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PREFACE 
 

 The theory of the electron that is due to Dirac is of great interest from several 
viewpoints.  It constitutes the most perfect form that we currently possess for the wave 
dynamics of the electron.  It reconciles relativistic and quantum ideas (at least, to some 
extent).  It makes precise Uhlenbeck and Goudsmit’s very fruitful hypothesis of an 
electrified corpuscle that is magnetic and rotating in a form that agrees with the principles 
of the new physics.  Finally, it permits one to account for some important experimental 
facts that are concerned with the fine structure of spectra in the context of the anomalous 
Zeeman effect, and with that, in turn, it receives a beautiful confirmation.  It seems useful 
to us to publish a general survey on that subject by editing a course that we taught in the 
most recent years at l’Institut Henri Poincaré. 
 In order to indeed show that Dirac’s theory is not simply a game for theoreticians to 
play, but a timely way for us to explain some important facts, we believe that in the first 
part of the book we must survey some phenomena that have received a satisfactory 
interpretation from that theory, while at the same time showing that those phenomena 
defy any complete explanation in the old quantum theory or even wave mechanics in its 
initial form. 
 We have also reserved a special place in the first part of the book for a review of the 
general principles of the new mechanics and the conception of physical laws that arises 
from it.  Indeed, it is impossible to comprehend Dirac’s theory very well if one does not 
have those principles in mind. 
 In the discussion of the theory that defines the object of the second part, we have 
preserved the somewhat-asymmetric form of the equations that Dirac himself employed 
in the beginning without seeking to adopt notations that are more symmetric from a 
relativistic standpoint, as a number of authors have done since then.  Indeed, that search 
for symmetry in form seems a little vain to us, since, as we have sought to show in the 
last chapter, Dirac’s theory, despite the invariance of form of its equations under a 
Lorentz transformation, must make time play a special role in order to remain in 
agreement with the current general principles of quantum mechanics.  At the end of the 
second part, we have devoted a chapter to a systematic overview of the entire theory that 
might aid the reader in understanding the harmony in it. 
 The third part of this book consists of the interpretation of some of the facts that were 
recalled in the first part by means of Dirac’s theory.  That is followed by a study of 
certain consequences of the fundamental equations that are a bit strange – in particular, 
its prediction of negative-energy states.  We have presented these difficulties without 
advocating any solution to them.  No matter what way of solving them that we are led to 
in the future, they deserve to be studied because they have their roots in the very basis of 
the theory itself. 
 We hope that this book will permit the reader to know not just the beauty of Dirac’s 
theory, but also its utility in interpreting some experimental facts, as well as its gaps and 
weak points. 
 I would like to acknowledge Jean-Louis Destouches for having assisted me in the 
correction of the proofs. 
  LOUIS DE BROGLIE
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FIRST CHAPTER 
 

THE ATOMIC SPECTRUM OF HYDROGEN. 
THE THEORIES OF BOHR AND SOMMERFELD.  

___ 
 
 

 1.  The Balmer formula and the spectral terms of hydrogen. – The oldest-known 
series of lines in the visible light spectrum of hydrogen is the Balmer series.  It consists of 
four principal lines (which are, in reality, small doublets, as we shall see later on).  Here 
are the names and wave lengths of those four lines: 
 

Hα : 6.583 Å,      Hβ : 4.861 Å,      Hγ : 4.340 Å,      Hδ : 4.102 Å. 
 
Balmer already arrived at a formula that gave the frequencies of those lines a half-century 
ago.  That formula is: 

vm = R 2

1 1

4 m
 −  

, m = 3, 4, 5, 6.    (1) 

 
v3 is the frequency of the line Hα , v4 is that of Hβ , etc.  R is a constant that is called the 
Rydberg constant, and is approximately equal to 3.29201 × 1015. 
 Some other line series in the non-visible hydrogen spectrum that were discovered 
later on obeyed analogous laws.  Notably, one has the ultraviolet Lyman series, for which 
the frequencies of the lines are given by the formula: 
 

vm = R 2

1
1

m
 −  

, m = 2, 3, ...    (2) 

 
and the infrared Paschen series, for which one has: 
 

vm = R 2

1 1

9 m
 −  

, m = 4, 5, …    (3) 

 
 One sees that all of those formulas have the general type: 
 

vm = R 2 2

1 1

n m
 −  

, n < m.     (4) 

 
 n = 1 for the lines of the Lyman series, n = 2 for those of the Balmer series, and n = 3 
for those of the Paschen series. 
 One can elevate that statement to the status of a general law that is exhibited exactly 
for all spectral lines of all bodies.  It is the Ritz combination principle, which one states in 
the form: 
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 “The frequency of any spectral line is equal to the difference between two spectral 
terms that are characteristic of the emitting body,” 
 
or, in another form: 
 
 “For any emitting body, one can construct a table of numbers that one calls spectral 
terms, such that the frequency of any spectral line of the body will be the difference 
between two of its spectral terms.” 
 
 Formula (4) then shows that for hydrogen, the spectral terms have the form R / n2, 
with n = 1, 2, …, at least in absolute value. 
 A more precise experimental study of the lines of the Balmer series has shown, 
moreover, that those lines are, in reality, each composed of two very close lines.  In other 
words, when one analyses the Balmer series with sufficient resolution, one will perceive 
that each of the lines that one originally considered to be simple is, in reality, a small 
doublet.  The difference between the frequencies of the two components is the same for 
each of those doublets.  Later on, we shall see how Sommerfeld could interpret that fine 
structure in the Balmer series.   
  
  
 2. Bohr’s theory of the spectral terms of hydrogen. – In 1912, Bohr arrived at an 
interpretation for the spectral terms of hydrogen, and having done that, he founded the 
modern theory of the atom upon a new basis. 
 Somewhat before Bohr’s theory, physicists (not without a certain amount of groping) 
followed the suggestion of Lord Rutherford and adopted a planetary model of the atom.  
According to that view, the atom of a simple body whose rank in the Mendele’ev series is 
N will be endowed with a central nucleus of positive charge Ne, where e is the 
elementary electronic charge + 4.77 × 10−10 e. s. u.  N electrons of charge – e orbit around 
that nucleus, in such a way that the atom will be collectively electrically neutral.  Bohr 
had the idea of subjecting that model of the atom to calculation by applying the quantum 
laws that Planck introduced successfully in his study of black-body radiation.  He 
assumed that a planetary electron in the atom can describe only certain motions around its 
central positive “Sun” that are predicted by classical mechanics.  Those stable motions of 
the electrons correspond to “stationary states,” during which no radiation will be emitted, 
contrary to the predictions of the classical electromagnetic theory.  The emission of 
spectral lines can then take place only during the brief passage of the atom from one 
initial stationary state to another stationary state of less energy.  What will the frequency 
of the line that is emitted during such a passage be?  Bohr determined it by assuming that 
the energy that is lost by the atom is radiated in the form of just one quantum of light of 
value hv – or rather, in the form of just one photon, to employ the current language.  
Hence, if Ei and Ej denote the energies of the atom in the initial and final stationary states, 
resp., then the frequency vij that is emitted in the transition will be: 
 

vij = i jE E

h

−
.      (5) 
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 That formula explains the Ritz combination principle immediately, and we shall show 
that the spectral terms of an atom are equal to the energies of its various stationary states, 
divided by the Planck constant. 
 The essential problem is then to determine the energies of the stationary states.  In 
order to do that, in his first paper, Bohr always assumed that the electron behaved like a 
point-like charge that obeyed Newton’s laws of dynamics, but he restricted the number of 
possible motions by introducing Planck’s quantization rules.  In the era when Bohr was 
writing, one knew only how to quantize the periodic motions that were defined by just 
one variable q.  The method of quantization for that case is the following one: If p is the 
Lagrange momentum that is conjugate to the variable q then one writes: 
 

p dq∫�  = n h  (n, an integer),    (6) 

 
in which the integral is taken over an entire cycle of the motion, and h is Planck’s 
constant.  Bohr was naturally led to suppose that the motions of the electron that satisfy 
the condition (6) are the stable motions that correspond to the stationary states of the 
atom. 
 The method permits one to easily calculate the energy of stable circular trajectories of 
a hydrogen atom, and in Rutherford’s picture, that atom is composed of a nucleus of 
charge + e and a planetary electron of charge – e.  If θ is the azimuth of the radius r then 
condition (6) will give: 

2mr θɺ  = n ⋅⋅⋅⋅ 
2

h

π
 

d

dt

θθ = 
 
ɺ .    (7) 

 
 That expresses the idea that the angular momentum of the electron on a stable orbit is 
an integer multiple of h / 2π.  On the other hand, since the laws of dynamics provide the 
relation: 

2mr θɺ  = 
2

2

e

r
,      (8) 

 
one can easily find that the energy of the nth quantized circular motion is: 
 

En = 21
2 mr θɺ− 

2e

r
= − 21

2 mr θɺ= −
2 4

2 2

2 me

n h

π
.    (9) 

 
 Hence, if one sticks to the circular motions then the spectral terms of hydrogen must 
have the form: 

nE

h
=  −

2 4

2 3

2 me

n h

π
.     (10) 

 
 From formula (5), the lines of hydrogen must have frequencies that are given by the 
general relations: 

vnn′ = −
2 4

3 2 2

2 1 1me

h n n

π  − ′ 
  (n′ > n),   (11) 
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and one will get back to formula (4), which is inferred from experiments, by setting: 
 

R = 
2 4

3

2 me

h

π
.     (12) 

 
 Now, the numerical calculation of the right-hand side of (12) shows that its value is 
indeed approximately equal to the experimental value of the Rydberg constant. 
 One can begin the same calculation again by supposing the one is dealing with an 
atom of atomic number N that has been ionized N – 1 times.  One must then treat a 
problem that is identical with the problem of the hydrogen atom, except that the central 
charge will be Ne, instead of e (1).  Upon repeating the calculation, one will easily find 
the following spectral terms, in place of (10): 
 

nE

h
= − 

2 4

2 3

2 me

n h

π
N2 = −

2

2

RN

n
.    (13) 

 
 Hence, the spectral terms are multiplied by the square of the atomic number.  The 
simplest case is that of singly-ionized helium, for which one will have N = 2.  The 
spectral terms and frequencies will then be quadrupled.  Meanwhile, the experimental 
numbers indicate that the Rydberg constant does not have precisely the same value for H 
and He+.  Bohr could account for that difference by including the reaction of the electron 
on the nucleus. 
 
 
 3. Quantized energies of elliptic orbits. – Bohr’s calculations that we recalled 
above cannot be regarded as being complete because the study of the motion of an 
electron around a nucleus is, in principle, a problem in two variables: viz., the radius 
vector and the azimuth.  Eliminating the variations of the radius vector by considering 
only the circular trajectories is obviously only an artificial procedure.  However, in order 
to treat the problem completely, one must first know how to write the quantum conditions 
for motions with several degrees of freedom.  Here is how one arrives at that: 
 Let a system with n degrees of freedom, be defined by n variables q1, …, qn .  If all 
variables admit the same period of variation T – i.e., if they take the same values at equal 
time intervals T – then the system will regularly take on the same configurations – i.e., it 
will be periodic.  If each variable qi has a period of variation T, and those periods are 
commensurable with each other, then the system will be quasi-periodic.  For systems of 
the type that one had to quantize in the old quantum theory, it was always possible to 
choose the variables in such a fashion that they would form a system of n “separate 
variables”; i.e., each of the Lagrange momenta pi could be expressed as a function of just 
the one corresponding coordinate qi .  Having chosen the variables in that way, H. A. 
Wilson and Sommerfeld showed that the quantization must be expressed by the n 
conditions: 

i ip dq∫� = ni h  (ni, an integer)  i = 1, 2, …, n  (14) 

                                                
 (1) One often says that an atom of atomic number N that has been ionized N – 1 times is hydrogenic. 
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 Sommerfeld appealed to that new statement in order to treat the problem of the 
hydrogen atom more completely by accounting for all of the elliptic motions.  Let r be 
the radius vector, and let θ be the azimuth of the electron in its Keplerian trajectory.  The 
kinetic energy T will be: 

T = 2 2 21
2 ( )m r r θ+ ɺɺ ,     (15) 

 
and the Lagrange momenta will be, by definition: 
 

pr = 
T

r

∂
∂ɺ

 = mrɺ ,  pθ = 
T

θ
∂
∂ ɺ

 = mrθɺ .   (16) 

 
 The conditions (14) can be applied here, and one writes: 
 

2 2

0
mr d

π
θ θ∫ ɺ  = n1 h,  mr dr∫ ɺ� = n2 h.   (17) 

 
 Now, from the areal theorem, mr2θ is the constant angular momentum in a central 
field.  The first condition (17) then gives: 
 

2mr θɺ  = n1
2

h

π
,     (18) 

 
and coincides with Bohr’s condition (7) for circular orbits. 
 In order to calculate the second integral (17), we must write the expression for the 
energy: 

E = 
2

2 2 21
2 ( )

e
m r r

r
θ+ −ɺɺ =

2 2 2
2 2

2

1 ( )

2

mr e
m r

m r r

θ 
+ − 

 

ɺ
ɺ .  (19) 

 
Hence, upon taking (18) into account, one will infer that: 
 

mrɺ = pr = ± 
2 22
1

2 2
2

4

n he
m E

r rπ
 

+ − 
 

,    (20) 

 
which is a formula that shows the separation of variables. 
 In the course of motion, the radius vector r oscillates between the values r1 and r2 that 
annul the radical (20), because pr must be real.  Upon supposing that r1 < r2, one can 
write: 

rp dr∫�  = 
2

1

2 22
1

2 2
2 2

4

r

r

n he
m E dr

r rπ
 

+ − 
 

∫ ,   (21) 

 
because one must take the + sign in (20) when r increases and the – sign when it 
decreases.  Sommerfeld calculated the integral (21) by Cauchy’s method of residues, and 
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found that it had the value − | n1 | h +
2 42

2 | |

me

m E

π
.  Upon equating that to n2 h, one will 

easily find that: 

1 2n nE = −
2 4

2 2
1 2

2

(| | )

me

n n h

π
+

.    (22) 

 
 That gives the quantized energy of the stationary state that corresponds to the 
quantum numbers n1 and n2 .  Since | n1 | and n2 are positive whole numbers or zero 
(which cannot both be zero, as one easily sees), one can set: 
 

| n1 | + n2 = n  (n = 1, 2, …),   (23) 
 
and the formula (22) will give the same energy levels as Bohr’s original theory.  In other 
words, the fact that one is considering elliptical orbits will not lead to any new spectral 
terms.  The introduction of two degrees of freedom cannot explain the fine structure of 
the Balmer series by itself. 
 
 
 4. Sommerfeld’s fine-structure theory. – In order to explain the fine structure of 
the hydrogen atom, Sommerfeld had the idea of attempting to employ relativistic 
mechanics, instead of classical mechanics.  That would be justified by the remark that the 
speed of the electrons in the internal orbits of the Bohr atom must be comparable to the 
speed of light. 
 In relativistic dynamics, the kinetic energy of the electron has the expression: 
 

T = m0 c
2 

2

1
1

1 β

 
− 

 − 

,    (24) 

 
in which m0 is the mass of the electron at rest, and β has the usual significance: 
 

β = 
v

c
= 2 2 21

r r
c

θ+ ɺɺ .    (25) 

 
 However, here, one must no longer define the momentum pi that is conjugate to the 
variable qi to be equal to the derivative of T with respect to iqɺ .  One must introduce the 

relativistic Lagrangian: 

L = − m0 c
2 21 β− – U,    (26) 

 
in which U is the potential energy, and pose the definition: 
 

pi = 
i

L

q

∂
∂ ɺ

.      (27) 
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 In the problem of the hydrogen atom, the potential energy will not depend upon the 
qi, and one will have: 

  pr = 
L

r

∂
∂ɺ

 = 
2 2

0

22 1

m c

r

β
β

∂⋅
∂− ɺ

 = 0

21

m r

β−
, 

(28) 

  pθ = 
L

θ
∂
∂ ɺ

 = 
2 2

0

22 1

m c β
θβ

∂⋅
∂− ɺ

 = 
2

0

21

m r θ
β−

ɺ
. 

 
 Here, the quantum conditions (14) will then be: 
 

2
2

0

20 1

m rπ θ
β−∫
ɺ

dθ = n1 h, 0

21

m r

β−∫
ɺ

� = n2 h.   (29) 

 
 The detailed study of the trajectory that we just carried out here showed that the 
electron describes an ellipse whose perihelion is rotating.  In other words, at each instant, 
the trajectory is tangent to an osculating ellipse that turns slowly in its plane.  The radius 
vector oscillates between two values r1 and r2, but the time that it takes to describe the 
cycle r1 → r2 → r1 (viz., the period of the variable r) is a little bit longer than the time 
that the azimuth takes to increase by 2π (viz., the period of the variable θ).  The orbit 
does not close precisely, so the motion will be quasi-periodic. 

 

 
Figure 1. 

 
 The momentum pθ is furthermore the angular momentum around the center, and one 
easily proves that it is once more constant here; i.e., that the areal theorem is always 
valid.  The first condition (29) then gives: 
 

pθ =
2

0

21

m r θ
β−

ɺ
= 1 2

h
n

π
.     (30) 
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 The total energy is the sum of the internal energy m0 c
2 of the kinetic energy and the 

potential energy.  It is then equal to: 
 

W = 
2 2

0

21

m c e

rβ
−

−
.     (31) 

 
 Upon taking (28) and (25) into account, one will easily verify the formula: 
 

W = c 
2 2

2 2
0 2r

p e
m c p

r r
θ+ + − .   (32) 

 
 Let E denote the energy W minus the term m0 c

2; E will then be the energy that one 
defines in classical mechanics.  Replace W in (32) with E + m0 c

2 and solve it for pr .  It 
will become: 

pr = 22
B C

A
r r

+ + ,      (33) 

with the notations: 

 A = 
2

2

E

c
+ 2m0 E = m0 c

2 
2

2
0

1 1
E

m c

  
 + − 
   

, 

 

 B = 
2

2

Ee

c
+ m0 c

2 E,      (34) 

 

 C = 
4

2
2

e
p

c θ−  = 
2 24
1

2 24

n he

c π
− . 

 
 Sommerfeld then introduced what one calls the “fine structure constant” into the 
calculation: 

α = 
22 e

hc

π
 (α2 = 5.2 × 10−5 c. g. s.).   (35) 

 One can then write: 

C = − 
2 2 2
1

2 2
1

1
4

n h

n

α
π

 
− 

 
.      (36) 

 
 An application of the residue theorem permits one to establish that one has: 
 

2

2B C
A

r r
+ +∫�  dr = − 2π i B

C
A

 
−  

 
.   (37) 
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 Upon equating the right-hand side of (37) to n2 h, conforming to (29), and replacing 
A, B, and C with their values, Sommerfeld found, after a simple calculation: 
 

1 + 
0

E

m c
= 

1/ 2
2

2 2 2
2 1

1
[ ]n n

α
α

−
 
 +
 + − 

,   (38) 

 
which is a formula that rigorously gives the energy E of the stationary state that is defined 
by the quantum numbers n1 and n2 . 
 Since the quantity α2 is very small, a first approximation will consist of neglecting the 
terms of degree higher than one in α2.  As one would expect, one then comes back to 
formula (22) from the non-relativistic theory, and one does not find any fine structure.  A 
better approximation would consist of keeping the terms in α4 and writing: 
 

1/ 2
2

2 2 2
2 1

1
[ ]n n

α
α

−
 
 +
 + − 

= 1 − 
2 4

2
2 4

1 2 1 2 1

1 1

2(| | ) 2 (| | ) 4 | |

n

n n n n n

α α  
− + + +  

.  (39) 

 
 Upon substituting that value into (38), one will find that: 
 

E = − 
2 4 2

0 2
2 2 2

1 2 1 2 1

2 1
1

(| | ) (| | ) 4 | |

m e n

n n h n n n

π α  
+ +  + +   

.   (40) 

 
 The third term between brackets explains the existence of a fine structure in the 
Balmer series, because it depends upon | n1 | and n2 separately, and not just on | n1 | + n2 . 
 We shall now change the notations slightly.  We call the number n = | n1 | + n2 the 
“total quantum number,” and the number k = | n1 | the “azimuthal quantum number.”  It is 
obvious that one can characterize each quantum energy level by the numbers n and k, 
instead of the numbers n1 and n2 .  Formula (40) can now be written (upon introducing 
the Rydberg constant): 

Enk = − 
2

2 2

3
1

1

Rh n

n n k

α  + −  
  

.    (41) 

 
 In the old quantum theory, one assumed that the azimuthal quantum number k could 
never take the value 0; for the circular trajectories, one has n2 = 0 or n = k, and for the 
elliptic trajectories 0 < k < n.  From formula (41), each stationary orbit is characterized by 
an energy Enk that no longer depends upon just n, but also upon k.  However, since α2 is 
very small compared to unity, the various spectral terms that correspond to the same 
value of n will be very close to each other, and one will indeed get the fine structure of 
the lines that was predicted by Bohr’s theory. 
 It is obvious that the Bohr spectral term that corresponds to a given value of n will 
decompose here into n terms that are close to each other, since one will have n values (1, 
2, …, n) for k for a fixed n.  It is appropriate to remark that the range of the closely-
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spaced terms will become smaller as n increases, due to the presence of n2 in the 
denominator of the term in α2. 
 Consider the Balmer series.  In the first approximation, the line frequencies are given 
by the formula: 

v = R 2 2

1 1

2 n
 −  

,  n = 3, 4, …   (12) 

 
 In the second approximation, from Sommerfeld, one must replace the spectral term 

22

R
 with 

2

2 2

2 3
1

2 2 4

R

k

α  + −  
  

 and similarly, the spectral term 
2

R

n
 with 

2

2 2

3
1

4

R n

n n k

α  + −  
  

.  There is then one fine structure with constant width in the Balmer 

series that is provided by the doubling (k = 1, 2) of the first fixed spectral term and 
another fine structure with a width that decreases when one goes up in the series that is 
due to the complexity in the second variable spectral term.  That second fine structure is 
practically unobservable, because it is too fine.  The first one corresponds to a 
decomposition of each of the lines that were predicted by the Balmer formula into a 
doublet with constant width for the entire series, and is equal to: 
 

∆vH = 
2

2 2 2 2

2 3 2 3
1 1

2 2 1 4 2 2 2 4

R Rα α     + − − + −     
      

= 
2

16

Rα
.  (43) 

 

 The numerical calculation of 
2

16

Rα
gives 0.365 cm−1 upon replacing frequencies with 

wave numbers.  That value is in very good agreement with the experimental number.  
One then obtains an interpretation for the existence of doublets in the Balmer series by 
completing Bohr’s theory with the introduction of relativity. 
 If one recalls Sommerfeld’s calculation by supposing that one is no longer dealing 
with the hydrogen atom, but with an atom of atomic number N that has been ionized N – 
1 times then one will recover the energy of the stationary state that is characterized by the 
numbers n and k: 

Enk = − 
2 2 2

2 2

3
1

4

RN h N n

n n k

α  + −  
  

.   (44) 

 
 The relativistic correction in the bracket will then be multiplied by N2, and the width 
of the doublets, by N4.  For ionized helium (N = 2), the width of the doublets in the series 
that corresponds to the Balmer series must then be 16 times larger than in the Balmer 
series itself.  One then imagines that the study of the doublets in the spectrum of He+ can 
serve to verify Sommerfeld’s theory; Paschen’s verification of that fact was quite 
satisfactory. 
 Sommerfeld’s theory of fine structure then gave very good results for H and He+.  It 
could then be successfully extended to an interpretation of an important class of doublets 
in the X-ray spectrum.  However, one then perceives that for X-rays, and even for the 
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simple hydrogen spectrum, the application of formula (41) will meet up with a grave 
difficulty.  We shall explain that in detail in Chapter III. 
 
 

___________ 
 



 

CHAPTER II 
 

SUMMARY OF NOTIONS ABOUT THE OPTICAL 
SPECTRA OF DOUBLETS AND THEIR 

INTERPRETATION  
____ 

 
 

1.  Rydberg formula and line series 
 

 For some time now, the success of the Balmer formula and some formulas of the 
same type for hydrogen has led spectroscopists to see whether it would be possible to 
find analogous formulas for elements other than hydrogen.  Since the combination 
principle is valid for all optical lines, that would amount to finding an expression for the 
spectral terms of a general element that would generalize the expression R / n2 that is 
valid for hydrogen. 
 Rydberg showed that, in the first approximation, the spectral terms of an element can 
be written in the form: 

2( )

R

n+ ∆
,     (1) 

 
in which R is the same constant as for hydrogen.  In the expression (1), the number n is a 
positive whole number, and ∆ is a non-whole number that is capable of taking several 
different values for each element.  The Rydberg formula does not represent the spectral 
terms very exactly: Ritz proposed a more exact expression in which the whole number n 
and the quantity ∆ appeared in the same way.  Without going into the more exact 
expression for the spectral terms as functions of n and ∆ here, we shall assume that each 
spectral term can be expressed with the aid of those two quantities, and it can, in turn, be 
represented by the notation (n, ∆).  For a given value of n, ∆ is, in general, capable of 
taking on several different values; the same n will then correspond to several spectral 
terms.  Spectroscopists have made it a habit of denoting the possible values of ∆ by a 
sequence of letters: s, p, d, f, g, h, …, and upon constructing a table of spectral terms, one 
will see that such a table has the following appearance to it: 
 

(1, s) (2, s) (3, s) (4, s) (5, s) ……  
 (2, p) (3, p) (4, p) (5, p) ……  
  (3, d) (4, d) (5, d) ……                             (2) 
   (4, f) (5, f) ……  
    (5, g) ……  

 
 Therefore, for n = 1, ∆ will have just the value s.  For n = 2, ∆ can have the values s 
or p.  For n = 3, ∆ can have the values s, p, d, etc.  More generally, when n increases by a 
unit, the number of possible values to ∆ will also increase by unit. 
 As for hydrogen, the frequencies of the lines of the same spectral series are always 
obtained by taking the difference between the constant term that is characteristic of the 
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series and a variable term.  Here are the frequencies of the four series that have been 
recovered in all spectra and are particularly familiar to spectroscopists: 
 

Principal series 
 

vn = (1, s) – (n, p) n = 2, 3, … ……  

Diffuse series, or 
1st second. series 
 

vn = (2, s) – (n, d) n = 3, 4, … ……  

Narrow series, or 
2nd second. series 
 

vn = (2, p) – (n, s) n = 3, 4, … ……                (3) 

Bergmann series, or 
fundamental series 

vn = (3, d) – (n, f) n = 4, 5, … ……  

 
 Since the spectral terms always diminish in value when n increases, one will see that 
as one goes up in a spectral series, one will find lines whose frequencies approach the 
constant spectral term that characterizes the series more and more closely.  That spectral 
term can then be called the limit of the series. 
 One should note a peculiarity of the formulas for the series (2) that one recovers for 
all of the series that are obtained under the usual conditions: If one ranks the possible 
values for ∆ in the order s, p, d, f, g, etc.,  then the values of ∆ that enter into a formula of 
the series will always have values that are immediately close.  If one denotes the values 
of ∆ by 1, 2, 3, …, instead of s, p, d, …, then one can say that: When one passes from one 
term to the other in a formula for a series, ∆ will vary by one unit, more or less.  That is 
what one calls a selection rule, which shows that, at least under the usual conditions of 
emission, a great number of combinations of the spectral terms will not correspond to any 
actual observable lines. 
 
 
 2. The doublet spectra of alkali metals. – The table of spectral terms (2) is only a 
rough first approximation; unfortunately, reality is hardly that simple.  In particular, 
progress in spectroscopy has shown that the lines that were considered to be simple in the 
preceding Rydberg-Ritz model are, in reality, composed of a group of neighboring lines 
that constitute doublets or triplets, or multiplets, more generally.  Since we cannot carry 
out a complete presentation of that truly complicated question, we shall confine ourselves 
to an examination of the spectra of the alkali elements, in which the lines form doublets. 
 The study of the alkali metal spectra has shown that for those elements, most of the 
spectral terms in the Rydberg-Ritz model are doubled.  More precisely, the value s of the 
quantity ∆ will always remain unique, but the values p, d, f, g, … will all be double: 
There are two very close values p1 and p2 , two very close values d1 and d2, etc.  There is 
then good reason to replace table (2) with the following table: 
 

(1, s) (2, s) (3, s) (4, s) (5, s) ……  
 (2, p1) (3, p1) (4, p1) (5, p1) ……  
 (2, p2) (3, p2) (4, p2) (5, p2) ……  
  (3, d1) (4, d1) (5, d1) ……  
  (3, d2) (4, d2) (5, d2) ……                              (4) 
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   (4, f1) (5, f1) ……  
   (4, f1) (5, f2) ……  
    (5, g1) ……  
    (5, g2) ……  

 
 The usual optical series are obtained by combining spectral terms in which ∆ takes 
two neighboring values from the list s, p, d, f, g, …  That is the selection rule that was 
pointed out before.  However, we shall find another supplementary one here.  For 
example, consider a diffuse series of formulas: 
 

v = (2, p) – (n, d),     (5) 
 
and envision the lines of that series for which n = 3.  A priori, that group of lines can be 
composed of the following four lines: 
 

(2, p1) – (3, d1); (2, p1) – (3, d2); (2, p2) – (3, d1); (2, p2) – (3, d2).    (6) 
 
 Now, experiments prove that the second of those lines is never manifested under the 
usual conditions.  That is a manifestation of a new selection rule whose precise statement 
we shall give after we have introduced the notion of quantum numbers into definition of 
the spectral terms in Table (4). 
 
 
 3. Interpretation of the Rydberg-Ritz model by Bohr’s theory. – Bohr’s theory 
gave excellent results for hydrogen and ionized helium, so it was quite natural to see to 
extend it to more complex atoms, and naturally, the primary goal to be reached in that 
attempt must be the interpretation of Table (2) of the Rydberg-Ritz spectral series. 
 One will encounter some grave difficulties when one seeks to extend Bohr’s theory to 
atoms that contain more than one planetary electron.  The dynamical problem becomes 
complicated, and the application of the quantum rules becomes uncertain.  Meanwhile, 
the general analogy between the spectra of all the elements and the intervention of the 
Rydberg constant R in all of them leads one to think that the planetary model that is so 
useful for the hydrogen atom must be utilized to at least a certain degree for all of the 
other elements.  In order to do that, we begin by assuming a very crude hypothesis: In an 
atom of atomic number N, consider N – 1 of the planetary electrons to be orbiting in the 
vicinity of the nucleus, so they form an “electronic shell” around it, while the Nth 
planetary electron, which is called the “optical electron,” will have its orbit outside the 
shell.  The transitions of the optical electron from one stationary state to another will 
determine the optical spectrum of the element.  Thanks to the hypothesis of the electronic 
shell, one can assume approximately that the action of the nucleus of charge + Ne and the 
shell of charge – (N – 1) e on the optical electron is equivalent, by compensation, to the 
action of a central charge + e.  One is then reduced to the problem of the hydrogen atom 
with just one quantum number.  In the second approximation, with Sommerfeld, one 
seeks to account for the fact that the charge of nucleus and that of the shell do not 
compensate for each other to give precisely one unit.  The trajectory of the electron will 
no longer be closed, so one must introduce a second quantum number k, and one can then 
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account for the transition from terms that have the Balmer form to terms of the form (n, 
∆).  Sommerfeld calculated (quite roughly, to be sure) the terms (n, ∆) that one will 
obtain in that fashion and recovered the formulas of Rydberg and Ritz.  The theoretical 
attempt by Sommerfeld, and some other, more complicated, ones that one finds in the old 
books on quantum theory (1), have led one to make the various values of ∆ (s, p, d, …) 
correspond with Sommerfeld’s azimuthal quantum number in the following fashion: 
 

k = 1 2 3 4 5 6 ……  
∆ = s p d f g h ……                                      (7) 

 
 That will permit us to write any spectral term (n, ∆) in the form (n, k): For example, 
the term (2, p) is written (2, 2). 
 Since the azimuthal number k is always less than or equal to the total number n, but 
cannot take the value zero, one can explain why for n = 1, the quantity ∆ can have only 
the value s, for n = 2, it can have only the values s and p, etc.  The peculiarities of Table 
(2) are then found to have been explained completely.  Moreover, by an argument that is 
based upon Bohr’s correspondence principle, the old quantum theory showed that the 
only transitions that must take place effectively are the ones for which δk = ± 1.  That is, 
in fact, the selection rule that we pointed out for Table (2), since, from (7), a variation of 
k by plus or minus one unit would correspond to a displacement of one unit in the 
sequence of possible values of ∆. 
 
 
 4. Doublet spectra and the quantum number j. – By introducing the two quantum 
numbers n and k, the theories of Bohr and Sommerfeld then arrived at an interpretation of 
the spectral terms (2) in the Rydberg-Ritz model.  However, we saw that this table is 
insufficient because the spectral terms that appear in it are multiplets, in reality.  It is 
natural to think that in order to characterize each of the multiple spectral terms that 
correspond to the same term in Table (2), one must introduce a third quantum number.  
That is what had been done since the time of old quantum theory by introducing a third 
number j in an entirely empirical manner, in addition to the numbers n and k.  
Sommerfeld then gave the name of internal quantum number to that new concept, which 
is a name that is no longer very well justified today. 
 Without going into how the introduction of the quantum number j has permitted one 
to classify the complex optical multiplets here, we shall confine ourselves to studying the 
alkali doublets from that viewpoint.  As we have seen, each spectral term (n, ∆) in that 
case will be double, in general.  From the ideas that were presented in the last paragraph, 
that amounts to saying that the same value of the number k will correspond to two 
neighboring values for ∆, instead of a single one.  Those two neighboring values of ∆ that 
correspond to definite values of n and k must be characterized by different values of the 
quantum number j.  One will then be led to attribute the two values of j: 
 

j = k – 1 ± 1
2  = l ± 1

2      (8) 

 

                                                
 (1) In particular, see Léon BRILLOUIN: L’atome de Bohr, Paris, Presses universitaires (1931), ch. XII.  
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to the two neighboring spectral terms, if one introduces the notation: 
 

k  − 1 = l,     (9) 
 
whose usefulness we shall see later on.  Furthermore, one assumes that the number j 
cannot take on negative values, in such a way that for k = 1, one will have only the value j 
= 1

2 .  One will then find the explanation for the uniqueness of the s terms in the table (4).  

Formula (8) leads immediately to the following table for the correspondence between the 
quantum numbers k and j and the values of ∆: 
 

k 1 2 3 4 5 ……  
l 0 1 2 3 4 ……  
 

j 
�

1
2  
�

31
2 2  
�
3 5
2 2  
�
5 7
2 2  
�
7 9
2 2  

……                       (10) 

∆       s p1  p2 d1  d2 f1  f2 g1  g2 ……  
 
 One can therefore represent each spectral term in Table (4) by the symbol (n, k, j), 
and one will get the following table in place of (4): 
 

(1, 1, 1
2 ) (2, 1, 1

2 ) (3, 1, 1
2 ) (4, 1, 1

2 ) (5, 1, 1
2 ) …….  

 (2, 2, 1
2 ) (3, 2, 1

2 ) (4, 2, 1
2 ) (5, 2, 1

2 ) …….  

 (2, 2, 3
2 ) (3, 2, 3

2 ) (4, 2, 3
2 ) (5, 2, 3

2 ) …….  

  (3, 3, 3
2 ) (4, 3, 3

2 ) (5, 3, 3
2 ) …….  

  (3, 3, 5
2 ) (4, 3, 5

2 ) (5, 3, 5
2 ) …….                      (11) 

   (4, 4, 5
2 ) (5, 4, 5

2 ) …….  

   (4, 4, 7
2 ) (5, 4, 7

2 ) …….  

    (5, 4, 7
2 ) …….  

    (5, 5, 9
2 ) …….  

 
 We have remarked that for the spectral terms of the alkali metals, there exists another 
selection rule of the same type as the one that is valid for Table (2) (i.e., δk = ± 1), in 
addition to that rule, since, for example, the second of the four lines (6) cannot be 
produced under the usual conditions.  That new rule is expressed with the aid of the 
number j by the formula δ j = {− 1, 0 + 1}.  We then have, in total, the following two 
rules: 

δk = 
1

1

+
 −

, δ j = 

1

0

1

+


 −

.     (12)   

 
 We shall now verify those rules on the four lines (2p – 3d) that were given in (6).  
With the present notations, they are written: 
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(2, 2, 3
2 ) – (3, 3, 52 ), (2, 2, 12 ) – (3, 3, 52 ), 

(13) 
(2, 2, 3

2 ) – (3, 3, 32 ), (2, 2, 12 ) – (3, 3, 32 ). 

 
 One has δk = + 1 for all four of them, but one of them – namely, (2, 2, 1

2 ) – (3, 3, 52 ) 

– will not satisfy the second rule in (12).  In fact, it does not exist experimentally, either. 
 In the old quantum theory, the meaning of the number j remained unknown, and the 
attempts to interpret it proved to be insufficient.  The Uhlenbeck-Goudsmit hypothesis of 
the spinning magnetic electron has revealed its true significance, and we shall see that 
emerge quite naturally in Dirac’s theory. 

 
____________ 

 



 

CHAPTER THREE 
 

X-RAY SPECTRA AND  
THE THEORIES OF BOHR AND SOMMERFELD 

_____ 
 

1.  Moseley’s law and Bohr’s theory 
 

 For the most part, the X-ray spectra present the same general character as optical 
spectra.  The principle of combination is applicable to them.  One encounters series that 
correspond to the combination of a fixed spectral term with a variable spectral term.  One 
recovers selection rules for them. 
 In the first approximation, one can represent the X-ray spectral terms by the 
expression: 

2

2

RN

n
,  n = 1, 2, …    (1) 

 
in which R is the Rydberg constant, and N is the atomic number of the simple body that is 
the emitter.  That is Moseley’s law.  The presence of the constant R here indicates the 
close kinship between Röntgen spectra and optical spectra. 
 In reality, the form (1) of the spectral terms is only a rough first approximation, and 
the true X-ray spectral terms will present the same degree of complexity as the optical 
spectral terms do for the alkali metals.  The doublets that one encounters here initially 
seemed to be explained by Sommerfeld’s fine-structure theory, but a more careful 
examination will show that his theory is insufficient, and that things are ultimately put 
into order only by the theory of the magnetic electron, and in the Dirac form, in 
particular. 
 In the old, simplistic ideas of Bohr’s theory, the emission of X-rays was linked to a 
reorganization in the electron shell.  As we saw in the last chapter, Bohr considered the 
emission of light lines to be due to transitions from the outermost electron of one stable 
orbit to another, while the set of innermost electrons formed a sort of shell by the 
interlacing of its orbits.  The emission of X-rays would then correspond to the 
modification that the internal system would be subjected to upon passing from one stable 
state to another.  Naturally, the exact calculation of those stable states would be quite 
complicated, even in the old quantum theory. 
 One will be led to an approximate calculation (which is quite crude, moreover) in the 
following way: One assumes that the electronic orbits of the shell are individually 
characterized by one or more quantum numbers, which, in a certain sense, amounts to 
neglecting the interaction of the electrons and considering them separately.  One then 
says that the electrons that possess equal or almost equal energies form a “band” 
(couche).  Moreover, a band can be comprised of orbits of different types that are 
characterized by different sets of quantum numbers, but the energies of those orbits must 
be very close. 
 The calculations that were made for hydrogen showed us that the orbits of the same 
band must be characterized by the same total quantum number n.  Experiments have 



§ 1.  Theories of Bohr and Sommerfeld. 19 

revealed the existence of bands in atoms that one has become accustomed to denoting by 
the consecutive letters of the alphabet K, L, M, etc.  One accounts for that by setting n = 1 
for the K band, n = 2 for the L band, etc. 
 The orbits of the K band have the smallest energy.  From a well-known principle, it 
would then seem that the normal state of all electrons in the electron must be found in the 
K band.  The study of X-ray spectra and the periodicity of the chemical properties in 
Mendele’ev’s table prove that this is certainly not true.  We must assume a sort of “band 
saturation”; i.e., assume that there exists a maximum number of electrons in each band.  
A critical examination of the facts that experiments provide on that subject permits us to 
state the following rule: 
 
 The maximum number of electrons that can belong to the band that is defined by total 
quantum number n is equal to 2n2. 
 
 Later on, we shall see how one can refine the distribution of electrons amongst the 
energy levels that belong to the same band. 
 We shall recall how Bohr and Kossel represented the emission of X-rays.  An 
external agent (e.g., material particle or radiation) that arrives at an atom in the normal 
state can strip off one of the electrons in the shell and project it outwards.  The atom will 
then be in an abnormal state; it will have suffered a “deep ionization.”  Let W0 be the 
minimum normal energy of the atom then, and let W1 be its energy after deep ionization. 
 The difference W1 – W0 was provided by the ionizing agent: We see that it 
corresponds (up to the factor 1 / h) to the limiting frequency of a spectral series of X-rays.  
The atom then presents a free place in its shell, so a reorganization of it can be produced 
spontaneously, since an electron can abandon the place that it occupied to begin with and 
occupy the free place.  Naturally, that transformation can be accomplished only if it 
corresponds to a diminution of the total energy of the atom, and must be accompanied by 
radiation that belongs to the X-ray domain. 
 Briefly: The origin of X-rays in this conception of the atom will be the transition of 
an electron from a certain band to another one of less energy in which a previous 
ionization has created an empty place. 
 After the reorganization of its shell, the atom will be found in a state of ionization that 
is less deep and will possess an energy W2 that is between W0 and W1 . 
 Imagine that second ionized state and remember that all of the electrons are 
considered to be similar: That new state will be identical to the one that the external agent 
would create if, instead of expelling the first electron, it expelled the second one, which is 
the one that was displaced during the reorganization.  Hence, the energy W2 – W0 will 
represent the work that corresponds to the less-deep ionization.  Bohr’s rule then leads 
one to attribute the frequency: 
 

v = 
1

h
(W1 – W2) = 

1

h
 [(W1 – W0) − (W2 – W0)]  (2) 

 
to the X-radiation that is emitted during the reorganization. 
 We construct the list of energies W1, … of the atom in its various states of deep 
ionization by subtracting the energy W0 from the normal state: We will then obtain what 
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we can call the energy levels of the atom when we start with the normal state.  Upon 
dividing by h, we will get the X-ray spectral terms: 
 

1 0W W

h

−
, 2 0W W

h

−
, …, 0nW W

h

−
, …  (3) 

 
 The X-ray spectral terms are then equal to the ionization work divided by h.  The 
frequencies of the X-ray lines will then have the form: 
 

v = 0 0n mW W W W

h h

− − − 
 

.    (4) 

 
 The lines in the same series correspond to the same Wn ; i.e., to the same level that the 
electron reaches at the time of the reorganization.  The second term in (4) differs for 
different lines of the same series and tends to zero for lines of higher order: It is the 
frequency of the line when the order in the series is raised to a limit that is equal to the 
spectral term (Wn – W0) / h that characterized the series. 
 Moseley’s law teaches us that in the sequence of elements, each of the spectral terms 
(3) will vary in the first (and very crude) approximation like the square of an atomic 
number.  In order to recover that law in Bohr’s theory, we assume that an electron of the 
shell can be regarded as being subject to a central field that is equal to (N − z) e / r2, in 
which the term ze / r2 crudely represents the repulsive action of the electron that are 
closer to the nucleus.   We get the following general form for the spectral terms: 
 

2

2

N
R

n

′
.     (5) 

 
 z is small for the deep bands of heavy atoms, and one can make N coincide with N′.  
One then recovers the form (1) for Moseley’s law.  It is quite obvious that the calculation 
is hardly rigorous: However, Bohr’s theory indicates that it does prove Moseley’s law. 
 
 
 2. Summary analysis of X-ray spectra. – The first fact that struck the 
spectroscopists in the Röntgen domain was the following one: X-ray lines are very neatly 
divided into disjoint groups by the scale of frequencies or wave lengths.  One first 
considers each of those groups of lines to be composed of just one series, and one then 
distinguishes those series by consecutive letters of the alphabet, starting with the letter K: 
e.g., K series, L series, M series, etc.  The series will collectively displace towards the 
high frequencies when one passes from one element to a heavier one, and roughly as the 
square of the atomic number (Moseley).  A more careful examination will then show that, 
in reality, the groups of lines that are first called the L series, M series, etc., will, 
however, decompose into sub-groups that form true series whose lines intermingle on 
spectrograms.  There will then exist several L levels, several M levels, etc., of slightly 
differing energies.  The K level is the only one that is unique. 
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 Experiment has indicated that there exist 3 L levels, 5 M levels, and 7 N levels.  Of 
course, each of those levels corresponds to a spectral term.  One distinguishes the levels 
from their associated spectral terms by Roman numerals, where the lowest numerals 
correspond to the deepest levels; i.e., to the highest ionization work. 
 By way of example, here is the table of X-ray lines of the K, L, M series for the heavy 
elements: 
 

L series M series  
Terms 

K series 
K LI LII LIII  MI MII MIII  MIV MV 

LI 
LII 
LIII  

… 
α2 
α1 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

MI 
MII 
MIII  
MIV 
MV 

… 
β2 
β1 
… 
… 

… 
β4 
β3 
… 
… 

η 
… 
… 
β1 
… 

l 
… 
… 
α2 
α1 

… 
… 
… 
… 
… 

… 
… 
… 
… 
… 

… 
… 
… 
… 
… 

… 
… 
… 
… 
… 

… 
… 
… 
… 
… 

NI 
NII 
NIII  
NIV 
NV 
NVI 
NVII 

… 
γ2 
γ1 
… 
… 
… 
… 

… 
γ7 
γ3 
… 
… 
… 
… 

γ5 
… 
… 
γ1 
… 
… 
… 

β6 
… 
… 

2β ′  

β2 
… 
… 

… 
… 
… 
… 
… 
… 
… 

… 
… 
… 
ε 

… 
… 
… 

… 
… 
… 
… 
γ 

… 
… 

… 
… 
… 
… 
… 
β 
… 

… 
… 
… 
… 
α2 
α1 
… 

OI 
OII 
OIII  
OIV 
OV 

… 
… 
δ1 
… 
… 

… 

4γ ′  
γ4 
… 
… 

γ11 
… 
… 
γ2 
… 

β1 
… 
… 
… 
β5 

… 
… 
… 
… 
… 

… 
… 
… 
… 
… 

… 
… 
… 
… 
δ 

… 
… 
… 
… 
… 

… 
… 
… 
… 
… 

PI 
PII 
PIII  

… 
… 
… 

… 
… 
γ8 

2γ ′  
… 
… 

5β ′  

… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

 
 It is easy to interpret this table.  The name of each line is inscribed at the intersection 
of a row and a column.  Its frequency is the difference between the spectral term that is 
located at the head of the column and the spectral term that is located in the first column 
of the row.  The lines of the same series are then found to be placed in the same column. 
 The unique K series is composed of a sequence of doublets: α1 – α2, β1 – β2, γ1 – γ2, 
… whose interval will get narrower.  All of those doublets will dilate when the atomic 
number increases, and their frequency bandwidth will increase with the fourth power of 
the atomic number; one calls that kind of doublet a “regular doublet” or a “Sommerfeld 
doublet.”  The LI series has a structure that is analogous to that of the K series; it is also 
composed of regular doublets whose width will diminish when one goes up in the series. 
 On the contrary, the LII and LIII  series present a very different aspect from the 
preceding ones.  The homologous lines of those two series (which appear in the same row 
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in the table) form doublets with constant width from one end of the series (η – l, β1 – α2, 
γ5 – β6, γ1 – 2β ′ , γ11 – β7, 2γ ′  – 5β ′ )  to the other.  That constant width is equal to vLII − vLIII  

and varies with N2 in the series of elements.  Those doublets are once more “regular 
doublets. 
 One can summarize the laws of X-ray lines in general fashion by saying that: The X-
ray spectral terms vary in magnitude with N2 (viz., Moseley’s law).  The difference 
between the two consecutive spectral terms with the same name (L, M, …), the first of 
which is an even index (for example, vLII − vLIII ) varies with N4 and gives rise to regular 
doublets. 
 We further complete this discussion with the following remark: The difference 
between two spectral terms with the same name, the first of which is an odd index (for 

example, vLI − vLII), will vary in the sequence of elements in such a fashion that LIv  

− LIIv  will remain constant, and will define what one calls an “irregular doublet.” 

 
 
 3. Classification of X-ray spectral terms. – The Bohr-Kossel model leads one to 
assume that the emission of an X-ray spectral series is a consequence of a deep ionization 
of an atom.  If that ionization makes the energy of the atom pass from its normal value 
W0 to the value Wn then the characteristic spectral term of the series will be (W0 – Wn) / h.  
Assume that each electronic orbit can quantized separately.  One can then presume that 
quantization will introduce three quantum numbers n, j, k, as it does for optical spectra.  
The deep ionization to which the energy Wn corresponds can then be represented by the 
symbol (n, j, k), which is composed of the three quantum numbers that define the orbit 
that is traversed by the expelled electron before ionization.  It then results from this that 
we must make each X-ray spectral term correspond to one of the symbols (n, j, k) that 
were encountered before in optical spectra.  Now the study of the X-ray series shows that 
they have entirely the same structure as the alkali metal spectra, in such a way that there 
exists a one-to-one correspondence between the X-ray spectral terms and the alkali 
spectral terms [Table (II) in the preceding chapter].  Here is that correspondence: 
 
  (1, 1, 1

2 ) = K 

1s 
 

   

(2, 1, 1
2 ) = LI 

2s 

(3, 1, 1
2 ) = MI 

3s 

(4, 1, 1
2 ) = NI 

4s 
 

(5, 1, 1
2 ) = OI 

5s 

(6, 1, 1
2 ) = PI 

6s 

 

(2, 2, 1
2 ) = LII 

2p1 

(3, 2, 1
2 ) = MII 

3p1 

(4, 2, 1
2 ) = NII 

4p1 

 

(5, 2, 1
2 ) = OII 

5p1 

(6, 2, 1
2 ) = PII 

6p1 

 

(2, 2, 3
2 ) = LIII  

2p2 

(3, 2, 3
2 ) = MIII  

3p2 

(4, 2, 3
2 ) = NIII  

4p2 

 

(5, 2, 3
2 ) = OIII  

5p2 

(6, 2, 3
2 ) = PIII  

6p2 

(6) 

 (3, 3, 3
2 ) = MIV (4, 3, 3

2 ) = NIV (5, 3, 3
2 ) = OIV   
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3d1 4d1 5d1 
 (3, 3, 5

2 ) = MV 

3d2 

(4, 3, 5
2 ) = NV 

4d2 

 

(5, 3, 5
2 ) = OV 

5d2 

  

  (4, 3, 5
2 ) = NVI 

4f1 

 

   

  (4, 3, 5
2 ) = NVII 

4f2 

   

 
 One must note that the construction of the O and P bands is not achieved in this table, 
even for heavy atoms, for lack of electrons. 
 Guided by the optical analogy, we now see that the K series has the spectral formula 
(1, s) – (n, p): It is then a primary principal series that is composed like that of the alkali 
doublets that get narrower.  The L series is a “secondary principal series” whose formula 
is (2, s) – (n, p) and whose structure is analogous.  The analogues for the K and LI series 
are then found to be interpreted. 
 From our present viewpoint, the LII and LIII  series decompose into two sets of lines.  
The first set is composed of the regular doublets with constant width and simple 
components η – l, γ5 – β6, γ11 – β7, 2γ ′ − 5β ′ , and is the analogue of the narrow series (2, p) 

– (n, s) of the alkali metals.  The second set of lines forms a diffuse series with the 
formula (2, p) – (n, d) and refers to the most intense lines of the group L.  They form 
doublets with constant width, but they present a fine structure that is due to the 
complexity of the d terms.  One can, moreover, verify the selection rules δk = ± 1, δj = 
{0, ± 1} in the table of X-ray lines that was given above, just as one does for optical 
spectra.  The classification of X-ray lines by analogy with the doublet spectra of alkali 
metals, which is a classification that extends to the M and N series, provides a perfectly 
clear and coherent schema, and seems to impose the distribution of quantum numbers 
amongst the levels that was given by Table (6). 
 
 
 4. Theoretical interpretation.  Sommerfeld’s fine-structure formula. – We shall 
now see how one can seek to account for the allure of the X-ray spectral terms in the old 
quantum theory.  The oldest and most simplistic image consists of regarding the atom of 
atomic number N as containing N planetary electrons that revolve around coplanar, 
concentric, circular orbits (e.g., the K circle, the L circle, etc.)  In order to roughly 
account for the mutual action of the electrons, one supposes that it can be translated into 
the simple effect of a screen that has an apparent diminishing of the nuclear charge as a 
consequence.  Hence, a K electron will be subject to a force (N – k) e2 / r2, an L electron, 
to a force (N – l) e2 / r2, etc., in which k, l, … are called the “screening numbers.”  The 
calculations that are valid for the hydrogen atom can then be applied here with no 
difficulty, and one will find the spectral terms: 
 

2

2

( )

1

Rh N k− −
,  

2

2

( )

2

Rh N l− −
,  …;   (7) 
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i.e., roughly Moseley’s law.  This initial approximate theory is obviously insufficient for 
many reasons, and in particular, because it predicts only one L level, one M level, etc. 
 In order to explain the multiplicity of levels by bands, Sommerfeld once more 
introduced relativistic dynamics here, while considering all of the orbits to be circular or 
elliptic.  We have seen that, by using that process, he found the spectral terms: 
 

nkE

h
 = − 

2 2 2

2 2

3
1

4

RN N n

n n k

α  + −  
  

    (8) 

 
for an atom of rank N that had been ionized (N – 1) times, in which α is the fine-structure 
constant, and k is the azimuthal quantum number, such that 0 < k ≤ n.  If one assumes that 
one can roughly represent the mutual repulsion of the electrons by a screening number 
then the X-ray spectral term that is characterized by the quantum numbers n and k will be 
given by: 

nkE

h
 = − 

2 2
2

2 2

( ) ( ) 3
1

4
nk nkR N z N z n

n n k
α

 − −  + −  
  

,  (9) 

 
in which znk is the screening number that relates to the trajectory that is characterized by n 
and k.  Since k can take n distinct values for a given value of n, formula (9) will predict 1 
K-level, 2 L-levels, 3 M-levels, 4 N-levels, etc., which is still insufficient, as we saw in 
the preceding paragraph.  Sommerfeld’s theory, which is more complete than the original 
theory, is once more too restrictive then, since it does not introduce the quantum number 
j. 
 Nevertheless, despite its obvious inadequacy, Sommerfeld’s theory seemed to score a 
great victory by its quantitative explanation for regular doublets.  For example, take a 
regular doublet of the L series.  It is provided by combining an M, N, etc. term with the 
terms LI and LII, respectively. 
 The two lines of the doublet then have frequencies of the form vLII  − vi and vLIII  − vi .  
Their frequency difference δvL (or width of the doublet) is vLII − vIII  .  In his theory, 
Sommerfeld passed over the LI level as temporarily inexplicable, and attributed the 
quantum numbers n = 2, k = 1 and n = 2, k = 2 to the LII and LIII  levels, respectively.  
Formula (9) then gives (1): 
 

δvL = vLII − vIII  = R α2 
4

4

( ) 2 2

2 1 2
LN z−  − 

 
= 

4 8

2 52

me

c h

π
(N – zL)

4.  (10) 

 
 The width of the L doublets must then vary like (N – zL)

4, and that is quite reasonably 
the experimental law, because zL must be small in comparison to N for atoms that are not 
too light.  If one sets N = 1, zL = 0 then one will revert to the width ∆vH of the doublets in 
the Balmer series [formula (43) of Chapter I].  One will then have: 
 

δvL = δvH (N – zL)4.     (11) 

                                                
 (1) Upon letting z21 and z22 coincide and setting both of them equal to z. 
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 Formula (11) is verified numerically quite well in experiments, on the condition that 
one must set zL = 3.5, which is a reasonable hypothesis.  The doublets of the series M and 
N are also predicted quite well an application of formula (9).  That exact prediction of the 
regular doublets initially seemed to be a great success of Sommerfeld’s fine-structure 
theory, but a grave objection then appeared, which we shall now discuss. 
 
