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BOOK I

VARIOUS SYSTEMS OF CURVILINEAR COORDINATES

CHAPTER |

CONJUGATE SYSTEMS

Proposition of Koenigs relating to the determination ofrdimitude of conjugate systems on any surface
with no integration. — Application to the determinatiorsoffaces that admit a system of planar lines
of curvature whose planes pass through a line. — Orthog@ettories of a family of circles. —
Projective and dualistic character of the definitiorafjugate systems. — Link between any conjugate
system and a linear partial differential equation. fef8es on which there exists a conjugate system
that is defined by two families of planar curves.

91. In the various surfaces that we studied previously, welertered and employed
a wide variety of systems of curvilinear coordinates: Somere simply orthogonal,
others were both orthogonal and isometric, and finallgers were defined by conjugate
lines. It is obvious that there exists an infinitudeoahogonal systems of conjugate
systems on any surface, because if one traces an irlfgtnaily of curves on a surface
then their orthogonal trajectories or conjugate ttajges will be defined by a differential
equation that has order and degree one, and whose inteljeist, although it is not
always possible to determine it. On the contrary, fthlewing beautiful proposition,
which is due to Koenigs, establishes that no matter sdndace is being considered, it
will be possible to trace an unlimited number of conjuggstesns on it without having
to perform an integration.

Let ) be the given surface. Take an arbitrary [hm space.

The sections of the surface that are determined by all planes thaircame line D
will admit conjugate lines that are the curves of contact of the codnafs dre
circumscribed on the surface and have their summits on that line.

Indeed, ifM is a point of the surface then the tangent plamé waill cut the lineD at
a pointA. The circumscribed cone with summiwill admit MA for a generator, and that
line, which is obviously the conjugate of the tangenitat the curve of contact of the
cone, is also the tangentMtto the plane section of the surface that is detexdthby the
line D and the poinM. The proposition is thus proved.
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92. In order to give an application, we now propose t@rdahe the surface for
which the lines of curvature of one of the systemsiratbe planes that pass through a
line D.

It results from the preceding proposition that the caiviecontact of circumscribed
cones that have their summits on the IDewill necessarily be the lines of second
curvature, and since those lines must be orthogonaletdirst ones, each of them must
cut the generators of the cone for which it is the cwieontact at a right angle.
Consequently, the lines of second curvature are sphetheatpheres that contain them
will have their centers on the lifig, and they will be cut at a right angle by lines of the
first curvature.

Conversely, take an arbitrary family of spher@stliat have their centers on the line
D. Their orthogonal trajectories will obviously be planwves, since the tangents to
those trajectories must pass through the center obotie spheres and necessarily meet
the line D. If one takes an arbitrary surface that is generatedhbge orthogonal
trajectories then they will be one of the desiredas@s. Indeed, let)( (t'), (t"), ... be a
sequence of trajectories, and MtM’', M", ..., resp., be the points at which they cut the
sphere § at a right angle. The tangents to the trajectoaieM, M', M", ... will
obviously agree at the center of the spheé&g &nd they will generate a cone that
circumscribes the surface that is defined by the trajestd), (t'), (t"), ... along the
spherical curveMM'M"... The two systems of conjugate lines that are defined by
Koenig’'s theorem cut at a right angle here, and wifisequently be the two systems of
lines of curvature.

That results in a very simple method for generatingettsurfaces. We consider an
arbitrary family of spheres that have their centerghe lineD and propose to determine
their orthogonal trajectories. Let) e one of those trajectories. If one makes it turn
aroundD in such a manner as to bring its plane into a fixedepthan it will not cease to
be an orthogonal trajectory:

Find the orthogonal trajectory of a family of circles that have themters along a
straight line.

Here is how one can solve that problem:

93. In a general manner, consider a family of cirched tire defined by the equation:
(1) x-9°+y-b*=r?

in which a, b, r are functions of a parameter The orthogonal trajectories satisfy the
equation:

@ . W

x—-a Yy-b

and in order to form their differential equation, one nelshinateu from equations (1)
and (2). That elimination is impossible, in generalisitoetter to use the following
method:
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Express, y as functions ofi and a new variabl@by the formulas:
(3) X=a+r coséq, y=b+rsiné.

The significance of is obvious:@ is the angle that theaxis makes with the radius
of the circle that passes through the point where ttadecis cut by the orthogonal
trajectory. One infers the values d anddy from formulas (3), and upon substituting
them in equation (2), one will obtain the following eqomatfor &

(4) a9 _ E%lsiné?——lﬂjcosﬁ,

du rdu r du
which one must integrate. Now, if one takes the unkntmnbe:

7]
5 tan—=t
(5) >

then one will arrive at a Ricatti equation:

(6) ﬂ: E%t_}ﬂj(l_tz)_
du rdu rdu

Several consequences result from this: If one knowpsstrajectory of a system of
circles then one can determine all of the other ondwbyuadratures. If one knows two
of them then just one quadrature will suffice. Finalhe knowledge of three orthogonal
trajectories will permit one to determine all of thetones with no integration.

From that, suppose that one would like to determine the¢ geseral orthogonal
system such that one family is composed of circlese €an give two of the orthogonal
trajectories C), (C,) arbitrarily. Indeed, there exists a family of ogglthat cut two
arbitrary curves at a right angle, and their centalisbe found on the curvel( that is
the locus of points where one can draw equal tangeit@® t¢C,). Since one knows two
orthogonal trajectories, one quadrature will sufficeobbain all of the other ones. One
can then obtain the equation of the most generabplarthogonal system that includes a
family of circles by just one quadraturg. (

() In his remarkable thesis, “Etude géométrique des sarfimet les lignes de courbure d’un systéme
sont planes,” Toulouse, 1882, V. Rouquet has even shownotfeatcan obtain the equation of that
orthogonal system with no integration. Indeed, consider families of circles that correspond to the
system of valuesgy, by, r;, anday, by, r, of the variables, b, r. If one has:

d d d d
(_']_) i:&' 7b1:7b2

n r n r

for each value ofi then the Ricatti equations that determine the orthdgmagectories of those two
families of circles will be the same, and consequemttyowledge of the orthogonal trajectories of one of
the families will imply that of the orthogonal trajedes of the other family. With Rouquet, we say that
two families of circles arsimilar when they satisfy the relations (1). It is easinterpret those relations
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There is, nonetheless, an extensive particular casgich the determination of the
orthogonal system will require no quadrature. It esdhe in which one knows, priori,
that one must find a straight line or circlg émong the orthogonal trajectories of a
family of circles, because all of the desired cscleill then be doubly normal to the
straight line or circle j§, so that particular orthogonal trajectory must bented twice
and will give two solutions to the Ricatti equatiort. will then suffice to give ) and
another orthogonal trajectoryC) in order to have three solutions of the differential
equation.

We point out a further consequence of the preceding angum/hen one has a well-
defined system of circles that cuts a given circleratd angle, or has their centers along
a straight line, the determination of their orthogamajectories will demand only one
guadrature.

From another viewpoint, the following consequence refuwlts equation (6): Let tan
8/ 2,tané / 2,tané / 2, tané / 2 be four arbitrary solutions of that equation. We know
that their anharmonic ratio is constant. Now, thagamionic ratio of four tangents is, by
definition, the anharmonic ratio of the points wheme ¢brresponding trajectories cut any
of the circles. One then has the following theorem:

The anharmonic ratio of the four points where an arbitrary circle of thelyam
considered is cut by four fixed orthogonal trajectories is constant.

All of these proposition obviously apply to the systeohgircles that are traced on
the sphere, which can always be transformed into amyttat is situated in a plane by
an inversion.

geometrically. Indeed, they express the idea that theereenf the circles that correspond in the two
similar families describe curves whose tangents ar@lpbat each instant, and furthermore, that the radii
of the two circles have the same radii as the infirenall arcs that are traversed by their centersduri
the same time interval; i.e., the same ratio agdate of curvature of the two curves that are desdrimg
their centers at the corresponding points. That prapositbviously permits one to construct all of the
families that are similar to a given family of ceswith no integration.

From that, let an arbitrary family of circles be givbat corresponds to the valuas b, r; of a, b, r,
resp. One can always imagine that there exist threéidmsa,, b, r, such that one has:

di:d& ﬁ:% a;+b2=r2.

n r n r

As a result, any family of circles can be considereid similar to a family that is represented by the
equation:

(x-8)"+(y-h)" =& +b,

for all circles pass that through a fixed point, namely,dhgin. Since one can exhibit the orthogonal
trajectories of that particular family without integomtj the same thing will be true for the most general
family, from the preceding propositions.

Moreover, in many questions, it is of little importanghether one does or does not have the quadrature
sign. What is essential is that one can obtain dluaten of the orthogonal system in explicit form, and the
developments in the text establish that this will alwaspossible.
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94. We return to the proposed question. It amounts tanfinthe most general
orthogonal system such that one of its families f;dd by circles that have their centers
on a lineD.

For that, one considers an arbitrary cur@e &nd traces out all of the circles that are
normal to C) and have their centers @ The orthogonal trajectories of those circles
are determined without integration. Indeed, consider drtyxase normal circles at a
point M of the curve C). If & denotes the angle between the tangent to the cuMe at
and the lineD then the Ricatti equation will admit three particidatutions:

&, 0,711

and consequently, its general integration will be givetheyformula:

o
tanE
£ = C',
tang - tane—0
2 2
or, more simply:
(7) tang =C tani :
2 2

The desired surfaces, which were first studied by Joadmngf), admit the
following mode of generation:

In a plane that passes through the line D, one defines (by the means thatt we
described) the most general family of plane cuf¥ethat admit a family of circles that
have their centers on the line D for their orthogonal trajectori@se turns those curves
(t) around the line D through an angle that varies according to a given, but arbitrary,
law when one passes from one curve to the other. The locustbéialpossible new
positions is the desired surface.

Take thex-axis to be the lin®. The formulas that are the analytical translatbthe
preceding mode of generation are the following ones. Let:

(x-a%+y*=r’
be the equation of the system of circles. Take:

a=F(&), r=F’ (&) sin &, tang =F1(y) tan%.

The coordinates of an arbitrary point of the desirethsarwill be:

() JOACHIMSTHAL: “Demonstrationes theorematum ad supierfcurvas spectantium,” Crelle’s
Journal30, pp. 347 and “Sur les surfaces dont les lignes de lasecourbures sont planelyidem 54,
pp. 181. Above all, see the last article.
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X=a+rcosd,
(8) y =rsind cosy |
z=rsin@siny .

These formulas are identical to the ones thatadtnbutes to Joachimsthal.

95. After having developed an application of Koenig’'s propmsitwe return to
arbitrary conjugate systems. Those two systems possessssential properties, upon
which we shall insist, and which one can state asvistlo

Any conjugate system will not cease to be conjugate when one subjetddie on
which it is traced to either a homographic transformation or a transformatiopotgr
reciprocals.

First, suppose that one subjects a surf&getqd a homographic transformation.
Consider a curveQ) that is traced onSj. The tangent planes to the surface at all points
of that curve will generate a developable surfagewhose rectilinear generators will be
conjugate to the tangents to the cur@. ( Now, it is obvious that the homographic
transformation changes nothing in all of those refeti The surfaceS( will correspond
to a surfaceg’), the curve C), to a curve '), the developable), to a developable()
that circumscribesY’) along the curve@), the tangents to the curv€)( to those of the
curve C'), and the generators ak), to those ofA&’). Consequently, the homographic
transformation will even make two conjugate tangentStadrrespond to two conjugate
tangents tog%’).

On the contrary, if one performs a transformation byampoéciprocals then the
surface § will correspond to a surfac&'), the curve C), to a developable/() that
circumscribes §'), and the developableA), to the curve of contactC[) of the
developable &"). As a result, the tangents to the cur@ will correspond to the
rectilinear generators ofA{), and the generators af) to the tangents to the curv@"{.
Here again, one sees that two conjugate lines correspawd tonjugate lines.

96.The preceding properties, which one further expressesalgings that the
definition of conjugate systems is projective and duajisan also be established by the
following analytical method, which will permit us to gealkze a proposition that was
proved already (n@4).

Let a and 8 be the parameters of two families of curves thatir@eed on a surface
(9. Adopt an absolutely arbitrary system of homogeneotstahedral coordinates, and
let:

(20) uxX+vY+wZ+pT=0

be the equation of the tangent plane to the suriace;w, p will be functions of the
parametersy and £, and one will obtain the equation in point-like cooadé@s of the
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surface § by eliminatinga and from equation (10) and its two derivatives with respect
to a andg.
X 2V, 00, 10p_g
m B
X—+Y—+Z—+T—=0.
0o 0B OB 0B

Consequently, if one lets y, z t denote the coordinates of the point of contact of the
tangent plane then they must satisfy three equations:

ux+ vy + wz pt0,
(12) X—+y—+2z72—+ t—=0,

ou ov _odw . dp
+y—+z72—+
0 "o o8 0B

Differentiate the first of these equations with resge a and in succession. Upon
taking the other two equations into account, one wiltigethew relations:

da  da  oa a
(13) ox oy 0z ot _
U—+v— p— =0

Moreover, one could have written down these equationsediately. They express
the idea that the tangents to the two cumesconst.,f = const. are in the plane that is
tangent to the surface.

Equations (12) and (13) apply to any system of curvilineardooates. We now seek
the condition for the two familiesaj and {§) to form a conjugate system. If one
displaces the tangent plane along the surfaseconst. then it will envelop a developable
surface. Its intersection with the infinitely-closangent plane will be defined by
equation (10), when combined with the second of equations Q@& must express the
idea that the line that is represented by those equatiaihe tangent to the curye=
const. For that, one must write down the idea thedd equations are verified when one
replacesX, Y, Z, T with:

x+%da, y+ﬂda, z+£da, t+ﬁda.
oa oa oa oa

Upon taking formulas (12) and (13) that were establisheddyr into account, that
will give only one new equation:
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(14) Ou 0x  0voy o0wdz 0pot_
0B da 0Bda 0fda 0fda

and that single equation will consequently express thessacy and sufficient condition
for the two families &) and ) to form a conjugate system.

One deduces the following identities, which are applicableany system of
curvilinear coordinates, by differentiating formulas (12) &3):

X V4 t
3008 “oaoB ‘0adB o0adp
__0uodx_0vdy 0wdz 0pot
90 0B 0a 0B 0aoB 9adpB
__udx_ovay_owdz_0po
9B oa 0Boa 0Bda 9Boa’
9°x 0%y 0%z 9°t
u +v + W +p .
0a0B ' 0adB dadB "oadp

9°u N 9%v N 62W+ a°p

(15)

It follows from this that equation (14) can alse Wwritten in one of the following
three forms:
Qudx, Ovoy, owdz 0pdt_,
oaof Odadf dadf oaodf
9°x 9%y 0°z 0°t
u +V + W + p =0,
doadf o0adf  daodf o0adf
2 2 2 2
« ou ry 0°v + 26W+ ta p:O_
oadf ~daodp oadf  daodp

(16)

The condition for the familiesaf, (6 to define a conjugate system is expressed by
any of the four equations (14) or (16) indiffergntl

97. In particular, consider equations (12) and thedtbf equations (16). They do
not contain the derivatives &fy, z t, and the elimination of those coordinates willdlea

to the equation:
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L ou du
da 9B 0adf
y OV ov o'
an 0a 9f 9adf | _
o O oW 2w
da 9B 0adf
dp dp 9°p
da 9B dadf

which contains only the tangential coordinaf®s (

Conversely, whenever equation (17) is satisfied, theteewdt values oK, y, z, t that
verify equations (12) and the third of equations (16). Thgsat®ns express the idea
thatx, y, z t are the coordinates of the point of contact of tlaee that is defined by
equation (10) with the surface that it envelops, and in iaddithat the two familiesd),
() that are traced on that envelope are conjugate. Equafiprs then characteristic of
conjugate systems, in any case.

Similarly, upon eliminatingu, v, w, p from the first of equations (12), the two
equations (13), and the second equation in (16), one will findathéition that the point-
like coordinates must satisfy:

, Ox 0x 0°X
da 9f adp
Oy 9y 9%y
(18) 0a 9 9adf | _
0z 0z 0%z
da 9B 0adf
ot ot 0%

da 9B 0adf

and one proves, as before, that this condition, wisictecessary, is also sufficient.

98. Upon repeating the argument that was made already .irf8%oone will
immediately obtain the following proposition:

The necessary and sufficient condition for the two families ofesuwhose
parameters arex and S to be conjugate is that either all four homogeneous point-like
coordinates or all four tangential coordinates must satisfy a partial eiffiesl equation
of the form:

() BRIOSCHI, “Sulle linee di curvatura della superficieldande,” Annali di Tortolini2 (1859), pp.
135.
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2
06 +A%+ B%+CB: 0,
oaadp oa s

(19)

in which A, B, C denote arbitrary functionsafnd S (%).

A homographic transformation will not change the hgemeous coordinates,
provided that one varies the tetrahedron and the refergarameters, and the
transformation by polar reciprocals will be equivalémta change of point-like and
tangential coordinates, so one sees that the precedet9od indeed exhibits the
projective and dualistic character of the definitiorcahjugate systems.

If one employs ordinary Cartesian coordinates thencbordinaté must be equal to
unity; as a result, equation (19) must be verified by theev@= 1. One must then have:

C=0,
and one will recover the result of rig4.

99. Upon concluding these developments, | remark thatiinpossible to find two
equations of the form (19) that the four point-like coordmateist all satisfy when the
surface reduces to a curve, or the four tangential coordinaten the surface is
developable.

Indeed, suppose that the four coordinates verify two liegaations of the form (19).
2

The elimination of

3005 from those two equations will lead us to a first-order g8goa
a

A’%+ B’%+ Ccé=0,
oa s

which those coordinates must further satisfy. Now,gieeral solution of that equation
has the form:

8= & F(m),

in which F denotes an arbitrary function, aré, o are well-defined functions.
Consequently, if one divides all of the homogeneous codsdiniay & then one will
reduce them to functions of only the variabte. If the coordinates are point-like then
the point will describe a curve, and if they are tangetien the plane will envelop a
developable.

Thus, two and only two equations of the form (19) waltrespond to any conjugate
system that is traced on that surface. One of tlsewerified by the coordinates of an
arbitrary point of the surface, and the other one, bytleedinates of an arbitrary tangent
plane on the surface.

() Itis useful to remark that the linear equation thatftur point-like coordinates must satisfy is not,
in general, the same as the one that the four tangeotiadinates must satisfy.
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100. The preceding theorem obviously permits one to constancinfinitude of
surfaces on which one knows conjugate systémsWe shall now present an application
of it by looking for the surfaces for which there exisbtconjugate families that are
composed exclusively of plane curves.

If the tangential coordinates satisfy the equation:

%0
00 dp

then the corresponding most general surface will beetivelope of the planes that are
defined by the equation:

(20)  [f(a) + $1(B)] x + [F(a) + 2AB)] y + [fs(a) + ¢3(B)] 2+ [fa(a) + pa(B] L = 0.

Now, one recognizes, with no difficulty, that this siwd enjoys the indicated
properties, because in order to get the envelope of nigena planes, one must combine
equation (20) with the following two:

(21) { fa)x+ f(a)y+ f(a)z+ f(a)t=0,

PL(B)x+ @,(B)y+ ¢5(B) 2+ ¢.(B) =0,

which each contain only one of the variabies3, and also show that the two conjugate
families a = const. 8= const. are composed of plane curves.

The solution that we just obtained is very genef@he can prove that there is no
other one. In order to do that, we define the desirefd@ito be the envelope of the
planes:

(22) uxX+vY+wZ+pT=0.

If we take the derivative of that equation with respgea then we will have:

(23) x Uy OV, Z0W, 10P_
Jda Ja Jda Jda

As we have seen, those two equations represent thentaogihe curver = const.
whenever the two familieg, (£) are conjugate.

Now, if the parameter curves are planar then they will be determined by an
equation of the form:
(24) Xfi(a) +Y &(a) +Zf(a) + T f4(a) =0,

and consequently, the three planes that are defined by atu#b2), (23), (24) will
contain the same line, which is the tangent to the carweconst.; one of those three
equations must then become a linear combination of the ttber We write down the

©) DARBOUX, “Mémoire sur la théorie des coordonées itignes et des systemes orthogonaux,”
Annales de I'Ecole Normale (2)(1878), pp. 293.
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idea that the third one can be obtained by adding the thbewhen they are multiplied
by ¢ andA, respectively. We will have the system:

ta) = pu+ A 24
a
to(a) = v+ A2V
a
to(a) = pw+ A W
a
)
fua) =up+ AL,
oa

Upon eliminating the functiorfs(a), ... by a differentiation, one will see thatv, w,
p must satisfy the same second-order equation:

0 00) _
@(”“%J -0

ie..
2

(25) 0’6 +%ﬂ+ﬂ%+ a_V =0.

0adf dadB “ap B

Upon likewise considering the curvgs= const., one will find that the tangential
coordinates must also satisfy the similar equation:

2 [ !
96, 96 0138, ou _

daop Y op eaop  oa

(26)

Now, we have seen thafv, w, p cannot simultaneously satisfy two equations of the
preceding form, at least, when the surface is not dpable. It is then necessary that
equations (25), (26) should be identical, which gives the tiondi

4_dlogh  p_dlgh Loy 1o
A

A’ 5 a AdB A oa

(3]

Upon substituting the values gfandy’in the last equation, we will find that:

0°logA _ 0*log /'
0adB  0dadp

from which, we will deduce, upon integrating, that:

A'=A1(a) ¢(B),
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which will give:
04 4 f'(a)

T oa | f(a)
If one substitutes that value forin equation (25) then it will take the form:

62

5007 [Af(a) 4 =0.

One sees that if we multiply the four coordinates, w, p by the same function
f(a), which is obviously permitted, then they will is&¢ the equation:
0°6
oaadp

and we will recover the solution that we gavpriori.

It is true that we have discarded the hypothdwis the surface might be developable
from our argument. However, in order to obtainhsacsurface, it will suffice to suppose
that all of the functiong3 in formula (20) are zero. Our first solution wilien give,
without exception, all of the surfaces for whiclerth can exist a conjugate system that is
composed of two families of planar curves.

101. It remains for us to describe a simple mode afegating the surfaces that we
just obtained. In order to do that, set 1, and imagine the two families of spheres that
are defined by the equations:

(27) X +Y +Z2—2f1(a) x—=2 (@) y— 2 f3(a) z— 2f4(a) = 0,
(28) X+ +Z+20(B x—20AB) y-204B) z— 264 = 0.

Those two families of spheres are absolutely @yt and their radical plane is
precisely the tangent plane to the desired surfawgeover, which is represented by
equation (20). We are then led to the followingditem:

If one considers two families of spheres in space that are defirted most general
manner then the radical plane of one of the spheres of the first fandlyone of the
spheres of the second one will envelop the most general surface thds d@dmi
conjugate families that are composed exclusively of planar curves.

In order to determine the surface by points, @rearks that the two equations (21)
are the derivatives with respectdaand S of equations (27), (28). Therefore:

If one associates two different spheres of the family with twaitelfi-close spheres
then the radical center of those four spheres will describe theedesurface. The
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radical plane of two infinitely-close spheres of the same famllycamtain one of the
curves of one of the conjugate systems.



CHAPTER II.

CONJUGATE SYSTEMS. — ASYMPTOTIC LINES.

Application of the preceding proposition to the detertdmaof surfaces with planar lines of curvature in
both systems. — Characteristics of a linear partia¢wdifftial equation. — New theorem that relates to
conjugate systems- Asymptotic lines. — Simplest form of their differentiajuation. — Their
determination in particular cases. — Lamé’s tetrahexirddces.

102. The proposition that was obtained at the end opteeeding chapter leads to a
very simple method for determining surfaces whose lifiesivature are planar in both
systems. Indeed, it will suffice to look among theedoping surfaces of the planes that
are represented by equation (20) for the ones that hayaaperty that the two families
of conjugate curves intersect at a right angle.

Consider the enveloping surface of the planes:

uxX+vY+wZ+pT=0,

in whichu, v, w, p are function ofa and . The orthogonality condition for the curves
with parametersr and £ that are traced on the envelope is generally compticand
contains second derivatives of the tangential coorelinatindeed, ik, y, z t are the
coordinates of the point of contact, and if one makesl then one will have the two
equations:

ou ox vy, dwdz_
0B oa 0B da 0dFda

S0 one can deduce the proportions:

OXx o0y 0z __ow 0y Odu oOw__ ov _du
% w—= -u -V

Q) — == — i V—- CW——U—: U——V—.
oa oa oa 0B oF o 0B OF 9B
ox ody o0z .
One has analogous formulas fer-: —: —, and upon writing down the
0 0B o0pB

orthogonality condition, one will find the equatio: (

(®) BRIOSCHI, Annali di Tortolini.2 (1859), pp. 135.
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( ou  ov awj ou o0v 0w
U— +V— + W— || U—+ V—+ W—
o da oa oa)l a8 o8 o8
(v wpy U2, OV OV awdw) _

da 08 0a o 0aof

We nonetheless remark that this equation will beedlusory wheru, v, w, p do not

containg, because formulas (1) will have no meaning then, the surface will become
developable.

In order to apply equation (2) to the problem thatare treating, we must set:
u=A+B;, Vv=A+B;, wW=A3+Bs,

in which A;, As, Az denote functions ofr and B;, By, Bs denote functions of. One

recognizes that equation (2) can be convertedantthat contains only the derivatives
of the function that is defined by the equation:

h? = u? + V2 + W = (Ar + B)? + (Ax + B2)? + (As + Bs)?.

Indeed, when that equation is differentiated wehpect toa and S, that will give
successively:

oh ou ov ow
h—=u—+v—+

W—
Jda Jda Oda Jda
oh ou ov ow

h— =u—+v—+w—,
s o op os

h 0°h +ahah ou au avav 0 WO W

0003 9a 08 0adB daop o0adp

Upon taking these relations in account, equat®)mfll take the form:

2
oh _q
00 dp

and in order for this to be satisfied, one musthav

h=A,+B,;.

