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On the Pfaff problem 
 

By G. DARBOUX 
 

Translated by D. H. Delphenich 
 

 The method for the integration of partial differential equations in an arbitrary number 
of independent variables that Pfaff made known in 1814 in the Mémoires de l’Académie 
de Berlin has been neglected for quite some time.  The beautiful discoveries of Jacobi and 
Cauchy have only attracted the attention of geometers that were occupied with that 
theory. 
 Meanwhile, the Pfaff method, which is, moreover, a generalization of one that is due 
to Lagrange for the case of two independent variables, offers some considerable 
advantages.  It replaces calculations that are often complicated with the use of certain 
differential identities that give the key to the intuitive solution of difficulties that present 
themselves in the other methods.  The beautiful results that were obtained by Lie in 
various memoirs that were inserted into the Mathematischen Annalen show all of what 
one can infer from these identities, for example, if one would like to reduce to the 
smallest possible number the integrations that one must successively perform before 
arriving at the complete solution of a partial differential equation. 
 In the work that one is presently reading, I propose to explain the solution to the Pfaff 
problem without any recourse to the theory of partial differential equations, and above 
all, I am obliged to exhibit the invariance properties that play a fundamental role in that 
solution.  I am not at all concerned with the integrations that are necessary in order to 
bring a differential expression into its reduced form, and moreover, from some formulas 
that I will give, the operations that one must do in order to obtain the solution to that 
problem can be copied in some fashion onto the ones that refer to the integration of a 
partial differential equation. 
 In the first part, I study the reduced forms, and I show that the integration of the first 
Pfaff system suffices, and immediately gives the reduced form when one is dealing with 
the differential expression that corresponds to a partial differential equation. 

 In the second part, I study the relations between the reduced forms, and I prove, in 
particular, three propositions that serve as the basis for the theory of Lie groups (1). 

                                                
 (1) The first part of this paper was written in 1876 and communicated by Bertrand, who taught the 
theory of partial differential equations at the Collège de France at the time.  Bertrand has kindly explained 
the method that I have propounded here in his first lecture in January, 1877. 
 Some time later, a beautiful memoir of Frobenius appeared in the Journal de Borchardt that carried a 
date that was previous to January, 1877, moreover (viz., September, 1876), and in which that geometric 
scholar followed a path that is very closely analogous to the one that I communicated to Bertrand, in the 
sense that it rested upon the use of invariants and the bilinear covariants of Lipschitz.  Upon returning to 
my work at that point in time, it seemed to me that my exposition was more free from calculations and, as a 
consequence, from the importance that Pfaff method is said to take on, so there would be some interest in 
making it known. 
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PART ONE 
 

I. 
 

 Consider the differential expression: 
 

X1 dx1 + … + Xn dxn , 
 
where X1, …, Xn are given functions of x1, …, xn .  We denote them by the notation Θd, 
where the index d refers to the system of differentials that is adopted.  One will thus have: 
 
(1)     Θd = X1 dx1 + … + Xn dxn , 
 
and if one employs other differentials that are denoted by the character δ then one has: 
 
(2)     Θδ = X1 δx1 + … + Xn δxn . 
 
 From the two preceding equalities, one deduces that: 
 

     δΘd = ∑ δXi dxi + … + ∑ Xi δdxi , 
 

     dΘδ = ∑ dXi δxi + … + ∑ Xi dδxi , 
and consequently: 
 

  δΘd − dΘδ  = ∑ (δXi dxi − dXi δxi) 

   = ( )i k
i k k i

i k k i

X X
dx x dx x

x x
δ δ

 ∂ ∂− − ∂ ∂ 
∑∑ , 

 
the summation being extended over all combinations of indices 1, 2, …, n, and 
consequently consists of n(n – 1)/2 terms.  To abbreviate, we set: 
 

(3)    aik = i k

k i

X X

x x

∂ ∂−
∂ ∂

, 

 
and the preceding equality will become: 
 
(4)    δΘd − dΘδ  = ( )ik i k k i

i k

a dx x dx xδ δ−∑∑ . 

 
 By virtue of the identities: 

                                                                                                                                            
 In the same year – viz., 1877 – an important memoir by Lie on the same subject also appeared in the 
Archiv for Mathematik in Christiania (t. II, pp. 338).  However, this paper rests upon methods that are 
completely different from the ones that I will present. 
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aik + aki = 0, aii = 0, 
 
which follow from formula (3), one can further write equation (4) in the form: 
 

(4 cont.)   δΘd − dΘδ  = 
1 1

n n

ik i k
i k

a dx xδ
= =
∑∑ . 

 
 Now suppose that one replaces the variables xi in the differential expression (1) with 
some other variables yi.  Upon performing the substitution that is defined by the formulas: 
 
(5)      xi = ψi (y1, …, yn), 
which gives: 

      dxi = i
k

k

dy
y

ψ∂
∂∑ , 

the expression Θd will take the form: 
 
(6)      Θd = i kY dy∑ . 

