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BOOK V

LINESTRACED ON SURFACES

CHAPTER|

GENERAL FORMULAS.

Definition of a tri-rectangular trihedro) that is linked to each element of the surface. — Appbo of
the formulas that were given in Book | in regard to peoameter displacements. — Systems of
formulas @) and B8) — Conjugate directions. — Asymptotic lines. — Lineswfature. Equations of the
radii of principal curvature. — Kinematic property oétlines of curvature. — Formulas that relate to an
arbitrary curve that is traced on a surface. — Meusntbeorem. — Normal curvature. Geodesic
curvature. — Third-order elements. — Formulas of O. Boané Laguerre. — Osculating sphere.

484. We now propose to recall the study of surfaces by @bimgeit directly with
the developments that were given in Book |I. We fpstsent various systems of
formulas, among which, we find those of Codazzi.

Consider an arbitrary surface. One can link the studhaifsurface to the study of
the motion of a moving system by operating in the foligunanner:

Let M denote a point on the surface, and construct a trismgetar trihedron T)
whose summit is d¥l and whosez-axis is the normal dl; thex andy axes will be, in
turn, situated in the tangent plane to the surface. erarss will be determined perfectly
when one knows the angle between xkexis and one of the coordinate lines for each
position of the poinM; for example, the-axis and the tangent to the cuwe const.
Without saying anything more precise in regard to their positin the tangent plane, for
the moment, we shall show how the properties of théase and the curves that are
traced on it can be deduced from the study of the mofitime trihedronT).

We first remark that if one preserves all the notetiof Chapter VII [I, pp. 61] then
that motion will be characterized by the equations:

¢{=0, a=0,
which express the idea that the surface that is destchip the summit of the trihedron is

tangent to they-plane.
The formulas in Book I [I, pp. 43 and 61] will then give thkkowing system:
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op _op 0& 0& _
——-—==q-rq,, ——-—==nr,-rn,
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and it will obviously result from the propositiotigat were established in Book | that:

Any system of values for the quantities.p ¢, ... that satisfies these equations will
correspond to a perfectly-determined motion, anaseguently just one surface.

If a point has the coordinat&sy, z when it is referred to the trihedrom)(then upon
applying formulas (4) [l, pp. 60], one will get:

dx+&du+é dw(gdu g dv 2( rda ,rdv,)
(B) dy+ndu+n, dw(rdut ydy x( pda padv,
dz +(pdut pdy y( qde ,q9v

for the projections of its displacement onto thesaaf the moving trihedron wherandv
take on the incrementhkl anddv.

485. In particular, consider the proposed surfacectviis traversed by the origin of
the moving trihedron. Ifls denotes the differential of the arc length of theve that is
described by that origin, an@is the angle that the tangent to that curve makéssthe
x-axis of the moving trihedron then one will have:

1) dscosw=&édu+ & dy, dssinw=ndu+ g dv.

These formulas exhibit the line element of thefam@, which will have the
expression:
(2 ds = (du+ & dv)® + (77 du+ 71 dv)*.

Imagine that one draws lines parallel to the afethe trihedronT) through a fixed
point O in space. One then defines a trihedrds) (vhose rotations will be the same as
those of the trinedronl}. If one considers the poim at a distance 1 on theaxis of
that trinedron then it will describe a sphe$p ¢f radius 1. It will obviously be the point
that corresponds tM when one performs the spherical representatiotheforoposed
surface on the spherg)(according to the rule that we have described.

Furthermore, if we apply formulas (4) [I, pp. 4@hich relate to the displacement of
a trihedron that has a fixed point, then we wiildfthe following values:

g du+ q; dv, —p du—py dv, 0
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for the projections of the displacement of the pamrdnto the axes of the trihedrofy),
or — what amounts to the same thing — onto those ofitieglton 7).

As a result, if we letlo denote the arc length of the curve that is describethdoy
pointm and letd denote the angle that the arc makes withxth&is of the trihedronT)
then we will have:

3) docosé@=q du+q; dv, dosin 8=- (p du+ p; dv).

The line element of the sphere on which one perfatmsrepresentation of the
surface will then have the value:

(4) ds’ = (p du+ p; dv)® + (q du+ gu dv)*.
Finally, the anglew — 8 between a curve that is traced on a surface andhtsispl
representation will be determined by one or the othdreofwo equations:

5) { dosin(w-6)= (pdu+ pdycosw+ (qdu gdysirw

docosw-6)= (@du+ qdv)cosv— (pdu p dysimv

These formulas will be very useful to us. We shallv answer some of the most
important questions that present themselves in the apiphs.

486. We first propose to establish the relation that reust between two conjugate
tangents. If the poinM of the surface describes a curve then one will obtiaén
conjugate of the tangent to that curve by taking thesatgion of the tangent planeMt
with the tangent plane at an infinitely-close pointtbé curve; in other words, the
conjugate is the characteristic of the tangent planeruhdemotion of the trihedron. It is
the locus of points in that plane whose velocity rected in that plane. FormulaB)(
give the components of that velocity. If one writlesvn the idea that the component that
relates tavizis zero then one will obtain the equation:

(P dutpidvy)y—(@Qdu+qgidv) x=0,
which represents the conjugate tangent. dfetenote the angle that it makes with xhe
axis of the trihedronT)). x andy will be proportional to cosv, sin ), and the preceding

equation will become:
(6) o du+pidv) sinw' — (Q du+ q; dv) cosw = 0.

Let o0 denote the differentials that relate to a displacgnsong the conjugate
direction. One will have:

oscosw =E&dut & v, osssinw' =ndu+ g ov.
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Upon substituting those values for sir) cosw' in the equation that we just found,
we will find:

@ { (p7-qé)dudut+( p7,— &) dv v

+(p,71_q§(1) dU5V+( R - qE)J udw 0.

That relation is, as was to be expected, perfectlynstmc with respect to the
differentialsd, J, because the coefficients dfi v and &u dv are equal by virtue of the
last of formulas A&). It follows from this that relation (6) can alse lritten in the
following form:

(6" (pAu+pdv)sinw—(QdAu+aq ov) cosw=0.

One can then establish a relation between two conjugagents as follows: One
deduces from the preceding formulas (3):

(8) docos W—-6) =(qdu+qg;dv) cosw — (p du+ p; dv) sin w.

Now, if the two directions that are defined by the asgh «’ are conjugate then one
will have, from a property that was proved already [I, Iof3]:

w-0=

NN

Upon introducing that hypothesis into equation (8), oné aghin be led to the
relation (6).

487. If one supposes that the two conjugate directions chartben one must replace
o with d and w with «’ everywhere, and one will get the differential equatimnthe
asymptotic lines in that following two forms:

(9) (pﬂ_qg)duz'*'(ph_ (f1+ R7 - QE) du dv ( 7.~ ﬁ]) d\FO’
(pdu+ p dysinw-( pdw p dycosv= 0.

Upon comparing the second of these equations to onerwiufas (5), one will
immediately recognize a characteristic property of asgtigplines:

At each point, they define a right angle with the corresponding elemethieiof
spherical representation.

As we shall see later on, the second equation in (8)eadgresses the idea that the
osculating plane to the asymptotic line is tangent tetinface.
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488. We now look for the differential equation of the Bn&f curvature. One obtains
all of the essential properties that relate to tHoses by assuming various viewpoints
that we shall examine in succession.

One can first look for the displacement of the movnigedron for which the normal
to the surface (which is tleaxis of the trihedron) generates a developable surface.

In order for that to be true, it is necessary thaté must exist a variable point:

x=0,y=0, z=p
on thez-axis of the moving trihedron that describes a curve thednstantly tangent to

that axis during the motion in question. Now, from folasuB), the projections of the
displacement of that point wherandv take on incrementdu, dv are:

fdu+ & dv+ (qdu+aidv) p,
ndu+ndv—(p du+pydv) p,

do.

In order that the curve that is described should be natgehez-axis, it is necessary
and sufficient that the first two projections shouldzbeo:

10) { Edu+&dv+ p(qdur gdy=0,

ndu+n.dv-p( pdut pdy=0.

These two equations exhibit badla / dv andp. The last quantity is obviously the
radius of principal curvature that corresponds to the lireeivature considered.

If one eliminateg then one will obtain the differential equation:
(11) (@ du+pdv)(édu+ & dv) + (g du+gr dv)(77 du+n. dv) =0,
which characterizes the two lines of curvature. Onegoanthem the following form:
(11a) (p du+ p1dv) cosw+ (q du+ o dv) sinw= 0,
which, when compared with formulas (5), will show that:

The tangents to a line of curvature and its spherical image are parallel.

On the contrary, if one eliminatds / dv then one will obtain the equation of the radii
of principal curvature:

(12) P% (P —ap) + (A M- 7—EpL+ éwp) + Em—né = 0.
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489. One again recovers the lines of curvature by studying otieediundamental
guestions that relate to the displacement of thedrdre(T). We have seen that among
the infinitely-small motions that are produced by stgrtiith a given position, there are
two of them (which can be either real or imaginahgttreduce to rotations. The value of
du/ dv and the axis of rotation that relates to those motzwasdefined by equations (6)
[I, pp. 61], which reduce to the following ones here:

fdu+édv+(qdut g dy =z ( rde ,rdv 0,
(13) ndu+npdv+(rdut 1 dy »x( pda pdv z0,
(pdu+ pdy y-(qdu gdv xO0.

One first deduces the equation:
(pdutprdv)(édu+ & dv) + (qdu+qgr dv)(n7du+ 77pdv) =0,

which define the values @fu/ dv that correspond to the two rotations. Now, in thecas
that we are dealing with, the preceding equation is tidedines of curvature.

Moreover, the axis of rotation that relates to elod of curvature will meet the
normal to the surface at the corresponding center afuhature. That will result from a
comparison of formulas (10) and (13). Upon combining theselts, we can state the
following proposition:

Under the displacement of the trihedr@m) that is linked to the surface, the
infinitely-small motions that reduce to rotations are always rddley correspond to the
displacements of the origin that are performed along the lines of curvaittine surface.

In addition, the axes that correspond to those rotations (which are obviousglied in
the normal plane to each line of curvature) must pass through the correspondiag ce
of principal curvature.

490. It now remains for us to study the properties of anranyitcurve that is traced
on the surface. We have already obtained the fosnb&t relate to the tangent:

Edu+é&dv
ds

ndu+n,dv
ds

cosw =
(14)
sinw=

We shall now indicate the ones that are concernddthat principal normal.

We know [I, pp. 9] that if one draws a parallel to thegent to the curve through a
fixed point in space that has a length equal to unity thgon supposing that the arc
length of the curve is equal to time, the velocityhd extremity to that parallel will be
equal in magnitude to the curvature p 6f the curve and will have the direction and
sense of the principal normal.
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Now, if one draws parallels to the edges of the moviingdron through the fixed
point then one will once more define the trihedrdg that was defined already whose
rotations will be:

pdu+ gpdv qdu+qdv rdu+rdv
ds ds ds

when one displaces the curve.
The extremity of the parallel to the tangent wil/@dhe relative coordinates:

cosw sina O.
Upon applying formulas (4) [l, pp. 43], which give the pra@@ts of the velocity
onto the moving axes, one will obtain the formulas:
ds L
—cosé’ = - sinw flw+rdu+r dv),
P

(15) Ol;Scosq’ =+ cosv qw+rdu+rdv),

Ol;Scosi':+ Sinw pdu+ p dv)- cosw @du gdv

in which &, 7', {’ denote the angles between the principal normatlaexl y, andz-axes
of the trihedronT,) or the trihedronT).
These relations prove that one can take:

(16) cosé’=-sinwsin @, C0S/n’ = coswsin @, cos{’=cosw,

in which @ denotes the angle between the normal to the sudad osculating plane of
the curve, and formulas (15) can be replaced byolleving two:

(17) dscosw

=sinw(p du+ p; dv) — cosw(q du+ g; dv),

dssinw

(18) =dw+rdu+rydv.

Those formulas merit some remarks:

The first formula shows immediately that c@d p remains the same for all curves
that have the same tangent. We then recover Matsitheorem, and we see that our
first formula gives what one can call thermal curvature— i.e., the curvature of the
normal section to the tangent to the curve.

As for the second formula, it defines an elemdnat,tas we will see, plays an
important role in the theory of the deformationsoffaces. Consider the cylinder that
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projects the curve onto the tangent plane. From MeUstiesorem, sirto/ p will be the
curvature of the normal section of the cylinder thataisgent to the curve — i.e., the
curvature of the projection of the curve onto the tahgéme.

Liouville, who addressed the subject after O. Bonnet, gathee name ofjeodesic
curvature(?), which is accepted by all geometers.

We call the center of curvature of the tangent nomfahe section of the curve the
center of normal curvaturand the center of curvature of the projection of tnee onto
the tangent plane tleenter of geodesic curvature.

From Meusnier’s theorem, the two centers are foundheraxis of the osculating
circle of the curve considered.

One knows that one calls any line whose osculatingepis normal to the surface at
each point geodesic line.The differential equation of the geodesic lines isithe

(19 dw+rdu+r,dv=0.

491. Formula (17) permits us to obtain the differential eiguaof the lines of
curvature in a new manner. Indeed, one knows that timesedre tangent to the normal
sections of greatest or least curvature. They aredbgermined by the equation:

i cosw ~0
dwl p ’

in which one regards cas/ p as a function ofi, v, andca Now, one has:

COSW _ i pdu+ pdv cosw gdu+ qdv.
Yo ds ds

The expressions fof';—u, %’ as functionsw are deduced from formulas that were
s ds

given already (14). One will have:

@: n, cosw- ¢, sinw Q/ _ &sinw—n cosw

ds né-£&n ds mé =47

Upon making use of these equations in order tocuzte the derivatives o?(ﬁ %s/

when they are considered to be functions of onéy vhriablew and subtracting the
quantity:
(P71 —p1 — QL + 01 &) (Sirf w+ co$ @)

() O. BONNET, “Mémoire sur la théorie générale des sedd Journal de I'Ecole Polytechnig@2
(1848), pp. 1. Presented to the Academy of Sciences in 1844.
J. Liouville, “Sur la théorie générale des surfacdeiirnal de Liouvillel6 (1851), pp. 130.
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[which is zero, by virtue of the last of equatio®g](from the right-hand side after
derivation, we will obtain the identity:

(20) i[

cosw
0

pdu+ pdv 2 sinw gdu+ qdv,

ow ds ds

j = 2 cosw
which we will have to make use of. Upon equating the 4inginid side to zero, we will
indeed recover the differential equation of the linesusfature.

492. We shall now pass on to the third-order elements. filseremark that the
anglesA’, i, v’ between the binormal and the axes of the trihedfpare known, since
we have already determined them from the tangent toutive @nd the principal normal.
Upon applying formulas (1) [I, pp. 2], one will have:

(21) cosA’=sinwcosa, COSY’=— COSwWCOSw, cosv’=sinw.

We also know [I, pp. 9] that if we draw a line of lengifual to 1 through a fixed
point that is parallel to the binormal then the exitgnof that line will have a
displacement that is equal ts / 7 when one displaces it along the curve, and the
direction of that displacement will be that of thenpipal normal. We then recall the
trihedron ;) that was considered already that has its origin atfided point and is
parallel to the trihedronTj. The extremity of the parallel to the binormal tigatirawn
through the origin will have the coordinates:

Sin wcosw, - COSwCOoSw, SN,
and the projections of the velocity of that pointmtite moving axes must be:

-Sinwsing CcoSw Sig  COSlw

r r r

when one takes into account the values that were giveady for the direction cosines
of the principal normal.

Upon applying any of the formulas (4) [I, pp. 43] that give grojection of the
velocity (the last one, for example), one will get:

COSw _ dw pdu+ pdv gdu+ g dv .
= cosw — - COSwWCOSW— ————— CosSwSsinw,
Yo ds ds ds

and upon dividing by coa.

(22)

1 _dw_ _pdut qdvcosa)— gqdu+ qdv sin w.
r ds ds ds
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One sees that:
The left-hand side remains the same for all curves that have thezageat.

This important result is due to O. Bonnet. One carhéurgive the preceding equation
the following form:

(23) S-—==
0

1 dw__10 (cow
T ds 20w

in which the derivative with respect towill have the same significance as in equation
(20).

493. In order to obtain everything that refers to ordereghome must knowlp / ds
In order to do that, we differentiate the formulat thi@es coswo/ p.
Since that quantity is always considered to be aimactf u, v, andaw we will have:

q cosw :i cosw du+i cosu dv+i cosx .
P du\ p ovi p dw\ p

or, upon replacingwwith its value:

sinawds
Yo,

—rdu—r;dy,
which is deduced from the formula (18), we will bav
4| cos@ _ 0 (coswsin@ds_| 0 (cosw —ri €OV )| 4u
Jo Jw\ p Jo oul p ow\ p
0 ( cosw 0 ( cosu
+ | = -n— dv.
ovi p w\ p
One sees that the right-hand side can be writtéimei form:
(25) 0 ( cosw —ri cosu du+i CoSw —rli CO%T | | =K ds
dul p Jw\ p ovi p dw\ p

in which K depends upon only the direction of the tangerthéocurve. As for the left-

hand side, if one replaceasa—[cosmj with its value that is inferred from formula (23)
w\ p

then it will contain only quantities that have mple geometric significance, and one will

obtain the equation:
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(25) d[cos‘vj+ ZS'W(d—S—dmj =K ds
p ) \r

which will obviously permit one to calculatp / ds
Upon dividing the two sides of equation (25) by aasp, one will have:

(26) _198  tany (Z— d_mj - Kp
p ds r ds cosw

SinceK andp / cosawdo not depend upon any second-order elementgyryton the
direction of the tangent to the curve, one will nege that the left-hand side of equation
(26), and also that of equation (25) divideddsy will remain the same for two curves
that have the same tangent at the given point, gnargh the elements that they depend
upon have orders two and three. We need to dewetmmsequence of that result that is
due to Laguerré?.

In order to conclude the discussion of third-ortdgics, we shall determine the center
of the osculating sphere. Upon applying the kndanmulas, and upon denoting the
coordinates of the center of that spheredyo, z,, we will find that:

X, COSw+ Y, Sinw= 0,
(27) Sinw (X, Sinw+ Yy, Cosw } Z, coOFT=p

cosw (%, Sinw—Y, co® } z, siw:—r%

so we will deduce that:

0p

% = Y = psSinw + 17— CoSU
0s

(28) sinw cosw

Z,= ,ocosw—ra—'o sino
0s '

The first two equations (27) represent the axishefosculating circle. Upon taking
the intersection of that axis with either the nolrplane or the tangent plane, one will
have:

1. The center of normal curvature:

(29) X1=y1=0, =z= .
Ccosw

(® LAGUERRE, “Sur une propriété relative aux courbesées sur une surface quelconque,” Bulletin
de la Société philomathematiqué1870), pp. 49.
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2. The center of geodesic curvature:

psinw Vo = £ COSw
. ’ 2= . ’
sinw sinw

(30) Xo =—

494. After third order, there no longer remain any geometieenents to calculate.
The derivatives of the elements a, and are obtained by the simple differentiation of
the preceding formulas. It nonetheless seems good fornesnark that if one so desires
then one can write two formulas for the differenadments of arbitrary order that are
analogous to relations (23) and (25). Indeed, suppose rbeahas an equation of the
form:

® =K,

in which ® contains the differential elements of the curve uprdern, andK is a
function of onlyu, v, andaw The differentiation of that equation will give us:

and one will deduce from this that:

ds dw Yo ou ds ov ds dw

d® _oKsinw _ oK du_ 9K dv 6K( du, d\l
Tds " dgs

That formula will preserve the form of the onenfrevhich one has deduced it: The
right-hand side will depend upon only v, and «j but the left-hand side will contain
differential elements of the curve up to order 1.

If one applies that method to the two formulas) @3d (25) then one will deduce two
new equations by referring to the fourth-order eats, and one can continue in that way
up to an arbitrary order.

For example, one can deduce the following fornfudan (23), which we shall be
content to merely state:

d(l dmj sino( 2cosm 1 1 —K
ds ds 0 o R R e

in which K; will remain the same for two curves that have shee tangent, arid, R
denote the radii of principal curvature of the aa#.



CHAPTERIII

THE CODAZZI FORMULAS

Formulas that relate to oblique coordinates, whoseelereent is determined by the equation:
ds’ = A*du + C*dV’ + 2AC cosa du dv

Angle between two curves. — Condition for two diratsioo be conjugate. — Asymptotic lines. — Lines
of curvature. — Gauss'’s theorem. — Total and mean cuevatuRectangular curvilinear coordinates.
Codazzi formulas. — Special study that relates to toedinate system that is defined by the lines of
curvature. — Application of the general method to thedinate system that is defined by the lines of

null length. — Determination of the quantitipsq, r, py, Qi, 1, & 7, &, . when one knows the
expressions for the rectangular coordinates z as functions of the two parameters. — Application
to an ellipsoid that one assumes to be referred lio@s of curvature.

495. Up to now, we have been content to suppose thatdkes of the trihedronT)
is the normal to the surface. In the questions thatmevthe line element of the surface,
it is important to define the relationship between titeetiron and the surface in a more
precise manner in order to recognize the quantities tilatewain invariable when one
deforms the surface.

In truth, one can arrive at that result with thegading notations. It will suffice to
remark that if the surface is deformed while carrying titedron ) with it then the
translationsé, 7, &, m will remain invariable, and consequently the rotations;, as
well, by virtue of the fourth and fifth of formulag), One thus recognizes immediately
that the geodesic curvature of an arbitrary curve and thdupt of the radii of principal
curvature at each point of the surface will preserve tladues after any deformation of
the surface. However, those results, and otherstaké on a neater form if one starts
with a form for the line element that is givarpriori. We shall then consider the various
coordinate systems successively.

First, suppose that the points of the surface arereefdo oblique coordinates for
which the line element takes the form:

(1) ds’ = A>du” + C* dv’ + 2AC cosa du dv
In order to succeed in defining the position of the trihedidnwe give the anglen
that thex-axis makes with the tangent to the cuwe const. — i.e., with the infinitely-
small arcA du If one similarly letsr denote the angle that the same axis makes with the
infinitely-small arcC dvthen one will obviously have:
n—ne a.

Since the angle intervenes in the line element only by its cosime® can take:

(2 n-ms=a.
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It is easy to understand why we do not give a particulaev@ the anglen. In the
case of rectangular coordinates, it would be naturaha&e thex andy axes of the
moving trihedron coincide with the tangents to the cootdicarves. However, if those
curves do not cut at a right angle then geometry willsingle out any special position
for the axes of the moving trihedron. To make one of themcide with one of the
tangents to the coordinates would destroy the symmieditynhust exist in the formulas
between the two variablesandv. True, that symmetry would be preserved if one takes
the axes to be the bisectors of the tangents to thelioate curves. However, the choice
will have the inconvenience of not coinciding with the2 @hat is most natural when the
coordinates become rectangular. It then seems prefémabketo preserve that arbitrary
m, but give it the value that would be the most advantagedts study of that question.

When onlyu varies, the origin of the trihedron will describe anA duin the tangent
plane that makes an angtewith thex-axis. One will then have:

3) &=Acosm, n=Asinm,
and similarly:
4) & = C cosm, m =Csinm,

Introduce those values for the translations intoféheulas of the preceding chapter.
System Q) will then take on the form:

op oJp

——-—"L=qr,-rq,,

v du qr, —rq,

0q _0q,

——-—L=rp, - pr,

v ou P

ﬁ_%:p -q

(A) ov du @R

_0n 1 (GA oC j

= ——-—cosqa |,
du Csing\odv du
om 1 (GC 0A j

=—-—+— —-—cosa |,
ou Asinag\du 0v

A(p,sinm- gcosm)= C(psinr qgcosn

The fourth and fifth equation have been solved witheestor andr; .

496. The anglew between the tangent to a curve that is traced onfacsuand the
differentialds of arc length of that curve will now be defined by tbarfulas:

(5)

dscosw= Acosmdu+ Ccosnd\
dssinw= Asinmdu+ Csin ndy

which will give:
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(6) A%: sin(n—w)’ C dv_ sin(.a)—m).

ds sina ds sing
From that, if one considers two different curves fhads through the same point of
the surface, and if one lets the lettedenote the differentials that relate to the second
curve and letsv denote the angle that is analogousdthen the angle between the two
curves will be given by the formulas:

A2dudu+ ACcosa (dw w dd i+ € d
dsds ’
ACsing (dvo u— dw y
dsds '

coslw—a )=
(7)
sin(w-w)=

As one sees, that angle depends upon only the expressidhe line element.
Consequently, it will not change when one deforms tinease. That result was pointed
out already (nol119).

The condition for the two directions to be conjugate beltome:

(8)

here.
Consequently, the differential equation of the asymptiogs will be:

A(gcosm- psinm) dw ¢+ Q gcosr psinndv v
+A(gcosm- psinm)d udw Q qeosr psinn dv v (

©) A(qcosm— psinm) déd+ C(gcosr psinn) dv
+[A(gcosm— psinm)}+ C(gcosr psinn)ldvda (

Finally, the two equations that define the lines of cumeawill become:

(10) { Acosmdu+ Ccosndw (qdw gdp= 0

Asinmdu+ Csinndv ( pda pdp=0.

The differential equation of those developed lines eawititten:

1) { A(pcosm+ gsinm) dd+ O pcosr gsinn) dv

+[C( pcosn+ gsinn)+ A(p cosm+ g sinm)]dudv (

However, we must above all insist upon the new fohat tthe second-degree
equation that determines the radii of principal curvatulldake. Here, it will become:

(12) A (pa—qpw) — 2 [A (pr cosm+ gy sinm) —C (p cosn + g sinn)] + ACsina = 0.
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Consequently, if one lefR, R denote the two principal radii of curvature then one
will deduce that:

(13) ACsina (ERJF_FlJ =A (ppcosm+ . sinm) —C (p cosn + g sinn),
ACsina

14 —_— = —qp..-

(14) °R P —gpL

Replacepay — gpr with its expression that is deduced from the thifdormulas A');
it will become:
(15) ACsina _ g_%
RR ov du

or, upon replacing andr; with their values:

oc _oA oA_ocC
(16) ACsina __ 0%a _d|ou ov o |_d|av au "
RR dudv adu Asina d Csing '

That formula immediately gives the beautiful treyarof Gauss: The product of the
radii of principal curvature depends upon only éxpression for the line element and
will persist when the surface is deformed witha@atring or folding.

497. The expressionF:—R has been given the nametofal curvatureof the surface;

the name ofmean curvaturavas given to the suné{—é +—;j

Some papers have been written on the search fmrgtwntities that could serve to
measure the curvature of a surface at a given poliite geometers who treated that
subject did not glimpse the fact that it revivesaidifferent form, the celebrated question
of vis vivag and that it raises a question that must be reddby a definition of the word.
At best, one can attempt to reason by analogy hynexng the properties that relate to
the curvature of the planar lines that are susglepto being generalized in the theory of
surfaces. If all of those generalizations refetaedor example, the quantity that we have
called thetotal curvaturethen the geometers would have some reason toveetas
name ofcurvaturefor that element. However, that indirect meansesblution avoids
the question completely. Among the properties talgte to curvature in the planar lines,
the ones that admit a generalization are the onewhich one employs the total
curvature. On the contrary, for other ones, onstrappeal to the mean curvature. Some
of them even admit different generalizations in ahhdone sometimes employs the mean
curvature and sometimes the total curvature.
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Following Gauss, we shall first show that one can tdajefinition of total curvature
that is completely analogous to that of curvature fongldines.

