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On the Pfaff problem
By G. DARBOUX
Translated by D. H. Delphenich

The method for the integration of partial differeh&iguations in an arbitrary number
of independent variables that Pfaff made known in 1814divigmoires de I’Académie
de Berlinhas been neglected for quite some time. The beadisitbveries of Jacobi and
Cauchy have only attracted the attention of geometexts wlere occupied with that
theory.

Meanwhile, the Pfaff method, which is, moreover, aegalization of one that is due
to Lagrange for the case of two independent variablefgrsofsome considerable
advantages. It replaces calculations that are oftemplicated with the use of certain
differential identities that give the key to theunive solution of difficulties that present
themselves in the other methods. The beautiful resudts were obtained by Lie in
various memoirs that were inserted into Mathematischen Annaleshow all of what
one can infer from these identities, for examplepne would like to reduce to the
smallest possible number the integrations that one nucstessively perform before
arriving at the complete solution of a partial differ@hequation.

In the work that one is presently reading, | proposexfmain the solution to the Pfaff
problem without any recourse to the theory of partifeential equations, and above
all, I am obliged to exhibit the invariance properties thay pldundamental role in that
solution. | am not at all concerned with the integradithat are necessary in order to
bring a differential expression into its reduced forng arreover, from some formulas
that | will give, the operations that one must do in ortdeobtain the solution to that
problem can be copied in some fashion onto the onégdfex to the integration of a
partial differential equation.

In the first part, | study the reduced forms, and | stizat the integration of the first
Pfaff system suffices, and immediately gives the redidoemn when one is dealing with
the differential expression that corresponds to a patiti@rential equation.

In the second part, | study the relations betweendthgced forms, and | prove, in
particular, three propositions that serve as thesbasithe theory of Lie groupd)(

() The first part of this paper was written in 1876 and comicated by Bertrand, who taught the
theory of partial differential equations at the CollégeFrance at the time. Bertrand has kindly explained
the method that | have propounded here in his first leagtutanuary, 1877.

Some time later, a beautiful memoir of Frobenius amokar theJournal de Borchardthat carried a
date that was previous to January, 1877, moreover (viz.ei@bpt, 1876), and in which that geometric
scholar followed a path that is very closely analogoush¢ one that | communicated to Bertrand, in the
sense that it rested upon the use of invariants and ltheaicovariants of Lipschitz. Upon returning to
my work at that point in time, it seemed to me that mposition was more free from calculations and, as a
consequence, from the importance that Pfaff methodidste take on, so there would be some interest in
making it known.
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PART ONE
l.
Consider the differential expression:
Xpdxg + ... +Xp dX,

whereX;, ..., X, are given functions of;, ..., X, . We denote them by the notati@xg,
where the index refers to the system of differentials that is addptOne will thus have:

(1) Og=X1dxg + ... +X,d%,
and if one employs other differentials that are denbteithe charactedthen one has:
(2) Os5=X1 O + ... +Xq Ko .

From the two preceding equalities, one deduces that:
g =2, A dx + ... +2 X

d0s=2. dX & + ... +2. X ddx,
and consequently:

Dy - dOs =2 (& dx — dX )

—ZZ[GX 6)): j(d Ox — dxJ X),

the summation being extended over all combinations dices 1, 2, ...,n, and
consequently consists ofn — 1)/2 terms. To abbreviate, we set:

0X; 0X,
3 - = ’
(3 dik = ox  ox

and the preceding equality will become:
4) Dy -dOs = Q> a (dxdx - dxd x).
ik

By virtue of the identities:

In the same year — viz., 1877 — an important memoir byohi the same subject also appeared in the
Archiv for Mathematikin Christiania (t. 1l, pp. 338). However, this paper regien methods that are
completely different from the ones that | will presen
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akta=0, a =0,
which follow from formula (3), one can further writguation (4) in the form:

n

(4 cont) Py -dOs =Y a,dxdx .

i=1 k=1

Now suppose that one replaces the variaklesthe differential expression (1) with
some other variablgg. Upon performing the substitution that is defined by theédas:

(5) X = (Y, -0 Yn),
which gives:

oy

the expressio®qy will take the form:
(6) ©a= DY dy.

In all of what follows, we shall assume that th&inctionsy; are independent. As a
result, the new variablgg can be regarded as independent functions of the oldxpnes
As for the coefficient¥; , one can always transform them by the use of fas(8) into
functions of the variableg .