 
 In all of what follows, we shall assume that the n functions yi are independent.  As a 
result, the new variables yi can be regarded as independent functions of the old ones xi .  
As for the coefficients Yi , one can always transform them by the use of formulas (5) into 
functions of the variables yi . 
 Having said that, apply formula (4) to the new expression for Θd .  If we set: 
 

(7)      bik = i k

k i

Y Y

y y

∂ ∂−
∂ ∂

 

then we will have: 

     δΘd − dΘδ  = 
1 1

n n

ik i k
i k

b dy yδ
= =
∑∑ , 

and consequently: 

(8)     
1 1

n n

ik i k
i k

a dx xδ
= =
∑∑  = 

1 1

n n

ik i k
i k

b dy yδ
= =
∑∑ . 

 
 This formula is fundamental to our theory.  Furthermore, before continuing, we shall 
give a direct proof of it without appealing to the property that is expressed by the 
equation: 

dδxi = δdxi  
that we made use of. 
 From a comparison of expressions (1) and (6) for Θd, one deduces the equalities: 
 

1
1

n
n

k k

xx
X X

y y

∂∂ + +
∂ ∂

⋯ = Yk , 
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which serve to define the quantities Yk .  From them, one deduces that: 
 

k

i

Y

y

∂
∂

 = 
2

k i k i

x X x x
X

y y x y y
α α α α

α
α α α α

′

′ ′

∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂∑ ∑∑ , 

and consequently: 

k i

i k

Y Y

y y

∂ ∂−
∂ ∂

= 
k i i i

X X x x x x

x x y y y y
α α α α α α

α α α α

′ ′ ′

′ ′

  ∂ ∂ ∂ ∂ ∂ ∂− −  ∂ ∂ ∂ ∂ ∂ ∂  
∑∑ , 

 
where the sum on the right-hand side is taken over all systems of different values of α, 
α′, and consequently it consists of n(n – 1)/2 terms. 
 If one multiplies the preceding equation by dyi δyk – dyk δyk , and one then takes the 
sum of the n(n – 1)/2 equation thus obtained then the coefficient of: 
 

X X

x x
α α

α α

′

′

∂ ∂−
∂ ∂

 

in the right-hand side will be: 
 

( )i k k i
i k k i i i

x x x x
dy y dy y

y y y y
α α α α δ δ′ ′ ∂ ∂ ∂ ∂− − ∂ ∂ ∂ ∂ 

∑∑ , 

i.e.: 
dxα′ δxα – dxα δxα′ . 

 One will then have: 
 

(9)    

( )

( ),

i k
i k k i

i k k i

i k

Y Y
dy y dy y

y y

X X
dx x dx x

x x
α α

α α α α
α α

δ δ

δ δ′
′ ′

′

  ∂ ∂− −  ∂ ∂  


 ∂ ∂ = − −  ∂ ∂ 

∑∑

∑∑
 

 
which is the same thing as equation (8). 
 

II. 
 

 Having said this, consider the variables xi to be functions of one auxiliary variable t 
that are defined by the differential equations: 
 

(10)    

11 1 1 1

12 1 2 2

1 1

,

,

,

n n

n n

n nn n n

a dx a dx X dt

a dx a dx X dt

a dx a dx X dt

λ
λ

λ

+ + =
 + + =


 + + =

⋯

⋯

⋯

⋯
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where λ will be a quantity that one can choose arbitrarily to be 0, a constant, or a function 
of t, depending upon the situation.  We remark that equations (10) can be replaced with 
the single equation: 

(10)a    
1 1

n n

ik i k
i k

a dx xδ
= =
∑∑ = λ dt ∑ Xi δxi  

 
that one obtains by adding them, after having multiplied them by δx1, …, δxn, 
respectively, provided that one requires that this equation is verified for all of the values 
that are attributed to the auxiliary variables δxi .  Therefore, the system (1) can be 
replaced with the single equation: 
 
(10)b    δΘd – dΘδ = λ Θδ dt, 
 
which must be true for any differentials δ.  In the applications, it will always be 
preferable to directly form the two sides of the latter equation instead of successively 
calculating the quantities aik that appear in system (10).  From now on, the preceding 
remarks will lead us to a fundamental property of system (10). 
 Suppose that one performs a change of variables and one replaces the variables xi 
with some other variables yi that are equal in number and which are independent 
functions of the former.  It is easy to see that the system (10) is transformed into the one 
that one forms in the same manner by taking new independent variables.  This results 
immediately from the fact that this system, when written in the form (10)b, is obviously 
independent of any choice of independent variables.  However, for the sake of neatness, 
consider equation (10)a.  One knows, by virtue of equality (8), that its left-hand side will 
become: 

∑∑ bik dyi δyk . 
 