If one is given an arc of a planar curve, and if one draarallels to the normals to
the extremities of that arc through the center oir@ecof radius 1 then those parallels
will intercept an arc of the circle that is equallie tingle between the tangents to the two
extremities of the curve, and which consequently measunas ene calls theurvature
of the arc of the curve.

Similarly, if one considers a region of the surfacat tis limited by a closed curve,
and one draws parallels to the normals to the surfa@d @oints of a limited curve
through the center of a sphere of radius 1 then thosdigdamwill cut the sphere along a
likewise-closed curve. There will be a portion of Hpdere that is limited by that curve
and which will contains all of the points of the sphérat correspond to the various
points of the segment of the surface considered. Tde @lrthat portion of the sphere
will be calledtotal curvature of the segment of the surface:

Return to the planar curve. If one divides the tatavature of an arc of the curve by
the length of that arc then one will prove that thetigmd will tend to a finite, well-
defined limit when the area diminishes indefinitely arduces to a point; by definition,
that limit will be the curvature at that point.

If one likewise envisions a segment of the surfaceiraa pointM of the surface,
and if one supposes that the extent of that segmemigias independently, and in all
senses, around the poiM then the total curvature of the segment will diminish
indefinitely; however, if one divides it by the areatludit region then, as we shall prove,
the quotient that one obtains will tend to a finite, Ivdelfined limit that is independent of
the form of the segment. That limit is RR’; i.e., the element to which we gave the
name oftotal curvature at the poiritl.

If we take the preceding viewpoint then it will seemt ttiee analogy is complete
between the curvature of curves and the total curvatuseirédces. However, one can
point out some other propositions in which that analoggks down, and that one can
generalize by replacing the curvature of a planar liné Wie mean curvature of the
surface and no longer the total curvature.

For example, imagine that one measures out infingeigdl lengths along the
normals to a curve in such a manner as to obtain a neiggbzurve. Ifh denotes the
length that is measured out on each normal then the sgcredength when one passes
from the first curve to the second one will be represstby the integral:

ds
Jh;’

in which ds denotes the differential of the arc length, gmdlenotes the radius of
curvature.

If one operates similarly on a portion of the surfdwen the increase in area when
one passes to the infinitely-close surface will be 1185):

(I h(%+%jda,
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in which do denotes the area element, &R’ denote the radii of principal curvature.
As one sees, the element that substitutes for thettwesin the generalized proposition
is no longer the total curvature here; it is twiceriean curvature.

It is pointless to insist upon that example and on athes that one can invoke. One
can say that the total curvature is the most important ki geometry. Since it depends
upon only the line element, it will intervene in all quass that relate to the deformation
of surfaces. On the contrary, in mathematical phygicsthe mean curvature that seems
to play the dominant role.

498. It now remains for us to make the definition of taavature more precise and
to prove the proposition of Gauss that we stated above.

Let M be a point on the surface, andNétbe the corresponding point of the sphere of
radius 1 on which one performs the representation. [Quanallels to the axes of the
trihedron ) throughM’”. One will then have a trihedrod () whose rotations will
obviously be the same as those of the trihedigngnd which will play the same role
with respect to the sphere that the trihedfOndpes with respect to the surface, because
its z-axis will be the normal to the sphere. Let:

d€ =A%d + 2A' C cosa’du dv+ C’ 2 dv

be the expression for the line element of the sph&he surface element will then have
the value:
A’ C sing’du dv

in both magnitude and sign. Having said that, apply forifiidato the sphere.
Since the rotations of the trihedrolY § are the same as those of the trihedignwe
will have:
A C sina’=po—qpy,

and as a result, upon taking formula (14) into account:

ACsina
RR

A Csing’=

Hence, the total curvature of a portion of the surfadech from Gauss’s definition
itself is represented by the integral:

” A’ C sina’du dy

which is extended over that portion of the surface] aldo be represented by the
integral:
J-'[ ACsina

dud
RR v
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which is extended over the same region.
Hence, if one divides the total curvature of a segraéatsurface by the area of that
segment then the quotient will be:

ACsina
I e
J'J' ACsina dudv’

dudv

In order to suppress any difficulty that relatesthe choice of coordinates, ldtr
denote the surface element and write the precegliogent in the form:

J‘da'

It is obvious that it will have the value:
(=)
RR ),

in which (%) denotes a mean over all values—éfﬁ in the interior of the segment
0

considered. If the extent of that segment dimigssim such a manner that the distances
from all of its points to a poin¥ in its interior tend to zero then one will seetttiee
preceding ratio will have the total curvature oé tburface at that point for its limit.
When the segment reduces, not to a point, butgiwen line by the reduction of one of
its two dimensions, contrary to hypothesis, thabraill have no well-defined limit.

499. The general formulas simplify greatly in the cadeere the chosen curvilinear
coordinates are rectangular. One can then make-dlés of the trihedronT) coincide
with the tangent to th& du— i.e., with the tangent to the curve const. That will give:

, m= 0, a=

NN

Formulas A”) will take the much simpler form:
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op dp,
Ag+Cp=0, P_P_ (g,
G4 p N ou ar—rq
1 0A 0q 0dq,
A r=———, —J-—L=rp,-pr,
(") C av av au P.7P
r:ia_c ﬂ—%:p —qr
LA dV] av du G~ dh

Up to notations, they coincide with the one thatrevgiven for the first time by D.
Codazzi {).

() CODAZZI (D.), “Mémoire relative & I'application desurfaces les unes sur les autres, envoyé au
Concours ouvert sur cette question, en 1859, par I’AcaddeseSciences,” t. XXVII of thdémoires
présentés par divers savants a I’Académie des Scigprieted in 1882.

Codazzi also gave some formulas that related to obligoilimates in an appendix to his paper. Those
formulas, which are different from the systeAd)( are equivalent to some relations that we shall make
known later on (no508). Formulas A’), which contain an arbitrary numbsy, and in which all of the
guantities are defined by their kinematic properties, \geren in 1866 in a course that | had the honor of
teaching as a substitute for Joseph Bertrand at thédgeotle France. Combescure had already applied
some considerations of kinematics to the proof of thdaZzi formulas in an unedited paper that was
presented to the Académie des Sciences in 1864. Combesmaper treateflinctional determinants and
curvilinear coordinates It was published in 1867 in the Annales de I'Ecole Norr(iBle. IV.

O. Bonnet was the first to exhibit all of the interasd utility that the Codazzi formulas have relative to
rectangular coordinates. After proving that geometsidalla “Note sur la théorie de la deformation des
surfaces gauches” that was included in Comptes rebi((5363), pp. 805, the eminent geometer made a
profound study in a 120-pageddition to his “Mémoire sur la théorie des surfaces applicatlesune
surface donnée,” that was included in le Journal de I'Beolgtechniquet2 (1867), 31-151. That part of
the paper contained a complete proof and numerous applicatiershall have to cite it often. Bonnet can
be identified with the same viewpoint as Codazzi, anddfimed all of the elements that entered into his
formulas by considerations of pure geometry.

Since 1867, a great number of works have been publishé game subject. We cite, first of all, those
of Codazzi, which were included in a great paper: “Sulledinate curvilinee d’'una superficie e dello
spazio,” Annali di Matematica de Milan t. I, pp. 93-316ttpp. 101-119 and 269-287; t. IV, pp. 16-25
(1867-69). We have also borrowed a very elegant formula &gaper by Laguerre “Sur les formules
fondamentales de la théorie des surfaces” that was Ipedblia Nouvelles Annales de Mathématiques (2)
11 (1872), pp- 60. The methods of Laguerre were developed bBi@se in a paper that was entitled:
“Exposition analytiqgue de la théorie des surfaces. Thatrpapmse first part appeared in 1874 in the
Annales de I’ Ecole Normales (3)(1874), pp. 87, was continued, but not concluded, in JodemkIEcole
Polytechniqués3 (1883), pp. 213.

However, | must, above all, point out that the closealagly with the method that is followed in this part
of my lectures is offered by the work that Ribaucour developea more or less complete manner, in
several of his papers, and which is found to be presentesl detailed manner under the name of
perimorphyn the paper that was presented to I’Académie de Bruxéfiesde des élassoides ou surfaces a
courbute moyenne nulle,” Mémoires couronnes et MémoireSdeants étrangers publiés par I’Académie
Royale de Belgique44 (1881). Nonetheless, Ribaucour considered only rectangularilinear
coordinates, and he did not give a kinematic definitiothefquantities that enter into his formulas. The
two systems of formulas that take the place of our systajrend B) in his theory seem less simple to us
and have a less precise significance. At the bagisuBour employed the theory of relative motion, but
without saying that explicitly and without utilizing a&if the resources that the theory presents.

The Codazzi formulas are hardly the only ones thahpa deep study of the theory of surfaces. Later
on, we shall show all of the advantages that one carvedérom the beautiful paper by Gauss
“Disquisitiones generales circa superficies curvas,” Wwhécassociated with almost all of the work by
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Formulas B) [pp. 2], which give the projections of the displacenwdrd point, take a
simpler form here and become:

dx+ Adu+(qdur gdy z( rda ,rgv,
(B dy+ Cdw+(rdu+ ydy x-( pdd pov,
dz +(pdut pdy y( qdu qdv.

When one has to apply the formulas of the precediagteh one must adopt the
following values for the translations:

(17) { E=A ¢£=0,

n=0, n=C.

If one considers an arbitrary curve that is tracethersurface then one will have:
(18) cosw= ——, sinw=——,
ds

in which wnow denotes the angle between the tangent and tihedarc
The lines of curvature will be defined by the two equations:

(19) { Adu+p(qdu+ gdy=0,

Cdv-p(gdut pdy=0.
The elimination ofo will lead to the differential equation of those lines:
(20) Ap dif + C q dV? + (C q+Apy) du dv=0,

and the elimination odu/ dv will lead to the equation of the radii of principal curve:

(21) ﬁ(ﬂ—%j -p(Ap—C g +AC=0.
ov adu

In particular, the total curvature of the surface wallgiven by the formula:

AC_or or_ 9 (1 acj_a (16Aj

(22) — st | | ==
RR ov odu Ju\ Adu,) ow Cov

Finally, the relation between two conjugate tangevill take the form:

German geometers. The relations that are estattlishie permit one to treat all of the essential goest
completely.
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(23) Aqduov-Cpdvov+Aqdudv—-C pdvau=0,
and the differential equation of the asymptotic lines laltome:

(24) Aqdf-Cpdv+(Acq—Cp dudv=0.

500. One can make an even more specialized hypothesis agtharthe case (which
is very important for the theory and applications) imck the two systems of coordinate
lines are lines of curvature on the surface. We shpltlly point out the formulas that
refer to that hypothesis.

In that case, the differential equation (20) of thedi of curvature must be devoid of
terms indu?, dv’. One must then have:

(25) p=0q.=0.

The Codazzi formulas then reduce to the following ones:

r__16A apl__qr
T coav. au v ar or
(A™) C ov oJu LU R
_10C aq _ v du
h=——= 5, - Pw
A ov ov

Six of the twelve rotations or translations of thieedron will become zero.

One sees that the eliminationmf g, r, r1 from the preceding equations must lead to
a differential relation betweelhandC. One cannot therefore choose the line element for
a surface arbitrarily when it is referred to its limégsurvature.

The line elementlo of the spherical representation takes the very sifophe here:

(26) ds=qg? dif + p2dV2

One then recognizes that the lines of the sphereséne¢ as the images of the lines of
curvature also intersect at right angles.

Let R denote the principal radius of curvature that correspantisetarcA du and let
R’denote the other radius that corresponds to th€ dnc Formulas (19) give us:

27) R=-2, R'=—2.

The line element of the surface can then be written:

(28) ds= R o dif + R’ p? dV2.
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The differential equation of the asymptotic lines takes or the other of the two
forms:

Agqdu - Cp d¥=0,
(29) cos W, sirfa):
R R

0.

We further note that upon introduciRyR’in place ofA andC, resp., in the first two
equationsA"), one will obtain the formulas:

OR _10q,.,

_:__q( —R),
©) ov qoadv

a_R’_ iapl( ’_Q

ov  p au ’

which constitute the relations between the radii aofrvature and the spherical
representation. Since one can deduce the lag fbreulas in A"") from the following
relation betweep andp;:

d(10q) 0(10p
D — ==t =2+ =0,
() av(plavj au[qauj ah

one sees that it will be impossible to take arbjtfanctions ofu andv for R andR".
The systemRg") takes the following form here:

dx+ Adu+ gzdu( rda ,rdyv )
(B") dz+ Cdw(rdur rdy x pza
dz+ pydwv gxdu

501. The systems of curvilinear coordinates that ve¢ gmployed are all real. In the
most important research that relates to surfatedtan happens that one will be led to
appeal to symmetric coordinates for which the éfe@ment has the reduced form:

() ds’ = 42?du dv

In that case, as well, it is good to point out fbemulas that can replace those of
Codazzi.

Here is how we determine the position of the tiloa () that admits the normal to
the surface for itz-axis. At each point, we take thxeaxis of the trihedron to be the
tangent to the curve:

u — v=const.,
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and they-axis to be the tangent to the orthogonal curve:
u+ v = const.

Those hypotheses already give the relations:

&=&, n+m=0
between the translations.

Now, identify the line element of the surface to ke dhe that was given by formula
(2) of the preceding chapter; we will have the relation

P47 =0, &-=22"

E= A n=-2i,

We take:

and consequently the values of the four translatioiisbs given by the following

formulas:
= A, ==,
(30) { 3 n=-A

&=A,  n=+A.

It suffices to substitute those values in the formolahe preceding chapter in order
to obtain all of the ones that refer to symmetric dow@tes. Here, the system) (will
give us:

op_0p, _

+p =i(g -0, ———=X= (- rq,
p+p=i(g-0) FYETY qr—ro,
. dlogAd  0gq o0q
AV = . 2"t =yp —pr,
(A7) 3 v oy PTPn
r. = i—alog/] ﬂ_%:pq -q
! v ' ov au PRTAR

The expressions that are given by formuB)sbhecome:

dx+ A(du+ dy+(gqdw g dv Z( rdw ,rdv,
(B8") dy+iA(dv—dy+(rdut+ y dy x( pde pav,:
dz +(pdut pdy y( qde qgv.:

The asymptotic lines of the surface have the iffdal equation:
(31) @ +ip) du’ + (g —ip1) AV’ + (ip1 —ip +q + ) du dv= 0.

The system of equations (10) (4&8), which defines the lines of curvature, takes the
form:
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(32) { A(du+dy+p(qgdu g dy=0,

iA(du—-dv)+p( pdut p dy=0,

in which p always denotes the radius of principal curvature.
The elimination oflu/ dv leads to the equation:

(33) & (P —apy) —Ap (L —p — ig—iqy) + 2A4° =0,

which tells one the radii of principal curvature. Fronstloine deduces that:

_ 1 9%logA
A% duov

1
34 —
(34) °R
which is a formula that one will make frequent use of.
The elimination ofo from equations (32) leads to the differential equatiotheflines

of curvature:
(35) du? (p —ig) + dV? (py +iqa) = O.

The absence of the term du dvshows immediately that the lines of curvature are
orthogonal.

502. In summary, we have four different systems of fdasat our disposal that
refer to oblique coordinates, rectangular coordinatesdetaies that are determined by
the lines of curvature, and symmetric coordinates, resedcti We shall study some of
the questions in which those formulas play an essenti®. However, before
concluding, we shall make a general remark: In any ofsyls#ems thus-obtained, the
expressions for andr; depend exclusively upon the line element. It follows ftbra
that the geodesic curvature, whose expression contaiysrotationsr, ri, will not
change when one deforms the surface. In particulargeodesic lines, for which the
geodesic curvature is zero, and whose differential equatidefined by the line element
of the surface exclusively, will preserve their defimtizvhen one passes from the
proposed surface to any other surface that can be mapgredfist one.

When the research that we have to undertake must liecappall of the cases, we
can employ the formulas of Chapter | upon remarking §hét, 7, 71, r, r1 depend upon
the line element exclusively in all systems of formubas] will remain the same when
the surface is deformed while carrying along the trihedfgn (

503. In order to complete these developments, it renfamngs to point out how one
can determine the various quantities that enter into thgstems of formulas when the
surface is known and well-defined; for example, whee btas expressions for the
rectangular coordinates y, z of a point of the surface as functions of the paramet
andv. Consider the first system of formulas, which dre ones from which one can
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derive all of the other ones, and the ones that aotitaitranslationg, &, 7, 71 IfE, F,

G denote Gauss's three functions then one will firseha

dGREIRET

_ 0X 0X 6y6y 020z

0z
Jdu

ox
ou

oy

D[22 e

36 )
(36) auav auav dudv =t
0x ay 0z
G=|—| +| = +
(avj (avj (avj =&

Those three equations will permit one to determinefdbe translations, as long as
they exist. Any hypothesis in the manner by which theedinbn {T) is attachedto the
surface will give a relation that one can combine \thih preceding ones. We can then
consider the translations to be known.

Having said that, in order to determine the nine cosineslgtatmine the position of
the trinedron T), keep all the notations of Book | [l, pp. 2]. The cdesation of the
displacements along the coordinate curves will lead tistsix equations:

fa+/7b:%,
ou
(37) fa' +nb =ﬂ,
ou
&a" +nb’ —%
ou’
and
)4
a+nb=—,
éatn, Fv
I U a
(37) ga+nb =2,
ov
n U az
Ga+nb' =—,

which will exhibit the six cosines, b, a, ...

1)
Aa=
h—~— 3u
(38) pa =p, %Y
ou
0z
Aa"
=h— 3u

One then finds that:

o0X

_,7_

ov
oy

_,7_

ov
,762_
ov’
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1)
IR s
gzlau ‘(av’

ay
+
gzlau ‘(av’

__g0z_ .07
g(lau ‘(av’

in which A denotes the determinaéy; — 7£1, which, from formulas (36), will have the

value:

(39)

A=¢m—né =+, EG- F> .

As for the direction cosines ¢, ¢" of the normal to the surface, one can deduce their
known expressions [l, pp. 2] as functions of six othes. One then finds that:

(40)

_0yo0z 0yoz
Touav avau
AC :%%_G_ZQ(
dudv avou
Ac":%a_y—%ﬂl
dudv dvou

It remains for us to determine the rotations. Oné otatain them, for example, by
differentiating formulas (37) and (37which will then lead to the following ones:

(41)

Scd%zfscdwn Scdb
=-¢(qdu+ qdy+7( pdw pdy
SCd%:fl Scdatn, Scdb
=-¢,(qdu+ qdy+7,( pdw pady
SE AR~ £de, 47,0+ (En,-né)(rdur ).

Upon replacing:, ¢, ¢’ by their values that were given above, and upon introducing
the determinant®, D, D" that are defined by the identity:
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2 2 2
XX 9 X2+ 22 X qudve 2 X g
du ov v duov Qv
2 2 2
(42) Ddu +2D’du dv+D" dv = o % Y2129 quaw?Y 4o ,
ou odv v dud v 9V
2 2 2
0z 0z 07240,50 24,449 245
ou ov aAv duov Qv

one will obtain the following values for the rotatidmg solving the preceding equations:

A2(pdu+ pdy=&( Ddu D dy-&( Dde Ddy
A2(qdu+ q dy=r( Ddu B dy-r7,( Dde Ddy
10G JoF 10E
43 A (rdu+rdv)=-£dé- +-—dw| —--——|d
43) (s ) =k - +5 92 v S 29E
10E oF 10G
= +&dé+ndp-=E du-| = -222 1 ¢
de+mar 2av " (au Zauj Y

We will see later on that the determinabtsD , D" play an essential role in Gauss’s
theory. From the last of the preceding formulas, esegnizes that the rotationsindr,
depend upon only the line element of the surface, which ooefto some results that
were pointed out already (n802). As for the rotationg, q, p1, 01, they are expressed as
linear functions oD, D', D". Indeed, one has:

A’p =¢6D'-¢§,D, A*gq=nD-n,D,
Azpl zgan_g(lDr, Azq]_:/?D"_/?ZD,

0¢ on, 1o0E

44 Ar=+&2L+p—L-—_——
(44) g(6u ,76u 20u
o0& on 10G
Ar,=-&==-p—L+==2=,

! gzlav Olav 2 du

If one substitutes the valuesmfq, p:, g: in the third of relations (5) [I, pp. 43] then
one will be led to the identity:

(45) A? (P —qpy) =DD" — D’? = A? (ﬂ_%j !
ov du

which establishes a relation betwdanD’, D" that depends upon only the line element,
and to which we shall have to return after we have ds®tl&auss’s theory.



Chapter Il. — The Codazzi formulas. 29

504. In order to indicate at least one application, suppbat the surface is an
ellipsoid that is referred to its lines of curvature. djeme will have:

X:\/a(a— u(a-y
(a-b(a-9
b(b—- u)(b- v
46 = |2ADTUADT Y
(49) V’Jm—mw—d
Z:\/c(c— u(c-v
(c-a)(c-b
(47) g= U=y Gz V(v-u
fu ° f(v)

in whichf(u) denotes the function:

(48) fy=4@-ybo-yYy(-u.

The calculation gives:

D = ~Axyz(u- V(a b(a ¥ b p__ abc(u-y’
f2(u) f(v) HONEHOHOE

(49) D'=0

D" = \J abc(u-V?
HONEORO)

Suppose that one takes:
(50) &6 =0, n=0,

which amounts to making theandy axes of the trihedror] coincide with the tangents
to the coordinates lines. One will have:

(51) é=JE,  m=4G,
and formulas (43) will give:
EG(pdv+pidv) =—,/ED" dy,

EG(dv+aqidy) =-,/GD du

One will deduce from this that:
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p=0, %

= 0,
(52) _JJabc [ u-v __yabc| v-u
T v AT iy

As for the rotationg, ri, they are deduced from the line element by thed thf
formulas (43), which will give us:

rdu+rydv= #a—de—LE du,
2./ EG du 2./ EGdu
and, in turn:
__ 1 oe_ 1 —u f(v)
2JEG ov 2u-wW\ vi(u'
(53) N (u-v) (v

1 6_G: 1 v f(u)
2JEGou 2u-v\ -uf(y’

n=-

Formulas (27) give us, for example, the followwagjues for the radii of principal
curvature:

(54) R__\/E _ U2 2 R,_\/E o ul2 312

q - (abc)l/Z ! pl (abc)l/Z !

from which, one will deduce that:

RI
9 RV Rou
Therefore:

On each line of curvature, the corresponding pmatiradius is proportional to the
cube of the other radius of principal curvature.

It results from formulas (54) that one has:

2,2

ulv
abc

(56) RR =

As a result, the lines for which the total curvattemains constant are defined by the
equation:
uv = const.

Now, if one letsd denote the distance from the center of the elijptm the tangent
plane at a point whose coordinates then a simple calculation will give:
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(57) izz uw _ JRR
o° abc abc
It follows from this that the curves considered aredies to which Poinsot gave the
name ofpolhodes and which are the loci of the points for which theatise from the
center of the ellipsoid to the tangent plane presereesistant value.
Some considerations of geometry that are inferred froentheory of conjugate

diameters, and which the reader can easily supply, xhib& a remarkable property of
those curves:

If one draws a normal plane to the ellipsoid through each tangent to the pdhede
the section of the ellipsoid through that plane will have one if its sisnamthe point of
contact of the tangent.

In other words:

The polhodes are curves such that each normal section that is tangenttouwbet
one of its points is super-osculated by a circle at that point.

Later on, we shall return to that property in 5t0.
Before beginning the detailed study of the lines thatraed on surfaces, we shall

give various tables that contain the systems of ftasnthat we have obtained in this
chapter and the preceding one.
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TABLE | (Chapter 1).

Rotationsp, q, r; p1, h, r1; translationss, 7, 0; &, 1, O:

op _dp, 0é 0¢, _
X B —gr-rg, —=-l=pr-rn,
av adu 4% av du UGB
dq _0dq, on _on, _

A ———=Ip,—pr, ————===ré=4r,

) av adu P~ Ph av du 4 ¢h
or_on_ . _ R,
v oy PATAR B W ¥~ &

dx+&duté dv+(gdu gav z( rda ,rdv,
(B) dy+ndu+n dwv(rdut ydy x( pde pav,.
dz +(pdut pdy y( qde ,qdv..

Curve traced on the surface:

1) dscosw=&édu+ & dy, dssin w=npdu+ n; dv.
Spherical image of the curve:

(2) docosf@=qdu+q; dv, dosin@=-pdu-p;dy,

(3) do? = (p du+ py dv)? + (q du+ g dv)2
Condition for two directions to be conjugate:

4) Pdutpidv) (7du+n1) - (Qdutaudy) (§du+éov)=0.
Asymptotic lines:

B)  (n-09d) df + P —u &) AV + (P + puy —dé —qud) du dv= 0,

(6) (p du+ p1 dv) sin w— (g du+ g; dv) cosw= 0.

Lines of curvature:
@) &du+é dv+ p(gqdur gdy=0,
ndu+n.dv+ p( pdur pdy=0.

Equation of the radii of principal curvature:

(10) & (PG — apy) + o (P17 + P17 —QéL —qué) + ém—néyL = 0.



Total curvature:

(11)
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5/71_/751 — _ _ﬁ_%
RR PRI o0
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TABLE Il (Chapter 1)

Curvature and torsion of a line that is traced ontinlase: &', ', ¢’
Angles with the principal normak’, i, v’
Angles between the binormal and the axes of thedmame(T):

) cosé’'=—-sinw sino, cog' = cas S , cf5= eos
cosd'= siwcosy, cog=—- Cc@8 C@5 , COS @@Ir
) ST 4s=dew+r du+r1 dy,
P
3) O 4s= sincw(p du+ pr dv) — cosw(q du+ gy dv),
4) 1 _dw_ _pdut qdvcosw_qdu+ qdvsinw:—ii cosw
r ds ds ds 20w\ p
_coswwdp sirw(_z_ EJ:K
) o ds  p \r ds
:icosm_ricow%+icow_ri Ccas || dv
aul p dwl p J|ds |V p Yowl p ds

Center of the osculating sphewg, (o, z0):

)_(0 =_Yo = psinw+1 coswd—'o
(6) -sSinw coxw ds
do .
= pCOSw —T—— Sinw .

5L=p ds
Center of the normal curvatung (1, z):

(7) X1=y1 = 0, Z = .

cosw

Center of geodesic curvature,(yz, z):

_psinw _ pcosw

(8) X2 = - ) 2 - ,
sincw sincw




(9)
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Center of curvature of the curve,(ys, zs):

X3 =—pSiNnwsIiNw, X3=-pPCOSWSINW, X3=,0COSWw.

