: 

(3)     x = 1

1

ay b

cy d

+
+

, y = 1

1

ax b

cx d

+
+

. 

 
 However, it is clear that this substitution results from the composition of the 
substitution (2), which replaces any figure (F) with an equal figure, with the following 
one: 

y = x1,  x = y1 . 
 

 It suffices to refer to formulas (9) [pp. 18] in order to recognize that the latter 
substitution replaces a point of the sphere with the diametrically-opposite point – i.e., the 
figure (F) with a symmetric figure.  The same thing will then be true for the more general 
substitution that is defined by formulas (3). 
 
 
 25.  The preceding results have been deduced from equation (1), which gives the 
distance between two infinitely-close points.  However, one can also obtain them by the 
use of the formula that expresses the distance between two arbitrary points of the sphere 
in the x, y coordinate system. 
 Indeed, let M, M′ be two points with coordinates x, y ; x′, y′.  Upon denoting the arc of 
the great circle that joins them by MM′, one will have: 
 

(4)    cos MM′ = 
2 2 ( )( )

( )( )

xy x y x y x y

x y x y

′ ′ ′ ′− − − −
′ ′− −

; 

 
hence, one will deduce that: 
 

(5)   cos2 
2

MM ′
= 

( )( )

( )( )

x x y y

x y x y

′ ′− −
′ ′− −

,  sin2 
2

MM ′
= 

( )( )

( )( )

x y y x

x y x y

′ ′− −
′ ′− −

, 
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 Those formulas, which I gave already in 1872 (8), along with some other ones, can be 
further written in the form: 
 

cos2 
2

MM ′
= R(x, y′, x′, y), sin2 

2

MM ′
= R(x, x′, y′, y), 

 
in which R (a, b, c, d) denotes the anharmonic ratio of the quantities a, b, c, d.  It is clear 
that these expressions will remain invariable when one applies one or the other of the 
substitutions (2) or (3) to the coordinates of the two points.  One sees that these 
substitutions do not change the spherical distance between two arbitrary points.  They can 
only replace a figure (F) with an equal or symmetric figure then, which confirms the 
proposition that was obtained already. 
 It results from the preceding that if one considers four arbitrary points M, M′, M″, M″′ 
on the surface of the sphere then the anharmonic ratio of the values of the coordinate x 
that relate to those four points will remain constant when one displaces the invariable 
figure that is defined by those four points in an arbitrary manner.  In other words, that 
anharmonic ratio depends upon only the form of the quadrilateral.  One knows various 
expressions for it that I shall not stop to establish.  It will suffice for us to know that it 
remains constant when the quadrilateral is displaced without deforming. 
 
 
 26.  After that, we return to the system (1) of the preceding chapter, and consider α, 
β, γ to be the coordinates of a point on the sphere in it.  Each particular solution of the 
system (1) will correspond to a certain curve on the sphere that is described by that point.  
It results from the propositions that were established at the outset (no. 14) that if two 
points of the sphere represent two different particular solutions of the system then they 
will always remain at an invariable distance from each other.  Hence, if four points 
describe curves that correspond to four different particular solutions in their motion then 
they will define an invariable figure, and the anharmonic ratio of the four particular 
values of x that corresponds to those four points will be constant; i.e, x must satisfy a 
Riccati equation (no. 19) when considered as a function of t. 
 It remains for us to explain why the second coordinates y satisfies the same equation 
as the first one.  In order to do that, it will suffice to remark that if a point M of the sphere 
gives a solution of the system (1) then the same thing will be true for the diametrically-
opposite point, which corresponds the same values of α, β, γ, but with opposite signs.  
Now, one passes from one of those points to the other one by switching x and y; those 
coordinates must then satisfy the same differential equation. 
 
 
 27.  The analytical results of the preceding chapter are then explained completely.  
We shall not pursue the complete study of the x, y coordinate system now, and we shall 
be content to point out how one determines the displacement that corresponds to a linear 
substitution that is performed on the two coordinates simultaneously. 

                                                
 (8) G. DARBOUX, “Mémoire sur une classe remarquable de courbes et de surfaces algébriques,” pp. 
212.  
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 Recall the formulas: 
 

(6)   α = 
1 xy

x y

−
−

,  β = 
1 xy

x y

+
−

,  γ = 
x y

x y

+
−

, 

 
which gives the rectangular coordinates α, β¸ γ as functions of x, y.  If one performs the 
substitution on x and y that is defined by the formulas: 
 

(7)     x = 1

1

mx n

px q

+
+

, y = 1

1

my n

py q

+
+

, 

 
and if one lets α1, β1¸ γ1 denote the rectangular coordinates that corresponds to x1, y1, one 
will find, from a calculation that offers no difficulty, that: 
 

(8)     
1

1

1

,

,

,

a a a

b b b

c c c

α α β γ
β α β γ
γ α β γ

′ ′′= + +
 ′ ′′= + +
 ′ ′′= + +

 

 
in which a, b, c, … have the following values: 
 

(9)  

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

, , ,
2 2

, , ,
2 2

, , ,

q m n p m n p q pq mn
a a i c

B B B

q n m p m n p q pq mn
a i b c i

B B B
nq mp mp nq mq nq

a b i c
B B B

 + − − + − − −= = =


+ − − + + + + ′ ′ ′= = =


− + + ′′ ′′ ′′= = − =


 

 
in which B is the determinant of the substitution: 
 

B = mq – np. 
 

 It is easy to see that these nine quantities are the coefficients of an orthogonal 
substitution with determinant 1, which proves once more the theorem that was 
established above (no. 24). 
 If one replaces m, n, p, q with the following expressions: 
 
 m = − ρ + iv, n = − µ + iλ, 
 q = − ρ − iv, p =    µ + iλ 
then upon setting: 
(10)  B = λ2 + µ2 + v2 + ρ2, 
 
to abbreviate, one will find that: 
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(11) 

2 2 2 2

2 2 2 2

2 2 2 2

, 2( ), 2( ),

2( ), , 2( ),

2( ), 2( ) .

Ba v Bb v Bc v

Ba v Bb v Bc

Ba v Bb Bc v

ρ λ µ µλ ρ λ ρµ
µλ ρ ρ µ λ µν λρ
λ µρ µν λρ ρ λ µ

 = + − − = + = −
 ′ ′ ′= − = + − − = +
 ′′ ′′ ′′= + = − = + − −

 

 
These are the well-known expressions for the nine cosines in homogeneous form, which 
are due to Euler and Olinde Rodrigues. 
 
 
 28.  Since formulas (7) define a real or imaginary displacement – i.e., a finite rotation 
– we propose to determine the axis and magnitude of that rotation.  One will obtain those 
two elements in the following manner: 
 The points where the rotational axis meets the sphere will remain immobile during 
the motion.  They must then satisfy the relations: 
 
     x = x1,  y = y1 ; 

 
consequently, x, y will be the roots of the equation: 
 
(12)    px2 + (q – m) x – n = 0, 
 
which define the double elements of the linear substitution.  Let x′, y′ be the two roots of 
that equation, which we assume to be different.  One sees that the motion will leave the 
four points 

(13)    
, , , ;

, , ,

x x x y x x x y

y y y x y x y y

′ ′ ′ ′= = = =
 ′ ′ ′ ′= = = =

 

invariable. 
 The first two are at a finite distance and diametrically-opposite to each other: They 
are the points where the rotational axis cuts the sphere.  The other two satisfy the relation 
x = y, and consequently, from formulas (6), they will be on the circle at infinity.  That 
will define a displacement from the projective viewpoint.  It is a homographic 
transformation of the sphere that leaves four points invariable, two of which are at 
infinity, while the other two are diametrically opposite.  Those four points define the 
summits of a skew quadrilateral that is situated on the sphere entirely. 
 As for the magnitude of the rotation, one will determine it in the following manner: 
Write down the equation (7) in the canonical form: 
 

(14)    
x x

x y

′−
′−
 = k 1

1

x x

x y

′−
′−
, 

y x

y y

′−
′−
 = k 1

1

y x

y y

′−
′−
. 

 
 That form is obviously preserved if one performs a displacement of the set – i.e., if 
one subjects all of the variables x, y¸ x′, … to the same linear substitution.  Suppose that 
the displacement is chosen in such a manner that the point x = x′, y = y′ is placed on the 
positive half of the z-axis.  x′ will then become equal to ∞, y′ will become 0, and formulas 
(14) will become: 
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(15)    x1 = kx,  y1 = ky, 
 
or, upon returning to the rectangular coordinates and calling the rectilinear coordinates of 
the two corresponding positions of the same point α, β, γ ; α1, β1, γ1 : 
 

1 1

11

iα β
γ

+
−

= k 
1

iα β
γ

+
−

,  1 1

11

iα β
γ

−
+

= 
1

1

i

k

α β
γ

−
+

. 

 
These formulas obviously agree with a rotation around Oz through an angle θ that is 
defined by the equation: 
(16)     eiθ = k. 
 
One will recognize that fact immediately upon considering the points in the xy-plane for 
which one has: 
      γ = γ1 = 0. 
 
 Hence, the magnitude of the rotation will be determined unambiguously by formula 
(16).  As far as the value of k is concerned, as one knows, it will be given by the 
equation: 

      k = 
m px

m py

′−
′−
, 

 
or, if one would like to obtain it without passing to the values of x′, y′, by the equation: 
 

(18)     
2(1 )k

k

+
= 

2( )m q

mq np

+
−

. 

 
 
 29.  The displacement that is defined by formulas (7) is not real, in general.  
However, the various methods in the foregoing permit one to show the conditions under 
which the displacement will be real.  Indeed, we have seen that if two real points have the 
coordinates x, y and x1, y1, respectively, then the imaginary variables x, x1 will have – 1 / 
y, − 1 / y1 for their conjugates, resp.  Upon then changing i into – i in the first of equations 
(7) and denoting the quantities that are conjugate to m, n, p, q by m0, n0, p0, q0, one will 
have: 

− 
1

y
= 0 0 1

0 0 1

m n y

p q y

− +
− +

, 

 
and before that relation can be true whenever x, y are coordinates of a real point, it must 
necessarily be identical to the second of formulas (7).  That will give the conditions: 
 

0p

n
= 0q

m

−
= 0m

q

−
 = 0n

p
, 
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which permits one to write down formulas (7) in the form: 
 

(19)    x = 1

0 1 0

mx n

n x m

+
− +

, y = 1

0 1 0

my n

n y m

+
− +

, 

 
in which m0, n0 denote the conjugate imaginaries of m and n. 
 
 
 30.  It is easy to recognize that when one represents an imaginary variable by a point 
of the sphere following Riemann’s method, the quantity that we denote by x will be 
affixed to the point (α, β, γ). 
 Indeed, Riemann’s method consists of first representing the variable z = x′ + i y′ with 
the point (x′, y′) in the xy-plane, as Gauss and Cauchy did.  One then makes a 
stereographic projection of that plane onto the sphere of radius 1 that has its center at the 
origin by taking the pole of the point on that sphere to be situated along the positive half 
of the z-axis.  If we denote the coordinates of that stereographic projection by α, β, γ then 
an elementary calculation will give us: 
 

x = 
1

iα β
γ

+
−

 = x′ + iy′ = z, 

which justifies our remark. 
 
 
 31.  In the theory of functions and various studies in geometry, it can be advantageous 
to modify the x, y coordinate system slightly and replace y with the variable: 
 

x0 = − 
1

y
. 

 
 One will then have the following expressions for α, β, γ : 
 

(20)    α = 0

01

x x

xx

+
+

, β = i 0

01

x x

xx

−
+

, γ = 0

0

1

1

xx

xx

−
+

, 

 
and equation (1) will take the form: 
 

(21)    dα 2 + dβ 2 + dγ 2 = 0
2

0

4

(1 )

dx dx

xx+
. 
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 With that new system, the coordinates x, x0 of any real point will be conjugate 
imaginaries.  However, a displacement will no longer be represented by the same linear 
substitution that is performed on both variables (9). 
 
 

___________ 
 

 

                                                
 (9) For everything that concerns the relationship between displacements and linear substitutions, one 
can consult the important papers of F. Klein that were included in volumes IX and XII of Mathematische 
Annalen, in which those relationships were expanded upon and applied to the solution of some problems 
with a more advanced interest to them. 



CHAPTER IV 
 

APPLICATIONS OF THE PRECEDING THEORY. 
 

Extension of Poinsot’s theory. – Determination of the motions in which there are two relations between the 
rotations that are given in advance. – Determination of the skew curves whose curvature and torsion 
satisfy a given relation. – Study of the case in which that relation is linear. – Curves with constant 
torsion. 

_________ 
 
 

 32.  Before continuing with the exposition of the general theory, we shall make some 
applications of the preceding propositions.  Recall the system: 
 

(1)   
d

dt

α
= β r – γ q, 

d

dt

β
= γ p – α r, d

dt

γ
= α q – β p 

 
that must be satisfied by the cosines of the angles that a fixed axis makes with the moving 
axes.  One knows that when a solid body moves around a fixed point without being 
subject to any force, the preceding system will be verified if one replaces α, β, γ with the 

derivatives 
f

p

∂
∂

,
f

q

∂
∂

,
f

r

∂
∂

of a function f (p, q, r) that is homogeneous of degree two, and 

which represents one-half the total vis viva of the body. 
 We look for all of the motions that enjoy an analogous property – i.e., ones for which 
the system (1) admits the solution: 
 

(2)    α = 
f

p

∂
∂

, β = 
f

q

∂
∂

, γ = 
f

r

∂
∂

. 

 
However, f (p, q, r) will no longer be subject to being homogeneous and of degree two 
now.  Since α, β, γ, and the derivatives of f transform by the same substitution when one 
performs a change of moving axes, it will be obvious that the preceding property will be 
independent of the choice of axes. 
 Upon writing down the idea that the system (1) is verified by the values (2) of α, β, γ, 
we will have the equations: 

(3)     

,

,

;

d f f f
r q

dt p q r

d f f f
p r

dt q r p

d f f f
q p

dt r p q

  ∂ ∂ ∂= −  ∂ ∂ ∂ 
  ∂ ∂ ∂ = −  ∂ ∂ ∂ 
 ∂ ∂ ∂ 
 = − ∂ ∂ ∂ 

 

hence, we will deduce: 
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     p d
f

p

 ∂
 ∂ 

 + q d
f

q

 ∂
 ∂ 

 + r d
f

r

∂ 
 ∂ 

= 0. 

 One then gets: 

(4)     p
f

p

∂
∂

 + q
f

q

∂
∂

 + r
f

r

∂
∂

+ f = const. 

 
upon integrating, which is an equation to which one must append the following one: 
 

(5)     
2 2 2

f f f

p q r

   ∂ ∂ ∂ + +     ∂ ∂ ∂    
= 1, 

 
which expresses the idea that α, β, γ are direction cosines. 
 Upon substituting the values of p, q as functions of r that are inferred from these 
equations (4) and (5) in one of equations (3), one will get time by a quadrature.  After 
having thus obtained the expressions for p, q, r as functions of time, one will achieve the 
integration of the system (1) by means of just one quadrature, and one already knows the 
particular solution that is provided by equations (2). 
 As one sees, the solution is entirely analogous to the one that one gives in the study of 
motion of a solid body that is left to itself.  However, the analogy will become even more 
complete if one supposes that the function f is homogeneous.  Equation (4) will then 
reduce to the following one: 

f (p, q, r) = const., 
 

and one can represent the motion by rolling the surface that is invariably coupled to the 
moving axes, and whose equation is: 

f (x, y, z) = 1 
 
with respect to those axes, on a fixed plane.  If one suppose that f is entire and of degree 
two then one will recover Poinsot’s solution. 
 
 
 33.  As a second application, we propose to determine the motions in which there are 
two relations between the three rotations that are given in advance: 
 
(6)     f (p, q, r) = 0,  ϕ (p, q, r) = 0. 
 
