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The “hidden” thermodynamics of particles

By Louis de Broglie

Translated by D. H. Delphenich

Abstract. — The author presents a glimpse of a line of resetdathhe carried out
since 1951 with the goal of obtaining a clear picture ofvea@orpuscle duality.
Recalling some ideas that he developed from 1926-1927 under tkeohéme “theory of
the double solution,” he first considers the corpuscle@sra of high concentration that
is localized to the interior of a wave field and dis@s according to a law of a certain
“guiding dynamic.” He then acknowledges the necessitgonfipleting this picture by
superposing a kind of random thermal agitation with timion that is defined by that
dynamic, and which will be due to the constant intévacdf every particle with a kind
of hidden thermostat (i.e., the sub-quantum medium ofiBWigier). This has recently
led him to develop a “thermodynamics of the isolated @arti whose fundamental
principles he presents, along with some applications.

The interpretation of wave mechanics— At the end of the Summer of 1963, it will
be forty years ago that the necessity appeared to regtefding the double wave-like
and corpuscular aspect that Einstein revealed to ugyfdrin his theory of light quanta
in 1905 to all particles. One sees quite clearly upon dergamy thesis that was
submitted at the end of 1924, a republication of which hasbgesh made, that my
objective was to arrive at a synthetic picture in whieé corpuscle, which is always
considered to be a small localized object that genedaplaces in space in the course of
time, will be incorporated in a wave with a physical relséer in such a way that its
motion is coupled to the propagation of the wave.

An essential remark that | made, which is never meatidoday in the books that
present quantum mechanics, is the difference betweenrettivistic transformation of
the frequency of a wave and that of the frequency ddekc It is well-known that if the
frequency of a clock, when considered in its proper sysiew then the frequency that
is attributed to it by an observer that sees it pass by the velocityv = ¢ is v, =

Vy,o/1— B ; this is what one calls the phenomenon of thewiig down of clocks” as a

result of their motion. On the contrary, if a wasea stationary wave of frequengyin a
certain system of reference then that wave, wheserobd in a reference system that is
animated with the velocity = & with respect to the first one, appears to be gnessive
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wave that propagates in the sense of relative motidntiwe frequency = \/1\47 and
the phase velocity =c/ 8=c?/v. If one attributes an internal frequengy= mec® / h
to the corpuscle, as is suggested by the fundamental quastation W = hy, and if one
assumes that in the proper system of the corpuscieahe that is associated with it is a
stationary wave of frequenay then all of the fundamental formulas of wave mechanics
— notably, the celebrated formula= h / p, wherep is the quantity of motion of the
corpuscle — are deduced immediately from the preceding kemar

Since | have considered the corpuscle to be constiantliized in the wave, | have a
good glimpse of the following consequence: The motion ottrpuscle is such that it
assures the permanent agreement of the phase of thessive wave that surrounds it
with the internal phase of the corpuscle when constties a small clock. That relation
is verified immediately in the simple case of a cogrsin uniform motion that
accompanies a monochromatic plane wave that | matalyied in my thesis. From my
thesis, building upon that idea, | was led to think thatnmiee wave has the general
form:

275 (x,y.2.9

gy=axy, zt)e" :

wherea and ¢ are real, the phase agreement between the corpuskcies avave demands
that the velocity of the corpuscle at each pointofrijectory must be given by:

vV=- igrad¢.
m

This concept links up with the one that Madelung developeleirsame era, which
compared the propagation of the wa¥én wave mechanics with the flow of a fictitious
fluid of densitypo= | ¢ and velocity:

vV=- igrad¢.
m

Using Madelung’s hydrodynamic picture, my hypothesishenrhotion of the corpuscle
is expressed by saying that the trajectory of the corpusulecides with one of the
streamlines of Madelung’s hydrodynamical fluid. One thenves at the idea that the
wave imposes a well-defined motion on the corpuscle: Bhighat | have called the
“theory of the pilot wave.”

| was then led to go beyond that first viewpoint.nin opinion, it is not sufficient to
superpose the corpuscle with a wave and impose the dahshat it be guided by the
propagation of that wave; one must represent the cograsdbeingncorporatedinto the
wave as if it were part of its structure. | was thagstb what | have called “the theory of
the double solution™ It assumes that the true wave ishomogeneous, but that it is
composed of a small region of high concentration & field that constitutes the
corpuscle in the correct sense of the word, and thside of that very small region the
wave roughly coincides with the homogeneous wave thatuso@l wave mechanics
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imagines. | then presented the primary basis for teat concept in an article in the
Journal de Physiqua July, 1927.

