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 In a recent article (1), Appell showed that homographic transformations can be advantageously 

applied to various questions in mechanics. At the end of his paper, Appell proposed the following 

generalization of the results that he had obtained. 

 Suppose that one has the Lagrange equations: 

 

  
i i

d T T

dt q q

  
− 

  
 = Qi ,  iq  = idq

dt
 (i = 1, 2, …, k), 

 

in which T is a quadratic form in 1q , …, kq  with coefficients that are functions of q1, …, qk, and 

in which Q1, …, Qk depend upon only q1, …, qk . Find transformations of the form: 

 

    ri = fi (q1, …, qk)   (i = 1, 2, …, k), 

  dt1 =  (q1, …, qk) dt 

 

that transform those equations into other ones of the form: 

 

  
1 i i

d S S

dt r r

  
− 

  
 = Ri ,  ir  = 

1

idr

dt
 (i = 1, 2, …, k), 

 

in which S denotes a quadratic form in 1r , …, kr  with coefficients that are functions of r1, …, rk, 

and in which R1, …, Rk depend upon only r1, …, rk . 

 We propose to consider the case of motion of a point on a surface (K = 2) and to show that the 

desired transformations are the ones that preserve the geodesic lines, as Appell had predicted. 

 

 

 

 
 (1) P. Appell, “De l’homographie en Mécanique,” Am. J. Math. 12 (1889), pp. 103. 
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I. 

 

 Consider two surfaces S and S1, and make a real point of the first one corresponds to a real 

point of the second. From a theorem of Tissot, one knows that there exists an orthogonal system 

on the first one that corresponds to an orthogonal system on the second one. Refer those two 

surfaces to those two orthogonal systems. Let: 

 
2ds  = 2 2E du G dv+ , 2

1ds  = 2 2

1 1E du G dv+  

 

be the expressions for the line elements on S and S1 . Consider a material point of mass equal to 

unity whose motion on the surface S is determined by the equations: 

 

(1)   

, ,

, ,

d T T du
P u

dt u u dt

d T T dv
Q v

dt v v dt

   
− = =     


   − = =    

 

in which 

2 T = 
2 2E u G v + , 

 

and in which P, Q depend upon only u, v. 

 Now consider a second point of mass equal to unity that moves on the surface S1, and imagine 

that the coordinates of that point are functions of a new variable t1 that is coupled with t by the 

equation: 

 

(2)  dt1 =  (u, v) dt . 

 

 The motion of the second point will be determined by the equations: 

 

(1)   

1 1
1 1

1 1 1

1
1 1

1 1 1

, ,

, ,

T Td du
P u

dt u u dt

Td T dv
Q v

dt v v dt

   
− = =  

   


   − = =    

 

in which 

2 T1 = 2 2

1 1 1 1E u G v + . 

 

 The question that one proposes to solve reduces to this one: Is it possible to determine the 

function  in such a manner that P1 and Q1 are independent of 1u  and 1v ? 

 One deduces from equations (1) and (3) that: 
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(4)  

2 2

2 2

1 1
,

2 2

1 1
,

2 2

du E E G
P E u u v v

dt u v u

dv E G G
Q G u u v v

dt v v v

   
   = + + −   


       = − + +

   

 

and 

(5)  

2 21 1 1 1
1 1 1 1 1 1

1

2 21 1 1 1
1 1 1 1 1 1

1

1 1
,

2 2

1 1
.

2 2

du E E G
P E u u v v

dt u v u

dv E G G
Q G u u v v

dt v v v

   
   = + + −   


       = − + +

   

 

 One now has: 

u  = 1 ( , )u u v , v  = 1 ( , )v u v  , 

from which one infers that: 

1

1

du

dt


 = 2

1 1 12

1 1du
u u v

dt u v

 

 

   
  − + 

  
 , 

1

1

dv

dt


 = 2

1 1 12

1 1dv
u v v

dt u v

 

 

   
  − + 

  
 . 

 

 If one replaces 
du

dt


, 

dv

dt


 in those equations with the values that are deduced from (4) and 

substitutes the values thus-obtained in (5) for 1

1

du

dt


, 1

1

dv

dt


 then one will ultimately find that: 

 

P1 = 
21 1 1 1

12

1

2 2

E P E E EE
u

E E u u u



 

  
− − + 

   
 

  − 1 1 1
1 1

E E EE
u v

E v v v





  
 − + 

   
 

  + 
21 1

1

1

2 2

E GG
v

E u u

 
− 

  
, 

 

  Q1 = 
21 1 1

12

1

2 2

G Q G EE
u

G G v v

 
+ − 

  
 

  − 1 1 1
1 1

G G GG
u v

G u u v





  
 − + 

   
 

  − 
21 1 1 1

1

1

2 2

G G G GG
v

G v v v

  
− + 

   
. 