 
 5. Inadequacy of Sommerfeld’s fine-structure theory. – By introducing only the 
two quantum numbers n and k, Sommerfeld’s theory did not give enough levels for the 
X-ray spectrum.  We must then introduce the third number j, and the optical analogy 
constrains us to distribute the quantum numbers amongst the levels in the manner that is 
indicated by Table (6).  From Table (6), the LII and LIII  levels have, in effect, the symbols 
(2, 2, 1

2 ) and (2, 2, 32 ); they will then have the same number for k (viz., 2) and differ by 

their number j.  However, that would ruin the interpretation of the regular L doublets by 
formula (9), as Sommerfeld had done, because that formula assumes that the k numbers 
for LII and LIII  differ by unit.  One might then believe (which would also be quite 
surprising) that the success of Sommerfeld’s theory was purely fortuitous.  The 
development of the more recent theories, and in particular, the ones that constitute the 
focus of this book, has since then shown that this fortuitous character was only apparent.  
It is, in fact, the introduction of relativity that permits one to correctly interpret the 
regular doublets, but on the condition that one must, at the same time, introduce the 
magnetic character of the electron, and it is the absence of the latter element from 
Sommerfeld’s theory that is the source of its weakness. 
 We just saw that a careful examination of the X-ray spectra will show the inadequacy 
of Sommerfeld’s fine-structure theory.  However, even in the simple case of hydrogen, a 
deeper examination of the doublets in the Balmer series has shown that those doublets are 
not interpreted correctly by that theory.  Consider the Hα line of the Balmer series: It 
comes from the transition from a stationary state for which n = 3 to a stationary state for 
which n = 2.  In reality, that line is multiple, and if we utilize a mode of representation of 
the levels that is well-known today then Sommerfeld’s theory will give us the following 
model for the fine structure of that line: 
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Figure 2. 
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 Upon applying the selection rule δk = 1, one will predict the three lines that are 
indicated in the fine structure of Hα .  The Sommerfeld doublet is composed of the line 1 
and the set of two lines 2 and 3 with closely-spaced frequencies that are generally 
indiscernible. 
 Using the model with three quantum numbers n, k, j, one predicts the following fine-
structure: 
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Figure 3. 

 
 The selection rules δk = ± 1 and δ j = 0, ± 1 allow for the seven lines that are 
indicated in the figure above.  However, for reasons that will become clearer later on, for 
hydrogen, one must consider levels that have the same j and different k as coinciding in 
the new theories of the magnetic electron.  One will then have the following simplified 
model: 
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 We must then have five components to the fine structure of Hα, whereas Sommerfeld 
predicted only three.  Now, the organized study of that fine structure has allowed us to 
assert that it involves more than three lines, which then confirms the new model, and not 
the Sommerfeld model.  The study of the doublets of He+ has allowed us to confirm that 
conclusion. 
 Therefore, even for hydrogen and ionized helium, Sommerfeld’s theory fails, in the 
final analysis, at least in its original form. 
 
 
 6. Distribution of electrons amongst the levels.  Stoner’s rule. – As we have said, 
for a heavy atom, the various electrons distribute themselves into a certain number of 
bands K, L, etc.  Those bands decompose into sub-bands or levels; hence, the L band will 
consist of the levels LI, LII, LIII  . 
 We have seen that no band can possess more than a certain number of electrons; we 
spoke of a saturation of the bands.  It is quite natural to think that there might exist a 
saturation of the bands.  While being aided by the chemical properties of the elements 
and the character of their optical and Röntgen spectra, various authors (Bohr, Main 
Smith, Dauvillier and L. de Broglie, etc.) arrived at the study of the distribution of the 
electrons amongst the levels for the various elements.  One will then have to know what 
the maximum number of electrons that each level can possess would be.  On that subject, 
Stoner stated a rule that has been generally adopted by now: The level that corresponds to 
the symbol (n, k, j) contains a maximum of 2j + 1 electrons. 
 Stoner’s rule permits one to calculate the maximum number of electrons that belong 
to the band that is defined by a given value of the total quantum number n. 
 Indeed, since j can take the values k – 1 ± 1

2  for a given value of k, the levels: 

 
(n, k, k − 1

2 ) and (n, k, k − 3
2 ) 

 
will possess a maximum of: 
 

( ) ( )31
2 22 1 2 1k k− + + − + = 2 (2k – 1) 

 
electrons, resp., and the electrons of the band n will possess a maximum of: 
 

1

2 (2 1)
n

k

k
=

−∑  = 2 [n (n + 1) – n] = 2n2 .   (12) 

 
 That is precisely the law that was pointed out in paragraph 1. 
 
 

___________ 



 

CHAPTER IV 
 

THE MAGNETIC ANOMALIES AND 
THE SPINNING ELECTRON HYPOTHESIS  

 
____ 

 
 

1.  The gyromagnetic anomalies 
 
 Some simple electromagnetic considerations permit one to establish a general relation 
between the magnetic moment M that is produced by the displacement of charge under 

the action of a central force and the constant angular momentum M  that corresponds to 
the moment. 
 Consider a closed, planar trajectory that is 
traversed by a corpuscle of mass m0 and 
electric charge ε under the action of a central 
force (1).  From the areal theorem, the 
angular momentum M = m0vr sin α is 
constant.  If dA is the area that is swept out 

by the radius vector during the time dt then 
one will have: 
 

dA = 1
2  r ⋅⋅⋅⋅ v dt sin α = 

0

1

2m
M dt.  (1) 

 
 Since M is a constant, from the areal theorem, one will find upon integrating over a 
period T of the motion that: 

A = 
02

M

m
T,      (2) 

 
where A is the total area that is bounded by the trajectory. 

 On the other hand, the motion of the charge ε is equivalent to the existence of a 
current i.  That current is, by definition, equal to the quantity of electricity that traverses a 
unit area normal to the trajectory every second.  Since a charge ε passes through it during 
the T, one will have: 

i = 
T

ε
,       (3) 

 

                                                
 (1) We shall denote the mass of the corpuscle by m0, instead of m, in order to avoid confusing that mass 
with the quantum number m later and in order to prepare us for the passage to relativistic equations. 
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Figure 5. 
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upon assuming that ε is expressed in electromagnetic units.  One infers from (2) and (3) 
that: 

i = 
02

M

m

ε
A

.      (4) 

 
 From the magnetic viewpoint, that current is equivalent to a leaf (feuillet) of strength i 
and area A.  The magnetic moment M of that leaf will be: 

 

M = iA = 
02

M

m

ε
.     (5) 

 
 That relation is valid in magnitude and direction for the vectors M and M .  Hence: 

 

M
M

 = 
02m

ε
.      (6) 

 
 One can prove in a more general fashion that if one considers an ensemble of 
corpuscles of the same mass m0 and the same charge ε that form a system in a stationary 
state then the relation (6) will also be valid between the total magnetic moment M of the 

motion of these charges and the constant total angular momentum M  of the system (1). 
 From Bohr’s theory, atoms are ensembles of electrons in stationary motion.  One can 
thus apply relation (6) to atoms, with the condition that one must set ε = − e / c, where e 
is the unit positive charge that is commonly expressed in electrostatic units.  One will 
thus have the formula (2): 

M

M
 = −

02

e

m c
  (m0 = mass of the electron)   (7) 

 
 That fundamental formula leads to the idea of “Bohr magneton.”  Indeed, the old 
quanta theory always set the total moment of the quantity of motion for an atom equal to 
an integer multiple of h / 2π, so: 
 

M = n 
02 2

h e

m cπ
⋅  = n  

04

eh

m cπ
 (n = positive or negative integer). (8) 

 
 The magnetic moment of the atom will thus always be an integer multiple of a certain 
unit that is called “the Bohr magneton,” and is equal to: 
 

                                                
 (1) The proof is due to Einstein.  See the report of DE HAAS in Atomes et Electrons (Rapports du 
Conseil de Physique Solvay de 1921,  Gauthier-Villars ed., Paris, 1923) 
 (2) This formula is true with its sign, under the following conditions: One takes a system of direct axes 
and one defines the moments in such a way that the angular momentum of a corpuscle that spins around the 
z-axis in the direct sense (inverse to the hands of a clock) is directed in the positive sense of oz.  
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B = 
04

eh

m cπ
.      (9) 

 The well-known Stern-Gerlach experiment exhibited the actual existence of the Bohr 
magneton. 
 Meanwhile, the relation (7) is not verified in a general and complete fashion.  One 
must discover whether upon subjecting a magnetic bar to a magnetic field that bar will be 
put into rotation: Indeed, the theory suggests that the bar must take on a rotational motion 
such that ratio of its magnetic moment to its angular momentum is given by the relation 
(7).  The phenomenon does, in fact, exist (the Einstein and de Haas experiment), but the 
ratio (M / M) was found to be equal to e / m0 c, instead of e / 2m0 c !  Barnett found the 

same abnormal ratio by studying the inverse phenomenon (viz., the creation of a 
magnetic moment by the rotation of a bar).  There was a grave difficulty in it that led to 
the idea of a proper magnetism of an electron, as we will confirm. 
 
 
 2.  The normal Zeeman effect. – Another difficulty that suggests the magnetic 
electron hypothesis is the existence of anomalies in the Zeeman effect. 
 First, recall briefly the classical theory of the normal Zeeman effect that was once 
given by Lorentz.  Consider the motion of a corpuscle of mass m0 and charge ε in a 
uniform, magnetic field H.  The corpuscle is subjected to a force that equal to: 
 

F = 
c

ε
[v ⋅⋅⋅⋅ H].      (10). 

 
 Sir J. Larmor proved a very interesting and celebrated theorem on the motion that 
then results: 
 
 If one considers a reference system that rotates around the direction of a uniform, 
magnetic field with the constant angular velocity: 
 

o = − 1
2

0

H

m c

ε
  (ε in e. s. u.)    (11) 

 
then the motion of the corpuscle in that reference system will be the one that one would 
have in a fixed reference system in the absence of a magnetic field when the other forces 
remain the same. 
 
 We apply that to an intra-atomic electron that is animated with a periodic motion of 
frequency v.  If one creates a uniform, magnetic field then the same motion can be 
executed by the electron in the reference system that rotates with the Larmor precession 
velocity (11).  The frequency o / 2π that corresponds to that precession will be added or 
subtracted from the frequency of motion of the electron according to the relative 
orientation of the magnetic field and the orbit.  It will then result that a material that emits 
radiation of frequency v in the absence of the magnetic field must also emit frequencies v 
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+ 
0

1

4

H

m c

ε
π

 and v – 
0

1

4

H

m c

ε
π

 in the presence of a uniform, magnetic field H.  Upon 

examining the theory more closely, one will easily see that upon observing at a right 
angle to the magnetic field, one must see a line of frequency v that vibrates in the sense of 

the field and two lines that vibrate at a right angle with frequencies v ± 
0

1

4

H

m c

ε
π

, whereas 

when one observes them in the same sense as the field, one must see only the last two 
lines with circular vibrations in the opposite sense.  This constitutes the normal Zeeman 
effect, which has indeed been observed in a certain number of cases, and which was 
discovered some thirty years ago, and which constitutes a brilliant verification of 
Lorentz’s conception of the electron. 
 The old theory of quanta did not introduce anything that was essentially new in regard 
to the prediction of the Zeeman effect.  Let an electron in an atom be in a stable state in 
the absence of an external, magnetic field; let W0 denote the energy of that electron, and 
let M denote the magnetic moment of its orbit, and assume that we have the right to 

consider one of the electrons of the atom thus-isolated.  In the presence of a uniform, 
external, magnetic field H, the energy of the electronic orbit will be: 
 

WH = W0 − (M ⋅⋅⋅⋅ H),     (12) 

or, by virtue of (6): 

WH = W0 + 
02

e

m c
(M ⋅⋅⋅⋅ H).    (13) 

 
 In order to define (M ⋅⋅⋅⋅ H), we must consider the component of M  along the field and 

that component must be a multiple of h / 2π, from the old quantum theory (1).  Formula 
(13) will therefore become: 

WH = W0 + m 
04

ehH

m cπ
.    (14) 

 
m is the quantum number that one calls the “magnetic quantum number.” 
 Now consider the line that is due to the passage of the electron from the stable state of 
energy W0 to a stable state of lower energy 0W′ .  In the absence of an external field, that 

line will have the frequency: 

v0 = 0 0W W

h

′−
.      (15) 

 
 In the presence of a uniform field H, by virtue of (14), it will become: 
 

vH = H HW W

h

′−
 = v0 + (m – m′ ) 

04

eH

m cπ
,   (16) 

 
                                                
 (1) See Léon BRILLOUIN: L’Atome de Bohr, loc. cit., pp. 167.  
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where (m – m′ ) can take on all positive or negative integer values, including zero.  In 
order to recover the normal Zeeman effect, the old quantum theory, guided by the 
correspondence principle, assumed the selection rule ∆m = 0, ± 1.  It then arrived at the 
same conclusions as the classical theory, and that was because the constant h was 
eliminated in the combination of formulas (14) and (15). 
 
 
 3.  Anomalous Zeeman effect.  Landé factor. – The theory of the normal Zeeman 
effect that was given in the preceding paragraph is verified only in a small number of 
cases.  Most of the Zeeman effects are abnormal.  We shall content ourselves by 
describing the abnormal Zeeman effect for the alkali elements, because they are the 
simplest ones, and they are also the only ones for which Dirac’s theory, which has been 
powerless to account for the interaction of electrons, up to now, can be made complete. 
 The Zeeman effect for alkali metal is subject to the following general rules: 
 
 a) Homologous lines of the various alkali elements exhibit the same Zeeman effect. 
 b) Lines of the same spectral series exhibit the same decomposition (Preston’s rule). 
 c) Lines that are displaced by the action of a magnetic field always define a figure 
that is symmetric in frequencies and polarization to the normal effect with respect to the 
original line. 
 d) The spectral interval (difference of frequencies) between a displaced line and the 
original line is always equal to the product of the normal Lorentz interval with a simple 
fraction (Runge’s rule). 
 
 Therefore, for a certain line, the displaced components of the Zeeman effect will 
always be in the scale of frequencies with distances from the original line that are given 

by the expression ± 
04

s eH

r m cπ
, where r is a characteristic integer of the line in question 

(Runge denominator), and where s will take on a certain number of integer values, and is 
a number that determines the multiplicity of the decomposed line. 
 Runge’s rule (d) can be interpreted in the following fashion: From the combination 
principle, the decomposition of a line translates into the decomposition of the spectral 
terms.  One is then led to think that each spectral term must have its Runge denominator.  
Let r1 and r2 be the denominator of the two spectral terms.  The Runge rule can be stated 
by saying that under the effect of the magnetic field, those terms will be modified by 
quantities q1 / r1 ∆vII and q2 / r2 ∆vII , respectively; q1 and q2 are integer numbers, and ∆vII  

denotes the normal Lorentz interval 
04

eH

m cπ
.  The line that is due to the combination of 

the terms considered is, in fact, subject to the spectral displacement: 
 

1 2

1 2

q q

r r

 
− 

 
∆vII = 1 2 2 1

21

q r q r

rr

− ∆vII,   (17) 

 
and can be written in the form s / r ∆vII ; we then get back to the statement d) of Runge’s 
rule. 
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 The manner by which the spectral terms decompose in the presence of a magnetic 
field was specified by Landé, who contributed much to the unraveling of abnormal 
Zeeman effect.  He stated the following rules: 
 1. Each spectral term whose symbol is (n, l, j) (upon employing the notation l = k + 
1) decomposes in a weak magnetic field into 2j + 1 terms that are characterized by the 
half-integer magnetic quantum numbers: − j, − (j – 1), …, + (j + 1), + j. 
 

 2. Upon taking the Lorentz normal interval 
04

eH

m cπ
 to be the unit, the frequency 

gaps in the decomposed terms with respect to the original term will be given by the 
following table: 
 

[ ]
[ ]

1
2

1 1 1
1 2 3 5

3 6 62 2
2 2 5 3 5 5

3 6 62 2
1 2 5 5 5 5

5 15 9 3 3 9 15
2 2 5 5 5 5 5 5

 terms : ,0, 1 1

 terms : ,1,

 terms : ,1,

 terms : ,2,

 terms : ,2,

s n

p n

p n

d n

d n

− +
− +

− − + +  
− − + +  

− − − + + +  

 (18) 

 
 This table shows that the Runge denominators are equal to 1 for the s terms, 3 for the 
p terms, 5 for the d terms, etc.  In a more general fashion, the Runge denominator for the 
term (n, l, j) is 2j + 1. 
 
 3. In the transitions that give rise to observable lines, the magnetic quantum number 
can vary only between – 1, 0, +1.  For ∆m = ± 1, the emitted line will vibrate rectilinearly 
in the normal direction to the field when it is observed at a right angle to the field; for ∆m 
= 0, it will vibrate parallel to the field when it is observed under the same conditions. 
 
 If the magnetic number m has the values that are given by rule 1 then Landé wrote 
down the gaps that are listed in table (18) in the form mg, where g is a number – viz., the 
Landé factor – that can possess the following values: 
 

3 5 71
2 2 2 2

2 4
3 3

64
5 5

6 8
7 7

0 2

1

2

3

l j

s

p

d

f

= ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

  (19) 

 
 One can summarize the table (19) by the formula: 
 

g = 
1
2

1
2

j

l

+
+

 = 
2 1

2 1

j

l

+
+

.     (20) 

 



34 Chapter IV –  The magnetic anomalies and the spinning electron hypothesis 

 This is the value of the Landé factor for the term (n, l, j) of an alkali metal. 
 The spectral term of the alkali atom that has the value (n, l, j) in the absence of a field 
can take on the 2j + 1 values: 
 

(n, l, j)H = (n, l, j)0 + mg
04

eH

m cπ
      (21) 

 
in the presence of a uniform field H, where g has the value (20), and m can take any half-
integer value that is found between – j and + j (1). 
 The old quantum theory is just as incapable of explaining the intervention of the 
factor g as the classical theory was.  We confirm that wave mechanics is not more 
fortunate here.  It is only the introduction of the magnetism of the electron that explains 
the origin of the factor g, and Dirac’s theory will allow us to predict the correct form with 
no objections. 
 Formula (21) is valid only for a weak magnetic field.  But, what can be the reason for 
that?  We say that a magnetic field that produces an anomalous Zeeman decomposition in 
an alkali doublet is weak if the displacement of the terms in the spectral sequence that the 
presence of the field produces is small in comparison to the gaps in the components of the 
doublet in the absence of the field.  From that definition, the same magnetic field can be 
regarded as weak or strong depending upon the situation.  When the field is weak in the 
sense that was just defined, formula (21) will be applicable.  When it cannot be regarded 
as weak, one will find a more complicated phenomenon that obeys a law that was stated 
by Voigt, although we shall not insist upon it here.  However, if the field is very strong – 
i.e., if the Zeeman displacement that it produces is large compared to the normal gap in 
the doublet – then one will once more get a simple phenomenon, namely, the Paschen-
Bach effect: One will then observe the normal Zeeman decomposition that is centered on 
the center of gravity of the two components of the original doublet. 
 
 
 4.  Hypothesis of the spinning, magnetic electron. – If one considers the law of the 
anomalous Zeeman effect and compares it to the classical Lorentz theory then one will 
perceive that in order to recover that theory, one must pose the relation: 
 

M

M
 = g 

02

e

m c
,    (22) 

in place of relation (7). 
 That will then lead us to think that the there exist angular momenta and magnetic 
moments in matter that are not related by relation (7).  The anomalies of the 
gyromagnetic effect that were pointed out at the end of paragraph 1 suggest the same 
conclusion.  One can therefore not assume that all of the magnetism of the atom is 
provided by the circulations of the electrons, when they are imagined to be point-like 
charges.  The idea can then be presented in the spirit of attributing a proper magnetic 

                                                
 (1) Preston’s rule (b) is explained by remarking that the Zeeman decomposition is always independent 
of the total number n; only that number will vary now when one passes from one line to the other in the 
same series.  
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moment and a proper angular momentum to the electron itself that are related to each 
other by a relation that is different from (7).  It is that idea that Uhlenbeck and Goudsmit 
proposed in an ingenious manner before the very development of the new mechanics 
itself. 
 Uhlenbeck and Goudsmit assimilated an electron of the classical type to a sphere of 
electricity in rotation around one of its diameters that possessed a angular momentum M 

= 
1

2 2

h

π
 and a magnetic moment that is equal to a Bohr magneton M = 

04

eH

m cπ
, in such a 

way that one will have the value 
0

e

m c
 that is revealed by the Einstein and de Haas 

experiments for
M

M
 .  Since the ratio 

M

M
 for the electron is therefore twice the 

normal ratio (7), one can speak of the “double magnetism” of the electron.  After the 
success of the Uhlenbeck-Goudsmit hypothesis, various attempts were made to obtain a 
classical model of an electron that spins, but these attempts have lost much of their 
interest today, since the development of the new mechanics has forbidden us to consider 
the electron to be a small body that is very localized in space. 
 The hypothesis of the spinning, magnetic electron, by its appearance, has permitted us 
to glimpse the solution of some difficulties that we shall enumerate.  First, take the 
question of the regular X-ray doublets.  Uhlenbeck and Goudsmit assumed that the 
magnetic axis of the electron is always normal to the plane of its trajectory.  Since there 
remain two possible senses for the proper angular momentum vector (which is frequently 
called the “spin” vector), each trajectory with quantum numbers n and k will correspond 
to two possibilities.  One will then understand the necessity of introducing a new number 
j that is capable of taking on two distinct values for the given n and k in order to achieve 
the quantum determination of the stable trajectory.  Since the total angular momentum is 
the sum of the angular momentum of the electron over all of its orbit, which is equal to k 

2

h

π
, and the is spin ± 

1

2 2

h

π
, one can write: 

 

Mtotal = 
1

2 2

h
k

π
 ± 
 

,     (23) 

 
so one will be tempted to set j = k ± 1

2 .  However, we will soon verify that the new 

mechanics leads us to replace k with l = k – 1; one thus imagines that the true formula 
that relates j to k is the formula that was pointed out before: 
 

j = k – 1 ± 1
2 = l ± 1

2 .     (24) 

 

 The number j thus appears to be express the total angular momentum in units of 
2

h

π
.  

With the classical ideas, the small magnet that is formed by the electron displaces in the 
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Coulomb or quasi-Coulomb field of the nucleus and the shell.  Everything then happens 
as if the small magnet were subjected to the magnetic field: 
 

H = − 
1

c
 [v ⋅⋅⋅⋅ h],     (25) 

 
where h is the Coulomb field.   Formula (24) gives the action of an electrostatic field on a 
magnetic pole in motion with the velocity v.  Since the field H is perpendicular to the 
planar orbit that is described by the small electronic magnet in the Coulomb field, the 
potential energy of that small magnet in the field H will be: 
 

U = ± M H ,      (26) 

 
where M is equal to a Bohr magneton, according to the Uhlenbeck-Goudsmit hypothesis, 

and one must take the + sign or the – sign according to the sense of the moment M that is 

normal to the trajectory with respect to the sense of its description.  As a result of the 
existence of the potential energy (25), each level (n, k) of the Sommerfeld theory can be 
decomposed into two levels (n, k¸j).  From the calculations that were made by Uhlenbeck 
and Goudsmit, which were later reprised and perfected by Thomas and Frenkel, upon 
always appealing to the old quantum theory, one will be permitted to recover a law in N4 
for the doublets that are provided by the spectral terms whose number j differs by one 
unit, and thus makes the difficulty that was encountered by the original Sommerfeld 
theory disappear (see, paragraph 5 of the last chapter).  However, those calculations are 
prone to some objections and arrive at good results only by means of artificial 
hypotheses, such as, for example, the substitution of the quantum number l for the 
quantum number k, which is a substitution that is unjustified when one employs the old 
quantum theory.  It is certain today that one cannot treat intra-atomic problems by the 
methods of the old quantum mechanics, and that one must take recourse to those of wave 
mechanics.  We shall not therefore insist upon the calculations of the original theory of 
the magnetic electron (1). 
 The anomalous Zeeman effect and the Landé formula have received the beginnings of 
an explanation by the hypothesis of the spinning, magnetic electron.  We shall always 
limit ourselves to the case of the alkali metals.  The external, optical electron of an alkali 
element possesses a total angular momentum (i.e., orbital moment + spin) that is equal to 
j = l ± 1

2  times the unit moment h / 2π, upon assuming the substitution of l for k, 

somewhat arbitrarily. 
 What will the potential energy of that optical electron be in the presence of an 
external, magnetic field H?  With the old quantum theory, assume that the component MH 
of the total angular momentum in the sense of the field H is of the form m h / 2π, where 
m is the magnetic quantum number, to which we impose the rule that it must take one of 
the half-integer values between – j and + j.  The total magnetic moment will thus form an 
angle with the field H whose cosine is m / j.  If the electron does not have proper double 
magnetism then its energy in the field H will be: 

                                                
 (1) See Léon BRILLOUIN, loc. cit., chapter XVI.  
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WH = W0 – MH ⋅⋅⋅⋅ H = W0 + 
02

e

m c
 MH H = W0 + m 

04

eh H

m cπ
.  (27) 

 
 One comes back to formula (14) and the normal Zeeman effect.  However, by virtue 
of the double magnetism of the electron, one will have (upon always writing l, in place of 
k): 

MH = − 
0 0

1
2

2 2 2 2 2

e h m e h m
l

m c j m c jπ π
⋅ ⋅ ⋅ ⋅∓  = − 

0

1

2 2

e h l
m

m c jπ
±⋅ ⋅ ⋅ ,  (28) 

 
and as a result: 

WH = W0 – MH ⋅⋅⋅⋅ H = W0 + m 
1l

j

± ⋅
04

eh H

m cπ
,   (29) 

 
which is a formula that is equivalent to the empirical relation (21), under the condition 
that one must set: 

g = 
1l

j

±
 = 

1
2

1
2

j

l

±
+

 = 
2 1

2 1

j

l

±
±

.     (30) 

 
 This formula, which was obtained under some fairly arbitrary hypotheses, presents an 
air of uncontestable kinship with Landé’s empirical formula (20). 
 The hypothesis of the magnetic electron that was somehow developed in the context 
of the old quantum theory thus gave some interesting results.  However, today the success 
of the new mechanics has shown that the questions that relate to the electron must be 
posed in a completely different manner.  We must therefore now summarize the 
fundamental concepts of wave mechanics.  At the same time, we shall have to examine 
how we have sought (without much success) to introduce relativistic ideas into the 
original form of that new mechanics.  That introduction has not permitted us to resolve 
the difficulties that were pointed out in the preceding pages.  It is Dirac’s theory that can 
smooth out those difficulties by simultaneously introducing the principle of relativity and 
the proper magnetism of the electron in the context of wave mechanics. 
 
 

_____________ 
 

 
 



 

CHAPTER V 
 

SUMMARY OF THE PRINCIPLES  
OF WAVE MECHANICS 

____ 
 
 

1.  Viewpoint of the new mechanics 
 

 In the old mechanics, one considered corpuscles or material points to be small objects 
of negligible dimensions that had a well-defined position in space at each instant.  If a 
corpuscle is in motion then the set of its successive positions will constitute its trajectory.  
The classical equations of Newtonian dynamics (or the somewhat-modified equations of 
Einsteinian dynamics) allow one to predict the entire course of motion when one knows 
the forces that the corpuscle is subject to and certain initial conditions.  The corpuscle is 
found to be attached to a certain number of quantities, such as its coordinates, its energy, 
the components of its quantity of motion, and those of its angular momentum with 
respect to a point, etc.  The old mechanics attributed a well-defined value to them at each 
instant, and its equations allowed one to rigorously calculate the sequence of those values 
in the course of time. 
 The viewpoint of the new mechanics is completely different.  Indeed, for it, the 
quantities that are attached to the corpuscle do not generally have well-defined values, in 
such a way that it is not possible to speak rigorously of a position at each instant or a 
trajectory.  One can only assign a certain number of possible values that are attached to 
the corpuscle at each instant, each of which is affected with a certain probability: That 
must say that if one performs a precise measurement of the quantity in question at the 
instant considered then that measurement will give one of the values that were predicted 
to be possible, and the probability that one of those possible values will be the result of 
the measurement can be calculated in advance. 
 Hence, whereas the objective of the old mechanics was to predict the evolution from 
a given initial state of the quantities that are attached to the corpuscle rigorously and 
uniquely, the more modest objective of the new mechanics is only to calculate the 
possible values of those quantities at each instant, along with their respective 
probabilities.  From the mathematical viewpoint, the difference between the two 
mechanics translates into the following fact: Whereas the old theory started with 
differential equations that permitted one to express the coordinates of material points as 
functions of time, the new one starts with a partial differential equation that has the form 
of an equation of wave propagation.  We shall learn the form of that fundamental 
equation by restricting ourselves to the case of just one corpuscle that is placed in a 
known external field, because the general case of a system of corpuscles in interaction, 
which was easy to treat with the original wave mechanics, will not interest us here, since 
Dirac’s theory has not arrived at a translation of that problem for the magnetic electron in 
a satisfactory way, up to now. 
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 2. Constructing the non-relativistic equation of propagation. – We shall write the 
equation of propagation of the new mechanics in its initial non-relativistic form.  That 
equation is obtained, in a sense, automatically by starting with the expression for energy 
in the old Newtonian mechanics.  Let a corpuscle of mass m displace in a field that is 
derived from a potential U (x, y, z, t).  The classical expression for the energy of the 
corpuscle is: 

E = 1
2 mv2 + U (x, y, z, t).    (1) 

 
 The quantity of motion is, by definition, the vector: 
 

p = m v     (2) 
whose components are px = mvx , etc. 
 There then exists the relation: 
 

E = 2 2 21
( )

2 x y zp p p
m

+ + + U (x, y, z, t)   (3) 

 
between the energy and the components of the quantity of motion. 
 The right-hand side of (3) can be represented by H (x, y, z, t, px , py , pz): It is the 
Hamiltonian function that expresses the energy at each instant t as a function of the 
coordinates of the corpuscle and the components of its quantity of motion (or Lagrange 
momentum). 
 Here is how one obtains the equation of propagation of wave mechanics for the 
corpuscle in question.  One replaces px in the Hamiltonian function with: 
 

−
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i xπ
∂
∂

, py with −
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∂
∂

,  pz with −
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∂
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One thus obtains an operator: 
 

, , , , , ,
2 2 2

h h h
H x y z t

i x i y i zπ π π
 ∂ ∂ ∂− − − ∂ ∂ ∂ 

 

 
that is called the Hamiltonian operator.  One will then obtain the wave equations of the 
new mechanics by writing: 

H (Ψ) = 
2

h

i tπ
∂
∂

.     (4) 

 
Ψ(x, y, z, t) is the wave function of the corpuscle, and that function is essentially 
complex.  Upon specifying the form of the operator H, one will easily find the following 
expression for (4): 

∆Ψ − 
2

2

8 m

h

π
U(x, y, z, t) = 

4 im

h t

π ∂Ψ
∂

,   (5) 
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in which ∆ is the well-known Laplacian symbol.  Since the wave equation is of first order 
in time, that will permit one to calculate the form of the wave function at any instant 
when one knows its form at the initial instant. 
 In the very important case where U does not depend upon time (viz., a constant 
external field), the wave equations will admit monochromatic solutions; i.e., ones that 

depend upon time by only a factor of the form 
2 i

Et
he
π

.  Such a monochromatic wave 
satisfies the equation: 

∆Ψ + [E – U (x, y, z)] Ψ = 0,    (6) 
 
or Schrödinger equation, which is a degenerate form of (5). 
 In the even more special case in which U is zero (viz., no external field), one can once 
more write equation (6) with U = 0 for monochromatic plane waves, and in that case, one 
will get the following monochromatic plane-wave solution: 
 

Ψ = a 
2

[ 2 ( )]
i

Et mE x y z
he
π α β γ− + +

,    (7) 
 
in which a is a constant amplitude, and α, β, γ are the direction cosines of the direction of 

propagation.  The wave (7) has a frequency v = E / h and a wave length λ = 
2

h

mE
= h / 

mv. 
 In the beginning, it was the monochromatic plane wave that wave mechanics 
associated with the free, uniform, rectilinear motion of a corpuscle of mass m, energy E, 
and quantity of motion mv. 
 
 
 3. New conception of the quantities that are attached to a corpuscle. – We just 
saw that the transition from the old mechanics to the new is effected by replacing the 

components of the quantity of motion with the operators −
2

h

i xπ
∂
∂

, etc.  That is only a 

particular application of a general idea from the new mechanics, which is an idea that 
consists of substituting operators for all the quantities of classical dynamics.  It is easy to 
specify how one defines those operators.  We already know what the operators are that 
correspond to px , py , pz .  On the other hand, the operator that corresponds to the energy 
will be the Hamiltonian operator H that was defined above.  One makes a coordinate of 
the corpuscle – x, for example – correspond to the operator x, which signifies 
“multiplication by x.”  All of the other mechanical quantities are quantities that are 
derived from x, y, z, t, px , py , pz .  Hence, whenever a quantity is expressed as an entire, 
rational function of the coordinates and the momenta, one can construct the 
corresponding operator (1).  Hence, for example, the z-component of the angular 
momentum of the corpuscle with respect to the origin of the coordinates will be replaced 
by the operator: 

                                                
 (1) One can have ambiguities that come from the order of factors, but we shall not address them here, 
because we will not encounter them.  
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Mz = xpy – ypx = − 
2

h
x y

i y xπ
 ∂ ∂− ∂ ∂ 

,   (8) 

 
upon taking the direct axes and agreeing that a motion that consists of a rotation in the 
positive sense in the xy-plane will correspond to a positive angular momentum. 
 The operators that one is led to construct in wave mechanics that correspond to 
measurable mechanics quantities are complex operators, in general, and they will all 
belong to one particular class – viz., the Hermitian operators. 
 Here is how one defines the class of Hermitian operators: We shall first introduce a 
convention that will persist in all of what follows in this book: A certain letter will 
represent an operator or a function, and the same letter, when endowed with an asterisk, 
will represent the complex-conjugate quantity.  Having assumed that convention, let A be 
an operator of the type that we just considered.  If dτ denotes the spatial volume element 
dx dy dz then the operator A will be Hermitian, by definition, if one has: 
 

( )f A g dτ∗
∫ = ( )g A f dτ∗ ∗

∫ ,    (9) 

 
in which the integrations extend over all space, and the functions f and g of the 
coordinates are finite, uniform, and continuous in all space, and tend to zero at infinity 
sufficiently rapidly that the surface integrals that are obtained by parts on the left-hand 
side of (9) are zero.  The operators that are envisioned in wave mechanics are all 
Hermitian.  It is easy to verify that for every operator, and in particular, one can verify it 
for the operator Mz in (8), for example. 
 Along with their Hermiticity, the operators of wave mechanics always have another 
common character: They are linear – i.e., one always has: 
 

A (ϕ1 + ϕ2) = A (ϕ1) + A (ϕ2),    (10) 
and as a result: 

A (c ϕ) = c A (ϕ).    (11) 
 
 One must make an important distinction between the operators that the new 
mechanics attaches to a corpuscle.  The one kind are concerned with the set of three 
coordinates x, y, z, and are called complete operators. 
 The others are concerned with only two coordinates, and for that reason, they are 
called incomplete operators.  For example, the Hamiltonian operator H is complete, while 
the operators px or Mz are incomplete.  Later on, we shall see the importance of that 
distinction. 
 Briefly, in wave mechanics, we make any dynamical quantity that is attached to a 
corpuscle correspond to a linear, Hermitian operator.  However, it is quite obvious that if 
one makes a precise measurement of one of those mechanical quantities then the result of 
that measurement will be expressed as a real number.  As we said in paragraph 1, the goal 
of the new mechanics is, first of all, to say what the real numbers are that a precise 
measurement would yield as the values of a mechanical quantity.  We can then deduce a 
list of real numbers that represent all possible results of a precise measurement of a 
quantity that is attached to a corpuscle from the Hermitian operator that the new 
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mechanics associated with that quantity.  Now, that will be possible because all of the 
Hermitian operators of wave mechanics possess a sequence of “proper values” that are 
real numbers.  We shall now explain what that means. 
 
 
 4. Proper values and proper functions of a Hermitian operator. – Let A be a 
Hermitian linear operator.  Write the equation: 
 

A (ϕ) = α ϕ,      (12) 
 
in which α is a constant, and ϕ is a function of the coordinates x, y, z. 
 By definition, we say proper values of the operator A to mean the values of the 
constant α for which equation (12) admits at least one solution ϕ (x, y, z), which one calls 
a proper function of the operator A, and which enjoys the following properties (1): It is 
everywhere finite, uniform, and continuous, and the integral of the square of its modulus 
over all space is well-defined and convergent.  Naturally, if the operator A depends upon 
time then the same thing will be true for its proper values and proper functions. 
 We assume the existence of proper values of the linear, Hermitian operators of wave 
mechanics, but we shall prove that those proper values are necessarily real.  Indeed, the 
conjugate equation to (12) can be written: 
 

A* (ϕ*) = α* ϕ*,     (12*) 
 
and since A is linear, one will have: 
 

( ) ( )
D D

A d A dϕ ϕ τ ϕ ϕ τ∗ ∗−∫ ∫ = (α – α*) 
D

dϕϕ τ∗
∫ ,   (13) 

 
in which the integration extends over the entire domain D of the variables that enter into 
ϕ; i.e., into A.  Now, the left-hand side of (13) is zero, since A is Hermitian.  Since the 
integral in the right-hand side is essentially positive, one must have α = α*, so α will be 
real. 
 The set of real proper values of a Hermitian operator is called the spectrum of that 
operator.  That spectrum will be discontinuous if the proper values are isolated, and 
continuous if they form a continuous set.  A spectrum can even be partially-continuous 
and partially-discontinuous.  We shall first argue with discontinuous spectra. 
 Let αi denote an isolated proper value: There exists at least one proper function ϕi (x, 
y, z) that corresponds to it.  The set of proper functions defines an orthogonal system, in 
the sense that if ϕi and ϕj are two proper functions that correspond to two distinct proper 
values αi and αj  then one will have: 
 

i jD
dϕ ϕ τ∗

∫ = 0.     (14) 

 

                                                
 (1) Here, we consider only linearly-independent functions to be distinct.  
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 Indeed, if αi is real then one will have: 
 

A (ϕj) = αj ϕj ,  A* (ϕj
*) = αj ϕj

*,   (15) 
and as a result: 

( ) ( )j i i jD D
A d A dϕ ϕ τ ϕ ϕ τ∗ ∗ ∗−∫ ∫  = (αi − αj) i jD

dϕ ϕ τ∗
∫ .  (16) 

 
 Since the left-hand side is zero by reason of the Hermiticity of A, and αi − αj is non-
zero, by hypothesis, equation (14) will be proved. 
 The proof breaks down for two linearly-independent proper functions that correspond 
to the same proper value.  When that case presents itself, one says that there is 
degeneracy, and that the proper value is multiple.  Let αi be a multiple proper value that 
corresponds to p linearly-independent proper functions ϕi1, ϕi2, …, ϕip .  Since the 
operator A is linear, any linear combination of the ϕi1, …, ϕip will be a solution of Aϕ = αi 
ϕ.  One can then replace the p linearly-independent proper functions ϕi1, …, ϕip with p 
linearly-independent linear combinations of those functions, and one will easily see that 
one can choose those linear combinations in such a fashion that they are mutually-
orthogonal.  In other words, when a proper value is multiple, the system of linearly-
independent proper functions will be determined only up to a linear transformation, and 
one can profit from that partial indeterminacy in order to get a system of independent 
proper functions that are orthogonal.  Therefore, one can always assume that the set of 
proper functions of a Hermitian operator is orthogonal. 
 The proper functions of a Hermitian operator are determined only up to a complex 
constant factor (and even when there is no degeneracy).  In order to fix the modulus of 
that complex factor, one is accustomed to normalizing the functions ϕi ; i.e., to setting: 
 

i jD
dϕ ϕ τ∗

∫ = 2| |iD
dϕ τ∫ = 1,     (17) 

 
which is an equation that will be meaningful, since | ϕi | 

2 is summable.  The proper 
functions will still have an arbitrary factor of the form eiα once they have been 
normalized. 
 Upon introducing the symbol δij that is equal to one if i = j and to zero if i ≠ j, one can 
summarize the formulas (14) and (17) with the formula: 
 

i jD
dϕ ϕ τ∗

∫ = δij .     (18) 

 
 All of the preceding formulas apply to the discontinuous spectrum.  If the operator A 
possesses a continuous spectrum then any proper value α of that spectrum will 
correspond to a proper function that we write as ϕ (α, x, y, z), because when α varies 
continuously in the continuous spectrum, it would be just as natural to write it as a 
variable as it would be to write it as an index.  The proper functions ϕ (α, x, y, z) are 
orthogonal to the proper functions of the discontinuous spectrum, if there is one.  
However, in order to avoid certain difficulties regarding convergence, it will be more 
convenient in the study of continuous spectra to consider, instead of the proper functions 
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ϕ (α, x, y, z) themselves, the expressions 
1

( , , , )x y z d
α α

α
ϕ α α

α
+∆

∆ ∫ , which are called 

proper differentials that correspond to intervals α → α + dα that are chosen to be as 
small as one desires in the domain of continuous variation of α.  The use of proper 
differentials leads one to replace formula (18) with the formula: 
 

1
( , , , ) ( , , , )

D
d x y z d x y z d

α α α α

α α
τ ϕ α α ϕ α α

α
′+∆ +∆∗

′
   
      ∆ ∫ ∫ ∫  = δαα′ .  (19) 

 
 Before concluding this paragraph, we must further point out a very important 
property of the proper functions of a linear, Hermitian operator A: They define a complete 
system.  That says that, under very broad conditions, a function of the variables that relate 
to A (which vary in the domain D) can always be developed into a series of proper 
functions of that operator.  For example, if f (x, y, z) is a function of three variables x, y, z 
then it can be developed quite generally in proper functions of a complete, Hermitian 
operator A in the form of: 
 

f (x, y, z) = ( , , ) ( ) ( , , , )i i
i

d x y z d x y z dϕ α ϕ α α+∑ ∫ ,   (20) 

 
in which the sum ∑ is extended over the discontinuous spectrum, and the integral, over 
the continuous spectrum. 
 If we exhibit the proper differentials that correspond to the various intervals ∆α of the 
continuous spectrum then we can replace (20) with: 
 

f (x, y, z) = 
1

( , , ) ( ) ( , , , )i i
i

d x y z d x y z d
α α

α
α

ϕ α ϕ α α α
α

+∆

∆

 + ∆ ∆ 
∑ ∑ ∫ . (21) 

 
 Upon utilizing formulas (18) and (19), one will easily find that: 
 

di = ( , , )i f x y z dϕ τ∗
∫ ; 

 

d (α) = 
1

( , , , )
D

x y z d
α α

α
ϕ α α

α
+∆ ∗ 

 ∆ 
∫ ∫  f (x, y, z) dτ.  (22) 

 
 The quantities di and d (α) are called the Fourier coefficients of the development of 
the function f (x, y, z) in proper functions of the operator A.  The Fourier series and the 
Fourier integral represent simple special cases of that type of development. 
 
 
 5. General principles of wave mechanics. – In paragraph 1 of this chapter, we said 
that the objective of the new mechanics is to calculate the possible values of the 
quantities that are attached to the corpuscle and their respective probabilities.  We then 
learned how to associate a wave function Ψ (x, y, z, t) with the corpuscle that is a solution 
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to equation (5), which is a wave function that we always assumed to have been 
“normalized” by the condition (1): 

dτ∗Ψ Ψ∫ = 1.     (23) 

 
 We then make each quantity that is attached to the corpuscle correspond to a linear, 
Hermitian operator that permits us to define a set of real numbers, namely, its proper 
values, and a complete system of normalized, orthogonal functions, namely, its proper 
functions. 
 We are then in a position to state the following two fundamental principles of the new 
mechanics: 
 
 First principle:   The possible values at the instant t of a quantity that is attached to a 
corpuscle – i.e., the possible results of a precise measurement of that quantity that is 
performed at the instant t – are the proper values of the linear, Hermitian operator A that 
corresponds to that quantity at the instant t. 
 
 Second principle: If a corpuscle has a certain solution Ψ (x, y, z, t) of its wave 
equation for its wave function then the probability that a precise measurement of the 
quantity that corresponds to the complete operator A at the instant t will prove a certain 
proper value is equal to the square of the modulus of the coefficient of the corresponding 
proper function in the development of the wave function Ψ in normalized, orthogonal 
proper functions of the operator A. 
 
 More explicitly, if the function Ψ is developed in proper functions of A in the form 
[which is analogous to (21)]: 
 

Ψ = 
1

( ) ( )i i
i

c c d
α α

α
α

ϕ α ϕ α α α
α

+∆

∆

 + ∆ ∆ 
∑ ∑ ∫   (24) 

 
then | ci |

2 will give the probability of the proper value αi , and | c(α) |2 ∆α will give the 
probability that α has a value that is found in the interval α → α + ∆α.  Since the 
function Ψ is normalized, the total probability of all the possible hypotheses will indeed 
be unity, as one easily verifies.  Naturally, the probabilities that are provided by the 
second principle are, in general, functions of time t; i.e., the instant at which one 
measures them. 
 If the operator A admits multiple proper values then the statement of the second 
principle must be completed: Let αi be a multiple proper value that corresponds to p 
linearly-independent normalized, orthogonal proper functions ϕi1, …, ϕip .  The 
probability that one will find the value αi for the quantity in question when one measures 
it will be: 

| ci1 |
2 + | ci2 |

2 + … + | cip |
2 ; 

 

                                                
 (1) Later on, we shall prove that if the condition (23) is satisfied at a certain instant then it will be 
satisfied at every instant.  
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i.e., the sum of the moduli of the coefficients of ϕi1, …, ϕip in the development of Ψ in 
proper functions of A.  That probability is independent of the manner by which one 
chooses the p proper functions ϕi1, …, ϕip , as it should be. 
 When the operator A is incomplete, the statement of the second principle must be 
modified.  Indeed, the proper functions of A will not contain all three variables x, y, z 
then, and the ci and the c(α) in the development (24) will obviously be functions of 
variables that are contained in the ϕi and ϕ(α).  The probability of a proper values αi 
cannot be | ci |2 then, which will be a quantity that will further depend upon certain 
variables.  In order to obtain the probabilities, it will then be necessary to integrate the 
expressions that were pointed out above over the entire domain of the variables that enter 
into A.  For example, if A depends upon only y and z then the ci will depend upon x, and 

the probability of the value αi will not be | ci |
2, but in fact, 2| |ic dx

+∞

−∞∫ .  One will verify 

that this modification is, indeed, in agreement with the idea that the total probability of all 
the possible hypotheses must be unity. 
 We shall indicate some examples of applications of the general principles.  A very 
simple example is the application to the Hamiltonian, which is, as we know, a complete 
operator.  For the Hamiltonian operator, equation (12) can be written: 
 

H (ϕ) = E ϕ,     (25) 
 
if one writes E in place of α.  One will have proper values Ei and proper functions ϕi .  
Those proper values and proper functions will depend upon time when A does; i.e., when 
the system is not conservative.  A precise measurement of the energy can yield only one 
of the values Ei that relate to the instant of time t when the measurement was performed 
as a result, and the probability that one will get the value Ek (t) is equal to the square of 
the modulus of the coefficient of the function ϕk in the development of the wave function 
Ψ of the corpuscle in proper functions of the energy at the instant t.  That is what we 
called “the spectral decomposition principle” in some other discussions. 
 We now seek to apply our principles to the quantity that is the x-coordinate of the 
corpuscle.  Equation (12) takes the form: 

x ⋅⋅⋅⋅ ϕ = α ϕ.     (26) 
 
 That equation can be regarded as being satisfied for any real value of α by the 
function δ (x – α), which is the Dirac function, and it enjoys the following properties: 
 
 1. It is an even function of the argument (x – α). 

 2. The integral ( ) ( )f x x dxδ α−∫  is zero if the integration interval does not contain 

the value x = α, and is equal to f (α) for any integration interval that does contain that 
value. 
 
Equation (26) will then admit a continuous spectrum that includes all real values of α 
between − ∞ and + ∞. 
 From the first principle, a measurement of the coordinate can then give no particular 
value between − ∞ and + ∞, a priori (as it must).  Moreover, as one easily sees, the 
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proper differentials 
1

( )x d
α α

α
δ α α

α
+∆

−
∆ ∫  of that continuous spectrum define a complete, 

normalized, orthogonal system.  Since one has, from the definition of the δ-function, that: 
 

Ψ (x, y, z, t) = ( , , , , ) ( )x y z t x dα δ α α
+∞

−∞
Ψ −∫ ,   (27) 

 
from the second principle, the probability that a measurement of the x coordinate will 
give a value that is found in the interval α → α + ∆α will be: 
 

2| ( , , , , ) |dz dy x y z t dα α
+∞ +∞

−∞ −∞
Ψ∫ ∫ .    (28) 

 
 It will then easily result that the probability for a simultaneous measurement of the 
three coordinates to give values that are found in the intervals α → α + ∆α, β → β + ∆β, 
γ → γ + ∆γ is | Ψ (α, β, γ, t) |2 dα dβ dγ .  That amounts to the same thing as saying that 
the probability that a measurement will permit one to localize the corpuscle in the volume 
element dx dy dz around the point whose coordinates are x, y, z is | Ψ (x, y, z, t) |2 dx dy 
dz.  That is what we called the “interference principle” in other presentations. 
 
 
 6. Quantities that are or are not simultaneously measurable. – One can deduce a 
very important consequence of the general principles that were stated in the preceding 
paragraphs: Two mechanical quantities can be measured simultaneously and precisely 
only if the corresponding operators A and B commute; i.e., only if one has AB = BA. 
 Indeed, if ϕi and χi denote the proper functions of A and B, respectively, and αi and βi 
denote their respective proper values then in order for a simultaneous measurement of the 
two quantities in question to be made precisely, it is necessary that one must be able to 
simultaneously attribute a certain value αi to the first quantity and a certain value βi to the 
second one with certainty.  From the second principle, it will then be necessary that one 
must be able to write the wave function Ψ of a corpuscle in the form: 
 

Ψ = ci ϕi = di χi .     (29) 
 
If A is an incomplete operator then ci can depend upon variables that do not enter into ϕi , 
and if B is incomplete then di can likewise depend upon variables that do not enter into ci.  
One infers from the preceding equation that: 
 

AB (Ψ) = AB (di χi) = A (di βi χi) = βi A (ci ϕi) = βi αi Ψ  (30) 
and 

BA (Ψ) = BA (ci ϕi) = B (ci αi ϕi) = αi B (di χi) = αi βi Ψ.  (31) 
 

One must then have: 
AB (Ψ) = BA (Ψ)     (32) 
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for any value of Ψ that has the form (29), which implies that AB = BA. 
 The simplest and most important example of quantities that are not simultaneously 
measurable is that of a coordinate and the corresponding component of the quantity of 
motion.  Indeed, one has: 

x px – px x = 
2

h
x x

i x xπ
∂ ∂ ⋅ − ⋅ ∂ ∂ 

 = 
2

h

iπ
.   (33) 

 
 In other words, the operator xpx – pxx is equivalent to the multiplication by h / 2πi.  
Hence, x and px do not commute, and as a result, a coordinate and the corresponding 
component of the quantity of motion cannot be measured precisely and simultaneously.  
A coordinate and its corresponding Lagrange momentum can be known at a given instant 
t only with certain uncertainties ∆x and ∆px, which cannot both be zero.  One can show 
that one will always have: 

∆x ∆px ≥ h,      (34) 
 
at least, in order of magnitude.  The inequality (34) and the two analogous inequalities for 
y and z constitute the Heisenberg uncertainty relations, upon which we have insisted for 
some time in other books (1). 
 

_____________ 
 

                                                
 (1) Introduction à l’étude de la Mécanique ondulatoire, Hermann, Paris, 1930. 
 La théorie de la quantification dans la nouvelle Mécanique, Hermann, Paris, 1932. 
 In those two books, one will find a more detailed discussion of the principles that were presented in 
summary form in the present chapter, as well as in the following one. 



 

CHAPTER VI 
 

SUMMARY OF PRINCIPLES OF WAVE MECHANICS 
(CONT.) 

____ 
 
 

1.  Some definitions that relate to algebraic matrices 
 
 One calls a table of numbers that involves either a finite or infinite number of rows 
and columns a matrix.  If the table is finite-dimensional then we shall assume that it is 
square.  More generally, we could assume that it is rectangular, but that would be a 
useless complication for us here.  Each number that enters into the table (viz. each 
element of the matrix) can be located with the aid of two indices that define the row and 
column to which it belongs, respectively.  Therefore, let aik denote the matrix element 
that is found to be written in the table at the intersection of the i th row and the kth column: 
The matrix will then be collectively represented by A or | aik |.  The elements aii with 
equal indices are situated along the diagonal of the matrix and are called diagonal 
elements.  We say that two matrices A and B are equal and write A = B if their elements 
with the same indices are all equal (aik = bik). 
 Matrices present themselves in algebra when one studies linear transformations.  
Indeed, if the variables ix′  are linear combinations of other variables xi then one will have 

transformations of the type: 

ix′  = ij j
j

a x∑ ,     (1) 

 
which are formulas that one can condense by writing the vectorial relation: 
 

X′ = A X,     (2) 
 
and upon agreeing that the vector AX  has the quantity (AX )i = ij j

j

a x∑  for the 

component with the index i. 
 Formula (1) leads one to define the sum and product of two matrices that have its 
same number of lines and columns by the following conventions: 
 
 1. The sum of two matrices A and B is the matrix A + B whose element with the 
indices ik is aik + bik . 
 
 2. The product of the matrix with the matrix A is the matrix AB whose ik element is 
(AB)ik = il lk

l

a b⋅∑ . 