Unfortunately, that attempt, in which | did not furthetroduce the idea of a
nonlinear character to the wave equation for the ragewran into numerous difficulties.
| have said several times, moreover, how, at theayatonference in October of 1927 |
was led to abandon that attempt and rejoin, at leastgwaousily, the interpretation of the
Copenhagen School, but in the years that followed, lahadys preserved a much more
“objective” manner of presentation than then oneswieae being gradually employed, in
order to not get too far removed from my original inan8. In 1951, after having taught
some courses on the interpretation of wave mechamitgipreceding years, in which |
was led to review the objections that were raised by lachesuch as Einstein,
Schrédinger, and others against the usual interpretatioontl myself in a state of mind
that was favorable to a return to my old concepts: Waek of David Bohm that | have
since learned of and my long conversations on the probiémJean-Pierre Vigier then
led me to revisit the theory of the double solution, whileoducing the idea of
nonlinearity into it.

| cannot detail the progress that has been made ie {hst years regarding the
interpretation of wave mechanics by the theory of thebtdosolution. One can follow
the gradual development by referring to the two works thatblished with Gauthier-
Villars in 1956 and 1957, and an article that | published inJthenal de Physiqu@
December of 1960. | just published a volume with Gauthieahsilthat was dedicated to
a detailed critique of a series of small errors ofrprtetation that, it seems to me, have
contributed to the orientation of quantum physics alangrroneous path. | would not
wish to forget to emphasize the continuing help that Adere Silva has afforded me in
my work during these latter years through the sharpnebs @fnalyses, notably in the
editing of my last book.

Superposition of a random motion on the regular “guiding” motion.— We have
seen that in the theory of the double solution (or diidhe pilot-wave) one determines

2n
: e " 4
the motion of the corpuscle within its wave, when wnttin the formae" , by
assuming that its velocity is given by the guiding formula

(1) v=-1 gradg,
m

m being the mass of the corpuscle. This form for theiggitbrmula is valid in the non-
relativistic wave mechanics that corresponds to thed8lailger equation of propagation.
In the relativistic wave mechanics that corresponds ¢oKlkein-Gordon equation of
propagation, the guiding formula for a particle of electhargecs that is placed in an
electromagnetic field that is derived from a scalaepboal V and a vector potentig
takes the form:
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- 2grad¢+iA
2 Vve—-¢ ————,
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ot

which indeed reduces to the form (1) in the Newtonian appediom In the case of

particles with spin (for example, the Dirac electrame deduces the guiding formula by
always writing that the particle follows one of theesimlines of the hydrodynamical
flow that corresponds to the equations of propagation.

| think that the phenomenon of the particle being guidethéyambient (wave) field
results, as in the general theory of relativity, frdme fact that the field equations are
nonlinear, and that nonlinearity, which is manifested almogjuely in the corpuscular
region, renders the motion of the particle rigidigupled to the propagation of the
ambient wave. Upon employing a method that is analogatire tone that was employed
not long ago by George Darmois in order to justify theotgsic postulate” in general
relativity, and which was developed by Lichnerowicz, oaa tepresent the corpuscle
approximately as a singularity in the wave field and shwat, for reasons of continuity,
the singularity in its motion must remain constantiypfisoned in the interior of an
infinitely thin tube of streamlines of the externalfi. However, | cannot insist upon that
justification for the guiding formula here.

There is, however, a consequence of the guiding foropda which | must insist.
Even when a patrticle is not subject to any exterredl fiif the ambient wave is not a
wave that is roughly plane and monochromatic (theretbeg,wave must be represented
by a superposition of monochromatic plane waves) themibtion that is imposed upon
it by the guiding formula is not uniform and rectilinean. 1927, that led me to think that
the corpuscle is subject to a force by the ambient Waae bends its trajectory: That
“‘quantum force” will be equal to the gradient — with thgnschanged — of a quantum
potential Q) whose expression in non-relativistic wave mechaisiegitten:

_ ¢ sa
87°m a

3) Q=

However, in relativistic wave mechanics, one mumtstder that the quantum force is
equal to the gradient — with the sign changed th@fjuantity:

22 2
(4) MOCZZ\/W€C4+h cOa (D_ 16——Aj

ar a T ot
Since the quantum potentidlis defined only up to a constant, one can write:
(5) Q =Moc® —myC2.
The quantityMo, which, in general, a function of y, z t, and which reduces to the

constant proper mass, that is usually attributed to the particle wh@ns zero, can be
called the “variable proper mass” of the partigleyill play a significant role in what
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follows. It is, moreover, easy to verify that thefidition (5), taking the value (4) &,
into account, reduces to the definition (3) in the Newtoajaproximation.