We shall first give a geometric method for indicating the degree of difficulty of that 
problem.  In the Poinsot representation, the motion is obtained when one rolls the cone 
(γ), which is the locus of the instantaneous axis of rotation in the moving body, on the 
fixed cone (C).  Now, the preceding two equations, which determine the locus that is 
described in the body by the extremity of the instantaneous axis, show us the cone (γ) by 
that fact in its own right.  As for the cone (C), we take it arbitrarily, but in such a manner 
that the section of that cone by the sphere of radius 1 is the spherical development of an 
arbitrary curve that traced on that sphere, which permits us to obtain the arc length of that 



36 Lessons on the general theory of surfaces. 

section with no quadratures; one must then roll the cone (γ) on the cone (C).  The 
equations that we have to write in order to express that motion will obviously contain the 
quadrature that gives the arc length of the curve of intersection of the cone (γ) with the 
sphere of radius 1.  For an arbitrary position of the cone (γ), the instantaneous axis will be 
the generator of contact of that cone with the cone (C), and the ratios of p, q, r will be 
known.  Equations (6) then show us the magnitudes of those rotations.  Upon expressing 
the idea that the cone (γ) rolls with the velocity thus-obtained at each instant, one will 
have to perform a new quadrature that will determine the time. 
 Hence, the calculation can be directed in such a manner that one must perform only 
two quadratures.  One will arrive at equivalent results by the following analytical method. 
 
 
 34.  Suppose that three of the nine cosines – a, b, c, for example – are expressed as 
functions of the two variables x and y by formulas (6) [pp. ?].  If a, b, c are real then x and 
y will be imaginaries of the form: 
 

x = h + ki, y = − 1

h ki−
. 

 
 One will get two relations upon expressing the idea that these two quantities verify 
the Riccati equation (11) [pp. ?]; they are identical to the ones that one obtains by 
substituting only the value of x and equating the real parts and the imaginary parts: 
 

(7)    

2 2

2 2

(1 ) ,
2

(1 ).
2

dh q
rk h k phk

dt
dk p

rk qhk k h
dt

 = + + − −

 = − + − + −


 

 
 If we eliminate p, q, r from equations (6) and (7) then we will be led to an equation of 
the form: 

F , , ,
dh dk

h k
dt dt

 
 
 

= 0. 

 
 Moreover, if one takes k to be – for example – an arbitrary function of h then that 
equation will tell us the time t by one quadrature.  We know three of the nine cosines, 
namely, a, b, c.  One last quadrature will tell us the other six.  As one sees, the results 
thus-obtained will coincide with the ones that the geometrical method provides us with. 
 
 
 35.  We have seen that if one considers an arbitrary skew curve, and if one studies the 
motion of the trihedron that is defined by the tangent, the principal normal, and the 
binormal at a point then upon supposing that the origin of that trihedron describes a unit 
arc length in a unit time, one will have that: 
 



Chapter IV.  Applications. 37 

p = − 1

τ
, q = 0,  r = 

1

ρ
, 

 
in which ρ and τ denote the radii of curvature and torsion.  We propose to determine all 
of the curves for which there is a relation between the curvature and torsion that is given 
in advance: 

f 
1 1

,
τ ρ
 
 
 

 = 0. 

 
That will amount to determining the motion of a trihedron in which one has two relations: 
 
(8)     q = 0,  f (− p, r) = 0 
between the two rotations. 
 Upon applying the general method that was given above, one will get expressions for 
the nine cosines that determine the position of the moving trihedron as a function of the 
arc length of the curve, which is equal to time duration, here.  One then determines the 
rectangular coordinates x, y, z of the point on the curve that is the summit of the trihedron 
by the formulas: 

dx

ds
= a,  

dy

ds
 = a′, dz

ds
 = a″, 

which will give: 

x = ∫ a ds, y = ∫ a′ ds, z = ∫ a″ ds. 
 
 

 36.  The method that we just pointed out, which is general, is susceptible to some 
simplifications in certain special cases. 
 For example, suppose that one demands that the curves have constant torsion.  
Serret’s formulas: 

dc

ds
 = 

b

τ
, 

dc

ds

′
 = 

b

τ
′
, 

dc

ds

′′
 = 

b

τ
′′

 

 
will give us b, b′, b″ as functions of the derivatives of c.  If one substitutes those values in 
the relations between the nine cosines: 
 

a = b′c″ – c′b″, a′ = b″c – b″c,  a″ = bc′ – cb′ 
 
then one will find that: 

 a = τ 
dc dc

c c
ds ds

′ ′′ ′′ ′− 
 

, 

 a′ = τ 
dc dc

c c
ds ds

′′ ′′− 
 

, 

 a″ = τ 
dc dc

c c
ds ds

′ ′ − 
 

. 
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 One will, in turn, have the formulas: 
 

 x = ∫ a   ds = τ ∫ (c″ dc′ – c′ dc″), 

 y = ∫ a′  ds = τ ∫ (c  dc″ – c″ dc), 

 z = ∫ a″ ds = τ ∫ (c′  dc – c  dc′) 
 
for the rectangular coordinates of a point on the curve, in which c, c′, c″ are three 
functions of only one variable that are subject to the single condition: 
 

c2 + c′ 2 + c″ 2 = 1. 
 If, for example, one sets: 

c

h
= 

c

k

′
= 

c

l

′′
= 

2 2 2

1

h k l+ +
 

then one will have: 

(9)     

2 2 2

2 2 2

2 2 2

,

,

.

l dk k dl
x

h k l
h dl l dh

y
h k l
k dh h dk

z
h k l

τ

τ

τ

− = + +


− = + +
− = + +

∫

∫

∫

 

 
 These formulas coincide, up to notations, with the ones that J.-A. Serret gave in the 
5th edition of Application de l’Analyse à la Géométrie, by Monge, pp. 566. 
 
 
 37.  An analogous method applies to the determinations of the curves whose radius of 
first curvature is constant.  Indeed, recall the formulas: 
 

dx

ds
= a,  

da

ds
 = 

b

ρ
. 

 One deduces that: 
ds

ρ
= 2 2 2da da da′ ′′+ +  

from this, and consequently: 

dx = a ρ 2 2 2da da da′ ′′+ + . 

 One will then have: 

(10)    

,

,

x a d

y a d

z a d

ρ σ

ρ σ

ρ σ

 =
 ′=


′′ =

∫

∫

∫
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for the three coordinates of a point of the desired curve, in which dσ denotes the 
differential of the arc length of the spherical curve that is described by the point (a, a′¸ 
a″).  The center of curvature will have the following values for its coordinates: 
 

(11)   

1

1

1

,

,

,

da
x x b a d

d
da

y y b a d
d
da

z z b a d
d

ρ ρ ρ σ
σ

ρ ρ ρ σ
σ

ρ ρ ρ σ
σ

 = + = +
 ′ ′ ′= + = +


′′ ′′′′= + = +


∫

∫

∫

 

 
and it is easy to verify that the locus of that point is also a curve whose first curvature is 
constant and equal to that of the first one, which conforms to the results of no. 10. 
 
 
 38.  Finally, if one seek the curves that enjoy the property that was pointed out by 
Bertrand (no. 8), and whose two curvatures are linked by the equation: 
 

(12)     
m n

ρ τ
+  = 1, 

then one will set: 

(13)    

2 2

2 2

2 2

,

,

,

ma nc m n

ma nc m n

ma nc m n

α

α

α

 + = +

 ′ ′ ′+ = +


′′ ′′ ′′+ = +

 

 
in which α, α′, α″ are three functions that are obviously subject to the relation: 
 

α 2 + α′ 2 + α″2 = 1. 
 The Serret formulas: 

da

ds
 = 

b

ρ
, 

dc

ds
 = 

b

τ
 

will give us: 
 

(14) 2 2 d
m n

ds

α+  = b,  2 2 d
m n

ds

α ′
+  = b′,  2 2 d

m n
ds

α ′′
+  = b″, 

 
if we take the relation (12) into account. 
 One will then have: 
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(15)   2 2

( ) ( ),

( ) ,

na mc n b c c b m a b b a

d d
m n

ds ds

α αα α

′ ′′ ′ ′′ ′ ′′ ′ ′′− = − − −
 ′ ′′  ′′ ′= + −   

 

and similarly: 

(15′)   

2 2

2 2

( ) ,

( ) .

d d
na mc m n

ds ds

d d
na mc m n

ds ds

α αα α

α αα α

′′  ′ ′ ′′− = + − 
  
 ′  ′′ ′′ ′− = + −   

 

 
 The relations (13) and (15) permit us to determine a, a′, a″; c, c′, c″, and give us: 
 

(16)   

2 2

2 2

2 2

,

,

.

m d d
a n

ds dsm n

m d d
a n

ds dsm n

m d d
a n

ds dsm n

α αα α α

α αα α α

α αα α α

 ′ ′′ ′′ ′= + −  
  +


′′  ′ ′ ′′= + −  

 +
 ′  ′′ ′′ ′= + −   +

 

 
 Moreover, we will deduce that: 
 

ds2 = (m2 + n2) (dα 2 + dα′ 2 + dα″ 2) 
from formulas (14). 
 One will then get the rectangular coordinates of a point of the curve by the use of the 
equations: 

x = ∫ a ds, y = ∫ a′ ds, z = ∫ a″ ds, 
 

which will lead to the definitive result: 
 

(17)   

2 2 2,

( ),

( ),

( ).

d d d d

x m d n d d

y m d n d d

z m d n d d

σ α α α

α σ α α α α

α σ α α α α

α σ α α α α

 ′ ′′= + +

 ′′ ′ ′ ′′= + −


′ ′′ ′′= + −


′′ ′ ′= + −

∫ ∫

∫ ∫

∫ ∫

 

 
One will recover formulas (9) or (10), according to whether one makes m or n equal to 
zero.  Moreover, α, α′, α″ are, as we have seen, three functions of just one variable that 
are subject to the single relation: 
(18)     α 2 + α′ 2 + α″2 = 1. 
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 The preceding formulas also established very easily by the use of geometry. 
 
 
 39.  Of the three systems (9), (10), (17), the simplest of them is the system (9), which 
determines the curves whose torsion is constant.  We shall apply it to the search for the 
curve of constant torsion whose spherical indicatrix is a spherical conic.  One will easily 
recognize that if one draws a parallel to the binormal through the center of the sphere of 
radius 1 then that parallel will cut the sphere at a point whose coordinates will be c, c′, c″, 
and which will describe a spherical ellipse that is supplementary to the spherical 
indicatrix. 
 Upon choosing the axes suitably, one can then obtain very simple expressions for h, 
k, l: 

h = 
( )

( )( )

a a

a b a c

ρ−
− −

, k = 
( )

( )( )

b b

b a b c

ρ−
− −

, l = 
( )

( )( )

c c

c a c b

ρ−
− −

, 

 
which agrees with the curve that is situated on the cone: 
 

2 2 2x y z

a b c
+ +  = 0, 

 
and upon substituting these values for h, k, l in formulas (9), one will get the system: 
 

(19)   

,
2 ( )( ) ( )( )

,
2 ( )( ) ( )( )

,
2 ( )( ) ( )( )

bc d
x

a c c a b c

ac d
y

b c a b a c

ab d
z

a c c b a b

τ ρ
ρ ρ

τ ρ
ρ ρ

τ ρ
ρ ρ


= − − − −


 = − − − −

 =
 − − − −

∫

∫

∫

 

 
which will define the desired curve. 
 We do not know of any real, algebraic curve whose torsion is constant.  It would be 
interesting to examine whether all of the curves of constant torsion are necessarily 
transcendental, or if they are algebraic, to determine the simplest ones. 
 
 

____________ 
 



CHAPTER V 
 

DISPLACEMENTS WITH TWO INDEPENDENT VARIABLES. 
 

Differential relations between two systems of rotations.  Determination of the motion when those rotations 
are known.  Application to the case in which they are functions of only one variable. 

 
_________ 

 
 
 40.  In the preceding chapters, we saw how one could attach the theory of skew 
curves to the study of the motion of a trihedron.  Other research in geometry, and in 
particular the work that referred to the theory of surfaces, demanded that one should 
consider moving systems whose various positions depended upon two distinct 
parameters.  We shall undertake the study of such systems, and in order to first study the 
properties of rotations, we shall begin by supposing that the moving system has a fixed 
point, which will be the origin of both the fixed and moving axes, as before. 
 The nine cosines that determine the positions of the moving axes will then be 
functions of two independent variables u and v.  By starting from each of its positions, the 
moving system can take on an infinitude of motions that correspond to the various 
relations that one can establish between u and v.  We introduce two different systems of 
rotations here.  One of them, which we denote by p, q, r, refers to the displacements 
under which only u varies.  They give rise to the system: 
 

(1)   
u

α∂
∂

 = β r – γ q, 
u

β∂
∂

 = γ p – α r, 
u

γ∂
∂

 = α q – β p, 

 
which must admit the three cosines from each group as particular solutions.  The other 
ones, which we denote by p1, q1, r1, relate to the case in which only v varies.  They 
likewise give rise to the system: 
 

(1)   
v

α∂
∂

 = β r1 – γ q1, 
v

β∂
∂

 = γ p1 – α r1, 
v

γ∂
∂

 = α q1 – β p1, 

 
which is entirely similar to the first one.  It results immediately from this that if one 
considers a displacement of the system in which u and v are given functions of t then one 
will have: 

d

dt

α
 = β R – γ Q, 

d

dt

β
 = γ P – α R, 

d

dt

γ
 = α Q – β P, 

 
in which P, Q, R have the values: 
 

(3)   P = p
du

dt
 + p1

dv

dt
, Q = q

du

dt
 + q1

dv

dt
, R = r

du

dt
 + r1

dv

dt
, 
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and consequently those three quantities P, Q, R will be rotations relative to the motions 
considered.  The projections onto the moving axes of the path or the infinitely-small arc 
that is described by a point under that motion whose coordinates relative to those axes are 
x, y, z will have the values: 
 

(4)    
1 1

1 1

1 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

dx q du q dv z r du r dv y

dy r du r dv x p du p dv z

dz p du p dv y q du q dv x

+ + − +
 + + − +
 + + − +

 

 
 We shall first establish certain partial differential equations that the six rotations must 
satisfy. 

 We equate the two values of 
2

u v

α∂
∂ ∂

 that one can obtain by differentiating the first two 

equations of the systems (1) and (2).  After replacing the derivatives of β, γ with their 
values that we infer from these two systems, we will have: 
 

β 1
1 1

rr
pq qp

v u

∂∂ − − + ∂ ∂ 
 = γ 1

1 1

qq
rp pr

v u

∂∂ − − + ∂ ∂ 
. 

 
 Since that relation must be true when one replaces β, γ with either b, c, or b′, c′, or b″, 
c″, it is necessary that the coefficients of β and γ must be separately zero.  We will then 

have two equations.  Upon likewise equating the two values of 
2

u v

β∂
∂ ∂

, 
2

u v

γ∂
∂ ∂

 that are 

deduced from the systems (1) and (2), one will obtain just one new equation, and one will 
be led to the system: 

(5)     

1
1 1

1
1 1

1
1 1

,

,

,

pp
qr rq

v u
qq

rp pr
v u

rr
pq qp

v u

∂∂ − = − ∂ ∂


∂∂ − = − ∂ ∂
∂∂ − = − ∂ ∂

 

 
which plays a fundamental role in the theory (10). 
 
 
 41.  Conversely, whenever one knows six quantities p, q, r, p1, q1, r1 that satisfy 
equations (5), there will exist a motion for which those six quantities are rotations.  In 
order to establish that result, it will obviously suffice to show that one can obtain the 

                                                
 (10) These equations were obtained by Combescure [Annales de l’École Normale (1) 4, pp. 108], who 
was the first to employ kinematic considerations in the proof of formulas that related to the theory of 
surfaces and orthogonal systems.  We personally presented them before the publication of Combescure’s 
paper in a course that we gave in 1866-67 at the Collége de France as a substitute for J. Bertrand. 
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values of the nine coefficients that satisfy both the systems (1) and (2).  The proof of that 
essential proposition can be deduced from general theorems that relate to partial 
differential equations, but one can also obtain it directly in the following manner: 
 I first say that upon supposing that equations (5) are satisfied, one can deduce a new 
solution of equations (1) from any system of values (α, β, γ) that satisfies equations (1), 
but not equations (2). 
 Indeed, set: 

 A = 
v

α∂
∂

− β r1 + γ q1 , 

 B = 
v

β∂
∂

− γ p1 + α r1 , 

 C = 
v

γ∂
∂

− α q1 + β p1 . 

 
 We shall show that the quantities A, B, C, which are not all zero, by hypothesis, verify 
equations (1). 
 Indeed, one has: 
 

 
A

u

∂
∂

 = 
2

1 1
1 1

r q
r q

u v u u u u

α β γ β γ∂ ∂∂ ∂ ∂− − − −
∂ ∂ ∂ ∂ ∂ ∂

 

  = 1 1
1 1( )

r q
r q r q

v u u u u

β γβ γ β γ∂ ∂∂ ∂ ∂− − − − −
∂ ∂ ∂ ∂ ∂

, 

 

or, upon replacing 
u

β∂
∂

, 
u

γ∂
∂

 with their values and taking equations (5) into account: 

 

(6) 
A

u

∂
∂

 = Br – Cq. 

