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 Since the work of Appell, one knows that the equations of motion of a non-holonomic 
equation can be put into a form that is analogous to that of the Lagrange equations, but 
the right-hand sides contain correction terms.  One will then have the corrected Lagrange 
equations.  If one proposes to reduce those equations to first order then one will get 
corrected canonical equations, which differ from the canonical equations by corrective 
terms that are added to the right-hand sides.  Certain theorems in the dynamics of 
holonomic systems will persist for non-holonomic systems; other must be modified.  In 
particular, Poisson’s theorem does not apply to non-holonomic systems in the form that is 
suitable to holonomic systems.  When one knows two integrals of the corrected canonical 
equations, one can also form a third.  However, in order to do that, one must find a 
particular system of a system of linear differential equations.  In addition, the integral that 
is formed will no longer have the simple form that is suited to holonomic systems.  We 
propose to direct our attention to those various points. 
 
 

I. – CORRECTED CANONICAL EQUATIONS.  
 

 For more simplicity, we shall consider a non-holonomic system whose constraints are 
frictionless and independent of time and is subject to forces that are derived from a force 
function U that does not contain time explicitly.  First recall Appell’s results (1). 
 Let q1 , q2 , …, qn be the independent parameters whose expression as a function of 
time determines the position of the system at each instant. 
 Set: 

(1)    iq′  = idq

dt
, iq′′  = 

2

2
id q

dt
  (i = 1, 2, …, n) . 

 
 If one calls the vis viva 2T and the energy of acceleration 2S then one will have: 
 

(2)    1 1 2

2 1 2 1 1

( , , , ),

( , , , ) ,
n

n n n

T q q q

S q q q q q

ϕ
ϕ ψ ψ χ

′ ′ ′=
 ′′ ′′ ′′ ′′ ′′= + + + +

…

… …

 

 

                                                
 (1) “Remarques d’orde analytique sur une nouvelle forme des équations de la Dynamique,” J. Math. 
pures et appl. (5) 7 (1901), pp. 5. 



Dautheville – On non-holonomic systems. 2 

in which ϕ1 is a quadratic form in q′ ; ϕ2 has the same form as ϕ1 when one replaces the 
q′ with q″.  The ψ are quadratic forms in q′ ; χ is a form of order four in q′.  The 
coefficients of those various forms are functions of q1 , q2 , …, qn that do not include time 
explicitly.  However, those coefficients are not mutually independent.  Indeed, one has 
the identity: 

(3)    E = 1 1qψ ′ + … + n nqψ ′  = 1
1

1

q
q

ϕ∂ ′
∂

 + … + 1
n

n

q
q

ϕ∂ ′
∂

.    

 
 The motion of the system is then given by the corrected Lagrange equations: 
 

(4)    
i i

d T T

dt q q

 ∂ ∂− ′∂ ∂ 
= i

i

U

q

∂ ′+ ∆
∂

 (i = 1, 2, …, n), 

in which: 

(5)     i
′∆ = 12 i

i i

E

q q

ϕ ψ∂∂ − −
′∂ ∂

. 

 
 Equations (4) admit the vis viva integral.  Indeed, if one multiplies those equations by 

1q′ , 2q′ , …, nq′ , and adds them then one will get: 

 
(6)     dT = dU + 1 1( )n nq q dt′ ′ ′ ′∆ + + ∆⋯ . 

 However, one has: 

i i
i

q′ ′∆∑  = 12i i i i
i ii i

E
q q q

q q

ϕ ψ∂∂ ′ ′ ′− −
′∂ ∂∑ ∑ ∑ . 

 
We remark that E is a form of order three in q′, and when one takes the identity (3) into 
account, one will get: 

i i
i

q′ ′∆∑ = 3E – 2E – E = 0. 

 
 Equation (6) then gives the vis viva integral: 
 

T = U + h . 
 We point out the identity: 
 
(7)      i i

i

q′ ′∆∑  = 0. 