As for the right-hand side, it will obviously transform into the following one: 
 

λ dt ∑ Yk δyk . 
 
 Therefore, equation (10)a will take the form: 
 

ik i k
i k

b dy yδ∑∑ = λ dt i i
i

Y yδ∑ . 

 
 Since the functions yi are independent, their differentials δyi are arbitrary, like the 
differentials δxi .  One can then equate the coefficients of the differentials in the two 
sides, and one will obtain the equations: 
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(11)   

11 1 21 1 1 1

11 2 2 2

1 1

,

,

.

n n

n n

n nn n n

b dy b dy b dy Y dt

b dy b dy Y dt

b dy b dy Y dt

λ
λ

λ

+ + + =
 + + =


 + + =

⋯

⋯⋯⋯⋯

⋯⋯⋯

⋯⋯⋯⋯

 

 
Therefore, whenever the functions xi satisfy equations (10), the functions yi will satisfy 
equations (11).  The converse is obviously proved in the same manner.  One can thus say 
that systems (10) and (11) are absolutely equivalent, since they are two forms of the same 
system of differential equations, when written in different variables.  As they are 
composed in the same manner by means of variables that enter into them, we express this 
property in an abbreviated manner by saying that it amounts to saying that system (10) is 
invariant.  We shall make use of this proposition in order to indicate the reduced forms 
into which one can convert the differential expression Θd . 
 
 

III. 
 

 First, suppose that n is even.  The skew determinant: 
 

∑ ± a11 a22 … ann 
 
will be a perfect square.  We begin by assuming that this determinant is non-zero. 
 One can then solve equations (10) for dx1, …, dxn , and one will obtain a system of 
the form: 

1

1

dx

H
= … = n

n

dx

H
= λ dt 

 
that admits n – 1 independent integrals of t. 
 Take these n – 1 integrals to be new variables that we denote by y1, …, yn−1, and a 
function yn that is subject to the single condition that it not be an integral of the system.  
y1, …, yn then define a system of n independent functions, and the system (10), when 
written in the new variables, will take the form (11).  One must then express the idea that 
equations (11) are verified when one assumes that the n – 1 functions y1, …, yn−1 in them 
are constants. 
 One must then have: 

  1

1

n
n

n

YY
dy

y y

 ∂∂ − ∂ ∂ 
 = − λ Y1 dt, 

 

  2

2

n
n

n

YY
dy

y y

 ∂∂ − ∂ ∂ 
 = − λ Y2 dt, 

…. 
  0  = λ Yn dt. 
 From this, one deduces that: 
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Yn = 0, 
 

1log

n

Y

y

∂
∂

 = 2log

n

Y

y

∂
∂

 = … = 1log n

n

Y

y
−∂

∂
 = 

n

dt

dy

λ−
. 

 
The latter equations show that the functions Y1, …, Yn−1 depend effectively upon the yn, 
but that their mutual ratios are independent.  One can thus assume that for i < n one has: 
 

Yi = 0
iKY , 

 
0

iY  being independent of the variable yn, while, on the contrary, K necessarily contains it.  

One thus comes down to a differential expression of the form: 
 

Θd = K 0 0
1 1 1 1( )n nY dy Y dy− −+ +⋯ , 

 
which has at least one term, but which again enjoys the property of containing the 
variable yn only in the factor K.  One can further write: 
 
(12)    Θd = yn

0 0
1 1 1 1( )n nY dy Y dy− −+ +⋯ , 

 
upon now denoting the coefficient K by yn . 
 Now, suppose that n is odd.  The determinant: 
 

∆ = ∑ ± a11 … ann 
 
will then be zero, since it is skew-symmetric of odd order, and consequently equations 
(10) will never be impossible if one sets λ = 0 in them.  We first suppose that all of the 
minors of first order in ∆ are non-zero.  In this case, equations (10), where one makes λ = 
0, determine the ratios of the differentials completely.  They therefore admit n – 1 
independent integrals that we again denote by y1, …, yn−1, and that we take for the new 
variables, when we add a function yn to them that will not be an integral, and will 
consequently form a system of n independent functions with them.  Equations (11) must 
then be verified by the substitution of the equations: 
 

λ = 0, dy1 = 0, …, dyn−1 = 0, 
which will give: 

1

1

n

n

YY

y y

∂∂ −
∂ ∂

 = 0, 

 

2

2

n

n

YY

y y

∂∂ −
∂ ∂

 = 0, 

…………….., 
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1

1

  n n

n n

Y Y

y y
−

−

∂ ∂−
∂ ∂

= 0. 

 
 It is easy to find the most general form for the functions that satisfy these equations.  
Indeed, set: 

Yn = 
ny

∂Ψ
∂

, Yk = 0
k

k

Y
y

∂Ψ +
∂

. 