Having said that, apply formula (4) to the new expreskio®y. If we set:

(7) bk = —-—*

then we will have:

and consequently:

®) > adxdx = bdydy.

This formula is fundamental to our theory. Furthermbedore continuing, we shall
give a direct proof of it without appealing to the propetigt is expressed by the
equation:

dox = ddx
that we made use of.
From a comparison of expressions (1) and (6Pfgrone deduces the equalities:

xla_xi+...+ xn%:Yk,
oy, Y,
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which serve to define the quantitis. From them, one deduces that:

oY, =YX, 0X, 0% 0%
EY 6yk6y. “M'Gxay’

and consequently:

oY, _ oY 0X, 0x, 0%, 0% 0%
ZZ[GX 0x, j[ j

ay oy T4 oy, 0y 0y dy

where the sum on the right-hand side is taken ovesyalems of different values of,
a, and consequently it consistsrgh — 1)/2 terms.

If one multiplies the preceding equationdby dyx — dyk dyk , and one then takes the
sum of then(n — 1)/2 equation thus obtained then the coefficient of:

X, 0X,
0X,  0X,

in the right-hand side will be:

ox, 0x, 0%, 0%,
dyoy —dydy),
ZZ(ayk oy dy ayj( Yoy~ dyd y)

dXy Kg—dXy Ky .
One will then have:

oY _9% _
Z;(ayk a}(dyiéx dyJ y)

(9)

-ZZ[GX Xy j(dxa&s, dx.0 %),

which is the same thing as equation (8).
.

Having said this, consider the variable$o be functions of one auxiliary varialile
that are defined by the differential equations:

a11dxl+"'+ q'ud)ﬁ:/] de’t

(10) alZd)i+.“+Q'12d)s:A ><2d’t

a,dx +---+ g, dx =2 X dt
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whereA will be a quantity that one can choose arbitrarilygdpa constant, or a function
of t, depending upon the situation. We remark that equations (fi()eceeplaced with
the single equation:

(1o0y Zn:i a,dxdx = AdtX X &

that one obtains by adding them, after having multipliedmthby ox;, ..., X,
respectively, provided that one requires that this equatiorrified for all of the values
that are attributed to the auxiliary variablés . Therefore, the system (1) can be
replaced with the single equation:

(10 Xy —dOs= 1 O,dt

which must be true for any differential® In the applications, it will always be
preferable to directly form the two sides of the lagguation instead of successively
calculating the quantitieayx that appear in system (10). From now on, the preceding
remarks will lead us to a fundamental property of systeéi (

Suppose that one performs a change of variables andeplaeeas the variables
with some other variabley that are equal in number and which are independent
functions of the former. It is easy to see thatdysem (10) is transformed into the one
that one forms in the same manner by taking new independeiables. This results
immediately from the fact that this system, whenttemi in the form (1(?) is obviously
independent of any choice of independent variables. Howfwethe sake of neatness,
consider equation (10) One knows, by virtue of equality (8), that its left-thaide will
become:

2.0 by dyt Iy

As for the right-hand side, it will obviously transfointo the following one:

AdtY Y Ok .

Therefore, equation (10vill take the form:
D> > b dydy =Adt> YAy
ik i

Since the functiony; are independent, their differentiady; are arbitrary, like the
differentials o, . One can then equate the coefficients of the réifitials in the two
sides, and one will obtain the equations:
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bdy, + By dy+--+ B dy=4 Y dt
blldy2+ ............ + dex :/]gd,t

(11)

Therefore, whenever the functiorssatisfy equations (10), the functiopswill satisfy
equations (11). The converse is obviously proved in the szaneer. One can thus say
that systems (10) and (11) are absolutely equivalent, giegeare two forms of the same
system of differential equations, when written in eliént variables. As they are
composed in the same manner by means of variables thatreatihem, we express this
property in an abbreviated manner by saying that it amoumsisying thatsystem(10)is
invariant We shall make use of this proposition in order tocai# the reduced forms
into which one can convert the differential expres$ign

First, suppose thatis even. The skew determinant:

Yt ajiag ... an

will be a perfect square. We begin by assuming thatitisrminant is non-zero.
One can then solve equations (10) dey, ..., dx, , and one will obtain a system of
the form:

that admitar — 1 independent integrals of

Take thesen — 1 integrals to be new variables that we denotg, py.., y»-1, and a
functiony, that is subject to the single condition that it hetan integral of the system.
Y1, ---, ¥n then define a system of independent functions, and the system (10), when
written in the new variables, will take the form (10Qne must then express the idea that
equations (11) are verified when one assumes that +he functionsys, ..., yn-1 in them
are constants.