35
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TABLE 111 (Chapter I1)

(1) ds’ = A> du¥ + C? dV? + 2AC cosa du dy

(2) n—m=aq,

(3) £=Acosm, np=Asinm, & =Ccosn, 7 =Csinn,
op ap, _ _an 1 (GA aC j
—_——qu_rql, r=—-———| ————C0%7 |,
ov ov du Csina\dv 0du
oq 0Jq om 1 (0C O0A

A ———=rmp,-pn, nH=-——+——| ——-—Co0x

) v ov PPb hETEY Asina(au v j
or or, _

———t= -qp, sin m- gcos in A osr
v oy PaT R AR gecosmF B o
dx+ Acosmdut Ccosndv (qdw ,qdy-z( rdu, rav .
(B") dy+ Asin mdut+ Gsin ndw (rdu ,r dy % ( pdu ,p Qv,
dz +(pdut pdy y( qde ,q dv,X

Line traced on the surface:

(4) dscosw= A cosm du+ Ccosn dy, dssin w=Asinm du+ C sinn dv.

Angle between two directions:

5) dsdscosw-a )= Adw u+ ACosr (dd ¥ d¥ ¥ T v
dsd ssinfw—-a )= ACsina (d¥ u dd V.

Conjugate directions:

©) A(gcosm- psinm)dw ¢+ Q. qcosr psinndv v
+A(gcosm- psinm)dw v C(ccosm psinn dv x|

Asymptotic lines:
(7) A(qcosm- psinm)dé+ C(gcosh psinn)dw 2 A qcosm , psinn) du=0.
Lines of curvature:

®) Acosmdu+ Ccosndw o (qda g dF C
Asinmdu+ Csinndwvp ( pda p d= O
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Differential equation:

©) A(pcosm+ gsinm)dé+ C( pcosr gsinn)dv
+[A(p.cosm+ g sinmp C( pcosm gsinm) dvde (

Radii of principal curvature:
(10) A (poh —qpL) — 2 [A (pr cosm + g; sinm) —C (p cosn +q sinn)] + ACsina =0,

9C _0A 9A_0C
(11) ACsina - 0’a _i ou aVCOSO' _i ou OV cow
RR duov ou Asina 0 Csina
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TABLE IV (Chapter 11)

Arbitrary rectangular coordinates:

(1) é=A n=0, & =0, m =0, n:a:I—ZT, m=0

op _op,

Ag+Cp=0, - = g,

4 p N ov ar—rq
1 0A oq 0Jq,

A ==, — ——=Ip, — pPr,,

*) ' C v av v P~ Ph
_10C  or o, _

n= ——, —-—*=pg-ap,

Aodu ov 0V

dx+ Adu+(qdw g dv z( rdd#t ,r gv,
(B) dy+Cdv+(rdut y dy x( pdad p dv,.
dz +(pdut p dy y( qde g gv.:

Line traced on the surface:

(2) dscosw=A duy dssin w=C dv.
Conjugate directions:

(3) Aqduov-Cpdvov+Aq (dudv +dvau) =0.
Asymptotic lines:

(4) Aqdf-Cpdv+(Acq—Cp) dudv=0.
Lines of curvature:

5 Adu+p(gdut g dy=0,

®) Cdu-p(pdut p dy=0.
Differential equation:

(6) Apdd+Cqdv+(Cqg+Ap)dudv=0.

Radius of principal curvature:

@) p{ﬂ—%j —p(p—C g +AC=0,
ov du
© AC__3(100) (108
RR ou\ Adu) ovl Cav)’

1 1
9 AC|=+=|=Ap-C
9) (R Rj rp-Caq
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TABLE V (Chapter 11)

Coordinate system defined by the lines of curvature:

(1) ¢=A, n=0, &=0, m=0p=0, @qw=0,
1 0A op,
r=-——, —L=-qr
C dv gy
10C 0q
A = —_—, — = ,
(A) Y v ™
or or, _ 0 (10p, 1 dq
———=-0p, 0.
ov adu R au(qauj ipa\J =

Conjugate directions:
(2) Agqduau-Cpdvdv=0.
Asymptotic lines:
coSw sifw

3 Aqdd-Cpdv =0, + =0.
(3) q PL = =
Radii of principal curvature:
() rR=-2, Rr=%
q P
orR _ _, dlogq OR _ , dlog p,
5 —=R’'- : R’— :
®) ov = R ov u - R ou

Line traced on the surface:

_ Adu . Cdv
cosw= ——, sinw= —,
ds ds

cosw _ cos W, sifw

6 =
(6) P R =
1 dw 1 1

7 == sin wcos
% r ds (R R’j “

_coswwdp sirw(_z_:ad_mj

> ds T ds

8) P P

2@du2 326Rdlf| d\/_3 ,0 Rdudv ,0 'R &

ou ds qavdé ds IClaudsds 0 v d
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TABLE VI (Chapter 11)

Symmetric coordinates:

1) ds’ = 44’ du dy
(2) $=A, n=-iA  &a=A  m=ij
: op dp,
+ = - , —_—— == -rq,
p+p=i(g-0) v au ar—rq
. 0logA oq Oq,
A r=—-l——, —-——==Ip,—pr,
(A) % v ou PP
r. = i—6|09/] ﬁ_%:pq -q
! v ' av au DT

dx+ A(du+ dy+(qgdu g dv z( rda ,r gv,
(B) dy+iA(dv—dy+(rdut+ y dy x( pdd p dv,.
dz +(pdut p dy y( qde g Qv.:

Conjugate directions:

(3) @+ip)ducu+ (q—ips) dvov+(q—ip (dudv+dva)=0.
Asymptotic lines:
(4) @+1ip) du? + (qu —i p1) dV? + 2 (@ —ip) du dv=0.
Lines of curvature:
5) A(du+dy + p(qdut gdy=0,
iAdu—-dy)+p(pdut pdy=0.
Differential equation:
(6) ©—igdf+ (p+igy)d?=0.
Radii of principal curvature:
©) 7 @p—apy) —A p (P —p —iq —ig) + 24%=0,
1 1 8% logA
(8) — =0 97
RR A° duov
Curve traced on the surface:
9) do— 2A du’ o= 2A dv’
ds ds
SND ys= dw+ rdu+ rdv= do- (a ';’9" du-2 'aog" dg
(10) u v

=I—[d Iog@— zalog)l du+ 26 logA dv} )
2 du Ju ov



CHAPTER 111

NORMAL CURVATURE AND GEODESIC TORSION

Euler’s theorem on the curvature of normal sectierfSormula of O. Bonnet. — Theorem of J. Bertrand. —
Introduction of geodesic torsion. — Geometric expressiontier six rotations that enter into the
previously-given formulas. — Relations between the sgeoenetric elements in the case of oblique
coordinates. — Joachimsthal's theorem that relatesetdirtas of curvature that are common to two
surfaces. — Laguerre’s formula. Its application to titerdenation of the radius of curvature of a line
that is traced on the surface at the points where tamgent to an asymptotic line. — Beltrami’s
theorem. — Torsion of an asymptotic line. — Bonneifenula that relates to the radius of curvature of
an asymptotic. — Application to isothermal orthogolyatems.

505. We begin with the study of the two formulas that dhe curvature and torsion:

(1) cosw :i = sinw(p%+ plﬂ/j —cosw(q%+oﬂﬂ/j
o P, ds ' ds ds ©ds)’

(2) w_1_ cosw(p%+ ﬂ/j +sin w(q%+ ﬂ/j
ds 1 ds R ds ds 4 ds)

The first one tells us the variation of the normoatvature for all of the curves that
pass through the same point of the surface. It contain the celebrated theorem of
Euler that relates to the variation of the curvatof normal sections. In fact, if one
supposes that the coordinate lines are lines ofature of the surface, and if one
introduces the simplifications that result from ttHaypothesis then the preceding
equations will take the following form:

cosw 1 _ co§w+ sifw

3 - )
© e p R R

do 1 1 1) .
4 ——-==| =-=|sihwcosw
@ s T (R’ Rj

The first of those formulas immediately gives Esleheorem. The second one,
which was given for the first time by O. Bonnd), (will permit us to present the
remarkable laws that Bertrand added to those @)

If one considers a fixed poiM on a surface and an infinitely-close pdihtthen the
direction of the normal &1’ can be determined in the following manner:

() O. BONNET, “Mémoire sur la théorie des surfacdsiirnal de I'Ecole Polytechniq@2 (1848), 1.
() J. BERTRAND, “Mémoire sur la théorie des surfatdeurnal de Liouville (19 (1844), pp. 133.
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1. By the angle that the normalMtmakes with the projection of the normallt
onto the normal plane 8 that passes through the pdit

2. By the angle that the normal léit” makes with its projection onto that normal
plane.

The first of those two elements is obviously the armgfl contingency of the normal
section atM where the plane passes throdgh When the poinMturns around, the
variation of that angle will be known: It is given Byler’s theorem. Before Bertrand, no
one had dreamed of determining the magnitude of the secote antyseeking to find
how it would vary when the poimdl “displaced arountl. Nonetheless, the study of that
element is essential if one would like to know compjetbé properties of the pinching
of normals that are infinitely-close to the normaMa It is easy to see that such a study
can be carried out completely by means of Bonnet’sutam

Indeed, apply it to the normal plane sections that gassigh the pointM. The
torsion is zero for those sections, and formulas {#xensequently give us:

1 1
5 do=| ——-— | dssin wcosw
(5) @ (R, Rj

Now, in generalg denotes the angle between the osculating plateeteurve and
the normal to the surface. Inthe case that weleading with, consider a poiM "that is
close toM on the plane section consideredwill be the angle between the normakat
and the plane of the section. Since that angkeiie at the poinM, dew will be (upon
neglecting second-order infinitesimals) the anpl tvas considered by Bertrand, which
can be established directly from the preceding tdammoreover.

That formula shows us thalwwill be zero for the two principal directions. In
general, the values atowill correspond to the same valuedsf and they will be equal
and of opposite sign for two rectangular directions

506. One can substitute the moment of the two noragld andM '’ for the angle
da. Imagine a force of length equal to unity thadliected along the normal &t The

moment M of that force with respect to the normalhatwill equal to oy, in which o

denotes the shortest distance, amds the angle between the two lines. Now, if one
slides that force along the normalMt until the point of application arrives &’ then
one can decompose it into two other forces, ongtuth will be directed along the
projection of the normal &1 © onto the normal plane & that containd/’, and the other
of which will be perpendicular to that plane. Tinement of the force will be equal to
that of the second component, which is equalapand whose distance to the normal at
M is obviouslyds upon neglecting second-order infinitesimals mtilvo evaluations.

M = oy =ds dv=d< (%—%J dssin wcosw
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It is easy to verify that this value g¥ will not change when one passes to any
parallel surface, because upon replacinguginoswwith their values, one will find that:

M=R’-R p1qdudy

and the quantitieps, g, R”— Rwill obviously not change (n&00) under the passage to
the parallel surface.

If one would like to know the anglgy between the normals 8 andM’then one
would obviously have:

5 _ o dscoswz_ coSw sifw
W?=dw +[—p j _( 7t jdsz.

507. Bonnet’s formula leads to some other consequenkeparticular, it gives rise
to the introduction of an element that relateeodurves that are traced on a surface.

.1 . . .
The function—= —Z—m that relates to a point of a curv@) (will remain the same for all
T ds

the tangent curves to the cur@) (@t that point, so consider a tangent geodess; Iim
particular. By definition, one will have:
w=0

for that line, and the preceding function will reduo the torsion. Thus:

_da

S

N

represents the torsion of the tangent geodesicalinen arbitrary point of a curvEy;
Bonnet gave it the name géodesic torsion.That definition is appropriate, although it
has the inconvenience of evoking the idea thatethsran analogy with geodesic
curvature that does not exist. The geodesic tonsianot preserved when one deforms a
surface.

Be that as it may, once one has introduced thatnagion, it will be very easy to give
geometric expressions for the six rotatipng, r, p1, g1, r1 .

Let 1 /pw, 1/p, 1/t be the normal and geodesic curvature, and the g®ode
torsion, resp., of the arc lengthdu and similarly denote the analogous elementsivelat
to the arc lengtic dvby 1 /o, 1 /04, 1 /ty, resp.

The previously-established formulas will give us:
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A : C :
— = psinm- gqcosm, —= p sinn- ¢ cosn,
(6) A:a_rn+r, _C:@+rl,
logu ou pgv ov
A : C .
t—=—p005m— gsinm, t—=— p cosm- ¢ sinr

If the curvilinear coordinates are rectangulantbee will haven = 77/ 2, m= 0, and
the preceding formulas will become:

A__, C_

o oo M
@) Aoy Sy

Pas Py

A_ C__

E— P, 'E— G

We then have the definition and geometric integiren of the six rotations. One
knows that O. Bonnet, in his beautiful proof of tiedazzi formulas, introduced those
six quantities without considering them to be riota, but by appealing to only their
geometric definition that would result from the @eding formulas.

508. In the case of oblique coordinates, one can dhice the expressions for the six
absolute curvatures in place of the six rotati@ssin the case of rectangular coordinates,
and set:

A = psinm- gcosm=-— Q,

A _om oa
—=—+r=R—-——,
Py OU ou
A .
t—=—pcosm— gsinm=- R;
(8) ’

C .
— = p,sinn—-¢q cosn= P,
C _on oa
—=—+4r, =R +—,
Py OV R ov
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One deduces from this that:

p=Rcosm- Qsinm, p= Psinp Qcosr

9) g=Psinm+ Qcosm, ¢=- Pcosr Q sinr
on om
r=R-—, r=R-——,
ou TR,

and upon substituting those values into formufal[pp. 14], one will obtain the system:

A(Rcosa - Q simr = C(Psimr— Q cog ),

B 1 (aA oC j 1 (ac A j
R=—-—— ——-—cosa |, R=—— — —— COo%
Csina\dv 0u Asina\ du 0V

oP . oP, 0Q,
—- =sina| — - RQ |+ cosy| — + RP|,
(10) ov QR (au Qj (au Eﬂ
6_Q+ Re:sina(@+ Rl?j—cosa(@— RQ) ,
ov Jou Ju
0Q O0R _ d«a .
——-—1= -(PP+ cosa + (PQ- sina .
N 9y dudv (PR+QQ) (PQ- QP)si

Those equations, which coincide (up to notation) withothes that Codazzi gave at
the end of his paper, are obviously more complicatedftiranulas A). That fact seems
to indicate that the utility of the Codazzi formulaglue, above all, to the fact that the six
geometric elements that figure in them can be considerddfine a system of rotations,
which is true only in the case of oblique coordinates.

509. Bonnet has remarked that his formula immediately batshian important
theorem. Indeed, from that formula, the only curved gfass through a point of the
surface whose geodesic torsion are zero at that partharones that admit one of the
principal directions at that point for their tangenfThe lines of curvature are thus
characterized by the property that the geodesic torsiaerio at each of their points.
That theorem is sometimes attributed to Lancret, ¢lveagh that geometer never stated
it. It is related most intimately to the beautifubpositions that Joachimsthal gave in
regard to planar or spherical lines of curvature, and whkebkhall rapidly discuss:

When two surfaces intersect at a constant angle, the line of intierseannot be a
line of curvature of one of the surfaces without being a line of awevalf the other one.

Indeed, if @ and w’ denote the angles that the osculating plane of the dine
intersection makes with the normals to the two sadathen it is clear that the angle
between the two normals will me — @’ If that angle is constant then one will have:
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da/

S

dw

ds

N
N

at each point of the intersection.

That equality shows that the geodesic torsion of thieecwill have the same value
when one refers to the two surfaces in successiorcanhot be zero for one of the
surfaces without being zero for the other one.

Conversely, if the intersection of two surfaces ina of curvature for the two
surfaces then they will cut at a constant angle, usane will then have:

dw _1 dao do _do’

F-p==-2HX Sl

ds: T ds’ ds ds '

N

and consequently the angie— @’ will be constant.
In the case in which one of the surfaces is a plaesphere, those propositions will
give the following corollaries:

If a plane or a sphere cuts a surface at a constant angle then the ititerseit! be a
line of curvature of the surface.

If a line of curvature is planar or spherical then the plane or spheredbrains the
curve will cut the surface at a constant angle.

In order to attach these propositions to the precedweg @ will suffice to remark
that any planar or spherical line is a line of curvaturthefplane or sphere on which it is
traced.

Moreover, all of those propositions have their truegio in the theory of
developments of skew curves. Indeed, we have seen [L5pthat any normal to a skew
curve that envelops a developable will make an avigigth the osculating plane that is
defined by the formula:

ds

dv=—.
r

If one is given a curve that is traced on a surfaee th order for it to be a line of
curvature — i.e., in order for the normal to the surfcenvelop a development of the
curve at all points — it will be necessary and suffitinat the preceding relation must be
verified when one replacéswith ¢, which is the theorem that was stated above.

One likewise proves Joachimsthal's theorems. Fanple if two surfaces cut along
a common line of curvature then the normals to the surdaces at each point of that
curve will envelop two distinct developments, and as altiehey will cut at a constant
angle. The converse propositions are establishedddggous considerations.

Joachimsthal’'s theorem leads to a consequence thhaveealready stated without
proof [I, pp. 316]:

Whenever a surface admits one planar line of curvature, the sphenrakentation
of that line of curvature will be a circle whose plane is pardlethe one that contains
the line of curvature.
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Indeed, the normal to the surface at all points ofitfeeof curvature will then make a
constant angler with the perpendicular to the plane of that line. Aeslt, the spherical
representation of the line of curvature will be the fofi extremities of the radii of the
sphere that make an anglewith that perpendicular; viz., it will be a great taraf the
plane of the line of curvature is normal to the surfaog a minor circle if the angle is
not a right angle. However, in one and the othee,ci®e plane of the circle will
obviously be parallel to that of the line of curvature.

Conversely, if the spherical representation of @ bhcurvature is defined by a circle
of the sphere then the tangent at all points of thatwill be parallel to the plane of the
circle, and consequently the line itself will be locateda plane that is parallel to the
plane of the circle.

510. Having studied O. Bonnet’s formula, we shall now sdgwawords about that
of Laguerre. If one refers the surface to the cootdiagstem that is defined by the lines
of curvature then it will take the form:

_coswdp sirw(z 3dmj 2 ORd¥ __ ,dR dd d
oo ds  p \r ds ou dg ov dé
,OR dudvV  ,0R dv
o0 ds P ovds

It results from this that the product of the leftrd side withds® will remain constant
when one passes from the surface to any paralifeicgu Indeed, in order to perform that
change, it will suffice to increas® andR’ by the same constant without changipgnd

P1 .
If one applies the formula to a normal sectiothefsurface then one will have:

w=0,

1
and the left-hand side will reduce t%(d/—m It follows from this that the first-order,
S

third-degree differential equation:

7 aR 20R , 0R

(11) dus + 3q duzdv+ 3p1—du dv + pla_d\F 0

defines the curves that are traced on the suréaefor which:

The normal section of the tangent surface to theecwill be super-osculated by a
circle at any point of the curve.
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Those lines were considered for the first time by d&darnerie {). It results from
their differential equation that they will be preserwelden one passes from one surface
to a parallel surface. That remark was made by Ribau@purOne easily determines
them for second-degree surface. They then reduce tosywtems of rectilinear
generators and the curves on which the total curvaturkeo$urface remains constant.
One can attach their theory to that of the contact durface with a cylinder of
revolution. However, that study will find its place samhere else.

511. Laguerre’s formula permits one to solve a very irgéng question to which
Bonnet was the first to call attention.

Consider a curveQ) that is traced on a surface, and suppose that itgemano one
of the asymptotic lines that pass through one of its pdntWe will then have:

COSw _
Yo,

01

and consequently if cagis non-zero — i.e., if the osculating plane do&scoincide with
the tangent plane to the surface — tiewill be infinite. That is what happens, for
example, for a plane section whose plane passesghrone of the asymptotic tangents
and does not coincide with the tangent plane.
However, if the osculating plane of the curve doascide with the tangent plane to
the surface then one will have:
cosw= 0,

and p can have an arbitrary value. The geometric caostm that one deduces from
Meusnier’'s theorem likewise breaks down, and adadd to an indeterminacy.

Bonnet, to whom the preceding remark is due, nasnga formula for that special
case that one easily attach to the one that wasgtoy Laguerre.

Let 1 /1, 1 /pdenote the torsion and curvature, resp., of tiheecconsidered, and let
1/ 710, 1/pm denote the same quantities that relate to theestargsymptotic line. We
have seen (n0g492 and493) that the two functions:

N

_dw and _cos;v%+ smv(_z_edmj
S p°- ds p \T ds

have the same values if one calculates them sueels®r two curves that are tangent
to the same point. Here, the angteis equal to one quadrant for both the curve
considered and the asymptotic line. Howedew/ ds which is zero at each point of the
asymptotic line, is not necessarily zero for thevewconsidered. One will then have:

() DE LA GOURNERIE, “Etude sur la courbure des surfacdsiirnal de Liouville (120 (1855), pp.
155.
() RIBAUCOUR, “Propriétés des lignes tracées sur lefases,” Comptes rend@d (1875), pp. 642.



Chapter 11l — Normal curvature and geodesic torsion. 49

1 dw_1
r ds 1,
(12)
1(_2_3(1_@): 2
p\T ds) p,

(13)

That equation will tell on@ whenr is given.

Suppose, for example, that we would like to deteenthe radius of curvature of the
section by the tangent plane. That section willehavo branches that pass through the
point of contact. For each of them, one will have:

and consequently)

However, in order for the preceding formulas tothay useful, it is necessary that
one must be able to determingand 7, . Here is how one achieves that:

512. In the case of an asymptotic line, from form@a)([pp. 9], one has:

_i: pdu+ qdvcosaﬁ gdu+ g dv
T, ds ds

sin @

Moreover, the differential equation of an asymiptbihe gives us:

pdu+ pdv sin cw— gdu+ qdv

ds ds

cosw= 0.

These two relations can be replaced with the fiaflg one:

pdu+ p dv+ COSw _

Ol
ds T,
(14) .
gdu+q dv+ sinw _
ds T,

() This elegant relation is due to Beltrami, who gave #n article “Sur la courbure de quelques lignes
tracées sur une surface,” that was included in Nouvelleakes de Mathématiques @§1865), pp. 258.
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Upon replacingls sin «y ds cos wwith their expressions (5) [pp. 14] as functions of
du, dv, one will find that:

(p+ Acosmj du{ - Ccosnj dv=0.
TO Z-O

[p+ASInmjdu+(q+ Csin nj dv=0.
Z-0 Z-O

or, upon eliminatinglu/ dv.

(15)

(pow —qgpu) 72+ ACsina = 0.

Upon introducing the product of the radii of principal ctiuva using formula (14)
[pp. 16], one will obtain:

(16) n=+J-RR,

which is a remarkable expression for torsion that is duenneper. One deduces from it,
in particular, that the asymptotic lines of surfaces wiahstant total curvature are skew
surfaces whose torsion is invariable.

If one substitutes the expression fein formula (13) then it will become:

H
Qe

_1

_ Ao
17 —_— =
(17) 20 ’/_RR—l

T

That formula, which is due to O. Bonné}, (implicitly subsumes that of Enneper,
because it suffices to malge= o in order to recover the expression for the torsiban
asymptotic line.

513. It remains for us to determipg. Here again, the formula was given by Bonnet.
Take the coordinate system that is defined bytities of curvature. The direction of
the asymptotic lines will be defined by the equatio

sin2w+co§w _
R R
sinw= — R , = ,
JR-R J—-R

01

which will give:
JR
JR-R’

(18) COSw=

() Nouvelles Annales de Mathématiques4Z)1865), pp. 267.
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in which radicals are always given the same sigmmbta (18) [pp. 7] will give us:

d_s =dw+rdu+rqdy,

Po
and consequently:

1 Owdu Jwdv du d\
— = —— 4+ ———+r—+r,—

P, Ouds dvds ds © d

or upon replacinglu/ ds dv/ dswith their expressions as functionsaf

1 cosa)aa) Siwow  r r
—= —+—cosw+-L sinw.
yor A au C av A

Now, one deduces from the formulas of 5@0 that:

aR oR
R v n_ R 4y

r
A CRR-R C ARR R’

and upon replacing r; with those values in the expression fgr, one will obtain:

1 _ coswow codw simd lo®R | _siwow sfw cesd Idg
o, A ou A au C dv C ov '

1 _ coswsinwd logR tam ) sihw casd lo§ cat

yoR A ou C ov

Now, replace sinwand coswwith their values, and one will find that:

19) R-R® _ R o (-R) R 3 (R
O 2(-RP?* Adul R ) 2R? @ V(- R

'3
Upon taking the auxiliary variables to b%— and g one will easily arrive at the

transform of that formula, and put it into the @lagform:

_ 718 1/3 _ 1/3
(20) i:4( RFl)sl2 B 6i Rj N 0 L Rj |
o (R-R) MAMu-R @ R
which was given by Bonnet, but which presented ndiffeculties than the preceding one
in terms of observing the signs.
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One can give an entirely geometric form to the exmyassthat were found by
remarking that:

represent the derivatives that relate to the displacés that are performed along the
lines of curvature. Upon denoting those displacementishyls, one will find that the
absolute values of the two radii of curvature satisfy:

1 _4-RR)Y®| a( RY°’ o (-R)"®
&) 2 (R-R)” [E(Wj +6_§(_|@J }

An important application will show all of the imest that can be presented by
research of the same nature as what we just destusk his studies of mathematical
physics, the illustrious Lamé proposed to deterndhietriple systems that were both
orthogonal and isothermal, and the solution thagdree to that important and difficult
guestion did not fail to go on at some length aveheraise some difficulties. In a paper
that is already classical®), Bonnet showed that all surfaces that belong sgstem that
is both orthogonal and isothermal must enjoy thleviong property: The principal radius
of each line of curvature that corresponds to linatis proportional to the cube of the
other radius. In other words, one must have:

a R 1/3_ a -R 1/3 _
) o) = wlw)

and consequently O. Bonnet could then deduce frierfohmula that the asymptotic lines
of each of those surface must have an infiniteusdif curvature; i.e., they must reduce
to lines. The surfaces that the system is conghiedanust then be necessarily of degree
two.

(*% O. BONNET, “Mémoire sur la théorie des surfacestisrmes orthogonales,” Journal de I'Ecole
Polytechnique30 (1845), pp. 141.



CHAPTER IV

GEODESIC LINES

Various forms for the differential equation of geoddsies. — Null-length lines for a surface that satisfy
that differential equation. — Geodesic line that padsesigh two sufficiently-close points. — Gauss’s
theorem that relates to the geodesic lines that thmeagh a point of the surface. — Shortest path
between two sufficiently-close points. — Geodesicd #ra normal to an arbitrary curve. — Gauss’s
second theorem. Extension to the definition of paralieles in the plane. — Orthogonal trajectories of
an arbitrary family of geodesics. They are determimed simple quadrature. — Variation of length of
a segment of a geodesic line. — Orthogonal systemdsiufined by two families of geodesic ellipses
and hyperbolas. — Weingarten’'s theorem. — Bipolar coordinatéise plane and on the sphere. —
Liouville’s theorem that relates to the two fanslief geodesic lines that mutually cut at constant
angles.

514. It remains for us to undertake the study of the formula:

(1) E=da)+rdu+r1 dv,

Py

which gives the radius of geodesic curvatgg®f an arbitrary curve that is traced on the
surface. That formula is distinguished from the prewgdine by an essential property
that we have already pointed out: The quantities thated in it depend exclusively upon
the form of the line element, and in turn, the geodasigature will remain invariant
when one deforms the surface in an arbitrary mannerbalyim by studying the geodesic
lines. Their differential equation:

(2) dw+rdu+ry;dv=0

has order two. One knows how to integrate it only in allsmumber of cases.
Nevertheless, in his celebrated papd), (Gauss, and the geometers who followed him
have enriched the theory of geodesic lines with a gneaber of interesting propositions
that we shall develop first of all.