The theory of guidance that is employed in the formuleg we just specified
imposes a well-defined motion upon the particle when sngivien its position in the
wave at a given initial instant. This was the viewpoiat thoriginally adopted in 1927,
and which | assumed again when | returned to the theatyeodouble solution a dozen
years ago. However, soon it appeared to me with inaigasinviction that this concept
is not sufficient, and that one must superpose a tyfrotvnian” motion with a random
character on the regular motion in such a way thatrttean” of the particle defines the
guiding formula.

In order to account for the necessity of introducing tiei@ element into the theory,
one must remember that  denotes the density of the fictitious fluid in the
hydrodynamical picture of wave propagatioa density that is equal tafx, y, z t) ' in
non-relativistic wave mechaniesthen one is led to consider that the quanitr gives
the probability of the presence of the particle atitiséantt in the volume elememdr in
physical space. In order to justify this result in theotry of the double solution, one can
start with the continuity equation for the fictitiofhsid:

o . _
(6) E+dlv(pv) =0,

an equation in whick is precisely the guiding velocity. If one considers thotion of a
volume elementdr that always contains the same fluid elements thes sees that
equation (6), which, with a well-known hydrodynamical tiotg can be written:

D _
(7) o P40 =0,

expresses the conservation of the progdt in the course of time. Just as in classical
statistical mechanics Liouville’s theorem, which ipeessed bya dr =0, makes it very

likely a priori that the probability of the presence of the represeatpoint of a system
in the elemendr of phase volume is proportional to the magnitude of &kment,
similarly, here equation (7) make it very likedy priori that the probability of the
presence of the particle in the eleménbf physical space is proportionalgadr. There

is a great analogy between the two problems with, howethe difference that in
statistical mechanics one considers the motion apaesentative point in phase space,
whereas here we consider the motion of a partigihysical space.

The analogy between the two problems entails afogyéetween the difficulties
that are encountered when one carefully examines tud pf the desired result. In one
case, as in the other one, the validity of the ltesemands that the element must sweep
out all of the space that is accessible to it indberse of its motion (phase space in one
case, physical space in the other). One knows tl@tder to justify this hypothesis, one
is led in statistical mechanics to either try to praeheorem of ergodicity or to
introduce, with Boltzmann, a hypothesis of “moleculaaah” In the problem that we
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are occupied with, it is the second path that was feltblay David Bohm and Jean-Pierre
Vigier when they introduced the idea of a “sub-quantuediom” in 1954 in an article in
the Physical Revieyan idea whose importance is rapidly emerging as garanto me.

According to Bohm and Vigier, there exists a hidden mediwah corresponds to a
level of physical reality that is more profound that fuantum or microphysical level, a
medium with which all of the particles of the micropicgs level will be constantly in
interaction. The complexity of this medium, andeems to me premature to specify its
nature precisely, will have the consequence of implyingptirely random character of
the perturbations that its action imposes upon the matfiohe microscopic particles.

Under the influence of these continual random pertiommtthat the “sub-quantum
medium” communicates to it, the particle, rather thegularly following one of the
trajectories that are defined by the guiding law, constgnmps from one of these
trajectories to another, and thus traverse a large muoflsegments of these trajectories
in a very short time, and if the wave remains confinea finite region of space then that
zigzagging trajectory will soon explore that region caetgll. One can then justify the
assertion that the probability of the presence ofpidmicle in a volume elemernltr of
physical space must be taken to be equaladf 7. This is what Bohm and Vigier did
in their paper: They showed that the probability distiin | ¢  must be established
very rapidly. Andrade e Silva, who has reflected upos soibject quite often, has
attached the success of this proof to the properties afktw chains.”