 One will likewise have: 

(6′)  
,

,

B
Cp Ar

u
C

Aq Bp
u

∂ = − ∂
 ∂ = −
 ∂

 

 
upon performing some permutations, and consequently, A, B, C will indeed give a new 
solution to system (1).  Since system (6) has degree one with respect to the derivatives of 
the functions A, B, C, it will obviously admit just one solution for which the initial values 
of those functions that correspond to a given value u0 of u will be quantities A0, B0, C0 
that are given in advance (11).  It is also obvious that if those initial values are zero then 

                                                
 (11) The proposition that we just assumed here, and in the developments that will follow − namely, that 
when a first-order system of differential equations is solved with respect to the derivatives of the unknown 
functions, it will admit just one solution for which the initial values of the unknown functions are given – is 
due, as one knows, to Cauchy, who proved it in full generality.  In truth, he assumed some exceptions that 
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the unique solution that they will correspond to is the one that is determined by the 
equations: 

A = B = C = 0. 
 

 We can then state the following proposition: 
 
 If one knows one solution of the system (1) that will satisfy equations (2) when it is 
substituted in them and one gives a particular value u0 to u then it will likewise satisfy 
them for any value of u. 
 
 
 42.  Having made that point, suppose that one desires to find the most general 
solutions that are common to both equations (1) and (2).  We shall see that there exists an 
infinitude of values for α, β, γ that satisfy those equations, and that each system of 
common solutions is determined completely when one gives the values α0, β0, γ0  of α, β, 
γ  that correspond to the initial values u0, v0 of u and v. 
 Indeed, suppose that one replaces u with u0 in α, β, γ.  The desired solutions will 
reduce to functions α′, β′, γ′ of v.  Now, those functions of v are plainly determined by 
the condition that they must satisfy equations (2) when one replaces u with u0 and assume 
the initial values α0, β0, γ0 for v = v0 .  On the other hand, α, β, γ are functions of u that 
must satisfy equations (1) and reduce to α′, β′, γ′  for u = u0 .  They themselves are also 
determined completely by that double condition, and it will suffice for us to show that 
those functions α, β, γ likewise satisfy system (2). 
 Now, that fact is almost obvious, because if one replaces u with u0 then α, β, γ will 
reduce to α′, β′, γ′ and satisfy equations (2) for that particular value of u.  Consequently, 
they will satisfy them for all values of u, from the proposition that we just proved. 
 
 
 43.  There is then an infinitude of different systems of common solutions, and the 
most general solution depends on three arbitrary constants, as one sees.  On the other 
hand, if α, β, γ ; α1, β1, γ1 denote two different systems of solutions then the functions: 
 

α 2 + β 2 + γ 2,  αα1 + ββ1 + γγ1, 
2 2 2
1 1 1α β γ+ +  

 
will remain constant for all values of u and v.  The proof of this is the same as in the case 
of one variable.  As a result, if we take three different systems of solutions a, b, c; a′, b′, 
c′ ; a″, b″, c″ whose initial values are the nine cosines that determine the position of a tri-
rectangular trihedron (T0) with respect to the fixed axes then we will have relations such 
as the following ones: 

a2 + b2 + c2 = 1, aa′ + bb′ + cc′ = 0 
 

                                                                                                                                            
corresponded to the cases in which the derivatives of the unknown functions were presented, wholly or in 
part, in an indeterminate or infinite form.  However, we obviously do not have to be preoccupied with those 
exceptional cases in the questions that we shall address. 
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for all values of u and v, and for all values of u and v, our three systems of solutions will 
define the position of a moving trihedron for which the rotations will be the given 
quantities p, q, r ; p1, q1, r1 , precisely. 
 Here again, as in the case of just one variable, all of the solutions that one can obtain 
will be deduced from one of them by a simple change of coordinates.  One will always 
have the same displacement, but it will be referred to different axes. 
 
 
 41.  As an application, we propose to look for the motions under which the six 
rotations depend upon just one variable v.  Equations (5) then become: 
 

(7)      

1 1

1 1

1 1

,

,

.

p
qr rq

v
q

rp pr
v
r

pq qp
v

∂ = − ∂


∂ = − ∂
∂ = − ∂

 

 One deduces from this that: 

p
p

v

∂
∂

+ q
q

v

∂
∂

+ r
r

v

∂
∂

= 0, 

 
and consequently, since h is a constant: 
 

p2 + q2 + r2 = h2. 
 

 One already sees that the systems (1) and (2) admit the solution: 
 

α = 
p

h
, β = 

q

h
,  γ = 

r

h
. 

 
 We can take that solution to represent a″, b″, c″, and upon appealing to Euler’s 
formulas, we will have: 
 

− sin θ sin ϕ  =
p

h
, − sin θ cos ϕ  =

q

h
, cos θ =

r

h
, 

 
which already shows that θ and ϕ are functions of the single variable v. 
 If we refer to formulas (7) [pp. ?], which give the rotations, then here we will have: 
 

 sin θ 
u

ψ∂
∂

= p sin ϕ + q cos ϕ , 

 

 sin θ 
v

ψ∂
∂

= p1 sin ϕ + q1 cos ϕ , 
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and consequently: 

u

ψ∂
∂

= − h, 
v

ψ∂
∂

= − 1 1
2 2

pp qq

h r

+
−

 h, 

which will give: 
ψ = − hu + V, 

 
in which V denotes a function of v.  Conversely, formulas (6) [pp. ?] show us that if θ, ϕ 
do not contain u, and if ψ contains it only linearly then the six rotations will indeed be 
functions of the single variable v. 
 
 
 45.  In the preceding example, the six rotations were functions of one of the 
independent variables.  We propose to seek, in a more general manner, all of the cases in 
which they are functions of any of them.  p, q, r; p1, q1, r1 can then be regarded as 
functions of one certain variable θ, which will depend on the variables u and v in an 
arbitrary manner. 
 If we denote the derivatives of p, q, … with respect to θ by p′, q′, …, resp., then 
equations (5) will give us: 

(8)     

1 1 1

1 1 1

1 1 1

,

,

.

p p qr rq
v u

q q rp pr
v u

r r pq qp
v u

θ θ

θ θ

θ θ

∂ ∂ ′ ′− = − ∂ ∂


∂ ∂ ′ ′− = − ∂ ∂
∂ ∂ ′ ′− = − ∂ ∂

 

 

 If one can infer the values of 
u

θ∂
∂

, 
v

θ∂
∂

 from any two of these equations then those 

values will have the form: 

u

θ∂
∂

 = f (θ),  
v

θ∂
∂

 = ϕ (θ), 

 
and those two equations will lead to an expression for θ of the form: 
 

θ = F (au – bv), 
 
in which a and b are two constants.  Upon replacing the variables u and v with the 
following ones: 

u1 = au – bv,  v1 = av – bu, 
 

one will come back to the preceding case. 
 It only remains for us to examine the case in which the equations (8) can be solved 

for 
u

θ∂
∂

, 
v

θ∂
∂

, and in which one has, consequently: 
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(9)   
1

p

p

′
′
= 

1

q

q

′
′
 = 

1

r

r

′
′
,  

1 1

p

qr rq

′
−

 = 
1 1

q

rp pr

′
−

= 
1 1

r

pq qp

′
−

. 

 
 One first deduces from the relations that: 
 
 p′p + q′q + r′r = 0. 
 1 1 1 1 1 1p p q q r r′ ′ ′+ +  = 0, 

and upon integrating: 
 p2 + q2 + r2 = const., 
 2 2 2

1 1 1p q r+ + = const. 

 
 Upon multiplying the variables u and v by suitably-chosen constants, one can write: 
 
 p2 + q2 + r2 = 1, 
 2 2 2

1 1 1p q r+ + = 1, 

 
and consequently, the extremities (p, q¸ r), (p1, q1, r1) of the two rotational axes will 
describe two curves (C), (C′ ) that are situated on the sphere of radius 1 with respect to 
the moving axes. 
 It results from the first of equations (9) that those two curves will have parallel 
tangents for each value of θ.  They are then two mutually-parallel curves, and if one 
supposes (as is obviously permissible) that one has taken θ to be the arc length of the 
curve (C) when one starts from a fixed origin then one can set: 
 

(10)    
1

1

1

cos sin ( ),

cos sin ( ),

cos sin ( ),

p p h h qr rq

q q h h rp pr

r r h h pq qp

′ ′= + −
 ′ ′= + −
 ′ ′= + −

 

in which h is a constant angle. 
 
 
 46.  One can deduce a geometric representation of motion from these results.  
Consider the curve that is described in space by the extremity of one of the instantaneous 
axes; for example, by the point (p, q, r).  If one lets a, b, c, a′, … denote the nine cosines 
that determine the position of the moving system, and lets X, Y, Z denote the coordinates 
of that point relative to the fixed axes then one will have: 
 
 X = a p + b q  + c r, 
 Y = a′p  + b′q  + c′r, 
 Z = a″p + b″q + c″r. 
 
 Totally differentiate the first of these equations and replace da, db, dc with their 
values that are deduced from (1), (2).  Upon then replacing p1, q1, r1 with their values that 
one infers from equations (10), we will obtain: 
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dX = (ap′ + bq′ + cr′) d (θ + v sin h). 
 

 That formula shows us that X, Y, Z depend upon the same variable θ + v sin h.  
Consequently, the pole (X, Y, Z) will describe a curve (Γ) in space that is traced on the 
sphere of radius 1, and which will always be in contact with the curve (C).  We will then 
be led to the following result: 
 Consider two curves (C) and (Γ) on the sphere of radius 1.  If we displace the curve 
(C), while requiring it to remain tangent to the curve (Γ), then a curve (C′) that is parallel 
to (C) and is carried along by its motion will always remain tangent to a fixed curve (Γ′) 
that is parallel to (Γ).  The displacement of the two curves (C) and (C′) is precisely the 
one that we propose to define.  When only u varies, the curve (C) will roll with a constant 
velocity on (Γ), and similarly when v only varies, (C′) will roll on (Γ′) with a velocity that 
is also constant. 
 
 

___________ 



CHAPTER VI 
 

SIMULTANEOUS INTEGRATION OF THE LINEAR SYSTEMS 
THAT WERE ENCOUNTERED IN THE PRECEDING THEORY. 

 
Reduction of the problem to the simultaneous integration of two Riccati equations. – Various propositions 

that relate those two equations. – Another method of solution that is based upon the determination of a, 
a′, a″. 

_________ 
 

 
 47.  Now that we recognize the existence of common solutions to the systems (1) and 
(2), we shall indicate how one can determine them.  Since one must consider only 
solutions for which one has: 
(1)      α 2 + β 2 + γ 2 = 1 
 
in the question that we address, one can express α, β, γ as functions of the x, y by means 
of formulas (9) [pp. ?], and from the results that were obtained in no. 15, the variables x, 
y must both satisfy the two equations: 
 

(2)    

2

21 1 1 1
1

,
2 2

,
2 2

q ip q ip
ir

u
q ip q ip

ir
v

σ σ σ

σ σ σ

∂ − + = − + − ∂
 − +∂ = − + +
 ∂

 

 
which are obviously compatible, like the systems that one deduces from them. 
 
 
 48.  We are then led to the following problem in analysis: Study the simultaneous 
integration of the two equations of the form: 
 

(3)     

2

2
1 1 1

2 ,

2 ,

a b c
u

a b c
v

σ σ σ

σ σ σ

∂ = + + ∂
 ∂ = + +
 ∂

 

 
in which a, b, c ; a1, b1, c1 are given functions of u and v. 

 Upon equating the two values of 
2

u v

σ∂
∂ ∂

 that one can deduce from these equations, 

one will be led to the relation: 
 
 2 (cσ + b)(a1 + 2b1 σ + c1σ2) – 2 (c1σ + b1)(a + 2bσ + cσ2)  
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+ 21 1 12
a b ca b c

v u v u v u
σ σ∂ ∂ ∂∂ ∂ ∂   − + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

 = 0, 

 
which has degree two with respect to σ. 
 If that relation is not true identically then the two equations (3) can admit at most two 
common solutions.  Hence, if one demands that the system (3) should have a solution that 
contains an arbitrary constant then it will be necessary that the coefficients of the various 
powers of σ in the preceding equation should be zero, which will give: 
 

(4)    

1
1 1

1
1 1

1
1 1

2 2 0,

0,

2 2 0.

aa
ba ab

v u
bb

ca ac
v u

cc
cb bc

v u

∂∂ − + − = ∂ ∂


∂∂ − + − = ∂ ∂
∂∂ − + − = ∂ ∂

 

 
 When these relations are applied to equations (2), they will reproduce formulas (5) of 
the preceding chapter.  Consequently, we can suppose that they are verified in the rest of 
our discussion. 
 
 
 49.  Conversely, we shall show that when the coefficients a, b, c ; a1, b1, c1 satisfy 
conditions (4), the proposed equations (3) will admit a common solution that contains an 
arbitrary constant.  In order to do that, we let σ denote an arbitrary solution of the first of 
those equations and set: 

(5)     θ = 
v

σ∂
∂

− a1 – 2b1σ – c1 σ 2. 

Moreover, one has: 

u

σ∂
∂

− a1 – 2b1σ – c1 σ 2 = 0. 

 
 Differentiate the preceding equation with respect to v and equation (5) with respect to 
u, and subtract the two relations thus-obtained.  Upon taking the identities (4) into 
account, as well as the preceding two equations, we will have: 
 

(6)     
u

θ∂
∂

 = 2 (cσ + b) θ, 

which will give: 

(7)     θ = θ0 
1

0
2 ( )

u

u
c b du

e
σ +∫

 
 
by integration, in which θ0 denotes the value of θ for u = u0 .  Hence, if θ is zero for u = 
u0 then the same thing will be true for all values of u. 
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 Having established that point, set u = u0 in the second of equations (3) and determine 
the function σ′ of v that satisfies that equation and reduces to σ0 for v = v0 .  One will then 
have: 

v

σ ′∂
∂

= a1 + 2b1σ′  + c1 σ′ 2  

for u = u0 . 
 Consider the first of equations (3), in turn, and determine the function σ that satisfies 
that equation and reduces to σ′  for u = u0 .  From what we just proved, that function σ 
will satisfy two equations, because the value of the function that we have denoted by θ 
relative to the solution thus-determined will be zero for u = u0, and consequently, it will 
remain zero for all values of u.  The function σ that satisfies the two equations will 
contain the arbitrary constant σ0, moreover. 
 All of the operations that were just indicated are possible and require no quadrature 
when one knows how to separately integrate each of equations (3).  Thus, one will know 
how to determine the common solution to the two equations without integration when 
one has obtained the integral of each of them. 
 
 
 50.  We shall now prove some propositions that make the simultaneous integration of 
equations (3) simpler. 
 First, suppose that one knows a common solution to those two equations σ = x.  Upon 
setting: 

σ = x − 1

ω
, 

 
one will be led to two linear equations of the form: 
 

 
u

ω∂
∂

 = P ω  + Q, 

 
v

ω∂
∂

 = P1ω + Q1, 

 
and the general value of ω will be obtained by the formula: 
 

(8)   ω = 1 1( ) ( )Pdu Pdv Pdu P dv
e e

+ − +∫ ∫∫ (Q du – Q1 dv), 

 
which contains only exact differentials, as one easily assures oneself. 
 It is pointless to dwell upon the case in which one has two or three common solutions; 
the method that we followed in no. 17 will apply without modification.  However, it is 
convenient to examine the hypothesis that one has a particular solution of one of the 
equations that does not satisfy the other one.  One can append the following result to the 
ones that were just established: One can determine the general integral from those of the 
equations without integration when one knows a particular solution. 



Chapter VI. – Simultaneous integration of linear systems. 53 

 For example, let x be a value of σ that satisfies the first equation and not the second 
one.  Set: 

σ = x − 1

ω
. 

 
 If we substitute that value of σ in the first of equations (3) then it will become: 
 

 
u

ω∂
∂

= − 2 (b + cx) ω – c. 

 
 Introduce the function θ that is defined by equation (5) when one replaces σ with x, 
and which, from formula (6), will verify the equation: 
 

 
u

θ∂
∂

= 2 (b + cx) θ . 

 
 The equation that ω must satisfy can be exhibited in the following form: 
 

(9)     
( )

u

ωθ∂
∂

− cθ = 0. 