In the first place, we shall indicate some différfemms for the differential equation.
If we preserve all of the notations of Chapter | [ppth2h we will have:

3) coswds= ¢du+ & dy, sinwds= 7 du+ ndy,

and as a result:

() GAUSS, “Disquisitiones generales circa superficies asi'vMémoires de la Société Royale des
Sciences de Goettingiie(1828), andsesammelte Werk&d. 1V, pp. 217. The paper by Gauss has often
been reproduced. In particular, one can find it, agediy Liouville in 1850, in MONGE'épplication de
I'’Analyse a la Géométrie
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ndu+s, dv

(4) w= arctan :
&du+é dv

Formulas A) (no.481) give us:

Ar:—ia_E+/7%+ %:G_F—}E—”la_”—glg,

5) 2 0v oJu Ju o0v 20v Ju Jou
10G on 0 10G OF on, 0&

A= ———p —+—-¢&§ 1=—"————+np—2+F 2L

Y 24u ,716u 5lau 20u dv ' av ‘(av

in whichA always denotes the determinant:
(6) A=¢m—-né.

If one substitutes the values af r, r; in equation (2), and if one develops the
calculations by taking into account the relations:

(7) &+n*=g,  E&a+nm=F,  &+nl=G,
then one will obtain the following equation:

2(EG- F*)(dud v dvd 0

:+(E6—E+ FE—zEﬁj duf
ov oJu Jdu

@®) +(3F6—E+GE—2FE—2E6—GJ du dv

ou oJu Ju Jdu

—(3FG—G+ Ea—G—ZFE— 2Ga—Ej du dv
ou ov ov ov

—(Ga_G+ Fa—G—zeﬁj dv,
ou ov ov

which characterizes the geodesic lines and containslmniyuantitie€, F, G.

515. If one adopts the arc lengshof the geodesic line as the independent variable
then one can replace the preceding equation with tvierelitial equations that define
andv as functions o$. For example, one deduces from the first formulg)rthat:

w= arccos%’ :

Choose the system of translations for which one has
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9) &=0
S0 one can take:

F JEG-F?
10 =G, =t

The substitution of the values nfr;, win formula (2) will permit one to calculate
2

E and will give one the first of the following two equai$o

ds?
d?u
2(EG- F?
( )d32
(ZFG_F_GG_E_ _jd_‘f
ou ou ds
+2(FaG GEJ—dUdV+(Fa—G+Ga—G—2G Fjdﬁ',
ou ov) dg ov du ov) ds
(11) )
2(EG- FZ)M
(Fa_E COE gl |8
ou ov ds
2
o[ IE 08| dud, (200 0C 3G\ d
ov ou) ds ov 0V u)ds’

which are deduced from each other by the exchangeaoflv, as well a£ andG. In
order to determine andv as functions o§ completely, one must append the following
relation to them:

du? dudv _ dv
12 E—+2F +G—=1,
(12) ad "% ag "% e

which will serve to define the auxiliary varialde
One can replace the two equations (11) with theviing ones:

d(Edu+ Fd\/j_aEdEI 0 Fdudvo Gdv
pd(Edur Fdv)_0Edu, ,0 Fdudyo Ga
(13) ds ds dudés odu ds 0 uds
21(qu+dej_ﬂEiﬁ 0 F du G__d
ds ds ovds ov ds 9 vas
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which have a more elegant form, but are not solved wat$pect to the second
derivatives.

516. The various equations that we just obtained exhifiimdamental property of
geodesic lines that one can state as follows:

If one is given a geodesic line and two arbitrary points A, B thatalen on that
line then the first variation of the arc length of the geodesic th&iund between those
two points will be zero when one passes from that geodesic to tayimdinitely-close
line that has the same extremities, and conversely any line tltsehjat property will
be a geodesic.

Indeed, consider an arbitrary geodesic line that is foundeeet the point& andB
and is defined by the equation:

v=¢(u).

Its arc length will be given by the formula:

[[JE+2FrV+GV au,

in which v denotes the derivative ofwith respect tau. If one desires that the first
variation of the arc length should be zero then upon applythe principles of the
calculus of variations, one will get the differenegjuation:

OE , OF , 0G
=2V V2
(14) d GV+F _Ov_v dv  _g
dul JE+2FV+GV? | 2 E+2FV+ G¢

If one develops the calculations then one willbrer equation (8). The proposition
is then established.

However, one can also choose the arc lerggtb be the independent variable;
equation (14) will then immediately (and with ndccdation) take the form of the second
equation (13). The first of those two equationslesluced from the second one by the
exchange ofi andv, so one can consider the system (13) to have fr@aed, which is a

2 2
system that one can, in turn, solve with respecdthéo second derivative%?u, %
which will give equations (11).

517. The calculations in the verification that we jpsinted out lead to an interesting
consequence. For example, recall equation (14¥hioh we regardl as an independent
variable. Upon developing it, one will first hatre following form:
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{Zd(G\HF) dl{—+26—5 %G H(E+Z:\/+G\/)

-(GV+F)dE+FV+GVH)=0
One then recognizes immediately that:
The null-length lines on the surface, which are defined by the equation:
E+2FV+GVv?=0,
satisfy the differential equation of the geodesic lines.

Indeed, it is easy to establish directly that theseslare true geodesic lines, and that
their osculating plane is normal to the surface at gaint. It suffices to remark that the
osculating plane to any null-length line is tangent the circle at infinity and
consequently normal to the tangent. Hence, if alaalith line is traced on a surface
then since its osculating plane at each point is nbtonthe tangent at that point, it will
necessarily contain the normal to the surface.

One can, moreover, verify the property that we jgsldished in another way. If one
supposes that the surface is referred to its null-lelimggh then one will have:

E=0, G=0.

Equation (8) will then take the particularly simple form

(15) F (du d® — dv dfu) —dv du(a—qu—a—Fdj 0.
ou ov

One then recognizes that all of the coordinate lnsch are defined by one or the
other of the two equations:
dv=0 or du=0,

satisfy the differential equation of the geodesicdi(i8.

(* The null-length lines are nonetheless distinguished ftwnother geodesics by a property that is
good to point out. The first variation of the arc léngill be presented in an indeterminate form when one
passes from one such line to an infinitely-close curVaat amounts to saying that the arc length of any
infinitely-close line to a null-length line is an inifiesimal of order 1/ 2. Indeed, let:

v=0
be a null-length line. For any infinitely-close litiat is defined by the equation:

v=e¢c¢(u),

in which £ an infinitely-small quantity, one will have:
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518. The equations of various forms that we obtainedHergeodesic lines exhibit
an essential fact to which we shall appeal at evergtdong the way in the theory,
namely:

Only one geodesic line will pass through any point of the surface thatsaaimwell-
defined tangent to the surface for its tangent at that point.

In other words:

A geodesic line is uniquely determined by the condition that it pdssegh a point
of the surface and admits a given tangent.

On the contrary, if one would like to subject a geadbkse to the condition that it
must pass through two points then it would be easy tthaé¢he problem could have an
infinitude of solutions, even when the two points areywdose to each other. For
example, suppose that the given surface is a cylindevoluten; the geodesic lines will
be helices. One will easily recognize that if one tales pointsM and M’ on the
cylinder, no matter how close they are, then thetebsian infinitude of geodesic lines
that pass through those two points. Those helicedistiaguished from each other by
the number of circuits that a point on them will makeen it starts aM before arriving
atM’, and by the sense in which one performs that motion.

However, no matter what the surface considered, anedetermine a magnitude
such that if one takes a lengthhat is less than or equalltalong each geodesic line that
passes throughl and starts av then no other geodesic line whose length is lesslthan
will pass through the poiril and the extremity of that length. That propositiomas$
absolutely obvious, but one can establish it rigoroustizenfollowing manner:

We have seen that the coordinateendv of a point of the geodesic line are defined
as functions o$ by equations (11), which have the following form:

2 2 2
E: a(@j +2bﬂ'l_dv+ C(_dl ,

(16) d ds2 ds ds d2
d’v_ ,(du , du dv d
—zad|—| +20——+¢|—] ,
ds ds ds ds d

in whicha, b, &, ... are given functions af andv. If one would like to study the set of
geodesic lines that pass through a pdMnivhose coordinates atg, Vo then differential
equations will giveu andv as functions 0§, which is measured by startingMt and the

o v :
initial valuesuo, Vo, (%) : (d—j that relate to that point. Moreover, we remarit th
S 0 0

ds

the preceding differential equations will not charigrm when one replacesith as, in
which a denotes an arbitrary constant. It will then beessary that the values wandv

s= Je[\2F¢'(u)du.
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du dav) . 1(du 1(dv
must not change when one replacg$,— | , | — | with as, —| — | , —| — | , resp.
ds/, \ds), a\ds), alds),

That will be true only ilu, v depend upon not only, Vo, but also the variables:

. (duj _ (dvj
u=s|—|, V=s|l—|.
ds/, ds/,

One will then have:
u=f(u,v, Uy, Vo), v=¢ (U, V, U, Vo).

If the coefficientsE, F, G, and in turn, the functiors, b, &, ..., are developable in
integer powers ofl — w, vV — \p then the function§ and ¢ will be developable in powers
of U andv', and one will have two series of the followingrfor

U—w=U+au?+20’uVv +a'vZ3+ ..,
VBV +BU%+2B8UV +8"V i+ ...,

in which the coefficients, g, ... will be functions otly, vo, and which will converge for
all values olu', v whose modulus is less than a fixed quantity.
Since the functional determinant:
o(u,v)
o(u',Vv)

is equal to 1 fou' =V = 0, the preceding equations can be solved'for and will give
those quantities as series that are ordered inngoave — w, v — \b, which are series that
will remain convergent as long as the moduli ofsthéwo differences remain less than a
fixed quantity. In other words, only one geoddsie will pass through the poitdl and

a sufficiently-close poinM’ for whichu' andv' are less than a fixed quantity — i.e., the
length of the line is less than a given quantify. (That is the proposition that we would
like to establish. One can also state it by satirag one can delimit a region around the
point M such that only one geodesic line will pass throagharbitrary point of that
region and the poirt! that is contained within the region completéfyy.(

(*® Since one has:
2 2
e (o) 7l (e e LS
dS 0 dS 0 d 0 d 0

in which E,, Fo, Go denote the values & F, G at the pointM, upon multiplying bys?, one will obtain the
relation:

F=Eu?+ 2P U V +GyV?E

which shows that ifl, V' are less than a fixed quantity then the same thing eviitue fors.
(Y The variables!, V' are the ones to which Lipschitz gave the nanmeahal variablesn some more
general research. In particular, see Bulletin des Sdenathématiques (%) pp. 97-110.
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519. It results from that proposition that if one determsiremach point of the
preceding region by the length of the geodesic that jbeisgoint to the poinvl and by
the anglev that the geodesic line makeshtwith one of the tangents at that point on the
surface then one will have constituted a coordinate sy8tatns entirely analogous to
the polar coordinate system in the plane, and in whigthgne system of values farand
v will correspond to each point of the surface if one egjte takes, for exampla,to be
positive andv to be between 0 and2 The line element of the surface will be given by
the formula:

ds’ = duf + 2F du dv+ G dV,

in whichE is equal to 1. One will obviously have:

F=0,G=0
foru=0.

Having said that, express the idea that the linesconst. are geodesics. If one
employs equation (8), for example, then upon annuliiagand d®v, one will get the
condition:

a_F =0
ou

F can only depend upon just the variabl@nd since one hds= 0 foru = 0, F will be
identically zero. As a result, the line elementhaf surface will take the simple form:

(17) d€ =di? + G d\.

520. One can further establish the same result by adoptegorm of the line
element that was studied in Chapter Il [pp. 13]. Here,witi have:

d€ = du? + 2C cosa du dv+ G dv2.

We remark, moreover, that since the arc ler@Qtlalv that is found between two
infinitely-close geodesic lines must diminish indefijitevhen u tends to zero, it is
necessary that one must h&ve 0 foru = 0 for anyv.

Having said that, we express the idea that the imesonst. are geodesics. Upon
applying formula (2) and remarking thatis equal tan here, one will have:

a_m+r:0,
Ju

or, upon replacing with its value that is deduced from formul&s’) (no.493):

_ 6_a+cota6_C -0 a(CIoga): 0.

ou C ou ou
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Hence,C must be a function of
(18) Ccosa=¢ (v).

However, sinc& is zero foru = 0 and any, it is necessary that one must have:

¢ (v) =0.
The preceding equation gives us:
Ccosa=0
for an arbitrary value af, and in turn:
cosa=0.

We then recover the formula that was given already:

(19) ds = di? + C?av
for the line element of the surface.

521. That formula is of paramount importance. It permissto prove that the
shortest path between two sufficiently-close pointaenrface is always a geodesic line.

Indeed, take an arbitrary poilt’ whose coordinates atg, o on a portion of the
surface that we defined above, and which can be regardéeias generated by a
geodesic line of lengththat turns around its extremiby. up will have the length of the
geodesic line that passes throdandM”. If we consider any other path that connects
those two points and is included entirely within a porbémhe surface considered then
the length of that path will be expressed by the integral:

jo Jdu2+ CPav .

Now, that integral is obviously greater than:

I%du.

0
Hence, the path length is greater than

If the path leaves the portion of the surface that wg gefined then it will be
necessary that it first go froM to a pointy on the limit. Since the path lengthy is
equal to at leadt from the preceding proof, it will already be gredtenup ; the same
thing will then be true fortiori for the total path.

One can also present the preceding argument in a geofoem. Construct curves
= const around the poiM that present the general appearance of a seriesnoémivic
circles around that point as their center in the @larConsider two infinitely-close
curves; the arc length of any line that is found betwhertwo curves will be:

\ du? + CPdv .



62 Lessons on the general theory of surfaces. Book V.

Its minimum value will then be&lu, and it will correspond to the case in which one
follows a normal geodesic in order to go from one cuovartother. The shortest path
from M to M’ will then necessarily be the geodesic that passeaghrthose two points.

522. One can generalize the proposition that was obtamed. 520 as follows:
M

Figure 32.

If one is given (Fig. 32) an arbitrary cur@\' then construct the geodesics that are
normal to that curve. We define an arbitrary point efgbrface in the neighborhood of
AA by the arcv = AP that determines the foot of the geodesic that passesgthitbe
point M and by the lengthh = MP, when it is measured by starting wiRlon that surface.
As long asu is less than a fixed limit, a point will have only quesr of coordinates™).

(**) One can prove that proposition rigorously; it suffite appeal to the results that were obtained in
no.518.
We have seen that the valuesi@indv that relate to any point of a geodesic line that pabkseagh a
pointM with coordinatesl, Vo are functions of four variables:

du dv
Uo, Vo, S| — | ,S|— | .
o0 (deo (deo

If the pointM is taken on a curveC], and if, moreover, the geodesic line must be norm@xehenup, o,

s(%) , s(?’j will become functions of the variable that fixes theifyas of that point on the curve;
S 0 S 0

denote that variable by. u andv will be functions os ando. The functional determinant:

d(u, v)
d(s,0)

() %
ds), do

(8) %6
ds), do

will obviously have the initial value:

Since(@j , (@j determine the tangent to the geodesic line, they cdmnptoportional tod—q’, L) ,
ds/, ds/, do ' do

which define the tangent to the cur@.(
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Indeed, it suffices to remark that the geodesic linesatf@normal tAA will not criss-
cross as long asis less than a limit that one can determine.
Upon takingu andv to be variables, one will further have:

ds’ = du? + 2C cosa du dv+ C 2 dv/,
with the condition:
C cosa=¢ (v),

which expresses the idea that the parameter linearef geodesics.
Furthermore, fou = 0, one will have:

cosa=0
for anyv. One will then have:
¢ (v) =0,
and consequently one will recover the form that was wobthialready for the line
element:
ds = duf + C % dV-.
Thus:

When one moves along the geodesic lines that are normal to a curve of constant
length, the locus of the extremities of those lengths will bewe ¢bat is likewise normal
to the geodesic lines.

That is the generalization of a well-known resulitthelates to parallel curves in the
plane. As one knows, the two preceding theorems areodbauss.

523. One can also prove the last theorem in the follgwnanner: Consider a family
of geodesics on a portion of the surface such that onlypbti®se lines passes through
each point of the region considered, and associate thwess with another family of
arbitrary curves that will permit one to define a coordinatstem that is suitable to
determine all points of the region when it is combineathwhe first one. The line
element of the surface will be represented by a forsuth as the following one:

ds’ = E dif + 2F du dv+ G dV,
in which we suppose that the geodesic lines are curveaitimetewr. If one refers to

equation (8), and if one expresses the idea that itrifede when one introduces the
hypothesiglv = 0 then one will be led to the equation of condition:

Since the initial value of the functional determinantas$ zero, that determinant will remain non-zero
for sufficiently-small values o§. Consequently andv will be independent functions efand gin the
region that neighbors the curv@)( and converselys and o will be independent functions afandv that
admit only one determination in the neighborhood of thmeec(C).
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Ea—E+ Fa—E—ZEa—F =0,
ov Ju Ju

to which one can give the following form:

(20) 0/ E _ i F
ov ou./ E
One can then set:
06 F 06 06006
21 E=—, —=—, F=——".
21 VE ou’ JE ov du ov

Upon substituting the values & and F in the line element, one will give it the
following form:

2
d2=de?+ EC°F 42

One then sees that the curves that are defined by theoequa

F
(22) 6= j {\/Edwﬁ dv}z const.

are the orthogonal trajectories of the geodesicsideresl. Therefore:

One can always determine the orthogonal trajectorgg an arbitrary family of
geodesics by a simple quadrature, and if one refiees points of the surface to the
coordinate system that is defined by geodegics= const.) and their orthogonal
trajectories(@= const.then the line element will take the form:

(23) dg =d6*+ G dv .
The geometric interpretation is immediate.

Two arbitrary orthogonal trajectories will intercepghe same arc length on all
geodesics considered.

Those results are in perfect accord with the onesihdtave obtained already.

In the case where the geodesic lines all pass thropgling there will obviously be
orthogonal trajectories that remain infinitely-clasethat point during a portion of their
traversal, as seen from a point at a finite angld, @nsequently the point itself can be
included in an orthogonal trajectory, which proves Gausgststheorem.
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524. We see that the consideration of the geodesic lessslus to new systems for
which one must make:
A=1

in the formulas of no499. We point out the exceptionally simple form thae th

expression for total curvature will take in those systefsom formula (22) (no499),

one will have:

1 10°C

24 —_— ===,

(24) RR C v’

which is an expression that is due to Gauss, anchwire will often have to make use of.
By analogy, we give the name pérallel curvesto the orthogonal trajectories of a

family of geodesics.

525. One can deduce a fundamental formula that retatése variation of length of
a segment of a geodesic line from the precedingtses

(D)

Figure 33.

Let (Fig. 33)MP be a segment of the geodesic line whose extrenhtiand P will
describe two given curve€) and D). Employ the curvilinear coordinate system tisat i
defined by successive positiodMP, M’ P/, ... of the segment, and their orthogonal
trajectories. The line element will take the fo(23) in that system; ifi, up denote the
values ofu at the pointdM andP then one will have:

arcMP=u—-u.

Similarly, if u + du, up + dw are the values af that correspond to the point’, P’
then one will have:
arcMP =u+du—up—duw,
which will give:
darcMP =du —dy .

Now, in the infinitely-small trianglesiM H, PPK that are defined by the orthogonal
trajectoriesViH andPK then one will have:
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M’H= du =-MM’cosMMP,
KP’ =-dw =- PP’ cos P'PM,

and consequently the substitution of those valueduadu, leads to the following result:

(25) d arcMP = - MM’cos MMP — PP’ cos P'PM.

That formula is identical to the one that givesdiféerential of a line segment. Since
it is easy to obtain directly by the calculus of vhoias, it can lead to Gauss’s
propositions along a path that is inverse to the onentédtave followed.

526. Formula (25) permits one to extend a great number giogibons to geodesic
lines that apply to systems of straight lines in the ggonof the plane. For example,
one can formulate a theory on any surface that isogoak to that of the developables
and developments of a plane curve. We shall leatbaaeader the task of pursuing
those generalizations, and we prefer to attach theimetdotlowing consequence of the
fundamental formula.

M

M/

Figure 34.

Consider (Fig. 34) two curve€), (C"), and look for the locus of points such that the
sum or difference of theigeodesic distance® those two curves is constant. If one
dropsgeodesic normals MAMQ from a pointM of that locus to the two curves then one
must have:

MP £ MQ = const.,

and as a result, when one passes from a pbiot the locus to an infinitely-close point
M’ one will get:
d MP+d MQ=0.
Formula (25) gives us:
d MP =-MM’cosMMP,
d MQ:—MM'COSW.
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Upon substituting those values for the differentiahepreceding relation, one will
find that:

cosMMP + cosMMQ = 0.

In the case in which one takes the + sign, and in wéocisequently the sum of the
distances is constant, the equation will express e tidat the tangent to the locus is the
bisector of the angle that is defined by a geodesic lingoeoidngation of the other one.
When one takes the — sign (i.e., when the differdrate/een the distances is constant),
the tangent will be the bisector of the angle thaefned by the two geodesic normals.

Upon comparing these two results, we will obtainféliewing theorem:

If one constructs all of the curves on an arbitrary surface that @acedf points for
which the sum or difference of the geodesic distances to two giveescriamains
constant then one will obtain two families of curves that cut at a aighle in any case.

In what follows, we shall give the name gdodesic ellipseandhyperbolasto the
curves that comprise those families. Their definitieith not change if one substitutes
arbitrary parallel curves for the two basic curv€¥ &nd C’). Nonetheless, one must
remark that this change can transformehigsesinto hyperbolasandvice versa

527. We shall look for the form that the line elementleé surface will take when
one adopts the curvilinear coordinate system that wedgfted. However, we shall
take an oblique coordinate system that is defined by twessefiparallel curves as an
intermediary.

R (9]

Figure 35.

Consider a first family of parallel curves that wellstiafine by their distanca = AP
to one of them ), which is a distance that is measured along a nogmaatesic.
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Similarly, let there be a second family of parallehe@s that we define by their distances
v =BQto one of them@").

Construct the four curves with parametera + du, v, v + dv that define a curvilinear
parallelogramMNM’N’ whose anglé! will be denoted byr and whose edges will have
the values:

MN’=Ady MN=C dv

A andC are the quantities that figure in the expression:
ds’ = A>du” + C?dv* + 2AC cosa du dv

for the line element. If one draws geodeswN;, MN,; through the poiniM that are

normal to the opposite edges of the parallelogramttieefengths of those geodesics will
be:
MN;=dv,  MN,; =du.

In the trianglesMNN;, MN;, which one can regard as rectilinear triangles, otle wi

have:
MN; =MNsina, MN; =MN’sina,

ie.:
du=A dusin a, dv=C dvsina,
and as a result:
A=C= i
sina

The expression for the line element will then be:

42 = du2+d\i+2dud\cosa'.

(26) —
siifa

If one now takes:
(27) u+v=220, u-v=2/

then the curves with parameters v will be the geodesic ellipses and hyperbolas that
were defined above, and the expression for thecliament will take the form:

12 12

(28) dg = d”a+ d"a,
sin®—  cos—
2 2

which exhibits the orthogonality that was provecadly.
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528. Weingarten, to whom the preceding result is difp established it by a
different method, which we shall point out. Let:

d€ =E dif + 2F du dv+ G dV

be the expression for the line element. Suakenotes the geodesic distance to a curve
(©), the line element can be put into the form:

d$ =dv’ + o%du 2.
It is then necessary that the difference:
ds’ —di? = (E - 1) di? + 2F du dv+ G dV?
must be a perfect square. That will give us the comditio
F =G (E-1).
Upon likewise expressing the idea that the geodesic distance to a second curve,
one will obtain the condition:
FP=E(G-1).
Those two relations, when employed simultaneously,givié us:
E=G, F=JE(E-D,
and the line element will take the form:

(29) ds’ =E (du* +dv?) + 2 ./ E(E-1) du dv

One will recover the formula that we proved direatligh geometry by replacing
with 1/ sirf .

529. The functiona that figures in that formula will depend upon the natfrénhe
surface, as well as the basic curv€y, (C'), and cannot be determined, in general. We
shall point out two applications in which one will obtaine expression foo with no
difficulty.

First, consider the bipolar coordinates in a plane. né calls the distances from a
point in the plane to two fixed pointsr “then formula (26) will give:

(**) WEINGARTEN (J.), “Ueber die Oberflachen fir welche nesi der beiden
Hauptkrimmungshalbmesser eine Function der anderen isig’€d®urnaleé (1862), 160-173.
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2 12 ]
4 = dre+dr J.rfdrdr cosa.
sin“a

(30)

Let O, O’be two poles, and &l be the point considered. Leat @enote the distance
between the two poles. The trian@®’M will give us:

(31) &% =r?+r’? + 2r’cosa,

which is an equation from which we can inter However, we remark beforehand that if
one sets:

(32) { r+r' =24,

r-r'=2v

then the expression for the line element will beeom

2 2
(33) dg = d”a+ d"a,
siP—  cos —
2 2

and one will deduce the following equation fromnioita (31):

(34) 02:;12c0§%+v25ir?%,

which will tell one the values of si%, cos%. Upon substituting them in formula (33),

one will have:

(35) dsZ:wZ—vz)[ﬂf‘_’zﬁ zd”zzj-

c c-v

The curvegs = const. are homofocal ellipses, and the cunegonst. are hyperbolas
with those same foci. One then sees that thetiellgpordinate system is only a
modification — and in fact an advantageous one th@bipolar coordinate system. That
explains why the latter system is rarely employed.

If one similarly takes the bipolar coordinate syston the sphere, while always
denoting the distance between the poles gyttZen one must substitute the following
equation for equation (31):

(36) COsS 2 = cosr cosr’— sinr sinr’ cosa,

which will give the spherical triangl@O’M immediately. One can write:

COS 2 = CoS 2100§% +Cos ¥ sir?% ,
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and consequently one will have:

2
(37) ds* = (cos 21— cos 2) du - dv*
COSZU— COS2 COoS& Cco¥w
for the sphere.
The coordinate curves are the homofocal ellipses anerbglas.

530. After those particular applications, we point out gmgposition, which is due to
Liouville, and which is a general consequence of form8)al{at relates to an arbitrary
surface:

If one has two systems of geodesic lines on a surface that cut atant@mg)le then
the surface will be a plane or a developable.