 

 Upon expressing the idea that P1, Q1 are independent of 1u , 1v , one will have the equations: 



Dautheville – On a transformation of motion. 4 

 

1 1 11

2 2

E E EE

E u u u





 
− +

  
 = 0 , 

1 1 1E E EE

E v v v





 
− +

  
 = 0 , 

1 1E GG

E u u


−

 
 = 0 , 

1 1G EE

G v v


−

 
 = 0 , 

1 1 1G G GG

G u u v





 
− +

  
 = 0 , 

1 1 1 11

2 2

G G G GG

G v v v

 
− +

  
 = 0 . 

 

 Those equations are equivalent to the following ones: 

 

(6)     

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1 1 1
,

2

1 1 1 1
,

2

1 1
,

1 1
,

2 1 2 1
,

2 1 2 1
.

EE

u E u E u

EE

v E v E v

GG

E u E u

EE

G u G u

G EG E

G u E u G u E u

E GE G

E v G v E v G v









   
= − −  

   
   
 = − − 

    


 =
  



=  


  

− = −    

   

− = −
   

 

 

 Since the last four of them are independent of , they represent necessary and sufficient 

conditions for the problem that was posed to admit a solution. One recognizes that those conditions 

express the idea that the geodesic lines correspond on the two surfaces considered (1). 

 If one supposes that those equations are verified identically then the first two will give . 

Indeed, one then deduces that: 

 
2

1

log
E

u E




 = 0 , 

1

log
E

v E




 = 0 , 

or rather: 

 
 (1) G. DARBOUX, Leçons sur la théorie générale des surfaces, Part III, pp. 49. 
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2

1

E

E


= V2 , 

1

E

E


 = U2 , 

 

in which V2 denote a function of v, and U2 denotes a function of u. We adopt the notations that 

Darboux employed in his book Sur la théorie générale des surfaces (1). The integration of the last 

four equations (6) will give: 

1

E

E
 = 2V U , 

 

in which V is a function of v, and U is a function of u. We will then have: 

 

2  = 2

2

V

V U
,  = 2

2

U

V U
. 

From that, we will have: 

V2 V = 

2

2U

U

 
 
 

 = 2K , 

in which K is a constant. 

 As a result, we will have: 

V2 = 
2K

V
, U2 = K U ,  = 

K

V U
. 

 

 The solution of the problem is thus achieved, and one sees that the desired transformations are 

precisely the ones that permit one to represent one of the surfaces in question on the other one 

geodesically. 

 

 

II. 

 

 In particular, consider the case in which one of the surfaces is a plane. We can perform the 

calculations completely and obtain the transformations that we have in mind explicitly. 

 Let a planar motion be defined by the equations: 

 

(1)      
2

2

d x

dt
 = X , 

2

2

d y

dt
 = Y , 

 

in which x, y denote the rectangular Cartesian coordinates, and in which one supposes that X, Y are 

functions of only x, y. Consider a surface that is referred to the curvilinear coordinate system that 

is defined by a family of geodesics and their orthogonal trajectories. The expression for the line 

element is: 

 
 (1) Loc. cit.  
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2ds  = 2 2 2du C dv+ . 

 

 The motion of a point of mass equal to unity on the surface is determined by the equation: 

 

(2)     

1 1

1 1

2 2 2

, ,

, ,

2 ,

d T T du
P u

dt u u dt

d T T dv
Q v

dt v v dt

T u C v

   
− = =    

   
− = =    


 = +

 

in which t1 denotes time. 

 We propose to find the transformations of the form: 

 

(3)    x = f (u, v) , y =  (u, v) , dt1 =  (u, v) dt 

 

that transform equations (1) into equations (2) with the condition that P and Q must be independent 

of u , v . 

 One deduces from (2) that: 

 

(4)     

2

1

2 2

1

,

2 .

du C
P C v

dt u

dv C C
Q C C u v C v

dt u u

 
= − 


     = + +

  

 

 

Upon differentiating (3) and taking (1) into account, one will have: 

 

 X = 
2

2 2 2 2

2

1 1

f u f v f f
u

u t v t u u u


   

         
+ + + 

       
 

+ 
2 2

2 2 2

2
2

f f f f f
u v v

u v v u u u v v v

  
    

          
  + + + +   

           
, 

 

 Y = 
2

2 2 2 2

2

1 1

u v
u

u t v t u u u

    
   

         
+ + + 

       
 

+ 
2 2

2 2 2

2
2 u v v

u v v u u u v v v

       
    

          
  + + + +   

           
. 