 
 Now, an easy calculation will lead to the identity: 
 

cθ = 1 1( ) ( )cx b c x b
v u

∂ ∂+ − +
∂ ∂

 = 1 1

1 log

2
c x b

u v

θ∂ ∂ − − ∂ ∂ 
. 

 
 Upon substituting the value of cθ in equation (9), we will find that: 
 

1 1

1 log

2
c x b

u v

θωθ∂ ∂ + − − ∂ ∂ 
 = 0, 

and upon integrating: 

(10)    ωθ = 
x

θ
σ −

 = c1x + b1 − 
1 log

2 v

θ∂
∂

 + C, 

 
in which C denotes the arbitrary constant, which can be a function of v.  The formula that 
shows one the general integral of the first equation contains no quadrature sign, as we 
have asserted. 
 The proposition that was just established, when combined with the ones that preceded 
it, will permit us to conclude that if one knows a particular solution to each of the two 
equations (3) that does not satisfy the other one then it will be possible to obtain the 
general solutions to those two equations with no actual quadrature, and consequently 
their common solutions, as well. 
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 51.  In conclusion, we will show how one can define various differential equations 
whose integration will imply that of the system (3) without quadrature by appealing to the 
latter result. 
 Add equations (3), after multiplying them by du and dv, respectively.  We will have: 
 

dσ – (a du + a1 dv) – 2 (b du + b1 dv) σ – (c du + c1 dv) σ 2 = 0. 
 
 Now, imagine the two differential equations that we define by replacing σ with the 
two functions σ1, σ2 in succession, which are chosen at will: 
 

(11)  
2

1 1 1 1 1 1
2

2 1 1 2 1 2

2( ) ( ) 0,

2( ) ( ) 0.

d a du a dv b du b dv c du c dv

d a du a dv b du b dv c du c dv

σ σ σ
σ σ σ

 − − − + − + =
 − − − + − + =

 

 
 Suppose that one knows how to integrate each of these two differential equations.  I 
say that one can integrate the system (3) with no quadrature. 
 Indeed, let: 
 ϕ (u, v) = α 
 
be the integral to the first equation (11) and let: 
 
 ψ (u, v) = β 
 
be that of the second equation.  Make a change of variables and substitute α, β for u and 
v.  From the definition of α and β itself, one will have: 
 

(12) 

21
1 1 1 1 1

22
1 1 2 1 2

2 ,

2 .

u v u v u v
a a b b c c

u v u v u v
a a b b c c

σ σ σ
β β β β β β β

σ σ σ
α α α α α α α

    ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    


∂ ∂ ∂ ∂ ∂ ∂ ∂    = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 
 As for the system (3), it will take the form: 
 

(13) 

2
1 1 1

2
1 1 1

2 ,

2 .

u v u v u v
a a b b c c

u v u v u v
a a b b c c

σ σ σ
β β β β β β β
σ σ σ
α α α α α α α

    ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    


∂ ∂ ∂ ∂ ∂ ∂ ∂    = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 
 Equations (12) express the idea that σ1, σ2 are particular solutions to the first and 
second of equations (13), respectively.  Consequently, from what we proved, one can 
integrate the system (13) completely, which is equivalent to the system (3). 
 In order to apply the last proposition, we return to the proposed system of equations 
(2), and take: 
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σ1 = 1,  σ2 = − 1. 
 

The two equations (11) will become: 
 
 q du + q1 dv + i (r du + r1 dv) = 0, 
 q du + q1 dv − i (r du + r1 dv) = 0, 
here. 
 The integration of these two equations will then imply that of the system (2).  We 
shall explain that result by introducing a new means of first integrating the system of 
equations (1) and (2) in the preceding chapter that is completely different from the one 
that we just studied. 
 
 
 52.  One always denotes the nine cosines that satisfy these equations (1) and (2) by a, 
b, …  One will have: 

(14)    
1 1

1 1

1 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

da br cq du br cq dv

db cp ar du cp ar dv

dc aq bp du aq bp dv

= − + −
 = − + −
 = − + −

 

 
and the analogous relations that one will obtain by putting primes on a, b, c.  If one 
combines the first of these equations with the ones that give da′, da″ then one will obtain: 
 
(15)   da2 + da′2 + da″2 = (q du – q1 dv)2 + (r du – r1 dv)2 . 
 
 Now, since a, a′, a″ are coupled by the equation: 
 

a2 + a′2 + a″2 = 1, 
 
they will be the coordinates of a point in a sphere, and it is likewise obvious that the 
sphere will be the one that is described by a point that is situated at a distance 1 from the 
moving axis Ox.  Here again, if one consider that sphere to be a ruled surface, and if one 
sets: 

(16)    
1

a ia

a

′+
′′−

= x, 
1

a ia

a

′−
′′−

= − 1

y
 

 
then equation (15) will take the form: 
 

(17)   2

4

( )

dx dy

x y−
= (q du + q1 dv)2 + (r du + r1 dv)2. 

 
 If one can deduce x, y from that equation as functions of u and v then one will have a, 
a′, a″, and formulas such as the following ones: 
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a

u

∂
∂

 = br – cq,  
a

v

∂
∂

= br1 – cq1 

 
will show one the six cosines that remain to be determined by elementary calculations.  
Hence, everything comes down to finding the values of x and y as functions of u and v 
that satisfy equation (17). 
 We decompose the left-hand side of that equation into two factors that we equate to 
zero.  We will then have two differential equations: 
 

(18)    1 1

1 1

( ) 0,

( ) 0.

q du q dv i r du rdv

q du q dv i r du rdv

+ + + =
 + − + =

 

 Let: 
(19)    ϕ (u, v) = α, ψ (u, v) = β 
 
be the integrals of those two equations. If we make a change of variables, and if we 
replace u and v with the functions α, β then the right-hand side of formula (17) will take 
the form: 

4 λ dα dβ, 
 
in which λ is a known function of α and β, and the equation to be solved will become: 
 

(20)    2

4

( )

dx dy

x y−
 = λ dα dβ. 

 
 It can clearly admit only one of the following two solutions: 
 
 x = A,  y = B, 
 x = B,  y = A, 
 
in which A denotes a function of α, and B denotes a function of β. 
 λ must then have the value: 

(21)     λ = 2( )

A B

A B

′ ′
−

, 

 
and it will be necessary to deduce the values of A and B from that equation. 
 If one eliminates the functions A and B by a well-known process then one will see 
that λ satisfies the partial differential equation: 
 

(22)     
2 logλ
α β

∂
∂ ∂

= − 2λ, 

 
which will be useful to us.  However, if one would like to obtain the expression for A or 
B then one will be presented with a difficulty upon taking into account that, from a 
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remark that was made before, the expression for λ will not change when one replaces A 
and B with: 

m nA

p qA

+
+

, 
m nB

p qB

+
+

, 

 
respectively, in which m, n, p, q are constants.  It then seems that the most general 
expression for A that can satisfy equation (21) must contain three constants, and 
consequently can be determined only by integrating a third-order differential equation. 
 Indeed, let us attempt to determine A.  Upon taking the logarithmic derivative with 
respect to α of the two sides of equation (21), we will have: 
 

(23)     
2A A

A A B

′′ ′
−

′ +
 = 

logλ
α

∂
∂

. 

 
 A new differentiation with respect to a will permit us to eliminate B, and will lead to 
the equation: 

(24)    
2

2

3 2A A

A A

′′ ′′′
−

′ ′
 = 

2 2

2

log 2
3

λ λ
α λ α

∂ ∂  − ∂ ∂ 
. 

 
 We shall see that the integration of that equation can be performed with no difficulty. 
 Since the right-hand side is equal to the left, it cannot depend upon β, and 
consequently, it cannot change when one gives an arbitrary constant value β0 to β. 
 Let λ0 be the corresponding value of λ.  Equation (24) will obviously admit the 
solution: 

A′ = λ0 ,  A = ∫ λ0 dα, 
 

or, upon taking equation (22) into account: 
 

A = − 
0

1 log

2

λ
β

∂
∂

, 

 
and it will suffice to substitute that value of A in equation (23) in order to deduce the 
corresponding value of B. 
 
 
 53.  Hence, all of the difficulty in our new method consists of integrating the two 
equations (18).  It is clear that if one has to likewise consider b, b′, b″ ; c, c′, c″, instead of 
a, a′, a″, then one will have to integrate two equations from one of the following groups: 
 

(25)   1 1

1 1

( ) 0,

( ) 0,

p du p dv i r du rdv

p du p dv i r du rdv

+ + + =
 + − + =
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(26)   1 1

1 1

( ) 0,

( ) 0.

p du p dv i q du q dv

p du p dv i q du q dv

+ + + =
 + − + =

 

 
 There is obviously a great advantage to having a free choice of these three different 
groups. 
 
 
 54.  We add a further remark that purely relates to the form of the two equations (3).  
One can reduce their simultaneous integration to that of just one Riccati equation.  
Indeed, suppose that one must find the common solution to those equations that reduces 
to σ0 for u = u0, v = v0 .  Set: 
 

u = u0 + u′ t,  v = v0 + v′ t, 
 

in which u′, v′ denote constants.  σ will become a function of t that must satisfy the 
equation: 

d

dt

σ
 = u v

u v

σ σ∂ ∂′ ′+
∂ ∂

= a u′ + a1v′ + 2 (bu′ + b1 v′) σ + (cu′ + c1 v′) σ 2, 

 
in which the coefficients are now functions of t. 
 It will then be determined by that condition, combined with that of reducing to σ0 for 
t = 0.  Suppose that one has determined that function: 
 

σ = F (u0, v0, u, v, t) . 
 
In order to obtain the desired solution, it will suffice to set t = 1 and replace u′, v′ with u – 
u0, v – v0, respectively. 
 Upon taking that purely theoretical remark into account, one can say that: 
 
 The simultaneous integration of the systems (1) and (2) of the preceding chapter will 
reduce to that of just one Riccati equation. 
 
 

_________ 
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DISPLACEMENTS IN TWO VARIABLES IN THE CASE WHERE 
THE MOVING SYSTEM HAS NO FIXED POINT. 

 
Introduction of six translations. – Differential relations that they must satisfy. – Infinitely-small  motions 

that reduce to rotations. – Theorem of Schönemann and Mannheim. – Particular case in which one has 
an instantaneous center of rotation. – Ribaucour’s theorem. 

 
_________ 

 
 

 55.  After having treated the case in which the moving system has a fixed point, it 
remains for us to examine the hypothesis in which the trihedron (T) moves through space 
in an arbitrary manner.  We must then append six new quantities to the six rotations.  We 
let ξ, η, ζ denote the components of the velocity of the origin of the moving axes relative 
to those axes when only u varies, and let ξ1, η1, ζ 1 denote the same components when 
only v varies.  If one lets X0, Y0, Z0 denote the coordinates of the origin of the moving 
axes with respect to the fixed axes then one will have: 
 

(1)    0X

u

∂
∂

= aξ + bη + cζ ,  0X

v

∂
∂

= aξ1 + bη1 + cζ1 , 

 

and analogous equations in Y0, Z0 .  Equate the two values of 
2

0X

u v

∂
∂ ∂

 that one can deduce 

from those formulas.  After replacing the derivatives of the cosines with their values, we 
will obtain an equation that must be true when one replaces a, b, c with the other systems 
a′, b′, c′ ; a″, b″, c″ and will decompose into the following three (12): 
 

(2)    

1
1 1 1 1

1
1 1 1 1

1
1 1 1 1

,

,

.

q q r r
v u

r r p p
v u

p p q q
v u

ξξ ζ ζ η η

ηη ξ ξ ζ ζ

ζζ η η ξ ξ

∂∂ − = − − + ∂ ∂


∂∂ − = − − + ∂ ∂
∂∂ − = − − + ∂ ∂

 

 
 
 56.  Conversely, when the twelve quantities ξ, p, … satisfy equations (2), at the same 
time as equations (5) in chapter V, there will exist a displacement for which they will be 
rotations and translations, because we already know that one can determine the nine 

                                                
 (12) One can compare these formulas with the analogous ones that were given by Kirchhoff in the fourth 
and fifth lecture in Vorlesungen über Mathematische Physik, 1876.  
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cosines, and furthermore, that equation (1), which will be compatible by virtue of 
equations (2), will provide the coordinates of the origin of the moving axes by 
quadratures.  It is pointless to repeat here all of the motions that are obtained by reducing 
to basically just one motion that is observed with respect to different axes. 
 It is obvious that if, instead of considering all of the positions of the moving system 
that correspond to the different values of u and v, one supposes that u and v are functions 
of just one parameter α then the rotations and translations that relate to that motion will 
be: 

(3)   
1 1 1

1 1 1

u v u v u v
p p q q r r

u v u v u v
α α α α α α

ξ ξ η η ζ ζ
α α α α α α

∂ ∂ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ + + +
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
and the projections onto the moving axes of the element of the curve that is described by 
an arbitrary point M whose coordinates are x, y, z with respect to the moving axes will be: 
 

(4)   
1 1 1

1 1 1

1 1 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

dx du dv q du q dv z r du rdv y

dy du dv r du r dv x p du p dv z

dz du dv p du p dv y q du q dv x

ξ ξ
η η
ζ ζ

+ + + + − +
 + + + + − +
 + + + + − +

 

 
In other words, if α is the time then one will get the components of the velocity with 
respect to moving axes upon dividing the preceding three expressions by dα .  We will 
often make use of that remark, which dispenses with many of the calculations and 
permits one to leave aside everything that is concerned with fixed axes. 
 Upon concluding these preliminary notions on motion here, we shall be content to 
remark that the method that is followed will apply without modification to the case in 
which the position of the moving system depends upon three, or even more, parameters. 
 
 
 57.  We shall make use of the preceding results in order to prove an important 
theorem that relates to displacements in two variables (13). 
 If one considers the moving system in a well-defined position then it can leave that 
position in an infinitude of ways; the rotations and translations that correspond to the 
most general motion that it can take on are given by Table (3).  We seek to know whether 
one of the infinitely-small motions that one thus obtains can be reduced to a simple 
rotation. 
 In order to do that, it is necessary that one must have (no. 3): 
 

                                                
 (13) This theorem was stated by Mannheim in 1866 in the Journal de Liouville (2) 11, and since then it 
has been the subject of deep study.  In that epoch, they overlooked the fact that it had been stated eleven 
years before by Schönemann in an article that was presented to the Berlin Academy by Steiner 
(Monatsberichte, 1855).  It was Geiser whose called attention to the paper of Schönemann in 1880 and had 
the theorem reprinted in Crelle’s Journal 90, pp. 39-48. 
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(5)   1 1

1 1 1 1

( )( )

( )( ) ( )( ) 0.

p du p dv du dv

q du q dv du dv r du r dv du dv

ξ ξ
η η ζ ζ

+ +
 + + + + + + =

 

 
 That equation provides two values for du / dv, which are generally different.  In 
general, there will then be two different (real or imaginary) motions that reduce to a 
rotation.  The axis of rotation that corresponds to each of the motions will be defined by 
the equations: 

(6)   
1 1 1

1 1 1

1 1 1

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

du dv q du q dv z r du r dv y

du dv r du r dv x p du p dv z

du dv p du p dv y q du q dv x

ξ ξ
η η
ζ ζ

+ + + − + =
 + + + − + =
 + + + − + =

 

 
in which one replaces du / dv with the root of equation (5) that corresponds to the motion 
considered. 
 The preceding result has an important consequence that is easy to verify by a direct 
calculation.  Since two of the motions reduce to rotations around two lines, which we call 
D, ∆: 
 
 The normal to the surface that is described by an arbitrary point of the invariable 
system must meet each of those two lines, 
 
because since that normal is perpendicular to all of the displacements of the point 
considered, it will be perpendicular to the ones that rotate the point, in particular, and 
consequently it will necessarily meet the axes of those rotations. 
 
 
 58.  Equation (5) has degree two with respect to du / dv.  It can then have imaginary 
roots, and the two motions that reduce to rotations will then be certainly imaginary; it can 
also have equal roots.  We shall not discuss all of the cases that can present themselves, 
but we shall study the displacements for which one knows a priori that there exist two 
displacements that reduce to rotations around two distinct and concurrent lines.  Upon 
starting with that hypothesis, Ribacour obtained an elegant theorem (14) that we shall 
prove. 
 It is easy to recognize that in the case that we address, equation (5) can be an identity.  
Indeed, denote the two values that du / dv can take relative to the rotations considered by 
du / dv, δu / δv; one will necessarily have: 
 
 (p du + p1 dv) (ξ du + ξ1 dv) + … = 0, 
 (p δu + p1 δv) (ξ du + ξ1 dv) + … = 0. 
 