 
 The equations express the idea that the derivatives of the functions 0

kY  with respect to 

yn are zero.  One can thus set: 
 
     Θd = dΨ + 0

1 1Y dy  + … + 0
1 1n nY dy− − , 

 
in which the functions 0

kY  do not depend upon yn . 

 However, two different cases can present themselves here.  In general, Ψ will contain 
yn, and consequently Ψ, y1, …, yn−1 will be n independent functions.  Upon changing the 
notation and denoting Ψ by yn , one will get the first reduced form: 
 
(13)    Θd = dyn + 0

1 1Y dy  + … + 0
1 1n nY dy− − . 

 
However, it can also happen that Ψ does not contain yn .  One will then have: 
 

Θd = 0 0
1 1 1 1

1 1
n n

n

Y dy Y dy
y y − −

−

  ∂Ψ ∂Ψ+ + + +  ∂ ∂   
⋯ , 

or, more simply: 
(14)    Θd = 0

1 1Y dy  + … + 0
1 1n nY dy− − . 

 
 It is, moreover, very easy to distinguish these forms from each other, a priori.  
Indeed, the latter is characterized by the property that Θd is annulled when one has: 
 

dy1 = 0, …, dyn−1 = 0. 
 
 One thus sees that one will obtain this form whenever the equation: 
 

X1 dx1 + … + Xn dxn = 0 
 
is a consequence, a simple linear combination of equations (10) in which one has set λ = 
0. 
 For example, consider the form in three variables: 
 

Fd = X dx + Y dy + Z dz = 0. 
Here, system (10) becomes: 
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(15)    
dx

Y Z

z y

∂ ∂−
∂ ∂

 = 
dy

Z X

x z

∂ ∂−
∂ ∂

= 
dz

X Y

y x

∂ ∂−
∂ ∂

. 

 
 If one replaces dx, dy, dz in the form with quantities that are proportional to them then 
one obtains the well-known expression: 
 

(16)   
Y Z Z X X Y

X Y Z
z y x z y x

   ∂ ∂ ∂ ∂ ∂ ∂ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
. 

 
If this expression is non-zero then one can convert Fd into the form: 
 

dγ + M dα + N dβ, 
 
where α, β are integrals of the system (15), M and N are functions of α and β, and γ is a 
function that is independent of α, β.  On the contrary, if the expression (16) is zero then 
the term dγ will disappear, and what will remain is: 
 

Fd = M dα + N dβ = µ du, 
 

which is in agreement with known results. 
 
 

IV. 
 

 Up to now, we have assumed that the system (10) is determinate.  Now, imagine that 
it is not.  Thus, if n is even then the determinant: 
 

∑ ± a11 … ann 
 
will be zero, and consequently the same will be true for all of its first-order minors, by 
virtue of a known property of skew-symmetric determinants.  If n is odd then the first-
order minors of the same determinant will all be zero. 
 Equations (10) then reduce to at least n distinct ones, and it no longer suffices to 
determine the mutual ratios of dx1, …, dxn, dt.  However, I remark that they always form 
a system that is equivalent to system (11), since the argument that we made in order to 
establish that equivalence suffers no exception. 
 To simplify, suppose that one has made λ = 0.  Equations (10) will be indeterminate.  
Suppose that they reduce to p distinct equations, where p can be equal to zero. 
 I arbitrarily append n – p – 1 differential equations – for example, the following ones: 
 

dϕ1 = 0, dϕ2 = 0, …, dϕn−p−1 = 0, 
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where ϕ1, …, ϕn−p−1 are arbitrary functions – and I thus obtain a perfectly determined 
system.  I further call the n – 1 integrals of the complete system y1, …, yn−1, and upon 
adjoining to them a function yn that is not an integral, I again obtain n independent 
functions yi that I substitute for the variables xi .  The system (11), in which one sets λ = 
0, will be verified, like the first one, when one sets: 
 

dy1 = 0, …, dyn−1 = 0. 
 
 By an argument like the one that we made in the case where n is odd, we are led to 
the same conclusions, and we find one of the forms (13) or (14).  In summary, we can 
state the following theorem: 
 
 A form Θd in n variables can always be converted by the integration of the system 
(10) into one of the three forms: 
 

(A)     
1 1 1 1

1 1 1 1

1 1 1 1

( ),

,

,

n n n

n n

n n n

y Y dy Y dy

Y dy Y dy

dy Y dy Y dy

− −

− −

− −

+ +
 + +
 + + +

⋯

⋯

⋯

 

 
where the variables y1, …, yn−1 are independent, and where the functions Yi depend only 
upon y1, …, yn−1 .  Some of the functions Yi can be zero, moreover.  The first of these three 
forms presents itself only when n is even and the determinant: 
 

∑ ± a11 … ann 
is non-zero. 
 