One can then state the following proposition:

In order to obtain the surfaces with planar linescarvature in the two systems, one
begins by determining the functioasand S that satisfy the equation:
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3) (A1 +B1)? + (A2 + Bo)® + (As + Bg)® = (As + By)”.

When these functions are known, the surface will be the envelope méarles that
are represented by the equation:

(4) By +By)’ + (Ao +By)’ + (A + B’ =A +B,

in which A, B denote two new functions that depend upand S, respectively. The
lines of curvature of the two systems will be defined by the equations

©) Bx+ By+ Bz B

{ Ax+ Ayt Az= A
which each contain only one of the variabler £ and represent the plane of those
lines.

103. The preceding method reduces all of the complexity & giroblem to the
determination of the most general functions that fyatie identity (3) identically. Now,
if one differentiates that equation layand S, in turn, then one will come to the simpler
equation:

(6) AB+AB+AB=AB,

that J.-A. Serret gave all the possible solutions dfisnmportant paper “Sur les surfaces
dont les lignes de courbure sont planes ou sphériquas;hal de Liouville (1)18, pp.
116. Instead of following the path that Serret adoptedsivedl adhere to equation (3),
which we write in the form:

7) (A1 - By + (A2 — Bp)® + (As — Ba)* = (As — By)?,

upon changing the signs of tB€unctions.

That equation can be interpreted geometrically in tHevimdg manner: Consider the
sphere §, which is variable and depends upon the paranwetevhose center has the
coordinated\;, A, As, and whose radius is equal in magnitude and sigh to Consider
the same sphere&s(), which depends upon the parameferand whose center has the
coordinate®3;, By, Bs, and whose radius is equalBg. Equation (7) obviously expresses
the idea that the two spheré&y &nd §”) are constantly tangent. It is then necessary that
these two spheres, when imagined in turn, must envelogathe surface>], and since
that surfaceX) is touched along a circle by each of the sphe®gsaé well as by each of
the spheresY’), it is necessary thail of its lines of curvature must be circular.

We are then reduced to a well-known problem, which was peapband solved for
the first time by Dupin): Determine all surfaces whose lines of curvature are circular.
The solution yields a fourth-order surface, namely, Dogin cyclide whose normals

"y DUPIN, Applications de Géométrie et de Méchanique 200et seq. 1822.
p
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meet an ellipse and a hyperbola, which are the fagales of each other, and which
contain the centers of all spheres that are tartgettte surface along one of its lines of
curvature. That surface can degenerate into a torushandhe focal ellipse will reduce

to a circle — i.e., one will have a third-order surfacand in that case, the two focal
curves will become parabolas.

104. If one supposes that the ellipse reduces to a ciretettie hyperbola will reduce
to a line that passes through the center of the cirdlgparpendicular to the plane. Upon
choosing the center of the circle to be the origithefcoordinates, and the line to be the
z-axis, we will obtain a first solution to equation (7)aths given by the following
formulas:

A;=0, A>=0, As=a,
Bi=cosf, Bx=sing, B;=0.

The corresponding surface with planar lines of curvaisirehe envelope of the
planes:

(8) az-—xcosp-ysing=1(a)+ ¢ (D).
The lines of curvature = const. are in the parallel planes:
z=1'(a),

and consequently, that first class will include only thiing surfaces that were studied
already (no86).

We now pass on to the general case, in which the éocaé is an ellipse. Since one
can multiply all of the functionsy, B; by the same number, one can take the equations of
that focal curve to be:

and the corresponding hyperbola will then be represdytéice system:

2
A% -

x=0, Y-

=-1.

1

A point of the first curve will be defined by tifermulas:

(9) x=Ar=a, Vy=A=0, z=As=A1.1-a?%,

and likewise, a point of the second one will bartf by the analogous formulas:

(10) x=B1=0, y=B,=0, z=B3=yA?-1J1+p.



Chapter Il. Conjugate systems. — Asymptotic lines. 117

The surface with planar lines of curvature that cornedpdo these values of the
functionsA;, B; will be the envelope of the planes:

(11) ax—pBy+ (M 1-a% - 12-1 1+ B%)z=1(a) - 4
whena andf vary.

In the case where the ellipse reduces to a paabok will likewise find that the
corresponding surface is the envelope of the planes

(12) ux+28y+ 1 - -5 z=1(a) + ¢P).

103. In summary, we obtain three classes of surfaddsplanar lines of curvature in
the two systems. However, it clearly results fritva preceding argument that the first
and third of them can be considered to be limittages of the second one, which is
defined by formula (11). We shall exhibit a newdamf generating those surfaces.

If one successively differentiates equation (1ithwespect tar andf then one will
obtain two equations:

(13) X — \/% =f'(a),
(14) y+ A7 ya),

1+ 3

which represent the planes of the lines of the &irgl second curvature, as we have seen.
Thus, the lines of curvature of each system atkartangent planes to a cylinder, and the
cylinders that correspond to the two systems havpemdicular generators.

On the other hand, the two families of spheres wee considered in nd01 have
the equations:

X+ +Z-2ax-211-a’# 2 f@g)=0,

X+ Y+ Z-28x-2A*-1) 1+ B3°# BB)=C

here. The centers of these spheres are situatédeotwo focal curves, respectively.
Furthermore, their radii depend upon the functife$ and ¢(£) and consequently vary
according to an arbitrary law. Upon applying thedrem of no101, one will then be led
to the following proposition:

(15)

In order to obtain all of the surfaces with plarares of curvature in the two systems,
one constructs two different families of spheressehcenters are required to describe
two second-degree curves that are focal curvesatth eother, and whose radii vary
according to an arbitrary law for each of the twaniilies. The radical planes of the two
spheres(S), (%), which belong to the two different families, will envelte desired
surface. If one associat€s) and (S with the infinitely-close spherg¢S’) and (%) then
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the radical centers of those four spheres will describe the surfélee.radical planes of
(9 and(S'), (2) and (') will be the planes of the lines of curvature of the two systems

).

Although our argument leaves aside the case of developaidees, the results that
are obtained include those surfaces, which are, as iy eacognizes, the rolling
surfaces that are defined by the tangents to a helixsth@tced on an arbitrary cylinder.

106. We conclude this preliminary study of conjugate systemgemeralizing the
proposition that was given in n®8, and in order to do that in a precise manner, we begin
by recalling the definition of the characteristics dihaar partial differential equation.

Let:

2 2 2
(16) a€2+866 +Ca€2+A%+B%+C'€:O
oa oad  dpB oa op

be such an equation, in which the coefficients arerarlgjtgiven function otr andg. If
one replaces those independent variables with the fiopanes:

p=¢(ap, pm=y¢(ap

then the equation will keep its form and become:

2 2 2
aa€+b 00 +caf+a%+ b%+c'8:0,
0p° 0pop, Opy  O0p 0P,

in whicha, b, ¢ have the following values:

2 2
a:A(%j + Ba—p%+c 6_,0 ,
oa oa op s
(17) bZZAa—p%+ B a_p%+a_p% +2C6_,0%’
oa oa oa 03 0B da 08 dp
2 2
C:A(aplj 929, (9]
oa oa df s

2 2
If one would then like to make the two termsgrllg;, Py disappear thep and o
o1
would have to be two different functions that $gtike equation:

() One can define the variation of the radii of theesph of each of the families by requiring that those
spheres must be tangent to an arbitrarily-chosen ¢hatds situated in the plane of the line that contains
their centers. One can then geometrically consthactadical plane of each sphere and the infinitelgeclo
sphere.
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18) AT ve2 (2
One can state that result in the following manner:
Consider the first-order differential equation of degree two:
(19) AdB*-B dadB+Cda’=0,

to which we give the name of ttiéferential equation of the characteristics, and which
decomposes into two first-degree equations that each admit an integtal. Le

p=¢(a.p, pm=y¢(ap

be the two integrals thus obtained. One must jake to be the new variables if one
would like to reduce the equation éto the form:

2
09 +a’%+b’%+ ¢ g=0.

0pop, O0p  Op

(20)

One sees that the transformation will be impossibike left-hand side of equation
(19) is a perfect square. However, it results from tdas (17) that if one then takpgo
be th(% unique integral of equation (19) then the equatighwiill reduce to the simple
form ():

() One can likewise further simplify that equation asgl@as one knows some particular solutions,

because if one let§, , & be two of those solutions then if one takes the nelepgandent variables to |pe
and the ratio:

I

=p,

[

and if one sets:
=60

then the functiorowill satisfy an equation of the same form as equation (21)

°c 9o oo
s+ta —+b — +co= 0.
0p; op " op

However, since that equation must admit the particular eakti
o=1, o=p

in whichb; andc; are zero, it will reduce to the binomial form:
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2
9 e+a'%+b'%+ cé=0.

op, dp  Op

(21)

107. After having recalled those definitions and properties,na® return to the
guestion that we have in mind, and suppose that the foundemaous coordinatesy,
z, t, oru, v, w, p are expressed as functions of the two variablesd 5. If one has
obtained (by whatever process) an equation of the faGntpat these four coordinates
must satisfy then one can convert into the form (20) byptlocess that we just pointed
out, and one will then immediately recognize that ¢beves p), (o) will trace out a
conjugate system on the surface. We can then stafellthveing proposition:

When one has defined (in whatever manner) an equation of théf6éythat must be
satisfied by either the four point-like coordinates or the four tangeatiatdinates, the
characteristics of that equation will trace out a conjugate system osutffece.

An equation of the form (16) that contains five coeéffits is not determined by the
condition that it must admit, for example, the fowinp-like coordinates for particular
solutions. However, if one appends to that conditi@edondition that it must admit a
fifth solution ¢ then all of its coefficients will be determined perfgcts well as the
conjugate system that it formed by its characteristicghat sense, one can say that each
function ¢ corresponds to a particular conjugate system:

Thus, suppose that one takes the Cartesian coordiates Before equation (16)
can admit the solutiof=1t = 1, it cannot contain the term & and all of its coefficients
will be determined completely by the condition that misthadmit a new particular
solution ¢, along withx, y, z, and we suppose that the new solution is expressed as a
function ofx, y, z, for example. Convert the equation to the form (20)dking the
parameters, o, of the conjugate system that is defined by its charatitsri be the
new variables, and then let:

2
a e = A%+ B%
0pop,  0p  0p
be its new form. One will have:
0°X _ p0X, g OX
0pdp,  dp op

The preceding argument shows, moreover, that this formotistypical, and can be obtained in an
infinitude of ways.
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and an analogous equationyimndz. If one now expresses the idea tidas a solution,

2 2 2
and if one eliminates IX oy 9z

, : by means of the preceding equations then
0p0p, 0p0p, 0p0p,

one will find that:

0’9 9x ox | 9% (9xdy dyox|,  09'90dzdz_
x> dp 0p, 9xdy\ dp dp, 0pdp, 07 dp dp,

This is a relation that the tangents to the two comnguéamilies must satisfy at each
point of the surface.

108. If one takes, for example, the following valuegof

¢:x2+y2+z2
then one will have:
0x 6x+6y 6y+6zaz_0

dpdp, 0pop, dpdp,

so the conjugate system will be orthogonal; i.e. lithve defined by two systems of lines
of curvature, which leads us to the following theorem:

The equation of the form:

2 2 2
662’+B 00 +C662’+ D_66?+ E%+c’6?:0,
oa oaofs 0B da 08

whose coefficients are determined by the condthahit must admit:
X, V, Z X+ Y+ 2

as particular solutions, in which X, y, z denote thithogonal Cartesian coordinates of a
point on the surface, which are expressed as fom€tdf two arbitrary variables and S,
admits the two families of lines of curvature @& surface for its characteristics.

The following application, which is very simple, providasverification of that
proposition. Take two of the coordinateandy to be the independent variables. Before
the equation:

2 2 2
Aa §+B 0% +Ca 9 D%+ Eﬁ+c’€:0
ox oxdy 0y ox 0y

can admit the particular solutiorgndy, one must first have:
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D=E=0.
If one then expresses the idea that it must likewdseitathe two solutions:
=z, =X +y+7
then one will obtain the two relations:
Ar+Bs+Ct=0, A(1+p)+Bpg+C(1+q)=0,

in whichp, g, r, s, t denote the derivatives af and they determine the ratiosAfB, C.
The desired equation will then be:

0% 0%0 0%
s(1+0) —tpg——[r (1 +3®) -t (1 +p° +[rpg-s(1l +g?)]— =0,
[s(1+q) IOQ]aX2 [r (1 +q)-t( p)]axay [rpg —s( CI)]ay2

and the differential equation of its characteristid$ provide the well-known equation of
the lines of curvature.

109. The theory of asymptotic lines of a surface is linked/ vdosely to that of
conjugate systems. If one groups those lines into twclidamilies, as one does for
lines of curvature, then one can say that each of tbdamilies that are obtained in that
way will be conjugate to itself. Consequently, the asymptotes will be preserved
when one subjects the surface to either a homographgfdranation or a transformation
by polar reciprocals. The following calculations withébit those results, moreover.

Keep all the notations of n®6. Always letu, v, w, p be the coordinates of the
tangent plane, and Igty, z t be those of the point of contact. As we have seea will
have the equalities:

ux+ vy+ wz ptO,
(22) udx+ vdy wdz paot0,

xdu+ ydw zdw tdpg0,

which refer to an arbitrary displacement that is penéd on the surface.

We seek the differential equation of the asymptoticslin®/e must write down the
idea that the osculating plane of those lines coincidésthe tangent plane; i.e., that the
point whose coordinates are:

x +dx + Ld, y+dy+1d, ...

must be found in the tangent plane. Upon taking the pregedjualities into account,
one will then be led to the equation:

(23) ud+vdy+wd?z+pd4=0.
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The identities that one obtains by differentiating kst two equations (22) permit us
to replace the preceding equation with one of the foligviwo:

+ z dpdtO,
(24) { dudx+ dvdyr dwd p

xd’u+ ydw zd w td g0,
which are equivalent to it.

The first of these two formulas immediately giveée differential equation of the
asymptotic lines when the surface is defined by its equatioaither point-like or
tangential coordinates. However, the preceding forsn{Zd) and (24) also permit one to
write down that differential equation if one supposest i coordinates are expressed as
functions of the two variablesandf. For example, if one eliminatesv, w, p from the
first equation (22), the two equations (13) of 86, and equation (23) then one will be
led to the relation:

— —= d*x

doa d0f8

dy 9y o,
S
92 92 ¢,

doa d0f8

iﬂ d?t

doa d0f8

which constitutes the desired differential equatioroné develops it and arranges it with
respect tala, dGthen one will find that:

) O 0x %X L O ox _ox ) O 0x 9x
da 9B 0a> da 3B dadp da 9B 9B*
oy oy oy g oy Oy y Oy oy oy
(25) oa of afz da?+ oa op aazaﬁ da dg+ oa 0f a’f 2 dg*=0.
, 02 02 0z , 02 07 92 , 02 07 0z
da 9B 0a* da 98 0adp da 9B 0
ot ot ot oot ot Lot o o
da 9B da? da 3B dadp da 0B 9B*

The equation in tangential coordinates is entirely lamniand can be obtained by
replacingx, y, z, t with u, v, w, p in the preceding.

We can deduce the proposition that relates to conjugatensysind was proved
already (no0.98) from the preceding equation, because the necessary udintieat
condition for the two families of curveg), (£) to be conjugate — i.e., for the tangents to
the coordinates curves that pass through each point stitfece to harmonically divide
the angle that is defined by the asymptotic tangents aipthiat — is obviously that the



124 Lessons on the general theory of surfaces. Book II.

coefficient ofda dS must be zero in the differential equation (25). Wantrecover the
condition that was given already (r8).

110. Conversely, whenever one knows a conjugate system surface, one can
write down the equation of the asymptotic lines in a fohat ho longer contains the
rectangleda dg.

Here, we are presented with a new occasion to applyptoposition of Koenigs,
because if we suppose that the liheéhat appears in the statement of that proposition is
pushed out to infinity parallel to a fixed plane then wd vécognize that the plane
sections that are parallel to that fixed plane havgugates that are the curves of contact
of the circumscribed cylinder and the surface whoselirexdr generators are parallel to
the various lines in that plane. If we refers the @ooitthe surface to that conjugate
system then the equation of the asymptotic lines mustaicoionly squares of the
differentials.

Indeed, take a system of Cartesian coordingtgsz, and letp, g be the derivatives of
z, considered as functions &fandy. Upon supposing that the fixed plane has been
chosen to be thgzplane, the variables that one must adopt will bédahewing ones:

(26) x=a, q=4.
From the equation:
dz=p dx+qdy
one deduces that:

d(z-qgs=pdx-ydFpdr—-yd

Consequently, if one sets:

and if one expressesas a function ofr and S then the preceding equation will obviously
give:

_ 0z __o0z
"2 T ap
or furthermore:
(28) p=p, y=-d,

in whichp' andq’ denote the derivatives dafwith respect tar andp.
The differential equation of the asymptotic lines:

dp dx+dqdy=0
will then become:
(29) dp da-dq d3=0

with the variablesy and 5, and if one replacgs, g with their expressions da + s dg,
S da + t' df as functions of the second derivativess, t' of Z then it will take on the
form:
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(30) rda?-t dg?=0,
which no longer contain the termda dg, as we predicted.
111. The simple form of that equation will permit us taab a large number of

surfaces whose asymptotic lines one can determine ia famins.
Indeed, consider both a differential equation:

62
(31) L =p@n
a
and the partial differential equation:
(32) rr-t¢(a, p)=0.

If one knows how to find a functiod that satisfies the latter equation then one can
deduce a surface by replacixgy, z by means of the formulas:

X=a, y=-d, z=qy+tZ=7Z-[4(.
Now, the asymptotic lines of that surface will be deired by the equation:
rda?-t dg?=0,

and upon replacing’ / t' with its value that is deduced from equation (32), one will
recover equation (31). Whenever one has to integratdiffiatential equation, along
with the partial differential equation (32), one wilen have a surface for which one
knows the asymptotic lines.

For example, suppose that one takes the funatiom be a constari®. The finite
equations of the two systems of asymptotic lines will be:

[+ Kka=const., [ — Kk a=const.
Equation (32) will have the general integral:
Z=F(+ka)+F (f-ka),
and the coordinates y, z of a point on the surface will be given as functionsr@nd S
by the formulas:
X =a,

y=-F/(B+ka)- F (B-ka),
z=F-BF'+F, - BF.
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112. Here is yet another application of formula (25).
Consider the surfaces for which the Cartesian coordinatg, z are defined as
functions of two variableg, o, by the following expressions:

x=Ap-3"(p-3"
(33) y=B(p-B"(n-bH"
z=C(p-9"(p,— 9"

| first say that the curveg), (o.) trace out a conjugate on these surfaces. Inas®ed,
verifies that the three coordinates satisfy theaéiqu:

2
(34) (0—,0_1_) 0°g +n%—m% =0.
0pop, 0p  Op,
It follows from this that if one seeks the equataf the asymptotic lines by applying
formula (25) then that equation will not contaie tierm indpo do1 . Upon performing
that calculation, one will indeed obtain the diéfetial equation:

(35) m(m-1) do®>  _ n(n-1) do?
(a-p)(b-p)(c-p) (a-p)(b-p)(c-p)’

which can be integrated by quadratures in any dasewhose integral is algebraic

m(

. m-1) .
whenever the quotlenﬁ Is the square of a commensurable number.
n(n-
In the particular case whera is equal ton, one can eliminat@, o1 and find the
equation of the surface, which is:

X

1/m _ _yl/m _ _lem ~ _ _ _ B
(TJ o C){Bj (c a)+(cj (a-h=@-Hb-9@-0

One recognizes the tetrahedral surfaces that Vst studied by Lamé in his
“Examen des différentes methods employées pouudésdes problemes de Géométrie,”
which was published in 1818, and which have sihes tbeen the subject of the work of
numerous geometers, among which, one must citet especially, de la Gournerie.
Equation (35) then reduces to the one that wagrated by Euler and which gives the
addition of elliptic functions. Among the numerofems that one can give to its
integral, we choose the following one:

(p-a)(p—a) (p-B(p - b (p-9(L -9 _
ﬁJ (a-b)(a- 9 ”ﬂ (b= 3(b- 3 +ﬁJ(e Kep

in which a, 3, ydenote three arbitrary constants whose sum is zero
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Changing the notations slightly will give the followinesult.

The asymptotic lines of the tetrahedral surface:

1 + _y + _Z =1
A B C
are determined by means of the equation:

SCRCORUCES

A

in which a, S, yare three arbitrary constants whose sum is zero. Their projecbiotts
one of the coordinate planes — for example, the yz-plane — have the edtftion

Fa =g 3]

113. Formulas (33) determine a large number of different seisfa In particular,
they are suited to the Steiner surfacenfor n = 2, to the surface of centers of curvature
of the ellipsoid fom = 3/2,n = 1/2, ... We remark that they keep that same form when
one substitutes the tangential coordinates for the p&etbordinates. Indeed, let:

uxX+vY+wZzZ-1=0
be the equation of the tangent planey, w are determined by the three equations:

uxX+vY+wZ-1=0,

u—+v—=+w— =0,
Jdp 0dp 0p
uaX+vay+waZ—0,

which give:

(p-a)"(p,-a)""
A(a-b(a- 9

(*% The asymptotic lines of tetrahedral surfaces wdetermined for the first time by LIE¢ethe article
“Ueber die Reciprocitats-Verhéltnisse des Reye’schenplos,” Goéttingen Nachrichten (1870), 53-66].
The method that is described here was developed by the @utherBulletin des Sciences mathématiques
(1) 1 (1870), pp. 355.
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L2 (o=D)"(p ="
B(b-a)(b- 9

we P9
Alc-8(c- b

In particular, if one has:
m+n=1

then one will obtain the surfaces that coincidehwfiteir polar reciprocal with respect to
the second-degree surface:

NG . yz . 2 4
A(a-b(a-9 B(b-aA b CE e ek

In this case, as well, the differential equatidrtlee asymptotic lines will reduce to
that of Euler 19).

114. Upon concluding this subject, we point out sormmgs that the theory of
asymptotic lines and that of linear partial diffetial equations have in common that are
analogous to the ones that were the subject of8band107. A family of asymptotic
lines can be considered as a system that is itsedfivn conjugate, so the theorem of no.
107 immediately gives us the following:

If the coordinates X, vy, z, t, or u, v, w, p, wlremsidered as functions af and £,
satisfy a linear equation of the forth6) for which the characteristics coincide then the
characteristics of that equation will trace out ookthe two families of asymptotic lines
on the surface. In particular, if they satisfy eguation of the form:

2
9 €+D%+E%+ F8=0

0F2 oda df

(36)

then the linegr = const.will be asymptotic.

The last part of the proposition is verified imnadly by inspection of equation (25),
in which the coefficient o3 will become zero, by virtue of the hypothesis.

Whenever one has a linear equation of the formy &6l one knows four linearly-
independent solutions, the preceding theorem valinpt one to obtain a surface on
which one knows one of the two families of asymiptties.

(*) One can consult my “Note sur les lignes asymptotigeds surface des ondes,” Comptes rer@dus
(1883), pp. 1039, in which one will find a generalization &f tiethod that is employed in the last number
of this chapter.



CHAPTER Il

ISOTHERMAL ORTHOGONAL SYSTEMS

Division of a surface into infinitely-small squares.sethermal systems and symmetric coordinates. —
Geographic charts. — Resolution of the problem for sesfa revolution and second-degree surfaces.
— Isothermal systems in the plane.

115. After having given the simplest properties of conjugastesys, we shall now
consider orthogonal systems, and in particular, theegysthat are both orthogonal and
isothermal. We first look for all orthogonal coordimaystems that permit one to divide
a surface into infinitely-small squares.

Let:

ds = A’ duf + C? dv?

be the expression for the line elemeAtandC will be given functions ofi andv:
A=f(uv), C=4¢(u,V).

Consider (Fig. 6) four lines that correspond to each yamémely, A), (A1), (B),
(B1), which correspond to the valueswof

Up, Uo+dup, u, u +du,
resp., and@), (C,), (D), (D1), which correspond to the valueswof
Vo, Vo+dw, \2 v +dy,

resp. They obviously determine four infinitely-small reglas (1), (2), (3), (4). We
seek to find out whether it is possible to arradgedv, dw, dw in such a manner that
those rectangles are all squares. The considerafi@ach of them will give us the
relations:

f (Uo, Vo) dw = ¢ (Uo, Vo) dvo,

@ (uo, V) dv =T (Uo, Vo) dup,

@ (u, Vo) dwp =T (u, Vo) du,

f(u,v)du =¢ (u, V) dv.

These equations, which are four in number, containthnde unknowns, namely, the
ratios ofdu, dv, dw, dw . The elimination of those ratios will lead to orendition,
which one obtains immediately, moreover, upon multiplysegresponding sides of the
equations. One will then find that:
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f (U Vo) (U F (U Y%) F(t, V)

BUs, Vo) (LY B(U,) P, V)

A (A)

Figure 6.

Give arbitrary numerical values tp andv, in that relation. It will take the form:

f(u,v) _ 6(u)
puv)  6(v)’

and consequently one must have:

A=f(u,v) =416(u),
C=¢(u,v)=16,1),

in which A denotes an arbitrary function ofindv.
If one substitutes these values foandC into the line element then one will obtain
the new expression:

dg = A [6%(u) dif + 62(v) dv,
or, more simply:
(1) ds’ = A (du? + dv),
upon setting:
Uy = j 6(u) du, Vi = j 6,(v) dv.

Conversely, whenever the line element can be ctetvento the preceding form, the
surface, as we know (nd&5), will be divisible into infinitely-small squareby the
coordinate lines.
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116. We have already encountered some surfaces on wiech é&xist isothermal
orthogonal systems. We shall now prove that thedieenent of an arbitrary surface can
be converted into the form (1) in an infinitude of wayB1 order to understand the
following method, it will suffice to remark that if erveplacesn, vi with the complex
variables:

a=u; +ivy, ,[:’:ul—ivl

then formula (1) will be presented in the form:
2) ds’ = Ada dg.