Indeed, if we construct the parallel curves that areogdhal trajectories to those
geodesics then they as well will cut at a constaneaagd consequently the line element
of the surface can be put into the form (26), or evethenform (28), in which the angle
a is constant. Then set:

) . a
u =xsin—,

2

a

V. =y Ccos—.

y 2

What will remain is:

ds’ = dxé + dy?,

which indeed shows that the surface can be mapped toatie pl



CHAPTER V

FAMILIES OF PARALLEL CURVES

General method of searching for geodesic lines. — Definitibthe differential parametek8. — Any
function whose parameter is equal to 1 will define a lfawfi parallel curves. — When that function
contains an arbitrary constant, one can determieeg#pdesic lines of the surface. — Converse
proposition: When one knows the geodesic lines, ondntagrate the equatiohd= 1 by a simple
guadrature. — Jacobi’s theorem: When one has obtaified imtegral of the second-order differential
equation of the geodesic lines, one can always determirfactor of that integral. — Various
consequences. — Expression for the line element in tefrtiee functiond and its derivatives with
respect to the arbitrary constaat — Third-order equation that the functicmust satisfy. —
Description of another method that permits one to éshathe preceding results. — Geodesic distance
between two points. — Propositions relating to thaadise.

531. The propositions that were established in the pragedhapter lead to an
elegant method for finding geodesic lines, which we shafigmtein all of its necessary
detail.

Consider an arbitrary geodesic on the surface. One capushyassociate it with an
infinitude of other geodesics — for example, all of tinesthat pass through one of its
points and constitute a system of curvilinear coordinatesgalvith the orthogonal
trajectories to those lines for which the line elenwaitittake the form:

ds =d@* + o*db?.

One will then be assured of obtaining all of the geed@ses if one knows how to
solve the following problem of analysis in full generality:

Given the line element of a surface in its most general form:
ds’ = E dif + 2F du dv+ G dV,

determine three functior® g, 8, of u and v such that one will have:

(1) E dif + 2F du dv+ G dV =d@* + 0* dé?
identically.

That equation obviously decomposes into the followingethr
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2 2
(2] (28]
ou oJu

L0006, 06,06,

(2) :
6u 6v Jdu dv
(%) (5
ov ov
) . 06, 06, ) .
between which one can ellmlnavea— and 0'6—. One will then be led to the relation:
u \,
(3) G (%j _op 9999 ¢ (aej EG - F?
ou du ov ov

which one can obtain immediately, moreover, by wgitidown the idea that the
homogeneous polynomial du, dv.
d$ —de?
is a perfect square. If one sets, to abbreviate:
2
o[20) -2r230. ()
A= u uov v

EG- F?

(4)

then equation (3) can also be written in the form:
(5) AG=1.

We frequently encounter the functidxd in what follows, to which we — with
Beltrami — will give the name dirst-order differential parameter of.
Conversely, it is easy to prove that any solutioncpfagion (5) will correspond to a
family of parallel curves; i.e., curves whose orthogarsgéctories are geodesic lines.
Indeed, as we have seen, equation (5) will expressi¢aethatls’ —d&? is a perfect
square; one will then have:
ds’ —d&% = (m du+ n dy?

for any differentialsdu, dv, in whichm andn are functions oti andv. Now, one can
always convert the linear functiom du+ n dvto the formodé& . One will then have:

ds =dg* + o°dé?,
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6, will be a distinct function o, moreover, because otherwisg would be a perfect
square. Our converse proposition is then establishedamndolution of equation (5)
will give us a family of parallel curves.

532. As one knows, equation (5) will have various typesoddt®ons. One can find
some that contain no arbitrary constant, while otlenstain one or more arbitrary
constants, or even an arbitrary function. Fromstiamdpoint of the question that we are
addressing, it is essential to consider these varidusasts in succession.

If one has obtained a solution to equation (5) that amt# arbitrary constant then
an application of the preceding method, which prescribes dha must put the
differentialm du+ n dvinto the formo dé, will demand the integration of the equation:

(6) m du+n dv= 0,

which is that of the geodesic lines that are orthogoagdtories of the curve@= const.
One does not know of any proposition that permits ongettorm the integration of that
equation or render it the simplest one.

On the contrary, suppose that one has obtained acsolatithe partial differential
equation (5) that contains a constant besides the oheaialways be combined with
by addition,which is a constant that must consequently figure in at most one afdhe t

derivatives?, ? We shall see that in this case (to which one can coballef the

u ov
ones in which the function contains several constanemnaarbitrary function), one can
obtain gand & by simple derivations, and in turn, the finite equatiohgemdesic lines
that are the orthogonal trajectories of the cuéesconst.

Indeed, recall the identity:

ds =dg* + o°da?.

That equation is true for five variables: namely, du, dv, and the arbitrary constant
that enters intag, which we shall denote bg. Differentiate with respect ta while
treating the otheliour variables as constants. The differentiabof

060 060

dfé = —du+ —dv
u ov
will become:
2 2
0°6 du+ 0°6 dv:d%,
dadu daov fda

and one will have an analogous result far Sinceds’ does not contair, we will then
have:

(7) 0 :ded(%j+ad91 a—ad«91+ad(%j :
oa da Jda
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The preceding equation shows us tthét which is a linear function afu, dv, must

divide eitherd@ or d(%) Now, d&, cannot dividedd, because? would then be a

function of & It is then necessary thdf must divided?. 6 will then be a function
a

of % and consequently one can take:
a

_9¢
da’

Before deducing some other consequences of equation €73hall stop with that
first result. We see that the geodesics lines thatheuturvesd = const. at a right angle
have the equation:

(8) 99 = const. =,
oa

and that their arc length is equal &precisely when one measures it from one of their
trajectories.

Equation (8) contains two arbitrary constants that @amearrange in such a manner
that it makes the geodesic line pass through an arbjp@ng and give it an arbitrary
tangent at that point. In order to establish tha¢mss point in full rigor, we show that
one can make one of the curves:

6= const.

pass through an arbitrary poink,(Vvo) and give it a well-defined tangent at that point.
We first remark that the ratio:
26,06
ou ov

cannot be independent af Indeed, if that were true then if one had:

%:%f (U, V),
ou ov
then upon appending the equation:

AG=1

to that equation, one could determine the valuesg—gt ? which would both be
u ov

independent o, which would be contrary to hypothesis.
Having said that, consider the cuné t{hat is defined by the equation:

@(u,v,a) =8y, Vo,a) =& .
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It obviously passes through the poing, (), and the direction of its tangent at that

point will depend upon the rati%ip ? Since that ratio is not independeniapft can
u ov

take on all possible values. Hence, the cuesconst. can pass through an arbitrary
point of the surface and admit an arbitrary tangeneth&he same thing will then be true
for the geodesic lines that are represented by equatipnvl@h are their orthogonal
trajectories. Since a geodesic line is determined byctmelition that it must pass
through a point and admit a given tangent, we can saetjettion (8) represents all of
the geodesic lines and state the following theorem:

In order to determine the geodesic lines, one considers the partiaredifial
equation:
AG=1.

Any solution to that equation will determine a family of parallel cumesn it is equated
to a constant.

If one has a solution that contains an arbitrary constant a then the equation of the
most general geodesic line will be:

:a’,

SRS

and the arc length that is included along that geodesic line between two pdiriie w
equal to the difference of the valuegidhat relate to those points.

Conversely, suppose that one has determined the geodesidbyiraeny procedure.
We shall show that one will have to integrate the egoatio

AG=1.

For example, look for the solutiahto that equation that is equal to zero at all points
of a curve C) that is given in advance. One will construct altlo geodesic lines that
are normal to©). The arc length of one of those lines, when medshyestarting on
(C), will be a function of the coordinates of its extiity that one will obtain by a
quadrature, and which will be the desired solution. Thatrk, when suitably extended,
is very important in the theory of partial differeaitequations. Here, at least, it permits
us to recognize that the method of searching for geotlesg that is established by the
preceding theorem will introduce no difficulty that isd@n to the problem.

533. To begin with, we point out the following consequemd the general theory
that we just developed:
Imagine that one knows a differential equation:

©) %:v:mu,v)
u
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such that all of its particular integrals are geodeisies| and look for the differential
equation of their orthogonal trajectories. Upon apgythe formula:

Eduov+F(dudv+dvau) +Gdvdv=0,

which expresses the orthogonality of the two directjoone will obtain the desired
solution in the form:
(20) E+FV)du+ (F+GV)dv=0,

in whichV' is replaced by its value that one infers from equafn (
Now, one knows that one can find a fact@uch that the product:

A[(E+FV)du+ (F+GV)dy
is the differential of a functiofthat satisfies the equation:

AG=1.
If one then sets:

%:)I(E+F\/), 96 =AF+GV),
ou ov

and if one expresses the idea that the preceding pafferedtial equation is verified
then one will obtain the value df which will be:

1

A= :
JE+2FV+GV?

One can then state the following theorem, which weabéshed in a different form
in no.523, moreover.

If the differential equation:

dv _ ,
U =V =9¢(uV)

represents geodesic lines then the expression:

(E+ FV) du+( F+ GV) dv
JE+2FV +GV?

will be the exact differential of a functidgh the equation:

&= const.
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will represent the orthogonal trajectories of geodesic lines thasfgathe proposed
differential equation, and will denote the geodesic distance from an arbitrary point of
the surface along one of its orthogonal trajectories.

That proposition will lead us to a beautiful theorendagobi:

If one knows a first integral of the differential equation of the geodiess then one
can obtain the equation in finite terms for those lines by a simple quaerat

Indeed, let:
(11) vV =¢(u,v,a)

be the first integral, which contains the constant From what we just proved, the
function:

(12)

o= I (E+ FV) dut+( F+ GV) dv
J E+2FV + GV?

will satisfy the equatioddd = 1, which contains the arbitrary constant Therefore, the
equation of the geodesic lines will be:
06 _
—=a.
oa
Upon taking the derivative with respectaander the integral sign, one will find that:

Y
oo . (EG-F)

da 3 (E+2FV+GV)*?

(13) (dv — v dy,

which will permit one to state the following theore
When one has obtained a first integral of the eignadf geodesic lines
vV =¢(UV,a)

by any means, one can immediately determine arfacim it in such a way that:

(EG- Fz)g\;
(E+2FV + Gv?)¥? (dv—vdy

will become an exact differential after one hadaepd v with its valueg (u, v, a).
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534. We shall now point out some less important conseceseat the results that

were obtained, and in particular, equation (7). If onéaogsé with ? in it, and one
a

dividesdg, then it will take the form:

2
dé + Ua_ad%-{- o2 da—2= 0.
da oOa oa

That relation must be true for all valuesdofanddv, so one replacety, dv in it with

2 2
00 and- 00 , respectively. If one denotes the functional deterntina
daodv dadu

9a0p _0a 3B
du dov 0Ovaou

by (a, p), to abbreviate, then one will have:

2
(g,ﬁjmz 06 06) _,
Jda da- da
and in turn:

(e, aej

s po\"oa)
06 %0
(6a’6a2j

The expression for the line element will then lmeeo

2%

17 2

(15) d§:d92+___@i_{d§§j,
06 09" oa
da’ 0a’

and:

In that new form, no trace will remain of the ongl expression for that element.
The formula will contain onlyand its derivatives.

We likewise point out the formulas:

2
(16) d¢=de?+ —_[499]
A% da

oda
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(17) a{@,ﬁj —EG-F,

which one will easily deduce from the relations (2). wedwer, the latter one is
distinguished from the preceding one by the fact thabntains both the coefficients
F, G, and the derivatives @

The combination of formulas (14) and (17) gives us thenedation:

(egjj
18 —~—/_ =EG-F/
(18) 26 0%

da’ 0a’

and if one takes the logarithmic derivative of thve sides with respect tmthen one will
obtain the equation:

ay 2L 2058 (0000 2%)
da 0a’ /| da' 9& dajldaod

which no longer contairs, F, G. That relation, which one can arrive at in vasioways,

must be regarded as a third-order partial diffea¢eiguation tha¥? must satisfy when it
is considered to be a function of the variahles, anda. Its complete integration will
then tell one all of the surfaces on which onetbagetermine the geodesic lines.

535. Suppose that the line element of the surfacepsessed as a function of the

variables@ and &, = %. We have seen (n®24) that the expression for the total

curvature will be given by Gauss’s formula:

o _ 0o
RR 06°

In the deeper study of the shortest path betwwenpbints on a surface, we have to
consider the second-order differential equation:

2
aa)+ a)_o_

20 — =
(20) 08> RR

The preceding formula will show a particular finrstegral of that equation:

w= 0.
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Another integral will then be given by the formula:

J-dé?

g?’

in which one performs the quadrature while supposingé&hat constant. One will then
have:

%du+% dv= 0.
ou ov

If one replaces%ﬁ, ? with the proportional quantitiesdy, du in the expression (14)
u vV

then that will give:
and in turn:

The second integral of the linear equation (20) will then

9°0
21 w=0—,
(21) P

as one can verify directly.

536. The proposition that we just established was obtaigerbnsidering orthogonal
systems that are defined by a family of geodesic ligggon concluding this chapter, we
shall rapidly describe a very different method thatsrepon the calculus of variations,
and which offers the advantage of exhibiting a very imporgernent in the theory of
geodesic lines.

Consider a segment of the geodesic line that is tetedriay two pointdM, My . If
the coordinates andv of an arbitrary point of that segment are expressédnasions of
another variablé then the lengtl® of that segment will be given by the formula:

o= JEU +2FUV+ GV dt,

in whichu" andv' denote the derivatives afandv.

If the points M, M, are displaced while describing arbitrary curvegentithe
application of the methods of the calculus of i@ will immediately give us the
variation of@by the formula:
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M

(EU+FV)ou+(FuU+ GYo v
JEUZ+2FUV+ GV

(22) 30 =

Mo

in which the preceding notation indicates that one rnalst the difference of the values
of the expression for the poirfts andM, . From the relation (10) that was given already
[I, pp. 136], one can write the value &mn the form:

(23) d0=[Jscos(ds o sm) :

and one will then recover the relation that was estiadtl already in nd25 along an
entirely analytical path. However, we shall imagiseme other consequences of
equation (22).

Let u, v; Up, Vo be the coordinates of the poiltls My . The value o¥ can obviously
be expressed as a functionwfv; up, Vo. From the results of n®18, it will even be a
perfectly well-defined function of those four variablssi@eng as the pointgl andM, are
sufficiently close if one agrees to take the shoryesidesic line that connects the two
points. In what follows, we shall refer to that fuaot @ by the name of thgeodesic
distance between the two points b .

Now, if one denotes the valuesEBfF, G at the pointMy (i.e., foru = uy, v = Vvp) by
Eo, Fo, Go then formula (22) can be written as follows:

(Eu+FV)dut(Fu+ GYIv (EG+Rvp)Iu+(R i+ GYIy,

24) 0=
(&9 JEUZ+2FU V+ GV JEGF+2E Y+ G

and consequently it will give us the four equations:

%: Eu+FV :EEJ+F£V
’e ou JEU?+2Fuv+Gv ds  ds
(25) 08 _ FUu+Gv =FﬂJ+G£V
ov \/Eu’2+2Fuv+ GV ds ~ ds
00 _ E, Uy + RV, _ (duj (dvj
- =-B| | ~F| |
(26) ou, \/E0U62+2F0 UV, + G, ¥ ds/, ds/,
90 _ Fuy+ G, V, _ (duj (dvj
ZY - =-F,|— | -G,| — | .
0V, \/E0U62+2F0Lf0\70+6b\'/02 ds/, ds/,

from which, one will immediately deduce, upon eliminatingv', and u,, v, the two
equations:
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27) { AG =1,

NGB =1,

in which Ay denotes the symbdl where one has replacadv with up, Vo, resp., anagﬁ,
u

o8 .. 0960 096
— with —, —, resp.
ov ou, v,

Those are the properties of tfpeodesic distancé. When one knows that function,
the two equations (26), which reduce to just one by virtukeo$econd of formulas (27),
will give the equation of the geodesic line that passesuth the point up, Vo) and
admits a well-defined tangent in the most elegant fofime equation:

&= const.

will represent the orthogonal trajectories of altled geodesic lines that pass through the
point (Uo, Vo).

537. Once one has obtained the equation:
(28) AG=1,

one can treat the problem of geodesic lines as anotheeprablmechanics and apply
the methods of Hamilton and Jacobi without modificati@ne will then recover all of
the preceding results. In the following chapters, wd shady the relationships between
the theory of geodesic lines and the methods of analynechanics that are presented
here in a deeper manner, and we shall now content oessely showing how one
determines the geodesic distance when one knows a d¢erpkgral (which is arbitrary,
moreover) of the partial differential equation (28).
Let:
6=f(u,v, a)

be that solution. The geodesic lines of the surfacepdsdes through the points,(vo)
will be determined by the equation:

(29) if (u,v,a) = if (Uo, Vo, @),
oa oa

and the arc length that is included between the powtsvg), (u, v) will have the
expression (ndG32):
(30) =1 (u,v,a) —f (U, Vo, Q).

If one wishes to obtain the desired geodesic distdrae it will suffice to substitute
the value ot that is deduced from equation (29) in that expressionreidre:



84 Lessons on the general theory of surfaces. Book V.

When one knows an integral with constant:
8=f(u,v, a)
of the equation:
AG=1,

the geodesic distance between the two po{aisv), (Us, Vo) will be obtained by
eliminating a from the equation:

=1 (u,v,a) —f (Uo, Vo, @)
and its derivative with respect to a.

That proposition can also be established by geometpguse the rule that it points
to amounts to taking the envelope of all parallel curves:

f (u, v, @) = const.

that pass at the same distasdeom the point (o, Vo).



CHAPTER VI

ANALOGIESBETWEEN THE DYNAMICSOF MOTIONSIN THE PLANE
AND THE THEORY OF GEODESIC LINES

Equations of motion in the plane. — Definition of a fgnuf trajectories. — Jacobi's partial differential
equation. — Use that one can make of a particular solaimd a complete solution. — Jacobi’s
fundamental theorems. — Determination of the solutiortee@artial differential equations by various
initial conditions. — Application to the motion of pomdes bodies. — Thomson and Tait's theorem. —
Principle of least action for the case of planar matiehHamilton’s principle. — Correspondence that
is established between the plane and a surface inasmemner that the trajectories of things that move
in the plane correspond to geodesic lines on the suratke solution to any problem in mechanics
exhibits an infinitude of orthogonal systems in thenpla— Brachistochrones. — Some general results
that relate to the case in which one associatesctogijes that do not correspond to the same value of
thevis vivaconst. — Generalization of those results and applicttitime theory of minimal surfaces.

538. In the preceding two chapters, we established a setoperties of geodesic
lines. We first defined them by the property of their ¢tetang plane, which amounts to
considering them to be the trajectories of a point th@es on the surface without being
subject to the action of any force. Then, by entielymentary considerations, we
attached the properties of orthogonality and minimirato that definition. It now seems
interesting to apply the same method to the study girabblems in mechanics in which
there exists a force function. In order to exhibé& gimplicity of those arguments, we
begin with the motions that are performed in the plane.

One then has the equations:

d*x_ ou d’y _au

a2~ ox ' di  dy

dx )’ dy ? _
(2) (aj ﬁ{aj =2 U +h),

(1)

the latter of which is theis vivaintegral. If we regard the vis viva constant as having
been giverthen the integrals of the preceding equations will admiy two arbitrary
constants besides the one that one can add to timether words, the trajectory of a
material point will be determined by the condition thahust pass through a point and
that it must have a given tangent. Indeed, if one areagime by starting at the moment
when the moving body passes through that point then ttezlstandition will determine
the initial values ok, y, dy/ dx, and since the equation st vivagives the values aix/

dt, dy/ dt as functions ofly / dx, one can calculate the initial values/ dt, dy/ dt. The
motion is then determined completely. We remark dlnat has two systems of values for
dx/ dt, dy/ dt that are equal and opposite in sign and correspond t@the Sajectory
when it is traversed in the two senses.
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Moreover, one can obtain the differential equatidrihe trajectories by an easy
calculation. Indeed, upon combining equations (1), onefindllthat:

dx Py —dy d’ = | 2L dax-Y gy |
oy 0x

and upon replacing® with its values that one infers from this vivaequation:

2
3) dx d?y —dy dx = [ 09 qx—9Y gy |9¥+ Y
oy 0x 2(U+h)

That relation will not change form when the time se=ato be the independent
variable, as one easily recognizes. It will then tiare the differential equation of the
trajectories that correspond to a given value ofvikevivaconstant. Since it has order
two, one will see that the trajectories depend upon amby donstants. However, it is,
moreover, linear with respect to the second-order eéiffieals, and consequently a
trajectory will clearly be determined by the conditidvat it must pass through a point
and have a given tangent.

Among all of the motions that correspond to the saabee ofh, consider all of the
ones whose trajectories satisfy a condition — f@ngxe, that they pass through a point,
they are normal to a curve, etc. Those trajectavitslefine a family of curves that will
depend upon just one parameter; a limited number of thelnpags through each point
in the plane. Let:

Mdx+Ndy=0

be the differential equation of that family of curvedpon taking thevis vivaequation
into account, one can exprabs/ dt, dy/ dt as functions ok andy. One will have:

dx _ dy _ dty/ 2(U +h)
N —M ’N2+M2 '

One can then considdx / dt, dy / dt to be functions ok’ andy’. Upon substituting
them in equations (1) and (2), and denoting them dydy, to abbreviate, one will have:

(4 X 2+y?=2(U+h),

dX_ou  dy_ou

dt  ox' dt  ay’

or, upon remarking that andy’are expressed as functionsxandy:
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ox W
5) & y - 6x
ﬂx’ +ﬂ y :__
0x oy oy
ou ou
Upon differentiation, equation (4) will give ustfollowing values fora— 6_
y
ou _ 6x 6 0
y_ o _ oy, oy y
x ax ay ax

If we substitute those values in the equationgh{@&h we will have:

(520 (52
dy 0x dy 0x

Those two equations, which reduce to each othgress the idea that, y’, when
considered to be functions wfandy, are the derivatives of the same function. Ome ca
then set:

06 ,_ 00

6 X =—, =—,
(6) ™ y oy

and @ must satisfy theingleequation:

00\’ (96Y _
(7) (&j J{a_yj =2 U +h).

539. If one has only a particular solution with no iadyy constant of the partial
differential equation then one will obtain onlyaafily of trajectories. In order to find all
of the trajectories of the moving body, one musnntknow a solutior® that contains at
least one arbitrary constant. We shall furtherwshieere that if one is given such a
solution then one will not have to integrate inartb obtain all of the trajectories.

Indeed, let:

=1f(x,y, a)

be a solution to equation (7) that contains antietyi constant and figures in at least

one of the two derivative%—e, ? Differentiating equation (7) with respect aowill
X oy

give:
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20 9°0 69 90 _

9)
ax 6a6x 6y6 a0 y

That equation expresses the idea that the curves:
6= const., 99 _ const.
oa

cut at a right angle. Thus, the trajectories ofritieering body will have the equation:

(20) 99 =a.
da

One will also see that if one remarks that the ithe(®) can also be written:

9%0 Q(+ 9°0 EIZO d (66’}
dadx dt Odady dt dt\ da

If we now differentiate equation (7) with respechtthen we will get:

0’0 66’ 9°60 96 _
ahaxax 6hay6y

or even, by virtue of equations (6):

0% dx_ 9% dy _
ohox dt My dt

The integration of the two sides gives us:

(11) 99 =t+r
0x

in which 7 denotes an arbitrary constant. We recognize the fuelahpropositions of
Jacobi.

In summary, if one would like to determine the motidwattis defined by the
equations:

dzx: ouU dzy: oU
d2  ox ' di  dy

then one should consider the partial differential aqoat
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2 2
(%j+% Py
0x oy

Any integral of that equation, when equated to a constalhgive a family of curves
whose orthogonal trajectories will be trajectoriéshe moving body that correspond to
the valueh of the vis viva constant, and that one will obtain by integrating the t
equations:

dx_ 068 dy_ 96

dt ox'  dt oy

However, if one knows an integral to the partiafetténtial equation that contains a
constanta then one will get the finite equations of the tregeg and time by the
formulas:

06 _ 06
a

—= —=t+r.
oa oh

One will then obtain the geometric interpretatiorihef Jacobi method. It consists of
defining orthogonal systems such that one of the fasnils composed of different
trajectories of the moving body that all correspondh® $ame value of theis viva
constant.

540. From the foregoing, we see that when one has founditios that contains an
arbitrary constant of the partial differential equationd, one can obtain the complete
solution to the problem of mechanics that is being coreide Conversely, if one has
obtained the equations in finite terms of all of thegectories that correspond to a well-
defined value oh by whatever means then one can show that all o$ahéions of the
partial differential equation are obtained by a simpledcptare. For example, one can
look for the solutions that are annulled along a cu@)etljat is given in advance. We
determine all of the trajectories of the moving body #ra normal to the curve) and
we expresg’, y’as functions ok andy. As we have seen, the expression:

X dx+y’dy

will be the exact differential of a function of twariables, and the function:
X,y

(12) e:j (X dx+y’dy),
X0 Yo

in which xo, Yo denote the coordinates of an arbitrary point of the ey@), will
obviously be the desired solution. Since one can xake to be two systems of values
that are equal and opposite in sign, one will have tviwegaor &that differ by only their
sign.

One knows that one can convert the integrationdiffarential in several variables to
that of an ordinary differential in an infinitude of yga We apply that remark here.
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Suppose that one displaces along the trajectory timatrieal to the curveQ) that passes
through the pointx, y). In that casexo, Yo will be the coordinates of the point of
departure of that trajectory. One will have:

X dx+y’dy= (X 2+y’ddt=2 U +h) dt

Calculate the integral:
Vy2w+mm

X0 Yo

after replacing« andy with functions of time. The result will be a fuimt oft and the
parameter that fixes the position of the poxgt Yo) along the curve@). It will suffice to
express it as a function of omtyandy in order to obtain the functiofi If one supposes
that the curve@) diminishes indefinitely and reduces to a point theh $kaond method
will coincide with the one that was given by Jacobiduse all of the trajectories that are
normal to C) will then be transformed into the trajectories thass through a fixed point
in the plane.

541. The orthogonal systems that we just defined, anevfoch one of the families
is composed of a series of trajectories of the movirdybplay an important role in the
study of certain questions, as we shall show. Howdedore we do that, we must show
how one can obtain all of them with no new integmatwhen one knows a complete
solution to the partial differential equation (7).

Let:

(13) =f(x,y,a +b

be one such solution. Here is the method that wasrnived by Lagrange for obtaining
the most general solution: One sets:

b=4¢(a),

in which ¢ (a) denotes an arbitrary function af The result of the elimination affrom
the equations:

g=1(xy a)+¢(a),

14
o =24
a

will provide the required solution. We can add fbkowing remark here, which is easily
confirmed: Let:

=F (x.y)
be the solution thus-obtained. The orthogonadttayies of the curves:

@= const.
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will be defined by the second of equations (14):
(15) L rp@=o,
oa

in which one gives all possible values to the constant

542. Once one has accepted those conditions, suppose nbatvauld like to
determine the orthogonal system such that one odiitslies is composed of trajectories
that are normal to a given curv@)(

That problem is obviously equivalent to the following one:

Find a solution@to the partial differential equation that takes a given constant value
(zero, for example) at all points of the cuf@.

Let:
y=4(x)

be the equation of that curve. We propose to determitutictiond that will reduce to
M (X) when one has:
y=4(
in a more general manner.
Upon substituting the values éfandy in equations (14), one will find the equations
of condition:

H(X) = f(xA,a)+¢(a),

o 0=2"+¢a)
da

which will exhibit the functiong (a). On first glance, it seems that in order to sedhe
guestion that was posed, one must integrate areliffial equation, because if one
eliminatesx from the two equations (16) then one will be ledn equation of the form:

F (a, #(a), ¢'(a)) = 0.