 One can further state the preceding result in the following manner: Let n

dΘ  denote a 

differential form in n variables.  One can always convert n
dΘ  into one of the three forms: 

 
yn

1n
d

−Θ ,  1n
d

−Θ ,  dyn + 1n
d

−Θ , 

 
where yn is a variable that is completely independent of the ones that figure in the new 
differential expression 1n

d
−Θ . 

 
V. 
 

 We may now prove the following theorem: 
 
 A form Θd can always be converted into one of the following two types: 
 

(17)    1 1 2 2

1 1 2 2

,

,
p p

p p

dy z dy z dy z dy

z dy z dy z dy

− − − −
 + + +

⋯

⋯
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where the functions y, y1, …, zk constitute a system of independent variables; i.e., they are 
functions that are independent of all the variables that enter into the form Θd . 
 
 The first of these two preceding types will be said to be of indeterminate type, while 
the other one will be said to be of determinate type. 
 We shall prove that this proposition is an almost immediate consequence of the 
preceding one.  Indeed, it is obvious for forms in one and two variables.  It will then 
suffice to show that if it is true for a form in n – 1 variables then it is also true for a form 
that contains one more variable. 
 In order to do this, we remark that a form in n variables can be converted into one of 
the three types in A.  Neglecting the second one, which depends upon only n – 1 variables 
and for which, consequently, the theorem is allowed, we remark that the other two are 
composed in a very simple manner with the function in n – 1 variables Y1 dy1 + … + Yn−1 
dyn−1 . 
 Replacing that form in n – 1 variables with one of the two types (17), we obtain one 
of the following expressions for the form in n variables: 
 

yn (du – v1 du1 – v2 du2 − … − vp dup), 
yn (v1 du1 + v2 du2 − … + vp dup), 

d(yn + u) – v1 du1 – v2 du2 − … − vp dup, 
dyn + v1 du1 + v2 du2 + … + vp dup, 

 
where u, ui, vk are independent functions of y1, …, yn−1 and where, consequently, yn, u, ui, 
vk are independent functions of the original variables. 
 The last two expressions obviously fall into the indeterminate type.  As for the first 
two, one converts them into the second type by substituting the following functions for 
the functions v1, …, vp : 

v1yn = ± w1 , …, vp yn = ± wp . 
 

  The theorem is thus established.  The following consequence is an obvious result: 
 If the reduced form for the expression in n variables Θd is: 
 

z1 dy1 + … + zp dyp 
 

then the 2p functions zi, yk of the variables xi are independent, so one necessarily has 2p ≤ 
n. 
 If the reduced form is: 

dy − z1 dy1 − … − zp dyp 
 
then one must likewise have 2p + 1 ≤ n. 
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VI. 
 

 We shall now solve the following problem: 
 
 If one is given a form Θd in n variables then which of the two types (17) can it be 
converted into, and what is the value of the number p then? 
 
 This problem is susceptible to an extremely simple solution.  Indeed, suppose that one 
transforms the expression Θd by taking the new variables to be the ones that figure in the 
reduced form and choosing the other ones in an arbitrary manner so that they would 
complete the number of n independent functions.  Observe that this must become the 
system (10).  This system can be replaced with the single equation: 
 
(18)     δΘd – dΘδ = λ Θd dt, 
 
which must be valid for any differential δ.  Suppose, to begin with, that the reduced form 
of Θd is: 

Θd = dy − z1 dy1 − z2 dy2 − … − zp dyp . 
 One will have: 
 

δΘd – dΘδ = dz1 δy1 − dy1 δz1 + … + dzp δyp − dyp δzp , 
 

and the system (10) or equation (18), which is equivalent to it, gives us: 
 

(19)    

1 1 1

2 2 2

0, ,

0, ,

0, ,

0 .
p p p

dy dz z dt

dy dz z dt

dy dz z dt

dt

λ
λ

λ
λ

= = −
 = = −

 = = −


=

⋯ ⋯  

 
 One sees that one will necessarily have λ = 0, and that equations (10) reduce to 2p, 
which will be completely integrable. 
 On the contrary, if the reduced form is: 
 

Θd = z1 dy1 + … + zp dyp 
 

then system (10) will be equivalent to the following one: 
 

(20)    

1 1 1

2 2 2

0, ,

0, ,

0, .p p p

dy dz z dt

dy dz z dt

dy dz z dt

λ
λ

λ

= =
 = =


 = =

⋯ ⋯
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 Here, it will not be necessary to make λ = 0, which distinguishes this case from the 
first one.  Moreover, the equations admit 2p – 1 independent integrals of t: 
 

y1 = C1, 2

1

z

z
= 1C′ , 

………………………, 

yp = Cp, 
1

pz

z
= 1pC −′ . 