Without insisting upon his proofs, | would like to give atpre that makes the
meaning of the foregoing more precise. Consider the @dba fluid: Hydrodynamics
defines the trajectory of a molecule of that fluid thasses through that point, and which
coincides with one of the streamlines in the case omaeent motion. Now, the
trajectory thus defined is only an “ideal” or “mean”jécory that will be described in
practice only if the molecule is subject to no pertudmat However, this is never true:
Since the fluid is never at absolute zero, its mdécware animated with a thermal
agitation that is due to their incessant mutual coftisiand for that reason each of them
constantly passes through one theoretical trajectorarmther. It is because the
molecules thus describe a continually zigzagging trajedtaat it is permissible, ijo
denotes the fluid density, to consider the quamity as measuring the probability of the
presence of a given molecule in the elentamt

In order to succeed in proving the necessity of introducirgg Blohm-Vigier
perturbations of sub-quantum origin into the theory, ill wonsider the case of a
hydrogen atom in a stationary energy statethere the wave function is of the form:

27 gy
y=axy, 2e" .

The guiding formula then gives us that 0: This must say that the electron is immobile
at a point in the atom and one easily verifies, meggothat in this case the Coulomb
force that the nucleus exerts on the electron istixeguilibrated by the quantum force.
However, if the electron is therefore immobile, h@an one understand why the
probability of the presence of the electron at any pointhe atom is given by the
expression:

lyF=laxy 2 [?
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One can explain this if one assumes that the electwbiie remaining immobile “in

principle,” constantly jumps from one position to theéhest under the influence of
continual perturbations of sub-quantum origin. This exangtdo proves, in a striking
fashion, the necessity of introducing these perturbstioto the theory of the double
solution, i.e., of superposing a Brownian motion of randdraracter on the regular
motion of the particle that is predicted by the guidimgpty.

Introduction of the idea of a hidden thermodynamics— One knows that at the end
of the last Century, thanks entirely to the work oftBmann and Gibbs, a statistical
interpretation of thermodynamics was developed whoseesadwas ultimately been total.
However, in the same period certain authors — notablynlitdtz and Boltzmann himself
— have sought, with some success, to bring about somaragrebetween the quantities
that are introduced by thermodynamics and the quantitiemssical mechanics with no
intervention of statistical considerations. Thederasting attempts have been largely
forgotten and have hardly been used, except in the théagiabatic invariants (Léon
Brillouin).

During the years 1946-1948, in some notes taCihmptes rendus de I’Academie des
Sciencesin a course that | taught at I'lnstitut Henri Poirgaand in an article i€ahiers
de Physiquel have returned to an examination of these old wakd, naturally | have
tried to approach them with the concepts of wave mechanidgve thus been led to
define a temperaturk for a particle in motion with a velocit§tc, and whose the internal
cyclic frequency we have seen is given by:

Ve =V Af1- 5% = m'TCZ«/l—,BZ .

That temperature is related to the internal cyicéquency of the particle by:
KT =hy,

wherek is the Boltzmann constant. | was also led tongeéntropy by starting with the
action of the particle in the sense of mechanidhese analogies did not give me
complete satisfaction, but they seemed very curiouse. | also concluded by article in
Cahiers de Physiquéen January of 1948 by writing down the followingerizhmark
assertion with a certain hesitation: “There is Heginnings of a thermodynamics of
material points that one can seek to develop irctmeext of wave mechanics: It is very
difficult to say where that path can lead, and wetent ourselves with having indicated
the point of departure.”

From whence arose the hesitation that this stateprevoked? It came from the fact
that, being persuaded that thermodynamics is aalgndf statistical origin and is
meaningful only for very complex systems, | coutd comprehend how there could exist
a thermodynamics that is valid for a particle tlsaassumed to be isolated, and that is
why for several years | abandoned my attempt teldgva theory of this type.

However, in the last two years | have decidecetarn to the study of some ideas that
have continued to hold my attention, despite eWwmgt Now, in that era, having
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returned for several years to my reflection on tle®ti of the double solution, | admitted
the existence of a sub-quantum medium. Very quicklyght went on in my mind. If

any particle that appears to us to be isolated at tloeosgiopic level can constantly
exchange energy and quantity of motion with the sub-quameadium then that medium
would play the role of a “hidden thermostat” with whidte tparticle is constantly in

energetic contact. Moreover, there is no lorgeriori any paradox in trying to develop
the thermodynamics of isolated particles. That iatwhried to do in a first note to the
Comptes rendus de I'Academie des Sciemtesugust, 1962. At this moment, | have
finished editing a book in which | present the principleshef “thermodynamics of the

isolated particle,” as | did in my last course at l'tngtHenri Poincaré during the winter
of 1961-1962. Furthermore, | remark that since this thermadics is applicable to

ensembles of interacting particles that are all in emerg®mntact with the hidden

thermostat, the term “hidden thermodynamics of partick@d be perhaps preferable to
the term that | first adopted, for obvious reasons.