One must then have:

AA

—_— dyn =- A Yl dt,
ay, 0y
%—% dy, =-AY2dt,
ayn ayz

0 =AY,dt

From this, one deduces that:
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ologY, _dlogY, _ _dlogY,, _ —-Adt
oy, o oy dy,

The latter equations show that the functidas..., Y,-1 depend effectively upon thg,
but that their mutual ratios are independent. €arethus assume that fox n one has:

Y; = KY?,
Y° being independent of the varialyle while, on the contrary necessarily contains it.
One thus comes down to a differential expressicth@form:

Q4 =K (Y dy+---+ Y, dy ),

which has at least one term, but which again enjiigs property of containing the
variabley, only in the factoK. One can further write:

(12) Oq :yn(YlodM+"'+ ﬁl dy.),

upon now denoting the coefficiektbyy, .
Now, suppose thatis odd. The determinant:

A:Ziall...ann

will then be zero, since it is skew-symmetric odaarder, and consequently equations
(20) will never be impossible if one sets= 0 in them. We first suppose that all of the
minors of first order i\ are non-zero. In this case, equations (10), wbreemaked =

0, determine the ratios of the differentials cortglle They therefore admi — 1
independent integrals that we again denotgiby.., y.-1, and that we take for the new
variables, when we add a functign to them that will not be an integral, and will
consequently form a system mindependent functions with them. Equations (1Lsim
then be verified by the substitution of the equatio

A=0, dy; =0, .0, d¥h-1 = 0,
which will give:
oy, _9Y, _

ay, oy

ayn ayz
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aY,, oY,

n —

ayn ayn—l B

It is easy to find the most general form for thections that satisfy these equations.
Indeed, set:

Y:a_qJ, Yk:a_qJ‘*‘YkO,

ayn ayk

The equations express the idea that the derivativée déinctionsY,” with respect to
yn are zero. One can thus set:

O¢=d¥ + Y dy + ... +Y . dy ,,

in which the functions,” do not depend upoy .
However, two different cases can present themsékes In general’ will contain

Yn, and consequentV, yi, ..., ¥n-1 Will be n independent functions. Upon changing the
notation and denoting byy, , one will get the first reduced form:
(13) Oa=dyn + Y2dy + ... +Y . dy ;.

However, it can also happen thtdoes not contaig, . One will then have:

ow ov
NP P

1 n-1

or, more simply:
(14) Oy =Y dy + ... +Y . dy, ;.

It is, moreover, very easy to distinguish these ®rmom each othera priori.
Indeed, the latter is characterized by the property@ha annulled when one has:

dyp =0, ...,dyn-1 = 0.
One thus sees that one will obtain this form whenthe equation:
Xidxe + ... + X, dx% =0
Bs a consequence, a simple linear combination of equgti®)sn which one has sdt=

For example, consider the form in three variables:

Fe=Xdx+Y dy+Z dz=0.
Here, system (10) becomes:
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dx _  dy _ dz
Y _0Z " 9Z_0X 0K oY
0z dy o0x 0z 0y Ox

(15)

If one replaceslx, dy, dzin the form with quantities that are proportionathem then
one obtains the well-known expression:

(16) «[2Y 02 +Y(a_z_a_XJ+z ax_av)
o0x 0z oy 90X

If this expression is non-zero then one can corfuginto the form:
dy+Mda+ N dg,

wherea, [ are integrals of the system (18%),andN are functions otr and, andyis a
function that is independent af 8. On the contrary, if the expression (16) is zeramthe
the termdy will disappear, and what will remain is:

Fo=Mda+NdG=udy,

which is in agreement with known results.

V.

Up to now, we have assumed that the system (10) isndiatge. Now, imagine that
it is not. Thus, ifh is even then the determinant:

Ziall ... Qnn

will be zero, and consequently the same will be trueafoof its first-order minors, by
virtue of a known property of skew-symmetric determinarifsn is odd then the first-
order minors of the same determinant will all be zero.