 



50 Chapter VI – Summary of the principles of wave mechanics (cont.) 

 It results from definition 2 that the matrix product AB is not equal to BA, in general.  
One generally says that two matrices do not permute or do not commute.  If AB = − BA 
then the matrices anti-commute. 
 The elements of a matrix can be real or complex.  We take the general case of 
matrices with complex elements.  The transformation formulas (1) will then express the 
idea that one passes from certain complex variables xi to other complex variables ix′ .  We 

shall now define some very important special cases of complex matrices. 
 We say that a matrix is Hermitian if the elements that are symmetric with respect to 
the diagonal are complex conjugates (aik = kia ∗ ).  The diagonal elements of a Hermitian 

matrix are real.  If all of the elements of a Hermitian matrix are real then the matrix will 
be symmetric with respect to the diagonal.  We say that a matrix is anti-Hermitian if one 
has aik = − kia ∗ .  The diagonal elements of an anti-Hermitian matrix are pure imaginary.  

The product of two Hermitian matrices is Hermitian only if they commute; if they anti-
commute then the product will be anti-Hermitian. 
 One calls the matrix that is obtained by starting with A and permuting the terms 
symmetrically with respect to the diagonal and taking complex conjugate quantities the 
adjoint matrix to the matrix A and denotes it by A+ ; one will then have ika +  = kia ∗ .  One 

easily proves the formula (AB)+ = B+ A+, and it is obvious that (A+)+ = A. 
  A matrix is called diagonal when only its diagonal elements can be non-zero.  A very 
important diagonal, Hermitian matrix is the identity matrix, which one represents by 1: It 
is the matrix whose ik element is equal to δik . 
 If one is given a matrix A, and there exists another matrix A−1 such that A ⋅⋅⋅⋅ A−1 = A−1 ⋅⋅⋅⋅ 
A = 1 then the matrix A−1 will be called the matrix inverse of A.  That matrix inverse (if it 
exists) is always unique.  When A has a finite number of rows and columns, the matrix 
inverse will always exist if the determinant that is defined with the aid of the table of aik 
is not zero.  When A has an infinite number of rows and columns, A−1 might not exist, and 
it will be necessary to verify its existence in each special case.  One easily verifies the 
formula (AB)−1 = B−1 A−1. 
 When A is a matrix with real elements, and one has: 
 

ij ik
i

a a∑  = δjk ,     (3) 

 
one says that the matrix A is orthogonal.  It defines an orthogonal transformation that 
leaves the quantity 2

i
i

x∑  invariant.  That is well-known.  One can generalize the 

definition to matrices with complex elements: If A is a complex matrix, and if one has: 
 

ij ik
i

a a∗∑ = δjk       (4) 

 
then one will say that A defines a complex orthogonal transformation [sic], or 
furthermore, that it is unitary.  The quantity i i

i

x x∗∑  remains invariant for a complex 

orthogonal transformation.  The condition (4) can be further written: 
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ki ij
i

a a+∑ = δkj ,  or A+ A = 1,  A+ = A−1.  (5) 

 
 Hence, in order for a matrix to be unitary, its adjoint must coincide with its inverse. 
 Let A once more denote a matrix, and let S be a unitary matrix that has the same 
number of rows and columns.  The matrix B = S−1 A S is said to be obtained from A by a 
canonical transformation.  If A is Hermitian then B will also be Hermitian.  Indeed, since, 
by hypothesis, S+ = S−1 and A+ = A, one will have: 
 

B+ = (S−1AS)+ = S+ A+ (S−1)+ = S−1 AS = B.   (6) 
 
 One then has the important theorem: A canonical transformation transforms a 
Hermitian matrix into another Hermitian matrix. (1). 
 
 
 2. Matrices in wave mechanics. – Suppose that we know a complete system of 
normalized, orthogonal functions: ϕ1, …, ϕn ; we call them basis functions.  For example, 
such a system is provided by the set of proper functions of a Hermitian operator. 
 If one is given a basic system then any linear operator will correspond to a matrix.  
Indeed, let A be a linear operator: The application of that operator to one of the basis 
functions ϕi will yield a function that must be developable in terms of the complete 
sequence ϕ1, …, ϕn, …  We then have a relation of the form: 
 

A (ϕi) = ji j
j

a ϕ∑ ,     (7) 

 
and therefore, by reason of the properties of ϕi : 
 

aji = ( )j iD
A dϕ ϕ τ∗

∫ ,     (8) 

 
in which D is the domain of the variables that appear in the ϕi . 
 By definition, the aji in formulas (8) are elements of the matrix that is generated by 
the operator A in the basis system of the ϕi .  We also denote that matrix by the letter A; if 
we would like to make the system of basis functions used more explicit then we might 
denote it by Aϕ. 
 The matrices thus-obtained can be called the matrices of wave mechanics.  We shall 
verify that they indeed satisfy the rules of addition and multiplication of algebraic 
matrices.  In order to do that, consider two linear operators A and B.  We will have: 
 

A (ϕi) = ji i
j

a ϕ∑ , B (ϕi) = ji i
j

b ϕ∑ ,   (9) 

so 

                                                
 (1) That statement assumes essentially that the matrix S of the canonical transformation is unitary.  



52 Chapter VI – Summary of the principles of wave mechanics (cont.) 

(A + B) (ϕi) = ( )ji ji j
j

a b ϕ+∑ .    (10) 

 
 The element ji  of the matrix A + B is then aji + bji ; that is indeed the rule for the 
addition of algebraic matrices.  One has, moreover: 
 

AB (ϕi) = ( )ji j
j

b A ϕ∑ = ji kj k
j k

b a ϕ∑ ∑  = kj ji k
k j

a b ϕ
 
 
 

∑ ∑ . (11) 

 
 The element ki of the matrix AB is then kj ji

j

a b∑ ; that is indeed the rule for the 

multiplication of algebraic matrices. 
 The condition for a matrix A to be Hermitian in wave mechanics is: 
 

aji = ( )j iD
A dϕ ϕ τ∗

∫  = ija ∗  = ( )j jD
A dϕ ϕ τ∗ ∗

∫ .   (12) 

 
 Now, we know that if that condition is satisfied for all of the functions ϕi then the 
operator A will be, by definition, Hermitian, and conversely.  Hence, the necessary and 
sufficient condition for a matrix to be Hermitian in wave mechanics is that the operator 
that it is derived from must also be Hermitian.  The Hermiticity is then an intrinsic 
property of the operator, in the sense that a Hermitian operator will generate a Hermitian 
matrix in any system of basis functions. 
 Since all of the operators that we shall consider in wave mechanics are Hermitian, the 
matrices that correspond to them will likewise be Hermitian. 
 
 
 3. Mean values in wave mechanics. – Imagine a corpuscle, and assume that the 
wave function Ψ that it is associated with is known.  On the other hand, let one of the 
mechanical quantities that are attached to the corpuscle correspond to the operator A in 
the new mechanics.  When speaking of that operator, we shall say “the quantity A,” to 
abbreviate. 
 The general principles that were stated in the last chapter permit us to predict the 
possible magnitudes of the quantity A and their respective probabilities.  Since there are, 
in general, several possible values with non-zero probabilities, one cannot speak 
unequivocally of the value of the quantity A at each instant, but one can speak of its mean 
value, where that mean value is defined in the usual fashion as the sum of the products of 
each possible value with the corresponding probability.  If αi and ϕi denote the proper 
values and proper functions of the operator A, and if the wave function Ψ admits the 
development: 

Ψ = i i
i

c ϕ∑      (13) 

 
then the mean value A  will be, from general principles: 
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A  = 2| |i i
i

cα∑ .     (14) 

 
 That can be written in the form that essential in wave mechanics: 
 

A  = ( )
D

A dτ∗Ψ Ψ∫ .     (15) 

 
 The equivalence of (14) and (15) results from the formula: 
 

( )
D

A dτ∗Ψ Ψ∫ = i i k kD
i k

c A c dϕ ϕ τ∗ ∗  ⋅  
 

∑ ∑∫ = i k k i kD
ik

c c dα ϕ ϕ τ∗ ∗∑ ∫ , (16) 

 
and from the fact that the functions ϕi are normalized and orthogonal.  The mean value A  
that is defined by (14) and (15) is obviously a real quantity. 
 The reasoning by which we just established the fundamental formula (15) is 
rigorously valid only for complete operators A with no continuous spectrum and no 
multiple proper values.  However, it is easy to extend it to incomplete or degenerate 
operators and continuous spectra: Formula (15) is general. 
 The form of the expression (15) for A  will permit us to say that Ψ* A (Ψ) is the 
density of the mean value of the quantity A.  However, that “density” has a very different 
nature from the ones that one considers in classical theories.  Indeed, the integration 
element Ψ* A (Ψ) dτ (which is generally complex) cannot at all be considered to be a 
certain amount of the quantity A that is localized in the element dτ, and only the integral 
(15), which is always real, will have any physical sense.  That is an important remark that 
one must keep in mind. 
 Formula (15) provides a statistical interpretation for the matrices of wave mechanics, 
or at least, their diagonal elements.  Once more, we shall show that by arguing on the 
basis of complete, non-degenerate operators with no continuous spectrum, since the 
general argument would involve some complications that would not alter the result.  
Suppose that the development of the wave function Ψ in proper functions ϕi of the 
operator A reduces to just one term.  One will then have: 
 

Ψ = ci ϕi ,     (17) 
 
with | ci | = 1, since Ψ is always assumed to be normalized.  In that case, we will be sure 
that a measurement of the quantity A will yield the value αi .  Now, let another quantity B 
be attached to the corpuscle and correspond to an operator B.  We will then obtain the 
mean value of the quantity B by applying the formula (15), and we will find: 
 

B  = ( )
D

B dτ∗Ψ Ψ∫ = ( )i iD
B dϕ ϕ τ∗

∫ .    (18) 

 
 Now, the second integral in (18) is nothing but the diagonal element of the index ii  of 
the matrix that is generated by the operator A in the system of functions ϕi .  One then has 
the theorem: 
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 The diagonal element with index ii in the matrix that is generated by the operator B in 
the system of proper functions of the operator A is equal to the mean value of the quantity 
B when one knows that the quantity A has the value αi . 
 
 
 4. Mean value of a coordinate.  Ehrenfest’s theorem. – Consider one of the 
coordinates of a corpuscle – for example, the x coordinate.  From formula (15), and in 
accord with the interference principle, its mean value is: 
 

x  = 
D

x dτ∗Ψ Ψ∫ .     (19) 

 
 That is then the x coordinate of a fictitious fluid whose density at each point will be 
given by: 

ρ = ΨΨ*.      (20) 
 
 We call that fictitious fluid the probability fluid.  The quantity of that fluid that is 
contained in a volume element dτ is ΨΨ* dτ (1), the total quantity of fluid will remain 
constant in time, and that will be equal to 1 if the function Ψ has been normalized.  Since 
the distribution of the probability fluid varies in the course of time, we shall attribute a 
velocity with it at each point in the course of time, which we define by the formula: 
 

u =
1

4

h

imπ∗ΨΨ
[Ψ grad Ψ* − Ψ* grad Ψ].   (21) 

 
 It is easy to show that under those conditions, the probability fluid will be preserved 
in the course of time, and that proof will incidentally establish the following proposition, 
whose exactitude we have assumed: If the function Ψ is normalized at a given instant 
then it will remain normalized at any other point in time. 
 Here is the proof in question: One easily infers from the wave equation that the 
function Ψ obeys [viz., equation (5) of the preceding chapter], along with its conjugate 
equation, that: 
 

t

∂
∂

(ΨΨ*) = (Ψ* ∆Ψ – Ψ ∆Ψ*) = −
, ,4 x y z

h

im x x xπ

∗
∗  ∂ ∂Ψ ∂ΨΨ − Ψ  ∂ ∂ ∂  

∑ , (22) 

 
or again, from the definitions (20) and (21): 
 

t

ρ∂
∂

+ div (ρ u) = 0.     (23) 

 

                                                
 (1) From the interference principle, that quantity is then equal to the “probability of presence” of the 
corpuscle in the element dτ.  
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 Now, equation (23) is the hydrodynamical continuity equation that expresses 
precisely the conservation of the fluid whose distribution and motion are defined by (20) 
and (21). 
 We now make a remark.  From our definition of a mean value, if f (x, y, z, t) is a 
certain scalar or vectorial function then we shall call the quantity: 
 

( )f t  = ( , , , )
D

f x y z t dτ∗Ψ ⋅ ⋅Ψ∫    (24) 

 
the mean value of that function at the instant t. 
 That being the case, we can state an important theorem that is due to Ehrenfest: 
 
 THEOREM : The point whose coordinates are x , y , z  displaces in the course of 
time as it would under the laws of classical mechanics for a material point of mass m 
under the action of a force that is equal to the mean value ( )f t  of the real force at each 
instant t. 
 
 From (19), and upon employing (22) and integrating by parts, one will first get: 
 

  
dx

dt
 = 

( )
D

x d
t

τ
∗∂ ΨΨ

∂∫ = −
, ,4 D

x y z

h
x d

im x x x
τ

π

∗
∗ ∂ ∂Ψ ∂ΨΨ − Ψ ∂ ∂ ∂ 

∑∫  

= 
4 D

h
x d

im x x
τ

π

∗
∗ ∂Ψ ∂ΨΨ − Ψ ∂ ∂ 

∫ = xD
u dτ∗Ψ Ψ∫ = xu .  (25) 

 
 One will then find that: 
 

  
2

2

d x

dt
= 

2 2

4 D

h
d

im t x x t x t x t
τ

π

∗ ∗ ∗
∗ ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂ Ψ ∂ Ψ− + Ψ − Ψ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∫  

= 
2 D

h
d

im t x x t
τ

π

∗ ∗ ∂Ψ ∂Ψ ∂Ψ ∂Ψ− ∂ ∂ ∂ ∂ 
∫ ,     (26) 

 
which will give, by virtue of the equation of propagation: 
 

2

2

d x

dt
= −

2 2

2 2 2 2

8 8

8 D

h m m
U U d

m x h x h

π π τ
π

∗
∗ ∗    ∂Ψ ∂Ψ∆Ψ − Ψ + ∆Ψ − Ψ    ∂ ∂    

∫ .  (27) 

 
 Now, Green’s theorem gives (after integrating by parts): 
 

D
d

x x
τ

∗
∗ ∂Ψ ∂Ψ∆Ψ + ∆Ψ ∂ ∂ 

∫ = ( )
D

d
x x

τ
∗

∗ ∂Ψ ∂∆Ψ − Ψ ∆Ψ ∂ ∂ 
∫ = 0,  (28) 

 
in such a way that (27) will give us: 
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2

2

d x
m

dt
= ( )

D
U d

x
τ∗∂ ΨΨ

∂∫ = 
D

U
d

x
τ∗∂ − ΨΨ ∂ 

∫  = − U

x

∂
∂

 = xf .  (29) 

 
 That is indeed the expression for Ehrenfest’s theorem for x , and one will likewise 
establish corresponding formulas for y  and z . 
 In order to conclude this paragraph, we shall once more give the definitions of the 
mean densities of electric charge and current that correspond to a corpuscle of charge ε 
when one knows the function Ψ.  Since the charge ε is a physical quantity that is capable 
of taking just one value, it will be equal to its mean value, and one can write: 
 

ε = ε = 
D

dε τ∗ΨΨ∫ .     (30) 

 
 One can then consider the quantity: 
 

δ = ε ΨΨ*      (31) 
 
to be the mean density of the electric charge that is associated with the corpuscle.  On the 
other hand, from the classical viewpoint, the corpuscle of charge ε that moves with a 
velocity of v is equivalent to a current element i = ε v.  Here, we have to replace vx with 1 
/ m px , etc., and the three components ix , iy , iz of the current in question will correspond 
to the operators: 

− 
2

h

i m x

ε
π

∂
∂

, − 
2

h

i m y

ε
π

∂
∂

, − 
2

h

i m z

ε
π

∂
∂

, 

resp. 
From (15), the mean value of ix , for example, will always be: 
 

xi  = −
2 D

h
d

im x

ε τ
π

∗ ∂ΨΨ
∂∫  = 

4 D

h
d

im x x

ε τ
π

∗
∗ ∂Ψ ∂ΨΨ − Ψ ∂ ∂ 

∫ , (32) 

 
and one will have analogous expressions for yi  and zi .  It results from those expressions 

that the vectorial quantity: 

i = 
4

h

im

ε
π

[Ψ grad Ψ* − Ψ* grad Ψ]   (33) 

 
can be considered to be the mean density of the electric current that is associated with the 
particle.  Upon comparing formulas (30) and (33) with formulas (20) and (21), one will 
see that the densities δ and j are the charge and current densities that exist, from classical 
theory, if the charge ε of the corpuscle is distributed throughout the probability fluid in 
proportion to its density ΨΨ*. 
 
 
 5. First integrals in wave mechanics. – In classical mechanics, one calls a 
mechanical quantity that is expressed in terms of the coordinates, momenta, and 
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sometimes time, a first integral when it remains constant in the course of motion by 
virtue of the equations of motion themselves. 
 How does one define a first integral in the new mechanics?  Here is the answer that 
one must give to that question: If a mechanical quantity corresponds to an operator A then 
that quantity will be a first integral for a well-defined problem (i.e., for a given form to 
the Hamiltonian H) if one has: 

2A i

t h

π∂ +
∂

(AH – HA) = 0,    (34) 

 
in which ∂A / ∂t represents the operator that one obtains by formally differentiating the 
expression for A with respect to the variable t.  If A does not depend upon t then ∂A / ∂t 
will be zero, and the condition (34) will express simply the idea that A commutes with H.  
One shows moreover that if H is independent of time then the condition (34) will have 
the following significance: The matrix elements that are generated by the operator A in 
the system of proper functions of the operator H are constant. 
 If the field is constant then H will not depend upon time, so energy will obviously be 
a first integral: One the recovers a classical theorem.  If the x component of the field is 
zero then H will not depend upon x, and it will commute with px : The x-component of 
the quantity of motion will be a first integral, as in classical mechanics, etc. 
 The most interesting case for us will be that of angular momentum.  When the field 
presents cylindrical symmetry around an axis oz, H will not depend upon the azimuth ϕ 
around that axis.  Upon taking direct axes and agreeing that a rotation in the xy-plane in 
the positive sense will correspond to a positive rotation, the operator that corresponds to 
the angular momentum around oz will be: 
 

Mz = x py – y px = 
2

h
y x

i x yπ
 ∂ ∂− ∂ ∂ 

.    (35) 

 
 Upon taking spherical coordinates whose polar axis is oz, one will find that: 
 

Mz = −
2

h

iπ ϕ
∂

∂
.     (36) 

 
 As a result, Mz will be independent of t, so it will commute with H, and it will be a 
first integral.  If the field has spherical symmetry around 0 then each of the angular 
momenta Mx, My, Mz will be first integrals. 
 We can simplify the form of the condition (34) by introducing the operator: 
 

L = H −
2

h

i tπ
∂
∂

.     (37) 

 Since one has: 

t

∂
∂

⋅⋅⋅⋅ A (f) = 
A

t

∂
∂

(f) + A 
f

t

∂ 
 ∂ 

, 
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if f is an arbitrary function then the operator ∂A / ∂t will be equivalent to the operator 
t

∂
∂

⋅⋅⋅⋅ 

A – A ⋅⋅⋅⋅ 
t

∂
∂

.  The condition (34) can then be written: 

 

0 = (AH – HA) + 
2

h
A A

i t tπ
∂ ∂ ⋅ − ⋅ ∂ ∂ 

 = 
2 2

h h
A H H A

i t i tπ π
∂ ∂   − − −   ∂ ∂   

,  (38) 

 
or simply: 

AL – LA = 0.     (39) 
 
 The condition for the quantity A to be a first integral is then simply that the operator A 
must commute with L. 
 

____________ 
 



 

CHAPTER VII 
 

RELATIVISTIC FORM OF WAVE MECHANICS  
WITH ONE WAVE FUNCTION 

____ 
 
 

1.  Review of some formulas from relativistic mechanics 
 

 Long before the appearance of the new mechanics, the introduction of the principle of 
relativity into mechanics led Einstein to modify the classical equations of Newtonian 
dynamics.  That modification implied only a simple change of form in certain formulas, 
moreover.  Einstein’s relativistic mechanics preserved all of the classical concepts of a 
material point, velocity, trajectory, mechanical determinism, etc.  In comparison to the 
new mechanics, the Einstein’s dynamics then appeared to be only a slight modification of 
the classical theory that had the goal of making it conform to the principle of relativity.  
In paragraph 2 of Chapter V, we started with the formulas of Newtonian mechanics in 
order to obtain the equation the equation of propagation of wave mechanics.  We thus 
obtained a wave mechanics that was naturally non-relativistic.  In order to get relativistic 
wave mechanics, it seems quite natural to operate as in paragraph 2 of that chapter, but 
while starting with formulas from Einstein’s theory.  In order to do that, we begin by 
recalling some of those formulas. 
 In relativistic mechanics, every corpuscle is characterized by an invariant quantity m0, 
namely, its proper mass.  One of the fundamental principles of the theory of relativity is 
the proportionality of mass and energy, so a corpuscle of mass m0 will possess an internal 
energy or “proper energy,” even at rest, and it will be given by: 
 

W0 = m0 c
2,      (1) 

 
in which c is the speed of light in vacuo.  If the corpuscle moves with a velocity of v = βc 
then its energy will be: 

W = 
2

0

21

m c

β−
.      (2) 

 
 There will still be a proportionality between energy and mass, on the condition that 
one must consider the mass to have increased as a result of the motion, and to have 

become 2
0 / 1m β− . 

 One can call the quantity: 
 

T = 
2

0

21

m c

β−
− m0 c

2 = m0 c
2 

2

1
1

1 β

 
 −
 − 

,    (3) 
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the kinetic energy of the corpuscle that has been animated with a speed of βc, and it will 
represent the increase of the energy due to the motion. 
 The preceding formulas are valid in the absence of a field.  If the corpuscle is subject 
to a force field that is derived from the potential function then one must write: 
 

W = 
2

0

21

m c

β−
 + U (x, y, z, t),     (4) 

instead of (2). 
 If β is small compared to unity (i.e., v ≪ c) then one will get, in the first 
approximation: 

W = m0 c
2 + 1

2 m0 v
2 + U (x, y, z, t),    (5) 

and if one sets: 
E = W – m0 c

2      (6) 
 
then one will recover the classical formula.  E is then the energy in the sense of classical 
mechanics, which differs from the energy W of relativistic mechanics by the constant 
term of proper energy m0 c

2. 
 In Einstein’s theory, the quantity of motion of the corpuscle of mass m0 that is 
animated with the speed v = βc is: 

p = 0

21

m

β−
v .     (7) 

 
 It is, in summary, equal to the product of the velocity with the mass in motion 

2
0 / 1m β− . 

 The three components of the quantity of motion and the quantity: 
 

0

21

m c

β−
 (= W / c, when there is no field) 

 
constitute the four components of a space-time vector. 
 The preceding formulas must be modified in the very important case of a corpuscle of 
electric charge ε that displaces in an electromagnetic field.  One knows that the electric 
field h and the magnetic field H can be defined by the relations: 
 

H = rot A, h = − grad V − 
1

c t

∂
∂
A

    (8) 

 
with the aid of a scalar potential V (x, y, z, t) and a vector potential A (x, y, z, t). 
 The force that the field exerts upon the corpuscle of charge ε that is animated with a 
velocity of v will then be given by the Lorentz formula: 
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f = 
1

[ ]
c

ε  + ⋅ 
 
h v H  .     (9) 

 
 The energy of the corpuscle is then: 
 

W = 0

21

m c

β−
+ ε V (x, y, z, t),   (10) 

and its quantity of motion is: 

p = 0

2

( , , , )

1

m x y z t

c
ε

β
+

−
v A

.    (11) 

 
 The new fact here is that the quantity of motion, just like the energy, contains a term 
that depends upon the field, in addition to the term that depends upon the velocity.  In 
general, the quantity of motion p will no longer be directed along the velocity.  The 
components of p and the quantity W / c will then once more define the components of a 
vector in space-time. 
 Equation (10) and (11) give us the relation: 
 

2

1

c
(W – ε V)2 −

2
2 2

0
, ,

x
x

x y z

A
p m c

c

ε − − 
 

∑ = 0,   (12) 

 
which must play an essential role when one wants to get a relativistic wave equation in 
wave mechanics. 
 If we solve (12) for W then we will get: 
 

W = 
2

2 2
0

, ,

x
x

x y z

A
c m c p

c

ε + − 
 

∑ + ε V.   (13) 

 
 The right-hand side of that equation can be denoted by H (x, y, z, px, py, pz, t), and it is 
the relativistic Hamiltonian function; however, it is not a rational function. 
 
 
 2. Relativistic wave mechanics. – In order to obtain the wave equation of 
relativistic wave mechanics, it seems completely natural to proceed as in paragraph 2 of 
Chapter V by starting, no longer with the formulas of classical dynamics, but with those 
of relativistic dynamics.  Unfortunately, that immediately presents a complication: Since 
the Hamiltonian function that is defined by the right-hand side of (13) is not rational, the 

expressions that one will obtain by replacing px with −
2

h

i xπ
∂
∂

, etc., will not be rational in 

∂ / ∂x, etc., and will not represent well-defined operators.  One cannot apply the method 
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of paragraph 2, Chapter V literally then; i.e., one cannot pose the wave equation in the 

form H (Ψ) = 
2

h

i tπ
∂Ψ
∂

. 

 Meanwhile, there is an indirect means of avoiding the difficulty by using equation 
(12), instead of (13).  In order to do that, one remarks that already in the non-relativistic 
method of Chapter V, when one passes from the classical equation H = E to the wave 

equation H (Ψ) = 
2

h

i tπ
∂Ψ
∂

, one replaces, in short, the energy E with the operator 
2

h

i tπ
∂
∂

.  

It would then seem natural to replace W with that operator here, and that would be much 
more logical from the relativistic viewpoint, since energy and the quantity of motion 

define a space-time vector, so if one replaces each pi with − 
2 i

h

i qπ
∂

∂
 then W must be 

replaced with 
2

h

i tπ
∂
∂

 (1). 

 Upon making those substitutions in the left-hand side of (12), one will get: 
 

2 2
2 2

02
, ,

1

2 2 x
x y z

h h
V A m c

c i t i x c

εε
π π

∂ ∂   − − + −   ∂ ∂   
∑ ;   (14) 

 
i.e., a rational operator. 
 Upon applying the operator (14) to the function Ψ and upon equating it to zero, one 
will find that: 

2 2

2
, ,

1

2 2 x
x y z

h h
V A

c i t i x c

εε
π π

∂ ∂   − Ψ − + Ψ   ∂ ∂   
∑  = 2 2

0m c Ψ,  (15) 

 
and that equation can be regarded as the natural relativistic extension of the wave 
equation of the original wave mechanics. 
 If we develop equation (15), while taking into account the Lorentz relation between 
the potentials: 

1 V

c t

∂
∂

+ div A = 0     (16) 

then we will obtain: 
 

2 2 2
2 2 2

02 2 2 2 2 2
, ,

1 4 4 4
( )x

x y z

Ai V i
m V

c t m c t m c x h c

επ ε π π ε ∂ Ψ ∂Ψ ∂Ψ− ∆Ψ − − + + − Ψ ∂ ∂ ∂  
∑ A = 0. (17) 

 

                                                
 (1) The difference in sign is explained by remarking that: 
 

x

∂

∂
, 

y

∂

∂
, 

z

∂

∂
, 

t

∂

∂
 

 
 are covariant components, whereas px, py, pz, W are the contravariant components of the world-impulse. 
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 For reasons that we shall explain later, Dirac considered that relativistic equation of 
propagation to be insufficient.  Moreover, we see immediately that it differs greatly from 
the non-relativistic equation in a very important respect: It is a differential equation that 
has second order in time, instead of one that has first order in it. 
 In the important case in which the electromagnetic field is zero (V = A = 0), equation 
(17) can be written: 

∆Ψ − 
2

2 2

1

c t

∂ Ψ
∂

= 
2

2 2
02

4
m c

h

π Ψ ,    (18) 

 
and it will admit the monochromatic plane wave: 
 

Ψ = 
2

[ ]x y z
i

Wt p x p y p z
hC e
π − − −

    (19) 
 
as a particular solution, because, from (12), one will then have W2 / c2 – px

2 – py
2 – pz

2 = 
2 2

0m c .  The wave (19) possesses a frequency v = W / h, and a wave length λ = h / p.  It 

corresponds to the uniform, rectilinear motion of a corpuscle whose energy and quantity 
of motion are perfectly determined, while its position is entirely indeterminate.  If one 
compares formula (19) with formula (7) in Chapter V then one will see that the only 
essential difference that is introduced by relativity here is the substitution of the complete 
energy W for the energy E = W – m0 c

2 of classical mechanics. 
 
 
 3. Probability density and current that correspond to equation (17). – The 
application of the general principles that were stated in Chapters V and VI to the wave 
equation (17) raises some great difficulties.  In particular, there will no longer be any 
clear meaning to saying that the wave function must be normalized, because one can no 
longer show with equation (17) that if Ψ is normalized at a given instant then it will 
always remain normalized.  As we will see in Chapter X, that difficulty is essentially 
attached to the fact that equation (17) has second order in time, so its solution will not be 
determined when one knows only the initial form of the function Ψ. 
 It is, nonetheless, still possible with equation (17) to consider a probability fluid that 
is conserved in the course of time by virtue of the equation of propagation itself, but the 
density of that fluid will be expressed as a function of not just Ψ, but also ∂Ψ / ∂t.  
Indeed, set: 

ρ = − 
2 2

0 04

h
V

i m c t t m c

ε
π

∗
∗ ∗ ∂Ψ ∂ΨΨ − Ψ − ΨΨ ∂ ∂ 

,   (20) 

 

ρ u = ( )2 2
0 0

grad  grad 
4

h

i m c m c

ε
π

∗ ∗ ∗Ψ Ψ − Ψ Ψ − ΨΨA ,  (20′) 

 
which are equations that will define the distribution and the motion of a fictitious 
probability fluid, since ρ and ρ u are real. 
 Now, write the conjugate equation to (17): 
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2

2 2

1

c t

∗∂ Ψ
∂

− ∆Ψ* + 
2

4 i
V

h c t

π ε ∗∂Ψ
∂

+
2 2

2 2 2 2
02 2

, ,

4 4
( )x

x y z

i
A m c V

h c x h c

π ε π ε∗
∗ ∂Ψ + + − Ψ ∂  

∑ A  

= 0.  (17*) 
 
 Multiply (17) by Ψ* and subtract (17*), when it is multiplied by Ψ.  On the one hand, 
one will find the terms: 
 

2 2

2 2 2 2

1 4 i
V

c t t h c t t

π ε∗ ∗
∗ ∗   ∂ Ψ ∂ Ψ ∂Ψ ∂ΨΨ − Ψ − Ψ + Ψ   ∂ ∂ ∂ ∂   

, 

 
which one can write as: 
 

2 2

2 2 2 2 2

1 4 4i i V
V

t c t t h c h c t

π ε π ε∗
∗ ∗ ∗  ∂ ∂ Ψ ∂ Ψ ∂Ψ − Ψ − ΨΨ + ΨΨ  ∂ ∂ ∂ ∂  

, 

 
and on the other hand, one has terms like: 
 

− Ψ* ∆Ψ + Ψ ∆Ψ* − 
, ,

4
x x

x y z

i
A A

h c x x

π ε ∗
∗ ∂Ψ ∂ΨΨ + Ψ ∂ ∂ 

∑ , 

which one can write as: 
 

, ,

4
x

x y z

i
A

x x x h c

π ε∗
∗ ∗  ∂ ∂Ψ ∂Ψ Ψ − Ψ − ΨΨ   ∂ ∂ ∂   

∑ + 
4 xAi

h c x

π ε ∗ ∂ ΨΨ ∂ 
. 

 
 When summed, we will get the equation: 
 

2 2

2 2 2 2

1 4 i
V

t c t t h c

π ε∗
∗ ∗  ∂ ∂ Ψ ∂ ΨΨ − Ψ − ΨΨ  ∂ ∂ ∂  

 

+ div [Ψ grad Ψ* − Ψ* grad Ψ – 
4 i

h c

π ε
A ΨΨ*] 

+ 2

4 1
div 

i V

h c c t

π ε ∗ ∂ ΨΨ + ∂ 
A  = 0.    (21) 

 
 The last term is zero, by reason of the Lorentz relation (16).  If one multiplies it by 

04

h

i mπ
 and takes (20) and (20′) into account then one will get: 

t

ρ∂
∂

+ div (ρ u) = 0;     (22) 
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i.e., the equation that expresses the conservation of the fluid (1). 
 We can make the distribution and motion of the probability fluid that is associated 
with a corpuscle with an electric charge ε correspond to an electric charge density ρ ε and 
a current density ρ ε u, as we did at the end of the preceding chapter in the non-
relativistic case. 
 One can account for some difficulties that arise when one attempts to reconcile the 
general principles that were assumed in Chapter V with the relativistic form (17) of the 
wave equation by referring to the manner by which the interference principle was 
justified in paragraph 5 of Chapter V.  It will result from the argument that was presented 
in that regard that the probability for a measurement that is made at the instant t to permit 
one to localize the corpuscle into an element dτ of space will be ΨΨ* dτ.  That result is 
obtained without making any hypothesis about the wave equation that the wave function 
Ψ must obey, so it must still be valid here, as well.  Meanwhile, the density ρ of the 
probability fluid that is given by the relation (20), which is a density whose expression is 
imposed by the necessity of satisfying the conservation condition, does not reduce to 
ΨΨ*.  The general principles of Chapter V then contradict the relativistic form (17) for 
the equation of propagation.  It was the desire to avoid such a contradiction that led Dirac 
to found the relativistic wave mechanics of a corpuscle upon a different basis than 
equation (17). 
 

____________ 

                                                
 (1) It would seem that one could define ρ and ρ u by taking the right-hand sides of (20) and (20′) and 
multiplying them by an arbitrary real constant, but the definitions (20) and (20′) are imposed when one 
desires to recover the expression ρ = ΨΨ* in the Newtonian approximation, as one will easily see. 



 

CHAPTER VIII 
 

SUCCESSES AND FAILURES OF WAVE MECHANICS  
WITH ONE WAVE FUNCTION 

____ 
 
 

1.  Calculation of quantized energies.  Example of the hydrogen atom. 
 

 As an application of its general principles, (non-relativistic) wave mechanics 
determines the stationary states of quantized systems by calculating the proper values of 
the corresponding Hamiltonian operator.  That new method of quantization, which was 
inaugurated by the celebrated work of Schrödinger (1), led one to recover the results of 
the old quantum theory in certain cases and to then correct the old results in a sense that 
would better conform to experiments (e.g., the linear oscillator) in other cases. 
 Here, we shall recall only the quantization of the hydrogen atom, and like 
Schrödinger we shall appeal to the non-relativistic theory. 
 We consider an electron of mass m and charge – e in a field that is produced by a 
fixed nucleus of charge + e. 
 Write the equation: 

H (a) = E ⋅⋅⋅⋅ a,      (1) 
 

upon taking H to be the operator 
2

2 2 21
[ ]

2 x y z

e
p p p

m r
+ + − . 

 We then get: 

∆a + 
2 2

2

8 m e
E

h r

π  
+ 

 
a = 0.    (2) 

 
 Take polar coordinates r, θ, ϕ around the nucleus and set: 
 

a (r, θ, ϕ) = R (r) Y (θ, ϕ).    (3) 
 
 Upon taking the form of the Laplacian in polar coordinates into account, we will 
have: 

2 2

2 2 2 2

1
2

sin

d R Y dR Y
Y

dr r dr r θ ϕ
∂+ +
∂

 +
2 2

2 2

1 8
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sin

Y m e
E RY

r h r

πθ
θ θ θ

 ∂ ∂ + +   ∂ ∂   
= 0, (4) 

 
or furthermore: 
 

2 2 2
2

2

1 1 1 8d R dR m e
r E

R dr r R dr h r

π  
+ + +  

  
= −

2

2 2

1 1 1
sin

sin sin

Y Y

Y
θ

θ ϕ θ θ θ
 ∂ ∂ ∂ +   ∂ ∂ ∂  

. (5) 

                                                
 (1) See E. SCHRÖDINGER, Abhandlungen zur Wellenmechanik, J. A. Barth, Leipzig.  
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 One of the two sides of (5) depends upon only the radius vector, while the other 
depends upon only the polar angles, so they must both be equal to the same constant λ, 
and one will have: 

2

2 2

1 1
sin

sin sin

Y Yθ
θ ϕ θ θ θ

∂ ∂ ∂ +  ∂ ∂ ∂ 
+ λ Y = 0.   (6) 

 
 One shows that equation (6) has solutions that are finite, uniform, and continuous on 
the sphere of unit radius only if one has: 
 

λ = l (l + 1), with l = 0, 1, 2, …    (7) 
 
 The values (7) of λ are proper values of equation (6).  A proper value that is defined 
by a certain integer value for l corresponds to (2l + 1) proper functions (un-normalized): 
 

( , )m
lY θ ϕ = (cos )im m

le Pϕ θ  = eimϕ sinmθ 
( cos )

l m

l m

d

d θ

+

+ ⋅⋅⋅⋅ (1 – cos2 θ)l.  (8) 

 
The functions m

lY  are Laplace’s spherical functions.  They define a complete system for 

the variables ϕ and θ, which justifies the decomposition (3) a posteriori. 
 Having posed that, it will again result from (5) that R must satisfy the equation: 
 

2

2 2

2d R dR B C
R A

dr r dr r r
 + + + + 
 

= 0,    (9) 

with: 

A = 
2

2

8 mE

h

π
, B = 

2
2

2

8 m
e

h

π
, C = l (l + 1).   (10) 

 
 Schrödinger proved that all of the positive values of E are proper values of (9) and 
form a continuous spectrum, in turn.  However, as in classical mechanics, those positive 
proper values for the energy correspond to free motions of the electron outside the atom, 
and are of no interest to us here. 
 In order to find the negative proper values, we introduce the real variable: 
 

ρ = 2 A r− = 
4

2mE
h

π −  ⋅ r.   (11) 

 
 It is obvious in equation (9) that for very large r, R will have the asymptotic 
form / 2e ρ− , so the solution e+ρ /2 must be discarded, because it will be infinite at infinity.  
Therefore, set: 

R = 2e
ρ−

υ (ρ).     (12) 
 
 Upon substituting (11) and (12) into (9), we easily find: 
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2

2 2

2 1 ( 1)
1 1

2

d d B l l

d d A

υ υ υ
ρ ρ ρ ρ ρ

    ++ − + − −     −     
= 0.  (13) 

 
 That is a linear differential equation that admits only the singular point ρ = 0 at a 
finite distance.  The theory of linear equations then permits one to easily see that equation 
(13) admits just one solution that is regular in a neighborhood of the point ρ = 0 and finite 
at that point, and that solution will have the form: 
 

υ (ρ) = l
v

v

a νρ +∑ .     (14) 

 
 Upon substituting (14) in (13), one will find the recurrence relation: 
 

[(v + l + 1) (v + 1) + 2 (v + l + 1) – l (l + 1)] av+1 = 1
2

B
v l

A

 
+ + − 

−  
av .  (15) 

 
 The function R (ρ) will be zero at infinity if all of the av are zero when one starts with 
a certain ap .  From formula (15), in order for that to be true, it will be necessary that one 
must have: 

2

B

A−
= p + l + 1 = n (n = integer ≥ 1).  (16) 

 
 Hence, from the values (10): 

En = − 
2 4

2 2

2 me

n h

π
.     (17) 

 
 Non-relativistic wave mechanics then gives the Bohr formula. 
 We remark that there is a pronounced degeneracy here, because, from (16), a proper 
value En (i.e., a given value of n) will correspond to n possible values of l, namely, 0, 1, 
…, n – 1, and each value of l will correspond to 2l + 1 spherical functions mlY .  Hence, a 

proper value En will correspond to some proper functions a = RY, and their total number 

will be equal to 
1

0

(2 1)
n

l

l
−

=
+∑ = 2 

( 1)

2

n n−
+ n = n2.  All of the proper values will then be 

multiple, except for the one that corresponds to n = 1. 
 The quantum number l corresponds to the number k – 1 of the old quantum theory.  It 
can taken on the values 0, 1, …, n – 1, while the number k in the old theory could take on 
the values 1, 2, …, n.  The number m depends upon the choice of polar axis, which is 
entirely arbitrary in the absence of an external field.  It is easy to verify that the angular 
momenta Mx, My, Mz are first integrals, since that would follow from the spherical 
symmetry of the Coulomb field. 
 We finally note that upon repeating the calculations for an atom with a central charge 
+ Ne that has been ionized (N − 1) times, we will get: 
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En = −
2 4 2

2 2

2 me N

n h

π
.     (18) 

 
Hence, one can infer an approximate justification for Moseley’s law, as in the old theory. 
 
 
 2. Fine structure and relativistic wave mechanics. – We have recovered Bohr’s 
simple result by calculating the possible values for the energy of the hydrogen atom.  It is 
quite natural for us to now demand to know whether we can recover Sommerfeld’s fine 
structure by employing the relativistic form of wave mechanics that was developed in the 
preceding chapter.  However, that immediately presents a complication, since we cannot 
seek to determine the proper values of the Hamiltonian operator, because that operator 
was not well-defined, as we saw in the theory of the last chapter.  Nevertheless, there is a 
very natural way of avoiding that difficulty (although it does not agree with the general 
principles).  Indeed, seeking the proper values of energy amounts to looking for proper 
frequencies of the wave equation.  Therefore, take the relativistic wave equation (17) of 
the last chapter and suppose that Ψ is a monochromatic wave that depends upon time 

only by way of the factor 
2 i

Wt
he
π

.  Upon noting that A = 0 for the hydrogen atom, one will 
then find that: 

∆Ψ + 
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2 2 2
02 2

4
[( ) ]W V m c

h c

π ε− −  Ψ = 0.   (19) 

 
 In the case of the hydrogen atom, ε = − e and V = e / r.  Inside the bracket in (19), one 
can write: 
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and since, by hypothesis, Ψ = a (r, θ, ϕ) 
2 i

Wt
he
π

, one will have: 
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 Upon posing the decomposition (3) here again, one will easily see that Y (θ, ϕ) must 
be a Laplace spherical function, and R (r) must obey the equation: 
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2d R dR B C
A

dr r dr r r
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R = 0,    (22) 

with the notations: 
 

A = 
2

0
2 2

0

8
1

2

m E
E

h m c

π  
+ 

 
, B = 

2
20

2 2
0

8
1

m E
e

h m c

π  
+ 

 
, C = − l (l + 1) + 

2 4

2 2

4 e

h c

π
. (23) 



70 Chapter VIII – Successes and failures in wave mechanics with one wave function 

 The expression for C can also be written: 
 

C = − l (l + 1) + α2,     (23′) 
 

in which α = 
22 e

hc

π
 is Sommerfeld’s fine-structure constant. 

 We deduce from equation (22) that R has the asymptotic form e−ρ / 2, with ρ 
=2 A r− ⋅ , and upon setting: 

R (ρ) = 2e
ρ−

υ (ρ),     (24) 
 
if we substitute that in (22) then we will get: 
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d d B B C

d d A

υ υ υ
ρ ρ ρ ρ ρ

   + − + − +     −     
= 0.   (25) 

 
 That is a linear differential equation that admits the point ρ = 0 as its only singularity 
at a finite distance.  From the general theory of linear solutions, there exist, moreover, 
two solutions of (25) that are regular in a neighborhood of ρ = 0 and have the form: 
 

υ (ρ) = ργ 
v

a ν
ν ρ∑  (a0 ≠ 0).   (26) 

 
 The exponent γ (which is not necessarily an integer) is given by the defining 
equation: 

γ (γ – 1) + 2γ + C = γ (γ + 1) + α2 – l (l + 1) = 0,  (27) 
  
which one can just as well write: 

2
1

2
γ + 
 

= 
2

1

2
l
 + 
 

− α2.    (28) 

 
 One thus has the two values of γ: 
 

γ = − ( )2 21 1
2 2l α± + − .    (29) 

 
 One discards the solution that corresponds to the – sign by remarking that the 
corresponding function υ (ρ) will have a pole at ρ = 0.  We then keep formula (29) with 
the + sign.  It is appropriate to remark that even choosing the + sign will raise a small 
difficulty if l = 0, since that will then give a very small negative value for γ, and the 
function υ (ρ) will be infinite (granted, it will have a very small order) at ρ = 0.  We 
agree to pass over that difficulty, which we shall encounter once more in Dirac’s theory, 
because the function υ (ρ), although infinite at ρ = 0, is nonetheless square-summable. 
 If we introduce the form (26) into (25) then we will obtain the recurrence relation: 
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[(v + γ + 1)(v + γ) + 2 (v + γ + 1) + C] av+1 = 1
2

B

A
ν γ
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+ + − 
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av . (30) 

 
 The function R will be zero at infinity if all the av that are greater than a certain ap are 
zero, which will happen if one has: 
 

p + γ + 1 = 
2

B

A−
.     (31) 

 
 Upon substituting the values of A, B, and γ into (31), one will find that: 
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 Upon adding one to both sides of this and taking inverses, one will easily get: 
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 This is a formula that is quite analogous to the old Sommerfeld formula [formula (38) 
of Chapter I], but in which the whole numbers n2 and n1 have been replaced with: 
 

p + 1
2   and  l + 1

2 , 

respectively. 
 If we define a total quantum number n by the relation: 
 

n = ( ) ( )1 1
2 2p l+ + + = p + l + 1,   (35) 

 
and develop (34) in powers of α2, while neglecting terms of order higher than two, then 
we will obtain the approximate formula: 
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En = −
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+ −  +  

,    (36) 

 
in which R = Rydberg constant.  Formula (36) should be compared with formula (41) of 
Chapter I. 
 When one repeats the same calculation for an atom of rank N that has been ionized (N 
– 1) times, one will find: 
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instead of (36), which is analogous to formula (44) in Chapter I. 
 In the case of X-rays, if one limits oneself to considering the inner electrons crudely 
as forming an electrostatic screen then one will get: 
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,  (38) 

 
and that formula will give the fine structure of the X-ray spectral terms, which should be 
compared with the old formula (9) in Chapter III. 
 Unfortunately, the agreement between the old Sommerfeld formulas and experiments 
is not recovered here.  For example, take the doublets in the Balmer series.  In Bohr’s 
original model, a line in the Balmer series was generated during the transition of the H 
atom from an initial state of energy Ei to a final state that is characterized by n = 2.  For 
Sommerfeld, the quantum number n = 2 corresponds to two possible values of the 
azimuthal quantum number k = 1 and k = 2.  Hence, one has a fine structure for each line 
that is, in reality, a doublet, so the frequency width of the doublet must be, from formula 
(40) of Chapter I, equal to: 
 

δv = 
1

h
(E22 – E21) = 

2

4

2 2

2 1 2

Rα  − 
 

= 
2

16

Rα
= 0.36 cm−1.  (39) 

 
 That number is in good agreement with experiment, if not somewhat better.  With our 
new formula (36), we must attribute the quantum numbers n = 2, l = 0, and n = 2, l = 1 to 
the two levels that are responsible for the Balmer doublets, and we will find that: 
 

 δv = 
2

4

2 2

2 1/ 2 3/ 2

Rα  − 
 

 = 
2 8

16 3

Rα ⋅ .   (40) 

 
 We then find the 8 / 3 of the old number, which is already a bit too large! 
 Similarly, one will also find a number that is too large from formula (38) for the 
width of the Sommerfeld doublets for the X-rays. 
 Moreover, the difficulty that was pointed out before still remains here: It is certain (at 
least, for X-rays) that the levels that are responsible for Sommerfeld’s fine structure have 
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the same quantum number k (i.e., the same number l = k − 1) and differ by a quantum 
number j that the preceding theory ignored completely. 
 Therefore, the relativistic wave mechanics that was developed in the preceding 
chapter is shown to be inadequate, since it introduces new difficulties without resolving 
the old ones. 
  
 
 3. Wave mechanics with one wave function and the Zeeman Effect. – We shall 
now see that the original wave mechanics (with one wave function) cannot account for 
the anomalous Zeeman Effect. 
 Consider an atom that is embedded in a uniform magnetic field H.  Take the direction 
of the field to be the z-axis.  We can then write the vector potential from which H is 
derived in the form: 

Ax = −
2

Hy
,  Ay = 

2

Hx
,  Az = 0,   (41) 

 
since the relation H = rot A will then give Hx = Hy = 0 and Hz = H.  The relativistic wave 
equation (17) of the last chapter can then be written (ε = − e): 
 

∆Ψ − 
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1 4 4
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π π∂ Ψ ∂Ψ ∂Ψ+ +
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2 2 2 2
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e
m c V

h c

π  
− − 

 
A Ψ = 0.  (42) 

 
 We shall prove the following theorem, which is nothing but the transposition of 
Larmor’s classical theorem, which was recalled in Chapter IV, para. 2, into wave 
mechanics: 
 
 Theorem. – When the field H is very weak, and one can neglect the relativistic 
corrections, the wave equation of the atom, when expressed in a reference that rotates 
around the direction of the field H with the angular velocity: 
 

o = 
0

1

2

eH

m c
,     (43) 

 
will be the same as if the reference system did not rotate and the field H did not exist. 
 
 From our hypotheses, we suppose that H is small and H2 is negligible.  Similarly, we 

suppose that η = 
2

0

E

m c
is small (i.e., the Newtonian approximation) and η2 is negligible.  

Finally, we also neglect the product ηH. 
 We can always take a direct system of axes oxyz.  The oz axis will serve as the 
cylinder axis, and we define cylindrical coordinates z, ρ, ϕ by the usual formulas: 
 

x = ρ cos ϕ, y = ρ sin ϕ, z = z.    (44) 
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 Thanks to (41), one will then have: 
 

, ,

4
x

x y z

i e
A

h c x

π ∂Ψ
∂∑ = 

2 i e
H y x

h c x y
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π
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and equation (42) can be written in cylindrical coordinates as: 
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if one neglects A2. 
 Now take a system of cylindrical coordinates z′, ρ′, ϕ′ that rotates around oz with 
angular velocity (43).  One will have: 
 

z′ = z, ρ′ = r, ϕ′ = ϕ – ot, t′ = t,    (47) 
 
and as a result (upon neglecting o2 in the order of H2): 
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 Equation (46) can then be written: 
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in the system of primed variables. 
 Now, upon taking (43) into account and neglecting oη, one will have: 
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 The term 
2

2

2o

c tϕ
∂ Ψ

′ ′∂ ∂
then compensates for the last term in the left-hand side of (48), in 

the assumed approximation.  As in the Newtonian approximation, the potential energy 
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must be regarded as being very small in comparison to the internal energy m0 c
2, so the 

term 2

4 i eV

h c

π
ϕ

∂Ψ
′∂
 will be negligible in comparison to the term 

2

4 i eV

h c t

π ∂Ψ
∂

. 

 Finally, equation (48) reduces to: 
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 That equation is the same as if the primed system did not turn and the field H did not 
exist: Larmor’s theorem is then proved. 
 
 We shall now recover the normal Zeeman Effect directly.  Indeed, in the absence of 
an external magnetic field, the stationary state that is characterized by the two quantum 
numbers n and l, and an energy of H

nlE  will correspond to a wave function of the form: 

 

Ψ (z, ρ, ϕ, t) = F (ρ, z) eimϕ 
2 0

0
2

( )nl
i

m c E t
he
π +

   (51) 
 
in the fixed system z, ρ, ϕ, in which m is a positive or negative integer.  By virtue of the 
theorem that was proved above, the function Ψ will have the same form that it would 
have in the system z′, ρ′, ϕ′, in the presence of the field H.  One will then have: 
 

Ψ (z′, ρ′, ϕ′, t′) = F′ (ρ′, z′) eimϕ′ 
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 By virtue of (47), the wave function will have the expression: 
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in the fixed system. 
 The energy H

nlE  of the atom in the fixed system in the presence of the field H is then: 

 

H
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 The spectral terms are then modified by the addition of a multiple of 
04

eh H

m cπ
, and the 

line that had the frequency: 

v = ( )0 01
n l nlE E

h
′ ′ −  

will now have the frequency: 

v + (m – m′) 
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eh H
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in the presence of the field.  It will suffice to assume the selection rule δm = 0, ± 1, which 
we shall justify later, in order to recover the normal Zeeman Effect, but there is no trace 
of the anomalies or the Landé factor in this theory.  Wave mechanics with one wave 
function then gives nothing more than the classical theory or the old quantum theory. 
 
 
 4.  “Selection rules” in wave mechanics. – In classical electromagnetism, when a 
distribution of electricity is animated with an accelerated motion, it will emit 
electromagnetic radiation.  If ρ (x, y, z, t) is the density of the electrical distribution then 
the intensity of the emitted radiation will be determined, in the first approximation, by the 
electric moment; i.e., by the vector m that is given by: 
 

mx = x dx dy dzρ∫∫∫ , my = y dx dy dzρ∫∫∫ , mz = z dxdy dzρ∫∫∫ ,  (55) 

 
in rectangular components. 
 If one supposes that the quantities (55) are developed in a Fourier series in the form: 
 

mx = cont. + cos(2 )i
x i i

i

m v tπ ε+∑     (56) 

 
then the energy that is emitted per second by radiation of frequency vi whose electrical 

vibration is parallel to the x-axis will be equal to 
4

4 2
2

64
( )

3
i

i xv m
c

π
. 

 Knowing the electric moment of a distribution will then permit one to predict the 
frequencies, polarizations, and intensities of the emitted radiation. 
 According to the classical way of thinking, radiation is emitted in a continuous 
fashion, and radiated energy is progressively borrowed from the motion of the electric 
distribution, which will be a motion that dies away as a consequence.  Things present 
themselves very differently in quantum theory: Radiation is emitted in the form of a 
quantum hv during the transition from one quantum state to the other.  In order to 
evaluate the intensity of the energy that is emitted in the form of radiation by an 
assemblage of atomic emitters, one must argue statistically as follows: If Nn is the 
number of atoms in the energy state En then there will be a certain probability Pnm dt that 
one of those atoms will pass to the state with energy Em during the time interval dt, and 
the energy that is radiated per second will be (if one supposes that Nn is very large, so its 
decrease will be negligible): 

Nn Pnm (En – Em) = Nn Pn hvnm .   (57) 
 
 The problem is to evaluate the probability Pnm .  In order to do that, Bohr started with 
a very fertile idea, namely, correspondence.  He assumed that one must recover the 
classical laws asymptotically for very close stationary states that correspond to large 
values of quantum numbers, and one can then state certain rules for the prediction of 
intensities and polarization.  The development of the new mechanics has permitted us to 
make the rules that Bohr presented more precise. 