However, before presenting the basis for this vetnaeive new theory and some
applications, | must first recall some notions fronatiglstic thermodynamics that have
been known for a long time (e.g., the work of Planc#f his school around 1910), but
which one rarely teaches in college courses.

Review of some notions of relativistic thermodynamics.— In relativistic
thermodynamics, one proves that if a body that &gimed to be in its proper system
possesses a temperatiligeand contains a quantity of he@s for an observer that sees it
pass by with a velocityc then it possesses a temperatlirand contains a quantity of
heatQ that are coupled by the formulas:

(8) T=To1-5°, Q=Qu1-5.

One likewise proves, and this results almost imatetli from formulas (8), that entropy
is a relativistic invariant; i.e., th&=% .

Before going much further, we shall make a notaliconvention that will be very
useful to us in what follows. A is a quantity whose value depends upon the proper
massMy of a body and also some other parameters, suttte aglocity or the position of
this body, then we letdoA],, denote the small variation thatexperiences when one lets

the other parameters vary slightly while keepitgconstant, and we lej, A denote the

small variation tha# experiences when one varlds slightly while the other parameters
remain constant. Having said this, consider a bodis proper system: Its proper mass
will be Mg , and from the principle of the inertia of energyinternal energy will b&\ =

Mo ¢ If its proper mass is subject to a slight vaoiatdM, then its internal energy will
vary by M = Mg ¢ This can happen only if the body has receivedieen up the
guantity of energyWp, and since the internal energy is an energy #hsttoired inside the
body, one must consider the quaniiylo ¢ to be a quantity of heald,. Therefore, for
an observer who sees the body pass with the welgtit the quantity of heat that is
received or given up by the body will be:
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(9) R =& 1-5* = Moc*y1- 5.

Now, as is well-known in relativistic dynamics, thagrange function for that observer
will be:

(10) L=-Moc®1-5% + ...,

in which the unwritten terms do not depend uptan We thus have:
(11) Q=-9, L.

It is easy to recover this formula by other arguta¢hat are more complete, which | will
give in the book that | am preparing. | would likepoint out one of them.

We place ourselves in the system of the observer sees the body pass with the
velocity fc. We can then write the two formulas of relatiigstynamics:

2
(12) W= M E{M} —f.

ll_lgz ’ dt /1—,32

As for the second one, one derives the followingression for the work that is done on
the body during the timé&:

(13) or=fvd=vo

M, v
1=/

If one assumes that the proper mass is constamt dseone habitually does in relativistic
dynamics, one easily verifies that the work in gio@shas the value:

(14) [0T ], = [OW]y, ,

which is normal. However, if the proper mass cary\vhen one will have for the work
that is done on the body:

(15) 3T=[6T], + 3, T = [OW],, +

Now, one thus also has:

(16) AN = [dW],, +

CZ

57

and from equations (15) and (16), one deduces that:

NO’

(17) N =T+ Mo 1- 3 .
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Since the principle of the conservation of energy &/ = J7 + XQ, whered is the
guantity of heat that is taken in by the body, one rexoformulas (9) and (11).

Thermodynamics of the isolated particle, or the hidden thenodynamics of
particles. — In order to develop the thermodynamics of the isdlgtarticle, we first
assume that we can apply the formula:

(11) =-3, L

to an isolated particle at the level of microphysit#&oreover, we also assume, in accord
with my old ideas of 1946-1948, that the particle, which is rmpa@ent contact with the
hidden thermostat, can be regarded as having a tempefathieg is defined by the
formula that has the desired relativistic covariance:

(18) KT =hv =hv +1- 2 =ma 1- 3 .

We define the entropy by referring it to the hidd#ermostat, which is a very
complex system. We take our inspiration from trethod that was formerly employed
by Einstein in his work on fluctuations and writeetentropyS of the hidden thermostat
in the form:

S=5 + YMo),

where S is the part of that entropy that is independenthef fluctuating value of the
proper mas#/, of the particle, whil&§My) is the small part of that entropy that depends
upon the value a1, . We will then have:

o, L
(19) 5Mos:d5(|v|0):—§ = MT .