Equations (10) then reduce to at leadistinct ones, and it no longer suffices to
determine the mutual ratios d%, ..., dx,, dt. However, | remark that they always form
a system that is equivalent to system (11), since rdnen@ent that we made in order to
establish that equivalence suffers no exception.

To simplify, suppose that one has malde 0. Equations (10) will be indeterminate.
Suppose that they reducepadalistinct equations, whepecan be equal to zero.

| arbitrarily appenadh — p -1 differential equations — for example, the following ones

dg, = 0, dg, = 0, coryOfnpa = 0,
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where ¢4, ..., ¢ are arbitrary functions — and | thus obtain a perfectlgrdened
system. | further call tha — 1 integrals of the complete system ..., y,-1, and upon
adjoining to them a functiog, that is not an integral, | again obtainindependent
functionsy; that | substitute for the variabl@&s. The system (11), in which one sdts

0, will be verified, like the first one, when one sets

dy]_ = 0, faay dyn—]_ = 0
By an argument like the one that we made in the wh®een is odd, we are led to
the same conclusions, and we find one of the forms (A8)4). In summary, we can

state the following theorem:

A form ©q in n variables can always be converted by the integration of thensys
(10) into one of the three forms:

Yo (Y dy+--+ Y., dyy),
(A) YldM Foeet ¥—1 d){—l’

dy, + Y dy+---+ Y, dy,,
where the variablesy..., yn-1 are independent, and where the functiondeépend only
upony, ...,¥n-1. Some of the functions éan be zero, moreover. The first of these three
forms presents itself only when n is even and the determinant:

2 ta1 ... an
iS non-zero

One can further state the preceding result in theviolip manner: Let®; denote a
differential form inn variables. One can always convé} into one of the three forms:

YnOg o, dyn + 5,

wherey, is a variable that is completely independent of the omasfigure in the new
differential expressio®]*.

V.
We may now prove the following theorem:

A form®q4 can always be converted into one of the following two types:

dy-zdy- zdy----— z dy
(17 { zdy+ z dy+---+ 7z dy,
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where the functions yi, ..., z constitute a system of independent variables; i.e., they are
functions that are independent of all the variables that enter into the@grm

The first of these two preceding types will be saithecofindeterminatetype, while
the other one will be said to be adterminateype.

We shall prove that this proposition is an almost ichiate consequence of the
preceding one. Indeed, it is obvious for forms in one aml\ariables. It will then
suffice to show that if it is true for a formin— 1 variables then it is also true for a form
that contains one more variable.

In order to do this, we remark that a forrmiwariables can be converted into one of
the three types iA. Neglecting the second one, which depends uponronly variables
and for which, consequently, the theorem is allowed, emeark that the other two are
composed in a very simple manner with the function 1 variablesr; dy; + ... + Y1
dyn-1 .

Replacing that form im — 1 variables with one of the two types (17), we obtaia
of the following expressions for the formnnvariables:

Yo (du—vidug —Vo dp — ... =V, dw),
Yo (Vi dug + Vo dup — ... + Vp dU),
d(yn +U) —vidu —Vo dwp — ... = Vp dU,

dyn +vidug + Vo dup + ... + Vp dU,

whereu, u;, Vi are independent functionsyf ..., ya»-1 and where, consequentiy, u, u;,
Vi are independent functions of the original variables.

The last two expressions obviously fall into the iedetinate type. As for the first
two, one converts them into the second type by subsgtakie following functions for
the functionsry, ..., Vp:

ViYn =t Wi, oy, Vp Yn =2 W .

The theorem is thus established. The following ogunsiece is an obvious result:
If the reduced form for the expressiominariablesdy is:

zdyr + ...+ 7z dy
then the P functionsz, yx of the variables; are independent, so one necessarily pas 2

n.
If the reduced form is:

dy-zdyi—... -z dy

then one must likewise have 2 1< n.
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VI.
We shall now solve the following problem:

If one is given a forn®y in n variables then which of the two typds) can it be
converted into, and what is the value of the number p then?