§ 4.  Selection rules in wave mechanics. 77 

 In order to understand how one can arrive at the new rules for predicting the 
intensities and polarizations, we begin by arguing as Schrödinger first did.  Consider an 
atomic system with one electron whose wave function is: 
 

Ψ = 
2

( , , )
n

i
E t

h
n n

n

c a x y z e
π

∑ .    (58) 

 
 We have seen that one can associate it with the mean electricity distribution that is 
defined by the density δ = − ε ΨΨ*; the electric moment that corresponds to it is: 
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etc.  Now, the integral that appears in the right-hand side of the last equation in (59) is the 
with indices mn of the matrix that is generated by the operator x in the system of ai .  If 
one denotes it by Xmn then one can write (59) in the form: 
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 The frequencies that appear in the development (60) are precisely the Bohr 
frequencies vmn = (En – Em) / h .  It is then entirely natural to think that a set of atoms that 
is found in the state that is defined by the wave function (58) will emit a line of frequency 
vmn with an intensity that is proportional to vmn

2 | Xmn |
2. 

 However, as we saw, the fact that the radiation is emitted as quanta that are linked 
with the transitions between stationary states obliges us to depart from the classical image 
of an electric distribution of radiation of density – e ΨΨ* that radiates all of the Bohr 
frequencies simultaneously and continuously.  Conforming to the spirit of the new 
mechanics itself, we are constrained to adopt a purely statistical statement.  Here is the 
statement that we must adopt in order to avoid any contradiction: 
 
 Let there be an assemblage of identical atoms for which one has proper functions an 
for the Hamiltonian operator, and as a result, components of the matrix that take the 
form: 

Xmn = m na x a dτ∗ ⋅∫ . 

 
Suppose that there are Nn atoms in the state with energy En in that assemblage.  The 
quantity of energy that is emitted per second by the set of atoms in the form of radiation 
of frequency vmn = (En – Em) / h that vibrates electrically parallel to the x-axis will then 

be equal to 
4

4 2
3

64
| |

3n nm mnN X
c

π ν . 

 
 Upon comparing this with (57), one will see that the probability [Pnm]x for the 
transition that produces the radiation in question will be given by: 
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[Pnm]x =
34

2
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64
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mnX
c h

νπ
.    (61) 

 
 That is then the transition probability per unit time for an atom in the state En to go to 
the state Em with emission of radiation whose vibration is parallel to the x-axis.  When the 
three probabilities [Pnm]x, [Pnm]y, and [Pnm]z are found to be zero simultaneously for the 
two states En and Em, the emission of radiation with frequency vmn will not actually 
happen.  One shows that the same thing will be true for all transitions that do not 
simultaneously satisfy the relations: 

δl = 1,  δm = 
0

1


 ±

.    (62) 

 
 Wave mechanics then permits us to justify the selection rules for the quantum 
numbers l and m.  Of course, it cannot justify the third selection rule that we encountered 

δj = 
0

1


 ±

, since it ignores the number j.  We shall see that Dirac’s theory permits one to 

recover all three selection rules. 
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GENERAL PRINCIPLES OF 

DIRAC’S THEORY OF THE MAGNETIC 

AND ROTATING ELECTRON  

 



 

CHAPTER IX 
 

PAULI’S ATTEMPT 
 
 

1.  Electron rotation and the polarization of light 
 
 We saw that wave mechanics, in its original form, did not resolve any of the problems 
that one was led to attach to the existence of proper magnetism for the electron.  It has 
then become obvious that wave mechanics will remain incomplete as long as it does not 
contain an element that would correspond to that proper magnetism.  However, the idea 
of a spinning, magnetic electron cannot be developed as easily in the new theory as it 
could in the old one.  Remaining in the context of classical concepts, Uhlenbeck and 
Goudsmit imagined the classical electron to be a small sphere of negative electricity in 

rotation that presented a angular momentum that was equal to 
1

2 2

h

π
⋅  and a magnetic 

moment with the same axis that is equal to a Bohr magneton 
04

eh

m cπ
.  However, in wave 

mechanics, it seems to be forbidden to make a representation that is also precise, and one 
must always introduce the language of probabilities. 
 In order to have some idea of the manner by which one must pose the problem, it is 
good to reflect on the manner by which one defines the polarization of the light quantum 
using the new ideas.  Consider a sheaf of rectilinearly polarized light that propagates in 
the oz direction. 
 Let ox and oy be two axes that are perpendicular to oz.  The normal vector to oz has 
the form: 

a0 sin 2πv 
z

t
c

ϕ − + 
 

, 

 
and it has components along ox and oy whose amplitudes are given by the formulas: 
 

ax = a0 cos θ,  ay = a0 cos θ,     (1) 
 
if one lets θ denote the angle between that vector and ox; the light intensity of the sheaf is 

2
0a . 

 If one places a Nicol prism that lets only vibrations that are parallel to ox pass in the 
path of the sheaf then the light vector after the Nicol will be reduced to ax sin 2πv 

z
t

c
ϕ − + 

 
, and the intensity will be 20a  cos2 θ.  If one then turns the Nicol by 90o then 

the light vector in the transmitted vibration will be parallel to oy and equal to: 
 

ay sin 2πv 
z

t
c

ϕ − + 
 

; 
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the transmitted intensity will be 20a  sin2 θ. 

 How is one to interpret all of this if one is to assume the existence of photons?  If one 
attributes a polarization to the photons individually then the causal description of the 
phenomenon will become impossible.  Indeed, since one is, in some way, constrained to 
attribute the polarization that is defined by the light vector of the incident wave to the 
incident photon, one cannot perceive how it would be possible to explain causally why 
certain photons do not traverse the Nicol, while other ones do traverse it by taking a 
polarization that is directed along ox, for example.  Upon adopting the probabilistic 
viewpoint of the new mechanics, one must consider that one cannot attribute a well-
defined polarization to the incident photon, but one must only define the probability for 
the photon to reveal itself as having a polarization that is parallel to ox upon traversing 
the Nicol with the aid of the associated light wave; that probability will be cos2 θ.  One 
can say that before traversing the Nicol the photon had a probability of cos2 θ that it 
would reveal itself to be polarized parallel to ox and a probability of sin2 θ that it would 
reveal itself to be polarized parallel to oy. 
 Now return to the electron spin.  The hypothesis of the spinning, magnetic electron 
leads one to associate two directed magnitudes with the electron that are proportional to 
each other, namely, the proper magnetic moment and the proper angular momentum.  
Whereas the polarization of the photon is defined by a direction that has no sense to it, 
the spin vector for the electron has both a direction and a sense.  However, just as we 
cannot attribute a definite polarization to the photon, we cannot attribute a definite spin to 
an individual electron in a theory of the magnetic electron that conforms to the general 
principles of the new mechanics.  The only thing that we can speak of is the probability 
that an experiment that permits us to determine the direction of the spin of an electron 
will give this or that result. 
 It was upon that fundamental idea that Pauli based a first attempt at a theory of the 
magnetic electron in the context of wave mechanics.  We must elaborate a little bit upon 
that attempt, because it guided Dirac in the development of his more complete theory. 
 
 
 2.  Pauli’s theory. – Pauli (19) made a first attempt to neatly pose the problem of the 
magnetic electron in the context of the general ideas of the new mechanics. 
 If one considers a system of rectangular axes then any experiment that permits one to 
assign a value to the component of the moment of proper rotation of an electron along oz 

will give either +
1

2 2

h

π
⋅  or –

1

2 2

h

π
⋅  for a result, from the Uhlenbeck-Goudsmit picture.  

Moreover, it is natural to suppose that one must associate the electron, not with one 
function Ψ, but two functions Ψ1(x, y, z, t) and Ψ2(x, y, z, t), in such a way that | Ψ1 |

2 dx 
dy dz measures the probability for the coordinates of the electron at time t to be found in 

the interval dx dy dz and for the z component of its angular momentum to be + 
1

2 2

h

π
⋅ , 

while | Ψ2 |
2 dx dy dz measures the probability for the coordinates at time t to be found in 

                                                
 (19) Zeitschrift für Physik 43 (1927), pp. 601.  
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the interval dx dy dz and the z component of the angular momentum to be − 
1

2 2

h

π
⋅ . Pauli 

therefore introduced the idea that in order to take into account the magnetism of the 
electron, one must increase the number of functions Ψ.  Naturally, the normalization 
condition will become: 

2 2
1 2| | | | Ψ + Ψ ∫∫∫  dx dy dz = 1    (2) 

here. 
 Pauli looked for the equation of propagation that would determine the two wave 
functions Ψ.  In order to do that, he always started with the Hamiltonian function, but 
while taking the magnetic moment of the electron into account. 
 If one denotes the components of a unit vector s that points in the direction of the 

electron spin by sx, sy, sz then the magnetic moment will be 
04

eh

m cπ
⋅⋅⋅⋅ s . 

 The Hamiltonian function in a constant field will then be of the form H(x, y, z, px, py, 
pz, sx, sy, sz), and the quantities sx, sy, sz will appear linearly in it, as is easy to see.  Now, 
the artifice that permits wave mechanics to obtain the equation of propagation consists of 

replacing px, py, pz with the operators −
2

h

i xπ
∂⋅
∂

, etc., and writing: 
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H x y z s s s
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Ψ = EΨ  (3) 

 
for the monochromatic waves of frequency E / h.  However, we must have two equations 
for the two Ψ.  Guided by some general considerations that I will tacitly pass over, Pauli 
imagined replacing the components sx, sy, and sz , respectively, with three Hermitian 
matrices with 2 rows and 2 columns: 
 

s1 = 
0 1

1 0
,      s2 = 

0

0

i

i

−
+

,      s3 = 
1 0

0 1

+
−

 .   (4) 

 
 Moreover, he agreed to pose the following definition: If A is a matrix with 2 rows and 
2 columns then the operation AΨ will be defined by the relation: 
 

A Ψi = 
2

1
ik k

k

a
=

Ψ∑  (i¸ k = 1, 2),    (5) 

 
which is a natural generalization of some formulas that we encountered before that were 
concerned with matrices.  In particular, an application of the relation (5) to the matrices 
s1, s2, s3 will give: 
 s1Ψ1 =      Ψ2 , s1Ψ2 =    Ψ1 , 

s2Ψ1 = − iΨ2 ,       s2Ψ2 =   iΨ1 ,         (6) 
 s3Ψ1 =      Ψ1 , s3Ψ2 = − Ψ2 . 
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 Pauli then replaced equation (3) with the two equations: 
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s s s Ψ1 = EΨ1, 

(7) 
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s s s Ψ2 = EΨ2 . 

 
 These are two simultaneous equations that the functions Ψ1 and Ψ2 must satisfy. 
 However, the theory that was developed above makes the oz axis play a special role, 
since the wave functions Ψ1 and Ψ2 give the probabilities of the two possible values for 
the component of the spin that is parallel to oz.  If one wishes to obtain the probabilities 
for the component of the angular momentum that is parallel to another arbitrary axis OZ 

to be equal to +
1

2 2

h

π
⋅  or − 

1
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h

π
⋅  then one must take another system of rectangular axes 

OXYZ in which OZ is the third axis and then calculate the two wave functions in that 
system – say, Φ1(X, Y, Z) and Φ2(X, Y, Z) – whose moduli squared will give the desired 
probabilities, and naturally, since nothing will physically distinguish the system of axes 
OXYZ from system oxyz, the functions Φ must obey the following equations, which one 
will obtain immediately from (7) by transposition: 
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 The position of the axes OXYZ with respect to the axes oxyz can be defined in the 
following fashion: If we replace x, y, z, X, Y, Z with x1, x2, x3, X1, X2, X3, respectively, 
then we will have transformation formulas of the form: 
 

Xi = ij j
j

o x∑ ,      (9) 

 

in which the oij are elements of a real, orthogonal matrix ij ik jk
j

o o δ
 

= 
 
∑ .  In short, the 

matrix O defines the passage from the first system of axes to the second one. 
 If that matrix is known then how can one express the functions Φ with the aid of the 
functions Ψ?  That was the question that Pauli posed and solved.  If one starts with 
equations (7) and one replaces x, y, z as functions of X, Y, Z with formulas that are inverse 
to (9) then, as we will verify later on in a special case, one will obtain the equations: 
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1 2 3, , , , , , , ,
2 2 2

h h h
H X Y Z

i X i Y i Zπ π π
∂ ∂ ∂ − − − ∂ ∂ ∂ 

S S S Ψ1(X, Y, Z) = E Ψ1(X, Y, Z), 

(10) 
 

1 2 3, , , , , , , ,
2 2 2

h h h
H X Y Z

i X i Y i Zπ π π
∂ ∂ ∂ − − − ∂ ∂ ∂ 

S S S Ψ2(X, Y, Z) = E Ψ2(X, Y, Z). 

 
 The operator H in equations (10) is defined in the following manner: One writes the 
classical Hamiltonian function: 
 

H(X, Y, Z, pX, pY, pZ, sX, sY, sZ) 
 
in the system XYZ, which is a function in which appear the components sX, sY, and sZ of 
the unit vector that points along the proper magnetic moment of the electron.  One then 

replaces, on the one hand, pX, pY, pZ with, −
2

h

i Xπ
∂

∂
, etc., resp., and on the other hand, sX, 

sY, sZ with the Hermitian matrices SX, SY, SZ, resp., which are defined by the relations: 
 

Si = ij j
j

o∑ s ,     (11) 

 
by starting with the si that are defined by (4).  The Si will always figure linearly in the 
operator H that is formed in this way.  Finally, the functions Ψ1(X, Y, Z) and Ψ2(X, Y, Z) 
in formulas (10) are obtained by starting with Ψ1(x, y, z) and Ψ2(x, y, z) and replacing x, 
y, z with their expressions in terms of X, Y, Z. 
 Pauli then proved [and we shall carry out an analogous proof in Dirac’s theory (20)] 
that that there always exists a unitary matrix Λ with two rows and two columns such that 
one will have: 

Si = Λ−1 si Λ,  (Λ−1 = Λ+) i = 1, 2, 3.  (12) 
 
 In other words, there exists a canonical transformation that takes each of the si to the 
corresponding Si .  The matrix Λ corresponds to an operation that is defined by the 
formula (5), and upon applying that operation to the two sides of the equations (10), one 
will obtain: 
 

 Λ 1 2 3, , , , , , , ,
2 2 2

h h h
H X Y Z

i X i Y i Zπ π π
∂ ∂ ∂ − − − ∂ ∂ ∂ 

S S S Ψ1 = E ΛΨ1, 

(13) 

 Λ 1 2 3, , , , , , , ,
2 2 2

h h h
H X Y Z

i X i Y i Zπ π π
∂ ∂ ∂ − − − ∂ ∂ ∂ 

S S S Ψ2 = E ΛΨ2 , 

 

                                                
 (20) Cf., Chapter XI, paragraph 2.  
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in which the Ψ are expressed in terms of X, Y, Z.  Since the Si figure linearly in H, ΛH 
contains the terms ΛSi linearly, which are equal to si Λ, from (12).  Since Λ commutes 
with X, ∂ / ∂X, etc., moreover, one will have: 
 

ΛH(…) Ψ1 = , , , , , , , ,
2 2 2 x y z

h h h
H X Y Z

i X i Y i Zπ π π
∂ ∂ ∂ − − − ∂ ∂ ∂ 

s s s Ψ1 = E ΛΨ1 , (14) 

 
and an analogous equation in Ψ2 .  Upon comparing this with (8), one will see that one 
has: 

Φ1(X,Y, Z) = ΛΨ1(X,Y, Z), Φ2(X,Y, Z) = ΛΨ2(X,Y, Z) .  (15) 
 

 Formulas (15) teach us how the wave functions Φ are deduced from the wave 
function Ψ because in each particular case if the matrix O is known then one can find the 
matrix Λ.  We shall give a concrete example in the following paragraph. 
 Of course, since Λ is unitary, the sum | Φ1 |

2 + | Φ2 |
2 will be equal to | Ψ1 |

2 + | Ψ2 |
2, 

which expresses the fact that the total probability of the two possible hypotheses on the 
sense of the angular momentum will always be unity. 
 
 
 3.  Example of an application of the preceding theory.  – In order to illustrate the 
theory of the preceding paragraph, it is useful to study a very simple example that was 
developed by Pauli himself, namely, that of an electron at rest in a magnetic field H. 
 First, take a system of axes oxyz such that the positive direction of oz coincides with 
the direction of H.  One will then have Hx = Hy = 0, Hz = H.  Upon introducing the Bohr 

magneton µ0 = 
04

eh

m cπ
, the Hamiltonian function will reduce to µ0 sz H (21), and one will 

have: 
µ0 s3 H Ψ1 = E Ψ1 ,  µ0 s3 H Ψ2 = E Ψ2  (16) 

 
for equations (7), or, due to (6): 
 

µ0 H Ψ1 = E Ψ1 ,  − µ0 H Ψ2 = E Ψ2 .  (16) 
 
 This system will have a solution for only E = ± µ0 H.  Since | Ψ1 |

2 + | Ψ2 |
2 = 1, one 

will have: 
 for E = µ0 H: Ψ1 = eiγ, Ψ1 = 0, 

(17) 
 for E = − µ0 H: Ψ1 = 0, Ψ1 = eiγ. 
 
 Therefore, for E = µ0 H, the magnetic axis of the electron certainly points to the 
positive z and for E = − µ0 H, it will certainly point to the negative z.  These are, in fact, 
the results that one must expect. 

                                                
 (21) In this paragraph, the letter H will no longer denote the Hamiltonian, but the magnitude of the 
magnetic field.  
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 Now take a second system of axes OXYZ such that the OZ axis makes an angle θ with 
the field H.  The classical Hamiltonian function will then be: 
 

µ0 (s ⋅⋅⋅⋅ H) = µ0 (sX HX + sY HY + sZ HZ), 
 

and, from (8), the wave functions Φ1 and Φ2 will be solutions of the equations: 
 
 µ0 [HX s1 + HY s2 + HZ s3] Φ1 = E Φ1, 

(18) 
 µ0 [HX s1 + HY s2 + HZ s3] Φ2 = E Φ2, 

 
which will give, upon making them explicit: 
 
 µ0 [(HX − iHY) Φ2 + HZ Φ1] = E Φ1, 

(19) 
 µ0 [(HX + iHY) Φ1 + HZ Φ2] = E Φ2 . 
 
 In order for these two homogeneous equations in Φi to be compatible, it is necessary 
that: 

0 0

0 0

( )

( )
X X Y

X Y X

H E H iH

H iH H E

µ µ
µ µ

− −
+ − −

 = 0;    (20) 

i.e.: 

E = 2 2 2
0 X Y ZH H Hµ± + +  = ± µ0 H .    (21) 

 
 Here, there are once more two cases to distinguish: 
 
 First case:  E = µ0 H . 
 
 One will then have: 
 

2

1

Φ
Φ

 = Z

X Y

H H

H iH

−
−

 = 
2 2

Z

X Y

H H

H H

−
+

(HX + i HY) = 
2

Z

P

H H

H

− ⋅⋅⋅⋅ HP e
iα, (22) 

 
upon setting α = arc tan HX / HX and letting HP denote the component of H that is normal 
to OZ.  One will then also have: 
 

2

1

Φ
Φ

 = 
(1 cos )

sin

H

H

θ
θ

−
 eiα = tan 

2

θ
 ⋅⋅⋅⋅ eiα.     (23) 

 
 Since | Φ1 |

2 + | Φ2 |
2 = 1, one must have: 

 

| Φ1 |
2 = cos 

2

θ
 

/ 2
2

i
e

α π−−
, | Φ2 |

2 = i sin 
2

θ
 

/ 2
2

i
e

α π−

.  (24) 
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 Second case: E = − µ0 H . 
 
 One then has: 
 

2

1

Φ
Φ

 = − Z

X Y

H H

H iH

+
−

 = −
2

Z

P

H H

H

+ ⋅⋅⋅⋅ eiα = − 1 cos

sin

θ
θ

+
eiα  = − cot 

2

θ ⋅⋅⋅⋅ eiα, (26) 

 
and, in turn: 

| Φ1 |
2 = 

2

1

1 cot
2

θ+
 = sin2 

2

θ
,  | Φ2 |

2 = cos2 
2

θ
,  (27) 

which permits one to set: 
 

Φ1 = i sin
2

θ ⋅⋅⋅⋅ 
/ 2

2
i

e
α π−−

,  Φ2 = cos
2

θ ⋅⋅⋅⋅ 
/ 2

2
i

e
α π−

.   (28) 

 
 The results thus-obtained signify − to take an example − that if a first experiment 
shows us that the electron points in the direction of the field with the energy of µ0H then 
the probability that a second experiment will show us that it points in the OZ direction 
will be cos2 θ / 2. 
 It is easy to calculate Pauli’s unitary matrices Λ in the simple example that was 
treated here.  Compare the functions Ψ in (17) (upon taking the arbitrary arguments γ and 
δ to be zero in order to the simplify things) with the functions Φ in (25) and (28).  We see 
that the unitary matrix Λ is equal to: 
 

Λ = 

/ 2 / 2

2 2

/2 / 2
2 2

cos sin
2 2

sin cos
2 2

e i e

i e e

α π α π

α π α π

θ θ

θ θ

− −− −

− −

⋅ ⋅

⋅ ⋅
,    (29) 

 
 The elements Λij, which are special cases of the Cayley-Klein parameters, satisfy the 
relation: 

Λ11 Λ22 – Λ12 Λ21 = 1.     (30) 
 One easily finds that: 

Λ+ = 22 12

21 11

Λ −Λ
−Λ Λ

,     (31) 

from which, one infers that: 
 

ΛΛ+ = 22 11 12 21 11 12 12 11

21 22 22 21 22 11 12 21

Λ Λ − Λ Λ −Λ Λ + Λ Λ
Λ Λ − Λ Λ Λ Λ − Λ Λ

 = 1;   (32) 

 
Λ is thus indeed unitary.  The form of Λ can be predicted by Pauli’s argument, moreover. 
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 4.  Insufficiency of Pauli’s theory. – We have given only a sketch of Pauli’s theory.  
That theory is not entirely satisfactory, in fact.  First of all, it is not consistent with the 
principle of relativity; viz., it only envisions spatial coordinate changes and not space-
time coordinate changes in the relativistic sense.  Moreover, it does not lead to a 
prediction of the hydrogen spectrum that is completely correct. 
 For these reasons, we shall not study it any further, but we must remark that it does 
introduce the following essential ideas: 
 
 1. The magnetism of the electron corresponds to the existence of several functions 
Ψ. 
 
 2. The wave functions Ψ must permit one to define the probability of the possible 
orientations for the spin in a certain direction. 
 
 3. One can preserve the form of the equations of propagation while changing the 
coordinate axes, but the wave functions will then transform in a certain manner that is 
defined by a matrix Λ. 
 
 Darwin (22) made another attempt to introduce the magnetism of the electron into 
wave mechanics in a manner that conformed to the principle of relativity: He sought to 
define four functions Ψ that were the components of a space-time vector.  The attempt 
was not entirely successful, and he then lent his support to Dirac’s theory, in which four 
functions Ψ also figure, but they are not the components of a space-time vector. 
 
 

___________ 

                                                
 (22) Proceedings of the Royal Society A 116 (1927), pp. 227.  



 

CHAPTER X 
 

DIRAC’S THEORY  
_____ 

 
 

1.  Review of previous results 
 

 In order to introduce the idea of the proper magnetism and proper rotation of the 
electron into the equations wave mechanics, Dirac started with some considerations that 
were more general than those of Pauli.  He assumed that the equations of wave mechanics 
must be made to agree with the principle of special relativity, but he criticized the manner 
by which that agreement had been sought.  In order to understand his criticisms, we shall 
first rapidly recall how we have written the equations of wave mechanics for a wave 
function Ψ. 
 The general equation of propagation for a corpuscle in non-relativistic wave 
mechanics is: 

, , , , , ,
2 2 2

h h h
H x y z t

i x i y i zπ π π
 ∂ ∂ ∂− − − Ψ ∂ ∂ ∂ 

 = 
2

h

i tπ
∂Ψ
∂

,   (1) 

 
in which H is the Hamiltonian operator.  In the case of a corpuscle of mass m that 
displaces in a field that is characterized by a potential U (x, y, z, t), one will have: 
 

− 
2

28

h

mπ
∆Ψ + U (x, y, z, t) Ψ = 

2

h

i tπ
∂Ψ
∂

    (2) 

 
 If the corpuscle carries a charge – ε and moves in an electrostatic field that is 
derivable from an electric potential V (x, y, z, t) then one will have U = ε V, and (2) can 
be written: 

− 
2

28

h

mπ
∆Ψ + ε V (x, y, z, t) Ψ = 

2

h

i tπ
∂Ψ
∂

.   (3) 

 
 In particular, if the charged corpuscle is an electron then one must set ε = − e in (3). 
 We have seen that in the non-relativistic theory, the necessarily-positive quantity 
ΨΨ* represents the probability density of presence, and the total probability thus-defined 
is conserved (viz., equal to unity) in the course of time.  The quantity ε ΨΨ* (which will 
be − e ΨΨ* for the electron) is the mean electric charge density that one uses to calculate 
the emitted radiation. 
 If one would like to construct a theory of wave mechanics that is accord with the 
principles of special relativity then one will immediately obtain a new equation of 
propagation that will replace (1) by a very natural induction.  We have seen that for a 
corpuscle of mass m and charge ε that displaces in an electromagnetic field that is defined 
by a scalar potential V (x, y, z, t) and a vector potential A(x, y, z, t), that new equation can 
be written: 
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2 2

2
, ,

1

2 2 x
x y z

h h
V A

c i t i x
ε ε

π π
∂ ∂   − Ψ − + Ψ   ∂ ∂   

∑ = 2 2
0m c Ψ .  (4) 

 
 For an electron, equation (4) will take the form: 
 

2 2

2
, ,

1

2 2 x
x y z

h h e
eV A

c i t i x cπ π
∂ ∂   + Ψ − − Ψ   ∂ ∂   

∑  = 2 2
0m c Ψ .  (5) 

 
 We introduce the notations: 
 

 P1 = −
2 x

h e
A

i x cπ
∂ +
∂

, P2 = −
2 y

h e
A

i y cπ
∂ +
∂

, 

(6) 

 P3 = −
2 z

h e
A

i z cπ
∂ +
∂

, P4 = 
2

h e
V

i t cπ
∂ +
∂

. 

 
 That will permit us to replace equation (5) with: 
 

3
2 2 2 2

4 0
1

i
i

P P m c
=

 − − 
 

∑ Ψ = 0.     (7) 

 
 As we have seen, the relativistic equations of propagation (4)-(7) no longer permitted 
us to take the quantity ΨΨ* to be the probability density of localization because the 
integral of that quantity over all space was no longer necessarily constant in the course of 
time.  We had to adopt a more complicated expression that was written: 
 

ρ = −
2

0 04

h e

m c t t m cπ

∗
∗ ∂Ψ ∂ΨΨ − Ψ + ∂ ∂ 

V ΨΨ*   (8) 

 
in the case of the electron (ε = − e), which is an expression that will reduce to ΨΨ* when 
the Newtonian approximation is sufficient.  Here, the mean electric charge density will be 
ρ ε = − ρ e, with the value (8) for ρ. 
 
 
 2. Criticisms of equations (4)-(8) that were addressed by Dirac. – Dirac 
addressed some serious criticisms of the attempt that we just recalled at defining 
relativistic wave mechanics.  In particular, he attacked the expression (8) for the 
probability density.  Since that expression is imposed by the form itself of the equation of 
propagation (7), that would amount to attacking that equation itself. 
 We shall summarize Dirac’s arguments.  A first criticism that one can address in the 
expression (8) for ρ is that it is not necessarily positive-definite, although a negative 
value of ρ can obviously have no physical meaning.  Another criticism that was pointed 
out already at the end of Chapter VII is the following one: The general principles of the 
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new mechanics demand that no matter what form the adopted equation of propagation 
might take, the probability that one finds for the coordinates of the corpuscle – i.e., of the 
values that are found in the intervals x → x + dx, y → y + dy, z → z + dz – will be ΨΨ* dx 
dy dz, and that demand is not consistent with formula (8). 
 Faced with these difficulties, Dirac maintained that the probability density of 
localization must necessarily have the always-positive form ΨΨ*, or if one (with Pauli) 
assumes the existence of several wave functions Ψi then it must necessarily have the 
likewise-always-positive form i i

i

∗Ψ Ψ∑ .  However, upon adopting that postulate, one 

will be led to a conclusion of paramount importance: The true equation (or equations) of 
propagation for relativistic wave mechanics must be of first-order with respect to the four 
variables x, y, z, t.  We shall present his reasoning: 
 The non-relativistic equation (1) is of first order in time, and the corresponding 
expression for the probability density is ΨΨ*.  If one is given the initial form Ψ (x, y, z, 
0) then it will be found to be determined completely by the equation of propagation, and 
as a result, one can say that when one gives the initial ΨΨ*, the ultimate evolution of the 
density will be determined.  One understands that the conservation of probability (and 
electricity) will then be a necessary consequence of the equation of propagation itself, as 
we have proved.  Things are no longer the same in the case of the relativistic equation 
(4).  Since that equation is of second order in t, one must, in fact, give values to Ψ and 
∂Ψ / ∂t at the initial instant in order for the wave function to be determined. 
 One must then adopt the expression (8) for the probability density if one wishes that 
conservation of probability should result from the equation of propagation.  Now, adopt 
the postulate that the probability density must necessarily have the form ΨΨ* or 

i i
i

∗Ψ Ψ∑ , as Dirac did.  We shall see that the equation (or equations) of propagation 

must then be of first order in t, and that equation (4) cannot, in turn, be exact. 
 Indeed, if the equation of propagation is of second order in t then its solution will be 
determined only if one gives the initial values in Ψ and ∂Ψ / ∂t. 
 Suppose that one is given only the initial Ψ, but not the initial ∂Ψ / ∂t.  With Dirac’s 
hypothesis, the initial density will then be known, since it depends upon only Ψ, but the 
ultimate evolution of the function Ψ will not be.  Upon giving an arbitrary initial form to 
∂Ψ / ∂t, if one starts with a known initial form for the density then one can arrive at no 
particular ultimate state of evolution for that density, and the conservation of probability 
will not be automatic.  Dirac then concluded that the equation of propagation would be of 
first order in t, and since the principle of relativity always makes the spatial coordinates 
and time play a symmetric role, it must be of first order with respect to the four variables, 
x, y, z, t.  The same reasoning and the same conclusion are valid when there are several 
functions Ψ and several simultaneous equations of propagation. 
 Dirac was then compelled to seek one or more equations that would be of first order 
in the variables x, y, z, t in order to replace equation (4).  We shall see how he succeeded 
in that quest. 
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 3. The Dirac equations in the absence of a field. – In order to establish the new 
equations, Dirac started with the case of the free motion of the electron in the absence of 
any electromagnetic field. 
 One will then have V = A = 0, and the operators Pi [formula (6)] will become: 
 

p1 = −
2

h

i xπ
∂
∂

,      p2 = −
2

h

i yπ
∂
∂

,       p3 = −
2

h

i zπ
∂
∂

,      p4 = − 1

2

h

i c tπ
∂
∂

. 

 
 In this simple case, one can assume with some certainty that the function Ψ will 
satisfy the equation: 
 

∆Ψ −
2

2 2

1

c t

∂ Ψ
∂

 = 
2

2 2
02

4
m c

h

π Ψ ,  or 
3

2 2 2 2
4 0

1
i

i

p p m c
=

 − − 
 

∑ Ψ = 0, (10) 

 
because in that case, it would result from fundamental considerations that grow out of 

wave mechanics that the monochromatic plane wave with frequency 
W

h
= 

2
0

21

m c

h β−
 and 

wavelength λ = 
h

p
= 

2

0

1h

m v

β−
 would have to be a solution, and one would effortlessly 

verify that the same thing would be true for equation (10). 
 However, equation (10) is of second order, and we would like to have equations of 
first order.  In order to arrive at that, Dirac supposed that there existed several wave 
functions Ψ1, Ψ2, …, ΨN and that each of the them satisfied the equation: 
 

3
2 2 2 2

4 0
1

i
i

p p m c
=

 − − 
 

∑ Ψk = 0   (k = 1, …, N),   (11) 

 
but these equations of second order must be consequences of the true equations of 
propagation, which are of first order. 
 Dirac wrote those true first-order equations of propagation in the symbolic form: 
 

(p4 + α1 p1 + α2 p2 + α3 p3 + α4 m0 c) Ψ = 0.   (12) 
 
 The symbolic equation (12) signifies that one has: 
 

3

4 4 0
1

i i
i

p p m cα α
=

 + + 
 

∑  Ψk = 0   (13) 

for each Ψk . 
 The αi are matrices with N rows and N columns, and one defines the operation αi Ψk , 
as we did already in our study of Pauli’s theory, by the formula: 
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αi Ψk = ,
1

N

i kl l
l

α
=

Ψ∑ ,      (14) 

 
in which α i ,kl denote the indices kl of the matrix αi . 
 However, equations (13) must have equations (11) as a consequence, and that will 

impose certain conditions upon the matrices αi .  Indeed, apply the operator p4 −
3

1
i i

i

pα
=
∑ − 

α4 m0 c to equation (13); we will find that: 
 

23
2

4 4 0
1

i i
i

p p m cα α
=

  − +  
   
∑ Ψ = 0,    (15) 

 
and equation (15) will coincide with (11) only if one sets: 
 

αi 
2 = 1, αi αj + αj αi = 0.    (16) 

 
 We must then impose the conditions (16) on the matrices αi .  Moreover, we also 
impose the condition upon them that they must be Hermitian, like all of the matrices that 
enter into the new mechanics. 
 Dirac sought to make the number N of wave functions as small as possible.  For N < 
4, one cannot find four Hermitian matrices that satisfy the conditions (16).  On the 
contrary, it is possible to find them for N = 4, and it will be convenient to adopt the 
following αi matrices: 
 

α1 = 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 
 
 
 
  

, α2= 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

+
−

+
−

 
 
 
 
  

, α3 = 

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

−

−

 
 
 
 
  

, α4 = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−
−

 
 
 
 
  

(17) 

 
 They are obviously Hermitian, and furthermore, they have the matrix 1 for their 
squares and anti-commute with each other, as the conditions (16) would desire. 
 Briefly, we (with Dirac) shall assume the existence of four functions Ψi that satisfy 
the four simultaneous first-order equations (13).  These four equations can be written 
explicitly with the choice (17) of matrices αi : 
 
 (p4 + m0 c) Ψ1 + (p1 + i p2) Ψ4 + p3 Ψ3 = 0, 
 
 (p4 + m0 c) Ψ2 + (p1 − i p2) Ψ3 − p3 Ψ4 = 0, 

(18) 
 (p4 − m0 c) Ψ3 + (p1 + i p2) Ψ2 + p3 Ψ1 = 0, 

 
 (p4 − m0 c) Ψ4 + (p1 − i p2) Ψ1 − p3 Ψ1 = 0. 
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Upon starting with the system (18), one can see in detail how that system has the second-
order system (11) (with N = 4) as a consequence. 
 For example, apply the operator p4 − m0 c to the first equation (18), and the operator 
p1 + i p2 , which commutes with the preceding one, to the fourth equation; one will 
obtain: 
 2 2 2

4 0( )p m c− Ψ1 + (p4 − m0 c) (p1 + i p2) Ψ4 + (p4 − m0 c) p3 Ψ3  = 0, 

(19) 
 (p1 + i p2) (p4 − m0 c) Ψ4 + 2 2

1 2( )p p+ Ψ1 − (p1 + i p2) p3 Ψ2  = 0, 

 
so the result of eliminating Ψ4 will be: 
 

2 2 2
4 0( )p m c− Ψ1 + 2 2

1 2( )p p+ Ψ1 + (p1 + i p2) p3 Ψ2 + (p4 − m0 c) p3 Ψ3 = 0.  (20) 

 
 However, upon applying the operator p3 to the third equation (18), one will find: 
 

p3 (p4 − m0 c) Ψ3 = − p3 (p1 + i p2) Ψ2 − 2
3p Ψ1 ,   (21) 

 
and since the pi commute with each other, upon substituting this in (20), one will obtain 
the equation: 

3
2 2 2 2

4 0
1

i
i

p p m c
=

 − − 
 

∑  Ψ1 = 0,    (22) 

 
and one will similarly find second-order equations that relate to the other three Ψ.  One 
has then verified a certain result in advance, since the matrices (17) satisfy the conditions 
(16). 
 The Dirac equations (18) present a very asymmetric aspect: The z-axis and the 
operator p3 clearly play a special role in them. 
 The Ψi that are solutions to these equations are then initially coupled to the choice of 
axes as in Pauli’s theory; they must be used in order to calculate the probabilities for 
which the z-axis plays a special role.  If one takes other axes then one can write equations 
of propagation that still have the form (18), but they will have other functions Ψi for 
solutions that are coupled to the preceding ones by transformations that are analogous to 
the ones that we encountered in Pauli’s theory; we shall examine that point in the 
following chapter. 
 There are some interesting remarks that can be made about the passage from the old 
equation (10) to equations (18).  That passage is somewhat analogous to the passage from 
the equation for light waves to Maxwell’s equations.  Indeed, the equation of propagation 
of light waves (in vacuo) is: 

∆u −
2

2 2

1 u

c t

∂
∂

 = 0.     (23) 

 
 It is a second-order equation in which u denotes a quantity that characterizes the light 
perturbation.  In electromagnetic theory, u can be any of the six components of the two 
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fields of the light wave – viz., the electric field and the magnetic field.  One will then 
have six equations of type (23) for the six quantities hx, hy, hz, Hx, Hy, and Hz . 
 The passage from those equations of propagation to Maxwell’s equations consists 
precisely of replacing the second-order equations with simultaneous first-order equations 
that couple the six quantities hx, …, Hz in such a fashion that the six second-order 
equations of type (23) will be a consequence.  That is indeed also the path that Dirac 
followed on order to pass from the second-order equations (15) to the first-order 
equations (15). 
 If the wave of wave mechanics has any physical reality in the classical sense then one 
would expect that the four Ψi would be the four components of a space-time vector.  
However, we know today that the wave of wave mechanics has no physical reality in the 
classical sense: It is a complex expression that serves only as an intermediary in the 
calculations and permits one to define certain real expressions that do have some physical 
meaning, such as the probability density ΨΨ*.  In Dirac’s theory, the four Ψi do not by 
any means need to have the character of vector components, and we effectively see that 
they do not.  However, there exist certain real combinations of these quantities that have 
a physical sense (as a probability) and possess a vectorial character.  We expect to learn 
about them soon. 
 
 
 4. The Dirac equations in an electromagnetic field. – Equations (18) are suitable 
only in the case where a field is absent.  What must one take to be the equations of 
propagation when the electron displaces in a field that is defined by a scalar potential V 
and a vector potential A?  Dirac answered that question by saying: It suffices to replace 
the operations pi of the formulas (9) with the operators Pi of the formulas (6) in the 
symbolic equation (12). 
 If one assumes Dirac’s postulate then the equations of propagation in an 
electromagnetic field can be written symbolically as: 
 

(P4 + α1 P1 + α2 P2 + α3 P3 + α4 m0 c) Ψ = 0,        (24) 
or, explicitly: 
 (P4 + m0 c) Ψ1 + (P1 + i P2) Ψ4 + P3 Ψ3 = 0, 
 
 (P4 + m0 c) Ψ2 + (P1 − i P2) Ψ3 − P3 Ψ4 = 0, 

(25) 
 (P4 − m0 c) Ψ3 + (P1 + i P2) Ψ2 + P3 Ψ1 = 0, 

 
 (P4 − m0 c) Ψ4 + (P1 − i P2) Ψ1 − P3 Ψ2 = 0. 
 
 What is truly remarkable is that these equations, which are obtained by means of 
general considerations that are completely independent of the difficulties that were 
pointed out in the first part of this book contain the properties of the rotating, magnetic 
electron!  We shall begin to understand this fact by seeking to define second-order 
equations that generalize equations (15) in the case where an electromagnetic field is 
present upon starting with equations (25). 



96 Chapter X – Dirac’s theory 

 In order to do that, we apply the operator P4 – 
3

4 0
1

i i
i

P m cα α
=

 + 
 
∑  to the symbolic 

equation (24).  We will then obtain: 
 

3 3

4 4 0 4 4 0
1 1

i i i i
i i

P P m c P P m cα α α α
= =

  − − + +  
  

∑ ∑ Ψ = 0.   (26) 

 
 If we develop the indicated operators while taking the relations (16) into account then 
we will find that: 
 

3 3
2 2 2 2

4 4 4 0
1 1

( ) ( )i i i i i j i j j i j i
i i i j

P P P PP P PP P P m cα α α α α
= = ≠

 
+ − − − + − 

 
∑ ∑ ∑ Ψ = 0.  (27) 

 
 We now recall that the electromagnetic fields are coupled to the potentials by the 
relations: 

h = − grad V − 
1

c t

∂
∂
A

,  H = rot A.   (28) 

 
 Upon taking into account the definitions (6) and the conditions (16), we will obtain, 
after a simple calculation: 
 

 
3

4 4
1

( )i i i
i

P P PPα
=

−∑   = − 
2

h e

i cπ
(α1 hx + α2 hy + α3 hz), 

(29) 

 ( )i j i j j i j i
i j

PP P Pα α α α
≠

+∑  = − 
2

h e

i cπ
(α2 α3 Hx + α3 α1 Hy + α1 α2 Hz). 

 
 Equation (27) will then become: 
 

 
3

2 2 2 2
4 0 1 2 3

1

( )
2i x y z

i

e h
P P m c h h h

c i
α α α

π=

 − − − ⋅ + +


∑  

+ 2 3 3 1 1 2( )
2 x y z

e h
H H H

c i
α α α α α α

π
⋅ + + 

Ψ = 0. (30) 

 
 If just the first three terms in brackets exist then one will be back to equation (5), 
which will then be valid for each Ψi .  The new element that is introduced by Dirac’s 
theory is the intervention of the supplementary terms in (30).  In order to discover the 
sense of those supplementary terms, look at the non-relativistic equation (2), which we 
can write in the form: 
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3
2

0 4 0
1

2 2i
i

m c p p m U
=

 ⋅ − − 
 

∑ Ψ = 0.    (31) 

 
 Upon comparing (31) with (30), we perceive that we can consider the supplementary 
terms in question to be the potential energy terms, but on the condition that one must 
divide by – 2m0 , except that the role that was played by m0 in the previous theories will 
be played by – α4 m0 in Dirac’s mechanics, as we shall see later on (23).  We then agree to 
define potential energy terms by pre-multiplying the two supplementary terms in (30) by 

0 4

1

2mα
= 4

02m

α
.  Taking into account the commutation relations between the αi , that will 

lead us to set: 
 

 Ue = − 
04

eh

m cπ
 i (α1 α4 hx + α2 α4 hy + α3 α4 hz), 

(32) 

 Um = − 
04

eh

m cπ
 i (α2 α3 α4 Hx + α3 α1 α4 Hy + α1 α2 α4 Hz). 

 
 Now, one must remember that a body with an electric moment P that is placed in an 

electric field h will possess a potential energy of – (P ⋅⋅⋅⋅ h), while a body with a magnetic 

moment of M that is placed in a magnetic field H will possess a potential energy of − 

(M ⋅⋅⋅⋅ H).  We are then led to attribute a magnetic moment to the electron whose 

components are: 
 

Mx =
04

eh

m cπ
i α2 α3 α4 ,   My =

04

eh

m cπ
i α3 α1 α4 ,   Mz =

04

eh

m cπ
i α1 α2 α4 , (33) 

 
and an electric moment whose components are: 
 

Px =
04

eh

m cπ
i α1 α4 ,       Py =

04

eh

m cπ
i α2 α4 ,     Pz =

04

eh

m cπ
i α3 α4 . (34) 

 
 In order to speak more precisely, the quantities (33) and (34) are the operators that 

correspond to the components of the two moments.  Since 
04

eh

m cπ
 is the Bohr magneton, 

one sees that the Dirac equations automatically attribute a proper magnetism to the 
electron that is coupled to the Bohr magneton.  We then see the magnetism of the 
electron appear, and we will soon have occasion to make that first indication more 
precise.  Moreover, formulas (34) show us that the Dirac electron also possesses an 
electric moment whose significance we shall see later on. 
                                                
 (23) See Chapter XV, para. 4.  
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 The components of the two moments that were defined by (33) and (34) are 
operators, since they are expressed with the aid of the αi .  That should not surprise us, 
since we are accustomed to seeing physical quantities give way to operators in the new 
mechanics.  Moreover, it is easy to verify that the operators (33) and (34) are Hermitian,  
Indeed, since the αi are Hermitian and anti-commute with each other, products such as 
α1 α2 or α1 α2 α4 , for example, will be anti-Hermitian, and as a result, their product with 
i will be Hermitian.  The operators (33) and (34) will then indeed have the desired 
character for something that would represent physical quantities. 
 We then find that we have eliminated a difficulty that existed in Dirac’s original 
presentation, which wrote formulas (33) and (34) without the factor of α4, and thus 
obtained non-Hermitian components for the electric moment. 
 
 

____________ 
 



 

CHAPTER XI 
 

RELATIVISTIC INVARIANCE OF  
THE DIRAC EQUATION  

_____ 
 
 

1.  Invariance of the form of the Dirac equations under a Lorentz transformation. 
 

 The Dirac equations make the z-axis play a special role, and, as in Pauli’s theory, the 
wave function serves to answer some questions of probability in which the z-axis is 
involved.  If we would like to pose the same questions of probability for an axis oz′ that is 
distinct from oz then we must write the Dirac equations in a system where oz′ is the third 
axis.  We must be able to write the Dirac equations in the same form for all systems of 
axes, while the four wave functions transform in a certain fashion when we pass from one 
system of axes to the other. 
 Not only do the Dirac equations, like the Pauli equations, possess just that invariance 
of form with respect to spatial coordinate changes, but they are also invariant in form 
under all Lorentz transformations, and thus satisfy the principle of relativity. 
 One knows that a Lorentz transformation of the most general type can always be 
decomposed into three successive transformations.  Starting with the original system x, y, 
z, t of space-time coordinates, one performs: 
 
 1. A rotation around the oz axis, which is defined by formulas of the type: 
 

x = x′ cos α – y′ sin α,  y = y′ cos α + x′ sin α,  z = z′,  t = t′. (1) 
 
 2. A rotation around the oy axis, which is perpendicular to oz and is defined by: 
 

z = z′ cos θ – x′ sin θ,  x = x′ cos α + z′ sin α,  y = y′,  t = t′. (2) 
 
 3. A simple Lorentz transformation – i.e., the passage from one system oxyzt to a 
system o′x′y′z′t′ that is in uniform relative motion with respect to the first one, with the z 
and z′ axes sliding over each other, while the other axes remain parallel, respectively.  
One will then get the well-known transformation formulas: 

x = x′,  y = y′,  z = 
21

z ctβ
β

′ +
−

,  t = 
21

t x
c

β

β

′ ′+

−
,  (3) 

 
in which βc is the velocity of the second system with respect to the first one.  If we set: 
 

2

1

1 β−
 = cosh γ , 

21

β
β−

 = 2cosh 1γ −  = sinh γ   (4) 
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then formulas (3) can be written: 
 

x = x′,      y = y′,      z = z′ cosh γ + ct′ sinh γ,      ct = ct′ cosh γ + z′ sinh γ.  (5) 
 
 Upon combining three formulas of the types 1, 2, and 3, one can perform a Lorentz 
transformation of the most general type. 
 The invariance of form of the Dirac equations under a general Lorentz transformation 
will be proved if one can arrive at a solution of the following problem: Knowing that the 
Dirac equations: 

(P4 + α1 P1 + α2 P2 + α3 P3 + α4 m0 c) Ψ = 0   (6) 
 
admit the functions Ψ1 (x, y, z, t), Ψ2 (x, y, z, t), Ψ3 (x, y, z, t), Ψ4 (x, y, z, t) in a system of 
Galilean axes xyzt, show that in another system of Galilean axes x′y′z′t′, the Dirac 
equations: 

4 1 1 2 2 3 3 1 0( )P P P P m cα α α α′ ′ ′ ′+ + + + Ψ′ = 0,   (7) 

in which, one has: 

1P′= −
2 x

h e
A

i x cπ
∂ ′+

′∂
, …, 4P′= 1

2

h e
V

i c t cπ
∂ ′+

′∂
,  (8) 

 
will admit functions 1( , , , )x y z t′ ′ ′ ′ ′Ψ , 2( , , , )x y z t′ ′ ′ ′ ′Ψ , 3( , , , )x y z t′ ′ ′ ′ ′Ψ , and 4( , , , )x y z t′ ′ ′ ′ ′Ψ  

for solutions that can be expressed linearly as functions of Ψ1, …, Ψ4 by means of 
formulas that involve the parameters that define the passage from the system oxyzt to the 
system o′x′y′z′t′. 
 It suffices to solve the problem thus-posed for the three transformations 1, 2, and 3 
that were pointed out above, since any Lorentz transformation can be decomposed into 
transformations of those three types. 
 
 1. A rotation around oz: 
 
 Start with the equation: 
 
 (P4 + m0 c) Ψ1 + (P1 + i P2) Ψ4 + P3 Ψ3 = 0,  
 
 (P4 + m0 c) Ψ2 + (P1 − i P2) Ψ3 − P3 Ψ4 = 0,  

(9) 
 (P4 − m0 c) Ψ3 + (P1 + i P2) Ψ2 + P3 Ψ1 = 0,  
 
 (P4 − m0 c) Ψ4 + (P1 − i P2) Ψ1 − P3 Ψ2 = 0. 
 
 Since the change of variables is expressed by the formulas (1), one will have: 
 

P1 = 1P′  cos α − 2P′  sin α, P2 = 2P′  cos α − 1P′  sin α, P3 = 3P′ , P4 = 4P′ , (1′) 
 
and upon substituting this in (9), one will easily find that: 
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 4 0 1 1 2 4 3 3( ) ( )i iP m c P e i P e Pα α′ ′ ′ ′+ Ψ + + Ψ + Ψ = 0, 

 
 4 0 2 1 2 3 3 4( ) ( )i iP m c P e i P e Pα α− −′ ′ ′ ′+ Ψ + − Ψ − Ψ = 0, 

(10) 
 4 0 3 1 2 2 3 1( ) ( )i iP m c P e i P e Pα α′ ′ ′ ′− Ψ + + Ψ + Ψ = 0, 

 
 4 0 4 1 2 1 3 2( ) ( )i iP m c P e i P e Pα α− −′ ′ ′ ′− Ψ + − Ψ − Ψ = 0. 

 
 In these equations, the Ψi are assumed to be expressed as functions of the primed 
variables with the aid of the transformation relations (1).  Multiplying the first and third 
equations in (10) by e−iα / 2, and second and fourth one by eiα / 2, and adding them will 
give: 
 / 2 / 2 /2

4 0 1 1 2 4 3 3( ) ( )i i iP m c e P i P e P eα α α− −′ ′ ′ ′+ Ψ + + Ψ + Ψ  = 0, 

 
 / 2 / 2 /2

4 0 1 1 2 3 3 3( ) ( )i i iP m c e P i P e P eα α α−′ ′ ′ ′+ Ψ + − Ψ − Ψ  = 0, 

(11) 
 / 2 / 2 /2

4 0 1 1 2 1 3 3( ) ( )i i iP m c e P i P e P eα α α− − −′ ′ ′ ′− Ψ + + Ψ + Ψ  = 0, 

 
 / 2 / 2 /2

4 0 1 1 2 2 3 2( ) ( )i i iP m c e P i P e P eα α α′ ′ ′ ′− Ψ + − Ψ − Ψ  = 0. 

 
 The system (11) shows us that the functions i

′Ψ  are coupled to the functions Ψi by the 

simple formulas: 
 
 1′Ψ (x′, y′, z′, t′) = Ψ1 (x′, y′, z′, t′) e−iα / 2, 

 
 2′Ψ (x′, y′, z′, t′) = Ψ2 (x′, y′, z′, t′) eiα / 2, 

(12) 
 3′Ψ (x′, y′, z′, t′) = Ψ3 (x′, y′, z′, t′) e−iα / 2, 

 
 4′Ψ (x′, y′, z′, t′) = Ψ4 (x′, y′, z′, t′) eiα / 2, 

 
and the required proof is found in this case. 
 
 2. Rotation around oy: 
 
 Since the transformation of coordinates is given by (2), the transformation of Dirac 
wave functions is given by the formulas: 
 

 1′Ψ (x′, y′, z′, t′) = Ψ1 (x′, y′, z′, t′) cos
2

θ
+ Ψ2 (x′, y′, z′, t′) sin

2

θ
, 
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 2′Ψ (x′, y′, z′, t′) = Ψ2 (x′, y′, z′, t′) cos
2

θ − Ψ1 (x′, y′, z′, t′) sin
2

θ
, 

(13) 

 3′Ψ (x′, y′, z′, t′) = Ψ3 (x′, y′, z′, t′) cos
2

θ
+ Ψ4 (x′, y′, z′, t′) sin

2

θ
, 

 

 4′Ψ (x′, y′, z′, t′) = Ψ4 (x′, y′, z′, t′) cos
2

θ − Ψ3 (x′, y′, z′, t′) sin
2

θ
. 

 
 One proves this by an argument that is analogous to the one that was made for case 1. 
 
 3. Simple Lorentz transformation: 
 
 Since the transformation of coordinates is expressed by the formulas (5), that of the 
Dirac function will be given by: 
 

 1′Ψ (x′, y′, z′, t′) = Ψ1 (x′, y′, z′, t′) cosh
2

γ
+ Ψ2 (x′, y′, z′, t′) sinh

2

γ
, 

 

 2′Ψ (x′, y′, z′, t′) = Ψ2 (x′, y′, z′, t′) cosh
2

γ − Ψ1 (x′, y′, z′, t′) sinh
2

γ
, 

(13) 

 3′Ψ (x′, y′, z′, t′) = Ψ3 (x′, y′, z′, t′) cosh
2

γ
+ Ψ4 (x′, y′, z′, t′) sinh

2

γ
, 

 

 4′Ψ (x′, y′, z′, t′) = Ψ4 (x′, y′, z′, t′) cosh
2

γ − Ψ3 (x′, y′, z′, t′) sinh
2

γ
. 

 
 One again proves this in the same fashion, and the invariance in form of the Dirac 
equations for the most general Lorentz transformation is then proved. 
 One sees from formulas (12), (13), and (14) that the Ψi do not transform like 
coordinates.  As we have said already, they do not have the character of components of a 
space-time vector.  However, we hope to soon define certain expressions with the Ψi that 
do have a vectorial or tensorial character and are thus physically significant. 
 