The — sign that appears befaX@ comes about due to the fact tldgt is the heagiven up
by the hidden thermostat to the particle. Upolizutg formulas (10) and (11), we get:

(20) ABMo) = - kMo,
m,
which finally gives:
(22) S=%- k% :
m,

a fundamental formula in which the invariance & tight-hand side is indeed evident.
It is easy to infer an important first consequefnoen this formula.
Indeed, from the Boltzmann formula that relates ¢éintropy to the probability, the
probability of the valueM, of the fluctuating proper mass must be proporticoa™;
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i.e., toe™’™ One concludes from this that the mean valugl@for a particle outside
of any force field (classical or quantum) is:

_ _IO Mee ™dM,
(22) M, = 0 =M.
e ™ dM,

Therefore, the constant proper mamss that is usually attributed to the particle
appears to us as the mean value of the true instantapeoper massV,, which
fluctuates.

Another interesting consequence of this theory is tabésh a link between the
principle of least action and the second law of thelynamics. Hamilton’s principle of
least action tells us that if, in its natural motiiat conforms to the laws of dynamics,
the particle starts from a poiAtat the instant, and arrives at a poifg at the instant;
then the action integral taken along its motion isimal with respect to the same
integral taken along the entire “varied” motion that takesparticle at the poit at the
epochtp to the pointB at the epocly . One is then led to write:

t t
(23) L [o£],, dt =0, L [6°£],, dt >0,

the first and second variations 6f being taken while keeping the proper mags
constant and equal to its normal vaineg.

B, t1

Figure 1.

Here, | have introduced a hypothesis that seemsedao have a very interesting
physical significance:

If ACB is the natural trajectory then | have assumed tti@tvaried trajectories such
asACB do not correspond to the fictitious motions that isnagined by the theoretician,
as one usually assumes, but to motions that camalgcbccur when the proper maslg
of the particle is subjected to a certain serieflumttuations betweety andt; . From
Hamilton’s principle, the fluctuating trajectoAC B must be determined by the equation:

(24) [*o(c+aryat = (3L +32L)dt =0,

Here however, since the proper mass is no longemasd to be constant, one must write:
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(25) O = [0L]y, + 0y L O°L = [°L]y, +0u L

where 55,05 denotes the set of termsdifL that depend upon the variationM§ . One
thus has:

(26) (108, + 8, L4 54, + 355 di=0

on ACB. However, the integral of the first term is zeky, virtue of Hamilton’s
principle, and one can easily verify that the faurérm is negligible compared to the
other ones. What finally remains, taking (23) iatmwount, is:

27) - "8y Ldt == (1 -t) 8, L = ['[8°C],, dt >0,

in which J,, £ is the temporal mean betwegrandt; . Then, sincé: —to is positive and
- oy, L is the heat given up by the hidden thermostahéoparticle, one sees that the

temporal mean of this quantity of heat, which isozen the natural trajectory, is positive
on the fluctuated trajectory. In other words, émtropyS diminishes in the mean when
one passes fromCBto ACB. The entropy is therefore maximal on the nattregéctory
with respect to the fluctuations, subject to thedibons of the Hamiltonian variation.
The natural trajectory is therefore more probabéntthe fluctuated trajectories. A very
curious link thus appears between the principldeakt action and the second law of
thermodynamics when one places it in our domaidess {).

The situation of a particle in permanent energetintact with a hidden thermostat
presents a certain analogy with that of a grarhd¢ is visible in an optical microscope
and is subject to the action of gravity, and whilound to be in suspension in a fluid
whose molecules constitute a hidden thermostat. thAt moment when Jean Perrin
pursued his celebrated experiments on the gramilélsis type, some thermodynamic
theories that were broadened to include fluctuatmimraltitude in the granules in the fluid
were developed by Smoluchowsky, notably with theéhme of Einstein, and are very
interesting to compare with our theory.

Quantum transitions and the “prerogative” of monochromatic states.— Since
Bohr’s theory of atom in 1913, one has attributecharacter to the quantum transitions
that make a quantized system in one stationarg §tass to another one that one can
describe as mystical. Indeed, one abandons arg dfogaving it any sort of picture, and
Bohr did not hesitate to assert that it “transceéiiday description in terms of space and
time. That is why Schrodinger was led to say, icalty, that in the present quantum
theory one minutely describes the stationary statesse nothing happens, but refuses to
say anything about the quantum transitions whengesioing does happen.