However, if one differentiates the first of eqoat (16) then upon taking the second
one into account, one will find that:

9 of
— f(xA,a)+—=A(x) =1 (¥).
o | A AT A () =1 (X)

It is easy to show that one can substitute tHeviahg system for the system (16):
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f(x,A,a)+¢(a) = u(x,
(17) of of

&+6_/1/]'(X) = (%)

Indeed, those two systems have an equation in comand the total differentiation
of that equation will show us that the second dgnabf each of them is always a
consequence of the second equation of the other one

Now, upon eliminating, the two equations (17) will give us a relatioattlexhibits
@ (a) as a function o&. The question that was posed is then resolved.

It would not be pointless for what follows to reighat there are two, and only two,
distinct integrals that take on values that aremin advance at all points of a cur@,(
because if one would like to determine the denvestiwith respect ta of the desired
integral @ at every point of the curves] then one must append to the partial differential
equation:

2 2
(18) (%j + 29 —ou+h),
0x oy

the relation:

08 96 ,, ,
(19) —t——A(X) =1’ (¥,

ox oy
which must be true for all points of the cur@).( Now, the preceding two equations
determine two different systems of values for thei\mtives?, ? when they are

X oy

taken at an arbitrary poinC). Since an integral is defined entirely when gnees its
values, along with that of its first derivativesadk points of a curve, one sees that the
guestion that was posed will indeed admit two amigl two solutions.

In the case that we have in mind, in which thectiom & must have a constant value
(zero, for example) at all points of the desiredreyone will have:

H(¥) =0,

so the two solutions that are obtained will be ¢quato sign, and cannot be regarded as
truly distinct.

543. As consequences of the preceding propositionscave state the following
theorem:

Whenever one knows a complete integral of the glatifferential equatior(7), one
can always determine, without integration, an ogbioal system such that one of the
families will contain an arbitrary curvéC) that is given in advance. The other family
will be defined by the trajectories of the movirggy that cut that curvéC) at a right
angle and correspond to the same value of theiwdsoonstant.
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In the case where the curv€) (becomes infinitely small and reduces to a point, one
will have the orthogonal system such that one ofaitsilies is composed of trajectories
of the moving body that pass through that point. If @mearks that in that case equation
(15), which represents all of those trajectories, masvdyified when one replacesy
with the coordinateso, Yo of the point considered then one will see that ond hae:

8@ + 2 (. Y0, 8) = 0,
da

and as a result, one can take:
@ (a) =—f (Xo, Yo, ).
One will then have:
g=f(xy, a) —f (X Yo, @),

and from the rule that was given in rg#l2, one must eliminata from that equation,
along with the derivative of that equation with respgect
In order to give an application, consider the motiopafderable bodies, in which
the force function is:
U=g(y+h).
The equation i becomes:

00\’ (96Y _
2] ]
here.

It admits the following solution:

(20) %:ax+'[Jy+h—a2dy:ax+%(y+h_a2)3/2+b.

In order to find the curves that cut all of the parabivlgectories that pass through a
fixed point (the origin, for example) at a right andgtem the preceding rule, one must
determineb from the condition tha® must be annulled at that point, which gives:

b=-2(h-&)%,
and then eliminata from equation (20), in which one repladewith its preceding value,

and the derivative of that equation with respect.toAfter a calculation that we shall
omit, we will then find that:

(21) o= 2y ey -

That is the equation for the orthogonal trajectofigsall parabolas that pass through
the same point.
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544. In a general manner, consider the orthogonal systhat we just defined and
for which one of the families is composed of trajee®mf the moving body. The line
element of the plane will take the form:

(22) ds=H?*d&*+ H?dé?.
If one displaces along a trajecta#y= const. then one will have:
(23) d$=H?dg*=2 (U +h) dt>
Furthermore, the equation:
(2] 3]

(24) 2U +h :%Q&%ﬂ’:%_
ox dt oJy dt dt

can be written:

Upon substituting the value d&/ dt in the relation (23), we will have:

2H?(U+h) =1,

$:2U+21.

Formula (22) will then take the form:
(25) 2 U +h) ds" =d@* +0°dé?,

from which we shall deduce several consequences.
We shall first see that if one considers two curvel paramete:

6=, 6=

and the portion of any of the trajectories of the mgwody that is found between those

two curves then the integral:
[2U +h) ds=] de,

which is taken from the beginning to the end of dra, will be constant and equal to the
differenceS— a of the values o8l We give the name @ictionto the preceding integral.
Since the curvé& = a can be chosen arbitrarily, we can state the fafigwheorem:

If one is given an arbitrary cur&) and the trajectories of the moving body that are
normal to that curve then if one measures lengtbscathose trajectories that start from
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their point of incidence such that the action has a value that is given in ajJartcstill
arbitrary, the locus of the extremities of all of those lengtitisdefine a curve that will
again be normal to all of the trajectories.

That remarkable proposition, which is due to Thomson aid (), is analogous to
the one that we gave in fa22 for the geodesic lines. Here again, one can provethjire
by the calculus of variations and deduce all of the piegexesults. One will then
recover the method that was followed by Hamilton andldiac

In particular, if one considers all of the trajectotiest pass through a poiat and if
one determines a poiM on each of them such that action, when extended af@engrc
AM, has a given constant value then the locus of pdnigll be a curve that is normal
to all of the trajectories.

545. If one refers the points of the plane to the cootdisgstem that is defined by
the trajectories that pass througtand the curves that cut them at a right angle then the
line element of the plane will be given by formula (28)which 8 denotes the action
when it is measured by startingAt We shall deduce a direct proof of genciple of
least actionfrom that remark.

That principle can be stated as follows:

Among all of the motions that take the moving body from a point A to aNbowith
the velocity on each trajectory being dictated by the equation:

V=2 U +h),
the natural motion is the one for which the action — i.e., the integral:
[ J20+h) ds=["v ds
A A
IS @ minimum.
The proof is identical to the one that we devetbpe the case of geodesic lines.
Construct all of the trajectories of the moving yalkdat correspond to the given value of

h and pass through the poiAt They give rise to an orthogonal system for whicte
has:

2 U+h)ds=dg*+ 0% da?.

Having said that, it is clear that minimum of theegral:

j«/ZJ+2hds:de92+a%w2,

() SIR WILLIAM THOMSON and TAIT, Treatise on natural Philosophyol. I, Part |, pp. 353 in the
second edition (1879).
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when taken between the poidsandM and path that is followed is the trajectory that
connects those points, will correspond to the casehiohd@, is zero. | shall not insist
upon all of the conditions that must be true in orderte proof to be valid; they are
identical to the ones that were enumerated in theafageodesic lines.

546. Hamilton’s principle refers to some hypotheses thatcmpletely different
from the ones that are involved with the principldeafst action. It concerns the integral:

J( dszz +Uj dt.
2dt

The motion in nature is the one for which that integgad maximum or minimum.
However, the motion here is compared to all of the ones that cstnbexiveen the same
pointsand at the same timand no law is imposed upon the velocity, moreovéfe
shall show that there is actuallyranimum.

If A andM again denote the extreme positions, and if one preséneeorthogonal
system such that one of the families is composedagdtories that pass throughthen
the preceding integral will become:

2 2 2
[ SO0 Ly | o
4U +h)dt

We shall compare that to the one that correspond®todiural motion, for whiclé
remains constant.

Let &, Up be the values off andU for the natural motion, in whicl U, &, Uy are
assumed to correspond to the same value of time; set:

=6+ U=Ug+U;.

As we have seen, one will have:

(26) % =2 Uo +h).

The increment in Hamilton’s integral when one passes fthe natural motion to
another one is:

2 2 2 2
I de* +o°de? | | ‘U, - d& dt
4U +h)dt’ 4(U, + h) df

Replaced with its value& + w and then substitute the value @, / dt that is
deduced from formula (26). The increment in the integidb&come:
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, d&? da?
| 7 dt ,_df Ugthdw  _U(Ug+h
4U +h) 4U+h) U+h dt ' U+h

dt

or, after some reductions:
5 def N do’
1o de ae, Uf  do_ U, do
4U +h) U+h dt U+ h dt

Since the two motions take place between the sameé gad in the same amount of
time, wwill be zero at the two limits. One can then supptbeesermdw/ dt, and what
will remain for the increment in the integral is #wression:

) 2
o? del (dw_zulj

dt? dt
27) -[ 4U +h) ¥ 4U + h)

In that form, one sees clearly that Hamilton’s gngg has increased. In order for the
preceding integral to be zero, it is necessary that ast have:

at each instant, or:

and those equations characterize the natural motion.

547. We shall not dwell any further upon the preceding priesipand in conclusion
we remark only that the proof of the least-action pplectan be attached directly to the
theory of geodesic lines in the following manner:

If x andy are the rectangular coordinates of a point in theeld is the force
function, andh is thevis vivaconstant then consider the surface whose line eleiment
given by the formula:

dg = 2 U + h) (d¥¢ + dy).
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That surface will be represented on the plaith conservation of anglesHowever,
the correspondence is such tlaaty trajectory of the moving body in the plane will
correspond to a geodesic line on the surfac® vice versa.

That proposition has already been presented sevees in the preceding arguments.
We could establish it by either comparing the differem@ulation (3) for the trajectories
and that (8) of the geodesic lines (rf¥14) or by comparing the partial differential
equation (7) with equation (5) (n®31) upon which the search for geodesic lines
depends. We can now prove that immediately, becauseeifrefers the points in the
plane to a coordinate system such that one of the &msdicomposed of trajectories of
the moving body then the line element of the planeheilgiven by the formula (25); that
of the corresponding surface will then have the exprassi

ds =d@* + o d&°.

As a result, the line& = const. — i.e., the trajectories of the moving badthe plane —
necessarily correspond to geodesics on the surfacejandersa

As an application, consider the motion of a point thatttracted to a fixed center in
inverse proportion to the square of the distancer dénotes the distance to the fixed
center then one will have:

The surface whose geodesic lines correspond to thettnagss of the moving body
will have the line element:

4 = (Zl—ﬁj (A + dyD),
r a
or, upon passing to polar coordinates:

(28) d< = (Zr—”—gj (dr? + 12 dvA) .

The surfaces of revolution that admit that linene¢nt are defined by the formulas:

X=m wcosi ,
\ a m
(29) y=m wsinl’
\ a m
Z:\/Zj \/(Za—r)z—mz(a— r)? dr
a r(2a-r)

Wheneverm is commensurable, a point in the plane will cqyoesl to a limited
number of points of the surface, and as a redubbf éhe geodesic lines that do not meet
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the boundary of the surface will be closed, like thgosdls in the plane to which they
correspond.

548. That correspondence, which is established betweama phd a surface in such
a manner that the trajectories of the plane correspmthe geodesic lines of the surface,
immediately exhibits the principle of least action, whis nothing but the translation of
the minimum property of geodesic lines into the plak®wever, it will lead to a large
number of other propositions with no calculation. Emample, we have seen that that
the curves on a surface that are loci of the points thet the sum or difference of their
geodesic distances to two fixed curv€y, (C’) is constant define an orthogonal system.
That system can obviously be determined without integratibenever one knows two
curves C), (C’) and one has an expression for the geodesic distance bhdtwmepoints
of the surface. One can even add that if one of thectuxzes C) is given then one can
determine the other on€() in such a manner that one of the families of thbagnal
system contains a curv®) that is given in advance. Upon referring that regulthe
plane, we will obtain the following proposition:

Whenever one has the complete solution to a problem in mechanics ianbkeapt
the function@that relates to that problem, one can determine, with no new integrations
an infinitude of orthogonal systems in the plane that contain a ¢Dxvéhat is given in
advance. The equations that define those systems will contain an arfutnation of
one variable.

Moreover, that proposition can be proved directlyhim simplest manner. Indeed, let
@ando be two arbitrary solutions of the partial differengguation (7). One will have:

(aejz [aejz_ (aajz [aajz

=+ = == + =],

0x oy 0x oy

0(6-0) 6(6’+0’)+6(6’—0') 00@+0) _ 0
ox ax ay oy

and consequently:

That equation expresses the idea that the curves:
60— o= const., 6+ o= const.

cut at a right angle and define the two familiesanforthogonal system. If one desires
that a certain curveD) must belong to one of those families then it giliffice to
determine two solutiong, oof the partial differential equation that have Haame value
at each point of the curv®). One takesr arbitrarily, which will introduce an arbitrary
function. @will, in turn, be determined by the condition tltamust have the same value
asoat all points of the curvedd). We know (no542) that &will be a distinct function of
o.
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549. The preceding general propositions permit one to estabhat one can
determine an infinitude of algebraic orthogonal systdrat dn arbitrary algebraic curve
will belong to when it has been given in advance. Ws& fiemark that there is an
infinitude of problems in mechanics for which tetionis an algebraic function; i.e., for
which, the equation:

00 (06Y _
(30) (&j +[6_yj =2U+h)

admits a complete algebraic integral. Without discgsshe case in which the force
function is zero, take:
(31) U=AX'M+ByYm

for example, in whichA andB are arbitrary constants, ang n are two integers. One
will have the complete solution:

(32) 0= [ J2A""+h+adx [ 2B™+ h- ad

which is obviously algebraic. If one applies the preapdiethods upon employing that
value ofédthen one will see that all of the solutions to equef0) that are required to
take on an algebraic value at all points of an algebraiecwill be algebraic. One can
then obtain an infinitude of algebraic orthogonal systéonsvhich a given algebraic
curve will belong. There are two different kinds ofsasystems. One of them, in which
one of the families is composed of the trajectorieshe moving body that cut the given
curve at a right angle, are analogous to the orthoggs&dras that are composed of a
family of parallel curves and their common normal$e Bther ones are analogous to the
orthogonal system that is composed of the two famdfesurves that are loci of points
such that the sum of or the difference between thpeadesic distances to two fixed
curves C), (C”) is constant. Their definition contains an arbitralyebraic function,
even though one has required a curve that is given in agltarzlong to one of the two
families of the orthogonal system.

550. It is easy to see that the preceding method canxteaded to the study of the
motion of a point on a surface, and in general, to ablems of mechanics in which
there is a force function, since the position ofriwving system depends upon otilo
variables. We shall not develop the calculations, whighquite tedious, when we treat
the most general problem in mechanics, and we shall tterdoto point out here some
other questions of mechanics in which one recovers tpepies that we just studied.

One must thank various geometéfy for some properties of the brachistochrone that
are analogous to the ones that Gauss brought to lighetmtesic lines. The explanation
of that fact rests upon the following remark:

(*®) For example, see ROGER, “Thése sur les brachistoesyafournal de Liouville (1)3 (1848), pp.
41.
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We propose to determine the brachistochrones on a su¥faclf the velocity of the
moving body is given by thés vivaequation:

vV=U+h

then the brachistochrones will be the curves for wthehintegral:

Lo &
v JU+h'

when taken between two arbitrary points of the cureeabminimum. Now, if one
considers the surfac&'] for which the line elememts is determined by the formula:

ds’
U+h

(33) ds? =

then it will correspond to the surfac&)(with conservation of angles, and the
brachistochrones o] will correspond to the geodesic lines @) such that the arc
length of each geodesic is equal to the time during whichdtresponding portion of the
brachistochrone is traversed. That simple remark perome to extend all of the
properties of geodesic lines to brachistochrones. Incp&at, one then recognizes that
the brachistochrones actually satisfy their definitiomd that the time in which an
arbitrary arc of those curves is traversed is actualginimum, provided that the arc is
not extended too far.

One can then associate the brachistochrones wjgcttories in a planar motion, and
that comparison offers the advantage of being extensitideachistochrones in space.

Suppose that the element of the surfagadduces to the form:

(34) ds’ = A (0 + dyP).

The integral that must be a minimum is:

ey
[oe

By virtue of the principle of least action, one wilecognize immediately that
brachistochrones correspond to the trajectories olaaap motion in which the force
functionU " has the value:

ANDOYER, “Sur la réduction du probléme des brachistoesoaux équations canonique,” Comptes
rendusl00 (1885), 1577.
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while the velocity of the moving body is given by thenfioita:
(35) V=2U/

in which the constant vis viva has the particular value of zero.
Some analogous remarks can also be made in regard tguttes fof equilibrium of a
flexible and inextensible string. However, we leave ithe reader to examine that point.

551. In the preceding developments, we have associatedtluoge trajectories for
which thevis vivaconstant has the same value. That restrictiomdised in accord with
the spirit of modern mechanics, which attaches lessriiapce to forces than &nergy
and which permits one to regard two problems as distinct Wieeforce function is the
same, but the total energy is different. Be thatt asaly, upon grouping together the
trajectories for which theis viva constant takes on different values, one will get the
following results, which we shall rapidly discuss:

Consider some arbitrary trajectories that constitutemily that is analogous to the
ones that we defined in n838. x andy’ will again be functions ok andy, but the
constanth, which varies when one passes from one trajectorthéoother, must be
considered to be a function wfindy here. One will again have the equations:

X y%_a_u

6x dy O0X

y’ oy _duU

36 ==
(36) 6x yay oy
X%+ y?=2h+2U.

However, differentiating the equationa$ vivawill give different results. One must
not regardh in it as a constant that is independenk @indy. Differentiation will then
give the equations:

L OX, 49y _9h au

6x 0Xx ax ox’
6x ay 6h ou

6y oy 6y oy

(37)

If one eIiminates%—U ,%—Ufrom these equations, along with the preceding ones, then
X oy
one will find that:

y’ ﬂ—% = @
ox ay
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X’(a_y_%j = —ah

ox 0y EY
Now set:
(38) WXy,
ox oy
one will first have:
1 0h 1 0h

39 = -, X =—-—=—.
(39) Y= T ox 2 dy

The substitution of those values #ory’in thevis vivaequation will give the relation:
Ah = 24% (h + V),

in whichAh denotes Lamé’s differential parameter:

2 2

(40) Ah = (@j A9
X oy
and from which one can findk One will then obtain:

Jah o ox’ Jah oy

Upon substituting those values in formulas (38)jcl serves to defind, one will
find the second-order partial differential equation

42) i{ U+h6hj+i{ U+h6hj:% Jbh

[6)4 O oy dy U+h

(41) yr= N 2(0*U) oh o —_2(+U)oh

JAh ox JAah dy

which defines the functioh. When one has an arbitrary solution of that dqoathe
curves:
h = const.

will be the trajectories of a corresponding famiénd equations (41) will exhibit the
components of the velocity of the moving body atheaf their points. Conversely, if one
knows how to determine the trajectories then onleaiso know how to integrate the
partial differential equation (42). When one hddamed the general equation of the
trajectory:

y=¢(xahb,h),

with arbitrary constanta andb, it will suffice to replacea andb with arbitrary functions
of hin order to obtain the general integral of equa(ié2).
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For example, suppose that the force function is z&itee trajectories will be straight
lines that are represented by the equation:

y=ax+h.

The integral of the corresponding partial differenéglation will be given by the
formula:
y=x¢(h) +ynh),
which is easy to verify.
A particular situation will show the interest in theeceding remarks. The partial
differential equation (42) shows up in the study of a questidghe minimum of a double
integral:

43) if J %){%‘;}m dx dy

which is a form that is analogous to the one that BRmemconsidered in Dirichlet’s
principle.

Imagine that the functioh is given for all points of a closed contour that bouads
planar ared. If one expresses the idea that the preceding doulelgrabt when taken
over all points of that area, is a minimum then ik be led to a partial differential
equation that is precisely equation (42) when one equatisitvariation to zero.

Therefore,any problem in mechanics in the pla@d more generally, in two
independent variableg€an be attached to a property of giving a minimum to a double
integral.

Some considerations of geometry that the readerasity supply will permit one to
deduce that minimum property from the principle of leadba, moreover.

552. In the following two chapters, we will associate otmjectories for which the
vis vivaconstant has the same value. We shall then pointeyat tvithout proof, the
extension that one can give to the preceding properties. better clarity, we shall
content ourselves with considering the motions in spaceéhén statement of the
generalized properties.

If one seeks to determine the functignand i of x and y in such a manner as to
render a minimum to the triple integral:

[If (22 02 du Z[@a_u_w_u;l A ou_dAouY
(44) dy 0z 0zdy 0z0 x 0 X0 9 yo %

x@ (X, Y, zA,u) dxdydz

when extended over a closed volume, and the funcliamsl i/ are required to take on
given values at all points of the surface or surfaces that bound that votumilesuffice
to integrate the equations of motion that relate to a problem in mechandsich the
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force function isp (X, y, z, A, L), the vis viva constant is zero, andand i/ are treated as
constants, and then to replace the arbitrary constants in the general equatitims of
trajectory with arbitrary functions ofl and . One will then obtain two equations that
will give oneA and .

If one seeks the functiainthat assures the minimum of the triple integral:

@ (22 ez meaa

when extended over a closed volume, And required to take on given values at all
points of the surface that bounds that volume then the surfaces:

A = const.

must be the ones for which the following double integral is a minimum:
H (% y,zA) do,

in which do denotes the area of an element of the surface tlamantegral is extended
over the portion of the surface that is found iesaeh arbitrary contour.

If one considers, for example, the integral:

(2 ()

which corresponds to the hypothesis that 1, one will recognize that the surfackés
const. must be the minimal surfaces. One is teérnd the following result:

2 2
+ (ﬂj dxdy dz
0z

If the equation:
A = const.

represents a family of minimal surfaces thénmust satisfy the partial differential
equation:

] a ]
(47) 0 [1)4 + 0 ay + 0 0z

_ | =L _ :0’
ox| /oA | oyl Jar | o7 A

in whichAA is the first-order differential parameter:
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48) A = (@T +[@j +(@jz.
0x ay 0z

That result is due to Riemant)( who even proved, as one can easily verify by direct
calculation, that if one has just one surface thegpsesented by the equation:

A=0

then in order for the surface to be minimal, it valiffice that the preceding partial
differential equation must be satisfied only by virtuéhaf equation of the surface, rather
than identically.

The preceding form (47) for the partial differential eégurafor minimal surfaces is
attached directly to that of Lagrange (I, Ad5), which one can recover immediately,
moreover, upon supposing that the equation of the suréecbden put into the form:

zZ=9 (X Y).

The remarks by which we obtained it show that one canedmately write down the
partial differential equation for minimal surfaces urwlinear coordinates, because if the
line element of space is given by the formula:

(49) ds =H?d¢” + H2dp2 + H2dp?
then the integral (46) will take the form:

(50) [[[ &2 H HiHz dodor dps,

and the minimum property, which we have pointed out witlwaltulation, will lead to
the equation:
04 04 04

0| HH, 9p |, 8 |HH, dp, |, a | HH, 9p, 0

op| H a1 | op| H, BT | 0, H, BN |

(51)

which replaces equation (47). One can follow the santbadethat one employed for
oblique curvilinear coordinates.

(*°) Riemann’s Gesammelte Werpp. 311.



CHAPTER VII

APPLICATION OF THE PRECEDING METHODSTO THE STUDY
OF MOTIONSIN SPACE

Differential equations of motion. — All of the trajedts that correspond to the same value ofvikeviva
constant and are normal to a surface are, by thattéatt normal to a family of surfaces. — Partial
differential equation of Hamilton and Jacobi. — Use tha oan make of a complete integral. —
Conditions that the integral must satisfy. — Definit@iraction — Consideration of certain orthogonal
systems. — Formulas that relate to the variatiorheféction. — Generalization of the Malus-Dupin
theorem.

553. Now consider the motions in space. Ulfdenotes the force function then the
equations of motion will be:

d’x _ou d’y _oUu d°z_ou

dt>  ox dt?* o9y dt?* 0z

(1)

() XZ+y?+22=2 U +h),

in whichx', y’, Z denote the components of the velocity.

Among all of the motions that correspond to a given vafubevis vivaconstant, we
shall study, in particular, the ones whose trajectqréss through a point or are normal to
a surface or, in general, satisfy any condition thavde two arbitrary constants in the
equations of the trajectory. We will then have a coegce of curves that is represented
by equations such as the following ones:

3) { f(x,y,zab=0,

#(x Y,z ah)=0.
Moreover, the components of the velocity at eachtpoust satisfy two equations:

of , of of
X +

- _y'+_2:O,

@ 0x oy 0z
%X’+%y'+% Z=0,
0x ay 0z

which, when combined with thas vivaequation, will obviously permit one to determine
them, and then express them by substituting theegafora andb that are deduced from
equations (3) uniquely as functionsxpf, z
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Suppose that one has obtained those expressions. qlidgoes of motion take the
following form:

VLV L1}

0x oy 0z ox’

©) Yoy 0 429U
0x oy 0z 6y

62 +_y+a_zz_a_u

ax oy 0z 0z

which is analogous to the one that one encounteieistudy of the permanent motion of
fluids; X', y’, Z must also satisfy thés vivaequation.

One can deduce the valuesa@#, a—U, a—Ufrom the last equation. For example,
ox o0y 0z
one will have:
ouU = X , OX' Y oy z
X 0x 0X ax

Upon substituting that value (%E in the first of equations (5), one will obtain the
X

relation:

6_x+y_+ 40X _ '_X+yay 492
0x oy 0z ox 0x ax

which one can write in the following manner:

y’ a_xl—ﬂ = Z’(a_zl—%j
dy 0x ox 0z)

The second and third equations in (5) give analsgormulas, from which one will
deduce the following system:

oy _0Z 97 oax OX _oy

9z d ax 97 _ 0y Ox

(6) ’ y — 6x '622 y ’ ,
X y z

which contains all of the relations betwegny’, Z that are independent of the force
function.

One recognizes immediately that one can satishgehequations by annulling the
numerators; i.e., upon supposing tkaty’, Z are the derivatives of the same funct®n
Then set:

(7) X =
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If one substitutes those values #0ry’, Z in equations (2) and (5) then equation (2)
will take the form:

)5
0x ay 0z

and the system (5) will be composed of equations thaidedaces from the preceding
ones by differentiating with respect xpy, or z. It will then suffice that? must merely
satisfy the partial differential equatiqB).

Equations (7) show us immediately what the geometrigifsignce of the function
@is. If one considers the family of surfaces that r@resented by the equatiéh=
const., in which@ is an arbitrary integral of equation (6), then the curthed are
orthogonal trajectories of the family of surfacedl wiso be trajectories of the moving

body, and the velocity of that moving body will be equethe derivativeaa—e of falong
n

the normal. In other wordgis a velocity potential

The preceding method rests upon the considerationr@ircg@articular congruences
that are composed of the moving trajectory, so it israato demand that they should all
give solutions to the problem of mechanics; i.e., alhef possible trajectories. LeT)(
be one of those trajectories that passes through theNde(xo, Yo, 20), and letxy, v;, z

be the components of the velocity of the moving bodythatt point, which are
components that necessarily verify the vivaequation:

x(’)2+)/02+2’02:2U0+21'

There is obviously an infinitude of solution® to equation (8) whose partial

derivatives?, ? 99 take on the values;, y,, z, atthe poinfM, . Consider any of

X 0y 0z
those solutions?’. The orthogonal trajectories of the surfaés= const. will be the
trajectories of the moving body. Those of the trajges that pass through the polig
will obviously coincide with the curved), since the initial conditions of the motion are
the same on one and the other of those trajectories.