 
 2.  A more synthetic proof of relativistic invariance. – We shall indicate a more 
synthetic proof of the invariance of the Dirac equations.  The proof that was developed by 
von Neumann is a generalization of the one that was employed by Pauli in order to prove 
the invariance of his equations with respect to the change of rectangular coordinates in 
space. 
 Take the Dirac equation in its symbolic form: 
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3

4 4 0
1

i i
i

P P m cα α
=

 + + 
 

∑ Ψ = 0,    (15) 

 
and first apply the operator αi .  We will then get (α4

2 = 1): 
 

3

4 4 4 0
1

i i
i

P P m cα α α
=

 + + 
 

∑ Ψ = 0.    (16) 

 
 We shall now take the variables of the Minkowski universe: 
 

x1 = x,  x2 = y,  x3 = z,  x4 = ict,  (17) 
 
in place of the variables x, y, z, t, and define the corresponding operators: 
 

 π1 = − 12 i

h e
A

i x cπ
∂ +

∂
 = P1, π2 = P2 , π3 = P3 , 

π4 = −
42

h e
iV

i x cπ
∂ +

∂
 = − 4P

i
.       (18) 

 
 Equation (16) is then written: 
 

3

4 4 4 0
1

i i
i

i i m cα π α α π
=

 + + 
 

∑ Ψ = 0.    (19) 

 
 With von Neumann, we then set: 
 

γ1 = i α4 α1 , γ2 = i α4 α2 , γ3 = i α4 α3 , γ4 =α4 .  (20) 
 
 It is easy to verify that one has: 
 

γi 
2 = 1, γi γj + γj γi = 0 (i ≠ j),   (21) 

 
which one can summarize by writing: 
 

γi γj + γj γi = 2δij ⋅⋅⋅⋅ 1,     (22) 
 
in which 1 is the identity matrix.  One also verifies that the γi are Hermitian. 
 With those notations, equation (19) will take the condensed form that is used 
frequently: 

4

0
1

i i
i

i m cγ π
=

 + 
 
∑  Ψ = 0.    (23) 
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 Now suppose that we make a change of Galilean axes by way of a general Lorentz 
transformation.  It is well-known in the theory of relativity that a general Lorentz 
transformation is equivalent to a rotation of the axes in the Minkowski universe.  The 
new variables ix′  after the transformation will then be coupled to the old variables xi by 

the formulas: 
xi = ij j

j

o x′∑ ,      (24) 

 
in which o is a matrix with four rows and four columns (1) that satisfy the orthogonality 
relation: 

ik ij
i

o o∑ = δkj .      (25) 

 
Now, it is obvious that the πi transform like the xi ; i.e., that: 
 

πi = ik j
i

o π ′∑ .      (26) 

 
 After the change of coordinates, equation (23) will then be written: 
 

4 4

0
1 1

i ij j
i j

o i m cγ π
= =

 
′ + 

 
∑ ∑ Ψ = 0,   (27) 

 
in which the functions Ψ must be expressed with the aid of new variables ix′ .  If we set: 

 

jγ ′  = ij i
i

o γ∑       (28) 

then we can replace (27) with: 
4

0
1

i j
i

i m cγ π
=

 ′ ′ + 
 
∑ Ψ = 0.    (29) 

 
 Equation (28) expresses the matrices jγ ′  as functions of the matrices γj .  If one would 

like to make its meaning more precise then one can write: 
 

,j mnγ ′  =
4

,
1

ij i mn
i

o γ
=
∑ ,      (30) 

 
in which, for example, γi,mn denotes the element of the matrix γi whose indices are m, n. 
 Since one has: 

,j mnγ ∗′  = 
4

,
1

ij i mn
i

o γ∗ ∗

=
∑ = 

4

,
1

ij i mn
i

o γ∗

=
∑ ≠ ,j mnγ ′ ,   (31) 

                                                
 (1) The matrix o is not real; those of its elements that contain the index 4 once will be pure imaginary.  
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by reason of the Hermiticity of the γi , one sees that, in general, the iγ ′  are not Hermitian, 

because not all of the oij are real. 
 It is easy to verify that the iγ ′  satisfy conditions of the form (22).  In fact, one has: 

 
 i j j iγ γ γ γ′ ′ ′ ′+   = ki k lj l ij l ki k

k l i k

o o o oγ γ γ γ⋅ + ⋅∑ ∑ ∑ ∑  

= ( )ki lj k l l k
k l

o o γ γ γ γ+∑∑      (32) 

  = 2ki lj kl
k l

o o δ⋅∑∑ = 2 ki kj
k

o o∑ = 2 δij . 

 
 The essential point of the argument is that there exists a matrix Λ with four rows and 
four columns such that one has: 
 

iγ ′  = Λ−1 γi Λ  (i = 1, 2, 3, 4).    (33) 

 
 If the relation (33) is true then the fact that the γi satisfy the relations (22) will imply 
that they satisfy the analogous relations: 
 

i j j iγ γ γ γ′ ′ ′ ′+  = 2 δij .     (34) 

 Equation (33) can be written: 
 

Λ iγ ′ = γi Λ  (i = 1, 2, 3, 4),    (35) 
 
so in order to prove the existence of the matrix Λ, one must show that there exist 16 
quantities Λkl that satisfy the 64 equations: 
 

4

,
1

kl i lm
l

γ
=

′Λ∑ = 
4

,
1

i kl lm
l

γ
=

Λ∑ ,    (36) 

 
in which the indices k, m, i can take on the values 1, 2, 3, 4.  The existence of the matrix 
is then by no means obvious a priori.  Meanwhile, we shall assume the existence of that 
matrix temporarily, and then justify that hypothesis a posteriori. 
 Before going any further, we remark that the matrix Λ cannot be unitary, in general.  
In fact, if it were unitary then we would have: 
 

Λ+ = Λ−1, Λ = (Λ−1)+,    (37) 
 
and as one will infer from (33) upon taking the adjoint equation: 
 

 iγ +′ = (Λ−1 γi Λ)+ = Λ+
iγ + (Λ−1)+,   (38) 

one will have: 

iγ +′ = Λ−1 γi Λ = iγ ′ ,     (39) 
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by virtue of (37) and the Hermiticity of γi . 
 It will then result that iγ ′  will be Hermitian, which is not generally true, as we have 

seen. 
 Now, recall equation (29) by introducing the relation (33).  It will become: 
 

4
1

0
1

j j
j

i m cγ π−

=

 
′Λ Λ + 

 
∑  Ψ = 0.    (40) 

 
 Multiply this on the left by Λ, and upon remarking that the matrix Λ corresponds to 
an operation that is performed on the Dirac index, commute it with jπ ′ .  One will get: 

 
4

0
1

j j
j

i m cγ π
=

 
′ + 

 
∑ ΛΨ = 0.     (41) 

 
 Formula (41) expresses the following theorem: 
 
 THEOREM : When one makes a Lorentz transformation, one can keep the same form 
for the Dirac equations, but the new wave functions i

′Ψ  will be related to the old ones Ψi 

by a linear transformation: 
 

i
′Ψ (x′, y′, z′, t′) = Λ Ψi (x′, y′, z′, t′) = 

4

1

( , , , )ik k
k

x y z t
=

′ ′ ′ ′Λ Ψ∑ .  (42) 

 
 That is precisely the result that was established already in paragraph 1. 
 We can now justify the hypothesis of the existence of the matrix Λ.  Indeed, we 
learned in paragraph 1 how to calculate the linear transformation that each function Ψi is 
subjected to for each of the three types of coordinate change into which one can 
decompose any general Lorentz transformation.  We then know (at least, in principle) 
how to calculate the linear transformation of the Ψi that corresponds to an arbitrary 
Lorentz transformation; i.e., to determine the elements of the matrix Λ such that: 
 

i
′Ψ (x′, y′, z′, t′) = Λ Ψi (x′, y′, z′, t′) .    (43) 

 
 Now, from (42), that matrix Λ must be the same as the one that enters into (33), and 
since we know how to calculate it, we are sure that it exists. 
 Upon referring to formulas (12), (13), and (14), one can immediately write down the 
expressions for the matrices Λ that correspond to the simple cases 1, 2, 3, of the 
preceding paragraph.  For example, consider the case 3: viz., a simple Lorentz 
transformation.  Formulas (14) show us that the matrix Λ will then have the following 
form: 
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Λ = 

cosh 0 sinh 0
2 2

0 cosh 0 sinh
2 2

sinh 0 cosh 0
2 2

0 sinh 0 cosh
2 2

γ γ

γ γ

γ γ

γ γ

−

−

.   (44) 

 
It is easy to verify that this matrix is not unitary (Λ+ ≠ Λ−1).  It will then result that 

4

1
i i

i

∗

=
Ψ Ψ∑  is not equal to 

4

1
i i

i

∗

=

′ ′Ψ Ψ∑ .  The probability density will then change in value 

for a simple Lorentz transformation.  Indeed, we see that this density is not an invariant, 
but the temporal component of a space-time vector. 
 
 
 3.  Electromagnetic invariance of the Dirac equations. – Aside from relativistic 
invariance, the Dirac equations present another type of invariance that I will call 
“electromagnetic invariance” (it is the “gauge” invariance, or Eichinvarianz of the 
German authors).  Let me explain what that means. 
 Since the electric field h and the magnetic field H are defined by the formulas: 
 

h = − grad V − 
1

c t

∂
∂
A

,  H = rot A,    (45) 

 
it is obvious that if one replaces V and A with: 
 

V′ = V − 
1

c t

∂Φ
∂

,  A′ = A + grad Φ,   (46) 

 
in which Φ is an arbitrary function of x, y, z, t, then one will not modify any of the fields, 
because one will have: 
 

rot A′ = rot A,  − grad V′ − 
1

c t

′∂
∂
A

 = − grad V − 
1

c t

∂
∂
A

.  (47) 

 
 Since it is the fields that express the dynamical actions, and since they are insensitive 
to a transformation of the potentials of the form (46), we would have to expect from this 
that the Dirac equations would be invariant under those transformations (46).  That is the 
electromagnetic invariance in question. 
 We write the symbolic Dirac equation: 
 

3

4 0
1

1 1

2 2j j
j j

h e h e
V A m c

i c t c i c x c
α α

π π=

  ∂ ∂ + + − + +     ∂ ∂    
∑  Ψ = 0,  (48) 
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and then suppose that we have subjected the potentials to the transformation (46).  Upon 
replacing V and Aj as functions of V′ and jA′ , we will then get: 

 
4

4 02
1

1 1

2 2j j
j j j

h e e h e e
V A m c

i c t c c t i c x c c x
α α

π π=

  ∂ ∂Φ ∂ ∂Φ ′ ′+ + + − + − +     ∂ ∂ ∂ ∂    
∑ Ψ = 0, (49) 

 
in place of (48). 

 It is easy to verify that if one sets Ψ′ = Ψ 
2 i e

h ce
π− Φ

 then one will recover an equation 
that has the same form as (48), namely: 
 

4

4 0
1

1 1

2 2j j
j j

h e h e
V A m c

i c t c i c x c
α α

π π=

  ∂ ∂ ′ ′+ + − + +     ∂ ∂    
∑  Ψ′ = 0.  (49) 

 
 The passage from the potentials V and A to the potentials V′ and A′ does not modify 

the form of the Dirac equations then, but each of the Ψk will be multiplied by 
2 i e

h ce
π− Φ

. 
 However, we know that it is not the Ψk that have any physical sense, but certain 
combinations of Ψk .  Now, one can verify that any of the combinations of that type, 
which we hope to understand soon, will not be modified when one replaces Ψk with Ψk 

2 i e

h ce
π− Φ

; that is immediately obvious for the probability density 
4

1
k k

k

∗

=
Ψ Ψ∑ , for example.  

That insensitivity of quantities that are physically meaningful under the transformations 
(46) constitutes the electromagnetic invariance of the Dirac equations. 
 
 

___________ 
 



 

CHAPTER XII 
 

DENSITY AND CURRENT IN DIRAC’S THEORY.   
PLANE WAVES  

_____ 
 
 

1.  Expressions for the probability density and current. 
 

 In Dirac’s theory, we must seek to transpose the ideas of wave mechanics for a 
function Ψ.  In particular, we must seek to define a probability density ρ of presence and 
a current ρ u for that probability.  Here, the expressions – eρ and – eρ u once more give 
the mean electric charge density and the mean electric current, with the aid of which, one 
calculates the mean radiation that is emitted by a set of electrons. 
 In order to find the form for ρ and ρ u, we must always be guided by the idea that the 
total probability of presence must remain constant (viz., equal to 1), and that the equation 
of continuity ∂ρ / ∂t + div (ρ u) = 0 must be, in turn, a consequence of the equations of 
propagation. 
 We write the four Dirac equations and their four conjugates: 
 
 (P4 + m0 c) Ψ1 + (P1 + iP2) Ψ4 + P3 Ψ3  = 0, 

 
 (P4 + m0 c) Ψ2 + (P1 − iP2) Ψ3 − P3 Ψ4  = 0, 

(1) 
 (P4 − m0 c) Ψ3 + (P1 + iP2) Ψ2 + P3 Ψ1  = 0, 

 
 (P4 − m0 c) Ψ4 + (P1 − iP2) Ψ1 − P3 Ψ2  = 0, 
and 
 4 0 1 1 2 4 3 3( ) ( )P m c P i P P∗ ∗ ∗ ∗ ∗ ∗ ∗+ Ψ + − Ψ + Ψ  = 0, 

 
 4 0 2 1 2 3 3 4( ) ( )P m c P i P P∗ ∗ ∗ ∗ ∗ ∗ ∗+ Ψ + + Ψ − Ψ  = 0, 

(2) 
 4 0 3 1 2 2 3 1( ) ( )P m c P i P P∗ ∗ ∗ ∗ ∗ ∗ ∗− Ψ + − Ψ + Ψ  = 0, 

 
 4 0 4 1 2 1 3 2( ) ( )P m c P i P P∗ ∗ ∗ ∗ ∗ ∗ ∗− Ψ + + Ψ − Ψ  = 0. 

 
 Multiply equations (1) by 1

∗Ψ , 2
∗Ψ , 3

∗Ψ , 4
∗Ψ , respectively, and equations (2) by Ψ1, 

Ψ2, Ψ3, Ψ4, respectively.  Then take the sum of equations (1) and subtract the sum of 
equations (2); that will eliminate the terms in m0 c.  One will find terms of the form: 
 

4 4i i i iP P∗ ∗ ∗Ψ Ψ − Ψ Ψ  = 
1 1

2 2i i i i

h e h e
V V

i c t c i c t cπ π
∗ ∗∂ ∂   Ψ + Ψ − Ψ − + Ψ   ∂ ∂   
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= 
1

( )
2 i i

h

i c tπ
∗∂ Ψ Ψ

∂
, 

 1 1i i i iP P∗ ∗ ∗Ψ Ψ − Ψ Ψ  = 
2 2i x i i x i

h e h e
A A

i x c i x cπ π
∗ ∗∂ ∂   Ψ − + Ψ − Ψ + Ψ   ∂ ∂   

 

= − ( )
2 i i

h

i xπ
∗∂ Ψ Ψ

∂
. 

 

Finally, after multiplying by 
2 ic

h

π
, one will find that: 

 

 ( )1 1 2 2 3 3 4 4t
∗ ∗ ∗ ∗∂ Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ

∂
  

 + ( )1 4 2 3 3 2 4 1c
x

∗ ∗ ∗ ∗∂  − Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ ∂
 

 + ( )1 4 2 3 3 2 4 1c i i i i
y

∗ ∗ ∗ ∗∂  − Ψ Ψ − Ψ Ψ + Ψ Ψ − Ψ Ψ ∂
 

+ ( )1 3 2 4 3 1 4 2c
z

∗ ∗ ∗ ∗∂  − Ψ Ψ − Ψ Ψ + Ψ Ψ − Ψ Ψ ∂
 = 0.   (3) 

 
 Equation (3) will be equivalent to the continuity equation if one sets: 
 
 ρ = 1 1 2 2 3 3 4 4

∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ , 

 ρ ux = − c ( )1 4 2 3 3 2 4 1
∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ , 

 ρ uy = − c ( )1 4 2 3 3 2 4 1i i i i∗ ∗ ∗ ∗Ψ Ψ − Ψ Ψ + Ψ Ψ − Ψ Ψ , 

ρ uy  = − c ( )1 3 2 4 3 1 4 2
∗ ∗ ∗ ∗Ψ Ψ − Ψ Ψ + Ψ Ψ − Ψ Ψ .   (4) 

 
 One effortlessly verifies that the expressions (4) are real, because they are equal to 
their conjugates.  One can then consider them to be the definition of the probability 
density of presence and the components of the corresponding current, respectively. 
 The expression for ρ indeed has the form that was postulated by Dirac.  Moreover, it 
shows that one must normalize the Ψi by writing: 
 

1 1 2 2 3 3 4 4( )
+∞

∗ ∗ ∗ ∗

−∞

Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ∫ ∫ ∫ dτ = 1,   (5) 

 
and that if that normalization is realized at an arbitrary epoch then it will always remain 
realized. 
 One can give a condensed and elegant form to the formulas (4) by appealing to the 
three matrices α1, α2, α3, and the matrix 1 (with four rows and four columns).  We write 
those matrices as: 
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α1 = 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 
 
 
 
  

,  α2 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

+
−

+
−

 
 
 
 
  

,  α3 = 

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

−

−

 
 
 
 
  

,  1 = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  

, (6) 

 
and compare them with formulas (4).  We see forthwith that they can be written: 
 

 ρ = 
4

1

1i i
i

∗

=
Ψ ⋅ Ψ∑ , ρ ux = − c

4

1
1

i i
i

α∗

=
Ψ ⋅ Ψ∑ ,  

(7) 

 ρ uy = − c
4

2
1

i i
i

α∗

=
Ψ ⋅ Ψ∑ , ρ uz = − c

4

3
1

i i
i

α∗

=
Ψ ⋅ Ψ∑ . 

 
 Naturally, the mean electric charge density δ and the components of the mean current 
jx , jy , and jz will be obtained upon multiplying ρ, ρ ux, etc., by – e.  One has: 
 

δ = − e ρ, jx = − e ρ ux , jy = − e ρ uy , jz = − e ρ uz .  (8) 
 
 
 2.  Vectorial character of the density and current. – The quantities (4), which have 
a physical sense, present the character of components of a space-time vector, with ρ as 
the temporal component.  In order to prove that, it suffices, for example, to verify that the 
quantities (4) will transform like coordinates for each of the three transformations that 
were envisioned in the first paragraph of the preceding chapter, so it will then result that 
the same thing will be true for the most general Lorentz transformations. 
 We indicate the path to verification for a transformation of the type 1: viz., a rotation 
around oz.  One will then have the following relations between the old and new variables: 
 

x = x′ cos α – y′ sin α,  y = y′ cos α + x′ sin α,  z = z′, t = t′,  (9) 
 
so one will also have: 
 

x′ = x cos α + y sin α,  y′ = y cos α − x sin α,  z′ = z, t′ = t.  (9) 
 
 We have seen that the functions Ψi then transform in the following manner: 
 

1′Ψ  = Ψ1 e
−iα / 2, 2′Ψ  = Ψ2 e

−iα / 2, 3′Ψ  = Ψ3 e
−iα / 2, 4′Ψ  = Ψ4 e

+iα / 2.   (10) 

 
 It is then obvious that one will have: 
 

ρ′ = 
4

1
i i

i

∗

=

′ ′Ψ Ψ∑  =
4

1
i i

i

∗

=
Ψ Ψ∑ = ρ.   (12) 
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 The density ρ remains invariant under the transformation, as the variable t does.  One 
then sees just as easily that one will have zuρ′ ′  = ρ uz ; i.e., the z component of the current 

will remain invariant like the variable z.  For the x component, one will have: 
 
 xuρ′ ′  = − c 1 4 2 3 3 2 4 1( )∗ ∗ ∗ ∗′ ′ ′ ′ ′ ′ ′ ′Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ  

  = − c 1 4 2 3 3 2 4 1( )i i i ie e e eα α α α∗ ∗ − ∗ ∗ −Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ  

  = − c 1 4 2 3 3 2 4 1( )∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ  cos α 

  − c 1 4 2 3 3 2 4 1( )i i i i∗ ∗ ∗ ∗Ψ Ψ − Ψ Ψ + Ψ Ψ − Ψ Ψ  sin α 

 
= ρ ux cos α + ρ uy sin α.        (13) 

 
 The component ρ ux thus transforms like the variable x, and one can likewise verify 
that ρ uy transforms like y. 
 One proceeds in a similar way in order to study the transformations of the density and 
current in cases 2 and 3 (i. e., rotation around oy and simple Lorentz transformation, 
resp.), and one will arrive at the conclusion that the four quantities (4) are indeed the 
components of a space-time vector. 
 One knows that if a space-time vector a has spatial components a1, a2, a3, and a 
temporal component a4 then the quantity c2a4

2 − a1
2 − a2

2 − a3
2, which measures its 

length in space-time, will be an invariant that is independent of the chosen system of 
reference.  If one calculates the length of the current density vector then one will find 
from a calculation that presents no difficulties (although it is a bit long) that: 
 

c2ρ2 − (ρ ux)
2 − (ρ uy)

2 − (ρ uz)
2 = c2 [Ω1

2 + Ω2
2],   (14) 

with: 

 Ω1 = 1 1 2 2 3 3 4 4
∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ − Ψ Ψ − Ψ Ψ  = 

4

4
1

i i
i

α∗

=
Ψ ⋅ Ψ∑ , 

Ω2 = + i 1 3 2 4 3 1 4 3i i i∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ − Ψ Ψ − Ψ Ψ  = 
4

1 2 3 4
1

i i
i

α α α α∗

=
Ψ ⋅ Ψ∑ .  (15) 

 
 The quantities Ω1 and Ω2 are invariants, in such a way that the length (14) of current 
density vector in space-time is indeed invariant.  The matrix α1 α2 α3 α4 that is utilized in 
the condensed expression for Ω2 is calculated easily by starting with the αi ; it is 
Hermitian, and has the expression: 

α1 α2 α3 α4 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

+
−

+
+

.    (16) 
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 3.  The plane wave in the absence of a field. – It is very instructive to treat the case 
in which a field is absent (viz., V = A = 0).  In that case, the Dirac equation will take the 
form: 

 3
0 1 4

1

2 2 2 2

h h h h
m c i

i c t i x i y i zπ π π π
  ∂Ψ∂ ∂ ∂ + Ψ − + Ψ −  ∂ ∂ ∂ ∂   

 = 0, 

 

 4
0 2 3

1

2 2 2 2

h h h h
m c i

i c t i x i y i zπ π π π
  ∂Ψ∂ ∂ ∂ + Ψ − − Ψ +  ∂ ∂ ∂ ∂   

 = 0, 

(17) 

 1
0 3 2

1

2 2 2 2

h h h h
m c i

i c t i x i y i zπ π π π
  ∂Ψ∂ ∂ ∂ − Ψ − + Ψ −  ∂ ∂ ∂ ∂   

 = 0, 

 

 2
0 4 1

1

2 2 2 2

h h h h
m c i

i c t i x i y i zπ π π π
  ∂Ψ∂ ∂ ∂ − Ψ − − Ψ +  ∂ ∂ ∂ ∂   

 = 0. 

 
 Let us see if equations (17) admit the monochromatic plane wave solution that is 
defined by: 

Ψi = ai

2
( )x y z

i
Wt p x p y p z

he
π − − −

.    (18) 
 
 Upon substituting this into (17), one will find that: 
 

 0

W
m c

c
 + 
 

 a1 + (px + i py) a4 + pz a3 = 0, 

 

 0

W
m c

c
 + 
 

 a2 + (px − i py) a3 − pz a4 = 0, 

(19) 

 0

W
m c

c
 − 
 

 a3 + (px + i py) a2 + pz a1 = 0, 

 

 0

W
m c

c
 − 
 

 a4 + (px − i py) a1 − pz a2 = 0. 

 
 The homogeneous, linear equations can be satisfied simultaneously by non-zero ai 
only if the determinant: 
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0

0

0

0

0

0

0

0

z x y

x y z

z x y

x y z

W
m c p p ip

c
W

m c p ip p
c

W
p p ip m c

c
W

p ip p m c
c

+ +

+ − −

+ −

− − −

   (20) 

 
is zero.  The calculation of this determinant, which is somewhat lengthy, shows that it is 
equal to: 

22
2 2 2 2 2

02 x y z

W
m c p p p

c

 
− − − − 

 
. 

 
It is zero if W, px , py , pz are coupled by the well-known relation of relativistic mechanics: 
 

2
2 2 2

2 x y z

W
p p p

c
− − − = 2 2

0m c .    (21) 

 
 Suppose that relation is satisfied (1).  Not only is the determinant (20) zero, but so are 
all of its first-order minors.  We can then assign two of the four ai arbitrarily.  For 
example, we give two arbitrary values A and B to a3 and a4 , respectively.  Equations (19) 
then determine a1 and a2 , and one will find that: 
 

a1 = − 
0

( )

/
z x yp A p ip B

W c m c

+ +
+

, a2 = − 
0

( )

/
x y zp ip A p B

W c m c

− −
+

.  (22) 

 
 One then sees that the plane wave (18) is defined entirely if one knows the amplitudes 
A and B. 
 One can make an interesting remark about formulas (22).  In the new mechanics, as in 
the old relativistic mechanics, we can say that the Newtonian approximation is valid 
when the energy W is slightly greater than the rest energy m0 c

2 (velocities that are small 
with respect to the velocity of light). 
 It results from (21) that if the Newtonian approximation is valid then each of the 
quantities px , py , pz will be very small in comparison to m0 c; we would then refer to 
formulas (22).  When the Newtonian approximation is valid, their denominators will be 
reasonably equal to 2m0 c, and one will see that a1 and a2 are very small in comparison to 
A and B.  It will then result that in the Newtonian approximation, the functions Ψ1 and Ψ2 
will be almost negligible in comparison to Ψ3 and Ψ4 .  In that case, one is then reduced 
                                                
 (1) We assume, for the moment, that W is positive; i.e., that one has, from (21) that: W / c = 

2 2 2 2 2
0 x y zm c p p p+ + ++ .  Later on (Chap. XX), we shall want to know what the negative solution W / c = 

2 2 2 2 2
0 x y zm c p p p− + + +  signifies. 
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to a problem with two Ψi , as in Pauli’s non-relativistic theory.  A particularly simple case 
in which the Newtonian approximation is found to be rigorously valid is that of one 
electron at rest in the system of reference that is employed.  The functions Ψi are then: 
 

Ψ1 = Ψ2 = 0,  Ψ3 = A 
2

0
2 i

m c t
he
π

, Ψ4 = B 
2

0
2 i

m c t
he
π

.  (23) 
 
 Therefore, the waves Ψ1 and Ψ2 will be rigorously zero in a system of Galilean axes 
that are attached to the electron. 
 
 
 4. Density and current for a plane wave. – We just saw that in the absence of a 
field, the Dirac equations will admit the solution: 
 

 Ψ1 = − 
0

( )

/
z x yp A p ip B

W c m c

+ +
+

2
( )x y z

i
Wt p x p y p z

he
π − − −

, 

 

 Ψ2 = − 
0

( )

/
x y zp ip A p B

W c m c

− −
+

2
( )x y z

i
Wt p x p y p z

he
π − − −

, 

(24) 

 Ψ3 = A
2

( )x y z
i

Wt p x p y p z
he
π − − −

, 
 

 Ψ4 = B
2

( )x y z
i

Wt p x p y p z
he
π − − −

, 
 
in which the constants W, px , py , pz are coupled by the relation (21).  The constants A and 
B are arbitrary, except for the normalization condition. 
 We calculate the density ρ of the plane wave (24): 
 

ρ = 
4

1
i i

i

∗

=
Ψ Ψ∑ = AA* + BB* + (AA* + BB*) 

2 2 2

2
0( / )

x y zp p p

W c m c

+ +
+

 

= (AA* + BB*) 0
2

0

/
1

( / )

W c m c

W c m c

 −+ + 
= (AA* + BB*) 

0

2 /

/

W c

W c m c+
. 

 
 We likewise calculate ρ ux from the definition in (4): 
 

ρ ux = − c 1 4 2 3 3 2 4 1( )∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ  = (AA* + BB*) 
0

2

/
xp c

W c m c+
,  (26) 

 
which one can write by taking (25) into account: 
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ρ ux = ρ ⋅⋅⋅⋅
2

xp c

W
.     (27) 

 
 The component ux of the velocity the probability of presence is then: 
 

ux =
2

xp c

W
.      (28) 

 
 Now, the component vx of the velocity of the electron in its classical conception is 
that: 

px = 0

21

m c

β−
= 

2

W

c
vx ,     (29) 

 
from which, it will result from a comparison with (28) that: 
 

ux = vx .      (30) 
 
 Upon reasoning with the y and z components, one will obtain formulas that are 
analogous to (26), (27), and (28), and one can conclude that: 
 

uy = vy , uz = vz .    (31) 
 
 Briefly: the velocity u of the probability in the plane wave is everywhere equal to the 
velocity v that old corpuscular concept would attribute to the electron that is associated 
with that plane wave. 
 Naturally, in Dirac’s theory, as in wave mechanics with just one function Ψ, the plane 
wave will correspond to the case in which one knows the dynamical state of the corpuscle 
(i.e., px , py , pz , and, in turn, W are known) exactly, but its position is totally unknown. 
 The expressions for the density of electricity and the density of electric current here 
are: 

δ = − eρ, jx = − e ρ vx , jy = − e ρ vy , jz = − e ρ vz ,  (32) 
 
in which ρ has the value in (25). 
 
 

______________ 
 



 

CHAPTER XIII 
 

THE PROPER MAGNETISM OF THE ELECTRON  
 

_____ 
 
 

1.   The “probability globule” in wave mechanics. 
 
 

 The original idea of Uhlenbeck and Goudsmit consisted of considering the electron as 
a small sphere of electricity in rotation around one of its diameters and, in turn, 
possessing (at least, in its proper system) a magnetic moment that is directed along that 
diameter.  That concept cannot be preserved to the letter in the new mechanics, due to the 
impossibility of attributing a position and structure to the electron.  Nevertheless, we 
shall see that with the aid of the fiction of a “probability fluid,” it is possible to obtain a 
sort of mean image of the electron in Dirac’s theory that approaches the image of 
Uhlenbeck and Goudsmit.  In order to do that, we must first recall some points from the 
wave mechanics of one function Ψ. 
 When we imagine an electron motion that takes place on a grand scale – for example, 
the deviation of an electron by a magnetic field – it suffices for us to be able to describe 
that motion in the classical fashion, and thus, to attribute a localization to the electron that 
is compatible with the uncertainty relations.  Now, it is easy to see in the formulas that 
under the usual experimental conditions, the wave length that is associated with the 
electron is much smaller than the smallest length that we can measure directly.  It then 
results that it is possible to construct a small group of waves that is defined by the 
superposition of monochromatic plane waves of extremely close frequencies and whose 
dimensions are negligible at our scale.  A precise observation that is made on an electron 
will thus permit us to attribute a state of motion and position to the electron that is well-
defined in practice at our scale, without violating the uncertainty relations.  The fictitious 
probability fluid − whose density is, by definition, equal to the intensity ΨΨ* − forms a 
sort of small globule in this case, in whose interior the applied force can be regarded as 
constant.  Since the globule agrees reasonably well with its center of gravity, it will then 
result from Ehrenfest’s theorem that the globule moves like a material point that obeys 
the laws of classical mechanics.  Since the corpuscle can manifest its presence only in the 
interior of the globule, and the dimensions of the globule are negligible in practice, 
everything will take place as if the corpuscle itself obeyed the classical laws.  That is how 
things happen in the macroscopic domain that is at the junction between the old and the 
new mechanics. 
 However, one must remark that the probability globule does not represent the internal 
structure of the electron, as one would be first led to think.  The electric density – eρ in 
the interior of the globule does not represent a true electric density that exists in the 
interior of the electron, which one assumes to be extended.  In the present theory, one 
assumes that the electron is point-like and the density – eρ is, as we have explained 
already, only a mean electric density.  The probability globule is therefore only a sort of 
mean image of the possible localizations of the electron.  It is that mean representation of 
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the classical conception of the electron that is approached most closely by the new 
mechanics.  Moreover, it is upon studying the probability globule in the Dirac theory that 
we expect to see the proper magnetism of the electron appear in a form that is analogous 
to the original idea of Uhlenbeck and Goudsmit.  We shall soon see that it is a good form. 
 We shall recall how one can obtain a simple model of the probability globule in the 
context of the wave mechanics of one function Ψ (Darwin).  Suppose that the wave Ψ has 
the form: 

Ψ(x, y, z, 0) = a 

2 2 2

02
2

( )
2 x y z

x y z i
m v x v y v z

he e
π

σ
+ +− − + +

   (1) 
 
at the initial instant t = 0, where the amplitude, which has spherical symmetry around the 
origin of the coordinates, is a Gaussian function of the radius vector (1).  The amplitude 
becomes negligible once the distance from the origin becomes a small multiple of σ: One 
can say that the globule at the initial instant has dimensions of order of σ.  The second 
exponential factor in (1) represents the phase factor of a plane wave at time zero.  In 
order for the wave Ψ to be equivalent to a group of waves, the quantity σ that measures 
its dimensions must be small with respect to the wave length h / m0v.  By reason of the 
extreme smallness of the latter quantity, σ can nevertheless be negligible at our scale. 
 Darwin studied the propagation of a globule of the form (1).  He showed (2) that 
during a sufficiently short time interval the globule would be transported collectively 
with the velocity v, in such a way that one would have: 
 

Ψ(x, y, z, t) = a 

2 2 2

02

( ) ( ) ( ) 2
[ ( )]

2

x y z
x y z

x v t y v t z v t i
Wt m v x v y v z

he e
π

σ
− + − + −

− − − + +
    (2) 

at time t. 
 This is in accord with Ehrenfest’s theorem.  However, the globule always has a 
tendency to spread while it evolves in time. 
 Without insisting upon thus latter point, we can say that Darwin’s spherical globule 
provides us with a sort of image of the macroscopic motion of the electron.  It is 
interesting to calculate the density and current of the probability that corresponds to it.  In 
order to do that, we must appeal to some formulas from wave mechanics in one Ψ: 
 

ρ = ΨΨ*, ρ u = 
04

h

i mπ
[Ψ grad Ψ* − Ψ* grad Ψ].   (3) 

 
 One easily finds that: 
 

ρ = a2 

2 2 2

2

x y z

e σ
+ +−

,  ρ u = ΨΨ* v = ρ v,    (4) 
 
at the initial instant, so: 

u = v. 

                                                
 (1) In order for Ψ to be normalized, one must have [a] = π−3/4 σ−3/2.  
 (2) One will find the details of the calculations in the author’s book: Introduction à l’étude de la 
Mécanique ondulatoire.  Paris, Hermann, 1930, chapter XIII. 
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 The motion of the probability (or of the mean electric distribution) is therefore a 
convection with velocity v, and the Darwin globule indeed gives a mean macroscopic 
image of the classical electron from that viewpoint.  Upon transposing the Darwin 
globule to Dirac’s theory, we shall see Uhlenbeck and Goudsmit’s spinning, magnetic 
electron appear. 
 
 
 2.  The spherical probability globule in Dirac’s theory. – Now, let us pass on to 
Dirac’s wave mechanics with 4 functions Ψ.  We have seen that one can give the initial 
amplitudes of Ψ3 and Ψ4 arbitrarily, and that Ψ1 and Ψ2 will then be deduced from the 
equations of propagation.  We then give Ψ1 and Ψ2 a form here that was inspired by (1): 
 

 Ψ3(x, y, z, 0) = A 

2 2 2

02
2

( )
2 x y z

x y z i
m v x v y v z

he e
π

σ
+ +− − + +

, 
(6) 

 Ψ4(x, y, z, 0) = B

2 2 2

02
2

( )
2 x y z

x y z i
m v x v y v z

he e
π

σ
+ +− − + +

. 
 
 Suppose that the Newtonian approximation is valid: We saw what that signifies in the 

last chapter.  We can then replace 3

2

h

i tπ
∂Ψ
∂

 and 4

2

h

i tπ
∂Ψ
∂

 with m0c
2, and first two Dirac 

equations will give: 

3
1 4

0

4
2 3

0

1
,

2 2

1
.

2 2

h
i

m c i x x z

h
i

m c i x x z

π

π

∂Ψ ∂ ∂  Ψ = + Ψ +   ∂ ∂ ∂   


∂Ψ ∂ ∂   Ψ = − Ψ −   ∂ ∂ ∂   

   (7) 

Set: 

P = 

2 2 2

02
2

( )
2 x y z

x y z i
m v x v y v z

he e
π

σ
+ +− − + +

.    (8) 
 

 We find the values of the derivatives of Ψ3 and Ψ4 upon substituting in (7): 
 

 Ψ1(x, y, z, 0) = − 0 02 2
0

1
( )

2 2 2z x y

h z h x iy
A m v B m v iv P

m c i iπ σ π σ
 +    + + + +    
    

, 

(9) 

 Ψ2(x, y, z, 0) = − 0 02 2
0

1
( )

2 2 2x y z

h x iy h z
A m v iv B m v P

m c i iπ σ π σ
 +    + + − +    
    

. 

 
 These formulas give Ψ1 and Ψ2 at the instant 0 for a small value of v / c. 
 The functions Ψ1 and Ψ2 are almost negligible in comparison to Ψ3 and Ψ4 , as we 
predicted. 
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 If we form the expression for the density ρ = 
4

1
i i

i

∗

=
Ψ Ψ∑  then the first two terms in the 

sum ∑ can be neglected in comparison to the last two, and it will suffice to write: 
 

ρ = (AA* + BB*) 

2 2 2

22

x y z

e σ
+ +−

.    (10) 
 
 Naturally, one must have (normalization): 
 

(AA* + BB*) 

2 2 2

22

x y z

e dx dy dzσ
+ +−+∞

−∞∫ ∫ ∫  = 0.   (11) 

 
 Upon multiplying (10) by – e, one will obtain the mean electric density δ. 
 Naturally, one must calculate the components ρ u now.  Here, none of the terms will 
be negligible, since the four terms in the expressions for these quantities will be products 
of wave functions of small value with wave functions of large value.  One will have, for 
example: 

ρ ux = − c 1 4 2 3 3 2 4 1( )∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ ,      (12) 

 
which will give, from (7) and (9): 
 

ρ ux = 

2 2 2

2

2 2 2
0 0 0

( )
2 2 2

x y z

x x

h y h y h z
AA v BB v AB BA e

m m i m
σ

π σ π σ π σ
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− + + + −    
    
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2 2
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x y z

x

h y z
v AA BB iAB iBA e

m
σρ

π σ σ
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∗ ∗ ∗ ∗ + − − −  

,         

so: 

ρ ux = 

2 2 2
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4

x y z
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h
v AA BB iA B iAB e

m y z
σρ

π

+ +−
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.  (13) 

 
 One likewise finds: 
 
ρ uy = − c 1 4 2 3 3 2 4 1( )i i i i∗ ∗ ∗ ∗− Ψ Ψ + Ψ Ψ − Ψ Ψ + Ψ Ψ  

  = 

2 2 2
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4
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h
v AB BA AA BB e

m z x
σρ

π
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(13bis) 
ρ uz = − c 1 3 2 4 3 1 4 1( )∗ ∗ ∗ ∗Ψ Ψ − Ψ Ψ + Ψ Ψ − Ψ Ψ  

  = 

2 2 2

2

0

( ) ( )
4
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h
v iA B iAB AB A B e
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σρ

π
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. 
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 In order to obtain the components of the density of mean electric current, it will 
suffice to multiply ρux, ρuy, ρuz by – e, or more precisely, in order to obtain the 
expression in e.s.u., multiply them by – e / c.  One will then find that: 
 

  jx = 

2 2 2

2

0

( ) ( )
4

x y z

x

e eh
v BB AA iAB iA B e

c m c y z
σρ

π

+ +−
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c m c z x
σρ

π
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  jz = 

2 2 2

2

0

( ) ( )
4

x y z

z

e eh
v iAB iA B A B AB e

c m c x y
σρ

π

+ +−
∗ ∗ ∗ ∗ ∂ ∂− + − − − ∂ ∂ 

. 

 
 These formulas must now be interpreted. 
 
 
 3.  Proof of a formula from electromagnetism. – In order to arrive at an 
interpretation of formulas (14), we shall have need for a formula from electromagnetism 
that we shall prove in this paragraph. 
 One knows that the magnetic action of a permanent current of density j  is defined by 
the vector potential: 
 

A = 
d

r

τ
∫∫∫

j
   (dτ = volume element),  (15) 

 
and the magnetic field is deduced from A by the formula: 
 

H = rot A .      (16) 
 
 If one considers the electric current to be composed of a sheaf of electrons in motion, 
and if δ denotes the mean density of the charge in that sheaf of electrons then one must 
set j = δ v, where v is the velocity of the electrons, which is assumed to be uniform.  
However, if the electrons are endowed with a magnetic moment then the expression for j  
must be completed by taking into account the intensity of the magnetization I  that then 
exists in the sheaf.  We shall examine how j  depends upon I . 
 Let a small magnet that is composed of two magnetic masses – µ and – µ be situated 
at a distance l from each other.  If α, β, γ are the direction cosines of the axis of the same 
magnet then the magnetic moment m of the magnet will have the components: 
 

mx = α µ l = α m, my = β m, mz = γ m.   (17) 
 
 The magnetic potential χ that is created by the magnet at a point M that is situated at a 
distance r from it center is: 
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χ = 
1 2r r

µ µ−  = 
1 1 1
r r rl l l
x y z

µ α β γ ∂ ∂ ∂
+ + + ∂ ∂ ∂ 

 = 
1

grad
r

 ⋅ 
 
m ,  (18) 

 
 

+ µ 

− µ 
l 
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M 

r 

 
Figure 6. 

 
 
and the field that is created at M will have the components: 
 

 Hx = − 
x

χ∂
∂

 = − 
2 2 21 1 1

2
r r r

x y zm m m
x x y x z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ ∂ ∂ 

, 

 

Hy = − 
y

χ∂
∂
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2
r r r

x y zm m m
y x y y z

 ∂ ∂ ∂
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,   (19) 

 

 Hz = − 
z

χ∂
∂

 = − 
2 2 21 1 1

2
r r r

x y zm m m
z x z y z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ ∂ ∂ 

. 

 
 We shall show that the vector potential A − whose H field, as defined by (19), must 
be its rotation − is given by: 

A = 
1

grad 
r

 ⋅  
m ,     (20) 

 
in which the brackets indicate an exterior product.  Indeed, one has for Hx : 
 

 Hx = (rot A)x = yz
AA

y z

∂∂ −
∂ ∂

 = 
1 1 1 1
r r r r

x y z xm m m m
y y x z x z

 ∂ ∂ ∂ ∂∂ ∂  − − −   ∂ ∂ ∂ ∂ ∂ ∂  
 

 

= 
2 2 2 21 1 1 1

2 2
r r r r

y z xm m m
y x z x y z

 ∂ ∂ ∂ ∂
− − + + ∂ ∂ ∂ ∂ ∂ ∂ 

,    (21) 

 

so, by virtue of the well-known relation ∆ 1

r
 = 0, one will infer the first expression (19) 

for Hx .  One will likewise find the expressions (19) for Hy and Hz .  This is, indeed, the 
vector potential (20) that corresponds to the magnetic field (19). 



§ 3.  Proof of a formula from electromagnetism. 123 

 Now, suppose that we are concerned, not with a small magnet of moment m, but 
with an extended magnetic body whose magnetization I  we know at each point.  We must 
replace m with I  dτ in the latter formulas and integrate, which will give: 
 

A = 
1

grad
r

 ⋅  
∫∫∫ I  dτ .    (22) 

 
 Suppose that the vector I  is zero on the boundary of the magnetic body.  An 
integration by parts will then permit us to write: 
 

Ax = 
1 1
r r

y zI I
z y

 ∂ ∂
− ∂ ∂ 

∫∫∫  dτ  = 
1 yz

V

II

r y z

∂ ∂ − ∂ ∂ 
∫ ∫ ∫  dτ  = 

(rot )x

V r∫ ∫ ∫
I

 dτ , (23) 

 
(where V is the volume of the magnetic body) and we will have analogous formulas for 
Ay and Az .  We will thus have the vectorial relation: 
 

A = 
rot 

V r∫ ∫ ∫
I

 dτ .     (24) 

 
 Finally, if we are dealing with a body that is both electrified and magnetized and in 
uniform motion with velocity v then the vector potential that is created by that body will 
be, by virtue of (15) and (24): 

A = 
rot 

V r

δ +
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v I
 dτ .    (25) 

 
 Similarly, it will then be created by a current of density: 
 

j  = δv + rot I .      (26) 
 
 It is formula (26) that must serve for the interpretation of formulas (14). 
 
 
 4.  Interpretation of formulas (14). – Return to formulas (14), and define a vector I 
by giving the following values to its components: 
 

 Ix = 

2 2 2
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x y z
eh

A B AB e
m c

σ

π
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∗ ∗− ,     (27) 
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 Iz = 

2 2 2

2

0

( )
4

x y z
eh

BB AA e
m c

σ

π

+ +−
∗ ∗− . 

 
 The vector I  is real (because Ix = xI ∗ , etc.) and it is zero on the boundary of the 

probability globule; i.e., at infinity, here.  With that vector I , formulas (14) can be written 
vectorially: 

j  = − e

c
ρ v + rot I .     (28) 

 
 Formula (28) has great interest to us because upon comparing it with formula (26), 
we see that the probability globule − which is a mean macroscopic representation of the 
electron – cannot be assimilated into a simple sphere of charge – e that moves with a 
velocity of v, but into a sphere that is both electrified and magnetized whose intensity of 
magnetization is equal to I  at each of its points. 
 The total magnetic moment of the globule is the vector M that one obtains by 

integrating the vector I .  Taking (27) into account and the normalization condition (11), 
one finds that the components of M are (1): 

 

 Mx = xI dτ∫∫∫  = 
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,      (29) 

 

 Mz = zI dτ∫∫∫  = 
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m c AA BBπ

∗ ∗

∗ ∗

−
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. 

 
 The length of the vector M is then: 

 

 | M |  = 2 2 2
x y z+ +M M M  
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= 
04

eh

m cπ
.               (30) 

 

                                                
 (1) In reality, Mx, My, Mz are only the mean values, as we shall indicate in a precise manner in the 

following chapter.  One must then write 
x

M , instead of Mx , etc. 
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 The globule thus has a magnetic moment that is equal to a Bohr magneton. 
 Now, recall formula (13), and seek to write it in the form: ρ ux = ρ vx + xvρ ′ .  We are 

thus led to set: 
 

 xv′   = 

2 2 2

2

2 2
0

( ) ( )
2

x y z
h y z

BB AA iAB iA B e
m

σ

π ρ σ σ

+ +−
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y z

m AA BB AA BBπ σ

∗ ∗ ∗ ∗
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 − −− + + 
,     (31) 

 
upon taking (10) into account.  We likewise set: 
 

 yv′   = 
2

0

( ) ( )

2

h AB A B BB AA
z x

m AA BB AA BBπ σ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
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, 

(31, cont.) 
 

 zv′   = 
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( )
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h iAB iA B AB A B
x y

m AA BB AA BBπ σ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
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and then set: 
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( )
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+
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h BB AA
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.     (32) 

 
Formulas (31) and (31, cont.) then become: 
 

xv′  = ωy z – y ωz , yv′  = ωz x – z ωx , zv′  = ωx y – x ωy  .  (33) 

 
 Since we have u = v + v′, from the manner itself by which we have introduced v, we 
will see that the velocity of the probability is the sum of the velocity v of translation of an 
ensemble of the globule and an internal velocity v′ that is due to a rotation of the 
ensemble that is defined by the velocity of rotation ωωωω whose components are ωx , ωy , ωz .  
That velocity of rotation will be represented by the vector ωωωω, which passes through the 
center of the globule and is parallel to M (since one will have ωx : ωy : ωz = Mx : My : 

Mz) and has a length: 

| ωωωω | = 2 2 2
x y zω ω ω+ +  = 

2
02

h

mπ σ
.    (34) 
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 This internal rotation of the ensemble of the mean electric fluid explains the origin of 
the magnetic moment M.  It becomes faster as the globule becomes smaller, which is 

easily explained, since the magnetic moment M must always be equal to one Bohr 

magneton.  The probability globule in Dirac’s theory thus gives a sort of mean 
macroscopic image of the spinning, magnetic electron. 
 

___________ 
 



 

CHAPTER XIV 
 

THE “MAGNETIC AND ELECTRIC MOMENT”  
TENSOR DENSITY 

____ 
 
 

1.  The magnetic moment of the Dirac electron in the Newtonian approximation. 
 

 In the last chapter, while studying the spherical probability globule that was defined 
by THE wave functions (6) and (9), we were led to exhibit a vector I  that was given by 
formulas (27), which was a vector that represented the magnetization intensity − i.e., the 
magnetic moment density – in the globule.  Now, if one takes formulas (6) into account 
then one can write formulas (27), which give the components of I , in the form: 
 

 Ix = 3 4 3 4
0

( )
4

eh

m cπ
∗ ∗−Ψ Ψ − Ψ Ψ , 

 

Iy = 3 4 4 3
0

( )
4

eh
i i

m cπ
∗ ∗Ψ Ψ − Ψ Ψ ,            (1) 

 

 Iz = 4 4 3 3
0

( )
4

eh

m cπ
∗ ∗Ψ Ψ − Ψ Ψ . 

 
 In this new form, the expressions for the components of the vector I  are valid for any 
Dirac wave in the Newtonian approximation (i.e., when Ψ1 and Ψ2 are negligible in 
comparison to Ψ3 and Ψ4), and not just for the spherical probability globule that was 
envisioned in the last chapter. 
 The components of the mean magnetic moment of the Dirac electron are then 
obtained by integrating the expressions (1) over all of space.  One will then have: 
 

 xM = xI dτ∫∫∫  = 3 4 3 4
0

( )
4

eh
d

m c
τ

π
∗ ∗−Ψ Ψ − Ψ Ψ∫∫∫ , 

 

yM  = yI dτ∫∫∫  = 3 4 4 3
0

( )
4

eh
i i d

m c
τ

π
∗ ∗Ψ Ψ − Ψ Ψ∫∫∫ ,     (2) 

 

 zM = zI dτ∫∫∫  = 4 4 3 3
0

( )
4

eh
d

m c
τ

π
∗ ∗Ψ Ψ − Ψ Ψ∫∫∫ . 

 
 One must not forget that these formulas all have only a statistical significance.  If one 
considers a very large number of electrons that are all found in the same state and are 
defined by the same functions Ψ3 and Ψ4 , and if one measures, for example, the 
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component of the proper magnetic moment along the x-axis for each of these electrons 
then one will find different results according to the special cases, but the mean value of 
the result that is obtained for the ensemble will be the xM  of formulas (2).  That is only 

an application of the general ideas of new mechanics.  In particular, one recalls that by 
virtue of a remark that was made in Chapter VI, paragraph 3, the expressions (1) are not 
true physical densities in the old sense, but are the quantities that one must integrate in 
order to obtain the mean values (2). 
 The third formula in (2) must merit some of our attention.  We know that if one 
measures the proper magnetic moment of the electron parallel to the z-axis then one must 
necessarily find ± a Bohr magneton.  The Dirac equations must play a role that is specific 
to the z-axis precisely, because the probabilities of these two hypotheses must be 
expressed simply with the aid of the Ψi .  If one then casts one’s eyes upon formula (2) 

then one will see that the probability that one must find a value of + 
04

eh

m cπ
 for Mz is 

4 4 dτ∗Ψ Ψ∫∫∫ , whereas that of finding −
04

eh

m cπ
 is 3 3 dτ∗Ψ Ψ∫∫∫ .  This is in perfect accord 

with Pauli’s ideas, which is what Dirac’s theory reduces to when one assumes the 
Newtonian approximation here.  The mean value (2) of Mz will indeed represent the 

mean result of the measurement of Mz for a large number of electrons in the state that is 

defined by Ψ3 and Ψ4 . 
 The expressions for the components of I  – i.e., the expressions (1) – are invariant in 
form for every change of coordinates in space.  That must say that if one passes from one 
rectangular coordinate system x, y, z to another rectangular system x′, y′, z′ then the 
components of I  in the new system will be expressed with the aid of the new wave 
functions i

′Ψ  in the same way that the old components of I  were expressed by (1) with 

the aid of the Ψi .  We shall not verify this here, since it is easy. 
 However, that invariance in form is no longer true for a Lorentz transformation.  One 
thus notes that the expressions (1) have the character of the Newtonian approximation.  In 
order to obtain relativistic invariance, one must take Ψ1 and Ψ2 into account and insert 
the three components of the magnetization intensity I  into the six components of an anti-
symmetric tensor of order two, as we shall see. 
 
 
 2.  Mean magnetic moment of a plane wave in the Newtonian approximation. − 
Consider a plane wave that is defined in the Newtonian approximation by the two wave 
functions: 

 Ψ3 = A 
0 0 0

2
[ ]x y z

i
Wt m v x m v y m v z

he
π − − −

, 
(3) 

 Ψ4 = B 
0 0 0

2
[ ]x y z

i
Wt m v x m v y m v z

he
π − − −

. 
 
What are the components of the mean magnetic moment? 
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 With the aid of formulas (2), and upon taking the normalization into account (1), one 
will easily find that: 

 xM  = 
04

eh A B AB

m c AA BBπ

∗ ∗

∗ ∗

− −⋅
+

, 

 

yM  = 
04

eh iAB iA B

m c AA BBπ

∗ ∗

∗ ∗

+⋅
+

,              (4) 

 

 zM  = 
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eh BB AA

m c AA BBπ

∗ ∗

∗ ∗

−⋅
+

. 
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Figure 7. 

 
  Formulas (4) coincide, moreover, with formulas (29) of the last chapter.  We 
could expect that to be true since the aforementioned formulas (29) are valid for any 
value of σ in formulas (6), and if we make σ tend to infinity then the spherical globule in 
the last chapter will tend to the plane wave (3). 
 Refer the direction of the vector M to a spherical coordinate system θ and ϕ. 

 We will then have: 
 xM : yM : zM  = (− A*B – AB*) : (i AB* − i A*B) : (BB* − AA*) 

= sin θ cos ϕ : sin θ sin ϕ : cos θ,   (5) 
so one easily infers that: 

                                                
 (1) One might hesitate to write the normalization condition since the integration domain is infinite, and 
rigorously speaking one must introduce proper differentials.  However, one can get around the difficulty in 
practice by first supposing that the domain is finite and has volume V.  The normalization condition here 
can then be written: 

2 2
3 4(| || | )dτΨ Ψ∫∫∫ +  = (AA* + BB*) V = 1, 

and one will infer from (2), for example: 

x
M  = 

04
eh

m cπ
(− A* B − B*A) V = 

04
eh A B B A

m AA BBcπ

∗ ∗

∗ ∗

− −
+

. 

 Since this result is exact, no matter how large V is, formulas (4) will be found to be justified. 
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2
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.   (6) 

 
 Now, one satisfies equations (6) by setting: 
 

− 
B

A
= cot 

2

θ
 eiϕ,     (7) 

 
and the complex relation (7), which is equivalent to two real relations, will show us how 
the orientation of M is coupled to the value of the ratio B / A. 

 One can express this coupling in the following fashion (Darwin, Jordan): Consider a 
sphere of unit radius.  The orientation of the vector M is defined by the coordinates θ 

and ϕ of the point M at which that vector pierces the sphere.  One projects that point M 
stereographically onto the plane of the equator while the center of the projection is the 
North pole. 
 The projection point m has the coordinates: 
 

x = cot 
2

θ
 cos ϕ,  y = cot 

2

θ
 sin ϕ .   (8) 
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Figure 8. 