Having said that, consider an arbitrary surface whoseeliement is given in the
most general form:
d$ =E di + 2F du dv+ G dV%.
Set:
H?=EG-F?%

to abbreviate, and exclude the case (which cannot preatsett for real surfaces,
moreover) in whictEG — F is zero, and in which the line element is a perfectrsgid.
One can decompose the line element into two factorsvatel

(** The line is a perfect square only in the case witersurface is a developable that circumscribes the
imaginary circle at infinity. Indeed, suppose that one has

ds’ = (m dif + n dVf).
Let 1 /h be the factor that makes:

mdut+ ndv
h
an exact differential.
One can set:
(1) ds’ = dB2

h will be a function off and a second curvilinear coordinatéhat permits one to define the various points
of the surface, along witff. The rectangular coordinatgsy, z of an arbitrary point of the surface must

satisfy the two equations:
2 2 2
(5e) +(52) +(3a) =0
oa oa oa

0X 6x+6y6y+6zaz_0
da 0B da B d0a dB

(2)

Upon differentiating the first one with respecta@ndf, one will obtain:

ax 9°x . dy %y . 9zd°z
da 0f da o  da dp’

2 2 2
0x 6x+6y 6y+iza z

da dadB 0a dadf da dadf

()
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If one differentiates the second of formulas (2) witspeet toa then one will have, upon taking the second
equation of (3) into account:

2 2 2
6x6x+6y6 y+6za Z=O

(4) AP A2 AL A2 AR A2
3B da’ 0B oa’ 9B da

A comparison of the preceding equations shows us thatmihéave two different solutions for the
homogeneous equationsunv, w.
0X ay 0z
u—+v—+w—=0,
da da Oda

0X ay 0z
u—+v—+w—=20

B 0B of
if one takes either:
0 0
u= 7X , V= l , = g
Ja a Jda
or
9°x a’y 9’z
u= ) V= , w= .
da’ da’ da’

One must then have:
a’x 9y 0’z

2 2 2

da” _ da” _ da” .
ox dy 0z '
oa Ja oa

one then deduces, by integration, that:
0X oy 0z
) da _ Oda _ da
(B 1B 1B

If one denotes the common value of these ratiaay da then one will have:

x=t(B)a +4(p),
y=H(Ba +¢.(p)
2= H(B)a' +¢,(8).

If we write down the idea thaty, z satisfy equation (2) then we will find that:

F(B) + 15(B)+ 1,(B) =0,

.
(7) [sic] HBYP (B)+ LB + 1, (B)P.(B) =O.

If one adds equations (6), after multiplying thenf(#), f, (8), f2(5), respectively, then one will have:
(8) fAx+h(By+ LB z=fp+fid +f ¢

If one multiplies them by, f', f,, resp., then one will similarly find upon adding thent:itha

xt'B)+yf' (B)+zf, B =¢f +of + 1],
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de = {ﬁdw% dv}{ﬁdw% d}.

If we equate the two factors to zero in succession e will get two differential
equations. Let:

puv)=a, ¢lv)=p

be the integrals of those equations. They define twoliEsof imaginary lines that are
traced on the surface, and whose arc length is equarto zZAs one knows, one will
have:

da :;{ﬁdm F}EH d\ﬂ,

_ F—iH
dﬁ-v{ﬁdm TE d\ﬂ,

in which ¢ and v are suitably-chosen factors.a, £ will obviously be mutually-
independent functions afandv, because their functional determinant:

3)

-2uviH

is non-zero. If one takes them to be the new vasatilen multiplying the preceding two
formulas will give us the expression:

4@ = L da dg
y71%

for the line element of the surface, or, upon cirapthe notations:

() ds =X da dB.

or, upon taking the second of equations (7) into account:
7 I I a
9) xt' (B +yt (B +zf, @=$(¢f+¢1f1+¢2f2)-

The equation (9) is obtained by taking the derivative of igué8) with respect t@. The surface is then
the envelope of the plane that is defined by equation N®)w, from the first of formulas (7), that plane
will be tangent to the circle at infinity.

The only surfaces for which the line element is afepérsquare are then the developables that
circumscribe the circle at infinity. The edges of regien of those developables are curves whose tangents
all meet the circle at infinity, and which satisfgtaquation:

@ +dy? +dZ = 0.
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We will often have to employ the system of varialdeg, which has been given the
name ofsymmetric coordinatesIn the case of a real line element, one can obviously
suppose that the variablesandf are conjugate imaginaries, as well as the fagtasd
v. For example, suppose that one has obtained some fumatiand i that verify the
first of equations (3). If one changesnto —i then one will see that the conjugate
imaginaries otr andu give a solution to the second equation.

117. Suppose that the line element has been put into the (#®rin two different
ways, and that one has both:
(5) ds = dadB=A"?da’ds".

We shall show that this equation can be true ondy/,if3” depend upon just one of the
variablesa, £, respectively.
Indeed, if one supposes that, 5’are expressed as functions of the independent
variablesa, S, and if one replaces the differentidis’, d3’ with their values:
a—ada+a—a dg, %dc”% dg
oa 0B oa o83

then the identity (5) will give three equations:

0a'0p _, 0a'0B _, 0a'0B ,oa' 0 _ A

da da | 9B OB | da df 9B da A

The first one can be true onlyaf or 5 depends upon only the varialde and upon
taking the second one into account, one will have tvidisos:

a =F(a), B =F (P
or
a’ =F (D), B'=F(a).

We then obtain the following theorem:
When one has exhibited the line element in the:form
ds’ = *da dg,

one can preserve that form for the line elemeny @nbne replaces the variables
with the variablesy’, £, which are determined by one or the other of {fstesns:

a =F(a), f =F1(D),
a =FP), p =Fi(a).
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118. From the symmetric coordinates, one passes on imtadia the isothermal
systems. Indeed, recall formula (4), and reptacé with the following expressions:

a=u+iv, L=u-—iv;
it will give:

(6) ds’ = A% (dif + dVA).

That is the form of the line element that charamésr isothermal systems. Upon
applying the propositions that were proved already for synunedvordinates to those
systems, one can state the following theorems:

1. There exists an infinitude of isothermal orthogonal systems on any suitace
will obtain them by the complete integration of the equation:

d€ = 0.

2. When one has obtained an isothermal sygtenv), one can pass to any other

isothermal systerfu’, V') by the use of one or the other system of formulas:
a

» [usetto
u'—iv = f(u-iv),

b.
u'+iv = f(u-iv),
® { u'—iv = f(u+iv),

and consequently the knowledge of just one isothermal orthogonal systamtthaéd
on the surface will imply that of all the other such systems tleatraced on that surface.

119. The theory of symmetric coordinates and isothermsiesys, which one can
trace back to the first paper of Gaus$, (which was published in 1825, had its origins in
the study of a beautiful question of practical geometaynely, that of the geographic
tracing of one surface on another one, and more plarticuhe plane. The theory of
geographic charts was the subject of some important workaofbert, Euler, and
Lagrange. Since it is impossible (M®) to represent a portion of the sphere or any other
non-developable surface on the plane in such a mannet graserves arc lengths, one
will always appeal to the modes of representation thasepre angles, such as
stereographic projection and Mercator projection. Thuedes of representation have
the fundamental property that they establish similitum#ween the corresponding
infinitely-small elements on the two surfaces. kdlef one considers two corresponding
infinitely-small triangles, one can take them to we tectilinear triangles, and since they

(**) GAUSS, “Allgemeine Auflésung der Aufgabe die Theile eigegeben Flache auf einer andern
gegeben so abzubilden dass die Abbildung dem Abgebildeten ikieiasten Theilen ahnlich wird,”
Gesammelte Werke. IV, pp. 193.
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are equi-angular, their homologous sides will be propaadi Conversely, if two
surfaces correspond point-by-point in such a manner thatlie elements are coupled
by the relation:

ds’ = 4 ds’?,

and if one considers a region on one of them thah&lsenough that one can ignore the
variation ofA then the corresponding lines that are traced on thestnfaces will have a
constant ratio. Consequently, two corresponding tefippismall triangles will be
similar, and the angles will be preserved when one pdss®sone surface to the other
one.

One can establish that proposition in a more rigorous endnnlooking for the angle
between the two curves that are traced on an arbitarface. Suppose that one is
displaced in two different directions upon starting frampoint of the surface, and &to
denote the characteristics of the differentials thktte to those two displacements. Let:

ds’ = E duf + 2F du dv+ G dV?
be the expression for the line element. The formulas

dx= %du+% dv, X= %Ju +6—X5v,
ou ov ou ov

give us:
9) dxx+dydy+dzaz=E dudu+F (duov+duov) +Gdvov,

and consequently the angié between the two directions will be determined by the
formula:

(10) cosV = Edudu+ Hdww dv i+ Gdo v

JEdZ+2Fdudw Gd/ Bt+2 B a v G &

One sees that it depends upon only the ratids &f G, and remains the same when
the entire line element is multiplied by an arbitrargdtion ofu andv.
120. Since the line element in the plane is reduciblegddim:
ds =da?+dp?

the problem of the geographic tracing of an arbitrary surtage the plane can be
formulated as follows:

Put the line element of the surface into the form:

ds’ = 2? (da? +dB?);
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i.e., determine an isothermal orthogonal system on the surface.

It results from the preceding developments that wirenknows one solution to that
problem, one can obtain all of the other ones witintegration.

We have seen that the meridian and parallels on wafigce of revolution define an
isothermal system. One will then know how to sake problem for all surfaces of
revolution.

For example, consider the sphere for which one has:

(11) ds’ = du? + sirf u d\?:sir?u( +dv2j
sin*u
Set:
du _
I_——kx—logtan—, v =Ky,
sinu

so the line element will become:

(12) ds’ = (sz eZK; (A + dy).

If one makes the pointi(v) on the sphere correspond to the point on thespldiose
rectangular coordinates axey then one will obtain a method of tracing for whitte
meridians that make equal angles will be represemyeequidistant parallel lines, and the
parallels, by lines that are perpendicular to #itet; that is the Mercator projection. It
offers the advantage, which was formerly very apipted in marine charts, of making
loxodromes (viz., curves that cut all meridiang @bnstant angle) correspond to lines on
the chart.

On the contrary, if one sets:

ﬂzg, V= p:ktanE
sinu p 2

then the line element will become:

4k?
d dof
(p+k)(pzp ).

Upon making the pointu( v) correspond to the point in the plane whose polar
coordinates arep and « one will have a geographic trace in which the idi@ns
corresponds to concurrent lines, and the paralielspncentric circles in the plane that
cuts all of those lines at a right angle. It ie thace that one will obtain by making a
stereographic projection of the sphere from a viemthat is placed at the pole.
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121. Now consider a second-degree surface that is reprddgntae equation:
(13) —+—+— =1

One can regard it as a tetrahedral surfacel(t®, and take the coordinatgsy, z of
any of its points to have the following expressions:

‘= \/a(a—p)(a—pl)

(a-b(a-9

b(a- p)(b-p)

14 = ,
(1) Y J (b-a)(b- §
_ [ele=p)e=p)
(c-a)(c-b

We already know that the curveg),((o1) define a conjugate system. That system is
also orthogonal, because the preceding formulas penaito verify the equation:
%%-}-ﬂﬂ +a_za_z =0
0pdp, 0pop, 0pap,
Since the systenmp( o) is both orthogonal and conjugate, it will then be coradasf

lines of curvature of the surface. Formulas (14) alsonpeus to calculate the line
element for which one obtains the following expression:

(15) dSZ — PP pde _ pldplz )
4 | @-p)b-p)c-p) (a-p)(b-p)(cp)

Jpdp - da Jpdp,

J@-pb-p)c-p) J@-p)b-p)c-p)

Set:

and formula (15) will become:
(16) 4 = % (da? +dB?).

One will then have an isothermal orthogonal systisstuse will permit one to make a
chart of any region that is traced on the secomptegesurface™).

(*Y On the subject of that representation, one can reaobghe of Jacobi, “Ueber die Abbildung eines
ungleichaxigen Ellipsoids auf einer Ebene, bei welcherkiigsten Theile ahnlich bleiben,” Crelle’s

Journal59 (1861), pp. 74.
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It results from the preceding calculation that theosd-degree surfaces are divisible
into infinitely-small squares by their lines of curvaturAs we have seen already, that
property also belongs to the surfaces of revolution.

We further point out an essential property of the klement of second-degree
surfaces. In formula (16) is a function ofa, and o, is a function of5. The line
element then belongs to the following type:

(17) ds’ = [f (@) -F (9] (da” + dB?),

which will be presented in its most general form inttieory of geodesic lines.

122. The theory of homofocal surfaces of degree two le@mdsa method of
performing the geographic trace of a second-degree surféas thare elegant than the
preceding one.

Let:

2 2
X .Y, z
a-A b-A c-A1

~1=0 @>b>c>0)

be the equation of a system of homofocal surfacdsteel surfaces of the system will
pass through an arbitrary point of space. One of thetlhbe&i an ellipsoid that
corresponds to a valy of A that is less than, another will be a hyperboloid with one
sheet that corresponds to a vaiyeof A that is found between andc, and the third one
will be a hyperboloid with two sheets that corresponda t@luep of A that is found
betweena andb. Consequentlyp, o1, 0, constitute a curvilinear coordinate system —
namely, Lamé’zlliptical coordinates- that are properly defined at any point of space.
One knows that this system is orthogonal; the exjneser the line element is the
following one:

(18) dg= 1| L=PNP=P) 2, (P=PNP=P) 42, (P2=P)P=P) o
4 f (o) f(0,) g f(0,) 2 |

in which one has set:
f (o) =@-p(b-p(c-p),

to abbreviate. Upon setting = 0, one will recover formula (15).

The planez = 0 will correspond to the hypothesis tlmat= c.

Having said that, consider any of the ellipsoids efdithogonal system and make an
arbitrary point p, o) of that ellipsoid correspond to the point of #yeplane that has the
elliptic coordinatesp’, o which are quantities that are defined by the following two

equations:
jﬂ do' =jp JP-p,dp
> J@-p)p'-b " (@-p)b-p)c-p)




140 Lessons on the general theory of surfaces. Book II.

do \ AL P dp

A I -
c J@-p)b-p) ¢ J(@a-p)b-p)p -9

It results from formula (18) that the line elenwemf the two surfaces will be
proportional. Ifds ds denote the corresponding arc lengths on the elipand the
plane, resp., then one will have:

a _ p-p
ds* p'-p

The correspondence that is established then givesw geographic trace of the
ellipsoid on the plane, which is a trace that ome characterize by remarking that if the
ellipsoid is flattened while remaining constantiynmfocal to itself then the region that is
represented will coincide with the chart itselthe limit.

123. Let us return to the general properties of isottad systems. If one knows just
one of those systems on an arbitrary surface thercan trace not only other isothermal
systems on that surface, but also an infinitudertiiogonal systems. Indeed, knowing
just one isothermal system will permit one to makehart of the surface on the plane
with preservation of the angles and similitude affinitely-small elements.
Consequently, any orthogonal system that is tracethe plane will correspond to an
orthogonal system on the surface. Moreover, if slyatem is isothermal and divides the
plane into infinitely-small squares then the propehat belongs to the corresponding
system on the surface will be that is it isotherraala result.

It results from this that we can confine ourseliees planar surface for the study of
guestions that relate to the substitution of omm¢hisrmal system for another. DétY
denote the rectangular coordinates of a pointermplane, and set:

Z=X+1iY, Z =X-IY.
The line element in the plane will have the exposss
(19) ds?=dz dz,
and if one similarly letg, Z denote the complex variables:
zZ=X+iy, Z=Xx-1ly
then the formulas that permit one to pass to thst meneral isothermal system will be:
(20) Z=1(2), Z =f1 (2)

or
(21) z=f(2), Z=H@.
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If one prefers that the new variabley should be real, along with the old ones, then it is
obviously necessary that the functidn§ must be conjugate imaginary in both cases. In
order to geometrically study the preceding formulas,ceasider them as defining a
method of transformation that will make a pam(x, y) in a plane correspond to another
pointM (X, Y) in that same plane.

We already know that the two methods of transfoionathat are defined by formulas
(20) or (21) preserve the angles and assure the similitddenfmitely-small
corresponding elements. However, there is an easelidtinction to be made between
the two systems of formulas here:

Suppose that the point describes a certain curve; tifbe the differential of the arc
length of that curve, and leb be the angle that its tangent makes withxfaxis. The
formulas:

dx=dscosw dy=dssinw
give us: _ _
(22) dz=ds€e?, dZ =dse'”

Similarly, let dS and Q denote the analogous quantities that relate to the ¢hates
described by the poifd (X, Y). One will likewise have:

(23) dz = dse?, dZ =dse .
We now refer to the formulas of the first syst&@)( They give:
dZ=1"(2) dz dz = f/(Z) dz ;

one then deduces, upon multiplying, that:

(24) ds?=f'(2 f/(Z)d<,

and upon dividing:

(25) 29 — f'(2) 2w
f/(Z)

Hence, if one considers two corresponding pomt$/ of the two figures then the
tangents at those points to two arbitrary corredpmncurves must define a constant
angle between them. As a result, two curves offitise¢ figure that cross atn will
correspond to two curves in the second one thasatM, and will define an angle that
that is not only equal to that of the first two wes, but will also have the same sense of
rotation. If the point of the first figure desae#ba small closed curve around the point
then the corresponding point of the second figutkealeo describe a closed curve around
M, and furthermore, the two corresponding curvetkheiltraversed in the same sense.

The same thing will no longer be true when oneleyspformulas (21). Indeed, the
transformation that it defines reduces to the dwa¢ torresponds to formulas (20), when
preceded or followed by a rotation of £&fround thex-axis. Consequently, under the
second transformation, the sense of rotation ofaatjles and all traversals will be
changed.
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124. We content ourselves by studying formulas (20) and camsidenly the real
isothermal systems; i.e., the ones for which the fonsff, f; are conjugate imaginary.
We can then say that any function of the complex asyim will correspond to an
isothermal system, and we will have the following m®ipon, which we shall use
frequently:

The planar curves that one obtains by equating to zero the real and imagingsy pa
of an arbitrary function f(z) of the complex variable z x + yi define an isothermal
orthogonal system. Moreover, the formula:

Z=1(2),

which gives two real equations, will define a method of transformaitbnpveservation
of the magnitude and sense of rotation of the angles.

For example, consider the function:

k2
(26) f(2=—;
z
one will have:
X+vizig 2
X +y
or
X = k?x y= -k?y
_X2+ 2 - 2, \2°
y Xty

These are the formulas of the transformation byprecal radius vectors in which
one changeg into —y. The latter transformation will be defined by thetiein:

which is attached to formulas (21). Consequently, asdhgeinversionimplies (which
is what it is often called), it will belong to the gealegroup of conformal representations
that change the sense of rotation of the angles analatversals.

The transformation that is defined by the formula:

7= az+ b,
cz+d

in which a, b, ¢, d are constants, approximates an inversion, in that it makascle
correspond to a circle. However, it is distinguishedneyfaict that it preserves the senses
of rotation of the angles and of traversal; i.e.assures the direct similitude of the
infinitely-small elements. That transformation ydaan important role in the research
that relates to the modern theory of functions. tdeo to distinguish it from an
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inversion, in the next chapter, we shall give it the narmeir@ular transformation
Moreover, it reduces to the one that is defined by forsn(2&8), when it is preceded and
followed by a translation; it can then also be regldmgan even number of inversions.

The general theorem that we have stated can takeyaimportant new form.
Suppose that one no longer applies itf @), but to logf (z2). The real part of that
logarithm is the logarithm of the modulusfai) and the imaginary part of the argument
of f (2. One will then obtain this new proposition:

If one is given an arbitrary function of the complex variable z theouhess of equal
modulus and equal argument of that function will define an isothermal orthogonal
system.

125. The isothermal orthogonal systems that are definedhe preceding two
theorems play a very important role in mathematicalsfsy | will point out the
following applications:

Let Ax and M be two points that correspond to valumsand z of the complex
variable. One will have:

z—a=p €%,

in which o« denotes the length of the segmégil, and 4 denotes the angle that the
segment makes with theaxis. Similarly, one will have:

z-h=p %

for a point By that corresponds to the valbe of the complex variable, in whiclp,
denotes the length &M, and g, denotes the angle that the radius vector makestkéth
X-axis.

If one considers the function:

f(z):lji:z

then the curves of equal modulus will have the equation:

PP Py

— - = const.,
PPz Py

and the curves of equal argument will have:
-6+ 6 -6+ ..+68- 4 =const.

That gives the following theorem, which is easy to gl
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If one considers two groups of n poles#Ay, ...,Asand B, By, ..., B, then the curves
that are the loci of points for which the product of the distances t@irdtepoles Ais
proportional to the product of the distances to the n polesviB have orthogonal
trajectories that consist of curves that the loci of points fronthwvione will see the n
segments A; form angles whose sum is constant.

The theorems will be further applicable in the casere the two groups do not
contain the same number of poles, provided that oneduates a multiple pole that is
situated at infinity in an arbitrary, but well-defined, dtien into the group that contains
the least points.

For example, the Cassinian, which is the locus aftpauch that the product of their
distances to two fixed fodt, F’is constant, admits orthogonal trajectories thia the
form of the curves that are the loci of the poMtsuch that the sum of the angles that are
defined by the radius vectokdF, MF”and thex-axis are constant. The latter curves are
equilateral hyperbolas that pass through theRoEi".

In order to prove that, it will suffice to considére curves of equal modulus and
equal argument, that relate to the function:

Z-c

126. Now, consider the integral:
.[Z dz

in which ¢ denotes a real, positive constant, and look for théhésmal orthogonal
system that is defined by the curves on which the reélgpahe imaginary part of that
function remains constant.

Set:

(27) z=ccos @+ Bi), c°-7 =-csin @+ pi).

The integral will have the value + £Gi, and the two families of the isothermal system
will be defined by the equations:

a =const.,, [=const.

Let F, F’ be the points of the plane that are affixedctand —c. If M denotes the
point that is affixed t@ then one will have:

(28) z—c=FM " *, z+c=F'M ",
and consequently:

FM =r =mod g—-9 =cmod [cos & + 1) —1] =c[cospfi— cosal,
F'M=r"=mod ¢g+c) =cmod [cos & + [1) + 1] =c[cospi + cosa];
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one deduces from these equations that:

r+r’=2ccospgi,
r—r’=2ccosa.

One sees that the curves of the famfy &re ellipses that admit, F’ for foci; the
curves of the familyq) are the homofocal hyperbolas.

On the other hand, if we, with Weierstrass, empleysymbolR to indicate the real
part of a function then the equation of the ellipsédlsolviously be:

Ri |

dz
= =8
CZ —
and their differential equation will be:
R idz
JZ2-¢

The use of formulas (22) and (28) will permit us to tramsfthat equation and give it
the form:

=0.

g [Hﬁm]
s
R —e :

Ji

in which wdenotes the angle between the tangent to the cads¢hax-axis. One will
then has:

:O,

which will give the well-known construction of the tgmt to the ellipse.

We will conclude these applications (which go ad infinitum) by taking the
function:
dz

o)

in whichc andk? denote two real, positive constants.

The curves that are obtained by equating theam@limaginary parts of that function
to zero define an algebraic isothermal systemdhatcan define as follows:

Set:

f(z):j

f(@ =25 (a+Bi),
C

Jo
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so one will have:

z= c s @+pi), Z= csh@-p6i)
(29) z-c=- ccn’(@+pi), Z-c=-ccr@-01),
z—k—CZ:—k—Czdnz(a+,[>’i), z—r";:—?"; drf @ - Bi),

and consequently if one latsr’, r" denote the distances from the pointy) to the three
point on a straight line:
z=0, z=¢, z= i,
k2
respectively, then one will have:

r=csn@+pgi)sne-4),
(30) r'sccn@+pgi)cn@-4),

r":k—czdn(a+,5’i)dn@—ﬁ ).

Write down the well-known formulas:

cnxcnik+a)+ dnasnxsni+a)=cna,
cnxdn k+a) +k’cnasnxsn k+a) =dna,

which relate to the addition of elliptic functions. v replacex andx + a with the
following values:

x=a+pi, x+ta=a-pLi
then we will find, upon taking formulas (30) into accoungtth

r'+rdn(28 )=c cn(Q )

(31) r"+r cn(24 ):% dn( ).

If one then replacesandx + a in the same formulas with the following values:
-X=a+ i, X+a=a-pi

then that will give the two new relations:
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r'-rdn(2a)= c cn(2r)

(32) r"—r cn(2a)=k—c2 dn(2r )

Equations (31) and (32) define two isothermal feasi

As one would expect, these two families are represl by the same equation, but
with different values for the arbitrary constafithey consist of Descartes ovals that have
the three points:

z=0, z=c¢, z= %

for their common foci.

The double equation that is obtained for eachlfaexhibits a beautiful property of
ovals that was given by Chasles in Aercu historiquepp. 352:

The differential equation that is common to the families of ovals is obviously:

(33) dz + dz ~0

o] em o

It then leads to a very simple geometric constoncdf the tangents to the two ovals
that pass through a poim of the plane. The angle between one of thoseetdangand
the focal axis will be one-half the sum of the &sgihat the three radius vectors that are
drawn from the poinM to the three foci make with that axis. That suith be defined
only up to a multiple ofz so the construction will in fact give two rectafay tangents.