 

 If one substitutes the values of 
1

du

dt


, 

1

dv

dt


 that are provided by those equations in (4) then one 

will obtain the values of P, Q as functions of u, v, u , v . Upon equating the coefficients of 2u , 
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u v  ,  2v  in P and Q to zero, one will have six equations for determining f, , and . Upon setting 

 = 
f f

u v u v

    
−

   
, to abbreviate the notations, one will then find that: 

 

(5)    

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

1 1
0,

1 1
0,

1
0,

0,

1 1 2
0,

1

f f

u v u v u

f f

u v v u v v v

f f C
C

v v v v v

f f

u u u u

f f C

u u v u u v u C u

f

u

  



  



 

 

  





     
− + = 

      

     
− + = 

        

     
− + = 

      

   
− =

   

      
− + − = 

         

 

  

2

2 2

1 1
0.

f C

v u v v C v

 



















     

− + − =  
     

 

 

 The fourth equation can be integrated immediately and gives: 

 

f = V  + V1 , 

 

in which V and V1 denote two functions of v. 

 Imagine that the family of geodesics that is involved with the curvilinear coordinate system to 

which one refers the surface is composed of geodesics that pass through the point of the surface 

that corresponds to the origin of the coordinates in the plane. Each value of v will then correspond 

to a value of u for which one will have f =  = 0 identically. It will then result that V1 is identically 

zero, and that one will have f = V  . Having said that, by means of some simple reductions, the 

system (5) will become: 
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(6)     

2
2

2

2

2

2

2

2

,

2

,

log 0,

log 0,

log 0,

log 0,

f V

V
Cv v v C
u

V
u u u

u u

u

v

u C

V

v C



  

  














=


   
     + − =     

  
   

=  
  

           =  
  
  


 
=    

  
=  

    

 

in which V   and V   are the first and second derivatives of the function V, resp. 

 One integrates the last four equations immediately, and one will find that: 

 

u







 = V1 , 

2

2 u

 



 
 

 
 = U1 , 

2

2C

 
 = V2 , 

2V

C

 
= U2 , 

 

in which V1, V2 denote functions of v, and U1, U2 denote functions of u. Those equations are 

written: 

u







 = V1 , 2

1

u








 = 1

1

U

V
,  2C  = 

2

1

1 1

V

U V
, V C  = 2

2

U

V
. 

 

 The last two show that C must be the product of a function of u with a function of v. Therefore, 

set: 

C =   , 

 

in which  denotes a given function of u, and  denotes a given function of v. One will have: 

 

2U


 = 

2

1

V V 
 = 

B

A
,  2

1U  = 
2

1

2

2

V

V
 = A B , 

 

in which A, B denote two constants. From that, one has: 



Dautheville – On a transformation of motion. 9 

 

V1 = A
V




,  U1 = 

2

AB


, 

and finally: 

  
u







= A

V




, 

2

1

u








 = 

2

1 V
B

 


. 

 

 Upon integrating the last equation, one will get: 

 

(7)   = 
R

U S+
, 

in which one has set: 

R = 
1

B V




, 

U = − 
2

du

 , 

and in which S denotes a function of v. 

 One sees from this procedure that the system (6) can be replaced with the following one: 

 

(8)  

2
2

2
2

,

,

,

2

,

f V

A
u V

R

U S

V
v v v

V
u u u



 




  

  
  



=


 =
 

 =
 +


   
      + − =   

 
  

 

 

in which   = d / du, and everything reduces to determining the functions V and S by means of 

the last equation in (8). If one replaces  with its value then one will have: 

 
2 2 2( ) ( 2 ) 2U S R R V R V R R V R R S V R S V R S V            + − − + + −  = 

2 2R V U     . 

 

If one differentiates that with respect to u then one will get: 

 
2

2 2

2R R V R V R R V

R V 

     − −


 = 

2U U U

U

         + +


, 
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or rather: 
2

2 2

2R R V R V R R V

R V 

     − −


 = 

2   −  = D , 

in which D is a constant. 

 The equations will become: 

 
2

2 2

2D S RV R S V R S V R S V

R V





       + + −


 = U DU   −  = D1 , 

in which D1 is a new constant. 

 As a result, if one sets: 

(9)  

2

1

,D

D U DU

  

 

  = −


 = −
 

 

then one will have the following equations for determining V and then S: 

 

(10) 
2 2 22R R V R V R R V D R V       − − −  = 0 , 

 

(11) 2 2

12DS RV R S V RS V RS V D RV         + + − −  = 0 . 

 

 If one differentiates the first equation (9) then one will have: 

 

     −  = 0 , 

   log
d

du






 = 0 , 






 = const., 

or rather, as one easily sees: 

− 
2

2

1 C

C u




 = const. 