 The axes of those rotations are defined by formulas (6).  The condition for those axes 
to intersect can be written in the very symmetric manner: 
 

                                                
 (14) RIBAUCOUR, “Sur la déformation des surfaces,” Comptes rendus 70, pp. 330. 
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(p du + p1 dv) (ξ du + ξ1 dv) + (p δu + p1 δv) (ξ du + ξ1 dv) + … = 0. 
 

The three equations that we just obtained can reduce to the following type: 
 

(7)    

2 2

2 2

2 0,

2 0,

( ) 0,

Adu B du dv C dv

A u B u v C v

Adu u B du v C dv u C dv v

δ δ δ δ
δ δ δ δ

 + + =
 + + =
 + + + =

 

 
in which A, B, C have the values: 
 A =  p ξ  + …, 
 2B = p1 ξ  + p ξ1 + …, 
 C = p1 ξ1 + … 
 
If one considers the three equations (7) as determining the unknowns A, B, C then their 
determinant will be (du δv – dv δu)3, and by hypothesis, it will not be zero.  One will then 
have: 

A = B = C = 0, 
 

and consequently equation (5) will be satisfied identically. 
 One can arrive at the same conclusions by a much simpler argument.  If the two lines 
D, ∆ meet then their point of intersection will have a zero velocity under all 
displacements.  If one lets x′, y′, z′ denote the coordinates of that point relative to the 
moving axes then one must then have: 
 

(8)    
1 1 1

1 1 1

1 1 1

0, 0,

0, 0

0, 0,

qz ry q z r y

rx pz r x p z

py qx p y q x

ξ ξ
η η
ζ ζ

′ ′ ′ ′+ − = + − =
 ′ ′ ′ ′+ − = + − =
 ′ ′ ′ ′+ − = + − =

 

 
and it is not difficult to deduce the equations: 
 

A = 0, B = 0, C = 0 
 
from this.  However, here is the consequence of it that constitutes Ribaucour’s theorem: 
 Suppose that there are values of x′, y′¸ z′ that satisfy equation (8) for all values of u 
and v.  The point (x′, y′, z′), which is considered to be belong to the moving system, 
describes a surface (s) that we regard as being a part of that system.  If one refers the 
same point to fixed axes then it will describe a surface (S).  Give increments du, dv to u 
and v.  The points will be displaced on the surface (S) and will describe an infinitely-
small arc whose projections onto the moving axes, which are given by formulas (4), will 
be, upon taking equations (8) into account: 
 

dx′, dy′, dz′. 
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Now, these are the projections onto the same axes of the path that is described by the 
point considered on the surface (s).  Those two paths always have the same direction and 
magnitude, so one sees that the two surfaces (s) and (S) are not only tangent, but also roll 
on each other in such a manner that the paths that are traversed by the point of contact of 
the two surfaces will always have the same length and direction. 
 In other words, the two surfaces correspond point-by-point in such a manner that the 
two corresponding curves will have the same length.  One then says that they can be 
mapped to each other. 
 
 
 59.  We can add the following properties: 
 We infer the values of ξ, …, ξ1, … from equations (8), and substitute them into 
equations (2).  We obtain the relations: 
 

(9)    

1 1

1 1

1 1

0,

0,

0,

z y z y
q r q r

v v u u
x z x z

r p r p
v v u u
y x y z

p q p q
v v u u

′ ′ ′ ′∂ ∂ ∂ ∂ − − + = ∂ ∂ ∂ ∂
 ′ ′ ′ ′∂ ∂ ∂ ∂ − − + = ∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂ − − + = ∂ ∂ ∂ ∂

 

 
from an easy calculation, which will lead to an important consequence.  Multiply these 

relations by 
x

v

′∂
∂

,
y

v

′∂
∂

,
z

v

′∂
∂

, and add them.  We will have: 

 

1 1 1p q r

x y z

u u u
x y z

v v v

′ ′ ′∂ ∂ ∂
∂ ∂ ∂

′ ′ ′∂ ∂ ∂
∂ ∂ ∂

 = 0. 

 
If λ and µ1 are two conveniently-chosen functions then we can set: 
 

(10) 

1 1

1 1

1 1

,

,

.

x x
p

u v
y y

q
u v
z z

r
u v

µ λ

µ λ

µ λ

′ ′∂ ∂ = − + ∂ ∂
 ′ ′∂ ∂ = − + ∂ ∂

′ ′∂ ∂ = − + ∂ ∂

 

We will similarly have: 

p = 1

x x

u v
λ µ′ ′∂ ∂+

∂ ∂
, 
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and analogous equations in q, r.  Moreover, if we substitute the values of the rotations in 
equations (9) then we will obtain the complementary condition: 
 
(11)  λ1 = − λ, 
 
in such a way that we will get the following values for p, q, r: 
 

(12) 

,

,

,

x x
p

u v
y y

q
u v
z z

r
u v

λ µ

λ µ

λ µ

′ ′∂ ∂ = − + ∂ ∂
 ′ ′∂ ∂ = − + ∂ ∂

′ ′∂ ∂ = − + ∂ ∂

 

 
which will replace formulas (4) and (9) when we combine them with equations (10). 
 
 
 60.  The geometric interpretation of equations (10) and (12) is obvious.  Since the 
derivatives of x′, y′, z′ with respect to u and v are proportional to the direction cosines of 
the two tangents to the surface that is the locus of instantaneous centers, the two rotations 
whose components are p, q, r and p1, q1, r1 will be in the tangent plane to that surface.  
The same thing will obviously be true for the rotation that corresponds to an arbitrary 
simultaneous rotation of u and v; one will get that from formulas (3), which give the 
components of that rotation.  We can then state the following proposition: 
 If it happens that two infinitely-close motions that take the system to an infinitely-
close position reduce to two rotations around axes that are concurrent at that point for 
each position of the moving system then any other infinitely-close motion of the system 
will reduce to a rotation around an axis that passes through the same point, which one can 
call the instantaneous center of rotation.  The two surfaces that are loci of the 
instantaneous centers in the moving system and in space can be mapped to each other.  
They will always be in contact, in such a manner that any motion of the moving system 
will reduce to the rolling of one of the surfaces on the other one, while the instantaneous 
axis of rotation will pass through the point of contact of the two surfaces at each instant 
and will be found in their common tangent plane. 
 It remains for us to give the geometric interpretation of equation (11).  One easily 
recognizes that it expresses the idea that the relationship between the direction of the 
curve that is followed by the instantaneous pole and that of the corresponding axis of 
rotation is reciprocal.  That is, if, after considering an infinitely-small displacement for 
which the axis of instantaneous rotation has a certain direction, one can imagine the 
displacement under which that direction becomes that of the path that is followed by the 
instantaneous center then the axis of rotation for that new displacement will have the 
same direction as the path of the center under the first one.  Here, one can construct a 
theory that is entirely similar to that of conjugate tangents and the Dupin indicatrix.  One 
will likewise find two series of lines that are analogous to the asymptotic lines and are 
characterized by the property that when the rolling of the two surfaces on each other is 
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performed in such a manner that the instantaneous center describes one of those curves, 
the rotation will be directed along the tangent to the curve at each instant.  Consequently, 
the two corresponding curves that are then the paths of the center on the two surfaces will 
have the same curvature and osculating plane at each instant.  We leave the task of 
developing those suggestions to the reader. 
 
 
 61.  Conversely, whenever one knows two surfaces (S), (s) that can be mapped to 
each other, if one locates the surface (s) in such a manner that one of its points coincides 
with the homologous point of (S), and the homologous curves of the two surfaces that 
pass through that point are tangent, then all of the positions that one will thus obtain for 
the surface (s) will depend upon two parameters, and the displacement in two variables 
that is defined by these various positions will enjoy all of the properties that we just 
pointed out. 
 For example, consider all of the surfaces (s) that are symmetric to (S) with respect to 
its tangent planes.  They obviously constitute all of the positions of a surface (s) that rolls 
on (S).  One can apply all of the preceding propositions to that motion.  The surfaces that 
are trajectories of the various points of the moving system will then be homothetic to the 
(podaires) of the various points of space with respect to (S) when the homothety ratio is 
2. 
 

_________ 
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 62.  In the first chapter, we saw that one could attach the theory of skew surfaces to 
the study of the motion of a trihedron.  Similarly, the propositions that relate to the 
displacements in two variables find an important application in the theory of surfaces.  
However, before developing that application, we shall give some extended notions on the 
systems of curvilinear coordinates that Gauss employed in a systematic manner for the 
first time in the fundamental paper “Disquisitiones generales circa superficies curvas” 
that was published in 1828 in v. VI of Nouveaux Mémoires de la Sociétés de Goettingue. 
 As one knows, there are two ways of defining a surface.  One can determine it by its 
equation – i.e., by the relation that exists between the coordinates of any of its points.  
However, one can also suppose that those three coordinates have been expressed in terms 
of two independent variables that we call u and v.  That second way of defining the 
surface is even more general than the first one, because if one takes u and v to be two of 
the three rectangular coordinates then the expression for the third one will be precisely 
the equation for the surface when it is solved for that coordinate. 
 A system of rectangular coordinates can be represented geometrically.  It suffices to 
trace the two families of curves on the surface that are the loci of points for which one or 
the other of the variables u, v remains constant.  However, it is important to remark that 
the system of coordinates is not defined completely if one gives only the two families of 
coordinate curves.  Without changing those curves, one can obviously replace u and v 
with the variables u1, v1, which are arbitrary functions of the first ones: 
 

u1 = ϕ (u),  v1 = ψ (u). 
 

 That is a remark that one makes frequent use of, and which sometimes permits great 
simplifications. 
 
 
 63.  Gauss’s method rests essentially upon the expression for the arc length of an 
arbitrary curve that is traced on the surface. 
 Suppose that the rectangular coordinates x, y, z of a point of the surface are expressed 
as functions of the two variables u and v.  The expression of an arc of the curve that is 
traced on the surface will be given by the formula: 
 
(1)     ds2 = E du2 + 2 D du dv + G dv2, 
in which one has: 
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(2)     

2 2 2

2 2 2

,

,

.

x y z
E

u u u

x x y y z z
F

u y u y u y

x y z
G

v v v

 ∂ ∂ ∂     = + +      ∂ ∂ ∂     
 ∂ ∂ ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂      = + +     ∂ ∂ ∂      

 

 
 We call the line element ds, to abbreviate.  We also put it into the form: 
 
(3)    ds2 = A2 du2 + 2AC cos α du dv + C 2 dv2, 
 
and we will consequently have: 
 

(4)    A = E , C = G , cos α = 
F

E G
. 

 
 Formulas (2) show that A du is the arc length of the curve v = const., C dv is the arc 
length of the curve u = const., and finally, α is the angle at which those two curves 
intersect at the point considered.  One will then have: 
 

F = 0 
 

whenever one employs rectangular curvilinear coordinates.  It likewise results from 
formulas (2) that the surface element of the surface will have the expression: 
 

AC sin α du dv = 2EG F− du dv. 

 
 Before going further, we shall give some examples of this mode of representation. 
 
 
 64.  First, consider the surfaces of revolution, and suppose that one has taken the z-
axis to be the axis of the surface.  If one calls the distance from a point on the meridian to 
the axis r then the equation of the surface will be: 
 

z = f (r). 
 

 Introduce the angle v that the xz-plane makes with the meridian that passes through 
the point considered.  We will have the following expressions for the x, y coordinates: 
 

x = r cos v, y = r sin v, 
 
and we will deduce the following formula for the line element from them: 
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(5)     ds2 = dr2 (1 + f′ 2) + r2 dv2. 
 
 Here, the curves r = const. are parallels; the curves v = const. are the meridians.  If 
one sets: 

dr 21 f ′+  = du 

 
then r will become a function of u and equation (5) will take the form: 
 
(6)     ds2 = du2 + ϕ (u) dv2. 
 
The significance of u is obvious: It is the arc length of the meridian when it is measured 
by starting from a fixed parallel. 
 One can put that expression for the element into a somewhat different form.  Set: 
 

( )

du

uϕ
= du1 = 

21

dr

r f ′+
. 

 
ϕ (u) will become a function F(u1) and u1, and equation (6) will give us: 
 

ds2 = F(u1) ( 2
1du  + dv2). 

 
 
 65.  Whenever the line element of a surface can be converted into the form: 
 

ds2 = λ (dα 2 + dβ 2), 
 
one says that the coordinate curves form an isothermal or isometric net.  The former term 
is borrowed from the theory of heat, while the latter, which is due to Bonnet, is explained 
by the following remarks: 
 Imagine that one traces all of the coordinate curves on a surface that correspond to 
values of the parameters α, β that increase according to an arithmetic progression with an 
infinitely-small increment: 
 α, α + dα, α + 2 dα, …, 
 β, β + dβ, β + 2 dβ, … 
 
One will thus decompose the surface into a series of infinitely-small rectangles whose 
edges will be equal if one takes dα = dβ.  One then says that the surface is divided into 
infinitely-small squares.  Without a doubt, that is not rigorously exact, but the ratio of 
their adjacent edges of the curvilinear rectangles that are defined by the coordinate lines 
considered will get closer to unity when the increment dα is chosen to be smaller. 
 In the case of surfaces of revolution, one sees that the meridians and the parallels 
constitute an isothermal system. 
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 66.  In particular, consider the surface of revolution that is generated by the revolution 
of a hanging chain (chaînette) around its base.  Here, one will have: 
 

r = ( )/ /

2
z a z aa

e e−+ , 

 
and one will find, with no difficulty, that: 
 

u = 2 2r a− . 

 
 Consequently, formula (6) will give us: 
 
(7)     ds2 = du2 + (u2 + a2) dv2  
 
for the line element of the surface. 
 That very remarkable surface has received the name of alysseid or catenoid.  Since 
the hanging chain is the only curve whose radii of curvature are equal and opposite in 
sign to the normal, the alysseid is the only surface of revolution for which the principal 
radii of curvature at each point are equal and opposite in sign.  One gives the name of 
minimal surfaces to all of the ones whose radii of curvature are coupled by that relation.  
The alysseid is then the only minimal surface of revolution.  

 

M 

r 
S 

P 

Q 

R 
O 

z 

 
Figure 1. 

 
 One knows that if one considers a hanging chain whose base is Oz and one drops a 
perpendicular PQ from the foot P of the ordinate of the point M to the tangent at M then 



70 Lessons on the general theory of surfaces.  Book I. 

the arc length of the chain, when measured by starting at the summit S, will be equal to 
the line segment MQ; consequently, the point Q will describe one of the developments of 
the chain. 
 Since PQ is constant and equal to the parameter a of the chain, the locus of the point 
Q will be the curve of equal tangents or tractrix.  Upon denoting the angle PMQ by ϕ, the 
arc that is described by the point Q when ϕ is increased by dϕ will have the value: 
 

dσ = MQ dϕ = a cot ϕ dϕ . 
 

 Since the perpendicular that is dropped from Q to Oz will have the expression: 
 

r = a sin ϕ, 
 
moreover, one will see that the line element of the surface that is generated by the 
revolution of the curve of equal tangents around Oz will be given by the formula: 
 

ds2 = dσ2 + r2 dv2 = a2 (cot2 ϕ dϕ 2 + sin2 ϕ dv2). 
 Set: 

cot ϕ dϕ = du, 
which will give: 

sin ϕ = eu, 
and we will have: 
(8)  ds2 = a2 (du2 + e2u dv2). 
 
 We remark, moreover, that in the rectangular triangle RPM, one will have: 
 

MQ ⋅⋅⋅⋅ QR = a2. 
 

 The principal centers of curvature of the surface are obviously the points M and R; 
therefore, the principal radii of curvature will satisfy the relation: 
 

RR′ = − a2. 
 

 However, although that property in no way characterizes the surface, it is easy to 
prove. 
 Indeed, we propose to determine all the surfaces of revolution whose radii of 
curvature are coupled by the preceding relation.  By a calculation that we shall not insist 
upon here, one finds that the variables z and r must satisfy the differential relation: 
 

(9)  dz = 
2 2

2 2 2

b r

r a b

−
+ −

 dr, 

 
in which b denotes an arbitrary constant that can take all possible values.  The line 
element of the surface is given by the formula: 
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ds2 = 
2 2

2 2 2

a dr

r a b+ −
 + r2 dv2. 