127. A family of isothermal curves can be defined byeguation of the form:
A=f(2 +f1(2),
in which the parametet of that family satisfies the partial differenteduation:

0%
0z07

(33)

and conversely, any functiohthat verifies that equation will give an isothetrfaamily.
That remark will permit us to treat the followingoplem:

Determine all isothermal families that are complosé circles. If one writes the
equation of a circle with variabie Z in the form:

(34) zzZ+az+bZ+c=0

then one will obtain the most general family ofctas by takinga, b, c to be arbitrary
functions of one parametdr If one demands that the family should be isotfthen it
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will be necessary that the functidnshould satisfy equation (33). One will then be led,
by a simple calculation, to the equation of condition:

(35) @ -9@"z+b'z+c")— (@b +bd —c')(@z+b'z +c)=0,

in whicha', b, ¢'; a’, b”, ¢" denote the first and second derivatives,df, ¢ with respect
to A, resp., and which must be a consequence of equation (8%e &juation (35) has
degree one only with respectzandZz, it must be verified identically, and one will have:

a b ¢ af+bd-¢

a b c ab-c
Upon neglecting the last ratio in this and integratimg, will deduce that:

a=lc + lp,
b=mc+ny,

in whichl, lo, m, my denote constants. Equation (34) will then take the form:
z2+lpz+mz+c(lz+mz+1)=0

and will necessarily represent a family of circlesttipass through two distinct or
coincident points. It is now pointless to continue tagulations and to determine the
expression forc as a function of because one knows that all of the families of circles
that pass through two distinct or coincident points candduced by an inversion from
one family of parallel lines, or concurrent lines, oconcentric circles, and will
consequently be isothermal. Moreover, their orthogtnagéctories, which are circles,
likewise constitute an isothermal family that is e@gte to the first one. We recover that
last property as a particular case of a general thetitanrelates to geodesic circles that
are traced on an arbitrary surface.

In his paper “Sur la construction des cartes géographiquésghwas published in
1779 (), Lagrange studied a beautiful question in a detailed mahaewone can now
answer in a few words. If one considers the Eartbeica sphere or a spheroid of
revolution then Lagrange proposed to look for all of theggaphic traces in which the
meridians and the parallels were represented by armsctds. Since the meridians and
parallels define two families of isothermal conjugaths, preceding results will lead us
to the following proposition, which then gives the coatel solution to Lagrange’s
problem:

The only geographic traces for which the meridians or the parallelsepresented
by arcs of circles are the ones for which those two systemsesfdre drawn by arcs of
circles on the chart. In the case where the Earth is assumbd &pherical, one will
obtain all of those traces by combining the stereographic projection or awerc
projection with planar inversions.

(**) LAGRANGE, Oeuvres complétes 1V, pp. 637.



CHAPTER IV

CONFORMAL REPRESENTATION OF PLANAR AREAS

Statement of the problem. — Analytical principle upon olhithe solution is based. — Conformal
representation on the region of the plane that st above the real axis of a simply-connected
planar area that is bounded by straight lines or by arcgiofla. — Method of Schwarz. — Application
to the planar triangle that is bounded by three arcs iofle and a spherical triangle.

128. In the preceding chapter, we saw that one can mak&iaotonZ =f (2) of the
complex variablez correspond to a method of transformation with directilsude of
infinitely-small elements, and we discussed the mosmehtary properties of the
unlimited number of transformations that one can thagiob We now propose to study
(in a very extensive case) the solution to the followangpblem:

If one is given two planar ared®), (A;) then determine the function=f (2 that
permits one to perform a conformal representation of one of the aretis other one,
in such a manner that a point that is taken from the interior of eithéredfwo areas will
correspond to just one point that is taken from the interior of the otheramepoints
that are taken from the contour of one of the areas will correspond to pbattare
taken from the contour of the other one.

The examination of this beautiful question, when givenmost general statement, is
attached to the solution of the some of the most imporproblems of analysis and
mathematical physics. Riemann showed that it is avpagsible to solve it in artickl
of his Inaugural Dissertatior(*®). Riemann’s proof appealed to a postulate to which that
illustrious geometer gave the name Dirichlet's principle. Schwarz established
Riemann’s theorem without employing Dirichlet’s principte various papers, and in
particular in an article that was included in the Mghatichte of the Berlin Academy
(*"). However, the proof of that eminent geometer hasyabtbeen published in full
detail.

One must also credit Schwar?)(with some very far-reaching research that relates t
the case, which is very important for the theory afimal surfaces, in which the planar

(*) RIEMANN, Gesammelte mathematische Wepe 39.
d’u  d’u
() H.-A. SCHWARZ, “Ueber die Integration der partielI@;i\‘ferentialgleichungF +F = 0 unter
X y
vorgeschriebenen Grenz- und Unstetigkeits-Bedingungen,” Mumerathte der Berliner Akademie,
October 1870, pp. 767.
(*¥) H.-A. SCHWARZ, “Ueber einige Abbildungsaufgaben,” @¥a Journal70 (1869), 105-120.
“Ueber diejenigen Falle in welchen die Gaussischpeigeometrische Reihe eine algebraische
Function ihres vierten Elementes darstellt,” Crellgarnal75 (1872), 292.
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areas that one needs to find a conformal represents#tene bounded by circular arcs or
straight lines. We propose to exhibit the principlesaifv&arz’s method here.

If one can represent two planar areA} (A') on a third areaX') then one can
obviously refer the one to the other with similitudetlod infinitely-small elements. The
Riemann problem can then be converted into the followireg on

Represent an arbitrary are@d) on a well-defined aregA") — for example, on the
surface of a circle of given radius or on the part of the plane thatisd above the x-
axis.

The problem thus-posed is clearly not well-defined, siricene considers, for
example, the regiorK( of the plane that is found above thexis then it will be easy to
see that it can be mapped to itself in an infinitudewalys with similitude of the
infinitely-small elements. Indeed, letdenote the complex variable and consider the
transformation that is defined by the formula:

7= az+ b,
cz+d

(1)

in which a, b, ¢, d are real constants. If one legsandZ, be the conjugate imaginary
variables ok andZ then one will have:

_azth
cz+d’

and consequently:

;7o (@-bO(z g
(cz+d(cz+ g

If the determinan&d — bcis positive then the transformation, which willkeareal values
of Z correspond to real values pfwill also make values of with positive imaginary
parts correspond to values dfthat enjoy the same property. In other wordsyiit
constitute a conformal representation of the redknon itself. One easily proves —
either by analysis or geometry — that it is alwpgssible to find a transformation of that
type that makes three given points omttais correspond to three other, likewise-given,
points on that axis, or which makes an arbitraryegi point in the interior ofK)
correspond to another, likewise-given, point in ititerior, along with making a point on
the x-axis correspond to another point on the that axis.

If one assumes (since it is possible to prove) tthat the transformation that is
defined by formula (1) is the most general one thatizes the conformal representation
of the region K) onto itself then one will see that the Riemanobjgm can be converted
into the following one, which will be perfectly walefined:

If one is given a simply-connected af@g then represent it on the upper pékt) of
the plane in a conformal manner such that threensoihat are taken on the contour of
the area(A) will correspond to three given points on the x-axis
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129. Let:
Z=1(2

denote the function of a complex argument that gitiessolution to the problem. We
shall enumerate the conditions to which it is subject:

1. It must be uniform and continuous for all valueszdhat are represented by
points in the interior of the areK); If zy denotes one of those values then that function
must be developable into a positive, integer powers-a in a neighborhood af, .

2. The derivativé’ (z) cannot be zero for any poirfthat is found inside of the area
(K), because if the derivative were zeroZer 7, then there would have to be at least two
points in a neighborhood @ for which the functiorZ will have the same value, and
consequently a point in the are® (vould correspond to several points in the aka (
which would contradict the hypothesis.

Figure 7.

3. The functionZ must not cease to be continuous for real values wihich are
represented by points on the real axis. However, one siggose that is necessarily
developable in positive, integer powersoef g at those points, because it is defined only
for values oz whose imaginary part is positive in their neighborhood

4. Finally, whenz is considered to be a function @f it must satisfy the same
conditions asZ, when it is considered to be a functionzof.e., it must be a uniform,
continuous function oZ in a neighborhood of the contour of the ardathat takes on
real values when the poigtis located on the contour.

Conversely, if a functiod satisfies all of those conditions then one can gasdve
that it will give the solution to the problem. More geaily, if one finds a functio that
is defined in an arbitrary simply-connected amgtlat is uniform inside of that area and
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satisfies the conditions that we just stated thewilityield a conformal representation of
(A) on an areaA) that is simply-connected, like the first one, but whmoust cover the
plane more than one time in certain subsets wheffutietion Z takes the same values
several times inside of}. (See Fig. 7.)

After having pointed out the conditions that the fumttZ must satisfy, we shall
discuss how Schwarz gave a means of determining thatidnrio the case where the
area A\ is bounded by lines or circular arcs.

130. Here is the analytical principle upon which the solutibased’f):

Consider a functioiZ of z that is defined only on the upper part of the plane and
satisfies all of the conditions that were listedhe preceding number, moreover. If the
function is real for all real values afthat are close to a real valagthen it will be
developable in a neighborhood af into a series that is ordered by positive, integer
powers 0fz, and the coefficients of the series will all be real

D

)
A 59 B

(U)

C
Figure 8.

Indeed, consider (Fig. 8) an ardd) (that is bounded by the conto&zBD and is
found entirely in the upper part of the plane, andUE} be the area that is symmetric to
the latter one with respect to tkexis. By hypothesis, the functi@his known only for
the upper part of the plane. However, one can also défifex the lower part by
agreeing that two conjugate imaginary values of the bigri@which are represented by
two points that are located symmetrically with respecOx) will correspond to two
conjugate imaginary values of the function. Thaalytic continuationof the function
obviously preserves continuity, since the funciois real and continuous for real values
of z, by definition.

Since the function is then defined in the interiorshef areasy) and (U ’), consider
the two integrals:

1 Zdz 1 Zdz

2midwz-7" 2midw z=¢"

which are taken along the contouk8DA ACBA of the two areas. From Cauchy’s
theorem, the first of those integrals will be eqteaf (¢), while the second one will be

(*% This principle was stated and proved by Schwarz iartide that was cited above (Crelle’s Journal,
v. 70, pp. 107). It was also employed by Riemann in a paper omalisurfacesGesammelte Werkpp.
297).
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zero when the poinf is found in the interior of the ared), On the contrary, if the point
{is found in the interior ofY ") then the result will be the opposite; i.e., thetfintegral
will be zero, and the other one will be equaf {§) (). Hence, whenever the poidis
found inside of the aredJj + (U"), the sum of the two integrals will be equalft@).
However, if one adds the two integrals, the partsrilate to the common portion of the
contourAB will mutually cancel, since they are equal an opposité,adl that will remain
is the integral:

1 ¢ Zdz

2mid z2-¢'

which is taken along the contoACBDA Now, one knows (and this is obvious) that the
integral is developable into a series in a neighbod of all points interior to the contour,
and in particular, for real values gfwhich are represented by points on the AiBe

In particular, for{ =z, , one will have:

Z-Z=a(@z-3) +b(z-28)’+c(@z-23)°+ ...,

and since real values nimust correspond to real valuesZtthe coefficients, b, c will

all be real. If it happens, moreover, as in thaneples that we shall treat, thatwhen
considered to be a function & must satisfy the same conditions Aswhen it is
considered to be a function af then the preceding equation must give a series of
increasing integer powers @f— Z when it is solved foz — 3, and consequently the
coefficienta will always be non-zero.

131. Now that this preliminary lemma has been esthbdis first consider an ared)(
that is bounded by straight lindsy), ..., (Ln). LetZ, be affixed to a point that is located
on one of the linesL), and leth/rbe the angle that this line makes with the rea.ax
Consider the function:

(Z-2)e ™

It will have the same properties as the funcHdor a pointZ that is located inside of
the contour. If the poirZ is found on the linel( in the neighborhood &, then it will
be real and will change sign wh&mpasses through the valdg . It follows from this
that one can apply the lemma that was proved iptéeeding number and set:

3) e"(Z-2)=@z-23)p-2),

in which the symbop (z — z) denotes a series that is ordered in positiveget powers
of z — 3 whose coefficients are all real, and the firsth&fm is non-zero.

(*% There is a slight difficulty here, which we shadl &ontent to point out, and which is, moreover, easy
to make disappear, if one assumes that one applies Catlobgtem to a function that is not assumed to be
developable in a series for points on the contour. €asly recognizes that the theorem will still be
applicable whenever the functiér(z) is assumed to be continuous in the neighborhood ofahtour of
the area.
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Now, study the functiod in the neighborhood of the valide that corresponds to the
point of intersection of two consecutive linds)( (Lx:1) (Fig. 9) that make an angle of
a rrbetween them.

(Li+1)

arr

(Lo
Figure 9.

Consider the functioZ — % . Its argument, which is the angle between theZide
(Fig. 9) and the real axis, varies between the twddimi

hhr hm—am

when the poinZ is displaced inside of the area and is directed frognto (Lx:1). It
follows from this that the function:

[(Z,-2) e—inhk]l/a

will be real and positive on the side), real and negative on the sidg.), and it will
have the same properties as the functiorinside of the areaAj, moreover. An
application of the preceding lemma will then give us:

(Z,-2)e™]"" =@z~ p(z-2),

in whichp (z — ) has the same significance as the preceding. Upongdisth sides of
the equality to the powaer, one can further write:

(4) Z-%=eM™(z-3)p-2).

Finally, for all points inside the contour, since the\dgive ofZ is never zero, one
will have:

(%) Z-%=@zZ-23)P(@z-2),

in which P (z — 3) denotes a series that is analogous to the series- ), but whose
coefficients are not necessarily real.

It remains for us to consider the point of the contbat corresponds to the infinite
value ofz. Since one can always perform the substitution:
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-1
z= ",

z

which gives a conformal representation of the upper podidhe plane onto itself, that
case will be converted into the preceding one, and oheave:

e (1
0 22254}
z
when the point is not a summit of the contour, and:

@) z-7=2" pﬁ

when the point is a summit where the two conseeutiiges meet at an angle af;
when it is measured in the interior &¥)(

132. The preceding developments embrace all possyg®theses. In order to
eliminate the constan%, andh, which change value when one passes from oneeto th
other, consider (with Schwarz) the function:

d dz
8 —log— =E (2.
(8) e gdz )

One finds, by an easy calculation, that:

1. For a point inside of the area:
9) E@=P.(z-2).

2. For a point that taken from one of the edge®tontour:
(10) E@=p.(z-2).

3. For a summit of the contour that correspondbecanglearr:
a-1
7—

(11) E@=

+p1(z—-23),

in which P; (z — ), p1 (z — 3) denote powers series, and the sepie& — g) has real
coefficients, moreover.

4. Finally, for the point that corresponds to ithfenite value ofz
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z

(12) E (9= —%+% pl(_lj

if that point is not a summit of the contour.

The last three formulas show us that the funcEa) is real for all real values &
and that it can, consequently, be continued amaljyi by the method that was described
in no.130. Moreover, from the preceding developments, & dwaly a limited number of
poles, which correspond to the summits of the aamtand it will become infinitely small
for infinitely largez. From the known theorems of the theory of funetiat will then be
a rational fraction.

Leta, b, c, ..., | be values of that correspond to summits of the contour, andrfet
prc yig ..., Airbe the angles that are defined at those summiisnwneasured in the
interior of the polygon. One will have:

E
dz

(13) E@-= Z—a = —|
with the condition that:

Y (a-1)=-2

which is only the analytical expression of the tie@o that relates to the sum of the angles
of a polygon.
The integration of equation (13) then gives us:

z=cl@-3"tz-bBPt. (z—)tdz+C

in which C andC’ denote two arbitrary real or imaginary constantipon displacing the
area A) without changing either its form or its magnitudee can convert the expression
for Z into the form:

(14) Z=H|(@z-9" @b’ . (z-)dz

in whichH denotes a real constant.

That is the formula that was given by Schwafr4nd Christoffel 1.

Since one can take the valueszdhat correspond to three summits of the polygon
arbitrarily (no.128), in reality, it will contain & — 3 constants. One can arrange those
constants in such a manner as to obtain the coaforepresentation of an arbitrary
polygon, but that essential result is deduced &y the general theorem that proved by
Riemann and Schwarz on the conformal representafi@anbitrary planar areas, and we
know of no well-developed work in which the detemation of the constants b, c, ...,

I, H was studied in the case where the polygon is given

(*Y) SCHWARZ, “Ueber einige Abbildungsaufgaben,” pp. 114; 1864, 1866.
(*) CHRISTOFFEL, “Sul problema delle temperature staziena la rappresentazione di una data
superficie,” Annali di Matematica (1867), pp. 97.
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In the case of the triangle, whose form is deteenhiby the values of the angles, the
solution is obvious. One will obtain all trianglestthae similar to a given triangle upon
varying the constari, and one can determine that constant in such a masteoatain
any of those triangles.

If the polygon is a rectangle then one will have:

a=F=y=0= %
Z will become an elliptic integral, which one assumeshass converted into the normal

form:

(15) dz

Z=H [ .
IO J1-2)(A- K Z2)

The sides of the rectangle will be:
a = 2HK, b =HK,

in which K and K’ denote the complete integrals that enter into théitleh of the

periods. Consequently, if one sets:
K 2

q:eK:ea

then the modulus will be defined by the equation:

_ L+ )+ g YA+ f ) - |
‘= ‘W{ (L+q)A+ G )1+ &)+ } !

which will then give the complete solution to th®lplem in this particular case.

133. We now pass to the examination of the case ithvthe contour is composed
of arcs of circles. For more clarity, we suppds&t two consecutive circles are never
tangent.

Since one can always transform any of the cirt@s constitute the contour into a
straight line by means of the circular transforoat{no. 124) that is defined by the
formula:

(16) Z:M,
cZ+d

and similarly, for two consecutive circles of tlwaintour, we can immediately apply the
results that were obtained in ri81, and we will see that one can always choose thie re
or imaginary constants b, ¢, d in such a manner thdj takes the form (3) on one of the

sides and the form (4) at one of the summits ofdtetour. One will then have the

following expressions foz:
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1. At an arbitrary point of the contour:

S_az-g) iz P+ !

(17) .
(z-2) {z g+ ¢

2. At a summit where two consecutive circles makengle otr 77 when measured
inside the area:

(18) s-z-3) " dz g+
(z-2)" Hz P+ «

3. At the point of the contour that correspondth®valueo of z

z \z
z \z
if the point is not one of the summits of the cami@nd:
p(lj +b
Zz \Z
p(lj +d
z

if the point is a summit where two consecutive sideke an angle efrz

(19) Z=

(20) Z=

NJo [N

4. Finally, for a point inside of the area, onl\éve:

(21) Z-2%=@2-23P(z-2),
as before.

143. In these various formulag, b, ¢, d denote real or imaginary constants that have
different values according to the development tre considers. Here is the ingenious
artifice by which Schwarz eliminated everything tthaas concerned with those
constants:

In a general manner, let:

7= aT+b
cT+d

, CZT+dZ-aT-b=0

be a relation between two functiodsand T of one variablez. If one eliminates the
constants by differentiation then one will be ledhe relation:
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zT)y 2z T

(Zn" zZ2" 7| =0,

( ZT) m ZI" -I-"I
which will take the elegant form:

dz dz) 2 dz ~ d dz dz) 2\ dz = dZ’
in which the variables are separated. If one adoptsation of Cayley?) and sets:
(23) {Z,2 = d—z(loggj—i(—d Iogizg2
’ dz dz) 2\ dz d
then one will have:
{Z,2 ={T, zZ.

Upon appealing to the preceding results, we shall studydéhelopment of the
function {Z, z} for all points that are located on the interior loe tontour of the ared\

1. For an arbitrary point of the contour, one mustaagl with the development:
(z-2)p(z-2),
which enters into formula (17). One will then findesult of the form:
{Z2d=h(z-23)+k(@z-23)°%+...
2. For a summit, the value @fis the one that figures in formula (18):
T=2-23)p(z-2).
An easy calculation will then give us:

2
Sl A LN S S

t2.3= 2@z-3) z

3. For the point of the contour that correspondseovtiuec of z, one will likewise
find that:

{Z,2 = ﬂ4+£+
z

z

(*® CAYLEY, “On the schwarzian derivative and the polgted functions,” Cambridge philosophical
Transactions, March 1880.
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when the point is not a summit, and if one employsctireesponding value off in the
development (19). On the contrary, if the point ium®it then one must givé the

valueia p(—lj , which will give:
z z

2
(za=ta h, K,

2 Zz2 7 7

We remark, in a general manner, that the coeffisiamill be real in all of these
developments. The functiorz{z will then be real for all real values af It can be
analytically continued by the method in ri80, and as a result, it will be defined over
the entire extent of the plane.

4. Finally, the derivativelZ / dz will never be zero for a point inside @%)( and £,
Z}, like z will be a function that is developable for allves ofz.

The function £, z} has all of the properties of a rational fraction finite values of,
and will become a rational fraction for infinizesince it will become infinitely small. Let
m, a», ..., a, be the values of that correspond to the summits of the contourglet
71 ..., an7t be the corresponding angles that are definedhéywo consecutive sides.
If one then has:

11-a°  h
+

{Z,2 = = '

> +k+ ..
2(z-3) z-a

then the function:

1 1-a? h
z,z->= - :
3 2(z-3) zz—a

which will remain finite for all finite values of and will become infinitely small for
infinite z, will necessarily be equal to zero. Consequentig will have:

— 1 1_ai2

(24) @a=35, a2 Z'_W F@.

If a point on the contour that corresponds tordmite value ofz is not a summit
then, as we have seen, it will be necessary teati¢elopment of the right-hand side in
powers of 1 £ must begin with the term in 12 , which will give the equalities:

2. h=0
(25) 5 [qh +1‘2"i2j -0,
Ylath +a(l-a*)] =0

that the constants, a; must satisfy.
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On the contrary, the point of the contour that poad to the valueg = « is a

summit where the angle between the two consecuties $s57z so the development will
2

: 1- . I .
commence with the termz—z, which will give only the two relations:
z

26 —a?) 1-
(26) z(qml a,jzl /2

135. Once the value ofZ, z} has been obtained, the train of reasoning wableis to
consider the third-order equation:

(27) Z.2=F (2,

and we will then attempt to integrate it.

Knowing the origin and properties of that equatwilt simplify the solution of that
problem greatly.

Indeed, from the way that the expressi@nz was defined, the differential relation:

{2.2={2,2
is equivalentto the finite relation:
7 azZ +b |
cZ+d

and in turn, the knowledge @ist oneparticular solutiorZ; to equation (27) will entail
that of the general integral, which will be givey the preceding formula, in which the
constantsa, b, ¢, d can take on arbitrary values. That very remaskghbperty of
equation (27) approximates that of linear equatia it is easy to show that the
integration of that integration can be effectivelynverted into that of a second-order
linear equation.

Indeed, consider a second-order linear equation:

d’6 . do

28 +p— +q =0,
(28) a7 Pt

in which p andq are given functions of, and look for the differential equation that the
ratio:

(29) Z=

AR

of two particular integrals must satisfy. One Wiilld, by an easy calculation, that:
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d
(30) Z.z3=2q-3p*-2P.
dz

The equation thus-obtained has the same form as thesa@pmne (27). In order to
determingy by the relation:

(31) -3p°-——=F(@2,

it will suffice to choosep arbitrarily, and the integration of equation (27) will be
converted into that of the linear equation (28). If talees, for exampley = 0, then the
linear equation will be converted into the following one:

d?e
dz

(32) +1F(2)0 = 0.

Furthermore, one can explain how a certain indatercy can remain in regard to the
linear equation, since the ratio of the particulategrals will not change when one
multiplies one and the other by the same givenabitrary, function ot

All of its coefficients and singular point for emfton (32) will be real, as well as all of
the equations that one obtains by taking the fafigwalue forp:

p=2£,

in which the constantg are arbitrary real numbers; all of its integraldl tve regular,
moreover.

Conversely, if one considess priori an arbitrary second-order linear equation that
possesses all of those properties then one calisktthat the ratios of its integrals will
give the conformal representation of an area thatare or less complex and limited by
arcs of circles on the upper part of the plane.

ag

W o @ -1 @& W

Figure 10.

Indeed, mark out the singular poiats a, ..., a,-1, a, of the equation on the real axis
(Fig. 10), and let:
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N
1
AR

be the ratio of two arbitrary particular integrals, e¥hifrom the hypotheses that were
made in regard to the equation, are uniform functionsionfthe arealg) that is limited
by the real axis and the semi-circtaow’ of radius infinity. One can obtain two
particular integrals in each of the intervalsa,, a; as, ..., @-1 &, ..., a, © a that will
both be real for real values af For example, if one lets; denote the ratio of those two
integrals in the intervadi-; & then one will obviously have:

Z — a'i—l+ |—11%—1
yi—l+5|—1ti—l

in which ai-1, B-1, -1, -1 denote real or imaginary constants, and since the vatiabl
will remain real when the poitdescribes the segmeat; a, one will see that the point
Z describes an arc of the circle. The arcs of theded that are described by the paint
which then correspond ta intervals, will define a closed polygon in which the
consecutive sides will cut at angles whose magnitudesdntrary. Two consecutive
sides can even be tangent when the developments aftdgrals in a neighborhood of a
singular point contain logarithms. However, we shalédéhe examination of all cases,
and the precise definition of the area in which one tlodatains a conformal
representation to much later.

We content ourselves by remarking that equation (27) indeeigins the number of
constants that is necessary if one would like to perfthe conformal representation of
an arbitrary polygon that is composed of arcs of ciroleshe upper part of the plane.
Indeed, the functior~(z2) depends uponrBreal constants that are linked by three
equations (25), and since one can take three of the quaatiestrarily, moreover, (no.
128, only 3h — 6 real parameters will remain. However, one mpgead six other
parameters to them that serve to define the threeinarggconstants that figure in the
general integral of equation (27). The numbeoBreal constants thus-obtained is equal
to precisely the number of arbitrary parameters uponhédnijgolygon that is defined loy
circular arcs will depend.

It results from a general proposition to which Schwamzved by a most elegant
method in the article that was cited abo?® ¢hat one can always determine those
constants in such a manner as to effectively obtansblution to the problem that was
posed.