 

 That constant quantity expresses the total curvature of the surface, from a formula that is due 

to Gauss (1). Thus, the desired transformation can be performed only if the given surface has 

constant curvature. 

 We assume that hypothesis is true. The formulas that Darboux (2) gave will then allow us to 

complete the calculations. 

 If one supposes that the curvature is zero then one will have: 

 

 
 (1) G. DARBOUX, Leçons sur la théorie générale des surfaces, t. II, pp. 416.  

 (2) Ibid., pp. 46.  
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2C  = 2u . 

That will give: 

 = u , 

 = 1 . 

One will then find that: 

  U  = 
1

u
, 

  D  = − 1 , 

  D1 = 0 . 

 Equations (10) and (11) will become: 

 
2 23 2 4V V V V   − +  = 0 , 

S S+  = 0 . 

 One then deduces that: 

V = E tan (v + F) + G , 

S = H sin v + K cos v , 

and then: 

(12) 

2

( sin ) ( cos )
,

( sin ) ( cos )

( sin ) ( cos )
,

( sin ) ( cos )

[ ( sin ) ( cos ) ] ,

m u v n u v p

m u v n u v p

m u v n u v p
f

m u v n u v p

q m u v n u v p





  + +
= + +


  + +

=
+ +

 = + +



 

 

in which m, n, p, … are constants. 

 If one supposes that curvature is positive and equal to 21/ a  then one will have: 

 

2C  = 2 2sin
u

a
a

, 

  a = sin
u

a
a

, 

   = 1 . 

 From that: 

  U = 
1

tan
u

a
a

, 

  D  = − 1 , 

  D1 = 0 . 

 One finds that one has the same equations for determining V, S as in the previous case, and one 

finally gets: 
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(13) 

sin tan cos tan

,

sin tan cos tan

sin tan cos tan

.

sin tan cos tan

u u
m v n v p

a a

u u
m v n v p

a a

u u
m v n v p

a a
f

u u
m v n v p

a a



    
  + +   
    =
    + +       


      + +       

=
    + +   

    

 

 

 Finally, if the curvature equals − 21/ a  then one will have: 

 

U = 
( )

/

/ /

2 u a

u a u a

e

a e e

−

−−
, 

  D  = − 1 , 

  D1 = − 
1

a
. 

 

 The equation for V is the same as in the previous case, and the equation for S is: 

 

1
S S

a
 + −  = 0 . 

 It gives: 

S = H sin v + K cos v + 
1

a
, 

and one finds that: 

(14) 

/ / / /

/ / / /

/ / / /

/ / / /

/ / / /

/ / / /

sin cos

,

sin cos

sin cos

u a u a u a u a

u a u a u a u a

u a u a u a u a

u a u a u a u a

u a u a u a u a

u a u a u a u a

e e e e
m v n v p

e e e e

e e e e
m v n v p

e e e e

e e e e
m v n v

e e e e
f



− −

− −

− −

− −

− −

− −

   − −
  + +   

+ +   =
   − −

+ +   
+ +   

  − −
 + 

+ + =
/ / / /

/ / / /

.

sin cos
u a u a u a u a

u a u a u a u a

p

e e e e
m v n v p

e e e e

− −

− −









 + 
 


   − −

+ +    + +   

 

 

 Those are the transformations that we were proposing to obtain. 

 In the chapter that was cited before, Darboux gave the following equations for geodesic lines: 

 

A u cos v + B u sin v + C = 0 , 
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tan cos tan sin
u u

A v B v C
a a

+ +  = 0 , 

/ / / /

/ / / /
cos sin

u a u a u a u a

u a u a u a u a

e e e e
A v B v C

e e e e

− −

− −

− −
+ +

+ +
 = 0 . 

 

 In the last two, we wrote u / a instead of u in order to make the notations consistent. The 

eminent geometer added: 

 

 “If one represents the surface on the plane by taking the rectangular coordinates 

x and y of the point in the plane for the coefficients of A and B in the previous 

equations then the geodesic lines on the surface will correspond to the lines in the 

plane… When one has performed one representation of the surface in question on 

the plane, one will get all of them by following that representation, no matter what 

it might be, with the most general homographic transformation in the plane.” 

 

 Once one has acquired that, it will be sufficient to consider formulas (12), (13), and (14) in 

order to confirm that the transformations that solve the problem that Appell posed are the ones that 

transform the lines in the plane into geodesic lines on the surfaces (1). 

 

___________ 

 

 

 
 (1) The results that are contained in this article were the topic of a communication that we had the honor of 

presenting to the Academy of Sciences (session on 8 December 1890).  