 
 First, suppose that b is equal to a.  One then recovers the surface whose meridian is 
the curve of equal tangents.  We give it the name of the pseudo-spherical surface. 
 If b is smaller than a then the radius r can take all values that are lower than b, and 
one will obtain a surface that, like the preceding one, also has a parallel of regression BC.  
However, all of the meridians must cut the axis of the surface at the same point A at a 
finite angle whose tangent has the value: 
 

2 2

2

a b

b

−
. 

 
 

A 
z 

C 

z 

B 

 
Figure 2. 

 If one then sets: 

r = 2 2

2

u ue e
a b

−−− ,  v = 
2 2

av

a b

′

−
 

 
then one will obtain the expression: 
 

(10)    ds2 = a2 
2

2 2

2

u ue e
du dv

−  − ′+  
   

 

for the line element. 

 On the contrary, if b is larger than a then r will have a minimum 2 2b a− , and the 

meridians will no longer meet the axis.  The surface will then admit two parallels of 
regression and a throat circle (cercle de gorge) DE (Fig. 3).  If one sets: 
 

r = 2 2

2

u ue e
b a

−+− ,  v = 
2 2

av

b a

′

−
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then the line element will become: 
 

(11)     ds2 = a2 
2

2 2

2

u ue e
du dv

−  + ′+  
   

. 
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Figure 3. 

 
 

 67.  After surfaces of revolution, we examine the very important group that is 
composed of ruled surfaces.  They can be defined by the three equations: 
 

(12)     
1 1

2 2

3 3

,

,

,

x a u b

y a u b

z a u b

= +
 = +
 = +

 

 
in which a, b, … must be considered as functions of one parameter v.  If one supposes 
that: 

2 2 2
1 2 3a a a+ + = 1 

 
then u will denote the length measured along each rectilinear generator of the surface 
when one starts from the curve that is defined by the equations: 
 
(13)    x = b1,  y = b2,  z = b3 . 
 
 One deduces the following expression for the line element from formulas (12): 
 
(14)   ds2 = du2 + 2D du dv + (A u2 + 2B u + C) dv2, 
 
in which A, B, C, D are functions of v that are defined by the relations: 
 
 A = 2 2 2

1 2 3a a a′ ′ ′+ + , C = 2 2 2
1 2 3b b b′ ′ ′+ + , 
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 B = 1 1 2 2 3 3a b a b a b′ ′ ′ ′ ′ ′+ +  D = 1 1 2 2 3 3a b a b a b′ ′ ′+ + . 

 
 If one supposes that the curve u = 0 that is defined by equations (13) has been chosen 
from the orthogonal trajectories of the generators then one will have: 
 

D = 0, 
 
and the line element will take the simpler form: 
 
(15)    ds2 = du2 + (A u2 + 2B u + C) dv2. 
 
 In this case, the system of coordinates will be defined by the rectilinear generators v = 
const. and their orthogonal trajectories. 
 In order to convert the general line element that is given by formula (14) to the form 
(15), it will suffice to substitute the following variable for u: 
 

u′ = u + ∫ D dv. 
 
 One also recognizes that the orthogonal trajectories of the rectilinear generators will 
be determined by a simple quadrature for all ruled surfaces. 
 
 
 68.  For example, consider the surface that is defined by the principal normals to the 
helix, or the skew helicoid with director plane.  It is defined by the three equations: 
 

(16)  

,

cos ,

sin ;

z av

x u v

y u v

=
 =
 =

 

one then deduces that: 
(17)    ds2 = (a2 + u2) dv2 + du2. 
 
 The comparison of formulas (7) and (17) shows that if one makes the points on the 
helicoid and the alysseid for which the values of u and v are the same correspond then the 
arcs of the two corresponding curves will be rigorously equal.  In that case, one says that 
the two surfaces can be mapped to each other.  Indeed, it is clear that if one considers a 
surface to be a flexible and inextensible membrane, and if one admits the possibility of 
deforming that surface without tearing or duplicating it then the length of each curve that 
is traced on the surface will remain invariable under the deformation.  Without examining 
the question of knowing whether it is possible to make the first surface coincide with the 
second one by a continuous sequence of deformations, one says that two surfaces can be 
mapped to each other when they satisfy the geometric definition that we just gave.  The 
problem of the search for surfaces that can be mapped to a given surface is one of the 
more interesting ones (but also one of the more difficult ones) that one encounters in the 
application of analysis to geometry.  In the case that we are treating, the helicoid can be 
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mapped to the alysseid, so the rectilinear generators of the first surface will correspond to 
the meridians of the second one, and the helices, to the parallels. 
 
 
 69.  We return to the ruled surfaces.  When one has only the expression (15) for the 
line element, it is easy to distinguish the skew surfaces from the developable surfaces. 
 Indeed, one has identically: 
 

A u2 + 2Bu + C = 2 2 2
1 1 2 2 3 3( ) ( ) ( )a u b a u b a u b′ ′ ′ ′ ′ ′+ + + + + . 

 
 One then sees that the trinomial on the left-hand side will be a sum of squares, and 
one will have: 

B2 – AC < 0, 
although the equations: 

(18)     1

1

a

b

′
′
 = 2

2

a

b

′
′

 = 3

3

a

b

′
′

 

 
will not be satisfied.  Now, these latter equations will be true only in the case where the 
surface is developable. 
 Indeed, equations (12) will give us: 
 
 dx = a1 du + 1 1( )a u b′ ′+  dv, 

 dy = a2 du + 2 2( )a u b′ ′+  dv, 

 dz = a3 du + 3 3( )a u b′ ′+  dv. 

 
 Express the idea that there exists a point on the generator that describes a curve that is 
tangent to the generator.  It is necessary that one must have: 
 

1

dx

a
= 

2

dy

a
 = 

3

dz

a
, 

 
when one takes u to be a suitable function of v, which will give: 
 

1 1

1

a u b

a

′ ′+
 = 2 2

2

a u b

a

′ ′+
 = 3 3

3

a u b

a

′ ′+
 

 
upon replacing dx, dy, dz with their values. 
 If one takes the equation D = 0 into account then one will find that the common value 
of the three preceding ratios must be equal to zero. 
 One must then have: 

− u = 1

1

b

a

′
′

 = 2

2

b

a

′
′

 = 3

3

b

a

′
′

, 
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and consequently equations (18) will express the necessary and sufficient conditions for 
the surface to be developable. 
 Finally, one can reduce the coefficient A to unity by replacing v with a suitable 
function of v.  One will then have: 
 
(19)    ds2 = du2 + [(u – α) 2 + β 2] dv2 
 
for the reduced form of the element in the case of skew surfaces and: 
 
(20)    ds2 = du2 + (u – α) 2 dv2 
 
in the case of developable surfaces, in which α and β denote functions of v (15). 
 
 
 70.  One easily deduces that the developable surfaces can be mapped to the plane 
from the form of the line element. 
 Indeed, recall formula (20) and decompose the right-hand side into two factors: 
 
 du + i (u – α) dv, 
 du – i (u – α) dv. 
 
 If one multiplies these factors by eiv, e−iv, respectively, then they will become exact 
differentials, and one can set: 
 

(21)   
[ ( ) ] ,

[ ( ) ] .

iv

iv

e du i u dv dx i dy

e du i u dv dx i dy

α
α−

 + − = +


− − = −
 

 
 One will have, upon integrating: 
 

(22)   
,

.

iv iv

iv iv

x iy u e i e dv

x iy u e i e dv

α

α− −

 + = −


− = +

∫

∫
 

 
 Moreover, upon multiplying corresponding sides of formulas (21), one will obtain: 
 
 ds2 = dx2 + dy2 
 
for the line element of the developable surface, which will prove the stated property. 
 Formulas (22) can be replaced with the following ones: 

                                                
 (15) However, that theory passes over the imaginary ruled surfaces, for which one has: 
 

2 2 2

1 2 3
a a a+ +  = 0, 

 
and which are generated by lines that meet the imaginary circle at infinity. 
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(23)    
cos sin ,

sin cos .

x u v vdv

y u v v dv

α

α

 = +


= −

∫

∫
 

 
 One sees that the rectilinear generators of the surface that are defined by the relation v 
= const. correspond to the lines in the plane.  Consequently, the orthogonal trajectories of 
the generators have parallel curves for transforms that are orthogonal trajectories to the 
lines in the plane.  The edge of regression u = α of the developable corresponds to the 
envelope of all lines in the plane.  All of these results, which we shall not stop to verify, 
are in good agreement with the mechanical operations by which one realizes the 
developments of that class of very important surfaces. 
 
 
 71. We just indicated a way of mapping a developable surface onto a plane.  It is 
natural to demand to know whether there is no other one, and whether, for example, one 
cannot realize that map of the surface by making the rectilinear generators of the surface 
correspond to curved lines in the plane.  The following argument will give the answer to 
that question: 
 Suppose that one has mapped the developable onto the plane in two different ways – 
i.e., that one has exhibited its line elements in the two forms: 
 

ds2 = dx2 + dy2, ds′2 = dx′2 + dy′2 ; 
 
one will then deduce that: 
(24)    dx2 + dy2 = dx′2 + dy′2 . 
 
It is easy to solve that equation in the most general way.  Indeed, one can replace it by 
one or the other of the systems: 
 

(25)  
cos sin , cos sin ,

sin cos , sin cos ,

dx dx dy dx dx dy

dy dx dy dy dx dy

α α α α
α α α α

′ ′= − = +
 ′ ′= + = −

 

 
in which α is an auxiliary unknown, and which are deduced from each other by changing 
y into – y.  For example, consider the first one.  Upon writing down the idea that the 
right-hand sides of the equations are exact differentials, we will obtain the relations: 
 

sin α 
y

α∂
∂

 = cos α 
x

α∂
∂

, cos α 
y

α∂
∂

 = − sin α 
x

α∂
∂

, 

which will give: 

x

α∂
∂

= 
y

α∂
∂

= 0; 
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α will then be constant.  Upon integrating formulas (25), and denoting the two new 
constants by x0, y0, one will have: 

 
 x′ = x cos α – y sin  α + x0 , 
 y′ = x sin  α + y cos α + y0 . 
 
These are the formulas for the coordinate transformation.  As a result, x, y and x′, y′ can 
be considered to be the coordinates of the same point in the plane when referred to 
different axes, and the two representations of the developable surface cannot be regarded 
as truly distinct. 
 
 
 72.  Another very interesting question presents itself here.  We just saw that the 
envelope of a moving plane can be mapped to the plane.  Is the converse is also true, and 
is any surface that can be mapped to the plane itself the envelope of a moving plane?  
That proposition was already assumed by Monge and the other geometers of his epoch to 
be the justification for the name developable surface itself, which was originally given as 
the envelope of a moving plane (16).  That is an immediate corollary of the general 
propositions that we will develop in what follows.  However, at present, we can prove it 
by giving a very simple, direct proof that is due to O. Bonnet (17). 
 Let x, y, z be the coordinates of a point on the desired surface that can be mapped to a 
plane, and let α, β be those of the corresponding point on the plane.  One must have: 
 
(26)    dx2 + dy2 + dz2 = dα 2 + dβ 2, 
 
which gives the three equations: 
 

(27)    

2 2 2

2 2 2

1,

1,

0.

x y z

x y z

x x y y z z

α α α

β β β

α β α β α β

 ∂ ∂ ∂     + + =      ∂ ∂ ∂     


     ∂ ∂ ∂ + + =      ∂ ∂ ∂     
 ∂ ∂ ∂ ∂ ∂ ∂+ + =

∂ ∂ ∂ ∂ ∂ ∂

 

 
Differentiate the first two of these equations; one will get: 
 

                                                
 (16) See, in particular, the chapter on developable surfaces in Monge’s Application de l’Analyse à la 
Géométrie. 
 (17) Annali di Matematica (2) 7, pp. 61.  
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(28)   

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

0,

0,

0,

0.

x x y y z z

x x y y z z

x x y y z z

x x y y z z

α α α α α α

β β β β β β

α α β α α β α α β

β α β β α β β α β

 ∂ ∂ ∂ ∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ + + = ∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ + + =
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ + + =
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
Now, differentiate the last of equations (27); upon taking the preceding into account, we 
will find: 

(29)   

2 2 2

2 2 2

2 2 2

2 2 2

0,

0.

x x y y z z

x x y y z z

α β α β α β

β β β β β β

 ∂ ∂ ∂ ∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ + + =
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
Upon comparing equations (28) and (29), we will see that one must have: 
 

(A)    

2

2

2

x

x
α

α β

∂
∂
∂

∂ ∂

 = 

2

2

2

y

y
α

α β

∂
∂
∂

∂ ∂

 =  

2

2

2

z

z
α

α β

∂
∂
∂

∂ ∂

, 

 

(B)    

2

2

2

x

x
α β

β

∂
∂ ∂

∂
∂

 = 

2

2

2

y

y
α β

β

∂
∂ ∂

∂
∂

 =  

2

2

2

z

z
α β

β

∂
∂ ∂

∂
∂

. 

 

System (A) tells us that 
x

α
∂
∂

, 
y

α
∂
∂

, 
z

α
∂
∂

 are functions of the same variable, and system (B) 

establishes that the same thing is true for 
x

β
∂
∂

, 
y

β
∂
∂

, 
z

β
∂
∂

.  However, as a result of the last 

equation (27) or one of equations (29), the two variables upon which these two 
derivatives depend will be functions of each other, and consequently, the six derivatives 
of x, y, z will be functions of the same variable, which we will denote by t. 
 Having said that, if one denotes the derivatives of z (which is considered to be a 
function of x and y) by p and q then p and q will be determined by the equations: 
 

z

α
∂
∂

 =
x y

p q
α α

∂ ∂+
∂ ∂

,  
z

β
∂
∂

 =
x y

p q
β β

∂ ∂+
∂ ∂

, 
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which shows that p and q are functions of t.  Hence, p is a function of q, which 
characterizes the enveloping surface of a moving plane, as one knows. 
 The term developable that is given to those surfaces is then plainly justified. 
 
 

___________ 
 



CHAPTER IX 
 

SURFACES THAT ARE DEFINED BY KINEMATIC PROPERTIES. 
 

General helicoids. – Bour’s theorem. – Surfaces of revolution that can be mapped to each other. – Surfaces 
that are generated by the motion of an invariable curve. – Rolling surfaces. – Maurice Levy’s spiral 
surfaces. 

 
________ 

 
 

 73.  Surfaces of revolution enjoy an important kinematic property: They do not cease 
to slide on themselves when one imagines that a rotational motion around the axis has 
been imposed upon them.  That property that they possess – viz., of being able to be 
displaced without ceasing to coincide with themselves – also belongs to cylinders and a 
more extensive class of surfaces, namely, the helicoids, which include cylinders and 
surfaces of revolution as limiting cases. 
 Indeed, consider a solid system that is animated with a helicoidal motion.  We know 
that all points of that system describe helices with the same axis and the same pitch.  
Each of those helices is animated with a motion under which it will not cease to slide to 
its original position.  Thus, if one associates all helices that meet a given curve (C) then 
they will form a surface that can be generated by the helicoidal motion of the curve (C), 
and which will obviously possess the property of sliding on itself under the motion.  That 
surface is a general helicoid.  We shall give the equations that determine it and look for 
its line element. 
 The helices that are described by the permanent helicoidal motion are defined by the 
equations: 

(1)     
1

1

0 1

cos ,

sin ,

,

x

y

z z h

ρ ν
ρ ν

ν

=
 =
 = +

 

 
in which h denotes the common pitch of the helices, divided by 2π.  If one takes z0 to be 
an arbitrary function of ρ then the coordinates x, y, z will become functions of two 
variables r and v1 .  The preceding formulas define the most general helicoid.  Set: 
 
 z0 = ϕ (ρ), 

 
and calculate the line element of the helicoid.  We find: 
 

ds2 = (1 + ϕ′ 2) dρ 2 + 2h ϕ′  dρ dv1 + (ρ 2 + h2) 2
1dv . 

 
 Upon transforming the right-hand side, one will obtain: 
 



Chapter IX. – Surfaces that are defined by kinematic properties. 81 

(2)  ds2 = 
22 2

2 2 2
12 2 2 2

1 ( )
h d

d h dv
h h

ρ ϕ ϕ ρρ ρ
ρ ρ

′ ′   + + + +   + +  
. 

 
 If one introduces the two new variables u, v that are defined by the following 
quadratures: 

(3)    

2 2

2 2

1 2 2

1 ,du d
h

h d
dv dv

h

ρ ϕρ
ρ

ϕ ρ
ρ

 ′
= +

 +


′ = + +

 

 
then ρ2 + h2 will become a function of u that we denote by U 2, and the line element will 
be converted into the form: 
(4)    ds2 = du2 + U 2 dv2. 
 