 
 We can therefore state the following theorems: 
 
 If equations (10), when regarded as determining the differentials dxi , are impossible 
as long as λ is non-zero then the form Θd is reducible to the indeterminate type: 
 

dy − z1 dy1 − z2 dy2 − … − zp dyp . 
 

 The number 2p is equal to the number of distinct equations to which equations (10) 
reduce when one sets λ = 0, and consequently, it will be easy to determine, a priori.  
Moreover, the 2p equations to which equations (10) then reduce are completely 
integrable, and the variables yi , zk of the reduced form are functions of their 2p integrals. 
 
 If equations (10) can be verified by supposing that λ is non-zero then the form is 
reducible to the determinate type: 

z1 dy1 + … + zp dyp . 
 

 The number 2p is equal to the number of distinct equations to which equations (10) 
then reduce.  Moreover, these equations are always completely integrable, and one will 
have a system of integrals of these equations in terms of the variables of the reduced form 
that are given by the formulas: 
 

y1 = α1, z1 e
−∫ λ dt = β1, 

………………………………, 
yp = αp, zp e

−∫ λ dt = βp . 
 

 In other words, these differential equations admit the functions y1, …, yp and the 
quotients z2 / z1, …, zp / z1 for independent integrals of t. 
 
 As an application, we study the reduced form Θd in the most general case. 
 If n is odd then the determinant: 

∑ ± a11 … ann 
 

is non-zero, and one can solve equations (10) for the differentials dxi ; λ is non-zero and 
equations (10) are all distinct.  Here, one then has the second type (17), and the reduced 
form is: 

z1 dy1 + z2 dy2 + … + zn/2 dyn/2 . 
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 On the contrary, if n is odd then the determinant: 
 

∑ ± a11 … ann 
 
is zero; however, its first-order minors are non-zero, in general.  As we have seen, one 
must then have λ = 0, apart from an exceptional case, and the equations then reduce to n 
– 1 distinct ones.  The reduced form is: 
 

dy − z1 dy1 − … − z(n−1)/2 dy(n−1)/2 . 
 
 

VII. 
 

 We have seen how one recognizes which type is attached to a differential form and 
how one determines the number p.  It remains for us to show the integrations that are 
necessary in order to convert a given differential expression into its canonical form.  The 
beautiful discoveries of Mayer and Lie greatly diminish the difficulty in this subject.  
However, in this paper I will occupy myself only with the invariance properties that 
relate to a differential form.  I will thus content myself with explaining the general 
process of integrations, my sole objective being to show that the Pfaff method, when 
applied to a partial differential equation, leads to the same results as those of Cauchy. 
 First, consider a differential expression: 
 

n
dΘ  = X1 dx1 + … + Xn dxn , 

whose canonical form is: 
(21)     z1 dy1 + … + zp dyp . 
 
We know that the Pfaff system: 

δΘd – dΘδ = λ Θδ dt 
 
is then completely integrable if 2p < n, and consequently admit 2p – 1 independent 
integrals of t in any case.  There will thus be at least n – 2p – 1 variables xi that are not 
integrals.  Suppose, to fix ideas, that the latter are: 
 

x2p, x2p+1 , …, xn . 
 When one sets: 

x2p = 0
2px , x2p+1 = 0

2 1px + , …, xn = 0
nx , 

 
0
2px , …, 0

nx  being numerical constants, the 2p – 1 integrals of the Pfaff system reduce to 

functions of x1, …, x2p−1 .  There will then be one integral that reduces to x1, another that 
reduces to x2, and so on (1).  We let [xi] or ui denote those of these integrals that reduce to 

                                                
 (1) This classification of integrals of a system of equations is, as one knows, due to Cauchy in the case 
where there is just one independent variable.  As far as completely integrable systems are concerned, it has 
already been utilized by Lie in the paper that we already cited on the Pfaff problem. 



Darboux – On the Pfaff problem.                                       15 

xi .  We know that the functions ui depend solely upon the variables y1, …, yp that appear 
in the canonical form (21), and the quotients z2 / z1, …, zp / z1 .  Having said this, we take 
the new variables to be: 

u1, …,    u2p−1,   x2p, …,    xn , 
 

which are obviously independent functions of the first ones. 
 The form n

dΘ  becomes: 

(22)    K(U1 du1 + … + U2p−1 du2p−1), 
 
where U1, …, U2p−1 depend upon only the u1, …, u2p−1, while K, by contrast, contains one 
or more variables x2p , …, xn .  This is simple to prove in several ways.  For example, if 
one starts with the canonical form (21): 
 

2
1 1 2

1 1

p
p

zz
z dy dy dy

z z

 
+ + + 

 
⋯  

 
then one knows that the zk / z1 are functions of the variables ui .  Therefore, if one replaces 
the yi , zk / z1 with their expressions as functions of the integrals ui and if one remarks that 
z1 is an independent function of the preceding ones, then one indeed finds the expression 
(22). 
 I remark that the function K that appears in that expression is not defined completely.  
Nothing prevents one from dividing it by an arbitrary function ϕ(u1, …, u2p−1), on the 
condition that one multiplies the quantities u by the same function ϕ.  However, one can 
determine K completely by the following condition: 
 Suppose that K reduces to a function: 
 

ψ(x1, x2, …, x2p−1) 
for x2p = 0

2px , …, xn = 0
nx . 