 
 Those are the results that Appell gave. 
 Apply the Poisson-Hamilton transformations to equations (4).  Set: 
 

 pi = 
i

T

q

∂
′∂
  (i = 1, 2, …, n), 
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 H = T – U. 
 
 The argument that applies to holonomic systems can be repeated in the case that we 
are dealing with, and it will lead to the equations: 
 

(8)    idq

dt
 = 

i

H

p

∂
∂

, idp

dt
 = −

i

H

q

∂
∂

+ ∆i (i = 1, 2, …, n), 

 
in which ∆i denotes the function into which the preceding substitution transformed i

′∆ .  

The identity (7) is now written: 

(9)      i
i i

H

p

∂′∆
∂∑  = 0. 

 
 Equations (8) are the corrected canonical equations. 
 We seek the condition for the equation: 
 

f (t, q1 , …, qn , p1 , …, pn) = const. 
 
to be an integral of (8).  One has: 
 

 
df

dt
 = i i

i ii i

dq dpf f f

t q dt p dt

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑  

 

  = i
i ii i i i i

f f H f H f

t q p p q p

 ∂ ∂ ∂ ∂ ∂ ∂+ − + ∆ ∂ ∂ ∂ ∂ ∂ ∂ 
∑ ∑  

 

  = ( , ) i
i i

f f
f H

t p

∂ ∂+ + ∆
∂ ∂∑ . 

 
 The desired condition is then: 
 

(10)    ( , ) i
i i

f f
f H

t p

∂ ∂+ + ∆
∂ ∂∑  = 0. 

 
 One deduces from this that if f = const. is an integral then ∂ f / ∂ t = const. will be 
another. 
 Indeed, if the constraints are independent of time then none of the functions ϕi and ψ 
contain time explicitly.  The same thing is true for the ∆ and for E, by virtue of (3) and 
(5).  Since the functions T and U do not contain time explicitly, the same thing will be 
true for H.  Upon taking the partial derivative with respect to t of the left-hand side of 
(10)m one will get: 
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, t
i i

f f f
H

t t t p t

∂ ∂ ∂ ∂ ∂     + + ∆     ∂ ∂ ∂ ∂ ∂     
∑  = 0, 

 
which is a relation that shows that ∂ f / ∂ t = const. is an integral. 
 One likewise sees that f = const. is an integral, and if H and the ∆ are independent of 
qk or pk then ∂ f / ∂ qk = const. or ∂ f / ∂ pk = const. will also be an integral. 
 One will then have some theorems that relate to holonomic system that are preserved 
for the non-holonomic systems that we shall consider.  However, Poisson’s theorem no 
longer applies, at least in the form that is suitable for holonomic systems. 
 Let us follow the argument to which one is accustomed in establishing that theorem.  
Let f = const. and ϕ = const. be two integrals of the corrected canonical equations.  One 
has: 

[(f, ϕ), H] + [(ϕ, H), f] + [(H, f), ϕ] = 0 
identically. 
 However, since (10) applies to the functions f and ϕ, one will have: 
 

 (ϕ, H) = − i
i it p

ϕ ϕ∂ ∂− ∆
∂ ∂∑ , 

 

 (H, f) =     i
i i

f f

t p

∂ ∂+ ∆
∂ ∂∑ , 

 
and as a result, when one uses the properties of the Poisson brackets: 
 

[(ϕ, H), f] = − , ,i
i i

f f
t p

ϕ ϕ ∂ ∂  − ∆  ∂ ∂   
∑ , 

 

[(ϕ, H), f] = ( ), , ,i i
i ii i

f f f
t p p

ϕ ϕ ϕ ∂ ∂ ∂ + ∆ − ∆  ∂ ∂ ∂   
∑ ∑ . 