 
 If one considers the xy-plane to the plane of a complex variable then the number 

cot
2

ig eϕθ
 will be affixed to the point m and, from (7), it will be equal to – B / A.  One 

will then have the following result: The ratio – B / A is coupled to the direction of the 
magnetic moment by the same relationship that couples the number that is affixed to a 
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point in the plane of a complex variable with the direction that it corresponds to on the 
sphere by stereographic projection. 
 
 
 3.  The “magnetic and electric moment” tensor density. – We have seen that the 
expressions (1) possess invariance in form for coordinate changes in space, but not 
necessarily for Lorentz transformations.  It is nevertheless possible to find six quadratic 
combinations of the four functions Ψi that transform under Galilean coordinate changes 
like the components of an anti-symmetric tensor of order two.  Here are their expressions, 
which are all real: 
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 With the aid of the six quantities (9), and upon posing the antisymmetry relations µzy 
= − µyz , etc., one can define an antisymmetric table of four rows and four columns: 
 

0

0

0

0

xy xz xt

yx yz yt

zx zy zt

tx ty tz

µ µ µ
µ µ µ
µ µ µ
µ µ µ

.     (10) 

 
 It is easy to verify that the table (10) defines an antisymmetric tensor of order two.  In 
order to do this, it will suffice to verify that the µij will transform according to the 
following schema: 
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ijµ ′  = 
,

ji
kl

k l k l

dxdx

dx dx
µ

′′
∑      (11) 

 
for each of the three simple transformations into which one can decompose a general 
Lorentz transformation. 
 If one can neglect the wave functions Ψ1 and Ψ2, which will be true when the 
Newtonian approximation is valid, then the quantities µyz, µzx, and µxy will reduce to Ix, Iy, 
and Iz, respectively, by formula (1).  It is therefore natural to think that these three 
components of µ will be the three components of the mean magnetization I  in their exact 
relativistic expressions. 
 What do the three components µxt, µyt, µzt then represent?  In the theory of relativity, 
one must combine the magnetic field and the electric field in order to define an anti-
symmetric tensor of order two.  In a memoir on the magnetic electron before Dirac’s 
theory, Frenkel showed the necessity of completing the magnetic moment of the electron 
with an electric moment (1).  Here is how Frenkel reasoned: In the old theory of the 
magnetic electron, the electron was a corpuscle that possessed a proper magnetic 
moment.  In a reference system in which the electron is in motion, it must create an 
electric field around it that is due to its magnetic moment because just as an electric 
charge in motion is equivalent to a current, and will thus creates a magnetic field around 
itself, a magnetic pole in motion will create an electric field around itself.  The magnetic 
electron in motion must therefore possess an electric moment, and in order to satisfy the 
demands of the principle of relativity, the three components of the electric moment must 
be combined with the three components of the magnetic moment in order to permit us to 
define an antisymmetric tensor of order two.  We will then be led to consider µxt, µyt, µzt 
to be the three components of an electric moment density. 
 The six quantities (9) permit us to form two invariants; i.e., there exist two 
combinations of the µij whose value is the same in all reference systems.  These two 
combinations are the following ones: 
 

I2 – J2 = 2 2 2 2 2 2
x xy z x y zI I I J J J+ + − − − ,  (I ⋅⋅⋅⋅ J) = Ix Jx + Iy Jy + Iz Jz .  (12) 

 
 Indeed, if we introduce the two invariants that were encountered already in Chapter 
XII, paragraph 3 then: 
 

 Ω1 = 1 1 2 2 3 3 4 4
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 Ω2 = 1 3 2 4 3 1 4 2i i i i∗ ∗ ∗ ∗Ψ Ψ + Ψ Ψ − Ψ Ψ − Ψ Ψ  = 
4

1 2 3 4
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k k
k
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=
Ψ ⋅ Ψ∑ . 

 
 One easily verifies the relations: 
 

                                                
 (1) Zeitschrift für Physik, 37, 4-5, pp. 243.  
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I2 – J2 = 
2
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, (I ⋅⋅⋅⋅ J) = 
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1 2
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Ω Ω 
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,  (14) 

 
which indeed shows the invariance of the two quantities.  That invariance is, moreover, 
obvious from the tensorial viewpoint, since on the one hand, I2 – J2 is the “length” of the 
tensor in space-time, and on the other hand, the scalar product: 
 

(I ⋅⋅⋅⋅ J) = µyz µxt + µzx µyt + µxy µzt , 
 

is obviously an invariant under coordinate changes in space, but no longer for a simple 
Lorentz transformation, as is easy to verify.  Its invariance under a general Lorentz 
transformation will result from that. 
 As before, we can remark that the expressions (9) are not physical densities in the old 
sense of the word: They are only quantities that one must integrate in space in order to 
obtain the mean values of the components of the magnetic and electric moments of the 
electron.  These two mean moments, which we denote by M and P, will be given by the 

formulas: 

M = dτ∫∫∫ I ,  P = dτ∫∫∫J ,    (15) 

 
in which the vectors I  and J are defined by their component in (9).   Naturally, the values 
of the components zM , etc., must be interpreted statistically.  The formula: 

 

zM  = zI dτ∫∫∫  = 1 1 2 2 3 3 4 4
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∗ ∗ ∗ ∗Ψ Ψ − Ψ Ψ − Ψ Ψ + Ψ Ψ∫∫∫   (16) 

 

signifies that a measurement of Mz can provide the value +
04

eh

m cπ
 with a probability of 

1 1 4 4( ) dτ∗ ∗Ψ Ψ + Ψ Ψ∫∫∫  and the value − 
04

eh

m cπ
, with a probability of: 

 

2 2 3 3( ) dτ∗ ∗Ψ Ψ + Ψ Ψ∫∫∫ . 

 
The sum of the two probabilities is equal to unity by virtue of the normalization condition 
on Ψk . 
 Frenkel (1), by arguing with the old, purely corpuscular image of the electron, showed 
that the magnetic moment M of the electron in a system where its velocity is v must be 

coupled to its electric moment P in the same system by the relation: 

 

                                                
 (1) Loc. cit.  
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P = 
c

 ⋅  

v
M .      (17) 

 
 We shall see, in an example, that the Frenkel condition remains exact in Dirac’s 
theory. 
 
 
 4.  Simple example: the monochromatic plane wave. – We appeal to the formulas 
of Chapter XII, paragraph 3, and simply take the direction of propagation of the plane 
wave to be the z-axis.  We will then have px = px = 0, and the four Ψi will have the form: 
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 With that form for Ψi , formulas (9) are given easily: 
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 One verifies painlessly that one has: 
(I ⋅⋅⋅⋅ J) = 0.     (20) 

 
 This is, moreover, a consequence of the second formula in (14), since the invariant Ω2 
will be zero in the present case (1). 
 The examination of formulas (19) provides the relations: 
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 Upon integrating the relations (21) over all of space, in order to make the components 
of M and P appear, one sees that the Frenkel relation (17) is verified (since vx = vy = 0). 

 When the Newtonian approximation is valid, the ratio 
0/

zp

W c m c+
 will be reasonably 

equal to 0

02
zm v

m c
= 

1

2
zv

c
, and its square will be negligible compared to unity.  One will then 

find the values for Ix, Iy, Iz that one obtained in the preceding chapter upon starting with 
formulas (27) by letting σ tend to infinity, which is a result that one could have expected. 
 One can make the following remarks about the general formulas (19) and (20): The 
vector J is normal to the plane that is determined by the vector I  and the vector p.  If the 
speed tends towards the speed of light – i.e., if pz tends towards W / c (which is then 
much greater than m0 c) – then the trihedron that is composed of the three vectors p, I , 
and J will tend to become a tri-rectangle, while the lengths of I  and J will tend to become 
equal. 
 
 

______________ 
 

                                                
 (1) Indeed, one can obviously calculate that invariant in no particular Galilean system – for example, in 
a system where the velocity of the electron is zero.  Now, in such a system, one will have Ψ1 = Ψ2 = 0, and 
(13) will give Ω2 = 0.  



 

CHAPTER XV 
 

MATRICES AND FIRST INTEGRALS  
IN DIRAC’S THEORY. 

PROPER ANGULAR MOMENTUM OF THE ELECTRON.  
____ 

 
 

1.  The proper values and proper functions of the Dirac equations. 
 

 The proper values and proper functions of the Dirac equations are defined easily by 
analogy with the situation in the theory of a single function Ψ. 
 When the external field is independent of time, there will exist monochromatic 
solutions of the Dirac equations; i.e., solutions for which the four Ψk depend upon time 

only by the same exponential factor 
2 i

Wt
he
π

.  The four Ψk will then satisfy the equations: 
 

1 1 2 2 3 3 4 0

W e
V P P P m c

c c
α α α α  + + + + +  

  
Ψk = 0  (k = 1, 2, 3, 4).  (1) 

 
 The values of the constant W for which there exists at least one set of Ψk that are 
finite, uniform, continuous, and zero at infinity are the “proper values” of equations (1).  
Any proper value Wn will then correspond to at least one set (1) of proper functions Ψ1,n , 
Ψ2,n , Ψ3,n , and Ψ4,n .  We give two indices to each Ψk , such that the first one is the index 
that is introduced by Dirac’s theory, and the second one characterizes the corresponding 
proper value. 
 By definition, the four functions Ψk,n that correspond to the proper values Wn will 
then satisfy the equations: 
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n
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V P m c

c c
α α

=

  + + +  
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∑ Ψk,n = 0  (k = 1, 2, 3, 4).  (2) 

 
 Since one can multiply the four functions Ψk,n by the same arbitrary constant without 
them ceasing to satisfy equations (2), one will see that each proper solution is defined 
only up to a complex multiplicative constant.  One determines the modulus of that 
constant with the aid of the normalization condition, which, as we have seen, must be 
written: 

4

, ,
1

k n k n
k

dτ∗

=
Ψ Ψ∑∫  = 1.     (3) 

 We shall now show that: 
 

                                                
 (1) The set of four proper functions Ψk,n can be called a “proper solution” of equation (1).  
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 1. The proper values Wn are all real. 
 2. If the proper functions Ψk,n and Ψk,m correspond to distinct proper values Wn and 
Wm then one will have the orthogonality condition: 
 

4

, ,
1

k m k n
k

dτ∗

=
Ψ Ψ∑∫ = 0.     (4) 

 
 Indeed, since the functions Ψk,n obey equations (2), the functions ,k m

∗Ψ  will obey the 

equations: 
 

3

4 0
1

n
i i

i

W e
V P m c

c c
α α

∗
∗ ∗ ∗

=

  
+ + +  

  
∑ ,k m

∗Ψ = 0  (k = 1, 2, 3, 4).  (5) 

 
 Multiply (2) by ,k m

∗Ψ  and (5) by Ψk,n , and then sum each equation over the index k 

and subtract them; one will get: 
 

 
4 3 3

, , , , , ,
1 1 1

n m
k m k n k m i i k n k n i i k m

k i i

W W
P P

c
α α

∗
∗ ∗ ∗ ∗ ∗

= = =

 − Ψ Ψ + Ψ ⋅Ψ − Ψ ⋅Ψ


∑ ∑ ∑  

+ m0 c , 4 , , 4 ,( )k m k n k n k mα α∗ ∗ ∗ Ψ Ψ − Ψ Ψ   = 0.  (6) 

 
 We shall now show that if F is a linear operator that operates on the coordinates (and 
not on the Dirac indices k) then one will have: 
 

4

, ,
1

k n i k n
k

Fα∗

=

Ψ ⋅ Ψ∑ = 
4

, ,
1

k n i k n
k

F α ∗ ∗

=

Ψ ⋅ Ψ∑  (i = 1, 2, 3).  (7) 

 
 Indeed, upon taking into account the Hermiticity of the αi , one will find that: 
 

 
4

, ,
1

k n i k n
k

Fα∗

=

Ψ ⋅ Ψ∑  

   = 
4 4

, , ,
1 1

( )k n i k j j n
k j

F α∗

= =

Ψ ⋅ Ψ∑ ∑  = 
4

, , ,
, 1

( )k n i k j j n
j k

Fα∗

=

Ψ Ψ∑  

  = 
4

, , ,
, 1

( )k n i k j j n
j k

Fα∗ ∗

=

Ψ Ψ∑  = 
4 4

, , ,
1 1

( )j n i j k k n
j k

F α ∗ ∗

= =

Ψ ⋅ Ψ∑ ∑  

= 
4

, ,
1

j n i j n
j

F α∗ ∗

=

Ψ ⋅ Ψ∑   Q. E. D.            (8) 

 
 We first infer a special case of (7) by setting F = 1: 
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4

, ,
1

k n i k n
k

α∗

=
Ψ ⋅ Ψ∑ = 

4

, ,
1

k n i k n
k

α ∗ ∗

=
Ψ ⋅ Ψ∑ .    (9) 

 
 It will then result that the terms in e Ax , e Ay , a Az , and m0 c disappear from (6).  
Equation (6) will then reduce to: 
 

 
4

, , , 1 2 3 ,
1 2

n m
k m k n k m k n

k

W W h

c i x y z
α α α

π

∗
∗ ∗

=

  − ∂ ∂ ∂Ψ Ψ − Ψ + + Ψ  ∂ ∂ ∂ 
∑  

 − , 1 2 3 ,2 k n k m

h

i x y z
α α α

π
∗ ∗ ∗ ∗  ∂ ∂ ∂Ψ + + Ψ  ∂ ∂ ∂  

= 0.   (10) 

 
 Now, from (7), one will have: 
 

4

, ,
1

k n i k n
k x

α∗

=

∂Ψ Ψ
∂∑ = 

4
,

,
1

k n
i k n

k x
α ∗ ∗

=

∂Ψ
⋅ Ψ

∂∑ , etc.,   (11) 

 
and formula (10) will become: 
 

 
4

, ,
1

n m
k m k n

k

W W

c

∗
∗

=

 − Ψ ⋅ Ψ


∑  

 − , 1 , , 2 , , 3 ,( ) ( ) ( )
2 k n k m k n k m k n k m

h

i x y z
α α α

π
∗ ∗ ∗ ∗ ∗ ∗  ∂ ∂ ∂Ψ Ψ + Ψ Ψ + Ψ Ψ ∂ ∂ ∂ 

= 0. (12) 

 
 Upon integrating over all of space, the term in curly brackets will give zero, because 
the Ψk are zero at infinity, and what will remain is: 
 

4

, ,
1

n m
k m k n

k

W W
d

c
τ

∗
∗

=

− Ψ Ψ∑∫  = 0.    (13) 

 
 If one next sets n = m then one will deduce from (13) that nW ∗ = Wn for any value of 

n, and that will signify that all of the Wn are real.  If one next takes n ≠ m, while 
remembering that Wn ≠ Wm , by hypothesis, then one will deduce the orthogonality 
formula (4) from (13).  The theorem that was just stated will then be proved. 
 
 The orthogonality relation generally breaks down for two proper solutions that 
correspond to the same proper values (viz., the degenerate case).  However, the proper 
solutions that correspond to the same proper value will then be determined only up to a 
linear transformation, so one can always choose those proper solutions in such a fashion 
that they will be orthogonal. 
 The case of a continuous spectrum of proper values will give rise to the same remarks 
as in the wave mechanics of a single function Ψ.  Moreover, in a general fashion, the 
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parallelism between the two theories is complete here.  Nevertheless, one must note that 
there is a difference: In the formulas that involve integration over space, such as the 
normalization and orthogonality formulas (3) and (4), one must sum over the index k in 
Dirac’s theory.  The presence of that summation will seem quite natural once we have 
developed the synthetic viewpoint, in which one considers the index k to be a sort of 
discontinuous supplementary variable (cf., Chapter XVI). 
 
 
 2. Matrices and first integrals in Dirac’s theory. – In the wave mechanics of a 
single function Ψ, one makes any linear, Hermitian operator A correspond to the matrix 
whose elements are defined by the formula: 
 

Amn = ( )m nD
A dτ∗Ψ Ψ∫ ,    (14) 

 
in which dτ is the volume element for the domain of existence D for the functions Ψn .  
One then says that the operator A is a first integral for the problem in question if all of the 
Amn are independent of time, and we have seen that upon setting: 
 

 L = H − 
2

h

i tπ
∂⋅
∂

, 

 
the necessary and sufficient for A to be a first integral will be that: 
 

LA – AL = 0.      (15) 
 
 How should we translate these definitions into Dirac’s theory? 
 
 In order to define the matrix elements, we take into account the remark that was made 
at the end of the last paragraph – i.e., that we suppose that a summation over the index of 
the Dirac functions Ψ enters into the integration that occurs in the old definition (14).  
The matrix elements that correspond to a linear, Hermitian operator A (1) will then be 
defined by the relation: 

Amn = 
4

, ,
1

( )k m k nD
k

A dτ∗

=
Ψ Ψ∑∫ .    (16) 

 
 We will always say that A is a first integral if all of the Amn are independent of time.  
In order to find the condition that expresses the idea that A is a first integral, we write the 
symbolic Dirac equation in the condensed form: 
 

L (Ψ) = 0,      (17) 
with 

                                                
 (1) Naturally, in Dirac’s theory, an operator can operate upon the index k, as well as on the coordinates.  
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L = 
3

4 4 0
1

i i
i

P P m cα α
=

 + + 
 

∑ ,    (18) 

and we remark that upon setting: 
 

H = − 
3

2
4 0

1
i i

i

eV c P m cα α
=

 + + 
 

∑ ,    (19) 

one can write: 

L = 
1

2

h
H

c i tπ
∂ − + ∂ 

, 
2

h

i tπ
∂Ψ
∂

= H (Ψ).   (20) 

 
 The operator H that is defined by (19) is the Hamiltonian operator in Dirac’s theory.  
The operator H is Hermitian; i.e., it satisfies the condition: 
 

4

, ,
1

( )k m k nD
k

H dτ∗

=
Ψ Ψ∑∫ = 

4

, ,
1

( )k n k mD
k

H dτ∗ ∗

=
Ψ Ψ∑∫    (21) 

 
for all values of m and n.  Equation (21) is the obvious generalization of the Hermiticity 
condition in the mechanics of one Ψ; moreover, it expresses simply that one has Hmn = 

mnH ∗ , from the definition (16).  Formula (21) is proved easily upon taking into account 

the Hermiticity of the αi and the property of the Ψk,n that they must be zero at the limits 
of D (1). 
 In order to express the idea that A is a first integral, we write: 
 

mnA

t

∂
∂

= 
4

, ,
, , , ,

1

( ) ( )k n k m
k m k m k n k nD

k

A
A A

t t t

∗
∗ ∗

=

 ∂Ψ ∂Ψ  ∂Ψ + Ψ Ψ + Ψ  ∂ ∂ ∂  
∑∫ dτ = 0. (22) 

 
                                                
 (1) In order to carry out that proof, one replaces the operator H in (21) with its expression (19), and one 
will verify that the relation (21) is valid for each term.  That verification is immediate for the terms that 
contain V.  For the terms that contain Ax, Ay, Az, one will have, for example: 

1 ,

4 4

1 1

( )x kj k n

k j

e A α ∗

= =

∑ ∑ Ψ = 1 , ,,

4 4

1 1

( )x j k k nj m
j k

e A α∗ ∗

= =

∑ ∑Ψ Ψ = 
, 1

4

,
1

j m j n
j

α∗

=

∑ Ψ Ψ , 

due to the Hermiticity of the αi , and the relation (21) will thus be proved for those terms.  What will remain 
are terms like: 

1 ,

4

,
1 2 k m k n

k

h

i x
α

π
∗∗

=

⋅
∂

∑ Ψ
∂

Ψ . 

One next has, due to the Hermiticity of the αi , as always: 

1

4

, ,
, 12

k m k n
k j x

h

i
α

π
∗ ∗

=

∂  ∑ Ψ
  ∂

Ψ = 1 ,

4 4
,

,
1 1

( )
2

j k
k m

k n
j k

x

h

i
α

π

∗

= =

∂Ψ
∑ ∑

∂
Ψ , 

and then upon integrating parts, one will have: 

1 ,

4 4
,

,
1 1

)(
2

j k
j m

D k n
j k

x

h
d

i
α τ

π

∗

= =

∂Ψ
∑ ∑∫

∂
Ψ = − 1 ,

4 4 ,
,

1 1

)(
2

j k

k n
j mD

j k

h
d

i x
α τ

π
∗

= =

Ψ∑ ∑∫
∂Ψ

∂
= 

4

, 1 ,
1

2j mD k n
k

h

i x
d

π
α τ∗

=

∂ Ψ −∑∫  ∂ 
Ψ , 

because the Ψk,n are zero on the boundary of D.  Q. E. D. 
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 Next, since we have L (Ψk,n) = 0 and L*
,( )k m

∗Ψ = 0, we replace the derivatives ,k n

t

∂Ψ
∂

 

and ,k m

t

∗∂Ψ
∂

 with 
2 i

h

π
H (Ψk,n) and − 2 i

h

π
H*

,( )k m
∗Ψ , respectively, which will give us: 

 

mnA

t

∂
∂

= 
4

, , , , , ,
1

2 2
( ) ( )k m k n k m k n k m k nD

k

i A i
A A

h t h

π π∗ ∗ ∗

=

∂ Ψ Ψ + Ψ Ψ − Ψ Ψ ∂ 
∑∫ dτ.  (23) 

 
 One can transform that expression with the aid of the formula: 
 

4

, ,
1

( ) ( )k m k nD
k

H A dτ∗ ∗

=
Ψ Ψ∑∫ = 

4

, ,
1

( )k m k nD
k

HA dτ∗

=
Ψ Ψ∑∫ ,   (24) 

 
which is proved like (21).  Upon substituting (24) in (23), one will find that: 
 

mnA

t

∂
∂

= 
4

, ,
1

2
( )k m k nD

k

A i
AH HA

t h

π∗

=

∂ Ψ + − Ψ ∂ 
∑∫  dτ.   (25) 

 
 One then concludes from (22) that the necessary and sufficient condition for A to be a 
first integral is that: 

2
( )

A i
AH HA

t h

π∂ + −
∂

 = 0,     (26) 

 
because the Ψk,n form a complete system. 
 One can further write the condition (26) in a different way upon remarking that one 
has: 

t

∂
∂

A(f) = ( )
A f

f A
t t

∂ ∂ +  ∂ ∂ 
     (27) 

 
for an arbitrary function f, so one will have, symbolically: 
 

A

t

∂
∂

 = 
t

∂
∂

⋅⋅⋅⋅ A – A ⋅⋅⋅⋅
t

∂
∂

.      (28) 

 
 Therefore, upon replacing the operator ∂A / ∂t with its value (28) in (26), one will 
have: 

L A – A L = 0,       (29) 
by virtue of (26). 
 The conditions (26) and (29) have the same form as the analogous conditions in the 
mechanics of one Ψ, but with a different definition for the operators L and H. 
 We remark that equation (1) can be written in the form: 
 

H (Ψk) = W Ψk       (30) 
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upon introducing the definition (19) of H. 
 The proper values Wk that were defined in paragraph 1 will then indeed be the proper 
values of the Hamiltonian operator – i.e., the proper values of energy. 
 
 
 3.  Examples of first integrals.  Proper angular momentum of the electron. – We 
shall first examine the cases in which the Hamiltonian operator that corresponds to 
energy is a first integral.  For that to be true, it is necessary that one must have: 
 

LH – HL = 
1 1

2 2

h h
H H H H

c i t c i tπ π
∂ ∂   − + − − +   ∂ ∂   

 ≡ 0,  (31) 

 
or, more simply, that: 

H H
t t

∂ ∂− ⋅
∂ ∂

= 
H

t

∂
∂

≡ 0.    (32) 

 
 The necessary and sufficient condition for the energy to be a first integral is then 
always that the external field (which is defined by the four functions V, Ax, Ay, Az, here) 
must be independent of time.  That is the theorem of conservation of energy in Dirac’s 
mechanics. 
 One also easily sees that if the potential vector is zero, and if the scalar potential does 
not depend upon one of the coordinates – say, x – then the corresponding component of 

the quantity of motion 
2x

h
p

i xπ
∂ = − ∂ 

 will be a first integral. 

 The study of the theorem of the conservation of the moment of the quantity of motion 
is much more interesting in Dirac’s theory.  Indeed, we have seen that in the wave 
mechanics of a single function Ψ, the angular momentum around the z axis, which 
corresponds to the operator: 

Mz = x py – y px = 
2

h
y x

i x yπ
 ∂ ∂− ∂ ∂ 

,    (33) 

 
will be a first integral when the force field possesses cylindrical symmetry around the z 
axis.  Now, we shall see that this result does not persist in the mechanics of four 
functions, and we shall now look for what should replace it. 
 We first verify that in a field that is derived from a scalar potential with cylindrical 
symmetry V(ρ, z) with: 

ρ = 2 2x y+ , 

 
Mz is not a first integral in Dirac’s mechanics.  In order to do that, we must show that Mz 

does not commute with L.  It is obvious from the outset that Mz commutes with 
2

h

i tπ
∂
∂

, 



§ 3. – Examples of first integrals.  Proper angular momentum of the electron.  143 

3 2

h

i z
α

π
∂
∂

, and α4 m0c.  It also commutes with the term 
e

c
V, because one will have (in 

operators): 

V y x y x V
x y x y

   ∂ ∂ ∂ ∂− − −   ∂ ∂ ∂ ∂   
 = x y

y x

∂ ∂−
∂ ∂

,  (34) 

 
which will be zero, because by hypothesis, V will depend upon only: 
 

ρ = 2 2x y+ . 

 

However, by contrast, Mz does not commute with the terms in − 1 2

h

i x
α

π
∂
∂

 and 

− 2 2

h

i y
α

π
∂
∂

, because one will have: 

 

 1 22 2 2

h h h
y x

i x i y i x y
α α

π π π
   ∂ ∂ ∂ ∂− − −   ∂ ∂ ∂ ∂   

− 

1 22 2 2

h h h
y x

i x y i x i y
α α

π π π
   ∂ ∂ ∂ ∂− − −   ∂ ∂ ∂ ∂   

 = 
2

2 124

h

x y
α α

π
 ∂ ∂− ∂ ∂ 

. (35) 

 
 One will have, in total: 
 

L Mz – Mz L = 
2

2 124

h

x y
α α

π
 ∂ ∂− ∂ ∂ 

,    (36) 

 
and Mz will not be a first integral. 
 Consider the operator: 

Nz = Mz – α1 α2 
4

h

iπ
     (37) 

then. 
 That operator is Hermitian, because the product of the two matrices α1 and α2 , which 
are Hermitian and anti-commute, is anti-Hermitian, and the quotient by i is Hermitian.  
We shall show that Nz is a first integral in the case considered.  In order to do that, we 
form the difference: 

L α1 α2 
4

h

iπ
− α1 α2 

4

h

iπ
L . 

 
The terms in ∂ / ∂t, V, and α4 m0 c, and L obviously commute with α1 α2 ; the same thing 

will be true for the term 3 2

h

i z
α

π
∂
∂

, by virtue of the properties of α1 . What will then 

remain is: 
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L α1 α2
4

h

iπ
− α1 α2

4

h

iπ
L 

= 
2

1 1 2 2 1 2 1 2 1 1 2 228

h

x y x y
α α α α α α α α α α α α

π
 ∂ ∂ ∂ ∂+ − − ∂ ∂ ∂ ∂ 

.  (38) 

 
 Since one has α1 α1 = α2 α2 = 1, α2 α1 α2 = − α1 and α1 α2 α1 = − α2 , one will find 
that: 

L α1 α2
4

h

iπ
− α1 α2

4

h

iπ
L =

2

2 124

h

x y
α α

π
 ∂ ∂− ∂ ∂ 

 = L Mz – Mz L.  (39) 

 
 One then concludes the relation: 
 

L Mz – Mz L ≡ 0     (40) 
 
from that, and one will see that Nz is a first integral. 
 One can present an argument that is analogous to the preceding one for the 
components with the indices x and y by permuting the roles of the axes.  One will then 
see that in Dirac’s theory, the total angular momentum of the electron is a vector with 
components: 

Nx = Mx + Sx ,  Ny = My + Sy ,  Nz = Mz + Sz ,  (41) 
 
in which the operators that correspond to Mx , etc. are: 
 

 Mx = 
2

h
z y

i y zπ
 ∂ ∂− ∂ ∂ 

,    My = 
2

h
x z

i z xπ
∂ ∂ − ∂ ∂ 

,    Mz = 
2

h
y x

i x yπ
 ∂ ∂− ∂ ∂ 

  

(42) 

 Sx = − α2 α3
4

h

iπ
,    Sy = − α3 α1

4

h

iπ
,    Sx = − α1 α2

4

h

iπ
. 

 
Mx , My , Mz are the components of the “orbital” angular momentum of the electron, and 
one will be led quite naturally to consider Sx , Sy , Sz to be the components of the proper 
angular momentum of the electron – i.e., the “spin.” 
 
 
 4.  Explicit calculation of Nz .  Sign of the proper mass for the wave Ψk . – It is 
very interesting to calculate explicitly the operator Nz that corresponds to the privileged z 
axis and to see the results that one will get upon successively applying it to the four Ψk . 
 Upon starting with the values that we know for α1 and α2 , we easily calculate the 
matrix product with the aid of the rules for the multiplication of matrices, and we will 
find that: 
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α1α2 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−
+

−
+

.      (43) 

 
 One will easily infer from this that: 
 

 Nz (Ψ1) = Mz (Ψ1) +
4

h

π
Ψ1 , 

 

 Nz (Ψ2) = Mz (Ψ2) −
4

h

π
Ψ2 , 

(44) 

 Nz (Ψ3) = Mz (Ψ3) +
4

h

π
Ψ3 , 

 

 Nz (Ψ4) = Mz (Ψ4) −
4

h

π
Ψ4 . 

 

 We then see from formulas (44) that the proper angular momentum will be +
4

h

π
 for 

the wave functions with odd indices, and −
4

h

π
 for the ones with even indices. 

 We now write the mean value of Nz .  We have: 
 

1N = 
4

1

( )k z k
k

N dτ∗

=
Ψ Ψ∑∫∫∫  = 1 1 2 2 3 3 4 4[ ]

4z

h
M

π
∗ ∗ ∗ ∗+ Ψ Ψ −Ψ Ψ + Ψ Ψ − Ψ Ψ∫∫∫ dτ . (45) 

 
 One must interpret that formula by saying: The proper angular momentum of the 

electron along the z axis can take on only the two values 
4

h

π
 and −

4

h

π
, so the probability 

under the first hypothesis will be: 
 

1 1 3 3( )dτ∗ ∗Ψ Ψ + Ψ Ψ∫∫∫ , 

 
and the probability under the second hypothesis will be: 
 

2 2 4 4[ ] dτ∗ ∗Ψ Ψ + Ψ Ψ∫∫∫ . 

 
 One then compares formula (45) with formula (16) in Chapter XIV, which gives the 
mean magnetic moment of the electron along oz: 
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zM  = 1 1 2 2 3 3 4 4( )dτ∗ ∗ ∗ ∗Ψ Ψ − Ψ Ψ − Ψ Ψ + Ψ Ψ∫∫∫ .    (46) 

 
 We see that one can make the following correspondences: 
 

  the wave Ψ3 :  a magnetic moment −
04

eh

m cπ
 

     and an angular momentum +
4

h

π
, 

 

  the wave Ψ4 :  a magnetic moment +
04

eh

m cπ
 

     and an angular momentum −
4

h

π
. 

 
 For these two waves (which are dominant in the Newtonian approximation, as we 

have seen), the ratio of the two moments will be equal to −
0

e

m c
, as one would expect 

from the double magnetism of the rotating electron (1). 
 However, we will obtain a surprising result for the wave Ψ1 and Ψ2 .  In fact, from 
(45) and (46), one can make the following correspondences: 
 

  the wave Ψ1 :  a magnetic moment +
04

eh

m cπ
 

     and an angular momentum +
4

h

π
, 

 

  the wave Ψ2 :  a magnetic moment −
04

eh

m cπ
 

     and an angular momentum −
4

h

π
, 

 

so the ratio of the two moments will be +
0

e

m c
, which differs by a sign from the expected 

value.  Where does that anomaly come from?  In order to understand that, we first remark 
that everything will take place as if the proper mass of the electron were – m0, instead of 
m0, as far as the wave Ψ1 and Ψ2 are concerned.  One will certainly see this in the Dirac 
equations themselves: 
 

4

4 4 0
1

i i
i

P P m cα α
=

 + + 
 

∑ Ψ4 = 0  (k = 1, 2, 3, 4),   (47) 

                                                
 (1) The ratio – e / m0 c is indeed twice the normal ratio that was given by formula (7) in Chapter IV. 
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when one retains the explicit form for the matrix α4 : 
 

α4 = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−
−

.     (48)  

 
 The term m0 has a different sign in the first two equations (47), on the one hand, and 
the last two, on the other. 
 One can express that fact by saying that in Dirac’s theory, the proper mass m0 of the 
old mechanics is replaced with the operator – α4 m0 .  Since one has: 
 
 – α4 m0 Ψ1 = – m0 Ψ1 , – α4 m0 c Ψ2 = – m0 Ψ2 ,  

(49) 
 – α4 m0 cΨ3 = m0 Ψ3 ,  – α4 m0 c Ψ4 = m0 Ψ4 , 
 
it is obvious that the waves Ψ3 and Ψ4 will correspond to the mass m0 , while the waves 
Ψ1 and Ψ2 will correspond to the mass – m0 .  If the reader would now like to review the 
argument that preceded formula (32) in Chapter X then he will comprehend its 
importance better in light of what was just said. 
 
 

___________ 
 



 



 

CHAPTER XVI 
 

SYSTEMATIC SUMMARY OF THE RESULTS OBTAINED  
____ 

 
 

1.  Considering the index of the function Ψk to be a variable. 
 

 Up to now, we have presented Dirac’s theory by saying that it involves the existence 
of four wave functions Ψ1, Ψ2, Ψ3, Ψ4 of the four variables x, y, z, t.  We can take a 
different viewpoint and say that there is just one function Ψ that depends upon the four 
continuous variables x, y, z, t that are capable of taking on all of the real values from – ∞ 
to + ∞, and a fifth variable ζ – namely, “spin” – that can take on the four values 1, 2, 3, 4.  
That amounts to considering the index k of the functions Ψk to be a discontinuous 
variable with four possible values. 
 The operators αi operate on the discontinuous variable ζ, while the operators like px, 
for example, act upon the continuous variables.  It is legitimate to consider operators that 
operate on all four variables (1) x, y, z, t, such as the Dirac Hamiltonian H that was 
defined by formula (19) of the last chapter. 
 Now write the Dirac equation in the form: 
 

3

4 4 0
1

i i
i

P P m cα α
=

 + + 
 

∑ Ψ (x, y, z, t, ζ) = 0.   (1) 

 
 Up to now, we have regarded that equation as a symbolic equation that summarizes 
four distinct equations.  We can now consider it to be a single equation of propagation 
through the space of four variables x, y, z, ζ in the course of time. 
 The integrations that one performs over the space of three dimensions x, y, z in wave 
mechanics “without spin” must be performed over the space of x, y, z, ζ, here.  That will 
explain the deep reason for the following fact, which was pointed out before: All of the 
formulas from wave mechanics in which an integration over space occurs must be 
completed with a summation over the index k from 1 to 4 in Dirac’s theory. 

 In effect, that summation 
4

1k=
∑ corresponds to a sort of integration over the 

discontinuous variable ζ, and it will often be convenient for us to represent it by an 
integral ∫… dζ.  Thus, for example, the normalization condition in wave mechanics 
without spin: 

+ ∞

−∞
∫ ∫ ∫ Ψ*(x, y, z, t) ⋅⋅⋅⋅ Ψ(x, y, z, t) dx dy dz = 1  (2) 

will become: 

                                                
 (1) Although Dirac’s theory is relativistic, in a sense, time plays a different role from the other four 
variables x, y, z, ζ in it; we shall return to that point later on.  



150 Chapter XVI – Systematic summary of the results obtained. 

 
4

1
k k

k

dx dy dz
+∞

∗

=−∞

Ψ ⋅ Ψ∑∫ ∫ ∫  

= ∫∫∫ ∫
+ ∞

−∞
∫ ∫ ∫ Ψ*(x, y, z, t, ζ) ⋅⋅⋅⋅ Ψ(x, y, z, t, ζ) dx dy dz dζ = 1  (3) 

 
in Dirac’s theory. 
 Similarly, the new viewpoint permits one to easily see how one must write the series 
developments in proper functions in Dirac’s theory.  Indeed, let f (x, y, z, t, ζ) be a 
function of the five variables x, y, z, t, ζ.  It is equivalent to four functions f1, f2, f3, f4 of 
the four continuous variables x, y, z, t.  Suppose that we know the system of proper 
functions of the Hamiltonian operator.  We have already agreed to denote a proper 
function of that system by the set of four functions Ψ1,m , Ψ2,m , Ψ3,m , Ψ4,m , in which the 
second index characterizes the corresponding proper value.  From our new viewpoint, we 
must represent the set of four functions Ψk,m by the single function Ψm(x, y, z̧  t, ζ). 
 The development of the function f (x, y, z, t, ζ) in the complete system of Ψm(x, y, z̧  t, 
ζ) is then written quite naturally as: 
 

f (x, y, z, t, ζ) = m
m

c∑ Ψm(x, y, z̧  t, ζ),   (4) 

 
which is equivalent to the four relations: 
 

fk (x, y, z, t) = m
m

c∑ Ψk,m(x, y, z̧  t)  (k = 1, 2, 3, 4).  (5) 

 
 One then sees that each of the four components fk are developed in proper functions 
Ψk,m with the same index k, and in addition the coefficients of the developments are the 
same for the four components.  That proposition, which might not seem to be obvious 
when one considers k to be an index, seems, in the contrary, quite natural when one 
argues as we just did by replacing the index k with the discontinuous variable ζ. 
 
 
 2. Statement of the general principles in Dirac’s theory. – The introduction of the 
discontinuous variable ζ permits one to immediately find how the general principles of 
wave mechanics transpose into Dirac’s theory. 
 First of all, we assume that any observable physical quantity that is attached to the 
electron corresponds to an operator A that can generally operate on all four variables x, y, 
z, ζ.  That operator must always be Hermitian in the space of x, y, z, ζ ; i.e., one must 
have: 

 ∫ ∫ ∫ ∫ f *(x, y, z, t, ζ) A g (x, y, z, t, ζ) dx dy dz dζ  

= ∫ ∫ ∫ ∫ f (x, y, z, t, ζ) A* g* (x, y, z, t, ζ) dx dy dz dζ .   (6) 
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 The proper values of the operator A are defined to be the values of the constant a for 
which the equation: 

A ϕ (x, y, z, t, ζ) = a ϕ (x, y, z, t, ζ)    (7) 
 
admits at least one everywhere-finite, continuous, and uniform solution in x, y, z for each 
of the four values of ζ.  These proper values, which are generally functions of time, are 
real, and two proper functions ϕm and ϕn that correspond to two distinct proper values am 
and an will be orthogonal in the space x, y, z, ζ ; i.e., one will have: 
 

∫ ∫ ∫ ∫ mϕ ∗ (x, y, z, t, ζ) ϕn (x, y, z, t, ζ) dx dy dz dζ = 0.  (8) 

 
 We shall prove these results by the same method that we employed in Chapter V, 
paragraph 4, by always adding a summation over ζ to the integrations over x, y, z.  
Moreover, we shall always suppose that the proper functions ϕn have been normalized by 
the condition: 

∫ ∫ ∫ ∫ nϕ ∗ (x, y, z, t, ζ) ϕn (x, y, z, t, ζ) dx dy dz dζ = 1.  (9) 

 
 Having said that, it is easy to state the fundamental principles of the new mechanics 
in the context of Dirac’s theory. 
 The first of these principles can be stated without changing anything by saying that a 
measurement of the quantity A that is performed at the instant t will necessarily yield one 
of the proper values of the operator A at that instant as a result. 
 In order to state the second principle, we suppose, first of all, that the operator A is a 
complete operator; i.e., that it involves all four variables x, y, z, ζ.  Furthermore, we also 
suppose that it is nondegenerate; i.e., that it has no multiple proper values.  Therefore, let 
Ψ(x, y, z, t, ζ) be the wave function of an electron.  That wave function can be developed 
in proper functions of the operator A in the form: 
 

Ψ(x, y, z, t, ζ) = m
m

c∑ ϕn (x, y, z, t, ζ),   (10) 

 
in which the cm are complex constants that are generally functions of time.  The second 
principle then asserts that | cm (t) |2 is the probability that a measurement of the quantity A 
will yield the proper value am that corresponds to ϕm . 
 If A possesses multiple proper values then the same am will correspond to several ϕm .  
The probability of getting the value am for the quantity A will then be equal to the sum of 
the squares of the moduli of the coefficients that relate to these ϕm in the development of 
Ψ. 
 If the operator A is incomplete – i.e., it involves only some of the variables x, y, z, ζ – 
then the corresponding ϕm will depend upon only those variables and coefficients cm in 
the development of Ψ in ϕm that depend upon variables that do not figure in A.  In that 
case, if one is to obtain the probability of the proper value am then it will be necessary to 
integrate the quantity | cm(t) |2 over the entire domain of those variables x, y, z, ζ upon 
which cm depends.  For example, if A is an operator that acts only upon the variable ζ, 
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like one of the αi , then those proper functions will have the form ϕm (ζ), and one will 
have: 

Ψ (x, y, z, t, z) = m
m

c∑ (x, y, z, t) ϕm(ζ).   (11) 

 
 The probability that the quantity A has the value am will then be given by: 
 

+ ∞

−∞
∫ ∫ ∫ | cm(x, y, z, t) |2 dx dy dz. 

 
We will see an application of that result in the following paragraph. 
 Having assumed those principles, one will see that the mean value of the quantity A is 
indeed, equal to: 

A = ∫ ∫ ∫ ∫ Ψ* A(Ψ) dx dy dz dζ = ( )k kA dτ
+ ∞

∗

−∞

Ψ Ψ∫ ∫ ∫ ,  (12) 

 
as we assumed, because if one replaces Ψ and Ψ* in that expression with their 
developments in proper functions of A then one will easily see that it is equal to the sum 

of the products of each proper value with its probability.  The quantity 
4

1

( )k k
k

A∗

=
Ψ Ψ∑  can 

then be called the “mean-value density” for the quantity A, but as we pointed out in 
Chapter VI, paragraph 3, such a density cannot be considered to have the same physical 
sense as the densities in classical theories.  Nevertheless, we shall soon see that the 
densities of that type that correspond to the operators αi and to Hermitian operators that 
are composed of products of the αi will be real and possess a tensorial character that 
permits us to get closer to certain quantities of classical physics. 
 Finally, recall that the element ij  of the matrix that corresponds to an operator A must  
be defined in Dirac’s mechanics by the formula: 
 

 Aij  = ∫ ∫ ∫ ∫ i
∗Ψ (x, y, z, t, ζ) A ( )( , , , , )i x y z t ζΨ dx dy dz dζ  

= 
4

, ,
1

( )k i k j
k

A dτ
+∞

∗

=−∞

Ψ Ψ∑∫ ∫ ∫ ,       (13) 

 
and is equal to the coefficient of Ψi (x, y, z, t, ζ) in the development of the function A(Ψi) 
in proper functions of the Hamiltonian operator. 
 In the foregoing, we implicitly supposed that the spectrum of the operator A was 
purely discontinuous.  What we said in Chapters V and VI about continuous spectra will 
permit the reader to see effortlessly how the formulas that were written above will be 
modified when there exist proper values that define a continuous sequence. 
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 3. Example: proper values of the operator Mz = 
04

eh

m cπ
i α1 α2 α4 . – As an 

example of an operator A that acts upon only the spin variable, we take the operator Mz = 

04

eh

m cπ
i α1 α2 α4 , which we have made to correspond to the z component of the proper 

magnetic moment of the electron (cf., Chapter IX, at the end). 
 In order to abbreviate the writing, we set: 
 

B =
04

eh

m cπ
= Bohr magneton.     (14) 

 
 From (7), the equation that defines the proper values and proper functions of the 
operator Mz is: 

B 
4

1k

i
=
∑ (α1 α2 α4)jk ϕj = a ϕj  (j = 1, 2, 3, 4).  (15) 

 
 Upon taking into account the values of the elements of the matrices α1, α2, α4 , one 
will find that for each of the four values of the variable ζ, one will have: 
 

B ϕ (1) = + ϕ (1),    B ϕ (2) = − ϕ (2),    B ϕ (3) = − ϕ (3),    B ϕ (4) = + ϕ (4). (16) 
 
 These equations will admit a solution ϕ (ζ) that is not identically zero only if one has 
a = ± B.  The operator Mz will then have only the values ± B for proper values, as we 

expected. 
 For the proper value a = + B, there exist two independent proper functions that we 
call: 

(1)( )ϕ ζ+     and    (2)( )ϕ ζ+ . 

 
These proper functions are defined by their values for the four possible values of the 
variable ζ, namely: 
 
 (1)(1)ϕ+ = 1, (1)(2)ϕ+ = 0, (1)(3)ϕ+ = 0, (1)(4)ϕ+ = 0, 

(17) 
 (2)(1)ϕ+ = 0, (2)(2)ϕ+ = 0, (2)(3)ϕ+ = 0, (2)(4)ϕ+ = 1. 

 
 These functions are normalized and orthogonal because one has: 
 

2(1)
+Ψ∫ dζ = 1, 

2(2)
+Ψ∫ dζ = 1, (1) (2)∗

+ +Ψ Ψ∫ dζ = 0.  (18) 

 
 The proper value + B is then a double one. 
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 Similarly, the proper value a = − B is double, because it corresponds to two 
independent proper functions that are normalized and orthogonal.  (1)( )ϕ ζ−  and (2)( )ϕ ζ−  

are defined by: 
 
 (1)(1)ϕ− = 0, (1)(2)ϕ− = 1, (1)(3)ϕ− = 0, (1)(4)ϕ− = 0, 

(19) 
 (2)(1)ϕ− = 0, (2)(2)ϕ− = 0, (2)(3)ϕ− = 1, (2)(4)ϕ− = 0. 

 
 One verifies that the two functions ϕ− are orthogonal to the functions ϕ+ . 
 Therefore, let Ψ (x, y, z, t, ζ) be the wave function of an electron.  By virtue of the 
first general principle, the possible values of the z component of its proper magnetic 
moment are the proper values of the operator Mz, namely, ± B; i.e., ± 1 times the Bohr 

magneton.  In order to find the probabilities for these two respective hypotheses, we must 
write the development as: 
 
 Ψ (x, y, z, t, ζ) = (1) (1) (2) (2)( , , , ) ( , , , ) ( , , , ) ( , , , )c x y z t x y z t c x y z t x y z tϕ ϕ+ + + ++  

+ (1) (1) (2) (2)( , , , ) ( , , , ) ( , , , ) ( , , , )c x y z t x y z t c x y z t x y z tϕ ϕ− − − −+ .  (20) 

 
 From the second general principle, the probability of the vector + B is: 
 

2 2(1) (2)c c
+∞

+ +
−∞

 +  ∫ ∫ ∫  dτ , 

 
and similarly that of the value – B is: 
 

2 2(1) (2)c c
+∞

− −
−∞

 +  ∫ ∫ ∫  dτ . 

 
Now, upon successively substituting the values ζ = 1, 2, 3, 4 in formula (20), one will 
easily find that: 
 (1)c+  = Ψ1 (x, y, z, t), (2)c+  = Ψ4 (x, y, z, t),  

(21) 
 (1)c−  = Ψ2 (x, y, z, t), (2)c−  = Ψ3 (x, y, z, t). 

 
 The probability of the value + B will then be: 
 

2 2

1 4

+∞

−∞

 Ψ + Ψ
 ∫ ∫ ∫  dτ , 

 
and that of the value – B will be: 
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2 2

2 3

+∞

−∞

 Ψ + Ψ
 ∫ ∫ ∫  dτ . 

 
That is indeed the conclusion to which we arrived before. 
 The simple example that we just treated shows how one can obtain the values of the 
proper functions of the operators that act upon only the ζ.  In particular, those 
considerations are applicable to the operators that we shall speak of at the beginning of 
the following paragraph, which are operators whose double proper values have the values 
± 1. 
 
 
 4.  The 16 fundamental operators of Dirac’s theory.  Corresponding quantities 
and densities. – With the aid of the operators αi and the matrix 1 (with four rows and 
four columns), one can form the following table that contains sixteen Hermitian operators 
that act upon only the variable ζ : 

α4 
α1    α2    α3    1 

i α2 α3 α4    i α3 α1 α4     i α1 α2 α4     i α1 α4     i α2 α4     i α3 α4   (22) 
i α2 α3    i α3 α1    i α1 α2    i α1 α2 α3 

α1 α2 α3 α4 . 
 

 In that table, one has multiplied the products of the αi by i when they are anti-
Hermitian, in such a fashion as to obtain Hermitian operators.  Naturally, one can obtain 
further operators – such as i α4 α1 , for example – upon permuting the αi , but each of the 
new operators will be equal or equal with the opposite sign to one of the operators that 
appear in the table. 
 Upon multiplying some of the operators in the table (22) by a suitable factor, we will 
find operators that correspond to the quantities that were studied before.  Therefore, from 
formulas (7) and (8) of Chapter XII, the operators of the second row will correspond to 
the components of the mean electric current and the mean electric density when the first 
three are multiplied by ec, and the last one, by – e, resp. 
 From equations (9) of Chapter XIV, the operators of the third row will correspond to 
the coordinates of the proper magnetic moment and proper electric moment of the 

electron when they are multiplied by the Bohr magneton 
04

eh

m cπ
.  Finally, from formulas 

(42) of Chapter XV, the first three operators of the fourth row will correspond to the three 
components Sx , Sy , Sz of the proper angular momentum when they are multiplied by h / 
4π.  From what we said at the end of the last chapter, we shall also propose that the 
operator α4  can indeed correspond to the proper mass when it is multiplied by – m0 . 
 With the 16 operators of the table (22), we can define 16 mean-value densities that 
have a tensorial character and are all real, and which we can write as follows: 
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Ω1 = 
4

4
1

k k
k

α∗

=
Ψ Ψ∑  

  

(a) 
 

i1 = ec 
4

1
1

k k
k

α∗

=
Ψ Ψ∑       i2 = ec 

4

2
1

k k
k

α∗

=
Ψ Ψ∑  

 

i3 = ec 
4

3
1

k k
k

α∗

=
Ψ Ψ∑       i4 = − ec

4

1

1k k
k

∗

=
Ψ Ψ∑  

 
 
(b)  

µ32 = 
4

2 3 4
104 k k

k

eh
i

m c
α α α

π
∗

=

Ψ Ψ∑   

µ14 = 
4

1 4
104 k k

k

eh
i

m c
α α

π
∗

=
Ψ Ψ∑  

µ13 = 
4

3 1 4
104 k k

k

eh
i

m c
α α α

π
∗

=

Ψ Ψ∑  

µ24 = 
4

2 4
104 k k

k

eh
i

m c
α α

π
∗

=

Ψ Ψ∑  

µ21 = 
4

1 2 4
104 k k

k

eh
i

m c
α α α

π
∗

=

Ψ Ψ∑  

µ34 = 
4

3 4
104 k k

k

eh
i

m c
α α

π
∗

=

Ψ Ψ∑  

 
 
 
(c) 

 
 
 
(23) 

σ1 = 
4

2 3
14 k k

k

h
i α α

π
∗

=

Ψ Ψ∑       σ2 = 
4

3 1
14 k k

k

h
i α α

π
∗

=

Ψ Ψ∑  
 

σ3 =
4

1 2
14 k k

k

h
i α α

π
∗

=

Ψ Ψ∑       σ4 =
4

1 2 3
14 k k

k

h
i α α α

π
∗

=

Ψ Ψ∑  

 
 
(d)  

 
Ω2 = 

4

1 2 3 5
1

k k
k

α α α α∗

=

Ψ Ψ∑  
  

(e) 
 

 
The quantities Ω1 and Ω2 are invariant under Lorentz transformations; we already know 
that.  When envisioned as mean-value densities, they will be invariant densities.  The 
physical significance (if it exists) of Ω2 is still unknown; that of the quantity Ω1 will be 
discussed later on. 
 The four quantities (b) form a space-time quadri-vector (1).  We already know that it 
corresponds to the four components of the “world electric current” that is well-known in 
relativity.  Upon integrating the component i4 over all space, we will obtain an invariant 
quantity that is the total electric charge – e of the electron, up to a factor of c. 
 The six quantities (c) are the six distinct components of a second-order anti-
symmetric tensor.  In fact, we already know of it: They are the magnetic moment and 
electric moment densities that were studied in Chapter XIV, paragraph 3. 
 The four quantities (d) transform like the components of a space-time vector.  The 
first three of them σx, σy, σz are, as we know already, the mean-value densities of the 
proper angular momentum S (i.e., the spin).  The temporal component σ4 completes the 
space-time vector; its physical interpretation does not seem to be very clear. 
 
 

                                                
 (1) In table (23), the components with an index 4 refer to the fourth space-time variable, namely, x4 = ct.  
One will then have i4 = cρ.  
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 5. Remarks on the vector σσσσ    . – From the preceding, the space-time vector σσσσ can be 
called the spin vector.  By definition, the length | σ | of such a space-time vector is given 
by the formula: 

| σ |2 = σ4
2 − σ1

2 − σ2
2 − σ3

2.     (24) 
 
 If one does the calculation then the result will be: 
 

| σ |2 = −
2

2 2
1 2 2

( )
16

h

π
Ω + Ω .     (25) 

 
 The spin is then a spacelike vector, as one says in relativity theory.  That is clearly 
distinguished from the current vector, which is timelike, from formula (14) of Chapter 
XII. 
 Now recall the monochromatic plane wave with the wave function: 
 

 Ψ1 = − 
2

( )

0/

z
i

Wt p z
z h

Ap
e

W c m c

π −

+
, 

 

 Ψ2 =   
2

( )

0/
z

i
Wt p z

z h
Bp

e
W c m c

π −

+
, 

(26) 

 Ψ3 =  
2

( )z
i

Wt p z
hAe
π −

, 

 

 Ψ4 =   
2

( )z
i

Wt p z
hB e
π −

, 
 

in which W = c 2 2 2
0 zm c p+ . 