136. As an application, we propose to determine the corfbrapresentation of a
triangle that is defined by three circular arcs. Wa always suppose that the three
summits of that triangle correspond to the values @ df z Let A7z ur virbe the
angles of the triangle at those three summits. ,Hegenill have:

(*") Monatsberichte, (1870) 768-784.
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_1_+i
2

1-2r =1

2
{Z,Z}:ElA i

2 7 z

_ 1,2
and the development in positive powers of 2 rhust begin with the termi—l ;/ ’
z

moreover. That condition will determiag, a>, and one will find that:

11—/12+11—,u AP+’

(33) 3= 2 72 2(- z)2 2 A+ 2

Now, if one considers the equation:

(34) z(1-2 sz

+y—(@+p+ 1)]%— apo= o,

which defines Gauss’s hypergeometric series, thenwill easily see, upon applying
formula (30), that the ratio of its two integraldlwatisfy equation (33) if one takes:

(35) F=1-p, w#=y-a-p° V=@-H"

One can then expre&sas the quotient of two particular integrals of &ipn (34);
those integrals are well-known. One can deterrtigevariation that they experience
when one follows an arbitrary path in the plai®, (and one will verify that they
effectively provide the desired representation.

Among the four systems of values S, ythat are determined by equations (35), we
choose the following one, for example:

a=31-A-u+v),
(36) B=101-A-pu-v),
y=1-A.

The differential equation (34) will admit sevegrticular solutions, among which,
we distinguish the following ones:

6 =F(a,B,y,9),

6,=2"Fla+1-y,B+1-y,2-y,2),

6 =F(a,p,a+p+1-y,1-2),
=(1-2)“*F(y-a,y-B.y+1-a-p,1-z)

(37)

(*) KUMMER, “Ueber die hypergeometrische Reihe,” Cralldournall5 (1836).
GOURSAT (E.), “Sur l'équation différentielle lineairqui admet pour intégrale la série
hypergéométrique,” Annales de I'Ecole NormaleX@)1881), supplement.
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in which the symboF denotes Gauss’s hypergeometric series. If one agraeshth
arguments oz and 1 —z will be taken to be zero when the variable real and between
0 and 1 then those integrals will be unambiguously deterniimettie entire upper region
of the plane, and the formulas that one finds on p2@esd 21 of the beautiful paper by
Goursat will permit one to calculate the value for eaaimt of that region. Furthermore,
they will satisfy the two equations (which one will find page 28 of that paper):
- [ dzeaoe
6,=a6,+bg,

in all of the region considered, in which one has:

T -a-p) TON@+f-))

39 ry-a)r(y-A) r@rs)
g @ y-a-p) _ T@-yI@+p-y)
ra-ayre-g) M@+1-yX B+1y)

Having assumed those things, @&tenote a real or imaginary constant and set:

(40) cz=

AR

Whenz varies between 0 and 1, the raflo/ & will be real, and the argument z&f
will be constant and equal to that of €./ The pointZ will then describe a segment of
the lineOA (Fig. 11). On the contrary, if the poimpasses through the upper part of the
plane to values between 0 ande then & will remain real, and the argument &f will
become equal tar(1 —)) or 771 . The argument of will then increase taz, and since it
will still remain constant, the poira will describe a segme@B that has its origin &
and makes the anghsrwith OA.

B

O
Figure 11.

Now, suppose tha passes through the upper region in the planeltesdetween 1
and +o. The integralé will be real. As for the integraf, it will be imaginary, and
since the argument of-1z becomes equal to # that of the integral will be:

-n(y-a-p or - Uit
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If one sets:

= #TT

O]

then the variabld will be real. Upon dividing corresponding sides of equmeti(38),
one will have:

_a+be™T

a+be“ T

If one changesinto —i, and if one let€y, Zo denote the conjugate imaginariesf
andZ, resp., then one will find that:

a+berT
Colo=———.

a+be” T

All that remains is for us to eliminalefrom the two preceding two equations, and
we will then obtain the equation:

(@b CCyZZ, + ab)(1 —e?#™ + CZ (bad€”#"— ab) + CoZ, (abl €#"— bd) = 0,

which represents the circular arc that passes thrdweghdintsA, B and is described by
the pointZ whenz varies between 1 andes.
The powert? of the origin with respect to the preceding circle thesexpression:

ab

g=_L
CC, db’
or, upon replacing, b, &, b’ with their values:
(41) t*=
1-A+u-v 1-A+u+v 1-A-u+v 1I-A-u-v
) r r r r
1 Fr<@1+A) 2 2 2 2

CC, M*@1-A1) r(1+)l +,u—|/jr(1+)l +'U+er(l+)l —,u+|/jr(1+)l —,u—vj '
2 2 2 2

The calculation of that powef is interesting, because if it is positive then avik
describe a circle that has the origin for its ceate cuts the sid&B at a right angle; i.e.,
a circle that is orthogonal to the three sideshefttiangleOAB. On the contrary, if it is
negative then no real circle can satisfy those tiomd.

Since the arguments of tliefunctions that figure in the preceding formula atk
greater than — 1, those functions will have theesamgn as the variables that they depend
upon. One then sees that the pot¥evill be negative if one has:
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A+u+v>1,
V+1> A+ U,
H+1> A+,
A+1> u+v,

(42)

i.e., if the angles of the triangl®AB satisfy all of the inequality relations that exist
between the angles of a spherical triangle. Orctmgrary, the power will be positive

if the preceding inequalities are not all verified. Thegult indeed conforms to the one
that geometry gives: In order for a triangle thatasposed of three circular arcs to be
the stereographic projection of a spherical triangdegree knows, it will be necessary and
sufficient that the circle that is orthogonal te tthree sides of the triangle should be
imaginary.

If we choose the following variable:
_aZ+b

T cz+d’

1

in which a, b, ¢, d denote arbitrary constants, instead of the varilteat is defined by
formula (40), then we will obtain a triangle that llas same angles as the trianglaB,
but whose sides will be circular arcs, in general, bezau will be derived from the
triangleOAB by an arbitrary circular transformation.

Suppose that the anglésy, v satisfy the inequality relations (42) and take the value:

CC, =

r 1-A+u-v r 1-A+u+v r 1-A-pu+v r 1I-A-u-v
(43)y ra+a) 2 2 2 2
r(1-A2) r[1+)l+,u—|/jr(1+)l+,u+|/jr(1+)l—,u+vjr(l+)l—,u—v]
2 2 2 2

for the modulus o€.

t? will become equal to — 1, and the three sides ofrthrgle OAB will be orthogonal
to the circle of radius that has its center at the origin. One knows, tinathis case, the
three sides can be considered to be the stereograpliectpos of the three arcs of the
great circles that are traced on the sphere of radiustlh#saits center at the origin.
Hence, if one represents the variabley a point on that sphere using Riemann’s method
that was discussed in n@®&0 then the preceding results will give the conformal
representation of the area of a spherical trianglehe upper part of the plane. The
summit of that triangle that corresponds to the adgtewill be located on the lowest
point of the sphere and diametrically opposite to the gidlee stereographic projection.




CHAPTER V.

THE ORTHOGONAL SYSTEM THAT IS FORMED BY
THE LINES OF CURVATURE.

Differential equations of the lines of curvature. — Apgtion to the surfaca™ y' 7 = C. — Formula of
Olinde Rodrigues. — Gauss’s spherical representation. -arlLetwiation whose characteristics are the
lines of curvature. — Lines of curvature of cyclides. vehsion preserves the lines of curvature. —
Dupin’s theorem that relates to triply-orthogonal systems

137. The properties of isothermal orthogonal systems akppon only the form of
the linear element and are preserved when one deftilensutface without altering the
lengths of its arcs. The same thing is no longer trughi® orthogonal system that is
defined by the two families of lines of curvature. Howeweat system is distinguished
from all others by an essential property: It is batha@gonal and conjugate, so it plays an
extremely important role in the examination of a greanber of problems that relate to
the theory of surfaces, and from all those viewpoihtserits the fact that we have made
a very detailed study of it up to now.

As one knows, a line of curvature can be defined by theepipthat the normals to
the surface at its various points form a developable srfa’he edge of regression of
that developable is obviously one of the developments eofitie of curvature, so the
point of contact of each normal with the edge of resjoeswill be the center of principal
curvature that corresponds to the line of curvature besmgidered. We shall first show
how one obtains the differential equations of the lwlesurvature.

138. Letx, Y, z be the rectangular coordinates of an arbitrary poinh@fsurface in
question, whileu, v, w are quantities that are proportional to the directiosines of the
normal at that point. The coordinadesy, Z of an arbitrary point of the normal will have
the expressions:

(1) X=x+ud, Y=y+vd, Z=z+wi,

in which isA an arbitrary number whose variation will give all peiof the normal. We
express the idea that there exists a displacementHmh that point describes a curve
that is tangent to the normal; we will have the equatio

d(x+wl) _ d(y+w) _ d(z+ W)
u v wo

or, more simply, upon substractidg, three equal ratios:

dx+ A dv: dy+A dv: dz+A dw
u v W

(2)
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The elimination ofl will give us the differential equation:

dx du u
3) dy dv v| =0,
dz dw

which is that of the lines of curvature. Upon developingne will find that:
(4) du(vdz-wdy+dv(wdx—udg+dw(udy—-vdx=0.

That equation determines the directions of the two lriesirvature that pass through
each point of the surface. Formulas (2) exhibit theevalf A that relates to each line of
curvature, and the corresponding center of curvatureheili be defined by formulas (1).

139. One will also be led to equation (4) if one emplagsther method that is based
exclusively upon the use of tlewordinatesof the normal. One knows that Plicker
considered the straight line to be a spatial elementhéhaefined by its coordinates, as
one does for a point or a plane. We shall point ousystem of determination that leads
to the most symmetric calculations.

Let:

(5)

bz- cy+ a=0,
cx—az+ b=0

be the equation of a straight line. One can appenatbgving equation:
(5) ay—bx+c =0

to these equations, provided tloats determined by the equation:

(6) ad +bb +cc =0.

Equations (5), (9 represent the projections of the line onto the tleeerdinate
planes. That line is determined perfectly when one krbatssix quantities, a, b, b',

c, ¢. We say that these six quantities, which must alvgaysfy the condition (6), are
thehomogeneous coordinate$the straight line.

Suppose that these six coordinates are given functionseoparameter. The line
will generate a ruled surface. In order for that sufio be developable, it is necessary
that there should exist a curve that is tangent to aitipos of the line; in other words, it
IS necessary that one must be able to determine the cai@skny, z of a variable point
that verifies the equations of the line and satishesconditions:

dx_dy _ dz
a b c
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If one differentiates equations (5) and)(3vhile taking into account the preceding
relations, then one will find that the coordinates/, Z must verify the three equations:

zdb- ydct+ da=0,
(7) xdc- zda+ db=0,
yda- xdb+ dt=0,

which do not contaidx, dy, dz If one adds them, after multiplying them by db, dc,
respectively, then one will get the condition:

(8) da dd + db db +dc dé = 0

that the coordinate differentials must satisfy. Ondyeproves that this condition, which
IS necessary, is also sufficient, and when it isilfetf, formulas (5) and (7) will exhibit
the point of contact of the generator with the edfjeegression for each value of the
independent variable.

In the case that we are treating, the equationseaidhmal are:

X=X_Y-y_ Z-z
u v w o

Consequently, the six coordinates of the normaluake w, and the quantities’, v,
w, which are defined by the equalities:

0
9) WX— uz+ V=0,
0

The condition for the normal to generate a developslntace will then be expressed
by the equation:

(10) du du + dv dv +dw dw = 0,

which one easily recognizes to be equivalent to equétion

140. In order to give an example of the preceding methodyrepose to determine
the lines of curvature of the surface:
(11) xX"y' 2 =C,

in whichm, n, p, C are arbitrary constants. The differential equatibthe surface will
be:

m%+n$l+pd—zzo.
X y z
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Formulas (1) will become:

here, and equations (2) will give:

dx()l +ij dy()l +y2j dz()l +sz
(12) m) - nJ- P/

X y z

If we substitute the values dx, dy, dzin the differential equation for the surface then
we will have the second-degree equation:

(13) AL L )
PRSI P A S
m n p

which will exhibit the values of that correspond to the two lines of curvature.

Instead of making each root of that equation corresponthedine of curvature
whose direction is defined by formulas (12), one carsicen the perpendicular line of
curvature. Upon lettingx, dy, dz denote the differentials that relate to that secarg li
one will have the equation:

(14) x dx + y dy + zdz

2 2 2
PRSI P AR S
m n p

:O,

which will determine the ratios afx, dy, dz when it is combined with the differential
equation of the surface. Thus, in order to obtain tfferdntial equations of the two
families of lines of curvature, it will suffice to regge A in equation (13) with the two
roots of equation (13) in succession.

Having done that, the integration will be easy. Indeedtiphuequation (14) by 2
and add it to equation (13), when it is multiplieddy We will then obtain an exact

differential:
2 2
d{m%)+iq+n{4+lj+p%?+fq}:Q
m n P

and upon integrating this, we will have:

(15) u:(/]+x_2j (/] +L2j [/]+ij ,
m n p
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in which u denotes the parameter of the line of curvature. Inroi@ebtain both
families, one must successively replaceith the two roots of equation (13). If one now
remarks that equation (13) is obtained by setting the dmevaf equation (15) with
respect tol equal to zero then one will be led to the following tleear

If one considers u to be a constant ahtb be a variable parameter in equati¢ib)
then the envelopes of the surfaces that are represented by that equiitmmrespond
to the various values of u that cut the proposed surface along its licasvature.

One sees that these lines of curvature will be algelragnever the proposed surface
is — i.e., whenevem, n, p are commensurable. Furthermore, one recognizes by gn eas
calculation that the family of surfaces is represebtedquation (11), in which one gives
C all possible values, and that the two families of envaldpat are in question in the
preceding statement will form a triply-orthogonalteys ¢°).

Suppose, for example, that one takes:

Equation (11) will take the form:
(16) X -c

Equation (13) will admit the roots:

2+ (C+y) Y+ D).
It will then result thau has the following two values:
(17) JU =+ X +Z+ ¥,
(17) JU = Z+xX -2+ .

The surfaces that are represented by the lasetations are the loci of points such
that the sum or the difference of their distanaeghe x andy axes — i.e., the two
rectangular lines that cut them — is constant.

If one takes:

m=n=p=1

(*® In his “Mémoire sur les surfaces orthogonales,” whias wcluded in the Journal de Liouville (1)
12 (1847), pp. 246, J.-A. Serret developed a remark by Bouqueshawied for the first time that the
surfaces that are represented by equation (11) congiitatef the families of a triply-orthogonal system,
and he showed the means by which one could determinehttyetao families that complete the system.
However, he developed the calculations only in the &ges:

m=1, n=1 p=1 and m=1, n=1 p=-1
The method that is followed in this book was presentedgawith the generalizations that it entails, in

a “Mémoire sur la Theorie des coordinées curvilignetestsystemes orthogonaux,” that was published by
the author in Annales de I'Ecole Normale supérieurd (2878), pp. 227.



Chapter V. On the orthogonal system that is formed bijrtee of curvature. 173

then the equations of the three families will takeften:

xyz= G
(19) 3\/_3\/7:(x2+a)y2+a)222)3’2+(x2+w2y2+w22)3/2’
33U = (€ +wy + W Z)"*- (¥+ wy+ w DV’

in which wdenotes an imaginary cube root of unity. This resultissto Cayley.

141. We now return to the general theory. Formulas éXeta particularly
remarkable form when one supposes that, w are not simply proportional to the
direction cosines of the normal, but equal to thosenesswhich we shall cad, ¢, c".
Formulas (1) will then take the form:

(20) X=x+CcR Y=y+CR Z=z+CR

and define a point on the normal that is situated astartie oR from the foot of that
normal. That distancB will have a sign, moreover, so it must be measundtie sense
that is defined by the cosinesc', ¢’ if it is positive and in the contrary sense if it is
negative. Formulas (2) will give us the following ones:

dx+ Rdc: dy+ Rdé: dz+ Rd¢

n

c C C

If we add the numerators and denominators, after rfigp them byc, c', c’,
respectively, then we will find, upon taking into accout dbvious equation:

cdx+c dy+c"dz=0,

that the common value of these ratios is equal to zero.
One can then write the following formulas:

(21) dx+ R dc= 0, dy+R dé¢ =0, dz+R d¢ =0,

which are due to Olinde Rodrigues, and which play an easenie in the theory of lines
of curvature. R denotes the radius of principal curvature that corresptmdie line
considered, and the coordinates of the corresponding aeintervature are defined by
formulas (20).

142. One also obtains the equations of Olinde Rodrigues by malksagf a very
important notation that is due to Gauss, namely, thaspbferical representation.
Imagine an arbitrary portion of a given surface andhattei a sense to the normal at
every point in that region by requiring that it musisfgtthe condition that the direction
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cosinesc, ¢/, ¢" of the normal should be continuous functions of the parameters that
define the foot of that normal. Now, construct thenp@those rectangular coordinates
arec, ¢, c". It obviously belongs to the sphere of radius 1 that itecenter at the
coordinate origin, and one will see that we establish iat4{by-point correspondence
between that sphere and the given surface. A pbiot the surface will correspond to a
point m of the sphere, a curve on the surface to a curvéesghere, and a continuous
region of the surface, to a likewise continuous regiorthef sphere. That kind of
correspondence has received the nangphérical representationr spherical imageof
the surface, and, as we shall see later, Gauss usedstablish and formulate one of the
most important propositions of the theory that we askire

If we consider an arbitrary poii of the surface and its spherical imagehen it
will result from our definition that the tangent platee the surface at the poiM is
parallel to the tangent plane to the spherenat The normals to the two surfaces are
parallel, and as far as their senses are concernedsems that the positive sense of the
normal to the surface corresponds to that of the exteonmal to the sphere.

Imagine that the poiri¥l is displaced by starting with its initial position dretsurface
and describing an element of the cuM® ’; so the pointn that serves as its image will
be displaced by starting witim and describing an element of the curaei. We now
seek the relationship between those two correspondingeats.

It is obvious at first that the anoni measures the magnitude of the angle between the
normals atM andM’, or — what amounts to the same thing — the infinitely-saradle
between the planes that are tangent to the surfattesg¢ two points. That is a very
important primary property of the spherical represemati., it permits one to study
the variation of the tangent plane geometrically.

On the other hand, the tangemtri to the sphere and the tangé#ivl’ to the surface
obviously have parallel lines for their conjugates, sinoce tangent planes to the
corresponding points of the two surfaces will alwaysHag¢ way. Now, for the sphere,
the conjugate to a tangent is perpendicular to that tang®ne can then state the
following proposition:

The angle between the tangents at m and M to the corresponding curvesmdim
MM “is complementary to the angle that is formed by the tangent to tlxEeuwvith its
conjugate.

In other words:

A tangent MT to the surface that has Mar its conjugate will correspond to a
tangent mt to the sphere that is perpendicular to'MT

We apply that general remark to the particular cagagmaost interesting to us.
First, suppose tha¥lT is an asymptotic tangent: It will coincide with its aoggte
MT’and will be consequently perpendicular to its sphericaben One will then get the
differential equation for the asymptotic lines by diffetiating the fact that the
corresponding displacements on the surface and theespheperpendicular. One will
then be led to the equation:
dx dc+dy d¢ +dz d¢ =0,
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which one deduces, in fact, from the first of formy24) [pp. 123] by setting= 1 in it.

Now, takeMT to be a principal tangentMT will be perpendicular taMT’, and
consequently parallel tont, and conversely, iMT is parallel tomt then it will be
perpendicular to its conjugate. Thus, the principal tasgaré characterized by the
property of being parallel to their spherical represematioJpon writing the conditions
for parallelism, we recover the equations:

dx_ dy _ dz
dc dc¢ dc'’

vgpich are those of Olinde Rodrigues, when one has eliedritiat radius of curvature
().

We will frequently have occasion to employ the splagniepresentation, and for the
moment, we shall content ourselves with the precediementary remarks. Before
continuing on to the general study of the propertiesnafsliof curvature, we shall show
how one can define their differential equations in the diverse cases that can present
themselves.

143. First, suppose that the surface is considered to bmua tf points, and that the
rectangular coordinates y, z are given functions of two parametars 5. One can
employ equation (4); the following method leads to thellte® a more symmetric
manner.

The equations of the normal to the poity 2) will become:

0x oy 0z
X—X —+((Y-y=—=+(Z-2— =0,
( %aa ( ))aa ( z)aa

0x oy 0z
X=X —+(-y—=+Z-2— =0,
( %aﬁ ( 96[3 ( 2)6,3
or
(22) a a a oda

X%+Yﬂ+ zﬂ—ﬂ:o,

08 0B 0B 0B
upon setting:
2+ 2+
(23) r= u
2
to abbreviate.
We express the idea that the normal generates aopabdt surface — i.e., that there
exists a displacement for which a conveniently-chosent {¥i Y, Z) on that line will
satisfy the equations:

(*") Seel. BERTRAND,Traite de Calcul differentialpp. 665 and 697.
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X ax+9Y gy+9Z gz 0,

Jda Ja Jda
%dx +ﬂ dY+E dz= 0.
B B B

Differentiate equations (22), while taking the precedirig account; we will get:

XxdZXrya s zg9%2- P9 =0
Jda Jda Jda Joa

(24)
Xd%+Ydﬂ+ Zd%— dﬁ:O.

o op o dB

The elimination ofX, Y, Z from formulas (22) and (24) will give us the differehtia
equation of the lines of curvature in the form of a deieant:

Ox Ox ,0x  0X
da 98 da oB
Oy 0y 49y 9y
25) 0a 0f “0a 9| _,
0z 0z 40z 40z
da 98 da 0B
or o jo a
da 98 da 0B

and formulas (22) and (24) will exhibit the center of ppatcurvature that corresponds

to each line of curvature.
The preceding result can also be presented in the fatipferm: Consider a linear
partial differential equation in the form:

2 2 2
(26) A692+869 +Ca€2+A%+B%:0,
oa oaadp s oa g3

and say that it admits the four particular solutieny, z r. We will then have four
equations that determine the mutual ratiod,d, C, A', B'. The linear equation can also
be written in the form of a determinant:
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0’60 0%6 90 96 96
da? da 9B 932 oa B
0°X  0°X 0°%x 9X 0X
da® da 0B 35> da 9B
9’y 9%y
da® da df
0’z 0%z
da’ 0a dp

It suffices to compare this equation with the determirfasj for one to recognize that
the differential equation of the lines of curvatureewlordered with respect o, dg

can be written:
(27) AdB?>-BdadB+CdB%=0,

in which A, B, C are the coefficients that appear in equation (26). #vetlcen state the
first proposition:

When one has obtained (by whatever process) a partial differential equattbe of
form (26) that must be satisfied by x, y, z, ahd-¥* + Z, the differential equation of the
lines of curvature will be given by formu{a7). In other words, the lines of curvature
will be the characteristics of that partial differential equation.

That is the proposition that we obtained alreadyp@k different path in nd.08

144. We attach the following theorem to the preceding tesul

If one is given:

2

0 _ 700,590 ¢ o
oaadp Joa  0p

in which A, B, C are arbitrary functions af, £, then if one knows five particular
solutions that are coupled by a homogeneous equaifodegree two with constant
coefficients, one can obtain a surface for whiche dms determined the lines of

curvature.
Indeed, let@, &, ..., & be five solutions that satisfy the homogeneous relaiion

degree two:
$ (&, 6, ..., 6)=0.

Upon performing a linear substitution with constant icehts on these solutions,
one can reduce the preceding relation to the form:

(28) G +6>+67-206. =0.
1 T, 7O, s
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Make the substitution:
0=06

in the equation ford. o will satisfy a linear equation liké), but that equation, while
admitting the solutiowr= 1, will have the form:

0% liloj 00
= —+ -
0adp Asa B Y

and no longer contain the terman It will admit the particular solutions:

(29) x:ﬂ, y:i, Zzi, r:ﬁ,
& & & &
which are coupled by the relation:
X+y+7Z .
5 :

Thus, by virtue of the proposition that was provedthe preceding number, the
surface that is the locus of poinisy, 2) will admit a andg for its parameters of its lines
of curvatures.

145. In order to give an application of the theorerattive just established, we
choose the equation:

9’6 06 a0
(30) 2p-p) =0

+—— - =
0pdp, 0p Op,

which admits the particular solution:

6=A(p-a)p-a),

no matter what the constards a are. We shall take five systems of values fois¢ho
constants in the following manner:
Set:
flW=u-a)uU—-ay) ... (U—a).

The five solutiondd that are defined by the general formula:

(31) a:\/(a_p)(a_pl)(a_h) (| :1’ 2’ . 5)
f(a)
satisfy the identity:
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6+ ...+ 8 =0.
Take:

X1 = 6, X = 6, X3 = 6, X5=——|:(94—i6%), X5 = (6 +i &),

in which R denotes an arbitrary constant; the five solutimnsatisfy the identity (28).
Here, formulas (29) will give us:

(32) x= Re_l VE 2 Z:R—e_?” X2+y2+22:—R2L_|85
6, +106, 6, +106, 6, +16, g, +i6,
and define a surface that is referred to the systemuodlioear coordinates that is
defined by the lines of curvature. One can, moreover, fiacuation of that surface in
the following manner:

Equations (32) give us:

ﬁ:i:%: 64 = 35
X Yy z X+yY+Z2-R X+y+Z7+R’
2R 2Ri

Furthermore, the function also satisfy the identity:

5 32
| :0’
Za-h

and upon replacing them with quantities that ampprtional to them, one will obtain the
desired equation in the form:

[x2+y2+zz— RT [%+ o+ 2+ F%jz
(33) X N Y N z N 2R N 2Ri 0
a-h a-h a-nh a—-h a— h

One will likewise find the equations that determewch line of curvature. Indeed, the
roots 4 contain the three quantitids o, o in a symmetric manner. The preceding
equation must then be once more verified when eptaces with pandp, in it. That
remark leads immediately to the following propasiti

If one considers h to be a variable parameter inampn (33) then the surfaces that
correspond to two distinct values of h will mutyailhitersect along a line of curvature
that is common to those surfaces.