 
 One likewise finds that: 
 

[(H, f), ϕ] = ( ), , ,i i
i ii i

f f f

t p p
ϕ ϕ ϕ

 ∂ ∂ ∂ + ∆ + ∆  ∂ ∂ ∂   
∑ ∑ . 

 
 Upon substituting that in (10), one will get: 
 

[(f, ϕ), H] + , ,
f

f
t t

ϕ ϕ∂ ∂   +   ∂ ∂   
 

 



Dautheville – On non-holonomic systems. 5 

+ ( ) ( ), , , ,i i i
i ii i i i

f f
f f

p p p p

ϕ ϕϕ ϕ
      ∂ ∂ ∂ ∂∆ + + ∆ − ∆      ∂ ∂ ∂ ∂      

∑ ∑  = 0, 

 
which one can write: 
 

( ),f
t

ϕ∂
∂

 + [(f, ϕ), H] + ( ) ( )( , ) , ,i i i
i ii i i

f
f f

p p p

ϕϕ ϕ
 ∂ ∂ ∂∆ + ∆ − ∆ ∂ ∂ ∂ 

∑ ∑  = 0.  

 
 Upon comparing that identity with the condition (10), one will see that (f, ϕ) = const. 
will not be an integral, in general; Poisson’s theorem does not apply.  It will persist if, 
when one is given the integral f = const., one can choose the second integral ϕ = const. in 
such a manner that one has: 

( ) ( ), ,i i
i i i

f
f

p p

ϕϕ
 ∂ ∂∆ − ∆ ∂ ∂ 

∑  = 0, 

identically. 
 We shall pass over the examination of that particular case. 
 
 

II. – CORRECTED POISSON THEOREM.  
 

 In his paper on the three-body problem (Acta Mathematica, v. XIII, pp. 46), Poincaré 
exhibited the equations that he called the equations of variation of canonical equations.  
He showed that two solutions of the equations of variations are linked by a certain 
relation and that if the solutions are known then that relation will constitute an integral of 
the canonical equations.  One can find a solution to the equations of variation when one 
knows an integral, and conversely.  Finally, if one knows an integral of the canonical 
equations then one can find a solution to the equations of variation, and Poisson’s 
theorem will be an immediate consequence of the latter remark.  Upon following 
Poincaré’s method, one will get a generalization of Poisson’s theorem. 
 Recall the corrected canonical equations: 
 

(1)    idq

dt
 = 

i

H

p

∂
∂

, idp

dt
 = −

i

H

q

∂
∂

+ ∆i (i = 1, 2, …, n) . 

 
 Consider two infinitely-close solutions to those equations qi , pi , and qi + ξi , pi + ηi , 
in which the ξ, η are small enough that one can neglect their squares.  The ξ, η will then 
satisfy the linear differential equations: 
 

(2)   

2 2

2 2

,

,

i
k k

k ki k i k

i i i
k k k k

k k k ki k i k k k

d H H

dt p q q p

d H H

dt q q p p q p

ξ ξ η

η ξ η ξ η

 ∂ ∂= + ∂ ∂ ∂ ∂


∂∆ ∂∆∂ ∂ = − − + +
 ∂ ∂ ∂ ∂ ∂ ∂

∑ ∑

∑ ∑ ∑ ∑
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which are the equations of variation of equations (1).  Let iξ ′ , iη ′  be another solution of 

equations (2), in such a way that: 
 

(2′)   

2 2

2 2

,

.

i
k k

k ki k i k

i i i
k k k k

k k k ki k i k k k

d H H

dt p q q p

d H H

dt q q p p q p

ξ ξ η

η ξ η ξ η

′ ∂ ∂′ ′= + ∂ ∂ ∂ ∂
 ′ ∂∆ ∂∆∂ ∂ ′ ′ ′ ′= − − + +
 ∂ ∂ ∂ ∂ ∂ ∂

∑ ∑

∑ ∑ ∑ ∑
 

 
Multiply equations (2) and (2) by iη ′ , − iξ ′ , − ηi , ξi , and sum over all of the results that 

are obtained; one will get: 
 