554. One is again led to the consideration of particutangcuences for which there
is a velocity potential by the following reasoning, whicHlwnce more exhibit the
preceding result.

Let A denote the common value of the ratios (6). One has:
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oy _0Z _ o

0z 0y

0z oX

9 —-==)
®) ox 0z v
ox ay

6y ox

and in turn, upon making use of the a well-known identity:

0(AX) + (1Y) + 0(A2) _ 0

10
(10) 0x oy 0z

That relation, which recalls thontinuity equatiorof hydrodynamics, confirms the
analogy that we have already pointed out above,ugmh which we shall not insist,
moreover. If one performs the differentiationsrthtewill take the form:

X+—y+—17=
Y 6x ay 0z

04, 04 0A ) ox ay 0z
6x oy 0z

The left-hand side, which one can also write:

04 dx 04 dy 04 dz

0x dt oy dt dz dt

has a very simple significanck:expresses the derivativd ddt of A when one displaces
along a trajectory of the moving bodif.one then sets:

(1) oo X 0y o7
ox dy 0z

to abbreviate, then one will have:

from which one will deduce that:

J-tht
(12) A=A e° |
in which Ap denotes the value dffort =ty. Hence:

If A is zero for an arbitrary point on a trajectory then it will bera for all of the
other points of the same trajectory.
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From that, among the trajectories of the moving bodydwliways correspond to
the same value of thes vivaconstant), consider the ones that are normal tofacsug)
and remark that as a result of the definitionl @nd thevis vivaequation, one will have:

o9y 97 +y(62 6xj +[0%_0Y
1= 0z 0y o0x 0z dy 0X

2(U +h)

(13)

It results from that expression thatill be zero for the point where each trajectory
meets the surfac&) normally. In order to see that immediately, itl wuffice to remark
that the differential equations of the curves @f tbngruence are:

(14) — =2 ==

in whichx', y’, Z play the role of the quantitie§ Y, Z in no.438 here.

SinceA is non-zero for a point on each trajectory, itl\lwé zero by that fact itself on
all of the trajectories, which will, in turn, be moal to a family of surfaces, from the
theorem in the cited number. We then recover tiopgsition of Thomson and Tait,
which we will establish, moreover, in another manne

All of the trajectories of the moving body thatrespond to the same value of the vis
viva constant and are normal to just one surfadélve, by that fact itself, normal to all
surfaces of a family.

It results from the preceding argument that ineortd obtain all of those families of
surfaces that are normal to the trajectories, onstrmtegrate the partial differential
equation (8). We shall examine various solutianthat equation.

555. We have only to repeat here what we said in #se of planar motions. If the
solution @ contains no constant then in order to get theesponding trajectories, one
must integrate the three equations (5) or equatibhs However, | would like to show
that if the solutiondcontains two other arbitrary constam@tsandb, in addition to the
constant that one can always add to it, then oneobgain the complete solution to the
problem of mechanics with no integration.

Indeed, substituté in equation (8) and take the derivative with respge a; we will
have:

a6 0’6 69 0°6 69 629 _

ax 6a6x 6yaaay 920 @

If one replacesg—e, 38 99 with X', y’, Z, respectively, then the preceding equation
X oy

0z
will take the form:
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dt\ da
00 . . ) .
Hence,g Is constant on each trajectory of the moving body. rJagaplying the

same argument o, one will see that the equations:
(15) —=a, — =D,

in which &, b' denote two new constants, define a trajectory of mimving body.
Moreover, one verifies immediately that the two aoels that are represented by each of
the preceding equations cut all of the surfa@esconst. at a right angle.

Upon likewise differentiating equation (8) with respiedh, one will find:

E(%j = ]_,
dt\ dh

and upon integration, one will get, in turn:

(16) 99 =t+r,
oh
in which 7 denotes a new constant.

Equations (15) and (16), which contain six arbitrary conseib, h, &, b, 7, indeed
define the most general solution of the problem that pesed. Upon attempting to
prove that rigorously, one will recognize the conditidhat the solutiongd, which
contains the constanésb, must satisfy. Indeed, if one desires to determinerdjectory
of the moving body that passes through the pbnfx, y, z) when the moving body
admits the velocitieg', y’, Z, which are necessarily coupled by the vivaequation, then
one will have three equations:

0 ,

ox oy’

zZ=—,
0z

!

X

which reduce to two, by virtue of equations (2), (8), and whakt determina andb as
functions of the six given functionsy, z X, y’, Z.
For example, take the first two. In order for omédé able to deduce the valuesaof

andb, in general, it will be necessary and sufficient t%g, 3—5 must be functions that
X

are independent of one of the variabdesand b. It will then be necessary that the

determinant:
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NELRY.
ox ' dy

d(a, b)

must be non-zero. Upon reasoning similarly W-%g ? one will be led to the
y 0z

following conclusion:
The solutiond must be such that the two equations:

0°0 0°6 0°0
daodx _ dady _ 0daodz
17 = =
(17) 0’6 0°0 0’6
obox obdy 0boz

(which will reduce to just one of them, moreover) are not vdrilentically.

One can also state that condition in one or theraththe following forms:
If @is considered to be a function afandb then it cannot satisfy a first-order

equation:
F (%,%,a,bj: 0
da db
that is independent of y, z
One can also say thatéfis considered to be a functionxfy, zthen it cannot satisfy

a first-order equation:
068 06 06
Xl ) —~ 1_ l_ = 0
¢( Y Z’ax oy azj

that is distinct from equation (8) and does notethelupon eithea or b.
For example, suppose that the force functionrne.z&quation (8) will be:

2 2 2
o)) (2] -
0x ay 0z

and it will admit the solution:

6= z/2h-1+ (x- @ + (y- B?.

That solution is not suitable, even though it eorg two constants. One will
recognize that immediately upon applying any ofttiree criteria that we just discussed.



114 Lessons on the general theory of surfaces. Book V.

556. Here, we see a new fact presenting itself: In theq) all possible families of
trajectories of the moving body must belong to an ohafsystem that corresponds to
a certain solutiord of Jacobi’'s partial differential equation. The sarmg will no
longer be true in space: One can certainly associatérajgetories of a moving body
with congruences that admit surfaces that cut thenmrightaangle, as we just proved, but
there also exist families of trajectories that dopudsess that important property.

That result could have been predicted. Indeed, condidarase in which there is no
force. The trajectories that correspond to the szahee ofh are the lines in space that
are all traversed with the same velocity. Now, ceeéainly knows that a system of
rectilinear rays is not always composed of the nortmals surface. However, one also
knows that if the lines are normal to a surface thenethwill be an infinitude of other
surfaces. As one sees, that property is only a panticase of the one that belongs to the
trajectories of a moving body, and that we proved irbbd.

If one leaves aside the results that were establish#ds number then one can also
prove the theorem of Thomson and Tait as follows:

If one is given a surfac&) then one will always know how to determine a soluion
of Jacobi’'s equations that is zero for all points @t tburface. The trajectories of the
moving bodies, which are normal to all of the surfa@esconst., will be normal to),
in particular. Since the set of all of them is deteed by the latter condition, the
proposition will then be proved.

In particular, if the surfacex] becomes infinitely small and reduces to a point then
one will have all of the trajectories that pass tigtothat point. One will then see that:

All of the trajectories of the moving body that pass through an arbipamt are
normal to a family of surfaces.

Here again, one can introduce an integral that i©ogoak to the one that we defined
in no.544. One has:

2 2 2
(%j + 96 +(%j :%x’+%y+%2 =2 U +h).
0x oy 0z 0x oy 0z

When one displaces along a trajectory, the precestjogtion will take the form:

do _
(18) =20,
(19) dg=2 U +h)di= /20 + 2h ds

It follows from this that the difference betwee taluesé,, &u- of &that relate to
the pointavl, M, resp., of the same trajectory is expressed by the farmu

(20) 8y — G- :jh:”,/z(u +h) ds.
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Once more, the integral that figures in the left-hadd will be called thectionfrom
M’ to M. The developments that were given by Thomson and shatv all of the
importance of that element, which must be considerdthve the same status as work in
the study of problems in mechanics. The preceding forrgidas the following
theorems, in particular, which are analogous to the onao.544.

If one considers the arcs of the trajectories that pass through a pairdr Mre
normal to an arbitrary surface, when those arcs are measured from poet of
incidence, and for which the action has a given value, then the loexsremities of all
of those arcs will be normal to all of the trajectories.

557. We shall now point out how one can employ a coteglgegral:
(21) 0=1f(x,y,z a,Db)

of the Jacobi partial differential equation to solveotef the problems that we just
encountered.

From Lagrange’s rule, the most general solution tgptréial differential equation is
provided by the relations:

6=1(xy,zab+g(abh,
(22) 0=2.,92

da Oa
_of L o¢

~db ab’

between which, one must eliminatandb.
If one desires that the solutiéishould be zero, or more generally, that it should have
a given valueu (x, y) at each point of a surfacg)(that is given by its equation:

(23) z=A(xY)

then one must repladdwith 1 andz with A in the preceding equations, which would give
the system:
“U=t(xy,zab+g(ab,
24
( ) O:ﬂ+%’ 0:@4-%.
da o0da ob adb

Upon differentiating the first relation with regpeo x andy successively and taking
the other two into account, one will have:
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of 6f 04 _ou _

1) 6)! 0X 0X
of af 04 a,u

oy a)l oy ay

(25)

The elimination ok andy from those two equations and the first of equations (24)
will give ¢ as a function o& andb, and will, in turn, determine the desired solution.

If one would like to have the solutighthat corresponds to all of the trajectories that
pass through a poinkd, Yo, zo) then one must take:

(26) ¢ =—1 (X0, Yo, 20, &, b) .

| shall be content to point out those propositionsictv belong to the theory of partial
differential equations and are analogous to the onesvérat given above (no541 and
542).

558. The preceding results lead us to imagine curvilinear coatelisystems in
which one defines a point in space by the values of tfuastities:

06 060
6 6=-2, =22
@= oa &= ob

A point is then determined by the intersection of thseefaces that belong to
different families. The surfaces of the families:

6, = const.,, & = const.
are generated by trajectories of the moving body thataareai to the surfaces:
6= const.

Upon considering, y, zto be functions o8, &, &, one will then have:

0x 0x ay 6y 0207 zZ_
6969 6968 6968
0x 0x ay 6y 0z0z Z_
6969 6868 6969

(27)
and as a result, the line element of space will bergby an equation of the form:

d€ =H?dg? +M d& + 2N d4, d& + P dé>.

As before (no541), the value oH will satisfy:
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H2=_1
2U+2h’
and, in turn, the value ol can be written:
(28) (A + 2h) dS =d6* + m d&? + 2n d6 d& +p dé?,

in which the quantitiesn, p, mp — 1§ are essentially positive. One can deduce the
principle of least action, as well as Hamilton’s prnite, from that formula by arguments
that are analogous to the ones that we developed irasigeod two variables. Instead of
insisting upon that subject, which will be reprised in a gan@anner in the following
chapter, we shall, in conclusion, point out an impdrtarmula that relates taction.

559. Recall the relation:
M
(29) G- o = [ 20 +h) ds,
which gives the actiotM M along the artM M of a trajectory. Let:
0=1f(x,y,z ab)
be a complete solution of the Jacobi equation, and let:

(30) LI % —p
oa ob

be the equation of the trajectory that one considegt.x, y, z denote the coordinates of
M, and letxo, Yo, o be those oM’ By virtue of equations (30), one will have:

0 0
a—f(X,y,ZaK):a— f(x. ¥, ¢ ab
(31) a a

0 0
_f 1 J :_f b 1 1 .
e (xy.zab pT™ (% Y, % ab

Those two equations giveandb as functions ok, y, z, X, Yo, 2o, and will, in turn,
express the actioM™ by a formula:

(32) MM =0 (XY, Z Xo, Yo, Z)

that contains only the coordinates of the potsM’. It is important to calculate the
derivatives of that function. Now, one has:

MM =f(x,y,za b)—f (X, Yo, 20, 3, b),
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and in turn, upon totally differentiating:

o = L ox+ M gy+ M 57 o5y o5y o5,
0X oy 0z 0% 0y 03%
Lot = 1) 5a+6(f -f) 5b.
ob

Jda

Since the coefficients al, d are zero, by virtue of equations (31), what will remain
IS simply:
OMM = £5X+ﬁ5y+ﬂ52—%5)6_%5 x_%a Z,
ox oy ° 0z 0% GRY 032

or, upon replacing the derivativesfadndfy with the velocities:

(33) OMM =X X+y' dy+Z - X 0%~ Y,0Y,~ 40 2.
M
P
M/
P/
Figure 36.

That relation, in which the functionhas disappeared completely, and that one can
also establish by the calculus of variations, is analego the ones that we proved in
nos.525 and540. It gives the variation of the action along a segined the trajectory
MM (Fig. 36) when one passes to an infinitely-close segi&ht One can give it an
entirely geometric form. 1M MP, MM P’ denote the angles that the trajectory makes at
M, M’ resp., with the infinitesimal displacemert4P, MP’ resp., then one will
obviously have:

X X+VYy'oy+Z o :—MP:—fcosl\m,

X 0%+ YpO Yot 40 7 = MPG—?} cosMM P
0

Upon replacing the velocitie(%s, (z—j with their values that are deduced from the
0

vis vivaequation, one will have:
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(34) MM =-MP,[2U,, +2h cosMMP - M’P’ [ 2U,,. + 2h cosMMP .

That formula includes the particular case thaates to the differential of a line
segment, and it gives rise to analogous conseqsen®®e shall point out only the
following one, which the reader can establish bieeding the method that was given in
no. 450 for the proof of Malus’s theorem.

560. If one is given an arbitrary trajectory and aface O) then one imagines that
the trajectory is reflected or refracted accordmghe sine law at the point where it meets
the surface @) in the same manner as a light ray. The law @écton or refraction
determines the tangent to the reflected or refcattajectory, since a trajectory that
corresponds to a given value of this vivaconstant will clearly be defined when one
knows one of its points and the tangent at thattpsd one will see that one can always
determine what one calls the reflected or refratta@dctory by a geometric construction.
Once that definition has been assumed, the argsnremnin.450 and the use of formulas
(34) will lead us to the following theorem:

Consider all of the trajectories of the moving balgt are normal to a surfadg),
and suppose that they are reflected or refractedacsurface(D). The reflected or
refracted trajectories will also be normal to a fare (X;) that one can construct in the
following manner: If M is the point where the trefery is normal tq%), and P is the one
where it meet§D) then one will take an arc PMbn the refracted trajectory such that the
action along the arc PKis equal to the product of the action along the &P with the
constant- 1 /n, where n is the index of refraction.

561. One can imagine some dynamical conditions thagate the trajectories to be
reflected or refracted according to the laws thatjust discussed. Indeed, suppose that
the force function varies abruptly in the neighlmth of the surfacel), in such a
manner that it is replaced by:

n?(U +h) —h,

in which n is the index of refraction. The law of the trageees will be the same after
crossing the surfac®jf. Granted, the equations of motion (1) and (2 etiange, but in
order to convert them to their original form, itlguffice to replacedt with dt/ n. One
will then have the same trajectories, but travesséld velocities that are augmented by
the ratio of the index to unity. In order to know how the trajectories @onverted in
the neighborhood of[Y), it will suffice to apply the Thomson-Tait theone If the
incident trajectories are normal to a surfakg (hey will remain normal to all of the
surfaces that one obtains by starting with theintpof incidence onX) and moving
along an arc such that the action along that ascahgiven value. Le¥l be the point of
incidence for one of the trajectories, lebe the point where it meells and letM " be a
point of the refracted trajectory. One will have:
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MP = ["J20+2n ds

v
PM" =n[ " \/2U +2h ds
P
Hence, if one determines the pdint by the equation:

.[;«/ 2U +2h ds+ n.[:'«/ZU + 2hds= const.

then one will obtain a surface that is normal toréfeacted trajectories. As one easily
sees, that condition, when combined with formula (34l determine the law of

refraction, and one will recover precisely the lawDafscartes that we assunegbriori
in the preceding number.
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THE GENERAL PROBLEM IN DYNAMICS
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action by means of a complete integral of the Jacobi iequahd its derivatives with respect to the
constant. — Another method of presenting the preceeésigts. Elimination of time with the aid of the
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Definition and invariance properties of the differentrametersAg A(6, 6). — Remarkable
transformations of the quadratic form. — Geodesicsliofethe form, extension of Gauss’s theorems. —
Application of the general problem of dynamics.

502. The methods that we have applied in the preceding two ersapan be
extended to the study of the general problem in mecharniasould not be pointless to
develop this new way of presenting the fundamental sethdit are due to Hamilton and
Jacobi here, because we would then be led to certagrageproperties of the quadratic
forms that clarify the preceding results and will befukto us in what follows.

Imagine a problem in mechanics in which there exists @e feunction, which we
assume to be independent of time. ggtqy, ..., g, be the independent variables upon
which the position of the moving body depends,dget ..., g, be their derivatives with

respect to time, and lefT2e thevis vivg which is defined by the formula:

(1) Z=a,q’+2a,4d+..=> > add,

in which the coefficients are given functions oy, O, ..., g, . The motion will be
defined by the Lagrange equations:

@ doT_oT_ou_,,
dtoq 0q 0q

Hamilton showed that if one introduces the auxiliaryalaes:

_ 0T _ , L
3) p'_aq; > a g (=12 ..n

then one can transform those equations in the folipwianner:
Set:
(4) H=T-U
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One expressed as a function of the variablgs gc . In order to do that, it will
suffice to deduce the values qf, ..., ¢, from (3) and substitute them in the preceding

expression. If one sets:

a, a, &,
(5) D _ a21 ......... ,
ay a, -,

or, upon adopting a notation that is due to Kronecker:
D =|ak| (,k=1,2,..n),

and denoting the coefficient ak in the preceding determinant By , then formulas (3)
will give us:

v A A
6 == . +"n,.
(6) q DI01+ +DIO

Since one has:
(7) =pig + ... +paCQ,,

from the theorem of homogeneous functions, one wilhiobtwith no difficulty, the
following value ofT:

8) Z=%22Amn’

which one can further write as follows:
ay - a, B
(©) xr=-1 ,
Dla, - a, b,
pn pn 0
and one deduces from this that:

_ _ 1 _
(10) H—T—U—EZZAkpg( u.

Once one knows that value fei, the equations of motion will be presented in the
canonicalform:
(11) d_q = a_H , d_ﬂ = - a_H

dt  op dt oq;
and the equation aofis viva

(12) T=U+h

can then be written:

(13) H=h.
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That is the first result that Hamilton established.

503. Now consider all of the solutions of the problemvdrich thevis vivaconstant
has a given valulk, and let:
(14) g =fi (C1,, C2, ..., Con2, N, t— 1) i=12,..n

be the equation that gives the values of the variapkes functions of time.
The values of the variabl@sthat are defined by formulas (3) will be:

of ..., Of
a

n i=1, 2, ...n).
pr ( )

of
(15) Pi = aila_tl+ar2
Instead of preserving the most general solutions, imagateone establishes— 1
relations between then2- 1 constantg; andh, which are arbitrary, moreover. For
example, one annuls — 1 constants, or perhaps one considers the set obsgslihat
correspond to the same given initial position of theesys etc. One will then obtain
some formulas that contain omy- 1 constants:

(16) q =@ (C, Cz ..., Co1, h, 1 —T0) (=12, ..n),

which define what we call family of solutions.
One can eliminaté — % and the constants from the preceding equations and their
derivatives:

- 99, - 99,
LT T

One will then be led to a system of differential ere:
, _dg _ L
(17) q == =®; (0, G2, ..., On, ) (i=1,2 ..n),

whose integration will permit one to recover equatif)s and which can be considered
to define the family of solutions by the same rightgstem (16). If one substitutes the
preceding values in formulas (3) then one will deduce spesssions fopy, ..., pn as
functions ofg, ..., 0n:

(18) pi =W (01, 2, ..., On, D)

that can take the place of system (17). We shallgige/the equations that determine
the functiong¥; .
First, consider the following equations:

dn__oH
dt oq;
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of the system (11). When th® are expressed as functions of the variabjeshose
equations will take the form:

0 0 oH
PR R R
og ~ 0q, aq,
: C oH - _
and if one replaceg with its valuea— then one will find that:
Y
(19) z op 6_H 6_H =0.
0g, 0p, 0q

On the other hand, if one substitutes the expressmmg.f ..., p, in thevis viva
equation:
(20) H=h

then one must obtain an identity. It is then neggsbat the derivative of the left-hand
side with respect tg must become zero, which will give the relation:

oH OH op,
+ =
daq, Zk: op, 99

Upon subtracting that from equation (19), one will find:tha

oH [ dp, aplj_ _
21 - =0 i=1,2,..n.
D) Zk:apk[aq aq, (

Hence, the variablegs, when considered to be functions@f ..., g, must satisfy
equations (20) and (21).
Now consider the second group of differential equatit b}

dt  dp

When one has replaced thewith their values, one will have defined a systenm of
first-order differential equations that is equivalent ttee system (17), and whose
integration will give the values @i, O, ..., g, as functions of time and — 1 arbitrary
constants that must be adjoined to tlevivaconstant. As one sees, all of the difficulty
is then reduced to first determining the expressionp:fqy, ..., p, that satisfy equations
(20) and (21).
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564. Once the problem has been transformed in that waydoas not at all believe
that one has made a step towards solving it: On thecsuofiathings, the integration of
equations (20) and (21) constitutes a question that is much diificult than the one
that one is supposed to solve.

It is only that problem that exhibits some particuldutsons. Indeed, one recognizes
immediately that equations (21) will be verified if onkesp;, ..., pn to be the
derivatives of the same arbitrary functi@n

96 96 96
23 = —), =—), ey =,
(23) "% P g P %,

As for equation (20), if one substitutes the precedihgegaof the variableg; then it
will be transformed into a partial differential equatibat defines the functio@ If one
sets:

. 06 96
(24) CEDY %a_q.ﬁ’

to abbreviate, then one will then find that:
(25) AG=2 U +h),
and one can then state the following theorem:

Each integral of the partial differential equatiq@5) corresponds to a family of
solutions of the problem that was posed for whigh the vis viva constant and that one
can determine completely upon performing the irggn of the system of differential
equations:

dq _ 96 :
26 i: |, — = — :1,2,..., .
(26) pP=> a "o (i n)

k

From the arguments that we just presented, it is thedrthe preceding theorem will
provide only some particular families of solutions. Huere we see (and we can prove
this at the moment) that those particular familiesygose all of the possible solutions to
the proposed problem. Indeed, Igt lfe one such solution. It is defined entirely by the
initial values p°, ¢ of the variableg;, dx, which are values that must satisfy the viva
equation:

H=h,
moreover.

Now, there exists an infinitude of solutiofi$o the partial differential equations (25)
such that one has:

e
Wop o a=diasd
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In each of the corresponding families, the solutigh) ¢(hat is defined by the initial
values q° of the variablesy will coincide with the solution ), because for the two

solutions, the initial valuep’, ¢ of all the variableg, g« will be the same.

565. We give the name afrthogonal familiego all of the ones that are defined by
equation (25) and the system (26). When one knows theiosoldt the complete
determination of the corresponding family will requine integration of the system (26).

The latter integration will be facilitated, and caree be obviated, when the solution
@ contains a certain number of arbitrary constantsat Thwhat Jacobi’'s fundamental
theorem amounts to, which we shall first prove.

Let:

6=ty ...,0n, C1, ..., Ca, )

be a solution to equation (25) that contains the arbitcanstantsc;, ..., ¢; . Upon
differentiating both sides of that equation with resgecany onec, of the preceding
constants and remarking tHat+ h does not contaig,, one will find that:

>y 08 _0

D dq 0q dc, )

2
From formula (6), the set of coefficients of tlgeaai is preciselyg,. One will
qk Cp

then have:

9’0
2 30 50 % =0
dq, oc,

dfog)_,
dt 6cp

00 _ o
P const. =c,, .

Co

or more simply:

and upon integrating:

One proves in the same manner that the equation:

d(oé T 06
—|— | =1 will give — =t+T.
dt\ oh oh

Hence:

If the functiond contains the arbitrary constants, c, ..., c; then the equations:
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. 6 _ ,

27) O e . Y_g¢

oc, oc,

will be as good as integrals of the systé6). Moreover, if one has not attributed a
numerical value to the vis viva constant then the equation:

(28) 99 =t+r7
oh
will give the time.
If the integral@is complete — i.e., if it contains-nlarbitrary contains g —then the
equations:
(29) By o, Yy
oc, oc,_, oh

will give the complete integration of the sysi{@®).

Jacobi’'s proposition is then found to be established.

Here again, by arguments that are analogous to the iones. 555, one will
recognize the conditions that the complete integratreatisfy. If one considers it to be
a function of the constants, then it will be necessary that it must not satisfiy a

equation of the form:
00 060
F N geeey o~ Jeo oy — ,h :0
(acl ac,, j

That condition is, moreover, equivalent to thedwing one:8, when considered to
be a function ofq;, ..., ¢, must not verify any partial differential equation thst
independent of the constamtsand distinct from equation (24).

566. Equations (29), to which, one must adjoin the followingson

30 =, = ——
(30) P1 o, p 2

n

which will give one the velocities, define the most gaheplution to the problem that
was posed. Among all of the solutions, consider the drascorrespond to the same

initial position of the moving system. Lef, ..., ¢’ be the values of the variablgshat
define that position, and let:
6=t ..., C1, ..., Cn-1, D)

be the solution that figures in formulas (30). We set:

fo:f(Orf, cery qg, C1y +.., Cn-1, h)
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Equations (29) must be verified when one setsq’, so one will have:

, _ of,
G =
60

and as a result, those equations will take the form:

(31) 9 t_t)=0 (=12 ..n—1).
oc;

Upon attributing all possible values to the constania those equations, one will
obtain what we have called a family of solutionBhat family is orthogonal One can
prove that in the following manner:

From the definition itself of the orthogonal faresi everything amounts to
establishing that the expression:

(32) > pdg= Z—dq

will become an exact differential after one has replattee constantg; with their
expressions as functions @f, ..., g, that are deduced from equations (31). Now, if one
considers the functions:

o=f- fo ,

in which one has replaced the constagiswith their values that are deduced from
equations (31), and if one totally differentiates themn hwee will find that:

do= z d +za(f

Since the coefficients of the differentials, are zero by virtue of equations (3dl}y
must be equal to the expression (32). The prapasithat have in mind is then
established. We shall recover it later on alongmtirely different path.

The particular solutioro that we just obtained, which is a solution that aan
examine as a function @f, ..., on, @, ..., °, plays a fundamental role in Hamilton’s
theory, as one knows.

The preceding argument persists without modificatvhen one replacds with an
arbitrary function:

¢ (Cl! C2, ..+y Cn1, h),
in such a way that the equations:

i(f_¢):o =12, ..n-1)
oc;
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always define an orthogonal family. That family esponds to the solutioé of the
partial differential equation that one obtains from laangye’s rule by eliminating, ¢,
.., Cn1 from the equation:

0=f-¢

and its derivatives with respect to the arbitrary caontsta

567. The preceding remarks apply to all hypotheses in whielsolutiond contains
arbitrary constants. When that is not true, if on@® iddtermine the family of solutions
that correspond to the solutighthen it will be necessary to integrate the system (26).
Any integral:

F = const.

of that system must satisfy the linear equation:

q A, 08 OF _

We letA(6, F) denote the expression:

(33) AOF) =Y z%g—jg—;,

to abbreviate.
The integration of the system (26) is then equivaleihat of the linear equation:

(34) A(6F)=0

We remark that the preceding symbol will reduca éowhen one supposes that &
in it.