If one clears the denominators in equation (38hthne will recognize that since the
coefficient ofh® is zero, it will be only of degree three with resptoh; consequently, if
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one gived all possible values in such a manner as to obtaimdyfaf surfaces then one
will have three surfaces of that family that passugtoeach point of space. While those
three surfaces mutually intersect along common linescwiature, they will be
necessarily orthogonal. Equation (33) then definespdy4orthogonal system that is
analogous to the one that is defined by second-degree esuidad composed of three
families that are represented by the same equatiaomelsupposes, for example, that
&, ag, & are real and are arranged by order of magnitude thethitée families that
correspond to the values lofwill be included between; anda,, betweers, andas and
betweera; anda, .

The surfaces that are represented by equation (33) hdee four and admit the
circle at infinity for a double line; they have recaelwbe name ofyclides.

146. We shall now describe an application of a diffeneature. One knows that
inversion or the transformation by reciprocal radius vectorbiciv is defined in the
simplest case by formulas such as the following ones:

K 2x K2y K?z
4 X=—+— Y= ———F— = —F+—
(34) X+ Y+ 7 XX+ Y+ 7 X+ Y+ 7

will make a sphere or a plane correspond to a sphere pteina, resp., and that it
preserves angles and the ratios of similitude of irfipismall elements. We shall show
that it also preserves lines of curvature.

Indeed, consider an arbitrary surfaZ¢ &nd letp, o1 be the parameters of its lines of
curvature. We know that y, z satisfy an equation of the form:

2
00 _ 06, 500

0pdp,  0p  0p

(35)

and that equation is distinguished from all of the ored telate to other conjugate
systems by the property that was pointed out alreadyttaso admitsé + y* + Z for a
solution. These four solutions to equation (35) are expdessterms ofX, Y, Z in the
following manner:

_ KX Ky _ Kz K
X2+Y2+ZZ’ X2+Y2+ZZ’ X2+Y2+ZZ’ X2+Y2+ZZ'

If one then performs the substitution:

-__ g
X%2+Y?+ 72

in equation (35) then the equationawill admit the particular solutions:

XY, Z 1,
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and will consequently have the form:

0’ liloz liloz
(36) =A_—+B—.
0p0p, op  0p

Furthermore, equation (35) admits the obvious solution 1, and consequently,
equation (36) will admit the solution:

o=X?%+Y?%+27?

along withX, Y, Z. It results from this that the surface that isltdweis of pointsX, Y, 2)
will have p, o1 for parameters of its lines of curvature. That resufirecisely the one
that had to be established.

147. One proves the preceding proposition in the usual wayppgading to Dupin’s
theorem that relates to lines of curvature of a surtheg define part of a triply-
orthogonal system. To conclude this chapter, we shadl@new proof of that theorem.

Let:

(40) p=f(xy. 2, P =Hix Y, 2, P2=f2 (XY, 2)

be the equations of three families of surfaces thatafiytintersect at a right angle. If
one solves those equations with respeat yoz then the relations:

0x 0x _9x 9x  dydy 020z g
0p0p, 0p0dp, O0podp, 0pIp,
Ox Ox _0x 0x L 0ydy 0z9z_,
0pdp, O0podp, O0pdp, O0poIp,
0x 6x: 0X 6x+6y 6y+azaz:O
00, 0p, 0p,0p, 0p,0p, 0pP,0P,

(41)

in which we employ Lame’S sign in order to indicate a sum that extends overtireet
coordinates at the same point, must be true identicéilye differentiate the first one
with respect tqo, the second one with respectdg and the third one with respect 4o
then we will have:
2 2
ox 0°Xx N Sax 0°x

:O,
0pdp0p,  0p,0p0p,
2 2
0x 6x+Sax 6x:0,
0p0p,0p,  0p,000p,
ox 0°X +Sc’)x 9°x —o

p, 0pdp,  0p,0pdp,
and, in turn:
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ox 0°x _de 9°x _Sax 9°x o

(42) = = =
0p 0p,0p, 0p, 0p0p, 0p, 0p0p,

One sees from this that one will have three diffesrstems of solutions for the
equation iru, v, w.

ox .~ dy 0z
—u+—=—v+—w=0
Jdp Odp 0dp
if one takes either:
LS v=9 =0z
op,’ op,’ op,
or
_ 0X _ oy _ 0z
= —, V= — , W= ——
00, 00, 00,
or finally:
9% 0%y 0%z
= : Ve ——, W= ——.
0p,0p; 0,0p; 0,0p,

These systems cannot be linearly independent, so icessary that the latter must be a
linear combination of the first two — i.e., thaty, z must be particular solutions of an
equation of the form:

(43)

%0 _ 08 06
=m + .
00,00, 0o 0p,

The variablego, o, then define a conjugate system on the surfageafd since, by
the nature of the question, that system is orthogdnai)l necessarily be composed of
lines of curvature. Moreover, one easily verified tha linear equation (43) also admits
the particular solution:

0=x +y +7Z.

148. The preceding proof leads to a new method of anafgsisrthogonal systems.
We just saw that the coordinatesy, z, and the surs® + y* + Z satisfy equation (43), and
it is clear that these solutions will satisfy two atkenilar equations i, 0, andpy, o.
Conversely, we shall show that:
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If three linear equations of the form:

0’0 _ 06 06
=m +n

0p0p,  0py  0p,

0’6 _ m 06 , 0 26

0p0p, 0p, “0p

%0 _ 06 036

_mz_+ nz_
0p,0p op  “0p

(44)

admit three particular solutions x, y, z, alonghwthe sum of their square$ x y* + Z,
then the system of curvilinear coordinates thadeined by the expressions for x, y, z as
functions ofo, o1, > will necessarily be orthogonal

Indeed, consider one of the coordinate surfaggs (The system of curvilinear
coordinates 4, ©) that is determined on that surface by the othey families is
composed of lines of curvature of that surfaceabsex, y, zz when considered to be
functions ofos, o, will satisfy the first of the preceding equati@ipng withx? + y* + 2.
The surfaces of three families that mutually ireetsalong their lines of curvature will
necessarily be orthogonal.

149. In order to not treat this subject in an incortglmanner, we remark that one
can easily obtain the coefficients n, ... when one knows the expression for the linear
element:

d€ =H?d¢? + H2dp?+ H2dp?

in the orthogonal system. Indeed, if one diffelaes the equation:

2 2 2
% + ﬂ + E =H 2
op op op

with respect tqo, then one will get:

2
Ha_H: Sax 0°X |
Je) 0p 0pap;

2
and upon replacingaaTX with the value that one deduces from the lastquiagions
POL

2
a_H:nEq%j+rES%% :m2H2,
Je) dp 0p 0p,

(44):
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One will then have:
1 oH

Hop

If one substitutes that expression and the ana®g@lues forn,, m, n, ... in
equations (44) then one will obtain them in therfor

%9 _ 10H, 90 1 0H, 30
0p,0p, H,0p,0p, H,0p,0p,
0°¢ _ 1 0H,06  10H,06
0p,0p H, dp dp, H dp,0p’
0’6 _ 104,00 . 10H, 060

0pdp, Hdp dp H, dp op,’

(45)

which is due to Lamé.




CHAPTER VL.

PENTA-SPHERICAL COORDINATES.

The system of five orthogonal spheres. — Relationghgntorthogonal linear substitution in five variables.
— Main formulas that relate to distances and angles. -ofJsenta-spherical coordinates in the theory
of lines of curvature and in that of orthogonal systeminversion. — Study of the system of two
spheres. — The six coordinates of the sphere, comparedose ®f the straight line. — The
transformation of Sophus Lie.

150. In the study of conjugate systems, we saw that theois®@ mogeneous and
tangential coordinates exhibited projective and dualistipgntees that belonged to those
systems. If one desires to give a satisfactory expogitf the analytic theory of lines of
curvature, moreover, then one will be led to introducerticodar system of coordinates
to which we have given the name pénta-sphericakoordinates. In this chapter, we
propose to define that system of coordinates and ta patnts role in the theory of lines
of curvature.

Consider an arbitrary sphere that is referred t@nggtlar axes:

K ¢ +y +7) + 2Ax+ By+ 2Cz+ D = 0.
Its radiuspo will be given by the formula:

A’ + B?+ C?>- DK
g frBaEoDK

The quadratic form that appears in the numerator plarfaadamental role in the
theory of the sphere. It is natural to convert ib iatsum of squares, and to that end, we
write the equation of the sphere in the form:

X¥+y'+Z7-R . X+y+7Z7+ R
+ie =

1 2ax + + 272+ 0
1) 28y + 2)z = =

0.

If one letsp denote the radius and, Yo, z, the coordinates of the center of that
sphere then one will obtain the following expressiomgHose quantities:

_-aR _-BR _ _ -yR
YT 5rie T svie 2T sie
(2)
RJa?+ B +y+d%+e?  , , o-ie
= X+ VP +Z2-p?=—-FR .
Stie X+tYet—p STie
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If the sphere does not reduce to a point then onaleays suppose that one has:
(3) a’+ B2+ P+ 0%+ e2=1,
and the expression for the radius will take the sirfgrien:

R
J+ig’

(4) p=

That formula gives a well-defined sign to the radius;shall return to that point later
on.

If one substitutes the coordinates of an arbitrary poirgquation (1) then the left-
hand side will have the value:

(5) S
0

in which S denotes the power of the point with respect to thergphonsidered. We
remark, once and for all, that if the sphere reducegptaree then one will have:

o+ie=0,

and the left-hand side of equation (1) will become equaice the distance from the
point to that plane.

Now suppose that one considers, along with the sphatés represented by equation
(1), another spheré&() that is represented by the similar equation:

2a’x+2B’'y+ ... =0.

Let p’be the radius, and leg, y,, z be the coordinates of the center of the second
sphere. Formulas (2) give us:

(%6 =%+ (Y%= W)+ (%~ &*-p°-p'*
(6) __2R*(aa'+ B +yy +30 +&€')
(O+ig)(0 +ig)

and, in turn, the equation:
(7) aa’+ BB+ W+ d0'+e'=0

will express the necessary and sufficient conditmnthe two spheres to cut at a right
angle. That condition will persist when one or ¢tieer of the spheres reduces to a plane.
Its form will permit us to give a very simple theorfyaosystem of five spheres that are
pair-wise orthogonal.
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151. Indeed, consider five spher&)( (S), ..., (S) of radiiRy, Ry, ..., Rs, resp., and
write their equations in the form:

2 2 _ 2 2
®) mkx+2@y+zmz+@X+y;f R2+i£kx+y-I;zz+R2:0’
k=1,2,..,5.
We first have, by hypothesis:
©) A ALY O HE= T,

and furthermore, since the spheres are orthogonal:

(10) O o+ B+ W+ & de + &&= 0.

These two groups of formulas associate the thebsysiems of spheres with that of
an orthogonal linear substitution in five variablesAny substitution of this kind will
provide a group of five orthogonal spheres, aice versa.

One knows that relations (9) and (10) imply the follmywconsequences:

(11) al+ai+--+ai=1,
(12) B+ .. +as =0,

and all of the ones that one would obtain by replacirend 8 with a, B, y; J, € in an
arbitrary manner.

One can deduce a first property from that remark thatndamental in the theory
that we are treating. L&k denote the power of an arbitrary point with respedh®
sphere &); the left-hand side of equation (8) will Be/ R¢. If one takes the square of
that equation, and if one adds all of the equations thusrelok then one will find, upon
applying formulas (11) and (12), that:

i(%j :(X2+y2.;zz— sz _{ X+ );-I;if— F%j A%+ AP+ 4P =0,

The homogeneous relation:

(13) z(ijz =0

then exists between the powers of an arbitrary poitt regpect to five spheres.
We now recall that if one of the spher&g feduces to a plan®y) thenS,/ R« must
be replaced byR, in whichPy denotes the distance from the poity( 2) to that plane.



188 Lessons on the general theory of surfaces. Book Il.

If one likewise multiplies the left-hand side of eqoiat(8) by & + i& then one will
find that:

H —
o tig, X =-2R
E( i£)
or also:

S _
upon remarking that, from formula (4), one will lrav

Ati&=

R
=

152. We can now define the system of coordinateswiegpropose to study. We call
the five quantitiex that are proportional t& / R penta-spherical coordinateand set:

_ 3 S
15 =),
(15) X« R

Since we employ only homogeneous equations, ttterfa will have no influence on
the results. One will find, moreover, by virtuefofmula (13) that:

(16) X+ X+ ...+ X =0.

Our five coordinates will always be coupled by dmmemogeneous relation then, as
one could expect. It is easy to show that thermisther relation, and that five quantities
that satisfy equation (15) will determine one anty@ne point.

Indeed, we remark that equations (13) and (14jaworall of the possible relations
between the quantiti€, because in order to determine a point, thredade quantities
must be chosen arbitrarily. Moreover, if one siilbss the expression f& in terms of
X¢ in these relations then the first one will redtieesquation (16), which is verified by
hypothesis, while the second one will become:

(17) —u:z%,

which will tell one what the proportionality factaris.
Moreover, one can obtain expressionsXoy, z as functions of the variableg ; it
suffices to solve the system:

X
A

X+ Y+ 7~ R2+i£k X+y'+Z+R _ S _
Re

18 200 X + + 26 z+
(18) KX+ 260y + 2K 2+ & = =
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in which one givesk the values 1, 2, ..., 5. Upon adding these equations, after
multiplying them byax, and then bys, K, &, &, one will find that:

Dx=Yax, Aé+y+i-R)= B4 K
k=1 k=1
(19) 2y=Y B%, AX+y+7+ R)=- iR & ¥
k=1 k=1
uz:zyk)&'
k=1

The last two equations, when subtracted, will bikhhe factora in the form:

(20) AR=-X (& +i &) X,

wrzlicggis equivalent to equation (17); the othersowdl give x, y, z, and likewised + y
+Z (7).

Along with a pointM, whose coordinates y, z andx, are coupled by formula4d.8),
consider another poiiM whose coordinates we denote by the same letténgowimesx',
y’ Z, andx . One will find, with no difficulty, that:

(*®® If one would like to make a more detailed study of thentone would have to point an exceptional
case. Formula (13) shows that the five radii satlsfyrelation:

5 1
(20) >—=0.
k=1 Rk
If one looks for the point at which one has:
_ 1
R

then one will find that it is indeterminate and is subjeconly the condition that it must be in the plane at
infinity.

On the other hand, a point on the circle at infindg lan infinitude of coordinates, which are determined
from the formula:

h
X(+7|
R

in which his arbitrary, and the satisfy the relation:

y % =0,
R,

along with equation (16).
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(21) W2=(X—X)2+(y—>/)2+(2—2)2=—zxk?i R ;
211 X X
rivk

this is the formula that gives the distance betw#entwo points. If one takes into
account the identity relations between the cootditlzen one can give it the form:

(22) MM :M.
yEy A
R~ R

When the two points are infinitely close, one vedle the following expressions for
the linear element:

(23) ds’ = Z_dxfz_
=)

It is pointless to insist upon the analogy thasthtwo formulas present with the ones
that refer to the geometry of Descartes.

153. We now propose to establish the orthogonalitati@hs in the system of
coordinates; .

When the coordinates are functions of two varspleo;, the curvesg), (o) will be
perpendicular if the coefficient dfo do; in the linear element is zero; i.e., from formula

(23), in the sum:
>R

That condition translates into the relation:

ax. 9
(24) 2%6—2: 0,

which is entirely similar to the one that one ofain Cartesian coordinates.
If one is now given two surfaces by the homogesesuations:

¢(X1, ...,X5):0, w(Xl, ...,X5):0

then one will seek the condition for them to cutaight angle. We first point out the
following relations between the powers of a pointhwespect to the five orthogonal
spheres, which are easy to verify:
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s\ (9S8 L(2S) _
%) A5 (5 e
050§ ,0803 0 &0 S_
X OX +6y ay NFERE =28+ %)

(25)

With that, replace th& with the proportional quantitieS / R in the homogeneous
equations for the two surface and set:

990y 090y 990y

(¢’¢,):6x ox 0y ody 0z0z

to abbreviate.
One will obviously have:

(¢,w):zz§§§g (S0 SO

I.e., upon taking into account formulas (25):
_ ¢ Ll ¢ 0
(¢, 9 [Eja—a%j[E; j [2‘,% j[E J 2 Ry

Since the functions are homogeneous, one will have

and the orthogonality condition will take the form:

2 09 0 _
(¢, P =4 R-= 33, 05
or, upon introducing the quantitigs:
09 oY _
(26) @Y= 42 3%, 0%,

More generally, the cosine of the anylat which two surfaces intersect is given by the
formula:

we_ @9
J6.0ww)

which will have the expression:
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09 Ay
277
27) cosV = 0%, 0%

BERBE

154. Before continuing with the study of the coordinatgesve point out their role in
the theory of lines of curvature.

Consider an arbitrary surface and suppose that the catashinof an arbitrary point
on that surface are expressed as functions of two indeperariablesr, 5. Form the
linear equation:

(28)

2 2 2
00 g 00, 0%, 06, 00, o
da®  dadB 9B oa 0B

that the five coordinates satisfy. We shall showt ttsacharacteristics are the lines of
curvature of the surface.
Indeed, if one sets:
=1,

in which A is the proportionality factor that appears in formsu{d5), and which is
defined by equation (17), then the linear equation will tagddim:

2 2 2
602+Baa+ 602+Da—U+Ea—U:O,
oa oaadp s oa s

in which the term incghas disappeared, sinde being a linear function of the, is a
particular solution of equation (28). The equatiow;invhich admits the five solutiong
/ A or S /R, which are linearly-independent functions»éf+ y* + 7, x, y, z, 1, must
admit the same functions:

1,XY,2 X+ +2
as particular solutions.

It will then become the equation that was considerewhii43 whose characteristics
are the lines of curvature. Since the characterisfitke equation iro are the same as
those of the equation 1§, our proposition is proved. One immediately deduces the
following consequence, which basically amounts to thertdma in no.144

If one knows five particular solutions, x.., xs of a linear equation:

2
00 —A%+B%+C6’

(29) =
0adf  da o8

that are coupled by the relation:
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2% =0

then the quantities; xwill be the penta-spherical coordinates of a point on a surface for
which a and S are the parameters of the lines of curvature.

Likewise, the theorem that relates to orthogonatesns that was given in n@48
will receive the new expression:

If one is given three linear equations:

9’6 06 06
=m +n + 4,
00,00, 0P, 0p,
0°6 06 06
(30) =m,— +n— +pb,
0p0p, 0p, dp
625 = mz% + ng% + ng
0p0p, op op, ’

and one knows five particular solutionghat satisfy the condition:

2% =0

then they can be regarded as the penta-sphericaidooates of a point in space, amgl
o1, 22 will be the parameters of three families of surkatleat mutually intersect at a
right angle(*®).

In particular, consider the three equations:

0%9 00 _06 _,
0p,0p, 0p, 0p,
0’6 00 06
(31) 2(p,= p) —-— =0,
* " 0pop, op, dp
0’9, 20 099
0p0p, 0p 0p

2(,01 _:02)

2(:0_ :01)

which admits the common solution:

6=A(a-p)a-p)(a-p,);
if one sets:

*) G. DARBOUX, “Mémoire sur la Théorie des coordinegsvitignes et des systémes orthogonaux,”
Annales de I'Ecole Normale (Z)(1878), pp. 297.
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(32) fuy=u-a)u-2a) ... U-a)

then the five solutions that are defined by the generaiutar.

(33) X = \/(a_p)(a_pl)(a_pz) (l - 1, 2’ e, 5)
f(a)

will satisfy the identity:

> x=0.

Consequently, formulas (33) determine a triply-orthogsgalem. The surfaces that
comprise it— which have received the nameaytclides— are nothing but the transforms
of the ones that were defined in da@l5 by inversion; they are represented by the unique
equation:

34 X_Z:O
(34) 5

in which one replaces successively by, o1, 0, . Moreover, one verifies immediately,
upon applying the orthogonality condition (26), that tweofaces that correspond to two
different values off will mutually intersect at a right angle. Upon appeatmdormulas
(33), one will find the formula:

(35) 42 dX‘f - (p_pfl)(g;_pZ) d,02 + (pl_[f))(i::;_pz) d

2, (P~ P)P=P)

P, 07,
: f(0.) ’

which permits one to obtain the expression for lthear element in the orthogonal
system considered. Formula (23) will give:

(36) M2d<= (p-p)p-p,) dp? + (0.—P)(p,— P) dp?+ (0= P)P,—P) dp?
f(0) f(0) : f(0,) °
in whichM has the value:
v 1 [(a-p)(a-p)(a-p,)
37 M=2y = .
57 2R J (a)

If one makeso, = constant, in particular, then one will obtaie inear element of
one of the cyclides that the system is composeal thie form:

M2d< = (p— p_pzd 2_101_:02d 2|
(p pl){f(p) ) M

One sees that cyclides possess the property thahave already recognized in
second-degree surfaces (4@1), namely, that they are divided into infinitesinsgluares
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by their lines of curvature. One can then make the @maarbitrary region that is traced
on one of those surfaces.

155. In the theory of conjugate systems and asymptotic litles, use of
homogeneous coordinates allows us to recognize immegdliated with no calculation,
that the properties of those systems and those liflepeavsist when one subjects the
surface to a homographic transformation or a transfoemaby polar reciprocals.
Indeed, the homogeneous coordinates of an arbitrary pointotl change when one
performs an arbitrary homographic transformation, provited dne supposes that the
transformation is performed on the reference tetramedr the same time as on the points
of space. The system of penta-spherical coordinategsan analogous property under
inversion. Here is how one can prove that:

First, recall that the theory of contact of spketbeir centers, and axes of similitude
has led geometers to consider the radius of a sphdye #goquantity that can take on a
sign, in such a way that in many studies, there iseatgadvantage to regarding two
spheres as distinct when they have the same centehéutddii are equal, but with
opposite signs. In particular, we shall see that & sumbjects an arbitrary sphere to an
inversion then one can rationally determine the radiughe transformed sphere as a
function of the proposed sphere.

Indeed, let:

2 2 2
(38) X:%’ y:%’ Z:%

X“+Y“+ Z X“+Y“+ Z X +Y“+ Z

be the formulas that define the inversion.

Upon applying these formulas to the transformation gpleere § with a center,
Yo, Zo and radiusR that is defined by the equation:

(39) S=(x—%)’+-w’'+@Z-29*-r’=0,

one will obtain the identity:

(40) s= 50t BT (2 (v 47+ @2 -]

in which Xo, Yo, Zo are give by the formulas:

k2
Xo = 2 2)% _ 27
X t+Yot T
K%y,
41 Y, = 0
( ) 0 X§+y§+Z§_r2’
k2
Zy,= 2 2ZO _ 27
X t+Yot T
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B +k°r
R+ 2T

One can take an arbitrary sign in the latter formuldowever, if one agrees to
constantly take the same sign (for example, thegf)sihen formulas (41) and the
following one:

_ K*r
K+ a-r

(42) R

will determine not only the position of the transfornsgdhere, but the sign of its radius,
as well.
With that hypothesis, formula (40) will become:

___k s
r X?+Y2+2722 R

[

in which S” denotes the power of the poirX, (Y, Z) with respect to the transformed
sphere, and one can state the following result:

If one divides the power S of a point with resgech sphere by the radius r of that
sphere, and one then subjects the entire figuantmversion then the quotient/  will
be reproduced, but multiplied by a quantity thaeslaot depend upon the sphere and
contains only coordinates of the point.

In particular, the five quantitieS / R will be reproduced, and all of them will be
multiplied by the same number, and since the coordixatee proportional to them, one
can say that those coordinates will remain invariable lembnly the proportionality
factor changes, provided that one refers to the new figutkke orthogonal spheres that
are derived from the original spheres by the inversiorsidered. One then sees that all
of the properties that are established for a figure inutkgatly of the choice of
coordinate spheres will necessarily persist for althef inverse figures of the figure
considered.

Having accepted that proposition, the theorem ofibd.will show immediately that
the inversion will preserve the lines of curvature ofgsadace.

156 We conclude by pointing out the main formulas thatteeta the sphere.
Equation (21), which gives the distance between two pop@smits us to write down
immediately the equation of a sphere whose radipsaisd whose center has coordinates
a1, ..., as in the form:

(43) ZZakxk+p22%Z%= 0.
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That equation is linear with respect to the coordingtes Conversely, any equation of
the form:

(44) > mx=0

represents a sphere or a plane. In order to seeitthall, suffice to replace they with
their expressions (18) in termsxfy, z In order to obtain the center and radius of that
sphere, one must identify equations (43) and (44). Onehaitl have the equations:

a,

k=1, ..., 5),
R ( )

(45) ,um<:20k+%zz

in which i denotes the proportionality factor.
Since one can multiply thex by an arbitrary number, one can replace the fagtor
with an arbitrarily-chosen number; for example, wie se

U= 2.

Multiply equation (45) by 1 R and add the equations that correspond to the various
values of the indek. Upon taking into account the relation:

1
_:O,
ZRKZ

which was pointed out already on page 189, we will have:
A M
2 R 2 R

On the other hand, if we once more add equations (45}, lefteng squared both
sides, then we will find that:

ooz

The agreement of the preceding two formulas v gis:

o

and, upon substituting that valuemin equation (45), we will have:
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1.
2R M
sz

47 ai=my—

This is the formula that will give us the penta-sptal coordinates of the center.

A sphere is determined completely if one knowsrti®s of the five quantitiesy,
and for that reason, one can call then bmenogeneous coordinates of the sphere.
However, in all questions where the sign of theiuseknters into consideration, it is
necessary to introduce a new coordinate that wiesto show the value of the radical
that appears in the expression for the radiuswelflet ms denote that sixth coordinate
then we set:

(48) ime= |t

in order that the relation between the six cootdigavill take the very symmetric form:
6

(49) > mi=0.
k=1

Two spheres with the same center and radii thaegual, but opposite in sign, will
have the same coordinates, ..., ms ; however, the coordinatess will be equal and
opposite in sign. From formula (46), one will have

(50)

_img
>m
k=1

Having said that, consider two spher&}, (S) whose coordinates ane, m,,

respectively, and letl be the distance between their centers, whil@” are their radii.
Formulas (21) and (47) allow us to calculdtend they give us:

e 25 mnf
51 Pofop?=_E

If we would like to calculate the angiébetween the two spheres, which we define
precisely by the relation:

(52) o? = 7 + p’? = 200’ cosV,

then, upon applying formulas (50), (51), we wilvba
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5
> m.n
(53) cosV = — K& :
m
and consequently:
6
v 2 mai
(54) 2 sif — = kL
2

These formulas lead us to several consequences, andticulpa, to the geometric
definition of the coordinates of the sphere.