, ,

( ) i i i i
i i i i i k k i k k

i i k i kk k k k

d

dt q p q p
η ξ ξ η ξ ξ η ξ ξ η

   ∂∆ ∂∆ ∂∆ ∂∆′ ′ ′ ′ ′− + + − +   ∂ ∂ ∂ ∂   
∑ ∑ ∑  = 0, 

 
which one can write as: 
 

, ,

( ) k k i i
i i i i k i i i k k

i i k i ki i k k

d

dt q p q p
η ξ ξ η ξ ξ η ξ ξ η

   ∂∆ ∂∆ ∂∆ ∂∆′ ′ ′ ′ ′− + + − +   ∂ ∂ ∂ ∂   
∑ ∑ ∑  = 0, 

 
or rather: 
 

( ) k i i k
i i i i i k k i k

i i k ki k k i

d

dt q q p p
η ξ ξ η ξ ξ η η ξ

   ∂∆ ∂∆ ∂∆ ∂∆ ′ ′ ′ ′ ′ ′− + − − +   ∂ ∂ ∂ ∂    
∑ ∑ ∑ ∑  = 0 . 

 
 One will deduce form this that: 
 

(3)    ( ) k i i k
i i i i i k k i k

i i k ki k k i

dt
q q p p

η ξ ξ η ξ ξ η η ξ
   ∂∆ ∂∆ ∂∆ ∂∆ ′ ′ ′ ′ ′ ′− + − − +   ∂ ∂ ∂ ∂    

∑ ∑ ∑ ∑∫ = const . 

 
 That is the relation that exists between two solutions of the equations of variation.  
That relation is no longer algebraic, as it would be for holonomic systems.  If all of the ∆ 
are zero then one will indeed recover the relation: 
 

( )i i i i
i

η ξ ξ η′ ′−∑ = const. 

that Poincaré gave. 
 In the case where ξi , ηi , iξ ′ , η′are known, the relation (3) will give an integral of the 

canonical equations. 
 If one supposes that iξ ′ , η′denote a known particular solution of equations (2), and ξi, 

ηi  denote their general solution then the relation (3) will become an integral of the 
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equations of variation.  Hence, knowing a particular solution of those equations will 
provide another integral. 
 Conversely, suppose that we know an integral of equations (2): 
 

(4)  ( ) i k i k
i i i i i k k i k

i i kk i k i

A B B A B dt
q q q p

ξ η ξ η
   ∂∆ ∂∆ ∂∆ ∂∆ + + − − −   ∂ ∂ ∂ ∂    

∑ ∑ ∑∫  = const., 

 
in which the A, B are given.  Upon differentiating and remarking that ξi , ηi verify (2), one 
will have: 
 

 
2 2

i i
i i i k k

i i k ki k i k

dA dB H H
A

dt dt p q q p
ξ η ξ η

 ∂ ∂ + + +   ∂ ∂ ∂ ∂   
∑ ∑ ∑ ∑  

 

  +
2 2

i i
i k k k k

i k k k ki k i k k k

H H
B

q q q p q p
ξ η ξ η

 ∂∆ ∂∆∂ ∂− − + + ∂ ∂ ∂ ∂ ∂ ∂ 
∑ ∑ ∑ ∑ ∑  

 

   + i k k
i k i k

i k i kk i i

B B
q q p

ξ η
  ∂∆ ∂∆ ∂∆− −  ∂ ∂ ∂  

∑ ∑ ∑ ∑  = 0. 