 We divide K by ψ(u1, u2, …, u2p−1), and then the new value of K will be defined 
completely and will enjoy the property of reducing to 1 when one sets x2p = 0

2px , …, xn = 
0
nx . 

 Having said this, we write down the identity: 
 

X1 dx1 + … + Xn dxn = K(U1 du1 + … + U2p−1 du2p−1), 
 
and set x2p = 0

2px , …, xn = 0
nx  on both sides.  Let 0

pX  denote what Xp becomes.  Since K 

will then become equal to 1, ui will become equal to xi, and one will have: 
 

0
1X dx1 + … + 0

2 1pX − dx2p−1 = U1 dx1 + … + U2p−1 dx2p−1 , 

 
and consequently one can write: 

Ui = 0
iX , 
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which leads us to the following theorem: 
 
 Suppose that the canonical form of a differential expression: 
 

n
dΘ  = X1 dx1 + … + Xn dxn 

is 
z1 dy1 + … + zp dyp . 

 
The former Pfaff system will be completely integrable if 2p < n, and will admit 2p – 1 
independent integrals in any case.  Therefore, there will always be at least n – 2p + 1 of 
the variables xi that are not integrals of that system.  Let x2p, …, xn be n – 2p + 1 
variables that enjoy that property.  Consider the 2p – 1 integrals of the Pfaff system that 
reduces to x1, …, x2p−1 when one sets x2p = 0

2px , …, xn = 0
nx , and let ui denote the ones 

that reduce to xi .  If one chooses these integrals to be the new variables then the 
expression n

dΘ  takes the following form: 

 
K(U1 du1 + … + U2p−1 du2p−1), 

 
where one deduces Uh from Xh by replacing x1, …, x2p−1 with u1, …, u2p−1, respectively 
and x2p, …, xn with the constants 02px , …, 0

nx . 

 
 Now, consider the case in which the form n

dΘ  is reducible to the type: 

 
(23)    dy − z1 dy1 − … − zp dyp . 
 
One knows that the Pfaff system will be possible only if one sets λ = 0 in it, and that in 
all cases it will admit 2p integrals that will be z1, …, zp, y1, …, yp .  Here, we may argue as 
in the preceding.  Among the n variables xi, there will be at least n – 2p of them that will 
not be integrable.  Let: 

x2p+1, …, xn 
 
be n – 2p variables that enjoy this property.  Let ui denote those of the integrals that 
reduce to xi when one replaces x2p+1, …, xn with numerical constants 02 1px + , …, 0

nx .  

Finally, perform a change of variables that substitutes the following variables: 
 

u1, …, u2p, u2p+1, …, xn 
 
for the original ones.  One will have: 
 
(24)    dH + U1 du1 + … + U2p du2p 
 
for the new form of the differential expression.  Indeed, in the canonical form (23), the 
variables zi, yk that are the integrals of the Pfaff system can be regarded as functions of u1, 
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…, u2p .  Therefore, if one supposes that they are expressed as functions of u1, …, u2p 
then one will indeed obtain a result of the preceding form. 
 In the expression (24), the function H is not defined, and it is clear that the expression 
does not change if one replaces H with: 
 

H – ϕ(u1, …, u2p), 
 
on the condition that one must add ∂ϕ / ∂ui to Ui .  If H reduces to ψ(x1, …, x2p) for x2p+1 
= 0

2 1px + , …, xn =
0
nx  then we agree to subtract: 

 
ψ(u1, …, u2p); 

 
the new value of H will then reduce to zero for x2p+1 = 0

2 1px + , …, xn =
0
nx . 

 Now, write down the identity: 
 

X1 dx1 + … + Xn dxn = dH + U1 du1 + … + U2p du2p , 
 

and set x2p+1 = 0
2 1px + , …, xn =

0
nx  in it.  Once more, let 0

iX  be what Xi becomes under that 

substitution.  Since ui then becomes equal to xi and H becomes equal to zero, one will 
have: 

0
1X dx1 + … + 0

2pX dx2p = U1 du1 + … + U2p du2p , 

and consequently: 
Uk = 0

kX . 