This problem is susceptible to an extremely simple solutindeed, suppose that one
transforms the expressi@y by taking the new variables to be the ones that figutiee
reduced form and choosing the other ones in an arbitrannenaso that they would
complete the number of independent functions. Observe that this must become the
system (10). This system can be replaced with théesaggiation:

(18) Dy —dOs;=1 64 dt,

which must be valid for any differentidl Suppose, to begin with, that the reduced form
of Oy is:

Oi=dy-zdy1—zdy— ... =z dy,.
One will have:

POy —-dOs=dz @1—dy1 o+ ... +de d/p—dyp O_Zp,

and the system (10) or equation (18), which is equivalehtgoes us:

dy,=0, dz=-4 zdt
dy, =0, dz=-4 z dt
(19)
dy, =0, dz,=-4 7z dt
0=Adt.

One sees that one will necessarily hdve 0, and that equations (10) reduce 2
which will be completely integrable.
On the contrary, if the reduced form is:

Oi=z1dyr + ... +Z, dyp
then system (10) will be equivalent to the following:one

dy, =0, dz=A1 zdt

dy,=0, dz=413zd
(20) Y2 5 z df

dy, =0, dz, =4 z dt
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Here, it will not be necessary to make= 0, which distinguishes this case from the
first one. Moreover, the equations adnpt-21 independent integrals of

y1 =Cy, %I C,,
— Zp —_ !
Yo = Cp, Z = Cp—l'

We can therefore state the following theorems:

If equations(10), when regarded as determining the differentials, @xe impossible
as long asl is non-zero then the forfy is reducible to the indeterminate type:

dy-zdyi—zdy,— ... = Z, dyp.

The numbelp is equal to the number of distinct equations boctv equationg10)
reduce when one ses= 0, and consequently, it will be easy to determmegriori.
Moreover, the2p equations to which equationd0) then reduce are completely
integrable, and the variables,yz of the reduced form are functions of thgprintegrals.

If equations(10) can be verified by supposing thatis non-zero then the form is
reducible to the determinate type:

zdyr + ... +Z,dyp.

The numbelp is equal to the number of distinct equations kactv equationg10)
then reduce. Moreover, these equations are alwayspletely integrable, and one will
have a system of integrals of these equationginstef the variables of the reduced form
that are given by the formulas:

yi = an, zelt=p,
yp:ap, Zpe_j/‘dt:ﬁ)_
In other words, these differential equations adthé functions y ..., y, and the

quotients z/ z, ..., z,/ z: for independent integrals of t.

As an application, we study the reduced f@gin the most general case.
If nis odd then the determinant:

Yty ... 8

IS non-zero, and one can solve equations (10) for flerehtialsdx ; A is non-zero and
equations (10) are all distinct. Here, one then hasebend type (17), and the reduced
form is:

z1dyr + 2 dys + ... + Zyz dynz.
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On the contrary, if is odd then the determinant:

Y tai1 ... 8

is zero; however, its first-order minors are non-zengyeneral. As we have seen, one
must then havd = 0, apart from an exceptional case, and the equationsdbace tn
— 1 distinct ones. The reduced form is:

dy—2z dyr — ... = Zn-1y2 AYn-1y2.

VII.

We have seen how one recognizes which type is attaohedlifferential form and
how one determines the numiger It remains for us to show the integrations that are
necessary in order to convert a given differentigiregsion into its canonical form. The
beautiful discoveries of Mayer and Lie greatly dimmihe difficulty in this subject.
However, in this paper | will occupy myself only withetlnvariance properties that
relate to a differential form. | will thus contentyself with explaining the general
process of integrations, my sole objective being to stiat the Pfaff method, when
applied to a partial differential equation, leads to tmeeseesults as those of Cauchy.

First, consider a differential expression:

@3 =X dxg + ... + X, dx,
whose canonical form is:
(21) zdyr+ ... +Z,dyp .

We know that the Pfaff system:
DOy —dOs=A Osdt

is then completely integrable ifp2< n, and consequently admip2- 1 independent
integrals oft in any case. There will thus be at least— 20 — 1 variables that are not
integrals. Suppose, to fix ideas, that the latter are:

szl X2p+1 ) 1Xn .
When one sets:
Xop = X

— 0 — O
p? X2p+1_X2p+1l ey Xn—Xn,

Xy
functions ofxy, ..., Xp-1 . There will then be one integral that reduces;f@nother that
reduces tow, and so on'f. We let k] or u; denote those of these integrals that reduce to

..., X’ being numerical constants, the 2 1 integrals of the Pfaff system reduce to

