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On non-holonomic systems
By DAUTHEVILLE

Translated by D. H. Delphenich

Since the work of Appell, one knows that the equatidmsation of a non-holonomic
equation can be put into a form that is analogous toothtite Lagrange equations, but
the right-hand sides contain correction terms. Ortiglvein have theorrected Lagrange
equations If one proposes to reduce those equations to firstr adhé® one will get
corrected canonical equationsvhich differ from the canonical equations by correztiv
terms that are added to the right-hand sides. Cett@orems in the dynamics of
holonomic systems will persist for non-holonomicteyss; other must be modified. In
particular, Poisson’s theorem does not apply to non-botnsystems in the form that is
suitable to holonomic systems. When one knows teegnals of the corrected canonical
equations, one can also form a third. However, in otdedo that, one must find a
particular system of a system of linear differergigliations. In addition, the integral that
is formed will no longer have the simple form thasusted to holonomic systems. We
propose to direct our attention to those various points.

|. - CORRECTED CANONICAL EQUATIONS.

For more simplicity, we shall consider a non-holmmosystem whose constraints are
frictionless and independent of time and is subject teefthat are derived from a force
functionU that does not contain time explicitly. First rédgdpell’s results {).

Letqg:, 02, ..., Oy be the independent parameters whose expression ast@riuof
time determines the position of the system at eacarhst
Set:
, _ dq . _ d?q .
1 =—, = 1=1,2,..n).

If one calls thevis viva2T and the energy of acceleratioBthen one will have:

@) { T=¢.(q, d..., ),

S=¢,(d. 4..... )+, 4+...+¢, G+x,

() “Remarques d’orde analytique sur une nouvelle forme desiégsate la Dynamique,” J. Math.
pures et appl. (5§ (1901), pp. 5.
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in which ¢, is a quadratic form iq”; ¢, has the same form @s when one replaces the
g’ with q”. The ¢ are quadratic forms ig’; x is a form of order four ig. The
coefficients of those various forms are functionsqfq., ..., g.that do not include time
explicitly. However, those coefficients are not mally independent. Indeed, one has
the identity:

09, , 04,

3 E= L+ =—lg + .. +1L
( ) wlql [/In qn q1 ql aqn qn

The motion of the system is then given by the coéegetagrange equations:

(4) E aT a_T_ a_U |’ (I = 1’ 21 !n)!

dt aq oq dq
in which:
) =529y,

g 0
Equations (4) admit thés vivaintegral. Indeed, if one multiplies those equagiby

4., %, ..., d,, and adds them then one will get:
(6) dT=dU + (Ajq, +---+A d) dt.

However, one has:

ZN’:zaﬂ Zf@'iwq

We remark thak is a form of order three i9’, and when one takes the identity (3) into
account, one will get:

> A g=3E-E-E=0.
Equation (6) then gives thes vivaintegral:

T=U+h.
We point out the identity:

() Saq =0,
Those are the results that Appell gave.
Apply the Poisson-Hamilton transformations to emumes (4). Set:

5= (=12 .0,

aq
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H=T-U

The argument that applies to holonomic systems caeg®ated in the case that we
are dealing with, and it will lead to the equations:

®) dq _oH dn __OH (=12 .n)
dt op dt daq;

in which A; denotes the function into which the preceding substituransformedA. .
The identity (7) is now written:

(9) ZA—-O

Equations (8) are theorrectedcanonical equations
We seek the condition for the equation:

f( g, ..., 0, P1, ..., Pn) = CONSL.

to be an integral of (8). One has:

of d of d
___z qZ ap

dt oq dt op dt
= —+(f H)+z
The desired condition is then:
(10) U+ﬂ+2——A_o

One deduces from this thatfif const. is an integral thehf / 0 t = const. will be
another.

Indeed, if the constraints are independent of tine® none of the functiorg and ¢
contain time explicitly. The same thing is true the A and forE, by virtue of (3) and
(5). Since the function$ andU do not contain time explicitly, the same thingIviaé
true forH. Upon taking the partial derivative with respéezt of the left-hand side of
(10)m one will get:
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CRIEREE N
atlat ) Lot ~ ap. \ ot

which is a relation that shows that / 0 t = const. is an integral.

One likewise sees that const. is an integral, andHf and theA are independent of
Ok or px theno f /0 gx = const. 00 f / 0 px = const. will also be an integral.

One will then have some theorems that relate torfwohic system that are preserved
for the non-holonomic systems that we shall considéowever, Poisson’s theorem no
longer applies, at least in the form that is suitéddrolonomic systems.

Let us follow the argument to which one is accustomesstablishing that theorem.

Let f = const. andp = const. be two integrals of the corrected canomqahtions. One
has:

[(f, @), HI + [(¢, H), 1] + [(H, ), 4] =

identically.
However, since (10) applies to the functibrasmd g, one will have:

__99 92
(9. == 028

Hh= TLisad
ot T op

and as a result, when one uses the properties of tbeoRdrackets:

(. H). 1] = [ j[ZA""’j

(0.1.0=( 1.2 za[ aplj 2% (1),

on

One likewise finds that:

_(of of of
(H..01=(5.0)+ 20, [a_n’¢j+izﬁ(A‘ 9).