The consideration of orthogonal families will leadtasa remarkable expression for
the vis vivaof the moving system that was pointed out by LipscHflg (Let 8 be an

arbitrary solution of equation (25), and &t &, ..., 6,.-1 be then — 1distinctintegrals of
the linear equation that corresponds to (34).

&, &, ..., G

will then define a system of independent functions, becaus&ifan be expressed as a
function of @, ..., -1 then one will have:

A6, 8 =06=0,

(*® R. LIPSCHITZ, “Untersuchung eines Problems der \Mnis-rechunung in welchem das Problem
of Mechanik enhalten ist,” Crelle’s Journ&l (1871). One can also consult an analysis of that paper that
was edited by the author in the Bulletin des Sciences matitgies (1% (1873), pp. 212.
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which is impossible, sinc&fis equal tdJ + h. We can then introduce the variabté€
in place of the variableg in the quadratic form:

2.2 &dqdg,
which will give thevis vivawhen it is divided byl®. One will then obtain an expression:
(35) > > a,dgdg=Bdg*+2> Bdddg+>. > a & & ;

we shall first look for the values of the coeffidieB, B; .
From the preceding equation, one will have:

- 9q 09
B=2.2.a 00 96"

_ dg 0
Bp -Zz%@%-
P

(36)

Now, when@ alone varies, the equations of motion will be fied;; that will result
from the fact tha#, ..., 6.1 are the integrals of the system (26). One wédhthave:

g , dt
37 — =qg—,
(37) Y IRT:

in which d@/ dt denotes the derivative & with respect to time in the natural motion.
One then deduces from this that:

oq, _ dt _ dt
Zk:%k 26 '[;%qjde Mg’
or furthermore:

dq, _ 90 dt
38 k= 27 P
(38) ;‘E‘k 00 g dé

If one multiplies that equation b%% and if one adds all of the similar equations

then one will have:
99,09 _ (00099 ) dt
228 06 06 {Zaqi aej do’

or upon remarking that from the formulas that eetat changing variables, the coefficient
of dt/ d@is unity, one will have:

99.9q _ dt
2.2 90 06 dO’
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99

The use of formula (37) will permit us to eliminate the\agives 30’ and that will

give us:
., _dé
22.add =
or, upon taking theis vivaequation into account:

do _
(39) =20+,

That is the formula that gives the derivativeddor the natural motion. One deduces
the following value foB from this:

dt? 1
B=2U+h = .
U+h dg* 2U +h)

Now, calculate the value &, . If one multiplies the two sides of equation (38)

% then upon adding all similar equations, one well:g

_ oq dq _ dt 06 dq,
B, = 2 Tk = 27 M
=225 6 06, dH{Zaq ae]

and since the left-hand side is obviously zeranftbe formulas that relate to a change of
variables, one will have:
By, =0.

Upon substituting the values BfandB,, in equation (35), one will then be led to the
fundamental identity:

(40) @ +20) 3> a, dg dg=d6?+f (d8, ..., dG),

in which f denotes a quadratic form of — 1 differentialsd&, ..., dg1 that will
necessarily bpositive-definite.

588. That is the formula that was established by Liyigc One can deduce a neat
and precise proof of the least-action principlerfrio. In the form that Jacobi gave 3t)(
that principle can be stated as follows:

(* Vorlesungen uiber Dynamikixth lecture.
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If one is given two positiond,) and (P;) of a moving system then imagine all
continuous displacements that take the system from the first posittbe second one,
while the velocities satisfy the vis viva equation:

2T=> > aqq =2U+h)

at each instant.

If one considers the integral:

(41) j((P:l:Zm\th = j(‘;’«/zu +20/> > g.dqdg

for each of those displacements then it will bes s the natural motion than for all
other displacements.

Indeed, we shall see later on (6@1) that the first variation of the preceding intdgra
will always be zero when one passes from the natooéion to any other motion from
(Po) to (P1) that is infinitesimally different from it. Hereye shall prove a more precise
proposition and prove that the integral will actpdbecome a minimum when the
position ;) is sufficiently close toRp).

Indeed, let g be one of the natural motions. Consider an guhal family of
solutions F) to which the motion J§ belongs. For example, one can choose any of the
solutions that correspond to an initial positié? J that is one of them that the system
takes in the natural motion. Define a continuowsmdin of positions that are
characterized, for example, by certain inequalities the@, &, ..., 6, must satisfy when
they are subject to the single condition that tb&it®n & to equation (25), which
characterizes the orthogonal family, will remainite and uniform, along with its first
derivatives, except possibly for a certain wellided position P"). Moreover, suppose
that this domain includes a subset of the positiblas the moving system will occupy
under the motion) in its interior. If @g) and P;) denote two of those positions then we
shall show that the integral:

(42) A = j(‘P'j:«/zu +20 /> Y a,dgdg

to which we shall give the name adtion, will be smaller for the natural motion than for
any other motion that takes one between the sarmsiqroand belongs to the interior of
the domain that was defined above. Indeed, in@oissible that two different positions
(Po), (P1) that are included in the interior of the domaiattwas defined will belong to
two distinct solutions of the orthogonal family tlerrespond to the determination &f
that we have chosen. If that were the case therobthe two positiong), (P1) would
be distinct fromP”), and since the velocities that relate to thosgtjoms are determined

by equations (26), in which, by hypothesis, the\@dtes 3_6? are neither infinite nor
G

indeterminate, it will result that two distinct atbns will correspond to the same initial

position and the same initial velocity, which is/ausly impossible.
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From that, we evaluate the actiirby appealing to formula (40). We will have:

(43) 9 = j(‘f:\/dez +f(dg, da,,...,d, . .

For the natural motion, one has:

dé=dé = ... =dé-1 =0,

and on the other hand, sim%a? Is always positive from formula (398 will be an

increasing function. One will then have:
®
A= '[(Po) de - H(Pl) _H(Po) '

If one now considers any other motion that capdrormed in that domain that was
defined then, from the preceding proof, one camooinect the two position®q), (P.)
and constitute a solution of the orthogonal farthigt corresponds to the determination of
@ that have chosen. As a result, the differentd#s ..., d&.-1 will not always be zero
under the second motion, and sirfics a positive-definite form, the integral, when

evaluated for the new motion, will be greater than:

J((P:l: e,

anda fortiori, it will be greater than:
(R)
[ de
(R)

Now, since the functio® is well-defined inside the domain, the latter gred will

always bef, — 6, . The proposition that we have in mind is therelghed.

In particular, suppose that the orthogonal farodysidered is the one that is defined
by all of the solutions that have the initial p@sit (Py) in common. Letd be the integral
that corresponds to the partial differential equatito which one can always add a
constant in such a manner that it is annulledHergosition Py). The continuous domain
can be characterized here by the inequalfly (

<A,
in which A is a positive constant that is chosen by the simgindition thatd and its

derivatives will not become either infinite or indaminate in the interior of that domain.
The action in the natural motion that is perfornrethe interior of that domain between

(** The complete and precise definition of that domain démand some developments that are
analogous to the ones that we made in 5t8and521 in regard to geodesic lines.
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the position Py) and another positiorP() that are included in the domain will be an
absolute minimum, because from the preceding proof, itb@ikmaller than the one that
relates to any other motion that is performed in theadomHowever, it is also less than
the one that refers to any motion that goes beyondirtiies, since the action for that
motion, when it is extended to just the first positionwhich it leaves the domain, will
already be equal t4, and as a result, greater thgg,. That argument differs from the

one that we presented in rs21 only by the number of variables.

569. The preceding proof then establishes the principleadt action without the
intervention of the calculus of variations and by puslebraic methods. From that
standpoint, it must be compared with the one that Lieudéscribed in an article that
was included irComptes renduim 1856 ¢%). We shall rapidly discuss a new method that
leads to the results that were obtained by the ilussrgeometer.

Let ag denote the expressions:

(41) d=aydg +adg + ... +an do,,

which are equal to the quantitigs multiplied bydt, and consider the quadratic form:

o o 90
1 ain aql 1
06

4 K= : — @, .

(45) R
99 96 4 ¢
oq, 0q,
w, -, 0 0

One easily recognizes that it is always positive 0o,zend that it can be annulled
only if one has:

o _w_ _ o,
08 96 096
Jdg, 0q, aq,

Having said that, let the notatiobsg;, bio, b21, b2, denote the four elements that are
zero and belong to the last two rows and the last tlunms. A formula that we have
recalled already (pp. 124 in original) will give us the tiela

(? J. LIOUVILLE, “Expression remarquable de la quantité, dans le movement d’un systéme de
points matériels a liaisons quelconques, est un minimundeetn du principe de la moindre action,”
Comptes rendud? (1856), pp. 1146, and Journal de Liouville {)1856), pp. 297.
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2 2
(46) 0’K _ 0K oK _[aKj.

db,0b,, oh, db, |oh,

One establishes immediately, or by a simple combinaticolumns, that one has:

9°K oK
=D, — =-D a,dg dq ,
ob, 0b,, b, 223,
K --pdg XK =-pag
b, b,

in which D andA@ are the expressions that were defined already by fasn{@) and
(24). Upon substituting those values in equation (46), olh&mnd that:

BOY Y a,dq dq=do?+ .

If one now supposes thétsatisfies the equation:

A8 =2U+h)
then one will have:

(47) 20+h) Y > a,dg dq=d92+%.

That equation, which gives an expression for the eleangaction, like formula (40),
can replace that identity and plays the same roleeiptoof that we gave of the principle
of least action. Moreover, one can very easily dedhedirst formula from the second
one.

Indeed, from the expression (45), one recognizes imnedyliitat K is a quadratic
function of the binomials:

08 e
w,

o “oq’

All of those quantities, which are annulled when ongld@es on a trajectory by
virtue of the differential equations (26), will necesganave the form:

P,1d& + ... +Py-1dBn-1 .

K / D will then be a quadratic form in the differentidig, d&, ..., df@,1 . That remark
will suffice to show that equation (40) is a consequa&idermula (47).
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570. Here, we shall neglect everything that is concemitd Hamilton’s principle.
In order to establish that principle and see that tleractually a minimum of the
corresponding integral, it will suffice to repeat theqdrin no.546, while substituting the
functionf (d&, ..., d@n) that figures in formula (40) for the tero@dg’ everywhere.
On the contrary, we insist upon the following generabratof a result that was
established in ndx34.

When one knows a complete integétlo equation (25), one can take the functions
4, ..., 81 10 be the derivatives @with respect to the constamgs Set:

g :%,
ac
2
eik: 99 .
0c 0G,

We shall see that one can express the right-handadidermula (40) entirely as a
function of @and its derivatives.

Replace the characteristicwith d + A J in that formula everywhere, and equate the
coefficients of1 in the two sides. We will have the relation:

(48) 20+h) > > adqoq= d€5€+—z—5€

which is equivalent to the equation from which dwaes deduced it, but which contains
two systems of differentials. The two sides carcdesidered to depend upon the-41
variablesq;, do, A, ¢, . Differentiate with respect to;, while keeping all of the other
variables constant. Upon remarking that the lafichside does not contaip and that
one has:

0 ou

—du=d —
oc, ac,

in general, we will find the following result:

1w of 1
0=d6 09+dodg + =Y 2 g, +2Y L .
4 4 2Zada 4 zaae "t zac)aoler '

Having said that, choose values for the diffeadstdq,, ..., &, that annuldé, o6,
., 06-1. If one sets:



Chapter VIII — The general problem in mechanics.

137

20 . 28
oq, 0q,
%, 08
(49) (0) =| 0q, 0q,
06, 96,
oq, 0q,
then the values odq;, ..., A, will be proportional to the coefficients %(}ﬁ gé’ in
On

the preceding determinant.

If one denotes the expreskainthie determinant will

become when one replac8svith 8« by (ik) then the preceding equation will give us:

(50) 0 = (0)g + = z—( A) A=1,2,..n-1),

while all of the other terms will disappear by ugtof the hypothesis that was made. If
one appends the identity:

-—Z Wda

to the preceding equations then one can eliminktefahe derivatives%% and

obtain the equation:

1,1) @h-1) dg
(2,1) (2n-1) dé,

(n-1,1)--- (n-1,n-1) b, , )
dg, dg, , -t
(0)

which will give onef. One will then find that:

12 @n-1) d&
(2,1 (2n-1) dg,
(51) -8 ,
(n-131) - (nh—-1n-1) &g,
dé da. _, 0
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in whichD ’denotes the determinant:
| (K) | i,k=1,2,...n=-1).

Hence, the quadratic form & ¢-h) > > a,dq dq , which represents what one can

call the square of thelementary actionwill be expressed entirely as a functionédnd
its derivatives by a formula in which no unknowns willl semain. As we have stated,
that result will include what we proved in ris81.

571. The variabld plays a very self-effacing role and disappears almosiptetely
in the preceding arguments. One can eliminate it framotltset, and thus recover the
results that we just established in a different waljose results are very important, so we
shall rapidly describe that new mode of exposition.

One can make time disappear from the Lagrange equationsmipoying the
principle ofvis viva Indeed, if one sets:

2= ZZ a,dq dq

then the Lagrange equations can be written as follows:

glem1)_10@M_ 90U _,
ddq dt| dtadq o dg

Now, from the principle o¥is viva one will have:

dt=,| (T) :
U+h

If one substitutes that value fdt in the Lagrange equations then they will take the

form:
d{a(T) JU +h}_6(T) JU+h (M au

adq J(T) | 9dg J(T) U+hodg
or, more simply:

b b _
(52) dmw/(um)(T 3 (U+ h(T) =0.

Those are the ones to which one will be led bya&gg the first variation of the
integral:

(53) [ UM =3[ 20 +n Y Y a.dq dg

to zero.
Set
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(54) ds = (U +2h) > > a,dg dq .

ds denotes what we have called #lementary actionand one sees that the solution to
the general problem in mechanics is thus reduced to thehséar the maximum or

minimum of the integral:
(R)

ds,

(R)
in which d$’ denotes a quadratic form that is subject to only thelition that it must be
positive-definite. That is what the principle of least action corss@st and thanks to that
principle, one will see immediately that the generabigm of mechanics is only an
extension of the problem of the search for geodesic lioean arbitrary number of

variables. That is the viewpoint that we shall nosuase, while taking a beautiful paper
by Beltrami £ as a guide.

572. If one is given the quadratic form:
(55) ds'= 3> a.dq dq

then if one makes a change of variables that gives:

> > adg dg= Y > b,drdg,

one will also have, upon introducing two systems of chffidials

D> D.adgdg=> > hdrar.

As a result, the anglel§ Js), which is defined by the equation:
(56) dsdscos fis &) = Y > a,dqdq,

will be an invariant. In the case where the forrda$inite, one will be easily assured that
cos (s &) has an absolute value that is less than unity, Wwithuse of an identity of
Lagrange. We say that the elemend, s) is theangle between the two directions that
are defined by the two systems of differentidlsand &. Two directions will be
perpendiculaiwhen one has:

(57) 2.2 &dgdog =0.

If one is given an arbitrary relation:

(*") E. BELTRAMI, “Sulla teorica generale dei parametffatienziale,” Memorie dell’ Accademia delle
Scienze dell’ Istituto di Bologna (8)(1869), pp. 549.
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(58) $(Qu 02 ..., ) =0

then it will define what we call aurface Suppose that, ..., g, varies without ceasing
to satisfy that equation. At each instant, theiredldhtials will verify the relation:

(59) zg—(faqi = 0.

We reserve the name lafe for the set of values fay, ..., g, that are given functions
of a variable parametér We shall consider only lines and surfaces in this chagter
general, a line and a surface have a limited number ofrmn elements. The
orthogonality condition for two lines that have a coommelement is expressed by
formula (57), in which the characteristidsand O refer to the displacements that were
performed on the two lines, respectively.

If a line and a surface have a common element themilvgay that the line imormal
to the surfaceavhen it is normal to all of the lines in the surfaleattcontain the common
element. In order for that to be true, it is necestat one must have:

(60) >.>.adqdq =0,

in which the differentiald refers to a displacement on the line, and the difteako
refers to a displacement on the surface. If the seirfa represented by equation (58)
then the differentialgqg; will satisfy the single condition (59). It will theoe necessary
that the coefficients of the differentiadg; in the two equations (57) and (59) must be
proportional. One will then be led to the system:

(61) zk‘,qk% :Ag—g (=12 ..n),

in which A is a factor of proportionality.
If one solves this for the derivativdsy / dt then one will obtain the following values:

dq _ , 5 A 99
(62) R T

in which the symbol$ andAik denote the quantities that were defined before; i.e., th
determinant f | and its first-order minors, respectively.
Since one has:

dq dq
63 , —— =1,
(63) > a, & ds

the multiplication of equations (61) and (62) will give:
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D oq dq,
Here, upon setting:

_ A, 060 96
64 AG= —
©9 ZZDMM
one will find that:

1

65 N=—,
(65) Y,

If one now remarks that, from formula (61), the deteoms that multiplydg / dsin

0¢

equation (63) is equal ttba— then one can further write that equation in théWang
q

form:
0¢ dq
Ay ——=1,
Zaqi ds
which will give:
(66) 1 = %’
A ds

in which the differentiati¢ refers to a displacement that is performed orctinee that is
normal to the surface. A comparison of formulds) @nd (66) will then give us:

(67) ng= (%j |

and that expression shows immediately th@is an invariant?).

573. That essential fact can also be establishedeiriaifowing manner: Consider the
quadratic fornds” and look for the functiom such that the difference:

2
d§-—d€,
m

when considered to be a functiondsf, ..., dg,, reduces to a sum of— 1 squares. If
one takes the derivatives of the preceding diffeeemith respect tda, dop, ..., dg, then
one will obtainn equations:

dq 106
k=749 =0 =1, 2, ...,n),
Zk:a’k ds mdg G K

(*® E. BELTRAMI, loc. cit.
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in which the determinant must be zero. One can apperetjtiaion:

6
——dq -df=0
25q

k

to them, which definesld. Upon eliminatingdé, dq, ..., dg,, one will be led to an
equation that gives:
m=A68
precisely.
Since the functiom is, from its very definition, an invariant, the satheng will be
true forA6.

574. Since the difference:

2
dsz—dg
AG

reduces to a sum of — 1 squares, which are all positive when the form istipesi
definite, one will be led to introduce the elemeftdy) that is defined by the equation:

(68) 99 _ gssin @, ds).

NI

The element ds) will be called theangle between the surfacé&)(and the curve to
which the differentialslg refer. That definition is in accord with the one thet gave
for orthogonality above, since, from the relation (&fe will then have:

sirf (6, d9) = 1.

From the invarianA8, one will immediately deduce the followingf)

(69) A6, ) = zz%g—g%,

which is the coefficient of 2 in the development d&(8 + A8), when it is ordered in
powers of the constant
That leads us to further introduce the eleméht}) that is defined by the formula:

(*®) One can give a formula fa(8, 8) that is analogous to equation (67). Indeed, one has:

d,
A6 &)= 00—,
ds

in which the differentiat refers to a displacement that is normal to the ser@.
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A(6,6)

Jo608

which will be theangle between the two surfadéd, (6).

In summary, we have defined the angle between tes litwo surfaces, and a line
and a surface. One will easily verify ththbse angles do not change when the form is
multiplied by an arbitrary function of the independent variabléisone considers lines
and surfaces that have a common element then the lagtgleen a line and a surface is
the complement of the angle that the line makes thighnormal direction to the surface.
The angle between two surfaces is equal to the anghleéntlines that are normal to
them. Some elementary calculations will establistse¢hpropositions, which is easy to
predict and which the reader can verify with no effort.

(70) cos @ 6) =

575. We shall now point out an interesting consequencenefaf the preceding
results. We have seen that the difference:

d&?
(71) ds - v

is always reducible to a summf 1 squares:

Equate each of these squares to zero. We will thea &asystem of differential
equations:
Bi1 dq1 + ... +Bi dCh =0,

which aren — 1 in number. Le#, &, ..., 6,1 be then — 1 integrals of that system — i.e.,
the functions that will give the most general relasidetween the values @f ..., g, that

satisfy these equations when they are equated to zerowiNMabviously haven — 1
identities of the following form:

P =C1d8 +Cpd@+ ... +Cin1d@a (=12, ...n—1),

and in turn, the difference (71) will take the form:

46>
ds AG =fy(d@, ...,d6év),

in whichf; denotes a quadratic form in the- 1 differentialdg .

That inequality can exist only if the functior§ &, ..., 61, are mutually
independent, and as a result, upon substituting them fooritpmal variables, one can
expresfddand the coefficients df as functions ob, 4, ..., G-1.
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Therefore:

By a change of variables that requires only the integration of @ ordinary
differential equations, one can always reduce the quadratic functfoio dise following
form:

(72) dg = O'Aé;+f1(del . déy).

in which @is an arbitrarily-chosen function that is subjeatthe single condition thatg
must not be zero.

In particular, if one has:
AG=1
then one will find that:
(73) ds’ =d@? +f,(dé, ..., d6r ).

That remarkable proposition, to which one can adjoinpiteegeding one, is due to
Beltrami. In the theory of forms in variables, it plays the same role as Gauss’s
proposition that relates to geodesic lines (849.and531).

One can define, in an elegant manner, the systemffefatfitial equations whose
integration gives tha — 1 functionsg when one has chosen the funct®n For that, it
suffices to appeal to the invariance properties of thebsyA(E, 6).

Indeed, if one looks for the functionghat satisfy the equation:

A(B,u) =0

then one will easily find, upon calculatidy 8, u) with the left-hand side of equation
(73), that the preceding equation reduces to the simple form:

w_,
06

As a result, it admits the — 1 independent integrad, &, ..., 1. It will then
suffice to write the linear equation in the originaliables:

(74) A(6,u) = ZZAk%% -

The n — 1 independent integrals of that linear equatiolh be functions that one can
associate witl#in order to obtain the new system of variables.
If the quadratic functiods’ is such that there exists a partial differentéiation:

(75) AG=U
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that one can integrate completely, in whighs a function ofys, ..., g, moreover, that is
chosen at will then one can give it the form:

(76) ds :dj +f(d8, ..., d61)

without integration and in an infinitude of ways.
To show that, le¥ be a complete integral of equation (75). Upon diffea¢ing the
two sides of that equation with respect to any of theteonsc that enter intadd, one will

find that:
A[gﬁj —0,
oc
08 06 . . . . .
and as a resulta—, 3 will be the various integrals of the linear equation (74).
G Coa

These are Jacobi's fundamental results, but in atilighferent form.

576. The transformations that we just pointed out permibuseat the problem that
was posed above of finding the minimum of the integral:

jds,

when it is taken between two given systems of extremhges. In order to preserve the
analogy, we give the name géodesicgo all of the lines that give us a solution to that
problem. It is clear that these solutions are invarianatreover — i.e., that they persist
when one changes the independent variables.

From that, we first suppose that one has chosen tharsebles in the following
mannern — 1 of the variableg, ..., y,-1 are such that the equations:

(77) y1=Cq, vy Y1 =Cpa

define a solution to the probleno matter what the constants &e — i.e., a geodesic
line. The last variablé will be simply a function that is independent of thecpding

ones. For more simplicity, one can suppose fhatthe value of the integrejl ds when

measured along each of the geodesic lines (77) upon startandix@d, but arbitrary,
origin. d<* will then take the form:

(78) ds =d6%+ 2 @ dys + ... +an1 dyns) dG+ DD b, dy dy .

Take@to be the independent variable, and set:
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S :E,

dé
,_ dy
AT

Upon equating the first variation of the integral:

[ds=]sdo
to zero, we will have the equations:
dos _0s _, (=12 ..n-1).
déoy oy

If we write that they are verified for the hypothdsiat:

dyl = dyz = ... :dyn_l =0
then we will find the equations:
08,
— = 1=1,2,..n=-1),
Y ( )

which are integrated immediately and give:
(79) a =@ (Y, Y2 - Y1) (=12 ..n=1).
Therefore:
It is necessary and sufficient that all of the Gognts a should be independent &f

From that, consider an arbitrary curve on the lobasis defined by the equatigh=
0 and contains the starting points of all the geodesics:

y; = const. (=1,2,..n-1),

and look for the angle between that curve and the geotihedipasses through one of its
points. One will have:
dé=ds
dyp =dy, = ... =dyp-1 =0
for the geodesic and:
06=0
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for the curve, in whichdy,, dy, ..., dyn-1 are arbitrary. The angle between those two
lines, which is defined by formula (56), in general, will thexrve the value here that is
given by the equation:

a15Y1+325y2+"'+ %-1534-1.

\/ZZ by Y,

In order for the geodesic lines to be normal to thengedric locus € = 0) of their
starting points, it is necessary and sufficient thatgreceding expression for casnust
be zero for all values of the differentialg — i.e., that one must have:

(80) COSw=

ay=au=...=a1 =0
for 6= 0.
However, since those coefficients do not contithey will be identically zero.
Hence:

If the geodesic lines are normal to an arbitrary surfgée= 0) then all of the
coefficients awill disappear in the expressidi8); ds’ will take the following form:

(81) ds’ = d6? +fu(dys, ..., dyn-a),
and as a result the geodesic lines will also be normal to all of tHacas:
6= const.

that one obtains by measuring a given length along each of them upon starting at its
point of incidence.

That is the proposition that was proved by Beltranti.aldo applies to the case in
which one considers all of the geodesic lines that passigh the same point, because if
one takes that point to be the origin of the arc therm fthe definition itself o, one
must have:

ds=dé for =0,

no matter what the variablgg are. As a result, the coefficiends and by must be
annulled for@d= 0. However, since the first do not contairg, they will be identically
zero. Hence:

If one measures out equal arcs along the geodesics that pass through ahgmnt w
starting with that point then the geometric locus of the extrenafiédsose lengths will be
normal to all of the geodesics.

577. The preceding theorems, which constitute a generalizat Gauss’s theorem,
immediately exhibit the following result, which was ddithed already in no%31 and
532 for the case of two variables:
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The determination of the geodesic lines of the quadratic form and theaitnbegof
the partial differential equation:
AG=1

constitute two equivalent problems. The solution of one of themaasiissarily imply
the solution of the other one.

All that remains for us to do is to add a word in redarthe most general problem in
mechanics. As we have remarked already, it amounttheodetermination of the
geodesic lines of the form:

(82) dS?=U+h)> > adgdg = U +h) ds.

If one now remarks that the differential parameté when evaluated fodS, is
equal to the quotient of the same differential parantégrrelates tals’ by U + h then
one will immediately see that the solution to thelyem in mechanics comes down to
the integration of the equation:

(83) AB=U +h,

in whichA is the differential parameter that relatesisb

From the remark that we made above (5®4), the angles between the lines and
surface are the same with respect to the two fa®sandds. Upon taking that result
into account, one can extend the two propositions fttlate to orthogonality that we
proved in the preceding number like Beltrami, to the gepeodlem of mechanics. One
then recovers two theorems that Lipschitz statedanptper that we pointed out above,
and to which we shall refer the reader.

END OF PART TWO