 The curves u = const. are the helices that are traced in the surface, and in turn, the 
curves v = const. are the orthogonal trajectories of the helices.  One also recognizes that 
those trajectories are determined by a simple quadrature. 
 
 
 74.  The form (4) of the line element is identical to the one that we have obtained 
already for the surfaces of revolution (no. 64).  Moreover, one knows that the latter 
surfaces can be considered to be limiting forms of the general helicoids that correspond to 
the case in which the common pitch of the helices becomes zero.  One can then foresee 
that the helicoids should be capable of being mapped to surfaces of revolution.  That 
beautiful theorem is due to Bour, who established it in his “Mémoire sur la déformation 
des surfaces,” Journal de l’École Polytechnique 39th letter, pp. 82.  In order to prove it, 
we will see that the form (4) of the line element, which is given a priori, is suited to an 
infinitude of helicoids, among which, one always finds surfaces of revolution. 
 Formulas (1), in which one considers z0 to be a function of ρ, define the most general 
helicoid, and formula (2) exhibits the line element of that surface.  In order make it 
identical to the line element that is given by equation (4), it will obviously suffice to set: 
 

 
2 2

2 21
h

ρ ϕ
ρ

′ 
+ + 

dρ 2 = du2, 

 

(ρ 2 + h2)
2

1 2 2

h d
dv

h

ϕ ρ
ρ

′ + + 
 = U 2 dv2, 

 
or, upon extracting the square roots: 
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(5)    

2 2
2

2 2

1 2 2 2 2

,

.

d
du d

h

h d U
dv dv

h h

ρ ϕρ
ρ

ϕ
ρ ρ


= ± +

+
 ± + =
 + +

 

 
 The first of these formulas shows that ρ is a function of u.  In order for the second one 

to be true, it is obviously necessary that the ratio 
2 2

U

hρ
±

+
 must be equal to a constant, 

which we denote by 1 / m.  One will then have: 
 

(6)   

2 2

1 2 2

,

.

h mU

h d dv
dv

h m

ρ
ϕ

ρ

 + = ±



+ = +

 

 
 Formulas (5) and (6) lead us to the following values for ρ, dϕ, dv1 by some simple 
eliminations: 

(7)   

2 2
2 2 2

2 2 2 2

2
2 2 2

1 2 2 2 2 2 2

2 2 2

(1 ) ,

(1 ) ,
( )

.

m Udu h
d U m U

m U h m

dv h d dv h du h
dv U m U

m m U m U m U h m

m U h

ϕ

ϕ

ρ


′= − −

−

 ′= − = − − − −
 = −


 

 
 All of the quantities that appear in formulas (1) are thus expressed as functions of u 
and v; the proposed question is then resolved completely. 
 
 
 75.  The helicoids that we just determined depend upon two arbitrary parameters h 
and m.  It is easy to insure that they are not superposable.  In particular, consider the case 
in which one has: 

U 2 = u2 + a2, 
 
and suppose that m = 1.  The preceding formulas become: 
 

 ρ = 2 2 2u a h+ − , 

 dϕ = 
2 2

2 2
2 2 2

a h
u a

u a h

−
+

+ −
 du, 

 dv1 = dv − 
2 2

h d

u a

ϕ
+

. 
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 If one gives all of the values between 0 and a to h then one will get a continuous 
series of helicoids that can all be mapped to each other.  They all present forms that are 
intermediate to the alysseid and the skew helicoid with a director plane, which are the 
extreme terms in that series, and they correspond to the values 0 and a of the arbitrary h, 
respectively. 
 
 
 76.  Return to the general formula (7).  If one sets h = 0 then one will obtain surfaces 
of revolution that can all be mapped to each other, as well as to general helicoids that are 
defined by those equation.  They are determined by the very simple system: 
 

(8)     

2 2

cos ,

sin ,

1 ,

v
x aU

a
v

y aU
a

z a U du

 =

 =

 ′= −



∫

 

in which a replaces m. 
 When one varies the parameter a, one obtains a continuous sequence of surfaces; we 
point out, without proof, the following properties, which we will attach to some general 
theorems later on. 
 If one considers the points that correspond to the same values of u on all of those 
surfaces: 
 1. The product of the principal radii of curvature at those points will be the same for 
all surfaces. 
 2. The tangent to the meridian will also have the same length for all points 
considered when it is prolonged to the point at which it meets the axis. 
 
Later on, we shall point out an application of the latter property, and we shall study two 
particular examples of it. 
 
 
 77.  First set: 

U = sin u, 
 

which will give surfaces of revolution that map to the sphere. 
 Here, formulas (8) will become: 
 

(9)     

2 2

sin cos ,

sin sin ,

1 cos .

v
x a u

a
v

y a u
a

z a u du

 =

 =

 = −



∫
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 First, suppose a2 < 1; u can take on all possible values without the expression for z 
ceasing to be real.  The portion OCA of the meridian that corresponds to all values of u 
that are found between 0 and π will have the form depicted in (Fig. 4). 

 
 

O x 

C 

z 

A 

 
Figure 4. 

 
 The angles that the meridian makes with the axis at O and A are finite and become 
right angles only when a is equal to 1.  The meridian will then become a semi-circle, and 
it will generate the sphere. 
 The variables u and v, which determine a point on the surface of the sphere, have a 
very simple significance: They are the colatitude and longitude of that point.  From that 
remark, we can easily determine the limits and the form of the portion of the sphere that 
can be mapped precisely onto any surface that is generated by the complete revolution of 
the branch OCA of the meridian. 
 Indeed, for an arbitrary value of a, formulas (9) show that the angle v1 that the 
meridian that passes through the point (u, v) of the surface makes with a fixed meridian 
has the value: 

(10)     v1 = 
v

a
. 

 
 Consequently, when v1 varies from 0 to 2π, v will increase to 2πa.  Hence, the surface 
that is generated by the complete revolution of the arc ACO can be mapped to the wedge 
of the sphere that is included between two meridian planes that make an angle of 2πa.  
One sees that the wedge will become infinitely thin for very small values of a. 
   If a2 is great than unity then the meridian will change form completely, because u 
can take on only values that satisfy the inequality: 
 

cos2 u < 
2

1

a
. 
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 Let λ0 be the acute angle that is defined by the formula: 
 

cos λ0 = 
1

a
. 

 
 z 

O x 

B 

A 

C 

 
Figure 5. 

 
 One must then make u vary between λ0 and π − λ0 .  The meridian will have the form 
that is represented in (Fig. 5).  The surface that is generated by that meridian can be 
mapped onto the zone of the sphere that is found between the two colatitude circles λ0 
and π – λ0 .  However, formula (10) shows us that it will suffice to rotate the meridian 
ACB through an angle that is equal to 2π / a in order to obtain all of the portion of the 
surface that maps point-by-point onto the spherical zone that we just defined. 
 If a gets larger then that zone will diminish indefinitely and reduce to an infinitely-
thin band about the equator of the sphere. 
 The detailed discussion that we just made had the objective of exhibiting one 
interesting fact: Consider a piece (of arbitrary form, moreover) of the surface of the 
sphere.  When the sphere is deformed in such a manner as to coincide successively with 
the various surfaces that are defined by formulas (9), that portion of the spherical surface 
that we have chosen will displace and deform in a continuous manner while remaining 
mappable to its initial position.  However, that motion cannot be indefinitely continuous 
without producing a rip, because we have seen that if the parameter a increases after 
starting from 1 and growing indefinitely then the only portion of the sphere that can be 
mapped onto the surface that corresponds to those increasing values of a will reduce to a 
zone that surrounds the equator whose area is as small as one pleases.  Consequently, if 
one considers a finite portion of the sphere then the motion of deformation of that portion 
will cease to be possible once a has attained an upper limit, which obviously depends 
upon the form of that portion. 
 
 
 78.  At least in the example that we just studied, all of the surfaces that are defined by 
formulas (9), and for which a2 is less than or equal to unity, enjoy the property that they 
represent the line element completely – i.e., they are all real points that correspond to all 
real values of u and v.  That will no longer be true in the following example: 
 Suppose that one sets: 
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U = eu 
in the general formulas. 
 The line element will have the expression: 
 
(11)     ds2 = du2 + e2u dv2, 
and equations (8) will give us: 
 

(12)  x = a eu cos 
v

a
, y = a eu sin 

v

a
,  z = 2 21 ua e−∫  du, 

here. 
 These formulas define surfaces that are all equal, because if one sets: 
 
(13)    a eu = sin ϕ, v = a v1 
then they will become: 

(14)    
1

1

sin cos ,

sin sin ,

cos log tan ,
2

x

y v

z

ϕ ν
ϕ

ϕϕ


 =


=

 = +


 

 
and no longer contain a.  We will then have only one surface, which can be mapped to 
itself in an infinitude of ways, and the formulas that realize that map are: 
 

a eu = eu′, v = a v′, 
 
in which u′, v′ denote the coordinates of the point that corresponds to the point (u, v).  
That result is obvious, moreover, from the form itself of the line element (11).  It follows 
from that and the properties that we pointed out above (no. 76) that: 
 1. The meridian can only be the curve of equal tangents or tractrix. 
 2. The product of the principal radii of curvature is the same at all points of the 
surface. 
 
One recognizes the properties of the pseudo-spherical surface that we have just studied 
directly, and upon comparing the expressions for the line element with the one that was 
given (no. 65), one sees that the product of the radii of curvature of the surface is equal to 
– 1. 
 Here, is an important fact that should be mentioned: In order for the values of x, y, z 
that are given by formulas (12) to be real, it is necessary that the angle ϕ should be real; 
i.e., that one should have: 

a2 e2u < 1. 
 

 No matter what the given value of the parameter a is, there will always be sufficiently 
large values of u that are associated with arbitrary values for v, and which do not 
correspond to any point of the surface.  Consequently, if it is true that the pseudo-sphere 
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can be mapped to itself in an infinitude of ways then none of the solutions that one 
chooses can give a complete geometric representation of the line element. 
 
 
 79.  The surfaces that we just studied have a common property: They can all be 
considered to be generated by an invariable curve of a form that moves according to a 
given law.  We now propose to study the most general surfaces that satisfy that 
definition. 
 Consider a curve (C) and a moving system of axes that are coupled invariably with 
the curve.  Suppose that the position of the curve and the moving axes depends upon a 
parameter v that plays the role of time, and let ξ, η, ζ; p, q, r be the translations and 
rotations of the moving system.  Those six quantities are functions of v.  Let x, y, z denote 
the coordinates of an arbitrary point M of the curve with respect to the moving axes.  x, y, 
z will be given functions of a parameter u. 
 If the moving axes are displaced, and at the same time the point M displaces along the 
curve in an arbitrary manner then the projections of the infinitely-small arc that is 
described by the point will be: 

(15)    

( ) ,

( ) ,

( ) .

dx qz ry dv

dy rx pz dv

dz py qx dv

ξ
η
ζ

+ + −
 + + −
 + + −

 

 Set: 
dx

du
= x′, dy

du
= y′, dz

du
= z′, 

 
to abbreviate.  The square of the line element of the surface that is generated by the curve 
will be expressed by the sum of the squares of those three projections; i.e.: 
 

(16) 

2 2 2 2 2

2 2 2 2

( )

2

[( ) ( ) ( ) ] .

ds x y z du

x y z

x y z x y z du dv

p q r

qz ry rx pz py qx dv

ξ η ζ

ξ η ζ

′ ′ ′ = + +


 
  ′ ′ ′ ′ ′ ′+ + + +  

  
 

 + + − + + − + + −

 

 
 
 80.  It will suffice to introduce some conveniently-chosen special hypotheses into that 
formula in order to recover all the preceding results. 
 Suppose, for example, that one would like to obtain the line element of ruled surfaces.  
One takes the z-axis of the moving trihedron to be the rectilinear generator of the surface, 
and one describes the origin of the trihedron by an orthogonal trajectory of the generator.  
That will give the conditions: 

x = y = 0, z = u, ζ = 0, 
 

and in turn, formula (16) will reduce to the following one: 
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(17)    ds2 = du2 + [(ξ + qu)2 + (η – pu)2] dv2. 
 
 If one would like to express the idea that the surface is developable then one must 
consider the projections (15) of the arc that is described by an arbitrary point of the 
surface.  Here, they become: 
 

(ξ + qu) dv, (η – pu) dv, du. 
 

 The tangent plane to the point z = u will then have the equation: 
 

x

y
 = 

qu

pu

ξ
η

+
−

 

with respect to the moving axes. 
 In order for the same thing to be true at all points of a generator, it is necessary that 
one must have: 

ξ
η

 = − 
q

p
; 

 
i.e., the coefficient of dv2 in formula (17) should be a perfect square.  That is the result 
that was established already (no. 69). 
 
 
 81.  Now, consider the new case in which the motion of the moving curve (C) reduces 
to a translation.  One must then set: 

p = q = r = 0 
in formula (16), and consequently: 
 
(18)  ds2 = (x′2 + y′2 + z′2) du2 + 2 (x′ξ + y′η + z′ζ) du dv + (ξ 2 + η2 + ζ 2) dv2 . 
 
 One will arrive at an identical result by the following direct method:  Let: 
 

x = U,  y = U1,  z = U2 
 
be the equations that determine the curve with respect to the moving axes, in which U, 
U1, U2 denote functions of the same parameter u.  Suppose that the fixed axes have been 
chosen to be parallel to the moving axes, and let V, V1, V2 denote the coordinates of the 
origin of the moving axes with respect to the fixed axes; V, V1, V2 will be functions of a 
parameter v.  The coordinates of an arbitrary point of the desired surface with respect to 
the fixed axes will obviously be the following expressions: 
 

(19)    1 1

2 2

,

,

.

X U V

Y U V

Z U V

= +
 = +
 = +
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 The symmetry of these formulas shows us immediately that the surface can be 
generated in two different ways by the translation of an invariable curve, and that the 
coordinate curves of each of the two systems (u) and (v) are deduced from each other by 
a simple motion of translation. 
 
 
 82.  One can further interpret formulas (19) in the following manner: Consider the 
two curves that are defined by the equations: 
 
 x = 2U,  y = 2U1, z = 2U2, 
and 
 x = 2V,  y = 2V1, z = 2V2 . 
 
 The locus of the midpoints of all the chords that join a point of the first one to a point 
of the second is the surface in question.  That definition, which is due to Lie, exhibits the 
double mode of generation of the surface quite nicely.  It suffices to associate all of the 
chords that pass through either a point of the first curve or a point of the second one in 
order to recover the two systems of invariable generators. 
 Suppose, to fix ideas, that the functions U, V are real, and that one has taken arc 
lengths on the two curves: 
  x = U, y = U1, z = U2, 
  x = V, y = V1, z = V2 
 
to be the parameters u, v.  The line element of the surface will take the form: 
 

ds2 = du2 + dv2 + 2 (UV + 1 1U V′ ′  + 2 2U V′ ′ ) du dv. 

If one then sets: 

 u = 
2

α β+
,  α = u + v, 

 v = 
2

α β−
,  β = u − v 

 
then the expression for the line element will become: 
 

(20)  ds2 = 1 1 2 21

2

U V U V U V′ ′ ′ ′ ′ ′+ + +
dα 2 + 1 1 2 21

2

U V U V U V′ ′ ′ ′ ′ ′− − −
 dβ 2 . 

 
 That formula will exhibit a system of rectangular coordinates on the surface, because 
the line element will reduce to the form: 
 
(21)     ds2 = A dα2 + C dβ 2, 
and similarly, with the condition: 

A2 + C2 = 1. 
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 83.  We have to further mention a geometric property of the surfaces that we consider 
that is completely general.  However, in order to prove it, we must begin by recalling a 
theorem that relates to conjugate tangents. 
 We say that two families of lines that are traced on a surface are conjugate when the 
tangents to the lines of the two families that pass through an arbitrary point of the surface 
are conjugate (with Dupin’s definition).  Here is how one can express that relation: 
 Let u and v be the two parameters of the two families of curves, and suppose that one 
knows the expressions for the rectilinear coordinates x, y, z of an arbitrary point of the 
surface as functions of u and v.  If one lets X, Y, Z denote the current coordinates then the 
equation of the tangent plane to the surface at the point M (x, y, z) will be: 
 
(22)    Z – z = p (X – x) + q (Y – y), 
 
in which p and q denote the derivatives of z with respect to x and y, according to custom.  
Suppose that one displaces along the line v = const.  From the theory of envelopes, the 
intersection of the tangent plane with its infinitely-close position will be defined by 
equation (22), combined with the one that one obtains from it by differentiation with 
respect to u; i.e.: 

− 
z

u

∂
∂

= 
p

u

∂
∂

(X – x) + 
q

u

∂
∂

(Y – y) – p
x

u

∂
∂

 – q
y

u

∂
∂

, 

 
or, upon suppressing the terms that cancel: 
 

(23)    
p

u

∂
∂

(X – x) + 
q

u

∂
∂

(Y – y) = 0. 