Upon substituting that in (10), one will get:

09
[(f, #). H]+( atj (at ¢j
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o1 (5 o)l m e a-Shen) <o

which one can write:
0 0 of 0
a(f#ﬁ) +[(f, @), H] + ZAia—n(f,¢)+Z{E(Aw¢)—£(A,f)} =

Upon comparing that identity with the conditiordf,Llone will see thaff(¢) = const.
will not be an integral, in general; Poisson’s tteao does not apply. It will persist if,
when one is given the integrfat const., one can choose the second integfgratonst. in
such a manner that one has:

¥/ o a.8)-98(a.1)] =0,

op.
identically.
We shall pass over the examination of that pdeiccase.

Il. - CORRECTED POISSON THEOREM.

In his paper on the three-body problem (Acta Matddica, v. Xlll, pp. 46), Poincaré
exhibited the equations that he called dggiations of variatiorof canonical equations.
He showed that two solutions of the equations ofatians are linked by a certain
relation and that if the solutions are known theat trelation will constitute an integral of
the canonical equations. One can find a soluothé equations of variation when one
knows an integral, and conversely. Finally, if doa®ws an integral of the canonical
equations then one can find a solution to the émpusmtof variation, and Poisson’s
theorem will be an immediate consequence of theerlaemark. Upon following
Poincaré’s method, one will get a generalizatioRaiEson’s theorem.

Recall the corrected canonical equations:

dt  op t ag;

Consider two infinitely-close solutions to thospuationsq , pi, andqg + &, pi + 7,
in which theé, nare small enough that one can neglect their squares ¢, 1 will then
satisfy the linear differential equations:

dé 9°H 2H

dt Zklapaq(gk+26q69,7k’
dp _

dt ~Lonon

0q5q < 0959

(2)

l oA,
k Zaqgk-i_kark),]k’
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which are the equations of variation of equations (18t &', 77/ be another solution of
equations (2), in such a way that:

d 2 2
&y OH oy 08

dny PH _, <« 0H an,
I:_ — + .
&t~ %oq0q  wopap”t ag‘(k g

Multiply equations (2) and (2) by, — &', — i, &, and sum over all of the results that
are obtained; one will get:

K

Z(n.f. &n)+ Zf( B j .

5(&‘” Aj
g,

oR,

which one can write as:

d rr_ g [ OB, OB ) _ 0D 04 |
aiZ(mcﬁ 6m)+§é(éaq +n apj i,kf(‘iaqm‘agj 0,

or rather:

ds e e (on_on) o], s pom]
szae-cosege( SR i el -

oq dq

One will deduce form this that:

Z(/?.f. 5,7)+j 2{52{ (GA aﬂj GFJ nsz }dt—const

aQ| aq( k

That is the relation that exists between two solstiohthe equations of variation.
That relation is no longer algebraic, as it would behfmlonomic systems. |If all of th&
are zero then one will indeed recover the relation:

Z(’?i'fi -¢&'nn )= const.
that Poincaré gave.

In the case wherg&, 7, &', ' are known, the relation (3) will give an integrétioe

canonical equations.
If one supposes thdt , 7' denote a known particular solution of equations &2y ¢,

7 denote their general solution then the relationw8l become an integral of the
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equations of variation. Hence, knowing a particulautsmh of those equations will
provide another integral.
Conversely, suppose that we know an integral of equa®ns

(4) Z(A&M“jz{éh(%i_wkj ‘M} 25—}d1 const.,

g, 9q ) " 0q 2

in which theA, B are given. Upon differentiating and remarking thaty; verify (2), one
will have:

s(@argn ) Z’*(Zan;q Yo" j
+ZB[ Zaq.:qgk_gazzgﬂm Z ng gai j
zezjalR-RlTrad -

One can write that relation as:

@ alala-nlg)

+Z'7‘@_? Z J Z&[am om0 ”‘j

OpoR

0°H 0°H oA oA
+ =& -n. - kypp—k|=
ZE”‘[ “3q0q "opag ‘g " 6pj
or rather:

e[ STag et Ta T Al

opdq T "0qoq T "9qQ T OR

o[ R-va

0 H:]ZO
6naq " 0poR

Upon identifying corresponding terms, one then deduces that:
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dA 9%H oA
— == + - —_——
dt 2;6969< 2: anaq %]3< 2;/*6

N 0°H 0°H
— “opoq & ‘opop

If one sets:

then one will find that:

da, _ 0°H 9°H
- a + P ,
dt ;ap,aax “ ;apagﬁk

df Z: i 23

k aq aq(

N,
z_ak ZEﬁk’

aq 6 R
and one will see that; , 4 indeed constitute a particular solution of the equations of
variations.