 We carry out the explicit calculation of the components of σσσσ in this particular case; 
we will find that: 

 σ1 = 
2

2
0

( ) 1
4 ( / )

zph
A B AB

W c m cπ
∗ ∗  

+ − + 
, 

 

 σ2 = 
2

2
0

( ) 1
4 ( / )

zph
i A B AB

W c m cπ
∗ ∗  

− − + 
, 

(27) 

 σ3 = 
2

2
0

( ) 1
4 ( / )

zph
AA BB

W c m cπ
∗ ∗  

− + + 
, 

 

 σ4 = 
0

2( )
4 /

zph
AA BB

W c m cπ
∗ ∗−

+
. 
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 Since the components of the “world electric current” quadri-vector for a plane wave 
are: 

i1 = jx = 0, i2 = jy = 0, i3 = jz = − e ρ 
2

zc p

W
, i4 = c δ = − e ρ c, 

 
which results from the formulas of Chapter XII, para. 4, we will easily find that: 
 

(i ⋅⋅⋅⋅ σσσσ) = i4 σ4 − i1 σ1 − i2 σ2 − i3 σ3 = 0.   (28) 
 
 Therefore, the space-time scalar product of the vectors i and σσσσ is zero.  Hence, for the 
monochromatic plane wave, the two quadri-vectors “world current” and “spin” are 
orthogonal in space-time.  (Of course, that is not to say that the corresponding spatial 
vectors are perpendicular.) 
 One can also write (28) in the form: 
 

σ4 = σ3 zp c

W
= σ1 v1 + σ2 v2 + σ3 v3 .   (28 cont.) 

 
 The component σ4 is thus interpreted here as the spatial scalar product of the “proper 
angular momentum density” and “velocity” vectors. 

 For a speed that is close to c, the ratio 
0/

zp

W c m c+
 will be close to 1, and from (27), 

the components σx , σy will be almost zero.  Upon confronting this result with what was 
said at the end of the last chapter, one will see that in Dirac’s mechanics, a particle that is 
animated with a velocity that is close to c and is associated with a monochromatic plane 
wave will have its three spatial vectors I , J, and σσσσ mutually perpendicular, and the last 
one will directed along the normal to the wave (1). 
 We conclude these remarks on spin by pointing out a general relation between the 
components of that vector and the invariant Ω2 .  That relation, which is due to 
Uhlenbeck and Laporte, is written: 
 

34 1 21

c t x y z

σσ σ σ ∂∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 = 
4

1

i

i ix

σ
=

∂
∂∑  = − m0 c Ω2   (29) 

with our notations. 

                                                
 (1) One might be surprised to see that the proper angular momentum S of the Dirac electron does not 
always coincide in direction with the magnetic moment M and believe that this contradicts the relation: 

S

M
= −

0

e

m c
,      (*) 

by which, one expresses the double magnetism of the electron.  However, must remark that the relation (*) 
is valid only for reference systems in which the electron is rest, because M and S do not transform the same 
under a Lorentz transformation.  Indeed, for a magnetic moment, it is the densities of the components that 
transform like the components 23, 32, and 12 of a tensor; on the contrary, for an angular momentum, it is 
the components themselves that transform in that way. 
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 In the case of the plane wave, it is satisfied identically because all of the terms are 
zero separately.  One proves the relation (28) easily by starting with the Dirac equation 
and its conjugate; its true physical significance remains unknown. 
 
 
 6. Remarks on the invariant Ω1 and the operator – m0α4 . – We have seen 
already that, in a certain sense, the physical quantity “proper mass” will correspond to the 
operator – m0α4 under the Dirac equations.  If we assume that correspondence then the 
mean-value density that one deduces from it will be: 
 

− m0 
4

4
1

k k
k

α∗
=

Ψ Ψ∑  = – m0 Ω1 .     (30) 

 
 It is invariant.  If one integrates that density over space then one will obtain the mean 
value: 

0m  = − m0 
4

4
1

k
k

dα τ
−∞

∗

=+∞

Ψ Ψ∑∫ ∫ ∫ = − m0 1 dτ
+∞

−∞

Ω∫ ∫ ∫ ,   (31) 

 
or, upon making Ω1 explicit: 
 

0m  = m0 3 3 4 4 1 1 2 2( )dτ
+∞

∗ ∗ ∗ ∗

−∞

Ψ Ψ + Ψ Ψ − Ψ Ψ − Ψ Ψ∫ ∫ ∫ ,  (32) 

 
which is a formula that indeed confirms the idea that the wave functions with indices 3 
and 4 correspond to the proper mass + m0 , and those with indices 1 and 2, to the proper 
mass – m0 . 
 The mean value (31) is not invariant.  If one would like to deduce an invariant 
quantity from it then one must integrate over the fourth space-time variable x = ct.  One 
will then obtain: 

0

t
m c dt∫  = − m0 c 1

t
dt dτ

+∞

−∞

Ω∫ ∫ ∫ ∫ .    (33) 

 
 In order to try to penetrate the physical significance of the formulas a little, we again 
recall the case of the monochromatic plane wave (26) and calculate the value that 0m  will 

have in that case.  We easily find from (30) that: 
 

− m0 Ω1 = m0 (AA* + BB*) 
2

2
0

1
( / )

zp

W c m c

 
− + 

= m0 (AA* + BB*) 
2

0

0

2

/

m c

W c m c+
. (34) 
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 In order to get 0m , one must integrate the expression that this will give upon taking 

into account the normalization of the Ψ (1): 
 

 0m = m0 ⋅⋅⋅⋅
2

0

0

2

/

m c

W c m c+
⋅⋅⋅⋅ 2

2
0

1

1
( / )

zp

W c m c
+

+

,    (35) 

or furthermore: 

0m = m0 ⋅⋅⋅⋅
2

0m c

W
= m0 

21 β− ,    (36) 

 
in which βc is the velocity that corresponds to the energy W according to relativistic 
dynamics. 
 The integral invariant (33) is therefore nothing but the action integral (up to a 
constant): 

2
0 1

t
m c dtβ−∫       (37) 

 
of the material point in question in relativistic dynamics.  We then have the following 
theorem: 
 
 For a Dirac electron that is associated with a plane monochromatic wave, the time 
integral of the mean value of proper mass will coincide with the action integral of 
Einstein’s dynamics. 
 

___________ 

                                                
 (1) See the note on page 129.  
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Table of quantities and densities that are associated with the electron. 
 

Physical quantities Operators Mean-value densities Relativistic 
variance  

of the density 
 

 
Proper mass (?) 

 

 
(− m0) α4 

 

− m0 
4

4
1

k k
k

α∗
=

Ψ Ψ∑ = − m0 Ω1 

 

 

 
Invariant 

 
Electric charge 
 

Electric current 









 

 
− e ⋅⋅⋅⋅ 1 

 
e c α1 

 
e c α2 

 
 

e c α3 

δ = − ρ c = − e 
4

1

1k k
k

∗

=
Ψ ⋅ ⋅ Ψ∑  

jx = − ρ e ux = e c
4

1
1

k k
k

α∗
=

Ψ Ψ∑  

jy = − ρ e uy = e c
4

2
1

k k
k

α∗
=

Ψ Ψ∑  

jz = − ρ e uz = e c 
4

3
1

k k
k

α∗
=

Ψ Ψ∑  

 

 
 
 
 

Space-time vector 
(world current) 

 

Magnetic

moment

x

y

z

M

M

M









 

 

04

eh

m cπ
⋅⋅⋅⋅ i α2α3 α4   

 
“  ⋅⋅⋅⋅ i α3 α1 α4  

 
“  ⋅⋅⋅⋅ i α1α2α4  

 

Ix =
4

2 3 4
104 k k

k

eh
i

m c
α α α

π
∗

=

Ψ Ψ∑  

Iy =
4

3 1 4
104 k k

k

eh
i

m c
α α α

π
∗

=

Ψ Ψ∑  

Iz =
4

1 2 4
104 k k

k

eh
i

m c
α α α

π
∗

=

Ψ Ψ∑  

 

 
 
 
Second-rank anti-
symmetric tensor 

Part 1 
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Table of quantities and densities that are associated with the electron (cont.) 
 

Physical 
quantities 

Operators Mean-value densities Relativistic 
variance  

of the density 
 

Electric

moment

x

y

z

P

P

P









 

 

04

eh

m cπ
⋅⋅⋅⋅ i α2 α3  

 

“    ⋅⋅⋅⋅ i α2 α4  
 

  “    ⋅⋅⋅⋅ i α3 α4 

 

Jx = 
4

1 4
104 k k

k

eh
i

m c
α α

π
∗

=

Ψ Ψ∑  

Jy = 
4

2 4
104 k k

k

eh
i

m c
α α

π
∗

=

Ψ Ψ∑  

Jz = 
4

3 4
104 k k

k

eh
i

m c
α α

π
∗

=

Ψ Ψ∑  

 

 
 

Second-rank anti-
symmetric tensor 

 
(Part 2) 

 

Proper 

angular

momentum

x

y

z

S

S

S









 

 
(?)              S4  

 

 

4

h

π
⋅⋅⋅⋅ i α2 α3 

  
 “  ⋅⋅⋅⋅ i α3 α1 
 
 “  ⋅⋅⋅⋅ i α1 α2 
 
 

 “ ⋅⋅⋅⋅ i α1α2 α3 

 

σx = 
4

2 3
14 k k

k

h
i α α

π
∗

=
Ψ Ψ∑  

σy = 
4

3 1
14 k k

k

h
i α α

π
∗

=
Ψ Ψ∑  

σz = 
4

1 2
14 k k

k

h
i α α

π
∗

=
Ψ Ψ∑  

σ4 = 
4

1 2 3
14 k k

k

h
i α α α

π
∗

=
Ψ Ψ∑  

 

 
 
 

Completely anti-
symmetric  

third-rank tensor 
 

= Space-time vector 
 

 
(?)             (?)  

 
   α1α2 α3α4 

 

Ω2 = 
4

1 2 3 4
1

k k
k

α α α α∗

=
Ψ Ψ∑  

 
Completely anti-

symmetric  
fourth-rank tensor 

 
= invariant 
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Table of the 16 fundamental Hermitian operators in Dirac’s theory 
 

α4 = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−
−

 
 
 
 
  

 

 

α1 = 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 
 
 
 
  

    α2 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−

−

 
 
 
 
  

    α3 = 

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

−

−

 
 
 
 
  

    1 = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  

 

 

i α2α3α4 = 

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

−
−

 
 
 
 
  

     i α3α1α4 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−
−

 
 
 
 
  

     i α1α2α4 = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−
−

 
 
 
 
  

 

 

i α1α4 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−
−

 
 
 
 
  

     i α2α4 = 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

−
−

 
 
 
 
  

     i α3α4 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−

−

 
 
 
 
  

 

 

iα2α3 =

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 
 
 
 
  

 iα3α1=

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−

−

 
 
 
 
  

 iα1α2 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−

−

 
 
 
 
  

 iα1α2α3 =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 
 
 
 
  

      

 

α1α2α3α4 = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

−
−

 
 
 
 
  
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PART III 
 

__ 
 
 

APPLICATIONS OF DIRAC’S THEORY  

CRITICISMS AND VARIOUS SPECIAL TOPICS 

 



 

CHAPTER XVII 
 

EXPLANATION FOR FINE STRUCTURE  
IN DIRAC’S THEORY 

_____ 
 
 

1.  Wave equations for the motion of an electron in a central field (1) 
 

 In this chapter, we propose to show that Dirac’s theory provides a good explanation 
for the fine structure of optical and X-ray spectra that does not raise the same issues as 
Sommerfeld’s older theory of fine structure. 
 Consider an electron that moves in a static central field that is derived from a 
potential V(r).  The Dirac equations for that electron will be: 
 

 a)  0 1 4 3

2 i W eV
m c i

h c x y z

π  + ∂ ∂ ∂ + Ψ − + Ψ + Ψ   ∂ ∂ ∂   
 = 0, 

 

 b)  0 2 3 1

2 i W eV
m c i

h c x y z

π  + ∂ ∂ ∂ + Ψ − − Ψ + Ψ   ∂ ∂ ∂   
= 0, 

(1) 

 c)  0 3 2 1

2 i W eV
m c i

h c x y z

π  + ∂ ∂ ∂ − Ψ − + Ψ − Ψ   ∂ ∂ ∂   
= 0, 

 

 d)  0 4 1 2

2 i W eV
m c i

h c x y z

π  + ∂ ∂ ∂ − Ψ − − Ψ + Ψ   ∂ ∂ ∂   
= 0. 

 
 It is natural to seek to express each of the Ψk as a product of a Laplace spherical 
function with a function of the radius vector. 
 Recall that Laplace’s spherical functions have the following form: 
 

( , )m
lY θ ϕ  = C e±imϕ ( , )m

lP θ ϕ  = C e±imϕ sinm θ 
( cos )

l m

l m

d

d θ

+

+ (1 – cos2 θ)l. (2) 

 
 Since the constant C is arbitrary, with Darwin, we choose it in such a way that we 
will have: 

( , )m
lY θ ϕ  = (l – m)! eimϕ

2(1 cos )

( cos ) 2 !

l m l

l m l

d

d l

θ
θ

+

+

 −
 ⋅ 

⋅⋅⋅⋅ sinm θ,   (3) 

 

                                                
 (1) Here, we follow the method that was employed by C. G. Darwin [Proc. Roy. Soc. A 118 (1928), pp. 
554].  
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with l = 0, 1, 2, …, and m = − l, − (l – 1), …, + l.  Moreover, we remark that the function 
(3) is not normalized on the surface of the sphere of unit radius. 
 Upon appealing to the formulas for the transformation of rectangular coordinates to 
polar coordinates, one can prove the following relations, in which f (r) denotes an 
arbitrary function of the radius vector: 
 

m
li f Y

x y

 ∂ ∂+ ∂ ∂ 
= 1 1

1 1

1 1
( )( 1)

2 1
m m

l l

df l df l
f Y l m l m f Y

l dr r dr r
+ +

+ −
 +    − − − − − +   +     

, 

 

m
li f Y

x y

 ∂ ∂− ∂ ∂ 
= 1 1

1 1

1 1
( )( 1)

2 1
m m

l l

df l df l
f Y l m l m f Y

l dr r dr r
− −

+ −
 +    − − + + + − +   +     

,    (4) 

 

m
lf Y

z

∂
∂

= 1 1

1 1
( )( )

2 1
m m

l l

df l df l
f Y l m l m f Y

l dr r dr r+ −
 +    − + + − +    +     

. 

 
 With the aid of formulas (4), we will be able to specify the derivatives that figure in 
(1), since we suppose that each Ψk is the product of a function of r with a Laplace 
function.   We then make the hypothesis that the function Ψk is proportional to the 
function m

lY  with given values for l and m. 

 Upon now regarding equation (c) of (1), we will see that the terms in mlY  that are 

provided by − 1

z

∂Ψ
∂

 and – i
x y

 ∂ ∂+ ∂ ∂ 
Ψ2 will cancel the term in Ψ3, and the other terms 

must cancel each other.  It will then result that Ψ1 and Ψ2 must depend upon the same 
function of the radius vector, and must be proportional to 1

m
lY+  and 1

1
m

lY −
+ , respectively; 

namely, to 1
m

lY−  and 1
1
m

lY −
− , resp. 

 Likewise, equation (a) of (1) shows that Ψ1 and Ψ2 must depend upon the same 
function of the radius vector and that Ψ1 must be proportional to 1m

lY − . 

 Finally, we are led to first imagine a solution that we can write (1): 
 

1
1 1 1 2 2 1

1
3 3 4 4

( ) ( , ), ( ) ( , ),

( ) ( , ), ( ) ( , ).

m m
l l

m m
l l

ia F r Y ia F r Y

a G r Y a G r Y

θ ϕ θ ϕ
θ ϕ θ ϕ

−
+ + + +

−
+ +

Ψ = Ψ =
Ψ = Ψ = 

  (I) 

 
 We introduce the forms (I) into equations (a) and (b) of (1) and obtain: 
 

− 0 1 1

2 m
l

W eV
m c a F Y

h c

π
+ +

+ +  
 

− 1
1 1

1
( )( 1)

2 1
m m

l l

a dG dGl l
G Y l m l m G Y

l dr r dr r
+ +

+ + + −

 +   − − − − + +    +     
 

                                                
 (1) We introduce the factor i into Ψ1 and Ψ2 so that a1 and a2 will be real.  Cf., formulas (9).  
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 − 3
1 1

1
( )( )

2 1
m m

l l

a dG dGl l
G Y l m l m G Y

l dr r dr r
+ +

+ + + −

 +   − + + − +    +     
= 0.  

(5) 

− 1
0 2 1

2 m
l

W eV
m c a F Y

h c

π −
+ +

+ +  
 

 − 1 13
1 1

1
( )( 1)

2 1
m m

l l

a dG dGl l
G Y l m l m G Y

l dr r dr r
− −+ +

+ + + −

 +   − − + + + − +    +     
 

 + 1 14
1 1

1
( 1)( 1)

2 1
m m

l l

a dG dGl l
G Y l m l m G Y

l dr r dr r
− −+ +

+ + + −

 +   − + + − − + +    +     
= 0.  

 
 In order to make the terms in 1

m
lY−  disappear in the first of equations (5) and the terms 

in  1
1

m
lY −
− , in the second, it will suffice to set: 

 

3

4

a

a
= 

1l m

l m

− +
+

.      (6) 

 
 On the other hand, substitute the forms (I) into equations (c) and (d) of (1); one will 
get: 

0 3

2 m
l

i W eV
m c a G Y

h c

π
+

+ −  
 

 − 3
2

1 2
(?)( 2)( 1)

2 3
m m

l l

ia dF dFl l
F Y l m l m F Y

l dr r dr r
+ +

+ + +

 + +   − + − + − + +    +     
 

 − 1
2

1 2
( 1)( 1)

2 3
m m

l l

a dF dFl l
F Y l m l m F Y

l dr r dr r
+ +

+ + +

 + +   − + + + − + +    +     
= 0.  

 
(7) 

1
0 4

2 m
l

i W eV
m c a G Y

h c

π −
+

+ −  
 

 − 1 13
2

1 2
( 1)( )

2 3
m m

l l

ia dF dFl l
F Y l m l m F Y

l dr r dr r
− −+ +

+ + +

 + +   − − + + + + +    +     
 

 − 1 12
2

1 2
( )( 2)

2 3
m m

l l

ia dF dFl l
F Y l m l m F Y

l dr r dr r
− −+ +

+ + +

 + +   − + + − + +    +     
= 0.  

 
 In order to make the terms in 2

m
lY+  disappear from the first equation in (7) and the 

terms in 1
2

m
lY −
+ , in the second one, one must set: 

 
a4 = − a1 .      (8) 
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 The ratio a1 / a2 is arbitrary, because we can incorporate it into F+ / G+ .  We can then 
satisfy the conditions (6) and (8) by setting: 
 

a1 = 1,  a2 = − 1, a3 = l – m + 1,  a4 = l + m,  (9) 
 
in such a way that a3 + a4 = 2l + 1. 
 Under those conditions, the two equations (5) will reduce to the single equation: 
 

0

2 dGW eV l
m c F G

h c dr r

π +
+ +

+ + + −  
 = 0.   (10) 

 
 Equations (7) will likewise reduce to the single equation: 
 

− 0

2 2dFW eV l
m c G F

h c dr r

π +
+ +

+ + + + +  
 = 0.  (11) 

 
 The solution (I) is characterized by the fact that the lower indices of Y are l and l + 1.  
The mean of those two values is l + 1 / 2, which we call j.  The solution (I) is then 
characterized by the quantum numbers l, j = l + 1 / 2, and m. 
 We just found a first solution in which Ψ3 is proportional to m

lY .  However, we have 

seen that there can exist another one in which Ψ1 is proportional to 1
m

lY− , and Ψ2 to 1
1

m
lY −
− . 

 We are then led to imagine a solution (II) of the form: 
 
   Ψ1 = 1 1( ) ( , )m

lia F r Y θ ϕ− −′ ,  Ψ2 = 1
2 1( ) ( , )m

lia F r Y θ ϕ−
− −′ , 

(II) 
   Ψ2 = 3 ( ) ( , )m

la G r Y θ ϕ−′ ,  Ψ3 = 1
4 ( ) ( , )m

la G r Y θ ϕ−
−′ . 

 
 Upon substituting the forms (II) into equations (I) and arguing as above, one will be 
then led to the conditions: 
 

2

1

a

a

′
′
= − 

1l m

l m

+ −
−

, 3a′  = − 4a′ ,    (12) 

 
which are analogous to (6) and (8), resp.  One will satisfy those conditions by setting: 
 

1a′  = − (l – m),  2a′  = l + m – 1,  3a′  = 1,  4a′  = − 1.  (13) 

 
 One will then find the following equations for F− and G− : 
 

 0

2 1dGW eV l
m c F G

h c dr r

π −
− −

+ + + + +  
= 0, 

(14) 
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 − 0

2 1dFW eV l
m c G F

h c dr r

π −
− −

+ − − + −  
= 0, 

 
which are the analogues of (10) and (11), resp. 
 The wave functions (II) constitute the solution that corresponds to the quantum 
numbers l, j = l – 1

2 , and m. 

 We now remark that the solution (II) will not exist for l = 0 (i.e., the s terms), because 
there are no functions mlY−  with negative indices. 

 We shall soon see that the determination of the functions F and G involves a quantum 
number n (viz., total quantum number) in such a way that any complete solution will be 
characterized by four quantum numbers: n, l, j = l ± 1

2 , m. 

 We then summarize the results that were obtained in this paragraph by the following 
table: 
 
 Solution (I): n, l, j = l + 1

2 , m 

 
 Ψ1 = i F+ 1

m
lY+ ,   Ψ2 = − i F+ 

1
1

m
lY −
+ , 

 Ψ3 = (l – m + 1) G+ 
m

lY , Ψ4 = (l + m) G+ 
1m

lY − , 

 

 0

2 dGW eV l
m c F G

h c dr r

π +
+ +

+ + + −  
= 0, 

 

 − 0

2 2dFW eV l
m c G F

h c dr r

π +
+ +

+ + − + +  
= 0, 

 
 Solution (II): n, l, j = l − 1

2 , m 

 
 Ψ1 = − i (l – m) F− 1

m
lY− , Ψ2 = i (l + m – 1) F− 

1
1

m
lY −
− , 

 Ψ3 = G− 
m

lY ,   Ψ4 = − G− 
1m

lY − , 

 

 0

2 1dGW eV l
m c F G

h c dr r

π −
− −

+ + + + +  
= 0, 

 

 − 0

2 1dFW eV l
m c G F

h c dr r

π −
− −

+ − − + −  
= 0. 

 
 One remarks that the equations in this table that are satisfied by F− and G− can be 
deduced from the ones that are satisfied by F+ and G+ by changing l into – (l + 1). 
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 2. Number of solutions that correspond to a given value of n and l.  Angular 
momentum of the electron in stationary states. – It is very interesting to demand to 
know how many stationary states can exist that correspond to a given value of the 
quantum numbers n and l.  It is obvious that there are, a priori, only as many states as the 
values of m that are permissible when n and l are fixed. 
 First, consider the solution of the type (I), and count the possible values of m by 
remarking that the upper index in the Y functions must be at most equal to the lower 
index in absolute value.  There is no reason to prevent one from taking m = 0, 1, …, l.  It 
might seem impossible to take m = l + 1, because Ψ3 would then contain the non-existent 
function 1l

lY + , but the coefficient a3 is found to be zero for the value m = l + 1, and as a 

result, one can once more take that value for m.   By contrast, the values of m that are 
greater than l + 1 are unacceptable. 
 On the other hand, we can take the negative values – 1, − 2, …, − (l − 1) with no 
difficulty.  Can it take the value – l ?  Yes, because a4 will be zero then.  However, the 
values of m that are less than – l are unacceptable.  Finally, for the solutions of the type 
(I) such that j = l + 1 / 2, one will have 2l + 2 possible values for m, namely, l negative 
values, the value zero, and l + 1 positive values.  In that case, there will be 2l + 2 = 2j + 1 
distinct stationary states, a priori. 
 Take the solutions of the type (II), so m can take the values 0, 1, …, l – 1, and it can 
also take the value l, which makes the non-existent function 1

l
lY−
−  appear in Ψ1, but it will 

simultaneously annul 1a′ .  The values of m that are greater than l or less than – (l – 1) are 

unacceptable.  Therefore, we have 2l possible values for m, namely, l positive values, the 
value zero, and (l – 1) negative values. 
 In summary, there are (2j + 1) distinct solution for the solutions (II), as there are for 
the solutions (I).  Later, we shall see how that result permits one to justify Stoner’s rule 
that relates to the distribution of electrons in the atom. 
 We shall now seek to characterize the types of solutions (I) and (II) by their 
corresponding angular momenta.  In order to do that, we start with the result that we 
proved before: The first integral operator that corresponds to the angular momentum 

around oz in Dirac’s theory is not Mz = 
2

h
y x

i x yπ
 ∂ ∂− ∂ ∂ 

 = − 
2

h

iπ ϕ
∂

∂
, but in fact, Nz = 

Mz + Sz = − 
2 4

h h

i iπ ϕ π
∂ −

∂
α1 α2 .  Now, if one remarks that 

m
lY

ϕ
∂
∂

= im m
lY  then one will 

easily see that one will have the formulas: 
 

Nz (Ψk) = − 
2 4

kh h

i iπ ϕ π
∂Ψ −
∂

α1 α2 Ψk ,   (15) 

 
for k = 1, 2, 3, 4, for a solution of the type (I), as well as one of type (II).  One will then 

see that the total angular momentum Nz will be equal to − ( )1
2 2

h
m

π
−  for a solution that 

corresponds to the quantum m, no matter whether it has type (I) or type (II).  Now, see 
what the extreme values will be that this momentum can take for a given value of l.  For a 
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solution of type (I), the number m can vary from – (l – 1) to + l for a given l.  The 
momentum Nz can then vary from: 
 

− 1

2 2

h
l

π
 − 
 

  to +
1

2 2

h
l

π
 − 
 

, 

 
and a solution of type (II) will then be found to correspond to a maximum absolute value 

of Nz that is equal to 
1

2 2

h
l

π
 − 
 

. 

 Now, to employ the old language, one must say that 
2

h
l

π
 is the “orbital” angular 

momentum of the electron.  We then perceive that the solutions of type (I) can be 
characterized by saying that they correspond to the case in which spin and orbital 
momentum are parallel in the same sense.  On the contrary, the solutions of type (II) 
correspond to the case in which spin and orbital momentum are parallel in the opposite 
sense. 
 
 
 3. Calculation of the energy levels for the hydrogen atom. – We shall calculate 
the energy levels for the hydrogen atom.  In that case, one must set V = e / r in the 
equations of the first paragraph.  We shall examine, in turn, the case of solutions of type 
(I), and then that of solutions of type (II). 
 
 a) Solutions of type (I): 
 
 For the solutions of type (I), we have the two equations: 
 

 
2

0

2 dGW e l
m c F G

h c cr dr r

π +
+ +

 
+ + + − 

 
 = 0, 

(16) 

 −
2

0

2 2dFW e l
m c G F

h c cr dr r

π +
+ +

  ++ + + − 
 

 = 0. 

 Set: 

A2 = 0

2 W
m c

h c

π  + 
 

,  B2 = 0

2 W
m c

h c

π  − 
 

,   (17) 

 

and introduce the fine-structure constant α = 
22 e

ch

π
.  We would like to find the levels of 

discontinuous spectra.  As we know, those levels correspond to an energy of E = W – m0 
c2, which is negative.  The quantity B2 will then be positive, and B will be real.  With 
those notations, equations (16) will become: 
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 2 dG l
A F G

r dr r

α +
+ +

 + + − 
 

= 0, 

(18) 

 2 2dF l
B G F

r dr r

α +
+ +

+ − + + 
 

= 0. 

 
 Asymptotically, for very large r, one will have: 
 

A2 F+ + 
dG

dr
+ = 0, B2 G+ + 

dF

dr
+ = 0,   (19) 

so one will infer that: 
2

2

d G

dr
+ = A2 B2 G+ , 

2

2

d F

dr
+ = A2 B2 F+ ,   (20) 

and upon integrating: 
G+ = e±ABr, F+ = e±ABr.    (21) 

 
 If F+ and G+ are to be zero at infinity then we must take the – sign, so: 
 

G+(asyp.) = const. e−ABr,  F+(asyp.) = const. e−ABr.   (22) 
 
 These asymptotic forms suggest that we try to substitute the following forms into 
(18): 
 F+ = e−ABr [a0 r

γ + a1 r
γ+1 + … + as r

γ+σ + …], 
(23) 

 G+ = e−ABr [b0 r
γ + b1 r

γ+1 + … + bs r
γ+σ + …], 

 
in which the exponent γ must, in principle, be assumed to be positive if F+ and G+ are to 
remain finite when r = 0.  Upon substituting (23) into (18) and annulling the coefficients 
of rγ−1, one will obtain: 
 

α a0 + γ b0 – l b0 = 0,  − α b0 + γ b0 + (l +2) a0 = 0.  (24) 
 
 The two equations (24) are compatible only if their determinant is zero, which will 
give us the condition: 

α2 + (γ – l) (γ + l + 2) = 0.    (25) 
 
 Upon solving (25) with respect to γ, one will find: 
 

γ = − 1 + 21 [ ( 2)]l lα− − +  = − 1 + 2 2( 1)l α+ − .  (26) 

 
 We keep only the + sign in front of the radical, because the – sign will give an 
unacceptable negative value for γ.  If we set l = 0 in the expression (26) then we will find 
a very small negative value for γ.  It might seem that one should reject that value, since it 
corresponds to functions F+ and G+ (and in turn, wave functions Ψk) that become infinite 
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for r = 0.  Now, the results to which we shall arrive later will show clearly that one must 
keep that solution with l = 0. 
 One can explain that anomaly by remarking that (due to the smallness of α2) the wave 
functions Ψk will become infinite to an order at r = 0 that is small enough to make the 

integrals 2| |k dτ
+∞

−∞

Ψ∫ ∫ ∫  remain convergent.  The condition that the wave functions must 

be everywhere finite will then seem much too rigorous here: The essential condition is 
that they should be square-summable.  Moreover, we have seen that the same difficulty 
exists in the relativistic theory of one wave function. (Cf., Chap. VIII, para. 2.) We then 
adopt the values (26) with l = 0, 1, 2, … as the possible values of γ. 
 Having said that, if we return to the substitution of (23) into (18) and annul the 
coefficient of rγ+s then we will find that: 
 
 A (A as – B bs) + α as+1 + (γ + s + 1 – l) bs+1 = 0, 

(27) 
 − B (A as – B bs) − α bs+1 + (γ + s + 1 – 3) as+1 = 0. 
 
 Multiply the first equation (27) by B, the second one, by A, and add them.  One will 
get: 

as+1 [B α + A (γ + s + l + 3)] + bs+1 [B (γ + s + l + 3) – A α] = 0,  (28) 
 
which will permit one to set: 
 

as+1 =    cs+1 [B (γ + s – l +1) – A α], 
(29) 

bs+1 = − cs+1 [B α + A (γ + s – l +3)], 
 
in which cs+1 is a certain constant.  Upon substituting the relations (29) into equations 
(27), along with the ones that one deduces by changing s + 1 into s, one will find the 
recurrence relation for the cs : 
 

A cs [−α (A2 – B2) + 2AB (γ + s + 1)] = cs+1 [Aα 2 + A (γ + s + 1) (γ + s − l + 1)]. (30) 
 
 In order for the functions F+ and G+ to be definitely zero at infinity, from (23), it will 
suffice that the series a0 r + … and b0 r + … should be bounded.  In order for that to be 
true, it is necessary that cs+1 should be zero, but not cs , for a certain value of s, namely, s 
= p.  It will then be necessary that the coefficient of cs in (30) must be zero for s = p, 
which will give us: 

γ + p + 1 = α 
2 2

2

A B

AB

−
,    (31) 

or, from (26): 

2 2( 1)l α+ − + p = α 
2 2

2

A B

AB

−
.   (32) 
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 However, if we refer to the definitions (17) then we will see that: 
 

2 2

2

A B

AB

−
= 

2 2
0

W

m W−
 = 

2
0

2 2
02

E m c

m c E E

+
− −

 = 
2

0

2 2
0 0

1 /

2
1

2

E m c

E E

m c m c

+

 
− + 

 

, (33) 

 
in which E = W – m0 c2 is negative here.  Equation (32) can then be written, after 
squaring: 

2
2 2( 1)l pα + − +

 
= α2 

2

2
0

2 2
0 0

1

2
1

2

E

m c

E E

m c m c

 
+ 

 
 

− + 
 

,  (34) 

or for that matter: 

2 2
0 0

2

2
0

2
1

2

1

E E

m c m c

E

m c

 
− + 

 

 
+ 

 

 = 
2

2
2 2( 1)p l

α

α + + −
 

.  (35) 

 
 If we add 1 to both sides of (35) then we will find: 
 

2

2
0

1

1
E

m c

 
+ 

 

= 1 + 
2

2
2 2( 1)p l

α

α + + −
 

,   (36) 

 
and thus, the ultimate formula: 

1+
2

0

E

m c
= 

( )

1/2

2

2
2 2

1
( 1)p l

α

α

−
 
 

+ 
+ + − 

 

.   (37) 

 
 Since one has j = l + 1

2  for the solutions of the type (I) that we address here, formula 

(37) can also be written: 

1+
2

0

E

m c
= 

( )( )

1/ 2

2

2
2 21

2

1

p j

α

α

−
 
 

+ 
 + + −
  

.   (38) 
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 Formula (38) is analogous to the Sommerfeld formula (1), in which the integer j + 1
2  = 

l + 1 plays the role of azimuthal quantum number, and p plays the role of radial quantum 
number. 
 As one sees, the energy levels of type (I) are defined completely by the four quantum 
numbers l, j (= l + 1

2 ), m, and p.  In place of the integer p that can take the values 0, 1, …, 

one can just as well imagine the number n = p + l + 1, which can take the values 1, 2, …  
The number n is the total quantum number, and the set of numbers n, l, j, m fixes the 
solution that one envisions. 
 If one develops the right-hand side of (38) up to second order in α2 then one will get 
the approximate formula: 

E = − 
2

2 2 1
2

3
1

4

Rh n

n n j

α  
+ −  +  

,   (39) 

 
which is entirely comparable to the Sommerfeld’s approximate formula (2), but with j 
+ 1

2 , in place of the number k. 

 Recall that the relativistic wave mechanics of one function Ψ led us to an expression 
that was inconsistent with the experimental facts, which was an expression that had the 
same form as (38), but with l in place of j (3). 
 
 b) Solutions of the type (II). 
 
 We might repeat the calculations that we just did, while starting with the equations 
that the functions F− and G− satisfy this time.  However, that would be pointless, because 
we remarked that we could obtain those equations by changing l into – (l + 1) in 
equations (16).  It is then obvious that upon adopting developments of the form (23) for 
F− and G− , we will get the equation for determining γ that is deduced from (26) by 
changing l into – (l + 1), as we said; i.e.: 
 

γ = − 1 + 2 2l α− .     (40) 

 
 Here, one must obviously exclude the case of l = 0, which will give an imaginary 
value: Moreover, we already know that there will be no solution of type (II) for l = 0.  If l 
= 1 then formula (40) will give a very small negative value for γ.  Here again, we assume 
that value of l by remarking that if the corresponding wave functions are infinite of lower 
order at the coordinate origin then they will nevertheless by square-summable.  Briefly, 
we assume that l has the possible values 1, 2, … 
 Upon pursuing the calculations, we will obviously arrive at a formula that is deduced 
from (37) by the substitution of – (l + 1) for l, namely: 
 

                                                
 (1) Cf., formula (38) of Chapter I.  
 (2) Cf., formula (41) of Chapter I.  
 (3) Cf., formulas (34) and (36) of Chapter VIII.  
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1 + 
2

0

E

m c
= 

1/ 2
2

2 2 2
1

( )p l

α
α

−
 

+ 
 + − 

.   (41) 

 
 However, for the solutions of the type (II), one will have: j = l − 1

2 .  We will then get 

back to formula (38). 
 Instead of characterizing a solution of the type (II) by the four quantum numbers l, j 
(= l − 1

2 ), m, p, we can just as well characterize them by the four numbers n, l, j, m, with 

n = p + l, and we easily recover the approximate formula (39). 
 In summary, in any case, the energy of the level that is characterized by the quantum 
numbers (n, l, j, m) is given (up to second order in α2) by the formula (39) (1). 
 We then recover Sommerfeld’s fine-structure formula for the hydrogen atom, but 
with the essential difference that the azimuthal number k of the old quantum theory is 
replaced with the integer j + 1

2 .  It will then be between the levels whose numbers j differ 

by one unit that one must find the Sommerfeld doublets.  The levels that differ only by 
the azimuthal quantum number (k or l) will coincide.  That is in perfect agreement with 
the true fine structure of the lines in the Balmer series – for example, those of Hα .  One 
will see that by referring to para. 5 in Chapter III, and Figure 4, in particular. 
 Moreover, one can rigorously repeat all of the preceding theory for a hydrogenic atom 
(i.e., an atom with atomic number N that has been ionized N – 1 times).  One will easily 
find: 

E = − 
2 2 2

2 2 1
2

3
1

4

RhN N n

n n j

α  
+ −  +  

,    (42) 

in place of (39). 
 That formula indeed accounts for the fine structure of the He+ spectrum. 
 
 
 4. Application of the results obtained to the Röntgen spectra.  – The formulas that 
are provided by Dirac’s theory permit us to interpret the structure of X-ray spectra, and in 
particular, the existence and values of the regular doublets, without meeting up with any 
of the problems that were encountered in the old theory of Sommerfeld.  In Chapter III, 
we presented the principal experimental facts that the theory had to interpret; the reader 
can refer to them. 
 We have seen that in order to calculate the energy levels in complex atoms, one can 
take into account (if only coarsely) the interaction of the electrons by introducing a 
“screening number”; viz., by replacing the atomic number N with a reduced number N – z 
in the formulas that are valid for hydrogenic numbers.  Naturally, the screening number z 
will vary from one electron to another, and will roughly increase as the electron gets 
more peripheral.  Guided by the old image of the Bohr atom, we can assume that the 
screening number for an intra-atomic electron depends upon only the quantum numbers n 
and l that relate to that electron.  Upon appealing to formula (42), we then write down the 

                                                
 (1) Note that there is degeneracy since the number m does not enter into the expression for the quantized 
energy.  
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idea that the quantum numbers n, l, j, m of an electron in a complex atom have an energy 
that is given by the following approximate formula:  
 

E (n, l, j, m) = − 
2 2 2

2 2 1
2

( ) ( ) 3
1

4
nl nlRh N z N z n

n n j

α  − −+ −  +  
.  (43) 

 
 That formula differs from the old Sommerfeld formula [cf., Chap. III, form. (9)] by 
the substitution of j + 1

2  for k.  However, that simple substitution will suffice to allow one 

to interpret the regular doublets with formula (43) without lending itself to the objections 
that were raised by the old Sommerfeld formula.  Indeed, it is obvious that the regular 
doublets can be predicted by formula (43), not between levels with azimuthal quantum 
numbers (k or l) that differ by one unit, but between levels with the same azimuthal 
quantum number and j numbers that differ by one unit.  That is, in fact, what experiments 
demand, as we have seen. 
 For example, consider the levels LII and LIII , whose frequency difference corresponds 
to the Sommerfeld doublets.  We know that: 
 
 for LII :  n = 2, l = 1, j = 1

2 , 

 for LIII : n = 2, l = 1, j = 3
2 . 

 
 We then find from (43) that the frequency difference of the corresponding doublets is: 
 

II IIIL Lv v− = − α2 
4

21
2 31 1 1

2 2 2 2

( ) 2 2

2

R N z  − − + + 
 = −

2

16

Rα
(N – z21)

4,  (44) 

 
and we have seen that upon setting z = 3.5, we will get good agreement with experiments, 
and here, the doublet is predicted to be in its true place between two levels with the same 
l, and j’s that differ by one unit. 
 We have pointed out that there also exist irregular doublets in the X-ray spectra.  The 
origin of those doublets is the difference in frequency that exists between two 
neighboring levels with the same quantum number j and l numbers that differ by one unit.  
We can also explain their existence by using formula (43).  Indeed, if the screening 
number z does not depend upon l then the levels with the same j and different l (such as 
LI and LII, for example) will coincide: That is what happens with hydrogen, because, of 
course, z is always zero in that case.  However, by reason of the variation of z with l, one 
will see that those levels must not coincide in complex atoms, and one can even predict a 
law for their frequency difference.  Indeed, if one neglects the terms of order higher than 
α2 then one will have: 

.2

. 12

( , , )
( ),

( , 1, )
( ).

n l

n l

E n l j Rh
N z

h n

E n l j Rh
N z

h n +

= −

+ = −
    (45) 
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Hence: 

( , , )E n l j

h
− 

( , 1, )E n l j

h

+
 = 2

Rh

n
(zn, l+1 – zn, l).   (46) 

 

 The left-hand side of (46) is vδ  for the two levels, while the right-hand side is 

independent of N.  One will then see that the spectral terms for the two levels in the series 

of elements are such that vδ is independent of N.  That is, in fact, the law of irregular 

doublets that was pointed out at the end of para. 2 in Chapter III.  Those irregular 
doublets exist between spectral terms that are characterized by the same letter, but with 
indices that differ by one unit, the first of which is odd, while Sommerfeld’s regular 
doublets provide spectral terms that are characterized by the same letter and indices that 
differ by one unit, the first of which is even.  Hence, the difference 

I IIL Lv v− will give rise 

to irregular doublets, and the difference 
II IIIL Lv v−  will give rise to regular ones. 

 Dirac’s theory has then given us, and in a good form, the entire Sommerfeld theory of 
fine structure and has shown us that its original success was not due to chance, as well as 
showing us that, in the final analysis, the existence of regular doublets is indeed linked 
with relativity by the intermediary of electron spin. 
 
 
 5. Number of electrons per level.  Stoner’s rule. – Dirac’s theory has not only 
allowed us to recover the fine-structure formulas, while improving upon them, it has also 
provided an interpretation for Stoner’s rule that relates to the distribution of electrons 
between the atomic levels and a proof of the selection rules that relate to the quantum 
numbers l, m, and j. 
 Here, we shall first address the first question and recall that Stoner’s rule is the 
following one: One cannot have more than 2j + 1 electrons in the energy level that 
corresponds to the quantum numbers n, l, j.  We shall seek to justify that statement. 
 We saw above (para. 2) that there exist 2j + 1 levels that correspond to the set of 
quantum numbers (n, l, j) for solutions of type (I), as well as for solutions of type (II).  In 
other words, since each level is defined completely by four quantum numbers n, l, j, m, 
there will exist 2j + 1 possible values for m, and in turn, 2j + 1 possible levels for given 
values of the three numbers n, l, j = l ± 1

2 .  Having recalled that, in order to go further, 

one must appeal to a new principle that plays a fundamental role in contemporary 
physics: the Pauli Exclusion Principle. 
 We shall state the Pauli Exclusion Principle here by saying: One cannot have more 
than one intra-atomic electron whose stationary state is characterized by the same four 
integers n, l, j, m. 
 Now, as we have seen, the energy of a stationary state in an atom in the absence of an 
external field will not depend upon the number m, in such a way that each energy level is 
characterized entirely by the three quantum numbers n, l, j, which is what experiments 
indicated before the theory, moreover (cf., Part I).  Hence, if one assumes the Pauli 
Exclusion Principle then the number of electrons that belong to the same level (n, l, j) is 
equal to at most the number of stationary solutions that are characterized by the four 
quantum numbers n, j, l, m, the first three of which characterize the level under 
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consideration.  We know that this number of solutions is 2j + 1.  We have then justified 
Stoner’s rule, whose experimental exactitude does not seem to be in doubt. 
 
 
 6. Selection rules in Dirac’s theory. – In paragraph 4 of Chapter VIII, we 
explained how the correspondence principle leads one to predict selection rules in wave 
mechanics.  In Dirac’s theory, that prediction is made in the same fashion, but while 
taking into account the fact that the expression ΨΨ* in wave mechanics with one wave 
function is replaced with: 

4

1
k k

k

∗

=
Ψ Ψ∑  

here. 
 One will then have to consider the following quantities: 
 

Xnm = 1, 1, 2, 2, 3, 3, 4, 4,( )n m n m n m n mx dτ
+∞

∗ ∗ ∗ ∗

−∞

Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ∫ ∫ ∫   (47) 

 
to be the X matrix elements that serve to evaluate the transition probabilities that 
accompany radiation.  The indices n and m characterize two stationary states, and in 
reality, they will each represent four indices n, l, j, m.  If the elements Xnm , Ynm , Znm are 
zero then there will be no radiation that corresponds to the transition n → m.  One infers 
the selection rules from that. 
 As an example, consider the transition from the stationary state of type (I) with 
quantum numbers n, l, j = l + 1

2 , m to the stationary state of type (II) with quantum 

numbers n, l – 1, j = l − 3
2 , m, which is a transition for which one will have | δl | = 1, δm = 

0, and | δj | = 2.  The first of those states has the wave functions: 
 
 Ψ1 = i F+(r) 1

m
lY+ , Ψ2 = − i F+(r)

1
1

m
lY −
− , 

 Ψ3 = (l – m + 1) G+(r)
m

lY ,  Ψ4 = (l + m) G+(r)
1m

lY − , 

 
and the second one has: 
 
 Ψ1 = − i (l – m – 1) F−(r) 2

m
lY− ,  Ψ2 = i (l + m – 2) F−(r)

1
2

m
lY −
− , 

 Ψ3 = G−(r) 1
m

lY− ,  Ψ4 = − G−(r)
1

1
m

lY −
− . 

 
 We then write the expression for the Z-matrix element that corresponds to that 
transition, by setting: 
 

A = − 2

0
( ) ( )F r F r r dr

+∞

+ −∫ , B = 2

0
( ) ( )G r G r r dr

+∞

+ −∫ ,   (48) 

to simplify. 
 One will get: 
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Znm = A (l – m – 1) 2 1cos m m
l lY Y dθ ∗
− + Ω∫∫  + A (l + m – 2) 1 1

2 1cos m m
l lY Y dθ − ∗ −
− + Ω∫∫  

+ B (l – m + 1) 1cos m m
l lY Y dθ ∗
− Ω∫∫  − B (l + m) 1 1

1cos m m
l lY Y dθ − ∗ −
− Ω∫∫ , (49) 

 
with dΩ = sin θ dθ dϕ, and the double integrals are extended over the surface of the 
sphere of unit radius.  Now, if one starts with the definition of the Y functions then one 
can prove the following formulas: 
 

 2 1cos m m
l lY Y dθ ∗
− + Ω∫∫   = 0, 

 1cos m m
l lY Y dθ ∗
− Ω∫∫  = 

4

(2 1)(2 1)l l

π
+ −

(l + m)! (l – m)!, 

 1 1
2 1cos m m

l lY Y dθ − ∗ −
− + Ω∫∫  = 0, 

 1 1
1cos m m

l lY Y dθ − ∗ −
− Ω∫∫  = 

4

(2 1)(2 1)l l

π
+ −

(l + m − 1)! (l – m)! 

 
 If one starts with (49) then one will find that: 
 

 Znm = B 
4

(2 1)(2 1)l l

π
+ −

 

 × [(l – m +1) (l + m)! (l – m)! – (l + m) (l – m + 1)! (l + m – 1)!] = 0.   (51) 
  
 One will likewise find that Xnm = Ynm = 0.  The transition envisioned is then 
forbidden. 
 One can repeat the same type of calculations by taking all combinations of a solution 
of type (I) and a solution of the same type or of type (II), and then all combinations of a 
solution of type (II) with a solution of the same type or of type (II).  The result of those 
calculations will be as follows: 
 
 The only transitions that correspond to radiation are the ones for which one has: 
 

δl = ± 1, δm = 
1

0

±



,  δj = 
1

0

±



. 

 
 Those selection rules are, in fact, the ones that one found empirically.  The rules that 
relate to the quantum numbers l and m are predicted by wave mechanics with just one 
wave function, but the rule that relates to the quantum number j can only be predicted by 
a theory that introduces that quantum number, as is the case for Dirac’s theory. 

 
___________ 
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CHAPTER XVIII 
 

DEDUCTION OF THE LANDÉ FORMULA  
_____ 

 
 

1.  Summary of the method of perturbations 
 
 In this chapter, we propose to show that Dirac’s theory permits us to recover the 
Landé formula for the anomalous Zeeman Effect of the alkali metals in a weak magnetic 
field.  However, since we must make use of the theory of perturbations in order to do 
that, we shall first say a few words about that method of calculating. 
 Suppose that we have determined the stationary states of a system – a hydrogen atom, 
for example.  We then know the proper values Wn of its energy and the corresponding 
proper functions Ψk,n , in which k always denotes the Dirac index, namely, the spin 
variable.  The symbolic equation: 
 

3

4 0
1

n
j j n

j

W eV
P m c

c
α α

=

 + + + Ψ 
 

∑ = 0    (1) 

 
will then be satisfied when the system is not perturbed. 
 However, now suppose that a slight, constant, perturbing action is exerted upon the 
quantized system and that it can be represented by the addition of a term ΛΨ to equation 
(1).  (Λ is an operator that can contain the αi and, in turn, operate on the index k.)  As a 
result of the presence of the small perturbing term, the proper values and functions must 
be slightly modified, and will become Wn + εn and Ψk,n + ηk,n , resp. 
 We suppose that the εn and the ηk,n are very small, like the perturbing term ΛΨ, and 
we neglect terms such as εn ηk,n and Ληk,n . 
 In the perturbed state, the symbolic equation will be: 
 

3

4 0
1

( )n n
j j n n

j

W eV
P m c

c

ε α α η
=

 + + + + + Λ Ψ + 
 

∑ = 0.   (2) 

 
 Subtract (1) from (2); with the assumed approximations, we will then find that: 
 

3

4 0
1

n n
n j j n

j

W eV
P m c

c c

ε α α η
=

 + + Λ Ψ + + +  
   

∑ = 0.   (3) 

 
 Now consider the four functions ηk,n .  It results from formula (5) of chapter XVI that 
we can develop those functions in a complete system of functions Ψn by means of the 
formulas: 
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ηk,n = , ,n m k m
m

c Ψ∑   (k = 1, 2, 3, 4),   (4) 

 or symbolically: 
ηn = ,n m m

m

c Ψ∑ .     (5) 

 
 If one takes into account the equation that one obtains by changing n into m in (1) 
then one will have: 
 

  
3

4 0
1

n
j j n

j

W eV
P m c

c
α α η

=

 + + + 
 

∑  

 = 
3

, 4 0
1

n
n m j j n

m j

W eV
c P m c

c
α α

=

 + + + Ψ 
 

∑ ∑  

= ,
n m

n m m
m

W W
c

c

− Ψ∑  ,       (6) 

 
and, in turn, from (3): 

,
n m

n m m
m

W W
c

c

− Ψ∑  = n
nc

ε + Λ Ψ 
 

,    (7) 

 
or, upon making that explicit: 
 

, ,
n m

n m k m
m

W W
c

c

− Ψ∑  = ,
n

k nc

ε + Λ Ψ 
 

.   (8) 

 
 Multiply (8) by ,k m

∗Ψ , sum over k, and integrate over all space.  One will get: 

 

, , ,
n m

n m k l k m
m k

W W
c d

c
τ

+∞
∗

−∞

− Ψ Ψ∑ ∑∫ ∫ ∫ = , ,
n

k l k n
k

d
c

ε τ
+∞

∗

−∞

 Ψ + Λ Ψ 
 

∑∫ ∫ ∫ . (9) 

 
If one then takes into account the orthogonality and normalization of the proper functions 
then one will infer from this that: 
 

cn,l = , ,
n

k l k n
kn l

c
d

W W c

ε τ
+∞

∗

−∞

 Ψ + Λ Ψ −  
∑∫ ∫ ∫ .   (10) 

 
That formula will give the cnl for all values of l. 
 However, formula (10) will give us an infinite coefficient cnn for l = n when the 
integral that appears in (10) is non-zero for l = n.  Since that is not acceptable, we see that 
we must have: 
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, ,
n

k n k n
k

d
c

ε τ
+∞

∗

−∞

 Ψ + Λ Ψ 
 

∑∫ ∫ ∫ = 0.    (11) 

 
 The condition (11), which expresses a well-known theorem of Fredholm in the theory 
of integral equations, permits one to obtain the variation εn of the energy of the nth 
stationary state when it is provoked by the presence of the perturbation.  Indeed, one 
infers from (11) that: 

n

c

ε
= − , ,k n k n

k

dτ
+∞

∗

−∞

Ψ Ψ∑∫ ∫ ∫ ,    (12) 

because the Ψk,n are normalized. 
 It should be remarked that formula (10) is acceptable only if it leads to very small 
values of cnl .  Otherwise, the hypothesis of the smallness of the ηn to which we have 
appealed will not be valid.  Upon examining that point, we will see that formula (12) is 
exact only if we can (as we have supposed implicitly) consider the perturbation of each 
proper value as being independent of the ones that the other proper values are subjected 
to.  For that to be true, the external perturbations must be small enough that the 
displacement of proper values that is due to perturbation will be small compared to the 
difference between those proper values.  That is what happens with the Zeeman Effect 
when the magnetic field is weak.  If that condition is not satisfied (the Zeeman Effect 
with a strong magnetic field, for example) then there will good reasons to conduct the 
calculation of the perturbations in a somewhat different way; we shall not elaborate upon 
that here. 
 
 
 2. Application of formula (12) in the case of the Zeeman Effect. – In Chapter IV, 
we saw how the Landé formula permitted us to represent the modification of an energy 
level in an atom with a doublet spectrum (e.g., an alkali metal) by the action of a weak 
magnetic field.  If W0 (n, l, j) is the energy of the level in the absence of the magnetic 
field, and if WH (n, l, j) is that energy in the presence of the field H then one will have: 
 

WH (n, l, j) = W0 (n, l, j) + m′g 
04

eh H

m cπ
,   (13) 

with 

g = 
1
2

1
2

j

l

+
+

 = 
2 1

2 1

j

l

+
+

.     (14) 

 
 The number m′ is a positive or negative half-integer number (i.e., an integer plus 12 ) 

that will take on all half-integer values from – j to + j.  We have modified the notations of 
Chapter IV by writing m′, instead of m, in order to distinguish the half-integer number m′ 
in formula (13) from the fourth quantum number m that characterizes a stationary state of 
the atom, and which is an integer.  We see that the numbers m′ and m are united by the 
relation m′ = − ( )1

2m− .  Let us make that point more precise: In formula (13), we define 

the energy level by its three quantum numbers n, l, j, which will suffice since the value of 
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the energy does not depend upon the fourth quantum number m.  However, the 
displacement of the level by the Zeeman Effect will depend upon m (1), and upon making 
that dependency explicit, we can write (13) in the form: 
 

WH (n, l, j, m) = W0 (n, l, j) − ( )1
2

0

2 1

2 1 4

j eh H
m

l m cπ
+−
+

.   (15) 

 
 That is the formula that Dirac’s theory will permit us to recover. 
 We consider an atom, in which it is permissible to imagine that it has just one 
electron: That is rigorously the case for a hydrogen atom of rank N that has been ionized 
(N − 1) times.  It is approximately the case for an alkali metal atom in which the valence 
electron is unique and in which one can roughly account for the presence of other 
peripheral electrons by a simple screening effect.  We suppose that this atom is embedded 
in a uniform magnetic field H that is directed along the z-axis.  We can then take the 
potential vector to be: 

Ax = − 1
2 y H, Ay = 1

2 x H, Az = 0.    (16) 

 
 The perturbing term in equation (2) is then: 
 

ΛΨ = 
e

c
(α1 Ax + α2 Ay + α3 Az) Ψ = 

2

eH

c
(x α2 – y α1) Ψ.  (17) 

 
 Upon expanding this by using the well-known values for α1 and α3 , one will find: 
 

 ΛΨ1 = i (x + i y) 
2

eH

c
Ψ4 ,  ΛΨ2 = − i (x − i y) 

2

eH

c
Ψ3 , 

(18) 

 ΛΨ3 = i (x + i y) 
2

eH

c
Ψ2 ,  ΛΨ4 = − i (x − i y) 

2

eH

c
Ψ1 . 