 
We may thus state the new proposition as follows: 
 
 Suppose that the canonical form for a differential expression: 
 

n
dΘ  = X1 dx1 + … + Xn dxn , 

is 
dy − z1 dy1 − … − zp dyp . 

 
The first Pfaff system will be possible only if one set λ = 0 in it and will admit 2p 
integrals.  Let x2p+1, …, xn be a system of variables that do not take part in these 
integrals, and let ui denote the integral of the Pfaff system that reduces to xi for x2p+1 = 

0
2 1px + , …, xn = 0

nx .  The expression n
dΘ  can be converted into the form: 

 
dH + U1 du1 + … + U2p du2p , 

 
where one deduces Uk from Xk by replacing x1, …, x2p with u1, …, u2p and x2p+1, …, xn , 
by constants 0

2 1px + , …, 0
nx .  H is a function that reduces to zero for x2p+1 = 0

2 1px + , …, xn = 
0
nx . 
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 It is good to remark that H will be determined with no difficulty by a quadrature when 
u1, …, u2p are known.  Because one has: 
 

dH = n
dΘ  − U1 du1 − … − U2p du2p , 

 
and everything will be known in the right-hand side. 
 The two preceding theorems lead to several consequences.  One sees immediately 
that the various systems of differential equations to which the application of the method 
leads acquire an independent existence, in a sense.  One may write each of them after 
having integrated the preceding one.  Mayer already made analogous remarks relating to 
the completely integrable systems.  Moreover, one sees that by starting with the second 
system one no longer has indeterminacy, and one no longer finds that the forms belong to 
the two general types. 
 One can make an important application of the preceding results to the particular form 
that one encounters in the theory of partial differential equations. 
 Let: 
(25)    p1 = f(z, x1, …, xp, p2, …, pn) 
 
be a partial differential equation, where pi denotes ∂z / ∂xi .  It is clear that the integration 
of that equation is equivalent to the following problem: 
 
 Annul the form: 

Θd = dz − f dx1 − p2 dx2 − … − pn dxn 
 
in 2n variables z, x1, …, xn , p2, …, pn by establishing n relations between these variables. 
 
One knows that the solution to this problem offers no difficulty as long as Θd is reduced 
to the canonical form.  Now, I say that in order to convert Θd to the canonical form, it 
will suffice to integrate the first Pfaff system relative to the form. 
 Indeed, write down that system: 
 

δΘd − dΘδ = λ Θδ dt, 
or 

df δx1 – δf dx1 + dp2 δx2 – δp2 dx2 + … + dpn δxn − dxn δpn , 
= λ dt(δz – f δr1 − … − pn δxn), 

which gives the equations: 

 df – 
1

f

x

∂
∂

dx1     = − λ f dt, 

 – 
2

f

x

∂
∂

dx1 + dp2  = − λ p2 dt, 

…………………………………., 
 

 − 
n

f

x

∂
∂

dx1 + dpn  =  − λ pn dt, 
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 − 
f

z

∂
∂

dx1  = λ dt, 

 − 
2

f

p

∂
∂

dx1 − dp2  = 0, 

……………………, 

 −
n

f

p

∂
∂

dx1 − dxn  = 0, 

 
which one easily puts into the following form: 
 

(26)  

1 2 2

2
2 2

1 1

,
1

.

n n

n
n n

n n

dx dpdx dx dp
f f f f f f

p p
p p x z x z

dz p dx p dx

−− = = = = = = ∂ ∂ ∂ ∂ ∂ ∂− + + ∂ ∂ ∂ ∂ ∂ ∂

 = + +

⋯ ⋯

⋯

 

 
One recognizes the differential equations of the characteristic. 
 Here, we see that x1 is never an integral.  Let [z], [pk], [xi] denote the integrals of that 
system that z, pk, xi reduce to for xi = 0

1x , 0
1x  being an arbitrary constant.  There will be no 

difficulty in determining these integrals as long as the system (26) is completely 
integrable.  If we now apply the first of the two theorems that we proved then we see that 
one will have: 

(27)  1 2 2

2 2 3 3{ [ ] [ ] [ ] [ ] [ ] [ ] [ ]},
n n

n n

dz f dx p dx p dx

L d z p d x p d x p d x

− − − −
 = − − − −

⋯

⋯

 

 
in which L depends upon x1.  We thus obtain the reduced form that must be the 
conclusion of our calculations on the first try.  The preceding method is encountered in 
the Cauchy method, and it plays a fundamental role there.  It is pointless to return to the 
well-known propositions and to show how they lead to the integration of the proposed 
partial differential equation.  For us, it suffices that we have established that, by means of 
a simple supplement, the Pfaff method becomes as perfect as the others.  However, it is 
also justified for us to add that this classification of integrals that allowed us to arrive at 
our objective constitutes a very essential advance that is once more due to Cauchy. 
 

(to be continued)  
_________ 

 