Suppose that the sphe& ) reduces to the coordinate sphesg,(so one will have:
m =0, vy oM =1, vy M =0,
and formula (50), in which one sets= Ry, which will give:

my==1;
equation (53) will then become:
Mg =1 Mg cOSV,

in which Vi denotes the angle between the sph8rarfd the sphere().

Thus, the five coordinate®,, ..., ms of an arbitrary sphere are proportional to the
cosines of the angles between that sphere and thdicata spheres. Moreover, the
relations between the six coordinates will take trenf

5
Y cosV, =1,
k=1

which is completely analogous to the one that esléhe angles between a plane and the
three coordinate planes in the geometry of Dessafi@ermula (53) can also be written in
the form:

5
(55) cosV = ) cosV, co¥,
k=1

and its analogy with the one that gives the cosihéhe angle between two planes is
likewise obvious.

If one takes the identity relations between therdmates into account then formula
(54) can be written:

2V _ o
(56) 4 sif rh
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If one supposes that the two spheres are infinitelyedlosn the angle between them

dv will be provided by the relation:
6

_zd”f
(57) dvf = kL

2

g

Whenever two spheres are tangent, they will intérstean angle O oz However, in
the theories where one takes the sign of the radtosaccount, there is some advantage
to considering them to be tangent only when they intergean angle of zero. When
thus extended, the condition of contact will be exmeds the relation:

(58) > (m = m)*= =2 mnj=0.

When the two spheres are infinitely close, théirtiion in regard to the sign of the
radius will disappear, and the condition of contaititbecome:

6

(59) > dnf =0.

k=1

157. The form of the condition of contact ultimatelyatls to a crucial point of
agreement between the geometry of spheres andfteatight lines. Recall the equation
of the straight line, when written in the form theds already employed in nb39

qz-ry+ =0,
(60) rx—-pz+q=0,
py—qx+ =0.

As we have seen, the six homogeneous coordindtd®e cstraight line satisfy the
identity equation:
(61) ppL+qch +1r1 =0,

and conversely (nol39), six quantities that satisfy that relation wilivays define a
straight line. Equation (61) is quadratic, like tielation (49) between the six coordinates
of the sphere, and one can convert these relantmgach other by setting:

(62) { p=m+im, ¢=m+in, = g+ iy

p=m-im, q=m-im, [= m- in

or, what amounts to the same thing:
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+ + r+1
mlzpzpl, ngzqzq, m= 21,

(63 P— B a-q -
= j—5 = j—2= =i 1

m, =1 5 m, =1 5 m, =1 5

Formulas (62) or (63), which lead to the identity:
6

PP+ Qe +1re =) g,
k=1

make any line correspond to a sphere, @nd versa. Moreover, if one considers two
spheres with coordinates, m , respectively, and for the two corresponding lines with

coordinates, g, r, ...; p', d, ', ..., it results from the preceding identity and the linear
form of the equations of correspondence that therenisra general identity:

(64) P-p)P-p)+t@-a)(w-q)+ F—r)(ri-r) = Z(mk -n)”.

The right-hand side of this formula will be anedllwhen the two spheres are
tangent, and only in that case; the left-hand swlebe annulled when the two lines
considered intersect. One then sees that thefdramation that is defined by the
formulas (62) or (63) makes two tangent spheresespond to two lines that intersect,
andvice versa

Furthermore, one can define that transformatiothout passing to homogeneous
coordinates, which have been the object of ouriesuth this chapter, because if one
takes the equations of a line in the form:

= az+
(65) { X=az+ p
y=bz+ g

then the condition for the two different lines tdersect will be expressed by the well-
known condition:
(a-éd)(q-d)-b-b)p-p) =0,

and if one sets:

(66) { a=x+ y.|, b= z+ R
q=x-y, p=R-z

and similarly:
a=x+yi, b=Z+R,
q=x-Yyi pP=R-Z,

then it will become:
X=X)?+ -y +@z-2)’-R-R*=0.
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Hence, if one considers formulas (66) as establishingrasppndence between the
arbitrary line that is represented by equations (65) andpghere whose radius iBand
whose center has the Cartesian coordinatgsz then one will see that these formulas
make two lines that intersect correspond to two spheag¢saihich, and conversely.

That transformation, which establishes a link betwé&emght lines and spheres — i.e.,
between the most essential elements in space — isfdine most beautiful discoveries of
modern geometry. It is due to Sophus Lie, who presentedtht some important
consequences in a paper that was included in volume Medflathematischen Annalen
(**). Among these consequences, one must, above atheifellowing one:

Lie’s transformation makes the set of lines that are tangent to a suffc
correspond to the set of spheres that are tangent to another s@&aceAll lines that
are tangent to a point M dB) will correspond to all spheres that are tangent to a point
M’ of (S"). When the point M describes an asymptotic lindSpf the point M will
describe a line of curvature ¢5’). As a result, Lie’'s transformation can make any
surface for which one knows how to determine the asymptotic dm@espond to
another surface for which one knows the lines of curvatureymedversa.

We studied that theorem with all of the necessary ldatabur course during 1881-
82, which had the geometric theory of partial differerg@lations for its objective. We
will be led to it later on by an indirect path. Howevil order to establish it with all
desirable breadth, we would be obliged to develop a thebcpntact here that would
take us far from our objective, and which we reservefmther occasion.

(% SOPHUS LIE, “Ueber Complexe, insbesondere Linien-Kmgel-Complexe, mit Anwendung auf
die Theorie partieller Differentialgleichungen,” Mathdisehen Annalerd (1871), 145-256.



CHAPTER VII

LINES OF CURVATURE IN TANGENTIAL COORDINATES.

Case in which the surface is defined by its tangential emuati Application to the surface of class four
that is normal to all positions of a invariable lirieree points of which describe three rectangular
planes. — Case in which the tangential coordinates aressqal as functions of two parameters. — First
solution to the problem that has the objective of detenm the surfaces that admit a spherical
representation that is given by their lines of curvatwrdevelopments on a particular system of
tangential coordinates that was employed by O. Bonnet istuidy of surfaces.

158. We shall now pass on to the examination of the casehich the surface is
defined by a certain property of its tangent planes, andinat suppose that one knows
the homogeneous equation:

(1) f(uv,w,p =0

that couples the coordinates of the tangent plane, iohwthe axes are rectangular. The
point of contact of the tangent plane will have therdomates:

_offou_oflav  __ of low

X= ’ y_ ’ Z= ’
of Iop of /op of /op

(2)

and the direction cosines of the normal will begandional tou, v, w. In order to obtain

the differential equation of the line of curvatuiteyill then suffice to apply equation (4)
of no. 138 which will give:

of ,of of , of
—d—-—d— u du
op du du 0p
ﬂdﬂ—ﬂdﬂ v dv| =0,
op ov dv adp
ﬂdi—idﬂ w dw
op ow Jdw adp
or, in a more symmetric form:
ot dﬂ u du
Ju du
g_f dg—f v dv
() a;/ a;/ =0.
— d— w dw
ow oJdw
LU
op 0dp
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It is important to remark that from the standpointapiplications the preceding
equation still keep its form even when equation (1) isharhogeneous, provided that
one supposes that v, w are equal to the direction cosines of the normdlthat they are
coupled by the equation:

W+ +w=1.

In order to prove this, suppose that equation (1) is noblgeneous. One can always
make it homogeneous and of degree zero — for exampleivioynd u, v, w, p by the

quantity:
h=Ju*+vV+w,
which is equal to unity. One must then repla‘?ée, ﬂ o with:
ou o0v ow

of [ofu  of dfv ot dtw
ou ohh’ ov ohh" ow odhh
in equation (3), which is equivalent to adding the last telarans of the determinant (3)

to the first two, after multiplying them by suitably-c®m coefficients and not changing
the value of the determinant.

159. For example, consider the surface of class fourishdgfined by the equation:

_au’+bv + cw

4) p 5 :

in whichu, v, w are the direction cosines of the normalpsdenotes the distance from
the origin to the tangent plane. Upon making tlg@agion homogeneous, for the
moment, and applying formulas (2), one will fincaththe coordinates of the point of
contact of the tangent plane have the values:

() x=P-9u, y=(P-bBv, z=(p-9w,

and those of a point on the normal that is situattetthe distancd from the foot of that
normal will be:

(6) X=p+A-2a)u, Y=(p+A-b)y, Z=p+A-c)w
The points where the normal cuts the three cootelipianes correspond to the values:
(7) A=a-p A=b-p A=c-p

whose differences are constants. One will thezadly have this elegant proposition:
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When three points of an invariable line describe three rectangular plaaresk,
consequently all of the other points describe ellipsoids, the linecanistantly remain
normal to a family of parallel surfaces that are represented by an equaitibe form:

®) ID:(a\+k)u2+(b+2k) V+(cr B v%/’

in which k denotes the constant that varies whenpasses from a surface to a parallel
one(®)).

One can, moreover, obtain one construction fromtp®f these surfaces very easily.
Look for the foot of the perpendicular to the northat is based at the coordinate origin.
The valued that corresponds to that point will be determibgdhe equation:

uxX+vY+wZ=0,
which will give:
A=p
upon applying formulas (6).

Let P be that point, and lé¥l be the point where the normal cuts tzplane, and
which will have the valud = a — g as we have seen. The midpoint of the segmdht
will obviously correspond to a value atthat is one-half the sum of the preceding values,
and as a result, equal &/ 2. Since that value is constant, the midpointhef segment
will describe a surface that is parallel to theposed one. Therefore:

If one considers all positions of the moving inaate line then the midpoint of the
segment that is defined by the point where that ¢uts one of the coordinate planes and
the foot of the perpendicular that is based atdhgin on the line will describe one of the
surfaces that are normal to the line in its variqusitions(*?).

We now propose to determine the lines of curvatirguation (3) takes the form:

u du adu
v dv bdvl =0
w dw cd

here, and its integral, which one finds easily)] @ defined by the equation:

u’ v W
+ + =0,
a-p b-p c—p

(Y G. DARBOUX, “Sur une nouvelle définition de la surfates ondes,” Comptes rendd (1881),
pp. 446.

(*» Mannheim recovered all of these results by the consideszof pure geometry in an article that was
included in Bulletin des Sciences mathematique® (2885), pp. 137.
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in whichr denotes the arbitrary constant. That result ispnéted as follows:

The spherical representation of two families of lines of curvatuthefsurface is
given by a homofocal system of spherical elligsgs

(** We would not like to insist upon that particular study, ardshall content ourselves here by stating
the following two propositions:

Consider the ellipsoi€E) that is defined by the equation:

The homographic transformation that is defined by the formulas:

x X
Jmarn m/a
2 x Y
@ Jmbrn ™ m/ b

z X
;}mmnzw_c’

in which m and n denote two arbitrary constants, makes the norm@ tmrrespond to those of the
ellipsoid (E;) that has the equation:

X? Y? z
+ +
ma+n mbt n me 1

n=nt I

=1

If one sets:

and if one keeps?Kixed, but increases m indefinitely, then the ellipg&g will be transformed into a
sphere of very large radius, and its normals will become invariahks,| three points of which will
describe the symmetry planeg(6f. Those lines are derived from the normalgEpby the homographic
transformation:

kz

kx kY -k
Ja' Y= b Je’

which is included in the first or@) as a limiting case, and will then be deduced when one introduces the
hypotheses that were made on m and n

The surface that is studied in the text can then bsidered to be a surface that is parallel to an ellipsoid
whose axes are infinitely long.

If an arbitrary surface enjoys the property that there existhomographic transformation that
transforms its normals into the normals to another surface and pess#re plane at infinity then the lines
of curvature of that surface can always be determined and will adsygtam of homofocal ellipsoids for a
spherical representation.
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160. Now, suppose that one is given an arbitrary surface aod<kthe expressions
for the tangential coordinates as functions of twapetersy, 5. The coordinates of the
point of contact of the tangent plane will satisfy (86). the three equations:

ux+vy+ wz+ p=0,
9) X—+y—+2z2—+—=0

ou ov _dw dp
+y—+ 7
o “oF oF 9B

A point that is situated on the normal at a distahdeom its foot will have the
coordinates:

(10) X=x+ 9 Y:y+ﬂ, 7=7+M
h h h

in whichh denotes the radical:

(11) h=JuW+V+w,.

Replacex, y, z in equations (9) with their expressions that one infiens formulas
(10); the equations thus-obtained, viz.:

uX+vY¥+ wz+ p= R,
(12) Xﬂ+Yﬂ+ Za_W+ﬂ): ﬂ]’
Joa Jda Jda OJda Joa
6u+Yav+Za_vv+ﬂJ:)lah

B B 0B o8 B’

will define the point considered on the normal. In ordefind the differential equation
for the lines of curvature, we will further write dowhet idea that there exists a
displacement for which the point that corresponds switably-chosen value of will
describe a curve that is tangent to the normal; cewhich we have:

(13) —=_—_—=—=dé8

into whichd@is introduced for homogeneity.
If one differentiates formulas (12) under those hypahéisen the first one will give:

udX+vdY+wdZ+ X du+Ydv+Zdw+dp=Adh+h di,
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or, upon taking into account the following two equati@isng with formulas (13):
(14) h?dd=h dj, dl=hdé.
The differentiation of the last two formulas in (32}l then lead us to the two equations:

Xdﬂ+Ydﬂ+ Zda—W+ d@:)l d—,
Jda Jda Ja Joa Ja
Xdﬂ+Ydﬂ+ Zda—W+ da—p h.
s s s s s

(15)

Finally, the elimination oK, Y, Z, A from equations (12) and (15) will give us the
desired equation in the form of the determinant:

y 9u ou ,ou ,ou
da 98 da B

poh oh ,oh ,oh
da 98 da B

161. That differential equation provides the greatest degremabgy with the one
that we defined (nol143 for the point-like coordinates, and the repetition loé t
arguments that were employed in nb43 144 will lead us to the following propositions:

Form the linear partial differential equation:

2 2 2
a7 a‘Z+Bae+C652+D—66+E%+F8:0,
Ja daopf s Ja s

which admits the five functions u, v, w, p, le@nd S as particular solutions. When one
has obtained them in an arbitrary manner, the cletedstics of that equation, which are
defined by the differential equation:

(18) AdB?’-BdadB+Cda?=0,

will be the lines of curvature of the surface. aAresult, if the coefficients A and C are
zero thena and S will be the parameters of the lines of curvature.



Chapter VII — Lines of curvature in tangential coordinates 209

That general proposition implies the following theo@sra consequence:

If one is given the equation:

2
9°d = A’%+ B’% +C6,
daopf Ja s

(19)

in which A, B, C are arbitrary functions ofo and 5, and one knows four particular
solutions u, v, w, h that are coupled by the relatti

(20) W+ +w = h?,
then the enveloping surface of the planes:
uX+vY+wzZ+ 8=0,

in which &denotes an arbitrary solution of equati@i®), will be referred to the system of
curvilinear coordinatega, p) that is defined by its lines of curvature.

Indeed, the linear equation of the form (17), which mus the satisfied by the five
guantitiesu, v, w, p, h that relate to that surface, will be equation (19), ankequently,
a andS will be the parameters of the lines of curvature.

We have shown (n@8) that if one has obtained an arbitrary conjugate sysiem
surface then the tangential coordinates, w, p, when considered to be functions of the
parametersy and S of the two conjugate families, must satisfy a linear ggnaof the
form (19). As one sees, the linear equation that sekatéhe conjugate system that is
defined by the lines of curvature is distinguished from alkhef other ones by the
property of admitting the solution:

h=u?+V+wW,
in addition.

462. The preceding theorems permit one to define veryyetsl partial differential
equation upon which one bases the search for surfacesadhat two families of
orthogonal curves that are chosen arbitrarily onsfiteere of radius 1 for their spherical
representation.

Indeed, leu, v, w, h be the homogeneous coordinates of a point on the spiteicd
are coupled by the equation:

P+ W=,

and which we suppose are expressed as functions of thengitaraa, [ of two
orthogonal families. An orthogonal system thatréeéd on the sphere is, by that fact
itself, a conjugate system, gpv, w, h will satisfy an equation of the form:
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2
0°¢ +A%+ B% +Cé=0,
daopf Ja os

(21)

which is an equation that is easy to obtain in an expleinner, since one knows four
particular solutions of it, namely, v, w, h. Having said that, since the tangent plane to
the surface is parallel to the tangent plane thatesponds to the sphere, it will be
represented by an equation of the form:

uxX+v¥+wZ+p=0,

in which p must satisfy the same linear equatiomag w — i.e., equation (21). In order
to solve the problem, it will then suffice to integratquation (21), and each particular
solution of that equation will give a particular solutiof the problem that was posed.

For example, suppose that one proposes to determiserfiaees that admit a system
of homofocal spherical ellipses for the sphericaresentation of their lines of curvature.
If o, ;1 denote the parameters of those ellipses then onbavi:

p2=@-n@-p) »_b-pb-p) ._(C-p)(c=p)
(a-b)(a-9 (b-a)(b-9 (c-a)(c-b
here.
The equation that, v, w must satisfy will be the following one:

9’6 06 06 _
+—+-—=
0pop, 0p  0p

(22) 2 0-p1) 0,

and it will suffice to integrate that equation irder to obtain the complete solution of the
proposed problem.
The surface that was studied in 2469 corresponds to the solution:

O=p+p.

We will have occasion to return to the generabjam for which we just pointed out
one solution.

163. Instead of pursuing those particular applicatioms shall now show how one
determines the principal radii and the lines ovvatmre when one adopts a special system
of tangential coordinates that was employed by ©Onrigét, along with some other
systems that are worthy of interest, in the bealutifiémoire sur 'emploi d'un nouveau
systéme de variables dans I'étude des propriétés sdeface courbes,” Journal de
Liouville (2) 5(1860), 153-266. Here is how one is led to chdbeevariables that were
considered by that eminent geometer.

When one studies the spherical representatiors, matural to seek the geometric
definition of the curves on the surface that adhmet various rectilinear generators of the
sphere for their spherical representation. d.&e the one of those generators that cuts
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the circle at infinity at a point. The curve that corresponds to it on the surface will
obviously be the locus of points of contact of the tahgdanes that are parallel ¢tb In
other words, that will be the curve of contact of tlmnec whose summit ig/ that
circumscribes the surface.

Those curves of contact of the circumscribed cones eviosimits are found on the
circle at infinity enjoy an important property in regardthe lines of curvature that we
shall point out. First, two of them pass through eachtpd of the surface, becauseAif
and B are the points where the tangent plandatuts the circle at infinity then the
circumscribed cones with summisandB will touch the surface along two curves that
pass througiM. The two tangents to those curves of contact wilkhthe generators of
those two cones for their conjugates; i.e., the twesIMA, MB of length zero in the
tangent plane. Now, those two ling®\, MB are placed symmetrically with respect to
the two arbitrary perpendicular tangents, and in padicwith respect to the directions
of the lines of curvature. The same thing will be truetfeir conjugates, which are
tangents to the two curves of contact. That imghesfollowing theorem:

The curves of contact of the circumscribed cones that have theintsuomnthe circle
of infinity determine a system of curvilinear coordinates on thitace that admit the
system of rectilinear generators of the sphere for their sphentadle. The tangents to
the two coordinate curves that pass through an arbitrary point of the suridcadmit
the directions of the lines of curvature for their bisectors.

Consequently, if one employs the coordinate systemwiieajust defined then the
equation for the lines of curvature can be convertedtih@simple form:

Ada?+CdB%=0,

and will no longer contain the termdiar dg.

164. Here is how one verifies that important resultiw@ys denote the direction
cosines of the normal at a poikt on the surface by, ¢, c’; ¢, ¢, ¢’ will be the
coordinates of the poimh that serves as the spherical representatidh. of

The expressions for those coordinates as functiortheofparametersr, S of the
rectilinear generators of the sphere have been giveaddi(nol15). They are:

(23) c=179F B . _atB
a-p a-pf a-pf

We write the equation of the tangent plane inftinn:

3

cX+Ccz+c'z+ =0,
a-p

or, more simply:
(24) Q-apx+i(l+apy+(@+pPz+x=0.
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One will then have:
u=1l-ap v=i(l+ap, w=a+p p=~¢

The application of formulas (9) first gives us tlm®inates of the point of contact.
One will then find:
o -9-Pp
X—iy=——,
y a-j
24 2
(25) x+iy:L’8p_f,
a-p
Ba-ap
a-p

Z=

in which p andq denote the first derivatives & Upon similarly calling the second
derivatives, s, t, equation (16) of the lines of curvature will bet

(26) dpdr—-dgdB=rda?-tdB?=0

here, and the general formulas (12) and (15), whe&lhus the center of principal
curvature and its corresponding radius, will gige u

(27) R=(s+rt) (@-H+p-q,
X —=iY = s+, 1t
(28) 2Z = (@ +p)(s+ 1)- p- g

X +iY =-ap(s+ M+a p+Ba-¢,

in which X, Y, Z, R denote the coordinates of the center and the saifigurvature, resp.
In all of these formulas, we have taken the Vﬂ'@ for g—’g in such a way tha{/ﬁ
a

replaces:
t%: rd_a_
da dg

165 The preceding formulas lend themselves to a hosttefesting applications,
due to their simplicity, as well as the choice afiables to which they refer. One can
give them another form that offers some advantagesrtain research.

We have taken the expressions (23) for the dorctosines of the normal. The
variables a, [ possess the great advantage of being transformeitheb same linear
substitution when one performs either a changexe$ ar a displacement of the surface.
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However, in certain applications where one is dealinily the determination of real
surfaces, the complex variablesand S will yield an inconvenient result, due to the fact
that they are conjugate imaginaries. We have seeffothay real pointg will have — 1

| B for its conjugate. We then changento — 1 /G in formulas (23), which will give the
following expressions for the direction cosines, whielre been employed already in no.
3L

(29)

c=Brta L _,B-a ._af-1
1+ap’ 1+apB’ 1+apB’

and we take the equation of the tangent plane:to be

(30) @+Px+i(B-a)y+(@B-1)z+<=0;

& will now be a real variable, ang, S will be conjugate imaginary variables whenever
the surface is real, and one will be dealing wéhl tangent planes.

The coordinates of the point of contact of thegtam plane will now have the
expressions:

,=$~Pa-aBs
1+aB
_iy=_BE-pa-apb) _
(31) x—ly 1+ ap P,
o __a(l-pa-aB) _
X+ly= 1+ap o]

The differential equation of the lines of curvawill be:

(32) dp do—dq B=rda?-tdB?=0,
as in the preceding case.
Finally, the formulas that exhibit the center aadius of curvature will become:

2R=¢- pr- g8+ (L+aB)(sty/ 1),
2Z =&~ pa - B+ (1-aB)(st4 1),
X =iY == p+ (st ),
X+iY =- q+a(s+\/7t).

(33)

In that form, one recognizes immediately that bas essentially real expressions for
XY, Z R
Moreover, one passes from the first system of dasto the second one by making
the very simple substitution:
1 &
(34) B=-—, $=—.
B
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Finally, one will likewise obtain the differentiadjeation for the asymptotic lines with
no difficulty, which will be:

(35) (1 +aP) (rda’+ 2 dxdB+tdB? + 2da dB(f-pa—qb) =0,
and the expression for the linear element:
(36) ds’ = (z do + do) (z dB+ dp),

which is thus presented as being decomposed into its twargact

166. From the standpoint of ultimate applications, it wvdoubt be pointless to
examine what the coordinatesf, & will become when one changes the coordinate axes,
or — what amounts to the same thing — when one displaeesitface. First consider the
original system, in which the equation of the tangemepla:

(L-ap X+i(L+ap Y+ (@+BZ+E=0.

When one imparts a translation with componehtg, v on the surface, one must
replaceX, Y, Zwith X —A, Y —u, Z — vin the preceding equation; the new valdésf ¢
will then be:

(37) §'={-AQ-ap-iu(l+ap)—(a+pv.

Now, imagine that one turns the surface around thénooigthe coordinates. If we
remark that, from their definitiony and are the symmetric coordinates of the pomt
which serves as the spherical representation of tigetd plane on the sphere of radius 1
then it will result from some propositions that weeyeloped above (Book I, Chap. IlI)
that the new valueg&;, £ of the coordinates, S will be obtained by the same linear
substitution that was performed arandfS. One will have:

_ma+n _mB+n

(38) a , .
pa; +q pB +q

Denote the new value @ by ¢ Since the distance from the origin to the tangent
plane will not change, one will have:

(39) b5
a; _:81 a-p

or, upon replacingr, S with their values:

(40) — Qtl(mq_ np)

 (pa,+o)(pB+ 9
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The proposed question is then resolved completelyaiasd the first system of
coordinates is concerned.

167. Upon reusing the same method for the second one, in whectangent plane
has the equation:

Xa@+p+iYB-a)+Z(af-1) +=0,

or, upon passing from the first system to the secondypmiee substitution (34), one will
see that a translatiod, (¢, v) of the surface will give the new value fér

(41) G=¢-Ala+p—-iuB-a)—-v(as-1).

Similarly, a rotation around the coordinate origin wéldefined by the formulas:

(42) a= M, L= p_qﬁl ,
pa,+q ng —m
(43) &= gtl(mq_ np)

~ (m-nB)(pa,+ 9’

in which a1, A1, & denotes the new coordinates. If the rotatiore# then one can take
(no. 29):

q=mo, Pp=-To,

in whichm, , np denote the conjugate imaginariesmtcandn. The preceding equations
will then give:

__matn s mAtn =g
(44) a —nya,+m,’ b -nB+m’ d gtl(m_nﬁl)(nB_ na,)

These formulas will be useful to us in the theafryninimal surfaces.