 
 In order to express the idea that the curves (u) and (v) are conjugate, one must write 
down that equations (22), (23) are verified when one replaces X – x, Y – y, Z – z with 

x

v

∂
∂

,
y

v

∂
∂

,
y

v

∂
∂

 in them.  That will give the two equations: 

 

(24)    
,

0.

z x y
p q

v v v
p x q y

u v u v

∂ ∂ ∂ = + ∂ ∂ ∂
 ∂ ∂ ∂ ∂ + =
 ∂ ∂ ∂ ∂

 

 
 The first of them is always satisfied, because it expresses the obvious fact that the 
tangent to the curve u = const. is found in the tangent plane.  As for the second one, it is 
identical to the following one: 
 

2 2x y x y
p q p q

u v v u v u v

∂ ∂ ∂ ∂ ∂ + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 = 0, 

or, more simply: 
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(25)    
2 2 2z x y

p q
u v u v u v

∂ ∂ ∂− −
∂ ∂ ∂ ∂ ∂ ∂

= 0. 

 
 If one now remarks that p and q are determined by the equations: 
 

(26)   
z

u

∂
∂

 = 
x y

p q
u u

∂ ∂+
∂ ∂

,  
z

v

∂
∂

= 
x y

p q
v v

∂ ∂+
∂ ∂

 

 
then one can eliminate p and q from equations (25) and (26), and one will be led to the 
equation: 

(27)    

2

2

2

x x x

u v u v

y y y

u v u v

z z z

u v u v

∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂

 = 0, 

 
which is symmetric with respect to the three coordinates.  That relation − which is, 
moreover, necessary − is also sufficient, because it expresses the idea that the values of p 
and q satisfy equations (25) and (26), and from formulas (26), p and q will be the 
derivatives of z when it is considered to be a function of x and y. 
 
 
 84.  One can formulate the condition that we found in a different form.  Equation (27) 
is obviously the result of the elimination of A and B from the three equations: 
 

(28)    

2

2

2

0,

0,

0.

x x x
A B

u v u v

y y y
A B

u v u v

z z z
A B

u v u v

 ∂ ∂ ∂− − = ∂ ∂ ∂ ∂
 ∂ ∂ ∂ − − = ∂ ∂ ∂ ∂
 ∂ ∂ ∂− − =

∂ ∂ ∂ ∂

 

 
 We then obtain the following proposition: 
 
 The necessary and sufficient condition for the lines (u) and (v) to be conjugate is that 
the expressions for the three rectangular coordinates as functions of u and v must satisfy 
the same linear equation: 

(29)    
2

u v

θ∂
∂ ∂

= A B
u v

θ θ∂ ∂−
∂ ∂

, 
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in which A, B denote arbitrary functions of u and v. 
 
 That proposition plays a very important role in the theory of surfaces, and we shall 
have to return to it in order to complete and generalize it. 
 If we apply it to the surfaces that we are dealing with then we will see immediately 
that the three coordinates will satisfy the equation: 
 

(30)     
2

u v

θ∂
∂ ∂

 = 0, 

 
and consequently the two systems of invariable curves that generate the surface here will 
be conjugate lines.  Moreover, geometry also permits one to obtain that result very 
simply. 
 In fact, consider the two families of curves (u) and (v).  Under the translation of a 
curve (u), each point M of that curve will describe a curve (v).  On the other hand, the 
tangent to the curve (u) at M will keep an invariable direction during the translation.  It 
will then follow that the developable that is circumscribed by the surface at all points of 
the curve (v) that is described by the point M will be the cylinder that is generated by the 
tangent to the curve (u) at M.  That simple remark will suffice to prove that the two 
families of curves (u) and (v) form a conjugate system, and one sees, moreover, that: 
 
 The developables that are circumscribed by the surface at all points of one of those 
curves are cylinders that are generated by the tangents to the curve of the other family 
that are drawn from the point where they meet the curve considered (18). 
 
 
 85.  Finally, we treat the case in which the moving curve (C) that generates the 
surface is a plane, and in which the velocities of all of its points are normal to the plane.  
We suppose that one has taken the plane of the curve to be the xy-plane of the moving 
trihedron.  One must then introduce the hypotheses: 
 
(31)    z = 0, ζ = η = r = 0 
 
into formulas (15) and (16). 
 If one assumes, moreover, that one has chosen u to be the arc length of the curve (C) 
then one will again have: 

x′2 + y′2 = 1, 
 

and the expression for the line element will become: 
 
(32)    ds2 = du2 + (ζ + py – qx) dv2. 
 
 As for the projections of the arc that is described by an arbitrary point M of the 
surface, from formulas (15), they will be: 

                                                
 (18) S. LIE, “Beiträge sur Theorie der Minimalflächen,” Math. Ann. 14, pp. 332-337. 



Chapter IX. – Surfaces that are defined by kinematic properties. 93 

dx,  dy, (ζ + py – qx) dv. 
 

 The normal to the surface will be in the plane of the curve, and that plane will roll on 
a certain developable surface. 
 One recognizes the surfaces that were studied by Monge in a detailed manner (19). 
 The lines of curvature of one of the systems are the various positions of the moving 
curve; those of the second system are the trajectories of the various points of that curve. 
 
 
 86.  In particular, consider the case in which the plane of the moving curve rolls on a 
cylinder.  If we suppose that the x-axis of the moving trihedron has been taken to be 
parallel to the generators of the cylinder then the rotation of the system will take place 
around a parallel to the x-axis, and one will have: 
 

q = 0. 
 

 The line element that is given by formula (32) will take the form: 
 

ds2 = du2 + 
2

y
p

ζ 
+ 

 
p2 dv2, 

or, upon changing the notations: 
 
(33)    ds2 = du2 + (U − V)2 dv2, 
 
in which U and V denote functions that depend upon u and v, respectively. 
 One can give rolling surfaces another definition that is simpler than the preceding 
one, in some respects. 
 When the plane of the curve (C) rolls on the cylinder, the trajectories of its various 
points will obviously be planar curves whose planes are parallel to cross sections of the 
cylinder, and those trajectories will be normal to the plane of the curve (C) at each 
instant, moreover.  From this, it is obvious that their projections onto the plane of the 
cross section of the cylinder will constitute a family of parallel plane curves that admit 
the cross section of the cylinder for their common developable.  The following mode of 
generating these rolling surfaces will result from that: 
 
 One gives a family of parallel curves in a plane.  If one imparts a finite translation to 
each of those curves that is normal to the plane and varies according to a given law when 
one passes from one curve to the other one then the new positions of all of those curves 
will define the rolling surface. 
 
 
 87.  Upon appealing to that definition, one can show that the form (33) of the line 
element always agrees with an infinitude of rolling surfaces. 

                                                
 (19) MONGE, Application de l’Analyse à la Géométrie, 5th ed., pp. 322:  “De la surface courbe dont 
toutes les normales sont tangentes à une même surface développable quelconque.” 
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 Indeed, write down the expression for ds2 in the form: 
 

ds2 = dU 2 + (U – V)2 dv2 + (1 – U′ 2) du2. 
 
 The first two terms, taken in isolation, constitute the line element of a developable 
surface, and we have seen (no. 70) that upon setting: 
 

(34)    
cos sin ,

sin cos ,

x U v V vdv

y U v V v dv

 = +


= −

∫

∫
 

one will have: 
dx2 + dy2 = dU 2 + (U – V)2 dv2. 

 
 The surface that is defined by formulas (34), combined with the following one: 
 

(34)′     z = 21 U ′−∫  du, 

 
will then have the line element that is expressed by formula (33). 
 If one remarks that this line element will not change in form when one replaces v with 
av then one will recognize the possibility of introducing an arbitrary constant into the 
preceding formulas, and one will find, upon repeating the calculations, that: 
 

(35)    

2 2

cos sin ,

sin cos ,

1 .

v v
x aU V dv

a a
v v

y aU V dv
a a

z a U du

 = +

 = −

 ′= −



∫

∫

∫

 

  
 These formulas define a family of rolling surfaces that can be mapped to each other 
completely (20). 
 
 
 88.  The kinematic method that we just applied to numerous examples extends to the 
case in which one considers a curve that varies in form at the same time that it is carried 
along by the motion of the moving axes.  Indeed, it will suffice to regard x, y, z, no longer 
as functions of only the variable u, but as functions of u and v in formulas (15), which 
give the projections of the displacement onto the moving axes. 
 For example, we propose to apply that method to the surfaces that are generated by 
the motion of a circle.  The plane of that circle will envelop a developable surface.  We 
study the motion of the trihedron that is defined by the tangent, the principal normal, and 

                                                
 (20) BOUR, “Théorie de la déformation des surfaces,” Journal de l’École Polytechnique, 39th Letter, pp. 
89. 
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the binormal at a point on the edge of regression of that developable.  Upon taking the 
independent variable to be the arc length of the curve, one will have (no. 4): 
 
 ξ = 1, η = 0, ζ = 0, 

 p = − 
1

τ
, q = 0, r = 

1

ρ
 

 
here, in which ρ and τ are the radii of curvature and torsion of the curve.  The projections 
of the displacement of a point whose coordinates are x, y, z relative to the moving axes 
will have the expressions: 
 dx + (1 – ry) dv, 
 dy + (rx – pz) dv, 
 dz + py dv, 
 
in which v denotes the arc length of the edge of regression. 
 The circle that generates the surface is found in the xy-plane, so one can express the 
coordinates of one of its points by the formulas: 
 
  x = a + R cos ϕ, 
  y = b + R sin ϕ, 
  z = 0, 
 
in which a, b, R are functions of v, and in which ϕ is the variable that determines a point 
on each circle.  Upon substituting those values for x, y, z, one will have: 
 
  −  R sin ϕ dϕ + (a′ + 1 – br + R cos ϕ – rR sin ϕ) dv, 
   R cos ϕ dϕ + (b′ + ra + R′ sin ϕ + rR cos ϕ) dv, 

(pb + pR sin ϕ) dv 
 
for the projections of the displacement, and the sum of the squares of those projections 
will give the line element of the surface in the form (21): 
 
 ds2 = R dϕ 2 + 2R [rR + (b′ + ra) cos ϕ – (a′ – br + 1) sin ϕ] du dv 
  + [(pb + pR sin ϕ) + (a′ + 1 – br + R′ cos ϕ – rR sin ϕ)2 
     + (b′ + ra + R′ sin ϕ + rR cos ϕ)2] dv. 
 
 
 89.  To conclude this chapter − in which we have studied, above all, surfaces that 
enjoy kinematic properties − we shall give the definition of a class of surfaces that are 
consistent with the preceding viewpoint, and which were first studied by Maurice Lévy 
(22). 

                                                
 (21) Surfaces with a circular generator have been studied recently by Demartres [Annales de l’École 
Normale (3) 2, pp. 123].  
 (22) MAURICE LÉVY, “Sur le développement des surfaces dont l’élément linéaire est exprimable par 
une fonction homogène,” Comptes rendus 87, pp. 788. 
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 Consider a system that is displaced, but at the same time varies in magnitude while 
remaining similar to itself, and propose to seek the law for the velocities at all of its 
points at an arbitrary instant.  Let P0, P1 be two infinitely-close positions.  Construct the 
figure 1P′ , which is homothetic to P1, by taking the origin of the coordinates to be the 

center of homothety, while the ratio of homothety is such that 1P′  is equal to P0 .  One can 

pass from P0 to P1 by: 
 1. An infinitely-small displacement that takes P0 to 1P′ . 
 2. A homothetic transformation that has the origin for its center of homothety and 
transforms 1P′  to P1. 

 
It follows from this that the velocities of all points of the system will be the resultant of 
the ones that are produced in the displacement and the ones that are due to the homothety 
transformation.  The former will have the well-known expressions: 
 

α + qz – ry, β + rx – pz, γ + py – qx. 
 

 As for the ones that are due to the homothetic transformation, since they have the 
effect of reducing the coordinates by the same ratio, they will have the expression: 
 

hx,  hy, hz. 
 

 In summary, the components of the velocities of a point of the system under the 
motion considered will have the values: 
 

(36)    

,

,

.

x

y

z

V hx qz ry

V hy rx pz

V hz py qx

α
β
γ

= + + −
 = + + −
 = + + −

 

 
 If we let k denote the ratio of similitude of the moving system taken in its present 
position to the same system taken in a well-defined position then we will obviously have: 
 

(37)     h = 
1 dk

k dt
. 

 
 As long as the parameter h is not zero – i.e., as long as the system varies in magnitude 
– one can transport the origin of coordinates at a point such that the terms α, β, γ 
disappear from formulas (36).  The interpretation of those formulas will then exhibit the 
following result: The velocities are the same as if the body turned around a line and, at 
the same time, experienced a homothetic transformation with respect to a point of that 
line.  If one chooses the axis of rotation to be the new z-axis then formulas (36) will 
simplify and reduce to the following form: 
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(38)     

,

,

.

x

y

z

V hx ry

V hy rx

V hz

= −
 = +
 =

 

 
 
 90.  Let us study the case in which the axis of rotation and the center of homothety 
remain fixed during all of the motion, while the parameters h and r remain constant.  The 
successive positions of a well-defined point of the moving system will be defined by the 
differential equations: 
 

dx

dt
 = hx – ry,  

dy

dt
 = hy + rx,  

dz

dt
 = hz. 

 
 Upon integrating them, one will have: 
 

(39)    
0

0 0

0 0

,

cos( ),

sin( ).

ht

ht

ht

z z e

x r e rt

y r e rt

ω
ω

 =
 = +
 = +

 

 
 Each point of the system will describe a curve that is traced on a cone of revolution: 
 

2 2x y

z

+
= const. 

 
that has the origin for its summit and the axis of rotation for its axis.  The projection of 
the trajectory onto the xy-plane will be a logarithmic spiral that has the origin of the 
coordinates for its pole.  If one considers the skew spiral that is described by the point to 
belong to the moving system and vary in magnitude with it then it will slide on itself 
during all of the motion in precisely the same way as the helices that are described by the 
various points of an invariable system under the helicoidal motion. 
 As a result, the surfaces that admit the curves that are defined by the formulas (39) for 
their generators are obviously the analogues of the helicoidal surfaces and surfaces of 
revolution in the theory that we are addressing. 
 Take r0, ω0, z0 to be arbitrary functions of a parameter θ.  Formulas (39), which give 
expressions for x, y, z as functions of t and θ, define the surface that we have proposed to 
study.  If we seek its line element then we will find a result of the form: 
 
(40)   ds2 = e2ht (A dt 2 – 2B dt dθ + C dθ 2), 
 
in which A, B, C are functions of θ that are defined by the equations: 
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(41)   

2 2 2 2 2 2
0 0 0

2
0 0 0 0 0 0

2 2 2
0 0 0

,

,

.

A r h r r h z

B h z z h r r r r

C r z r

ω
ω

 = + +
 ′ ′ ′= + +
 ′ ′ ′= + +

 

 
 We shall transform that expression for the line element.  Set: 
 

dt + 
B

A
dθ  = 

1

h
dv, 

which will give, upon integrating: 

t + 
B

A∫
dθ  = 

v

h
. 

 The line element will become: 
 

ds2 = e2v (A′ dv2 + C′ dθ 2), 
 

in which A′ and C′ are also functions of θ.  Finally, replace θ with the variable u that is 
defined by the relation: 

u = C′∫  dθ, 

 
in which A is a function U 2 of u, and we will have: 
 
(42)    ds2 = e2v (du2 + U 2 dv 2) 
 
for the definitive form of the line element. 
 We call the surfaces that we just defined spiral surfaces.  They agree with the 
logarithmic spiral in one essential property that results from their definition: Like that 
curve, they can be enlarged by an arbitrary ratio without ceasing to be superposable with 
themselves. 
 Maurice Lévy showed that Bour’s theorem extends to those surfaces, so there is an 
infinitude of them that admit the same line element, and consequently can be mapped to 
each other.  One establishes that proposition by a calculation that we shall omit, because 
it would be entirely analogous to the one that we developed in the case of the helicoids. 
 

__________ 
 