 
 One can write that relation as: 
 

 i i i i
i k k

i k k k k

dA
B A

dt q q p
ξ
   ∂∆ ∂∆ ∂∆ + − −   ∂ ∂ ∂    

∑ ∑  

 

  + 
2 2

,

i k
i k i i

i k i ki i k i k

dB H H
A

dt p q p p p
η ξ η
   ∂∆ ∂ ∂− + +   ∂ ∂ ∂ ∂ ∂   

∑ ∑ ∑  

 

   + 
2 2

,

k k
k i i i i

i k i k i k i i

H H
B

q q p q q p
ξ η ξ η

 ∂∆ ∂∆∂ ∂− − + + ∂ ∂ ∂ ∂ ∂ ∂ 
∑ = 0, 

or rather: 
 

 
2 2

i i i
i k k k k

i k k k ki k i k k k

dA H H
A B B A

dt p q q q q p
ξ
 ∂∆ ∂∆∂ ∂+ − + − ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑ ∑ ∑  

 

   + 
2 2

i
i k k

i k ki k i k

dB H H
B A

dt p q p p
η
 ∂ ∂− + ∂ ∂ ∂ ∂ 

∑ ∑ ∑  = 0. 

 
 Upon identifying corresponding terms, one then deduces that: 
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 idA

dt
= − 

2 2
i i

k k k
k k k ki k i k k k

H H
B B A

p p p q q p

∂∆ ∂∆∂ ∂+ − +
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ , 

 

 idB

dt
= − 

2 2

k k
k ki k i k

H H
B A

p q p p

∂ ∂−
∂ ∂ ∂ ∂∑ ∑ . 

 
 If one sets: 

αi = Bi , βi = − Ai 
then one will find that: 
 

 id

dt

α
=    

2 2

k k
k ki k i k

H H

p q p p
α β∂ ∂+

∂ ∂ ∂ ∂∑ ∑ , 

 

 id

dt

β
= −

2 2
i i

k k k k
k k k ki k i k k k

H H

q q q p q p
α β α β∂∆ ∂∆∂ ∂+ + +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ , 

 
and one will see that αi , βi indeed constitute a particular solution of the equations of 
variations. 
 It remains for us to examine whether an integral of the canonical equations might lead 
to a solution of the equations of variation.  Let: 
 

f (q, p, t) = const. 
 
be an integral of the canonical equations. 
 That relation will persist if one replaces q, p with q + ξ, p + η, resp., where ξ, η are 
an arbitrary solution to the equations of variation.  One will then have the integral of the 
equations of variation: 

i i
i i i

f f

q p
ξ η

 ∂ ∂+ ∂ ∂ 
∑  = 0. 

 
 If one can put that integral into the form (4) then one can deduce a solution to the 
equations of variation from the preceding.  Upon denoting some auxiliary unknowns by 
ui , vi , the preceding integral can be written: 
 

( )i i i i i i i i
i ii i

f f
u v u v

q p
ξ η ξ η

    ∂ ∂+ + + − +    ∂ ∂    
∑ ∑  = 0. 

 
 However, one has: 
 

 ui ξi = ( )i i i iu d duξ ξ+∫  

 



Dautheville – On non-holonomic systems. 9 

  = 
2 2

i
i k k i

k i k i k

duH H
u dt

p q p p dt
ξ η ξ

  ∂ ∂+ +  ∂ ∂ ∂ ∂  
∑∫ , 

and 

 vi ηi = ( )i i i iv d dvη η+∫  

 

  = 
2 2

i i i
i k k k k i

k i k i k k k

dvH H
v dt

q q q p q p dt
ξ η ξ η η

  ∂∆ ∂∆∂ ∂− − + + +  ∂ ∂ ∂ ∂ ∂ ∂  
∑∫ . 

 
 One will then have the integral: 
 

 i i i i
i i i

f f
u v

q p
ξ η

    ∂ ∂+ + +    ∂ ∂    
∑  

 

  −
2 2

i
i k k i

i k ki k i k

duH H
u

p q p p dt
ξ η ξ

  ∂ ∂− +  ∂ ∂ ∂ ∂ 
∑ ∑ ∑∫  

 

   + 
2 2

i i i
i k k k k i

k i k i k k k

dvH H
v

q p q p q p dt
ξ η ξ η η

 ∂∆ ∂∆∂ ∂− + + +  ∂ ∂ ∂ ∂ ∂  
∑  = 0. 