() This classification of integrals of a system of ecpriis, as one knows, due to Cauchy in the case
where there is just one independent variable. As fapawpletely integrable systems are concerned, it has
already been utilized by Lie in the paper that we alreéidy on the Pfaff problem.
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Xi . We know that the functiong depend solely upon the variabigs ..., y, that appear
in the canonical form (21), and the quotient$z, ...,z,/z . Having said this, we take
the new variables to be:

ull ey U2p—l, szl ey Xn1

which are obviously independent functions of the first ones
The form©®} becomes:

(22) K(U1dw + ... +Ugp1 dupp-1),

whereUy, ..., Ux-1 depend upon only the, ..., ux-1, While K, by contrast, contains one
or more variablesy,, ..., X, . This is simple to prove in several ways. Fomepd, if
one starts with the canonical form (21):

Z Zy
z| dy+—=dy+--+—d j
oo

then one knows that tt®/ z are functions of the variableis. Therefore, if one replaces
they, z. / zy with their expressions as functions of the integunaénd if one remarks that
z is an independent function of the preceding ones, theindeed finds the expression
(22).

| remark that the functioK that appears in that expression is not defined completely.
Nothing prevents one from dividing it by an arbitrary fumetg(us, ..., Uxp-1), on the
condition that one multiplies the quantitie®y the same functiop. However, one can
determineK completely by the following condition:

Suppose theK reduces to a function:

¢/(X1, X2, ..., X2p—l)
for Xap = X3, s X = X7
We divideK by ¢(us, uy, ..., uxp-1), and then the new value &f will be defined

completely and will enjoy the property of reducing to lewlone setgy, = x‘z)p, cey Xn =
0

X, -
Having said this, we write down the identity:

Xedxg + ...+ X, d =K(Up dug + ... + Uop-1 dUZp—l)a

and setp = X3, ..., Xa = X; on both sides. LeX_ denote whak, becomes. Sinck
will then become equal to &, will become equal t@;, and one will have:

Xlo dxg + ... + xgp_ldXZp—l =U;dx + ... +U2p—1 dsz—l ,

and consequently one can write:
Ui = Xio,
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which leads us to the following theorem:

Suppose that the canonical form of a differential expression:
@3 =X dxg + ... + X, dx

zdyr + ... +Z, dyp.

The former Pfaff system will be completely integrab2pik n, and will admit2p — 1
independent integrals in any case. Therefore, there will always leasitn —2p + 1 of
the variables xthat are not integrals of that system. Lef Xx.., Xa be n -2p + 1
variables that enjoy that property. Consider #pe— lintegrals of the Pfaff system that

reduces to ¥ ..., Xpp-1 When one sets;x= X;,, ..., X, = X, and let u denote the ones

that reduce to x. If one chooses these integrals to be the new variables then the
expression@; takes the following form:

KUidw + ... + U2p—l dU2p—l)a

where one deduces,Wrom X, by replacing ¥, ..., Xpp-1 With w, ..., Uy-1, respectively

andxap, ..., X, With the constantsg, ..., x..

Now, consider the case in which the fo@} is reducible to the type:

(23) dy—zdyi— ... =z dyp.

One knows that the Pfaff system will be possible ohgne setsi = 0 in it, and that in
all cases it will admit g integrals that will be, ..., z, y1, ...,Yp. Here, we may argue as
in the preceding. Among threvariablesx;, there will be at least — 2p of them that will
not be integrable. Let:

X2p+ll ey Xn

be n — 2 variables that enjoy this property. Latdenote those of the integrals that

reduce tox; when one replacegy:, ..., X, with numerical constantsq,.;, ..., X;.

Finally, perform a change of variables that substituteddllowing variables:
Ut, ..., Ugp, Uzps1, ...\ Xn

for the original ones. One will have:

(24) dH+Uidw + ... + Uz dupp

for the new form of the differential expression. ledgin the canonical form (23), the
variablesz, yx that are the integrals of the Pfaff system careganded as functions af,
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..., Uyp . Therefore, if one supposes that they are expressédhetions ofuy, ..., Uy
then one will indeed obtain a result of the precedimgf

In the expression (24), the functibhis not defined, and it is clear that the expression
does not change if one replad¢¢svith:

H —¢(U1, ceny Uzp),

on the condition that one must agig / ou; to U; . If H reduces tay(xy, ..., Xzp) for Xop+1
= X3pu1» - Xn =X, then we agree to subtract:

YUy, ..., Uzp);

the new value offf will then reduce to zero fogpi1 = X3 .1, -\ Xo =X, -

Now, write down the identity:
Xedxg + ... + X dx, =dH+ Uy dug + ... +U2p dlep,

and setpi1 = X4, ..o, Xo =X, N it. Once more, leX? be whatX; becomes under that

substitution. Sincey; then becomes equal # andH becomes equal to zero, one will
have:
dexl + ...+ XgdeZp =U;dwu + ... +U2p dlep,
and consequently:
U= XE.