CHAPTER VIlI

VARIOUS APPLICATIONS

Applications of the formulas that relate to the linewfvature that were given in the preceding chapter. —
Lie’s transformation when the lines of curvature cluaface correspond to the asymptotic lines of the
transform. — Transformation by reciprocal directicafelations between the elements that correspond
under that transformation. — Inversion in the systenoofdinates &, S, ¢).

168. We need to exhibit some applications of the systehfermulas that were
developed in the preceding chapter. We shall now studfotlesving ones, and since
we will be doing research of a general nature, we shefépto employ the first system
of formulas that were studied in nd$4 and166

We first remark that the differential equation (26) [pp. 2ifZhe lines of curvature is
identical to the differential equation for asymptotic linleat was given in ndl10. That
implies a first result:

One can make any surface whose asymptotic lines one knows correspaulifacea
for which one knows how to determine the lines of curvature, andesisa(**).

We have already pointed out (rih?) that beautiful proposition, which is due to Lie.
Here, we shall be content to remark that in equa3®) [pp. 125] for the asymptotic
lines, a and S denote real quantities for any real point of the surfadele o and S5 are
complex variables for the lines of curvature, and eeerafreal point. Consequently, the
correspondence that is defined by the preceding proposdiomot exist between the real
elements of two real surfaces.

(% A comparison of the formulas that were given in rid and 161 will lead us to the following
result: Letx, y, zdenote the coordinates of a point on the surface ischnone knows the asymptotic lines,
and letp andg be the derivatives &f when they are considered to be functions ahdy. LetX, Y, Z, P,

Q be the analogous quantities that relate to the transtbsurface whose lines of curvature correspond to
the asymptotic lines of the first one. One will have

X+iY = -z — xPXE W p-ax1
q-x '’ x+q’
X-iy=P*Y, Q=-it¥,
g-X X+C|
S Pxray
q-x

Moreover, the theory of contact transformations permone to deduce all of these formulas from the
relations:
X+i¥Y=-z-xZ XX=iY)=Z-y

which contain only the coordinates of the corresponding @oint
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169. We now imagine the differential equation of the linésurvature:
(1) dp do— dq B=rda?-tdB*=0.

It possesses numerous properties that all give rigeetoéms in geometry.
First of all, it does not change form when one regdd with the new variable:

) E=E+AaB+Ba+CLp+D

in whichA, B, C, D denote arbitrary constants.
We propose to define that transformation geometrically.
One can obviously obtain it by composing the following:tw

F=¢+A(a+pP +CapB+D,
'=¢é+h(a-pP .

As one easily recognizes, the first of them is edenato a transformation of the
origin of the coordinates; the second one replacesutface with a parallel surface that
is drawn at a distandefrom the first one. Indeed, one knows that the lmesurvature
correspond to each other on two parallel surfaces. s, Tthe first property of the
differential equation for the lines of curvature thatsprés itself to us is only the
analytical translation of an important, but well-kng geometric proposition.

170. The most general displacement of the proposed sutfacslates into an
arbitrary linear substitution that is performed anand 5. That will lead us to the
following general proposition, which one can verify with difficulty:

The differential equatiofil) again preserves its form when one replace®, and ¢
with the variablesa’, B, and &, which are defined by one or the other of the
substitutions:

—_ Aa'+B — Aﬁ’-f-Bl 7 — 7 ’

(3) a—m, ﬁ—m, ¢'=H¢(Ca’+D) (C. B+ D),
— Aﬁ’+B — Aa’+Bl 7 — 7 ’

(4) a_—C,B’+D’ 'B_—Cla"+D1’ ¢'=H{(CB’+D) (Cia’+ Dy,

where A Ay, ..., H denote arbitrary constants.

Consequently, formulas (3) or (4) exhibit a transforomabf surfaces that preserves
the lines of curvature. We shall leave to the readertfdsk of proving that the
transformation (when it is real) can always be mieth by the combined use of a
displacement, a homothetic transformation, and ¢llewiing one, which can seem very
specialized at first:
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If k denotes an arbitrary constant then take:
5) a'="——Pp, B=—a, & =&

Those formulas make the plai® (hat is defined by the equation:
Q-apX+i(Q+apY+(@+PZ+<E=0
correspond to another plarf@)that has the equation:

) 1+k 1-k
1-apX+i1(l+afY+|—pB+——a | Z+E=0.
(1-afX+i(1+ap [H/f e } ¢

We have already seen that two corresponding plasiestersect in a fixed plane,
namely, thexy-plane. Here is how one can succeed in definiagrdmsformation:

Associate the pland?) of the first figure with the pointn whose coordinates are the
direction cosines of the normal to the plane:

1-ap
a-p

1+ap o= a+p
a-0"’ a-£

c= , C =i

That point is found on the sphere of radius 1, iitide planes®) envelop a surface
(2) then that point will be the spherical represeatadf the point of contact o) and

().

Similarly, associate the plane') with the pointmi whose coordinates are:

1_arﬁr I 1+arﬁr ar+ﬁr
ar_ﬁr’ ar_ﬁr’ ar_ﬁr’

and whose relationship t¢#'] is the same as that ofto (P). As one verifies with no

difficulty, formulas (5) express the idea that gwentsm, m' are in a straight line with a
fixed point that is situated at the distarlcalong thez-axis. The complete geometric
definition of the transformation will result frorhdt.

Let(2), (') be two corresponding surfaces. The tangent plemése corresponding
points intersect in a fixed plar(€l). The spherical images of the corresponding points
on the sphere of radiusthat is located in space in an arbitrary manner amgerse to
each other with respect to a fixed point A thasitsated on the diameter of the sphere
that is perpendicular to the plari8).

That proposition obviously permits one to condttangent planes t&() when one
knows those ofY). As far as the points of contact are concermedadd the following
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remark, which one can verify, but which will also régtdm some propositions that will
be established later on:

The line that connects the two corresponding points of contact is paratlet tone
that links the spherical images of those two points.

The relationships between corresponding elements teatust pointed out are
obviously reciprocal, and consequently the transformasiamvolutive. That property is
almost like inversion. For that reason, Laguerre, wd® dtudied it in detail, gave it the
name ofthe transformation by reciprocal directiof¥), which we shall adopt in what
follows. However, the preceding construction gives te another essential remark: The
transformation is notsingle-valued and in general it will make one surfacg) (
correspond to two surface&'), or rather, two different sheets of the same surface
Indeed, if one considers a region of the surfagef@r which the sense of the normal is
perfectly defined then each point of that region will haspherical representation that is
determined completely by the sense of the normal, and@dhstruction that was shown
above will exhibit the tangent plane to the correspogdiurface with no ambiguity.
However, that construction will obviously give differeglements if one changes the
sense of the normal at all points @).( Moreover, the following formulas, which are
equivalent to the relations (5), will show that:

Let:

ux+ vy+ wz+ p=0,
ux+vy+wz+p =0

be the equation of two corresponding planes. Denotatheals:

+ JUPHV+ W, £ JUPHVE+W?

by h andh’, to abbreviate.
If we set:

u=1-aB8 v =i(l+ap, w=a+B p
u=1l-ap, Vv =i(l+ap), w=a'+p, p=¢ hW=a-p

then formulas (5) will give us:

1+k
u' =u, W+ H=——+(w b,
1_k( h
1-k
6 V' =, wW—-H=—(w+ h.
(6) (Wb
p'=p

(**) LAGUERRE, “Sur la transformation par directionsipéeques,” Comptes rend@€ (1881), pp. 71.
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The presence of the radidaindeed shows that a given plane will correspond to two
different planes, which will be impossible to sepagatalytically as long as the variable
h is not a perfect square.

171. Since the preceding transformation preserves linesuofature, it will
necessarily make a sphere correspond to a sphere.vebfies that proposition in the
following manner.

The tangential equation for a sphere whose radilR, @ind whose center has the
coordinates, y, zis:

(7) ux+vy+wz+p=RNh

in which h has the significance that it was given before, beedhat equation expresses
the idea that the distance from the center to thgetanplane is constant. In order to
obtain the corresponding surface, perform the substitthat is defined by formulas (6).

We will obtain the equation:

1+k 1-k z
'X+Vy+|—W-h)+—(W+H) | -+
ey [1—k( ) 1+k( )} 2 P

= E [ﬂ((v\/—h’)_l;k(w.p H)},
211-k 1+ k

or, upon rearranging terms and dropping the primes:

1+k? 2kR) . [2kR 1+FK
ux+vy+ > Z— > |w=h >~ ——R|[.
1-k 1-k 1-k= 1-k

That equation, which has the same form as equéfiprrepresents a sphere whose
center K, Yy, Z) and radiuR are defined by the formulas:

L _1+k* _ 2kR
X =X = > Vi >
(8) 1-k*  1-k
L _2kR 1+ K R
y=y 1-k* 1-K?

which also give:
Z' + R :%( 7— R,
1-k
9)
zZ- R’——l_k(z+ R
1+k ’

and consequently:
X2+y2+722_R?=+y +Z-FR.
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It follows from this that a spher&)(of the first figure, which is represented by the
point-like equation:

X2+Y24Z22-XY-YY-2Z2+X+y+Z-R =0,

will correspond to a spher&() of the second one that has the equation:

2 —
X2+Y2+ZZ—Z<Y—2)/Y—2{W1 Z+X+y+Z-R=0.

One sees that the two spher8sgnd §’) intersect thexy-plane- i.e., the planelq)
of the transformation — along the same circle.

LetV, V’denote the angles that the two spheres make with the plg, and which
are defined by the formulas:

I

cosV==,  cosV'= %
R R

Formulas (9) give us the relation:

1+cos/' _ (1+ ka 1- cosV'
1-cos/’ 1-k ) 1+ cosV’

between those angles, which one can convert intsithyle form:
(10) tan—tan—= —-.

Suppose that one of the two angles is constant, seathe thing will be true for the
other. That will yield a new method of determining sheface ¥) that corresponds to a
surface £'):

Construct the spherd$) that are tangent t¢Z) and cut the plané) at a constant
angle a. Pass a spherés’) through the intersection of each sph€8 and the plane
() that cuts(M) at a given angleS. The envelope of the sphers ) will give the
surface(Z') that corresponds t@>).

A sphere of radius zero must be considered to belatectits an arbitrary plane or
sphere at amfinite angle. The preceding construction will then contai following
one as a special case:
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Construct the spherd$) that are tangent t¢Z) and cut the plangll) at a constant
angle a1 (*®. The spheres of radius zero that pass through the intersection of each
sphere(S) and the plangl) will describe a surfac€X') that corresponds t@X) with
preservation of the lines of curvature.

Even before the recent studies on transformaticatspiieserve the lines of curvature,
and in an era when one did not know that those tremsttoons included the inversion
and dilatation by which one passes from one surface to a parallelcgyrfa. Bonnet
exhibited a transformation that is included in the precednag,0and which corresponds
to the particular case in which the angieis a right angle®().

However, if one employs spheres then one can ohtgaometric construction of the
transformation that is even simpler. Indeed, form@&sshow us that a sphere will
coincide with its transform whenever one has:

1+k
z+R=—-—(z-
1_k( R
or
z 1
11 Z=-=
(11) i
From that:

If one considers all spheréS) that are tangent to a surfa¢&) and cut the plan@1)
at a constant angle whose cosine is equdl tk then they, along witkX), will envelop
the surface(Z') that is homologous t¢X) under the transformation that is considered

(38).

172. The last proposition that we just stated permitsougite a simple geometric
definition of the most general transformation thag obtains if one subjects a figure and
its transform to the same inversion. For all sphénes cut the pland) at a constant
angle, the inversion will, in fact, make spheres ongdacorrespond when the cut a fixed
sphere § at a constant and equal angle. Hence:

If one constructs all spheres that are tangent to a surfAgr@and cut a fixed sphere
(S at a constant angle then they, along wi{#h), will envelop a surfacgA’) that
corresponds t@A) with preservation of the lines of curvature.

(*® In order to obtain the angha, it will suffice to set tarV’/ 2 =+ i in formula (10). One will then
have:
ﬂ =+ E
tan > Tt

(") O. BONNET, “Note sur un genre particulier de surfacesproques,” Comptes rend4g (1856),
pp. 485.

(¥ If the constank is smaller than unity then the spherSswill not cut the planel), but the ratia /
R will always be constant. Fig. 12 is drawn on thedatthat hypothesis.
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If the sphered reduces to a plané€lj then one will recover the transformation by
reciprocal directions.

It would not be pointless to prove that preceding propositioa manner that is
entirely elementary. In the first case, we shallmie the case in which the constant
angle is a right angle.

Consider all of the sphered)(that have their center on a surfakg #nd cut a sphere
(9 of radiusR at a right angle. Since the cen@pf (S has the constant powBf with
respect to all spherebl), the radical axes of three arbitrary sphekés and in turn, the
chord of contact of each sphere with its envelope, pass through the poi@. The
following construction of the envelope will result fromst

The two points of contact of the sphéth whose center is M with its envelope are
found at the intersection of that sphere and the perpendicular that is batesl Gnter
O of (S on the tangent plane at M to the surface that is the locus of céhjers

Let i, u’ be those two points, which are located symmetricalty wespect to the
tangent plane taX). One will obviously have:

ouloy =R,

in whichR denotes the radius d$)( and consequently the two sheets of the envelope will
be inverse to each other with respect to the gaint

Moutard gave the name ahallagmatic(*®) to the surfaces that do not change when
one subjects them to a well-defined inversion. The tveetshof the preceding envelope
will then constitute a surface that is anallagmatithwespect to the pol®, and
conversely, it is easy to show that any anallagmstidace can be obtained by the
preceding manner of generation. Furthermore, sincéwbesheets of the envelope are
inverses to each other, the lines of curvature thatraoed on those two sheets will
correspond to each other.

We now study the general case in which the variable epl{g) cut the fixed sphere
(S at a constant angle that is not a right angle. bafgin by establishing the following
lemma:

If two variable spheregU) cut the same fixed sphef®) at a constant angle that is
not equal to zero orrthen one can always transform them into sph@d€9 that cut a
fixed sphergS”) that is concentric tdS) at a right angle by adding a constant to their
radii.

Indeed, leto and R be the radii of the sphereb)(and §), let d be the distance
between their centers, and ktbe the constant angle at which they intersect. Qhe w
have:

(*% MOUTARD, “Note sur la transformation par rayons tees réciproques,” Nouvelles Annales de
Mathématiques (23 (1864), pp. 306.

“Sur les surfaces anallagmatiques du quatriéme orithid,”3 (1864), pp. 536.

“Lignes de courbure d’'une classe de surfaces du quatriding"dComptes rendus9 (1864), pp. 243.
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d? = p? +R? - 2R cosa
or also:
d? = (o-Rcosa)P? +Rsif a.

As a result, if one adds the constant quantiR/eosa to the radiug of (U), which
will give a concentric sphere&J('), then that sphereJ(") will cut the fixed sphereS")
that is concentric toS) and has a radius & sin a at a right angle.

Having established that lemma, if we imagine all ofgieeres\) that depend upon
two parameters and cuf)(at a given angle then they will envelop a surface with
sheetsA), (A’). The concentric sphered (), which cut the spheré&() at a right angle,
envelop a surface with two sheeBy,((B”) that are parallel toA), (A”), respectively, and
since the lines of curvature correspond on the two shBgtés("), which are inverse to
each other with respect to the common center offideel spheresy), (S’), the same
thing will be true as far as the two shee &nd @A’) are concerned. The proposition
that we have in mind is then found to be established ligduerality.

Subject the preceding figure to an inversion whose pola ith® sphereS). That
sphere will be transformed into a plard@), while the two sheetsA}, (A") will be
transformed into two sheet€), (C’) that are the common envelope of a family of
spheres”) that are the transforms of the sphetgsdnd consequently cut the plamé) (
at a constant angle. In other words, the shé&gtarfd C’) are deduced from each other
by means of the most general transformation by recipoiieadtions. Now, one can pass
from (C) to (C’) by performing the following transformations:

1. Aninversion that transform€) into (A).

2. A dilatation that transformg\) into (B).

3. An inversion that transformB)into (B”).

4. A dilatation that transform8() into (A').

5. A final inversion that transform#’] into (C’).

That result conforms to a general proposition of ', from which all of the contact
transformations that preserve the lines of curvaturkebsiconverted into inversions and
dilatations.

(*9 Lie exhibited all of the contact transformationttpeeserve the lines of curvature in the paper that
was cited above, which was included in Bd. V of MathemaéisAnnalen. He even pointed out (pp. 186)
the particular case of the transformation by recigrde&ctions, but that transformation had been given
before in various papers by Ribaucour. In particldee RIBAUCOUR, “Note sur la déformation des
surfaces,” Comptes rendu8 (1870), pp. 332.

In a different form, it was the subject of some stsidig the author that were published in Notes V and
IX of the “Mémoire sur une classe remarquable de @suelb de surfaces algébriques,” (1873).

The general transformations that were considered binlhies paper can be defined in an elegant manner
if one employs the six coordinates of the sphere tleatedated by the equation:
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173. We return to the results that we obtained in regardwio spheres that
correspond under a transformation by reciprocal direstio That will permit us to
complete the preceding constructions and to exhibit speve relations between the
corresponding elements.

(V)

s S H (M)

Ql

Figure 12.

Consider a surface] in the first figure and take the plane of picture (Aig) to be
the plane that is drawn through an arbitrary pdnof that surface that is perpendicular
to both the pland) of the transformation and the tangent plane&joa( M. LetMC be
the trace of the latter plane. If we construct {higese U) that is tangent tox) atM and
cuts the planel{) at a constant angle whose cosine iskitiien we will know that it,
along with &), will envelop the surface() that corresponds t&). LetM’be the point
of contact with £'). The tangent plane t&'j atM’ and the tangent plane ta)(atM
must cut the pland) along the same line, so the poMmt will be in the plane of the
picture, and one will obtain it by drawing the second tah¢e the circles along which
the spherel) cuts the plane of figure from the po@twhere the lindiC meets the
plane (1). It follows from this that the circle that is debed with the pointC as its
center and a radius &M will pass through the poiri1” and cut the surface&) (')
normally atM andM’, resp. Thus:

If one constructs all of the circles that are normal to b@hand the planglT) then
the surfacgZ’) will cut each of those circles at a right angle.

and were defined in nd56 In order to obtain them, it will suffice to makehere with coordinates
correspond to a new sphere whose coordinatesire deduced from the preceding ones by an orthogonal
linear substitution with constant coefficients.
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Furthermore, since the two tangent planéM, CM’ correspond under the
transformation, one can apply formula (10) to them,cWwhivas established for two
arbitrary corresponding spheres, and if one\led¢’ denote the angles between those two
planes and the planél) then one will have:

1-k
1+

V. V'
tan — tan—=
2 2

=~

If one takes the senses of the normals to the tamwegl into account then one will
have:

V=MCS, V/'=M'CS=r
and consequently:

M'CS_k+1. _MCS
tan .

tan =
2 k-1 2

That equation, which defines the pdiht when one knows the poiM, expresses the
idea that the anharmonic ratio that is definedhendircle by the four point®l;, M, S S’

. + . . L
is constant and equal tlé—:lL One then obtains the following theorem, whiclklu to

Ribaucour, and which is included as a special gasegeneral proposition to which we
shall return:

If one is given a surfagg) then one can construct all circles that are norimaboth
the surface and a fixed plaif@). Those circles are normal to a family of surfa¢g9
that are defined in the following manner: For eawftthem, the anharmonic ratio of the
point where it cuts each circle normal (&) and three other points where that same
circle is cut by(Z) and(IT) is a constant number. The surfa¢gY are the ones that are
derived from(Z) under the various transformations by reciprocaleditions that admit
the same planél).

One can further point out some other geometriatiols. If one drops a
perpendiculaPR from the centeP of the sphere that envelops bol) é&nd &') onto the
plane (1) then it will cut the circle at a poi@ that describes a surface that is normal to
the circle, which is easy to prove. Indeed, tmgémt atQ and the lineMIM’ cut the axis
SS at the same poirttl, so by virtue of a proposition of elementary getsgyeone will
have:

MCS . M'CS
n tan 5

tart 5= 1

or, upon taking into account the formula that wizeig above:

t

QCS_ [k+1. MCS
an = tan .
2 k-1 2
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Since the anharmonic ratio of the poi@sM, S, S’is constant, by virtue of that equation,
the surface that is described by the p@mill, in fact, be normal to the circle, and it will
correspond toX) with preservation of the lines of curvature. Moregwese will have:

MP* =MQ xMQ’= PR - RQ,

or, upon remarking thalP, PR are coupled by equation (11):

RQ=PR./1-Kk>.

One will then have the surface that is the locuthefpointsQ by reducing the ordinates
that are perpendicular to the plam®) (©f the surface that is the locus of the polatsy

the ratio of,/1-k* to 1. That implies the following theorem:

If one considers all spher€ll) whose centers describe a surfg&and cut a plane
(1) at a constant angle whose cosine is equal tdk then they will envelop a surface
with two sheet$X), (') whose lines of curvature will correspond point-kyir with
those of the surfac€S’) that is obtained by reducing the ordinates (8f that are

perpendicular to the plangl) by the ratio of,/ 1-k” to 1.

For example, if the surfac&)(has degree two then that theorem will permit tsme
immediately determine the lines of curvature of tive sheets), (¥'). Indeed, they
correspond to the lines of curvature of the sur{&#% which will have degree two here.

174. We shall now try to find what the formulas thalate to the transformation by

reciprocal radius vectors will become when we empih@ coordinate systen(f, §).
Let:

k2

X . S
X +y+ 7

Y_Z._
X y z

be the formulas for the transformation. The plane:

(12) uxX+vY+wZ+p=0
will correspond to the sphere:

ux+ vy + wz + k—pz(x2+y2+22) =0.

We seek the tangential equation of that sphere. the condition for the plane:

uUx+vy+wz+p =0
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to be tangent to it. An application of some elemgmtaethods will lead us to the desired
equation:

—2@+uu FW HWW £ U2+ WA UP+ VP WP =0,
Kk

Introduce the coordinat&s a, £, in place olu, v, w, p, and&’, a’, £, in place olu', V',
W, p'. The preceding equation will take the form:

L~ 2ap+ 20 - @+ Pla'+ B) £ (@ la'-§) =0,

Upon successively taking the + and — sign, we will getwo equations:

(13) &'=-1 (a-a")(B-p),
(14) &'=-K (B-a')a-p),

resp., which will realize the doubling of the inversion, way. These formulas will be
converted into each other when one exchargesd S, and that exchange will modify
nothing in the equation of a plane in the system3 ). We can then confine ourselves
to just one of the two equations; we choose formula (13).

When the plane that is defined by equation (12) envelapsface E), & will be a
given function ofa andg, and the sphere that is defined by equation (18),i5", " will
envelop the surface() that corresponds t&). In order to have the point (or rather, the
plane) of contact of that sphere with its envelope wmust apply the general principles
of the theory of envelopes and combine equation (13) wsthiwo derivatives with
respect tax and g, in which £ is considered to be a function @fandf. Upon lettingp
andq denote the first derivatives éf one will then find the system:

& =—K*(a-a)(B-B),
(15) pé =-K(B-B),
o =-K(a-a"),

which determinesr’, 5, £’ as functions ofr andf.
If one now differentiates the first equation irb{1while taking the other two into
account, then one will find that:

£d& =13 (B-p) da’+ K (a-a’) dp:

Upon lettingp’, g'denote the derivatives &f with respect taa’, £, one will then
have:

(16) { £ =K(B=F),
éq =k'(a-a).
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Formulas (15), (16) define all of the relations betweamesponding elements of the
two surfaces. They provide the following table:

f’:—ﬁ, p’:L, i’:_i’
pq q ¢ p
(17) a’:a_i, q':k_z, i:—i’
p p q q
ﬁ':ﬁ—i,
p

so one will deduce, by an easy calculation, that:

2

dp da—dd dg’'=- %(dp dr— dq ).

That theorem once more establishes that inversioenesslines of curvature.

It is important to establish carefully what distingustermulas (13) and (14) from
the geometric standpoint. The equation of the tangameplvill not change when one
exchangesr and 5, and consequently one will always have the same surtf@eeever,
the positive sense of each normal will obviously changEhat results from the
expressions:

_1-ap ,_i1+a,3 C,,:a+,3

a-8" a-0£’ a-

for the direction cosines of the normal. Consetjyeformulas (13) or (14), which are
deduced from each other by the exchange ahd g, will make a surface3() correspond
to the same surfac&'(, but with a definite sense of a normal to thefaste, while E)
will correspond to the opposite sense of the notmahe surface), depending upon
whether one adopted formula (13) or (14), respebtivin order to characterize each of
those formulas from the geometric viewpoint, ithillen suffice to give the relationship
between the positive senses of the two normalsgiwborrespond by formula (13), for
example. In order to do that, consider two homoleg surfaces), (') and two
corresponding point$1, M’ on those two surfaces. A point d)(that describes an
infinitely-small curve around/ in a well-defined sense will correspond to thenpaif
(') that likewise turns arountll“in a well-defined sense. Attribute a sense totive
normals such that the two curves seem to be treders opposite senses around their
respective normals. One will then have the cooedpnce between the senses of the
normals that is defined by formula (13) and thesaihat we have deduced from it.

In order to prove that, it will suffice to considthe sphere) of radiusR whose
center is at the coordinate origin, and whose equiad:

=R (a-p.

Formulas (17) give us:
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B'=a, a’=p 5':—3(0'—[7")

for the corresponding sphere.

The first two formulas show that the positive gen$the normal is found to change,
and the preceding proposition will be verified in that splecase. That will suffice,
because if one progressively deforms the sph8ran(such a manner as to make it
coincide with an arbitrary surfac&)(then the proposition that was established for the
sphere § must necessarily be preserved for the surfagéy virtue of continuity.