 
 The coefficient of dt under the ∫ sign can be written: 
 

 i i
i i

i

du dv

dy dy
ξ η 

+ 
 

∑  

 

 +
2 2 2 2

,

i i
i k i k i k i k i k i k

i k i k i k i k i k k k

H H H H
u u v v v v

p q p p q q q p q p
ξ η ξ η ξ η

 ∂∆ ∂∆∂ ∂ ∂ ∂+ − − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∑ , 

 
or rather, when one permutes the indices i, k in the double sum and then puts ξi and ηi in 
as factors:  

 
2 2

i k
i k k k

i k i k i k i

du H H
u v v

dt q p q q q
ξ
   ∂∆∂ ∂ + − +   ∂ ∂ ∂ ∂ ∂   

∑ ∑  

 

 + 
2 2

i k
i k k k

k i k i k i

dv H H
u v v

dt p p p q p
η

  ∂∆∂ ∂ + − +   ∂ ∂ ∂ ∂ ∂   
∑ , 

 
and the integral can be written in the form: 
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i i i i
i i i

f f
u v

q p
ξ η

    ∂ ∂+ + +    ∂ ∂    
∑  

 

  −
2 2

i k
k i k k

i k i k i k i

du H H
u v v

dt p q p p q
ξ
   ∂∆∂ ∂ + − +   ∂ ∂ ∂ ∂ ∂   

∑ ∑∫  

 

   + 
2 2

i k
k k k

k i k i k i

dv H H
u v v

dt p p p q p

  ∂∆∂ ∂ + − +   ∂ ∂ ∂ ∂ ∂   
∑  = 0. 

 
If one takes ui, vi to be solutions of the differential equations: 
 

 
2 2

i k
i k k

k i k i k i

du H H
u v v

dt p q p p q

 ∂∆∂ ∂+ − + ∂ ∂ ∂ ∂ ∂ 
∑  

 

  = − i k i
k i

k k k i i k

f f
v u

p q q q p

      ∂∆ ∂∆ ∂∆∂ ∂+ − − +      ∂ ∂ ∂ ∂ ∂      
∑ , 

 

 
2 2

i k
k k k

k i k i k i

dv H H
u v v

dt p p p q p

 ∂∆∂ ∂+ − + ∂ ∂ ∂ ∂ ∂ 
∑  = k

k
k k i

f
v

p p

  ∂∆∂ + ∂ ∂ 
∑ , 

 
which can be written: 
 

(5)  

2 2

2 2

( , ) ,

,

i i i k
k k i

k ki k k i k k k i

i k
k k

k ki k i k k i

du H H f
u v f

dt p q p q q q p q

dv H H f
u v

dt p p p q p p

     ∂∆ ∂∆ ∂∆∂ ∂ ∂+ − − − = ∆ +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     


  ∂∆∂ ∂ ∂ + − =  ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑

 

 
upon simplifying, then the integral can be presented in the form (4), in which one has: 
 

Ai =
i

f

q

∂
∂

+ ui ,  Bi =
i

f

p

∂
∂

+ vi . 

 
 It results from this that when one is given the integral f (q, p) = const. of the corrected 
canonical equations, if one can find a solutions to equations (5) then one will have a 
solution to the equations of variation, namely: 
 

ξi = 
i

f

p

∂
∂

+ vi ,  ηi = −
i

f

q

∂
∂

− ui . 
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 For the holonomic systems, since all ∆ are zero, equations (5) will admit the obvious 
solution ui = vi = 0, and one will recover the known solution to the equations of variation: 
 

ξi = 
i

f

p

∂
∂

,  ηi = −
i

f

q

∂
∂

. 