We may thus state the new proposition as follows:

Suppose that the canonical form for a differential expression:

@3 =X dxg + ... +X,dX,,

dy-zdys — ... =z, dyp.

The first Pfaff system will be possible only if one Aet 0 in it and will admit2p
integrals. Let %.1, ..., X» be a system of variables that do not take part in these

integrals, and let udenote the integral of the Pfaff system that reduces far xop+1 =

Xoper -1 X = X . The expressio®] can be converted into the form:

dH+U1dU1+ +U2p duZp,

where one deducesiffom X by replacing x ..., Xop With W, ..., Uyp and X%ps1, ..., %,
by constantsq,,,,, ..., X,. H is a function that reduces to zero fepxX = X;,,;, ..., X =
0

X, -

p17
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It is good to remark that will be determined with no difficulty by a quadrature when
ui, ..., Uy are known. Because one has:

dH = @S —Updu - ... —Uzdelzp,

and everything will be known in the right-hand side.

The two preceding theorems lead to several consequer@es. sees immediately
that the various systems of differential equationw/ach the application of the method
leads acquire an independent existence, in a sense. m@y write each of them after
having integrated the preceding one. Mayer already madegana remarks relating to
the completely integrable systems. Moreover, one He# by starting with the second
system one no longer has indeterminacy, and one no léngerthat the forms belong to
the two general types.

One can make an important application of the preceeésgjts to the particular form
that one encounters in the theory of partial diffesdr@guations.

Let:

(25) p1 =f(z, X1, ..., %o, P2, -+, Pn)

be a partial differential equation, whexedenote®z/ dx, . It is clear that the integration
of that equation is equivalent to the following problem:

Annul the form:
Og=dz-fdxy —p2dxe— ... — pr dX,

in 2n variables zx, ..., Xn, P2, ..., Pn Dy establishing n relations between these variables

One knows that the solution to this problem offers ffficdity as long a9y is reduced
to the canonical form. Now,say that in order to conve®y to the canonical form, it
will suffice to integrate the first Pfaff system relativehe form.

Indeed, write down that system:

Dy —dOs= A O4dt,

or
df o — & dxg + dp e — Jp2 dxe + ... +dp,y OKa — dX, In,
=Adi{(dz—fdr1— ... — pn ),
which gives the equations:
df—idxl =—Afdt
0%,
—idx1+dp2 =—Apdt
0X,

—idxl +dp, = —Apdt,
0x,
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of

- —dx =Ad
37 d t,

—idxl—dpz =0,
op,

—idxl—dxn =0,
ap,

which one easily puts into the following form:

dx _dx _ _dx __ -dp _ __ -d§
) S A S S R
(26) ap, op, 0x, -0z ox "0z

dz= pdx+--+ pdy

One recognizes the differential equations of theratteristic.
Here, we see thai is never an integral. Lef][ [py], [%] denote the integrals of that

system thag, px, X reduce to fox; = x’, x being an arbitrary constanthere will be no

difficulty in determining these integrals as long #e systen(26) is completely
integrable. If we now apply the first of the two theoremstthe proved then we see that
one will have:

27) {dz— fdx- pdx—--— pdx

=H{d3{ g B%t Bldx—F Ipl dix

in which L depends uporx;. We thus obtain the reduced form that must be the
conclusion of our calculations on the first tryhelpreceding method is encountered in
the Cauchy method, and it plays a fundamentaltt@es. It is pointless to return to the
well-known propositions and to show how they leadhe integration of the proposed
partial differential equation. For us, it sufficest we have established that, by means of
a simple supplement, the Pfaff method becomes dscpas the others. However, it is
also justified for us to add that this classifioatiof integrals that allowed us to arrive at
our objective constitutes a very essential advamaieis once more due to Cauchy.

(to be continuexd