() In figurative terms, one can say that the nattregéctory follows the path along the bottom of a
valley of negentropy. For the case where there ikirgetic focal point” with respect td between the
pointsA andB, seeC. R. Acad. Sc257(1963), 1822.
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The idea that was introduced by the theory of the douieien — viz., that wave
mechanics, in the final analysis, must rest on nonlingaat®ns permits one to think
that if the quantum transitions are missing from the useary then that is because they
constitute essentially nonlinear processes. Theyhaillvery brief transitory processes
that are analogous to the ones that have alreadydemuntered in several nonlinear
theories of mechanics and physics when there is &gagsage from one limit cycle to
another. That very attractive idea was already emnwsl some years ago Bjap and
Destouches, and it was revived recently by Fer, Lochat, Aamdrade e Silva, who
published some notes on the subject that were quite inbgres

Now, when Fer, Lochak, and Andrade e Silva were informledy first note in
August of 1961 on the thermodynamics of the isolated partadter | quite justly
remarked that my formulas that were deduced from tia¢ioaldS=dQ/ T apply only to
reversible phenomena, they suggested to me that tiidbnief transitory states that they
had considered could indeed be transformations that wemempanied by a brief
augmentation of the entropy, and that the passage drestationary state to another
could indeed constitute the crossing of a valley ofogryti(or mountain of negentropy).

During last winter in 1962-1963, | was led to reflect more qunoélly on these
interesting suggestions. In order to make the orientationy thoughts on that subject
understandable, | begin by remarking that in the usuakyheme associates a sort of
prerogative to the states that one can describe asothoomatic,” where | intend that
term to mean, on the one hand, the stationary stdtélse quantum system that are
associated with a monochromatic stationary wave thatepresented by a proper
Hamiltonian function, and on the other hand, in theecak particles in progressive
motion, the states that are associated with groupsuwfdeal waves such that the greater
part of their extension can be assimilated into a oubromatic plane wave. This
prerogative consists in saying that one regards these moneaiic states as more
normally realized than the states that are repredebyea superposition of proper
functions or monochromatic plane waves. In therbegg of Bohr's atomic theory, one
considered the atom as being always necessarily fouadstationary state, and when,
much later, one translated the Bohr theory into #mguage of wave mechanics, one
assumed that the states that were represented by tmpasipen of proper functions had
only a fleeting existence and that, by definition, themawas always caught by the
observation in a stationary state that was represdiytgmoper functions. In quantum
field theory, the same prerogative manifests itselfttas fact that the “occupation
numbers” are generally referred to monochromatic plaaees. In one of the very
penetrating articles that were dedicated to a critiqueeusfent quantum concepts,
Schrédinger emphasized, with good reason, this preregatinonochromatic states: He
thought that it was unjustified becawseriori a superposition state has a more general

character than a monochromatic state (i.e., the iumgt = 20,1/4 IS more general than

the functiony = ¢4). Nevertheless, the success of the hypothesis thabechoomatic
states are essentially a prerogative hardly permesto doubt, contrary to the opinion of
Schrédinger, that this prerogative is unjustified.

However, everything can be explained if one assumes (&s led to do) that the
superposition states, which have a lower entropy andym & lower probability than the
monochromatic states, are in some way unstable, ahdhi@uantum transitions have
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an irreversible character (and perhaps even in certagsaa reversible processes) that
always rapidly drives particles or systems towards ounbromatic states with a higher
entropy. It then becomes obvious that the superposi@asswill generally be of brief
duration and will tend to transform into monochromatatess such that the conditions
that are imposed upon the particle or system permit egesaof energy or quantity of
motion that are necessary for this to happen.

In order to establish a solid basis for the idealthat presented, one must prove in a
general fashion, starting with the hidden thermodynawfigerticles, that the entropy of
the superposition states is less than that of the nhwoonatic states. At present, | do not
possess a general proof of that fact, but | have found spows in a number of
particular cases. In order to not extend this discugsiormuch, | will not give these
proofs here, and | will be content to point out the @ple of them.

First, | once more write down the definitions (5) a@d)(of the quantum potential
and the entropy:

Q=MoC*—myc?, s:so—k%,
m,

which lead us to write:
(28) S:So—k—k%.