 
For non-holonomic systems, one cannot find a solution to equations (5), a priori. 
 Leaving aside the determination of a particular solution to equations (5), suppose that 
we know two integrals f = const. and ϕ = const. of the corrected canonical equations; one 
of them is a solution ui , vi of (5) and the other is a solution of equations (5) when f is 
replaced with ϕ.  The relation (3) will then give an integral of the corrected canonical 
equations. 
 After some easy reductions, that integral can be written: 
 

 (f, ϕ) + ( )i i i i i i i i
i i ii i i i

f f
u v v u u v u v

p q p q

ϕ ϕ   ∂ ∂ ∂ ∂′ ′ ′ ′− + − − −   ∂ ∂ ∂ ∂   
∑ ∑ ∑  

 

  + [ ]( , ) ( , ) ( , ) ( , )i i i i i i
i ii i

f
f v v f

p p

ϕϕ ϕ
  ∂ ∂ ′∆ − ∆ + ∆ − ∆  ∂ ∂  
∑ ∑∫  

 

  + 
,

k k k k
i i i i

i k k i i k i i

f
v u v u

p q p p q p

ϕ    ∂∆ ∂∆ ∂∆ ∂∆∂ ∂ ′ ′− − −   ∂ ∂ ∂ ∂ ∂ ∂    
∑  

 

   + k i i k
i i i i i i

i k k i

v v v u u v dt
q q p p

 ∂∆ ∂∆ ∂∆ ∂∆ ′ ′ ′− + −  ∂ ∂ ∂ ∂  
= const. 

 
 That is the form that Poisson’s theorem presents for non-holonomic system.  If the ∆ 
are zero then one can take: 

ui = vi = iu′ = iv′ = 0, 

 
and one will indeed recover the integral (f, ϕ) = const. 
 One can simplify the preceding results by appealing to a theorem of de Donder (1).  If 
one is given the system: 

(6)      idx

dt
= Xi , 

whose equations of variation are: 

(7)  id

dt

ξ
= i

k
k k

X

x
ξ∂

∂∑ , 

 

                                                
 (1) “Étude sur les invariants intégraux,” Rend. Circ. Mat. Palermo 15 (1901) and 16 (1902).  
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if one knows an integral f = const. of the equations (6), and if ξ is a solution of the 
equations of variation (7) then equations (6) will admit the new integral: 
 

(8)      k
k k

f

x
ξ∂

∂∑ = const. 

 
 Moreover, if we suppose that two integrals of the corrected canonical equations f = 
const. and ϕ = const. are known, along with a solution ui , vi of equations (5) then we will 
have the new integral: 

k k
k k k k k

f f
v u

p p q q

ϕ ϕ    ∂ ∂ ∂ ∂+ − +    ∂ ∂ ∂ ∂    
∑ = const., 

or rather: 

(f, ϕ) + k k
k k k

u v
q p

ϕ ϕ ∂ ∂− ∂ ∂ 
∑ = const., 

 
which gives a simpler form for Poisson’s theorem. 
 One can further write the new integral: 
 

(ϕ, f) + k k
k k k

f f
u v

q p

 ∂ ∂′ ′− ∂ ∂ 
∑ = const., 

 
in which u′, v′ are solutions of equations (5) in which ϕ replaces f. 
 We finally remark that when one associates the integral f = const. with the solution ξi 
= ∂f / ∂pi + vi , ηi = − ∂f / ∂qi + ui , one will get the integral: 
 

k k
k k k k k

f f f f
v u

q p p q

    ∂ ∂ ∂ ∂+ − +    ∂ ∂ ∂ ∂    
∑ = const. 

or 

k k
k k k

f f
v u

q p

 ∂ ∂− ∂ ∂ 
∑ = const. 

 
 For a holonomic system, the latter integral is an identity. 
 It remains for us to examine whether the new integrals are distinct from the ones that 
served to define them. 
 

_____________ 
 