It remains for us to examine whether an integral efddnonical equations might lead
to a solution of the equations of variation. Let:
f (g, p, t) = const.

be an integral of the canonical equations.
That relation will persist if one replacgsp with g + &, p + 77, resp., wheré, n are
an arbitrary solution to the equations of variatiome@vill then have the integral of the

equations of variation:
of of
—&+—n | =0
Z‘[aqig' ap”'j

If one can put that integral into the form (4) then cae deduce a solution to the
equations of variation from the preceding. Upon denoting samgiary unknowns by
u, Vi, the preceding integral can be written:

oo a e o

og;
However, one has:

U&= [(udg+¢ dy)
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9°H du
= | dt
J{ [ap,aq k+6pap(,7kj+5' dt}

v = [ (v, d +1 dy)

and

9°H dv
= - | St
J{ k[ 6q6afk aqap " aqgk 69 jw' dt}

One will then have the integral:

Aol

SDIIPREE s nkj+ad—;

i < 0p,0q, < OpoR
+Vz 62H f— azH 'f dV -0
‘4l dgap * aqap e ag 9 e T

The coefficient otit under thd sign can be written:

e

dy dy

9°H 9°H 9°H 9°H oA,
Z( gkaplaq( ql]kaﬁap( 5kaqag Vl]kaqap ng g Vﬂkapj

or rather, when one permutes the indicdsin the double sum and then pdtsand; in
as factors:
d 0°H 0°H aA,
Z &=t 2] U V% v
dt < oqop dqoq “dgq

n dv by O°H _ 0°H 9B,
dt 4 ukapapK “opogq <ap)||’

and the integral can be written in the form:
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Sl
_ dy 9°H o
J iz{f{d ;( nog  “opop < og }

dv d°H d°H oA, B
+>° | u, -V, +, =0.
dt 4 op on opogq <0 R

If one takesuy;, vi to be solutions of the differential equations:

0°H A,
+
;( ‘opoq 6969 Waqj

S EEE

2 2
(jj\: Z[uk o°H -V, oH +vkaA"j :Z[i+vkjaﬂ,
k

<\ opop. " 0pdgq ap p, op

which can be written:

o(lj_LtMZ{uk( 9%H ‘aAij‘V{ 02H  9A j:|:(f,Ai)+Zi%,

5) " opdq aJnp dqogq 0g <O0ROJq
dv 0°H 0°H |_ of aA,
at e\ %apan =2 ’
” pop. O0ROQ ) TOROIP

upon simplifying, then the integral can be presented irfiotima (4), in which one has:

A—i'*' Ui, Bi _i+\/I

aq op

It results from this that when one is given the irtéfy(qg, p) = const. of the corrected
canonical equations, if one can find a solutions to equatibpthen one will have a
solution to the equations of variation, namely:

i=—tV, i =———U.
op g oq
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For the holonomic systems, since/alare zero, equations (5) will admit the obvious
solutionu; =v; = 0, and one will recover the known solution to the equatof variation:

of o
6_50.’ (e

For non-holonomic systems, one cannot find a solutiayuations (5)a priori.

Leaving aside the determination of a particular solutioeduations (5), suppose that
we know two integralé = const. andp = const. of the corrected canonical equations; one
of them is a solutiom; , v; of (5) and the other is a solution of equations (5) whisn
replaced withg. The relation (3) will then give an integral of tberrected canonical
equations.

After some easy reductions, that integral can beemritt

0.0+ SEv-vy Z[ aﬂ Z[ S Vij

6p. "aq ) 4 69 ag

+H§{_4¢A)—¢(fAﬁ+sz¢A)Y(fAﬂ
a¢ aAk _af aAk_ aAk
Z{apk(v oq 6nj 69[\{5‘3 L""Pj

+v, \{(aA 94, j LJ— , aﬂ}} d= const.
o 99 oR

That is the form that Poisson’s theorem presestsdn-holonomic system. If the
are zero then one can take:

ui:\/i:ui':\/i:O,

and one will indeed recover the integifalf) = const.
One can simplify the preceding results by appeatina theorem of de Dondéj.( If
one is given the system:

dx
6 — =X,
(6) ot
whose equations of variation are:
(7) L :2%5
dt 4ox '

() “Etude sur les invariants intégraux,” Rend. Circ. NRetlermol5 (1901) andL6 (1902).
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if one knows an integrdl = const. of the equations (6), and{ifis a solution of the
equations of variation (7) then equations (6) will adhmt mew integral:

(8) Z%gﬁ( = const.

k

Moreover, if we suppose that two integrals of the abea canonical equatioris=
const. andp = const. are known, along with a solutianv; of equations (5) then we will
have the new integral:

z % i+\/k —% i+uk = const.,
< 9P\ 0P, 0q.( 94,

(f, 9 +Z(%uk —%vka const.,

or rather:

which gives a simpler form for Poisson’s theorem.
One can further write the new integral:

of of
(¢, ) + [—u’ -\ jz const.,
%:6% “ oap

in whichu’, v”are solutions of equations (5) in whighreplaced.

We finally remark that when one associates the intégraonst. with the solutio&
=of /opi +Vvi, i =—0f/0q +u;, one will get the integral:

z i i.{.v _i i+u = const
“log.\op ) omlog " '

[m of j_
> V, ==V, |= const.
op,

=\ ag,

or

For a holonomic system, the latter integral ischmiity.
It remains for us to examine whether the new integnadsdistinct from the ones that
served to define them.