Now, in the case that | studied the quantum poterialwas zero in the
monochromatic states, in such a way that thesesstatee the “standard” entro= S

—k. In the superposition state3,is non-zero, and one can easily prove Bat | Q &

dr is positive. From (28), the entropy of a superpositiateswill then have the mean
value:

(29) S =g5-k-k

3 <5k

It then indeed results that in the case that | studienl éintropy of the superposition states
was, in the mean, less than that of the monochiorsiates.

It is interesting to remark that the instability o€ thuperposition states thus seems to
be coupled to the appearance in these states of aspagiantum potential that entails an
augmentation of the proper mads of the particle or system, so, from the fundamental
formula (21), there is a diminishing of the entropy. sTéeems to show the close link
that exists between our hidden thermodynamics and the ogans that were introduced
by the theory of guidance and the theory of the double sali

Conclusion.— | just presented a view of the collective evolutiomgfthoughts since
the moment where, recalling my original ideas on the physical significance of wave
mechanics, | sought to give a reinterpretation whose egssntial points, to my eyes,
are that it reestablishes the clear picture of théigkaras a very small object that is

() On the definition of energy in the hidden thermodynarofcgarticles,seelLouis de BroglieC. R.
Acad. Sc257(1963), 1430.



de Broglie — The “hidden” thermodynamics of particles. 15

constantly localized in space in the course of time hatit endows the wave with the
character of a field with an objective existence thapagates in space in the course of
time. In the context of the theory of the double soiytl was then led to recall the
“‘guiding formula,” which attributes a well-defined motion the particle that is
analogous to the one that classical hydrodynamics w@#sbto a fluid molecule, a
molecule whose motion at each instant is given by oh¢he® streamlines of the
hydrodynamical flow.

| then obtained a clear picture, but | subsequently rezedrthat it was, without a
doubt, very rigid. | then glimpsed the necessity of qup&ng a sort of random thermal
agitation with the mean regular motion of the pé&tithat is defined by the guiding
formula, just as one superposes a random thermal agitatih the regular motion of a
fluid molecule that is defined by the streamlines in #& motion, moreover. For the
fluid molecule, this thermal agitation is due to @ellisions with the other fluid
molecules, but for an isolated particle at the miavpgclevel, a similar agitation can
only be attributed to its permanent energetic contatt avsort of hidden thermostat that
one can naturally identify with the sub-quantum medidiahm and Vigier.

Moreover, if one reflects on this then it seemstejuiatural that the present
probabilistic interpretation of wave mechanics, whicloften referred to as “quantum
mechanics,” would ultimately lead to the introductidnnew thermodynamic notions,
since it introduces probabilities into the behavior ofiarophysical particle, even when
it appears to be isolated, and that the close link thadt doetween statistical
thermodynamics and the appearance of probabilities in iqatysheories almost
necessarily suggests the existence of a hidden thermodynasi a result of this
behavior. Einstein has indeed sensed this For a lorgy iow, and he thinks that the
intervention of probabilities into wave mechanics miesid one to attribute a sort of
Brownian motion to microphysical particles. Now, whatecaalls Brownian motion is
also what one calls fluctuations in thermodynamics.

BIBLIOGRAPHY

LOUIS DE BROGLIE:
Une tentative d'interprétation causale et non linéaire de ladméue ondulatoire: la théorie de la
double solutionGauthier-Villars, Paris, 1956.
La théorie de la Mesure en Mécanique ondulatdBauthier-Villars, Paris, 1957.
L’interprétation de la Mécanique ondulatoi(@. Phys. Rad20 (1959), 963).
Etude critique des bases de l'interprétation actuelle de laavigue ondulatoireGauthier-Villars,
Paris, 1963.
La Thermodynamique de la particule isolge R. Acad. Sc253 (1961), 1078255 (1962), pp. 807
and 1052.)
D. BOHM and J.P. VIGIER, “Model of the causal intetpt®n of quantum theory in terms of a fluid with
irregular fluctuations” (Phys. Re96 (1954), 208).
F. FER, J. ANDRADE E SILVA, Ph. LERUSTE, and G. LOSK, C. R. Acad. Sc.251 (1960), 2305,
2482, and 2662; Cahiers de Physi26 (1961) 210137 (1962), 1.
J. ANDRADE E SILVA and G. LOCHAK, C. R. Acad. St54(1962), 4260.
G. LOCHAK, C. R. Acad. S@254(1962) 4436256 (1963) 3601.

(Manuscript received on 23 September 1963).