 
 An application of formula (12) then gives us the displacement of the level by the 
Zeeman Effect in a weak magnetic field as: 
 

c

ε
 = 0( , , , ) ( , , )HW n l j m W n l j

c

−
 

= 1 4 2 3 3 2 4 1[ ( ) ( ) ( ) ( ) ]
2

eH
i x iy i x iy i x iy i x iy d

c
τ

+∞
∗ ∗ ∗ ∗

−∞

−Ψ + Ψ + Ψ − Ψ − Ψ + Ψ + Ψ − Ψ∫ ∫ ∫ .   (19) 

 
 The entire problem is now to calculate the integral that appears in (19). 
 
 

                                                
 (1) One can say that the presence of the magnetic field made the degeneracy disappear that existed in its 
absence.  
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 3. Development of the calculations. – In order to perform the calculation, we must 
distinguish two cases, according to whether the stationary state of energy W0 (n, l, j) has 
type (I) or type (II). 
 
 a) Solution of type (I): 
 
 Ψ1 = i F+ (r) 1

m
lY+ , Ψ2 = − i F+ (r) 

1
1

m
lY −
+ , 

(20) 
 Ψ3 = (l – m + 1) G+ (r) 

m
lY , Ψ4 = (l + m) G+ (r) 

1m
lY − , 

 
in which F+ and G+ are two real functions of r that obey simultaneous equations: 
 

 0
0

2 W eV dG l
m c F G

h c dr r

π +
+ +

+ + + − 
 

= 0, 

(21) 

 − 0
0

2 2W eV dF l
m c G F

h c dr r

π +
+ +

+ + − + + 
 

= 0. 

 
 As in the atom, the Newtonian approximation is always valid approximately, so the 
functions Ψ1 and Ψ2 will be very small with respect to Ψ3 and Ψ4 ; the ratio F+ / G+ will 
then be very small.  A more complete calculation proves that this ratio has order the fine-
structure constant α.  We appeal to that fact in order to neglect the square (F+ / G+)

2, 
which will afford some notable simplifications. 
 Upon multiplying the first of equations (21) by G+ and the second one by F+ and 
adding them, one will infer that: 
 

2 2 2 204 1 2

2

m c d l l
F G F G F G

h dr r r

π
+ + + + + +

+
 + + + −   = 0.  (22) 

 
 Neglect the terms in F+, multiply by r2 dr, and integrate from 0 to + ∞; one will get: 
 

3

0
F G r dr

+∞

+ +∫ = − 
2 2

2 2

0
04 2

h r dG
l G r dr

m c drπ
+∞

+
 

− 
 

∫ .   (23) 

 
 One will get G+, which is zero at infinity, upon integrating this by parts: 
 

3

0
F G r dr

+∞

+ +∫ = 2 2

0
0

3

4 2

h
l G r dr

m cπ
+∞

+
 + 
 

∫ .   (24) 

 
 Endowed with those formulas, we can now begin the calculation of the integral that 
appears in the right-hand side of (19).  Upon taking polar coordinates, we will have: 
 

x + i y = r sin θ eiϕ, x – i y = r sin θ e−iϕ, dτ = r2 sin θ dr dθ dϕ . (25) 



186 CHAPTER XVIII – Deduction of the Landé formula 

 Hence: 
 

1 4 2 3 3 2 4 1( ) ( ) ( ) ( )i x iy i x iy i x iy i x iy dτ
+∞

∗ ∗ ∗ ∗

−∞

 − Ψ + Ψ + Ψ − Ψ − Ψ + Ψ + Ψ − Ψ ∫ ∫ ∫  

 

= − 
2 1 1 1

1 1 10 0
( ) ( 1) ( 1)m m i m m i m m i

l l l l l lY l m Y e Y l m Y e l m Y Y e
π π ϕ ϕ ϕ∗ − − ∗ − ∗ −

+ + + + + − + + − +∫ ∫  

1 2 2
1 0

( ) sinm m i
l ll m Y Y e d d F G r drϕ θ θ ϕ

+∞− ∗ −
+ + ++  ∫ .    (26) 

 
 Now, a study of the Y functions will yield the integrals: 
 

 
2 1 1 2

10 0
sinm m i

l lY Y e d
π π ϕ θ ϕ− ∗ −

+∫ ∫  = 
4

( 1)!( 1)!
(2 1)(2 3)

l m l m
l l

π + + − +
+ +

, 

 

 
2 1 2

10 0
sinm m i

l lY Y e d
π π ϕ θ ϕ− ∗ −

+∫ ∫  = − 
4

( )!( 2)!
(2 1)(2 3)

l m l m
l l

π + − +
+ +

, 

(27) 

 
2 1 2

10 0
sinm m i

l lY Y e d
π π ϕ θ ϕ∗ −

+∫ ∫  = − 4
( )!( 2)!

(2 1)(2 3)
l m l m

l l

π + − +
+ +

, 

 

 
2 1 2

10 0
sinm m i

l lY Y e d
π π ϕ θ ϕ− ∗ −

+∫ ∫  =  
4

( 1)!( 1)!
(2 1)(2 3)

l m l m
l l

π + + − +
+ +

. 

 
 One will then find the following value for the integral (26): 
 

 − 
4

(2 1)(2 3)l l

π
+ +

(l + m)! (l – m+ 1)!  

  × 2 [(l + m)(l + m + 1) – (l – m + 1)(l – m + 2)] 2

0
F G r dr

+∞

+ +∫  

(28) 

 = − 
4

2 1l

π
+

(l + m)! (l – m+ 1)!  

  × [(l + m)(l − m + 1) – (l – m + 1)(l – m + 2)] 2 2

0
04

h
G r dr

m cπ
+∞

+∫ , 

 
in which the last term is obtained by introducing the expression (24). 
 Since one can easily verify the following identity: 
 

(l + m)(l + m + 1) – (l- m + 1) (l – m + 2) = (2l + 2) (2m – 1),  (29) 
 
one can further write the expression (28) in the form: 
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− 4π ⋅⋅⋅⋅ 2 2

2 1

l

l

+
+

(2m – 1)(l + m)! (l – m + 1)! 2 2

0
04

h
G r dr

m cπ
+∞

+∫ .  (30) 

  
 In order to go further, one must invoke the normalization condition, and upon 
neglecting the terms in 2F+  in comparison to the ones in 2G+ , that will give: 

 
2 2 2 1 1 2 2

0 0 0
( 1) ( ) sinm m m m

l l l ll m Y Y l m Y Y d d G r dr
π π

θ θ ϕ
+∞∗ − ∗ −

+ − + + + ∫ ∫ ∫  = 1. (31) 

 
 Now, one has: 
 

 
2 2

0 0
sinm

lY d d
π π

θ θ ϕ∫ ∫  = 
4

2 1l

π
+

(l + m)! (l – m)!, 

(32) 

 
2 21

0 0
sinm

lY d d
π π

θ θ ϕ−
∫ ∫  = 

4

2 1l

π
+

(l + m − 1)! (l – m + 1)!, 

 
in such a way that the condition (31) will give us: 
 

2 2

0
G r dr

+∞

+∫ = 
1

4 ( )!( 1)!l m l mπ + − +
.    (33) 

 
 Upon substituting that value into the expression (30), we will finally see that the 
integral to be calculated in formula (19) has simply the value: 
 

− ( )
0

2 2
2 1

2 1 4

l h
m

l m cπ
+ −
+

.     (34) 

 
 
 Formula (19) will then provide us with the following formula for the level 
displacement by the Zeeman Effect: 
 

WH (n, l, j, m) = W0 (n, l, j) – ( )
0

2 2
2 1

2 2 1 4

eH l h
m

l m cπ
+ −
+

.  (35) 

 Now set: 

m′ = −( )1
2m− , g = 

1
2

1l

l

+
+

= 
1
2

1
2

j

l

+
+

,   (36) 

 
while remembering that j = l + 1

2  here.  We can write: 
 

WH (n, l, j, m) = W0 (n, l, j) + m′ g 
04

ehH

m cπ
.   (37) 
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 If we now suppose only that we are given the three quantum numbers n, l, j then we 
will have: 

WH (n, l, j) = W0 (n, l, j) + m′ g 
04

ehH

m cπ
.   (38) 

 
Here, m′ is a half-integer that can vary from – ( )1

min 2m −  to − ( )1
max 2m − .  Now, when we 

discussed the number of levels that correspond to the triple of quantum numbers (n, j, l), 
we saw that for a solution of type (I), one can make m vary from – l to l + 1.  For a given 
(n, j, l), m′ can vary from – ( )1

2l− − = l + 1
2 = j to – ( )1

21l + − = − ( )1
2l + = − j. 

 Briefly, we have formula (38) for the levels that correspond to solutions of type (I), in 
which m′ is a half-integer that can vary from – j to + j.  That is indeed the Landé formula. 
 
 b) Solution of type (II): 
 
 In order to carry out the calculation in the case of a solution of type (II), one starts 
with the wave function: 
 
 Ψ1 = − i (l – m) F− 1

m
lY− , Ψ2 = i (l + m − 1) F− 

1
1

m
lY −
− , 

(39) 
 Ψ3 = G− 

m
lY , Ψ4 = − G− 

1m
lY − , 

 
in which the functions F− and G− are real functions that satisfy the equations: 
 

 0

2 1dGW eV l
m c F G

h c dr r

π −
− −

+ + + + +  
= 0, 

(40) 

 − 0

2 1

2

dFW eV l
m c G F

h c dr

π −
− −

+ − − + −  
= 0. 

 
 One will arrive at the following formula by calculations that are analogous to the ones 
that were developed above: 
 

WH (n, l, j, m) = W0 (n, l, j) − 
0

2
(2 1)

2 1 2 4

l eH h
m

l m cπ
− ⋅

+
.  (41) 

 
 Since we have j = l − 1

2  for the solutions (II), we set: 

 

m′ = −( )1
2m− , g = 

1
2

l

l +
= 

1
2

1
2

j

l

+
+

,   (42) 

 
and we can write (41) in the form: 
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WH (n, l, j) = W0 (n, l, j) + m′ g 
04

eh H

m cπ
,   (44) 

 
in which m′ is a half-integer that varies from – ( )1

min 2m −  to – ( )1
max 2m − .  Now (as we 

have seen), we can make m vary from – (l − 1) up to + l, here.  The number m can then 
vary from − [ ]1

2( 1)l− − − = l − 1
2  to  −( )1

2l − ; i.e., from + j to – j. 

 Briefly, we have formula (44) for the levels that correspond to type (II), in which m′ 
is a half-integer that can vary from – j to + j. 
 
 
 4. Summary of results.  Remarks. – We have thus proved that for all of the levels 
[of type (II), as well as type (I)], the displacement of the level (n, l, j) by the action of a 
sufficiently-weak, uniform magnetic field is given by: 
 

WH (n, l, j) − W0 (n, l, j) = m′ g 
04

eh H

m cπ
,   (45) 

with: 

g = 
1
2

1
2

j

l

+
+

,     (46) 

 
in which m′ is a half-integer that can take all half-integer values between – j and + j.  That 
is, in fact, the anomalous Zeeman Effect, as it is represented exactly by the Landé 
formula.  Since the number m′ has 2j + 1 possible values, any level (n, l, j) will be 
decomposed by the Zeeman Effect into (2j + 1) distinct elements, which can be expressed 
by saying the external magnetic field has made the degeneracy of order 2j + 1 that existed 
in its absence disappear. 
 The argument that we just made is rigorously valid for hydrogenic atoms, but as we 
have pointed out, one can also apply it to alkali metal atoms, at least approximately. 
 We have seen that the Landé formula is valid for weak magnetic fields.  By that, we 
mean magnetic fields that are weak enough that the displacement of the energy levels by 
the Zeeman Effect is small with respect to the normal distance between those levels.  If 
that condition is not satisfied then formula (12) will no longer be valid, and we must 
repeat all of the calculations.  It can be proved (1) that we will then arrive at a formula 
that is identical to that of Voigt [cf., Chap. IV, end of para. 3], and for very strong fields, 
we will find the Paschen-Back effect; i.e., the normal Zeeman decomposition. 
 Dirac’s theory then gives us a completely satisfactory solution to the anomalous 
Zeeman Effect for the alkali metals.  Dirac’s theory cannot rigorously predict the Zeeman 
Effect for atoms for which it is not possible to consider just one optical electron, because 
that theory does not further know how to treat the case of a system of interacting 
electrons. 

____________ 

                                                
 (1) See C. G. DARWIN, Proc. Roy. Soc. 118 (1928), pp. 654.  



 

CHAPTER XIX 
 

PROPER AND ORBITAL MOMENTS. 
POLARIZATION OF ELECTRONIC WAVES  

 
1.  Impossibility of separating the proper magnetic moment from 

the orbital magnetic moment (Bohr). 
 

 Bohr showed by a very delicate argument that it cannot be possible to measure the 
proper magnetic moment of an electron, because the effects that are due to the existence 
of that proper moment cannot be distinguished from the ones that are due to the collective 
motion of the electron. 
 We shall summarize Bohr’s argument. 
 In order to exhibit the proper magnetic moment of the electron, one can proceed in 
two ways: 
 
 1. Seek to measure the effect of a small magnet that is equivalent to the electron on a 
magnetometer. 
 2. Make the electron traverse a non-uniform magnetic field, and observe the effect 
of that field on the small magnet. 
 
 Let us examine the first method.  If the direction of the motion of the electron is taken 
to be the x-axis then we will place the magnetometer on the y-axis at the point whose 
ordinate is y.  In order to be able to write the expression for its effect on the 
magnetometer with any precision, we must suppose that the electron is sufficiently 
localized; i.e., that the electron must be associated with a wave train Ψ whose dimensions 
are small with respect to the distance y from the magnetometer to the axis of the motion.  
For example, if ∆x is the length of that wave train along the x-axis (viz., the uncertainty in 
the abscissa of the electron) then one must have: 
 

∆x ≪  y,      (1) 
and similarly: 

∆y ≪  y.      (1′) 
 
 Having said that, upon passing close to the coordinate origin, the electron must 
produce two effects on the magnetometer: One of them is due to the magnetic field that is 
created by the translatory motion of the electron (viz., the orbital field H0); its value is: 
 

H0 = 2
xev

cy
.      (2) 

 
 The second effect is due to the proper magnetic moment of the electron that is created 
by the proper magnetic field at the place that is occupied by the magnetometer: 
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HP = 
3

0

1

4

eh

m c yπ
⋅ .     (3) 

 
 However, the value of H0 is not known with absolute precision.  That quantity is 
governed by an uncertainty of: 

∆H0 = 
2 3
x xv ve

y
c y y

∆ + ∆ ,    (4) 

 
since there is necessarily an uncertainty ∆vx in the x component of the velocity of the 
electron and an uncertainty ∆y in its ordinate y (1).  However, from the Heisenberg 
relations, if we limit ourselves to the Newtonian approximation then we will have: 
 

∆vx ≥ 
0

h

m x∆
,  ∆vy ≥ 

0

h

m y∆
,    (5) 

 
and on the other hand, we must always suppose that: 
 

∆vy ≤ vx,     (6) 
 
since otherwise we would not have any appreciable motion along the x-axis. 
 If we now compare (3) and (4) then we will find that: 
 

0[ ]

P

H

H

∆
 = 04 m

h

π
(y ∆vx + vx ∆y),   (7) 

 
so it will result from (5), (1), and (6) that: 
 

0[ ]

P

H

H

∆
 ≥ x

y

vy

x v

 
+  ∆ ∆ 

 ≫  1.    (8) 

 
 The uncertainty in the orbital magnetic field is therefore always much larger than the 
value of the proper field, and in turn, the magnetometer will not permit us to measure the 
proper magnetic moment of the electron. 
 We repeat the same kind of argument for the behavior of the electron-magnet in a 
non-uniform magnetic field.  Once again, let an electron be displaced along the x-axis.  
Imagine a magnetic field that is parallel to the y-axis and possesses a noticeable gradient 
∂H / ∂y. 
 The magnetic field has the value H(O) at the coordinate origin.  Upon passing close to 
the origin, the moving electron will be subjected to the Lorentz electrodynamical force 
that is due to the orbital motion; that force will be reasonably equal to: 
 
                                                
 (1) One must have the + sign inside the bracket in the formula (4), since the two uncertainties can 
combine their effects in the must unfavorable case. 
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f0 = e xv

c
⋅⋅⋅⋅ H(O).     (9) 

 
 On the other hand, the magnet to which the electron is equivalent is subject to the 
force (which is due to the proper magnetic moment): 
 

fP = 
0 0

4
y

eh H

m c yπ =

 ∂
 ∂ 

.      (10) 

 
 However, since the wave train has a size of ∆y and the ordinate of the electron is, in 
turn, affected with that uncertainty, one will have the following uncertainty in the value 
of f0: 

| ∆f0 | = 
0

( )x x

e H
v y H O v

c y

 ∂ ∆ + ∆ ∂ 
,   (11) 

 
so, upon comparing this with (10), one will get: 
 

0| |

P

f

f

∆
 = 0

0

4
x x

m H
v y v

Hh
y

π
 
 
 ∆ + ∆∂ 
 ∂ 

.    (12) 

 
 Since the relations (5) and (6) are again valid here, one will then have: 
 

0| |

P

f

f

∆
 ≥ 

0

1x

y

v H
Hv x
y

 
 
 + ⋅∂∆ ∆ 
 ∂ 

 ≫  1.    (13) 

 
 The effect of the non-uniform, external, magnetic field on the electronic magnet is 
then masked completely by the uncertainty on the Lorentz force, and that method will no 
longer permit us to measure the proper magnetic moment. 
 These arguments, which one can, moreover, perfect (1), thus make it very likely that 
one cannot measure the proper magnetic moment of the electron directly. 
 
 
 2.  Impossibility of measuring the proper angular momentum. – As Darwin has 
pointed out, one can extend the same kind of considerations to the proper moment of 
rotation. 

                                                
 (1) See DARWIN: “Examples of the Uncertainty Principle,” Proc. of the Royal Society A 130 (1931), 
pp. 637, and the report by Pauli to the Solvay Congress in 1930 (Gauthier-Villars, editor). 
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 For example, imagine a rectangular opening that is cut out of a planar screen and 
whose edges are ∆x and ∆y. 
 Make an electron that is associated with a monochromatic plane wave fall upon the 
left edge; the wave train of the electron on the right of the screen will have lateral 
dimensions ∆x and ∆y.  The components x and y of the quantity of motion of the electron 
after passing through the screen will thus be affected with uncertainties: 
 

| ∆px | ≥ 
h

x∆
,  | ∆py | ≥ 

h

y∆
.    (14) 

 

x 

z 

y 

∆x 

∆y 

 
 Now, the z component of the orbital angular momentum of the electron – i.e., the 
angular momentum that is due to its translatory motion – is: 
 

Mz = x py − y px .     (15) 
 
 It will then have a value that is between 0 and: 
 

∆Mz = ∆x | ∆py | + ∆y | ∆px | ,    (16) 
so, from (14): 

∆Mz ≥ h 
x y

y x

 ∆ ∆+ ∆ ∆ 
 = h ⋅

2 2x y

x y

∆ + ∆
∆ ∆

.   (17) 

 
 Since the fraction that appears in the right-hand side of (17) is greater than 1, one will 
deduce, a fortiori, that: 

∆Mz > 
4

h

π
.      (18) 

 
 The uncertainty in the z component of the orbital angular momentum is therefore 
greater than the proper angular momentum, and that will make the measurement of that 
quantity illusory. 
 The same argument can be applied to the x and y components of the proper angular 
momentum. 
 These considerations seem to establish that the proper angular momentum of the 
electron is no more measurable experimentally than its proper magnetic moment. 
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 3.  More general theory. – As Pauli, in particular, has shown (1), one can apply the 
preceding considerations from a more general viewpoint.  In order to understand it, we 
shall very briefly recall the method of approximation that is called the Brillouin-Wentzel 
method. 
 In non-relativistic wave mechanics, the principle of the Brillouin-Wentzel method 
consists of setting: 

Ψ = 
2 i

S
he
π

,     (19) 
with: 

S = S0 + 
2

h

iπ
S1 + 

2

2

h

iπ
 
 
 

S2 + … + 
2

n
h

iπ
 
 
 

Sn + …   (20) 

 
and determining the terms S0, S1, … that figure in the development of S in successive 
powers of the quantity of very small modulus h / 2π i by successive approximations.  If 
one is content with terms of order zero in this development – i.e., the ones that persist 
when h = 0 – then one will recover geometrical optics for the associated corpuscle, since 
in that case one can consider a group of waves with very small dimensions to describe 
one of the rays of the wave and assimilate it with the point-like corpuscle of the old 
mechanics; the rays of the wave and the classical trajectories will coincide.  However, if 
one takes into account the terms of order 1, 2, … in h / 2π i in the development (20) then 
one will see some peculiarities appear that contrast wave optics with geometric optics and 
the new mechanics with the old. 
 One can repeat the same method of approximation in Dirac’s theory; that is what 
Pauli did.  Here, one sets: 

Ψk = 
2

k
i
S

he
π

  (k = 1, 2, 3, 4),    (21) 
with: 

Sk = S0,k + 
2

h

iπ
S1,k + … + 

2

n
h

iπ
 
 
 

Sn,k + …,   (22) 

 
and one will determine the Si,k by successive approximations.  Upon proceeding in that 
way, it seems that if one keeps only the terms of order 0 then one will obtain geometrical 
optics that corresponds to relativistic wave mechanics without spin; i.e., the old 
mechanics in the Einsteinian form.  One can then imagine some extremely small wave 
trains that describe ray-trajectories that coincide with the trajectories that are predicted by 
the Einsteinian dynamics of the electron.  Now, Einsteinian mechanics considers the 
electron to be a simple charged corpuscle and ignores its “spin.”  That could be predicted, 
since the proper magnetic moment and the proper angular momentum of the electron are 
proportional to h, and will disappear if one neglects the terms of order h. 
 If, while pursuing the approximation, one takes terms of order 1, 2, … in h / 2π i into 
account in equation (22) then one will see some terms appear that translate into the 
existence of magnetism and the proper rotation of the electron, but at the same time, as in 
the non-relativistic theory, one will leave the domain in which geometrical optics applies, 
and as a consequence, the concepts of the old point-like mechanics will cease to be exact. 
                                                
 (1) Helvetica Physica Acta, vol. V, fasc. III, pp. 179.  
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 One now comprehends why, conforming to Bohr’s conclusions, an experiment in 
which it is possible to treat the electron as a material point cannot lead to the exhibition 
of the proper magnetic moment or the proper rotation of the electron.  Indeed, from 
Pauli’s analysis, it would be a contradiction to assume that the old point-like mechanics is 
valid and that the characteristic effects of “spin” can be manifested. 
 
 4.  Polarization of electronic waves. – If it seems impossible to measure the 
magnetic moment of an electron when it is considered to be a magnetic corpuscle then 
nothing, a priori, will oppose the experimental demonstration of the character of 
polarization that is imposed on the electronic wave Ψ by the existence of that magnetic 
moment.  Moreover, the polarization of the wave Ψ differs noticeably from the classical 
polarization of light waves.  Whereas the latter is defined for a plane wave by a vector 
that always oscillates normal to the direction of propagation, the polarization of the Dirac 
wave Ψ is defined by the vector I  of its “magnetic moment density,” and for a plane 
wave that vector will be, as we know, constant and oriented in no particular way with 
respect to the direction of propagation.  As a consequence, whereas the properties of a 
sheaf of polarized light, when examined from the various azimuths around its direction of 
propagation, will always present the period π, the corresponding period for a sheaf of 
Dirac waves Ψ will be 2π. 
 In order to exhibit the polarization of electronic waves, one can contemplate the use 
of an arrangement that is analogous to the Nuremberg apparatus in optics.  Suppose that 
one has a sheaf of unpolarized electrons – i.e., a sheaf in which the vectors I  that relate to 
the various electrons are oriented at random.  If one reflects that sheaf on a crystalline 
body then one can imagine that, by analogy with optics, the reflected sheaf can be 
partially polarized.  If one makes the reflected sheaf fall upon a second reflector then the 
second reflection will happen with more or less intensity according to the azimuth of the 
plane of incidence.  The exact theory of the phenomenon seems to be very complicated 
and has not been developed completely either; we shall not go into it here.  Loosely 
speaking, one is led to predict a very weak effect of several millivolts for electrons, 
which is an effect that must increase with the energy.  From the experimental viewpoint, 
the phenomenon does not seem to have been observed with any certainty.  Rupp has 
indeed published some photographs in which one neatly sees the influence of the azimuth 
on the second reflection, but these results do not seem to have been confirmed up to now 
by those of other experimenters.  The question remains open (1). 
 
 

_____________ 
 

                                                
 (1) The principal theoretical works on the polarization of electrons are those of Mott, Proc. Roy. Soc. A 
124 (1924), pp. 425 and ibid., A 135 (1932), pp. 429.  One will find a complete bibliography in a memoir 
of Thibaud, Trillat, and v. Hirsch, J. Phys. Rad. (7) 3 (1932), pp. 314.  



 

CHAPTER XX 
 

NEGATIVE-ENERGY STATES IN DIRAC’S THEORY 
 
 

1.  Negative-energy plane waves 
 

 We shall now address one of the great problems that were suggested by Dirac’s 
theory. 
 Previously, we studied the form of the functions Ψk for a monochromatic plane wave 
in the case of the absence of a field (see Chapter XII, paragraph 3).  In order to do that, 
we wrote down the solution to the Dirac equation with zero potentials, and we tested a 
solution of the form: 

Ψk = ak 
2

( )x y z
i

Wt p x p y p z
he
π − − −

.    (1) 
 
 We then found the following homogeneous, linear equations for the ak : 
 

 0

W
m c

c
 + 
 

a1 + (px + i py) a4 + pz a3 = 0, 

 

 0

W
m c

c
 + 
 

a2 + (px − i py) a3 − pz a4 = 0, 

(2) 

 0

W
m c

c
 + 
 

a3 + (px + i py) a2 + pz a1 = 0, 

 

 0

W
m c

c
 + 
 

a4 + (px − i py) a1 − pz a2 = 0. 

 
 In order for there to be a non-zero solution, it is necessary that the determinant of 
equations (2) must be zero.  That will give us the condition: 
 

2

2

W

c
 = 2 2 2 2 2

0 x y zm c p p p+ + + ,     (3) 

 
which is the classical relativistic relation.  Upon setting: 
 

W = + c 2 2 2 2 2
0 x y zm c p p p+ + + ,    (4) 

 
we will then find the solution: 
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a1 = − 
0

( )

/
z x yp A p ip B

W c m c

+ +
+

, a2 = − 
0

( )

/
x y zp ip A p B

W c m c

− −
+

, a3 = A,  a4 = B,    (5) 

 
where A and B are arbitrary complex constants. 
 However, we can also satisfy condition (3) by setting: 
 

W = − c 2 2 2 2 2
0 x y zm c p p p+ + + .    (6) 

 
 We will then find the following solution: 
 

a1 = C,  a2 = D,  a3 = 
0

( )

/
z x yp C p ip D

m c W c

+ +
−

, a4 =
0

( )

/
x y zp ip C p D

m c W c

− −
−

,   (7) 

 
in which C and D are two arbitrary complex constants. 
 We shall now modify the notations that we just employed slightly.  For given values 
of px, py, pz, we shall henceforth always define W by formula (4) with the + sign, and in 
order to take the solution (7) into account, we say that we have to consider both the wave 
of energy + W and the wave of energy – W.  With that new convention, one must change 
W into – W in equations (7). 
 Briefly, for a given value of px, py, pz, while W is defined by relation (4), we must 
consider the monochromatic plane wave of positive energy + W that is defined by: 
 

Ψk = ak 
2

( )x y z
i

Wt p x p y p z
he
π − − − −

,     (8)  
with: 

a1 = − 
0

( )

/
z x yp A p ip B

W c m c

+ +
+

, a2 = − 
0

( )

/
x y zp ip A p B

W c m c

− −
+

, a3 = A,  a4 = B,    (9) 

 
and the monochromatic plane wave with negative energy – W that is defined by: 
 

Ψk = ak 
2

( )x y z
i

Wt p x p y p z
he
π − − − −

,     (10)  
with: 
 

a1 = C,  a2 = D,  a3 = 
0

( )

/
z x yp C p ip D

W c m c

+ +
+

, a4 =
0

( )

/
x y zp ip C p D

W c m c

− −
+

.   (11) 

 
 We shall now examine these two waves. 
 For the positive-energy wave, we already know that the components Ψ3 and Ψ4, 
which correspond in some way to the positive proper mass + m0, outweigh the waves Ψ1 
and Ψ2, which correspond in some way to the negative proper mass − m0 .  These waves 
Ψ1 and Ψ2, which will be zero when the velocity is zero, will become important only for 
velocities that are sufficiently close to that of light.  It will only be in the limiting case of 
v = c that one will have: 
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| Ψ1 |
2 + | Ψ2 |

2 = | Ψ3 |
2 + | Ψ4 |

2. 
 
In other words, one will always have: 
 

Ω1 = | Ψ1 |
2 + | Ψ2 |

2 − | Ψ3 |
2 − | Ψ4 |

2 ≤ 0,   (12) 
 
in which equality refers to the limiting case v = c. 
 The conclusions will be the opposite for the negative-energy wave.  The waves Ψ1 
and Ψ2 will dominate in that case.  If the electron is at rest – i.e., if px, py, and pz are zero 
– then one will have: 
 

Ψ1 = C 
2

0
2 i

m c t
he
π−

, Ψ2 = D 
2

0
2 i

m c t
he
π−

, Ψ3 = Ψ4 = 0.  (13) 
 
 The waves Ψ3 and Ψ4 become important for increasing velocities, but it will be only 
in the limiting case of v = c that one will have equality between: 
 

| Ψ1 |
2 + | Ψ2 |

2  and | Ψ3 |
2 + | Ψ4 |

2. 
One will thus have: 

Ω1 ≥ 0      (14) 
 
here, in which equality refers to the limiting case v = c.  Here, it is the waves that 
correspond, in some way, to a negative proper mass that dominates. 
 The existence of negative-energy states in Dirac’s theory constitutes a grave difficulty 
in that theory, since an electron that is in such a state will have properties that are 
completely foreign and have never been observed.  When placed in an electric field h, it 
will take on an acceleration whose sense is opposite to the force – eh, so one increases its 
velocity by reducing its energy, its velocity will be in the opposite sense to its quantity of 
motion (1), etc.  It then seems that Dirac’s theory forces one to eliminate these negative-
energy states, since they do not answer to reality.  However, for reasons that we shall 
now point out, that elimination does not seem easy. 
 
 
 2.  The incomplete character of a system of positive-energy waves. – We return to 
certain peculiarities of non-relativistic wave mechanics. 
 In non-relativistic wave mechanics, the equation of propagation: 
 

2

h

i tπ
∂Ψ
∂

 = H(Ψ)     (15) 

 
is of first order in time.  The solution to that equation will thus be determined completely 
if one knows its initial form Ψ(x, y, z, 0). 
 Consider the case of the absence of the field.  Equation (15) will then be written:

                                                
 (1) By virtue of the relation v = ∂W  / ∂p, which expresses the equality of the velocity of the corpuscle 
and the group velocity of the associated wave (Cf., Introd. à l’etude de la Mécanique ondulatoire, pp. 75). 



199 Chapter XX. − Negative-energy states in Dirac’s theory. 

∆Ψ = 
4 i m

h t

π ∂Ψ
∂

     (16) 

 
and will admit the monochromatic plane wave: 
 

Ψ(x, y, z, t) = a 
2

( )x y z
i

Et p x p z p z
he
π − − −

    (17) 
for a solution with: 

E = 2 2 21
[ ]

2 x y zp p p
m

+ +      (18) 

 
(in which, there is no sign ambiguity). 
 Suppose that we give the wave function the initial form: 
 

Ψ(x, y, z, 0) = F(x, y, z).    (19) 
 
 Suppose that F(x, y, z) is developable into a Fourier integral of the form: 
 

F(x, y, z) = 
2

( )
( , , )

x y z
i

p x p z p z
h

x y z x y zg p p p e dp dp dp
π+∞

− + +

−∞
∫ ∫ ∫ .  (20) 

 
 If one starts with the given function F then one can calculate the coefficients of this 
development by the formula: 
 

g(px, py, pz) = 
2

( )

3

1
( , , )

x y z
i

p x p z p z
hF x y z e dx dy dz

h

π+∞
+ +

−∞
∫ ∫ ∫ .  (21) 

 
 I then say that the function: 
 

Ψ(x, y, z, t) = 
2

( )
( , , )

x y z
i

Et p x p z p z
h

x y z x y zg p p p e dp dy dz
π+∞

− − −

−∞
∫ ∫ ∫ . (22) 

 
 This should be obvious, since: 
 
 1. Ψ is a solution of equation (16), since it is a sum of monochromatic plane wave 
solutions of that linear equation. 
 2. For t = 0, one will have, in fact, Ψ(x, y, z, 0) = F(x, y, z). 
 
 We conclude the following theorem from that: 
 
 In the non-relativistic wave mechanics of the free, material point, monochromatic 
plane waves will constitute a “complete” system; i.e., it will be possible to represent any 
solution by a superposition of such waves. 
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 We now pass on to Dirac’s theory and look for the translation of the argument that we 
just made into that context.  There, one will have four simultaneous first-order equations 
in the four Ψk .  These four wave functions are thus determined completely if one is given 
the initial form Ψk (x, y, z, 0). 
 We always take the case of the zero field and further demand that it must be possible 
to represent any sort of solution by a superposition of monochromatic plane waves.  An 
arbitrary solution is defined completely by the four functions: 
 

Ψk (x, y, z, 0) = Fk (x, y, z)  (k = 1, 2, 3, 4).   (23) 
 
 Suppose that the Fk are given arbitrarily and developed by Fourier’s theorem into the 
form: 

Fk (x, y, z) = 
2

( )
( , , )

x y z
i

p x p z p z
h

k x y z x y zg p p p e dp dp dp
π+∞

− + +

−∞
∫ ∫ ∫ ,  (24) 

 
in which the gk are given by: 
 

gk (px, py, pz) = 
2

( )

3

1
( , , )

x y z
i

p x p z p z
h

kF x y z e dx dy dz
h

π+∞
+ +

−∞
∫ ∫ ∫ .  (25) 

 
 We seek to represent the solution that corresponds to the given initial Ψk by a 
superposition of monochromatic plane waves that contains only positive-energy waves.  
In order to this, we must have: 
 

Ψk (x, y, z, t) = 
2

( )
( , , )

x y z
i

Wt p x p z p z
h

k x y z x y za p p p e dp dy dz
π+∞

− − −

−∞
∫ ∫ ∫ , (26) 

 
in which W is defined by relation (4).  These functions (26) indeed give a solution to the 
equation of propagation, but in order for it to take the initial form Fk (x, y, z), one must 
have: 

ak (px, py, pz) = gk (px, py, pz)  (k = 1, 2, 3, 4),   (27) 
 
in which the gk are known.  However, we know that only two of the four ak (px, py, pz) be 
chosen arbitrarily, and that will show us that one cannot satisfy the conditions (27), in 
general.  The positive-energy, monochromatic, plane waves do not form a complete 
system for the Dirac electron in the absence of a field then. 
 On the contrary, we will obtain a complete system if we consider the negative-energy 
plane waves, as well as the positive-energy ones.  Indeed, if we set: 
 

 Ψk (x, y, z, t) = 
2

( )
( , , )

x y z
i

Wt p x p z p z
h

k x y z x y za p p p e dp dy dz
π+∞

− − −

−∞
∫ ∫ ∫  

+
2

( )
( , , )

x y z
i

Wt p x p z p z
h

k x y z x y zb p p p e dp dy dz
π+∞

− − − −

−∞
∫ ∫ ∫ ,   (28) 
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then, since W is always defined by (4), we will get a solution to the equations of 
propagation, since they are linear, and in order for the initial Ψk to coincide with the 
given Fk (x, y, z), we must write the conditions: 
 

ak (px, py, pz) + bk (px, py, pz) = gk (px, py, pz)  (k = 1, 2, 3, 4).  (29) 
 
 Now, conditions (29), unlike conditions (27), are compatible, because four of the 
eight ak and bk that correspond to a set of px, py, pz are arbitrary. 
 If we write the conditions (29) explicitly then we will obtain the following conditions 
for every set of px, py, pz : 
 

 − 
0

( )

/
x y zp ip A p B

W c m c

+ +
+

 + C = g1 (px, py, pz), 

 

 − 
0

( )

/
x y zp ip A p B

W c m c

− −
+

 + D = g2 (px, py, pz), 

(30) 

 
0

( )

/
z x yp C p ip D

W c m c

+ +
+

 + A = g3 (px, py, pz), 

 

 
0

( )

/
x y zp ip C p C

W c m c

− +
+

 + B = g4 (px, py, pz) . 

 
 If one studies the system (30), while taking the Heisenberg relations into account, 
then one will see that in the most favorable cases it will be possible to represent a wave 
train Ψ by a superposition of positive-energy waves, but only if the dimensions of the 
wave train are appreciably larger than h / m0 c.  By contrast, if the dimensions of the 
wave train are less than h / m0 c then it will generally be entirely impossible to represent 
it by a superposition of plane waves without appealing to negative-energy waves. 
 It is therefore impossible in Dirac’s theory to represent an arbitrary wave train in a 
general fashion without involving negative-energy waves, and that impossibility shows 
us why it is difficult to eliminate those waves. 
 
 
 3.  The Klein paradox. – In the first place, one must recognize that the problem of 
negative-energies exists even in classical relativity.  Indeed, in classical relativity, energy 
is defined as a function of the quantity of motion in the case of the absence of the field by 
the relation (3), which is a relation that gives the following two values to W: 
 

W = ± c 2 2 2 2 2
0 x y zm c p p p+ + + .    (31) 

 
 However, one must remark that, from (31), the possible values of W will be 
comprised of two separate domains, namely, from + ∞ to + m0 c

2 and from – m0 c
2 to − 
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∞.  The interval from – m0 c
2 to + m0 c

2 does not correspond to any possible value of 
energy.  Now, in the old mechanics – even relativistically – the mechanical quantities, 
and in particular, the energy, vary in a continuous fashion, in principle.  Therefore, if the 
electrons have energies at the origin that are found in the positive domain m0 c

2 → + ∞ 
then the same thing will always be true in what follows, and no value of the energy that is 
found in the negative domain − m0 c2 → − ∞ can appear, since the two domains are 
separated by the interval m0 c

2 →  − m0 c
2, which the values of energy cannot cross.  The 

objection that was raised against the existence of negative energies is thus found to be 
lifted in Einsteinian dynamics. 
 The same thing is not true in the new mechanics, because, in principle, it admits the 
possibility of brief transitions between states whose energy differs by a finite quantity, 
which obstructs the a priori elimination of the passage from the domain of positive 
energies to the one of negative energies.  Moreover, it is easy to imagine some simple 
examples in which transitions of that genre are found to be realized. 
 O. Klein was the first (1) to point out an example of that transition, which, without 
being a transition from a positive-energy state to a negative-energy state, properly 
speaking, was nonetheless equivalent to one. 
 Klein considered a planar surface S that separated a region I in which the potential is 
zero from a region II in which one finds a constant scalar potential V that is also negative 
in such a way that an electron will have a potential energy of U = − eV > 0 in region II.  A 
Dirac electronic wave that comes from region I falls normally upon the separation 
surface; that wave is assumed to be monochromatic and planar and to correspond to a 
positive energy of W.  One then calculates the waves that are reflected and transmitted by 
the separation surface.  One shows that in order to carry out the calculation, it is first 
necessary to express the idea that there is continuity for each of the four Ψk upon crossing 
the separation surface; i.e., to write the four equations: 
 

Ψk (incident) + Ψk (reflected) = Ψk (transmitted).   (32) 
 

 Naturally, the reflected and transmitted waves correspond to the same energy as the 
incident wave; i.e., the phenomenon is conservative. 
 Having posed that, Klein proved the following results, which I shall be content to 
state without proof: For 0 < U < W – m0 c

2, there is both reflection and transmission, and 
the transmitted wave, like the reflected wave, will have the usual character of a positive-
energy wave. 
 For W – m0 c

2 < U < W + m0 c
2, there will then be total reflection with a vanishing 

wave in the second medium. 
 For U > W + m0 c2, one will once more find a transmitted wave that crosses the 
surface, but – and this is the fundamental result – that wave will correspond to the total 
energy W, which is positive, but which one can call “the energy of a non-potential 
nature” of the electron in region II; i.e., the quantity W – U will be negative and less than 
– m0 c

2, whereas in classical Einsteinian dynamics, that quantity would always be greater 
than m0c

2.  The transmitted wave in the medium II, which is governed by the scalar 
potential V, is analogous to a negative-energy wave in the absence of a potential, and will 

                                                
 (1) Zeitschrift für Physik 53 (1929), pp. 157.  
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possess the same paradoxical properties.  The existence of that transmitted wave must be 
interpreted by saying that there is a certain probability for an incident electron to 
penetrate into the region II by passing through that strange state, 
 For Klein, that probability can itself be noticeable.  Indeed, it seems that one cannot 
consider the result of the calculation to be physically exact, and that is the Klein paradox. 
 It is true that the case that Klein considered was extremely schematic.  Other authors 
imagined other examples that were a little less artificial.  The general result of that 
research seems to be the following: Whenever the potential energy of the electron is 
subjected to a variation of at least m0c

2 over a distance of less than h / m0c, there will be 
the possibility that negative-energy states will appear.  That result leads one to think that 
if one can forbid the consideration of spatial distances that are less than h / m0c then one 
might succeed in eliminating these negative-energy waves.  This must be compared to 
what was said at the end of the preceding paragraph on the subject of the representation 
of wave trains. 
 
 
 4.  Remarks and conclusions. – The negative-energy states appear once more in a 
curious fashion in the theory of diffusion of light by the Dirac electron.  We shall not 
develop that theory, but refer the reader to some other papers (1).  We note only the 
result: The Dirac electron cannot diffuse light unless it is capable of taking on negative-
energy states.  Since it is necessary to assume that electrons diffuse light in order to 
explain the phenomenon of diffusion by material bodies, that fact by itself will once more 
show how difficult it is to liberate Dirac’s theory from the apparent imperfection that 
takes the form of the existence of negative-energy states.  Various attempts have 
nevertheless been made to get around the problem.  We shall say only a few words about 
them. 
 Schrödinger proposed a very ingenious modification of the general Dirac equations 
that made the negative-energy states disappear (2).  However, in addition to the fact that 
his modification seemed difficult to reconcile with the existence of the diffusion of light 
by electrons, it had a very neatly artificial character. 
 Dirac, instead of wishing to suppress the negative-energy states, sought to interpret 
them (3).  In order to do that, he supposed that these states actually existed, and that in 
every subset of space one will find an infinite number of electrons that occupy all of these 
negative-energy states, which will be unobservable electrons.  Some of these electrons 
leave their usual negative energy states from time to time in order to take on a positive-
energy state, and those will be observable electrons.  The “hole” that is left in the 
negative-energy state by the departure of an electron will be what one calls a proton [†].  
The return of the missing electron to a negative-energy state will constitute the 
simultaneous disappearance of an electron and a proton, which must then be 

                                                
 (1) Notably, see the remarkable treatise of E. Fermi: “Quantum theory of radiation,” Reviews of Modern 
Physics 4 (1932), pp. 120.  
 (2) Notably, see Annales de l’Institut Henri Poincaré, t. II, pp. 269.  
 (3) Ibidem, t. I, pp. 357.  
 [†] Translator’s note: This was not my mis-translation of the word “positron,” but a common 
misunderstanding during the era between the publication of Dirac’s first papers on the theory of the 
electron and the discovery of the positron.  (See the following comment by de Broglie.) 
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accompanied by the emission of radiation.  Unfortunately, these seductive hypotheses are 
riddled with all sorts of objections and do not seem to be capable of being saved (1). 
 In summary, the negative-energy states of the electron play a very important role in 
the structure itself of Dirac’s theory, although they do not seem to manifest themselves in 
reality.  It seems that, for the moment, one cannot pose the problem without solving it. 
 
 

_____________ 
 

                                                
 (1) Dirac’s theory of holes is enjoying a return to favor at the moment as a result of the experimental 
discovery of the positive electron.  



 

CHAPTER XXI 
 

SCHRÖDINGER’S ZITTERBEWEGUNG 
___ 

 
1.  The motion of the center of gravity of the probability. 

 
 In this chapter, we shall avoid explicitly introducing an operator that would 
correspond to the “velocity” of the electron. As Bohr has remarked, the velocity of a 
corpuscle is a notion that one must use prudently in the new mechanics.  Indeed, it is 
well-defined only in certain cases, and it does not seem justified to consider it to be an 
observable physical quantity. 
 On the contrary, it is always permissible to imagine the mean position of a corpuscle 
− or the center of gravity of the probability − and to study its motion.  In effect, that point 
is defined by its coordinates: 
 

x  = 
4

1
k k

k

x dτ
+∞

∗

=−∞

Ψ Ψ∑∫ ∫ ∫ , y  = 
4

1
k k

k

y dτ
+∞

∗

=−∞

Ψ Ψ∑∫ ∫ ∫ , z  = 
4

1
k k

k

z dτ
+∞

∗

=−∞

Ψ Ψ∑∫ ∫ ∫      (1) 

 
in Dirac’s theory. 
 The velocity of the point with coordinates x , y , z  is itself a perfectly well-defined 
quantity. 
 Let (Ψ1, Ψ2, Ψ3, Ψ4) be the solution to the Dirac equation that represents the wave 
that is associated with the motion of a certain electron.  As we know, we can develop 
each Ψk in a series of proper functions of the form: 
 

Ψk = ,n k n
n

c Ψ∑ ,     (2) 

  
where the cn are complex constants.  Upon substituting this in (1), one will get: 
 

x  = 
4

, ,
, 1

( )m n k m k nD
m n k

c c x dτ∗ ∗

=

Ψ Ψ∑ ∑∫ ,    (3) 

 
in which we have replaced the triple integral of the summation in formulas (1) with just 
one symbol.  Upon denoting the element of the matrix that corresponds to x and has the 
indices m, n by xmn , formula (3) will be written simply as: 
 

x  = 
,

m n mn
m n

c c x∗∑  .      (4) 

 
 Now, by virtue of formula (25) in Chapter XV, one will have: 
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mndx

dt
= 

4

, ,
1

2
( )k m k nD

k

i
xH Hx d

h

π τ∗

=

 Ψ − Ψ  
∑∫ ,   (5) 

 
where H is Dirac’s Hamiltonian operator: 
 

H = − [e V + c (α1 P1 + α2 P2 + α3 P3 + α4 m0 c)] .  (6) 
One easily finds: 
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xH Hx
h

π − = c α1 x x
x x
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and in turn: 
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 On then obtains from (4): 
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 Naturally, one likewise finds that: 
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 We previously found [formulas (7) of Chap. XII] the following expressions for the 
components of the probability current: 
 

ρ ux = − c 
4

, 1 ,
1

k m k n
k

dα τ∗

=
Ψ Ψ∑ .    (11) 

 
 Upon comparing this with (9), one will then get: 
 

dx

dt
 = xD

u dρ τ∫  = xu ,    (12) 

and similarly: 

 
dy

dt
 = yu , 

dz

dt
= zu .    (12′) 

 
 The velocity of the center of gravity of the probability is then equal to the mean value 
of the velocity of the probability, which is a result that one could have predicted, a priori. 
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 One often interprets formulas (9) and (10) by saying that the operators – c α1, − c α2, 
and – c α3 are the operators that correspond to the three components of the velocity of the 
electron.  Since these operators have only + c and – c for proper values, one is led to say 
that from the general principles of new mechanics, the only possible values for the 
components of velocity will be + c and – c, which is a result that is very difficult to 
comprehend.  As we have said, we prefer to abstain from making the operator correspond 
to the “velocity” of a corpuscle. 
 
 
 2.  Ehrenfest’s theorem is no longer exact in Dirac’s theory. – In non-relativistic 
wave mechanics, we proved Ehrenfest’s theorem, which is expressed by the formulas: 
 

m 
2

2

d x

dt
 = xf ,  m 

2

2

d y

dt
 = yf ,  m 

2

2

d z

dt
 = zf .  (13) 

 
 If we apply this to the case in which a field is absent then this theorem will lead us to 
the following result:  In the absence of a field, the motion of the center of gravity is 
uniform and rectilinear.  This is, in a sense, the translation of the principle of inertia into 
wave mechanics. 
 The preceding result is no longer exact in Dirac’s theory, in general.  Indeed, start 
with formula (8) and once more apply formula (25) of Chapter XV; we will get: 
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and, in turn, from (4): 
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 Now, α1 does not commute with H, since it anti-commutes with α2, α3, and α4 .  One 
thus has, in general: 
 

2
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d x

dt
 ≠ 0, and similarly: 
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dt
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2

2

d z

dt
≠ 0.  (16) 

 
 The motion of the center of gravity of the probability in the absence of a field is not 
generally uniform and rectilinear. 
 We shall now examine more closely the reason that prevents this motion of the center 
of gravity from being uniform and rectilinear, and we shall see that it is related to the 
existence of negative-energy states.  We will thus obtain some results that were obtained 
by Schrödinger in a very different form (1). 

                                                
 (1) Annales de l’Institut H. Poincaré, loc. cit.  
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 3.  Schrödinger’s zitterbewegung. – In order to better comprehend why the center of 
gravity of the probability does not generally have a uniform, rectilinear motion in Dirac 
mechanics − even in the absence of a field − we shall subject the expression: 
 

dx

dt
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( )k kD
k

c dα τ∗

=
Ψ − Ψ∑∫     (17) 

to a detailed analysis. 
 We know that one can always write: 
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with 

W = + 2 2 2 2 2
0 x y zm c p p p+ + + .    (19) 

 
 The eight ak (px, py, pz) and bk (px, py, pz) can be calculated by starting with four of 
them that are arbitrary using formulas that we already know. 
 Now call the space that is defined by the rectangular coordinates of the quantities px, 
py, pz “momentum space,” and divide that space into cells σ that are as small as we desire.  
The quantities: 

∆(σ) = 
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are (up to a normalization constant) the “proper differentials” of the continuous spectrum 
of the monochromatic plane waves (1), and we can write: 
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in which px, py, pz are the coordinates of the center of the element σ in moment space, and 

σ
∑ denotes the summation over all cells σ in that space. 

 If that is true then we can write (17) in the form: 
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 (1) See the definition of the proper differential in Chapter V, paragraph 4.  
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where the domain is naturally all of space here.  Since the proper differentials are 
orthogonal and can be assumed to be normalized, we have (1): 
 

 
dx
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 = − c 
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or: 
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 We must now transform this expression.  From the formulas of the preceding chapter, 
we have: 

a1 = − 
0

( )

/
z x yp A p ip B

W c m c

+ −
+

, a2 = − 
0

( )

/
x y zp ip A p B
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− −
+

, 

 
a3 = A,  a4 = B,     (25) 

so: 
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 However, one also has: 
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so, upon comparing this with (26), one will get: 
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 One likewise finds upon using the expression for bk that: 
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=
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p c
b b

W
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=
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 On the other hand, the last two terms in the expression (24) are complex conjugates 
(due to the Hermiticity of α1), and one can write: 

                                                
 (1) Here, we denote the volume of the cell σ by σ.  
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c 1 1

4
cosA Wt

hσ

πσ ϕ + 
 

∑ .    (30) 

 
 Naturally, A1 and ϕ1 vary from one cell to another; i.e., they are functions of px, py, pz. 
 Finally, from (28), (29), and (30), we can write (24) in the form: 
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 = 
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 Now, from the formulas of relativistic dynamics, the quantity c2px / W is the x 
component of the velocity that corresponds to the quantity of motion px and to an energy 
+ W.  Likewise, one can consider − c2px / W to be the x component of a velocity that 
corresponds to the same quantity of motion and a negative energy – W.  The first term in 
the expression (31) for /dx dt  is therefore a sort of mean value for the component of the 
velocity vx that corresponds to the spectral decomposition (18) and the wave Ψ.  We then 
set: 

xv  = 
2 4

1

( )x
k k k k

k
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naturally, xv  is independent of time.  We then have: 

 
dx

dt
 = 1 1

4
cosxv c A Wt

hσ
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so, by integration: 
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 Set: 
x = const. + xv t .     (35) 

 One gets: 
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 One will likewise find: 
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3

2
sin 2

4

hc A W
t

W hσ
σ π ϕ

π
 ⋅ ⋅ +  

∑ , 

with the definitions: 
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 ζ = zv t  + const., zv  = 
2

1

( )
k

z
k k k k
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=
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 The point whose coordinates are ξ, η, ζ is displaced with a uniform, rectilinear 
motion, but the center of gravity of the probability will exhibit a series of oscillations 
about that point with a frequency of 2W / h: This is “Schrödinger’s zitterbewegung.”  
Moreover, the amplitudes of these oscillations are weak, in general, because they will be 

proportional to the factor hc / 4πW, which is always smaller than 
04

hc

m cπ
 = 

0

1

4

h

m cπ
⋅ .  

Now, the quantity h / m0c is often called the “Compton wave length” and is very small 
(2.4 ⋅⋅⋅⋅ 10−12 cm.). 
 The preceding analysis shows the origin of Schrödinger’s zitterbewegung very 
neatly: It is due to the beating of the waves of positive energy W with the corresponding 
waves of negative energy – W.  The beat frequency is, as usual, the difference of the 
frequencies of the beating waves, which is 2W / h, here. 
 There is no Schrödinger zitterbewegung for a train of waves in a spectral 
decomposition that involves no negative-energy waves, and Ehrenfest’s theorem will 
remain valid.  However, we know that in the general case, one must appeal to negative-
energy waves in order to represent a wave train.  That is why the theorem is not generally 
valid in Dirac’s theory. 
 Schrödinger’s zitterbewegung and the non-validity of Ehrenfest’s theorem are thus 
coupled to the existence of negative-energy states, and will disappear with those states if 
one can eliminate them. 
 

_____________ 
 



 

CHAPTER XXII 
 

SOME REMARKS ON RELATIVIVY  
AND THE NEW MECHANICS  

____ 
 
 

1.  The absence of symmetry between space and time in the new mechanics. 
 

 We have seen that Dirac’s theory conforms to the principle of relativity in certain 
aspects.  Indeed, one can give its fundamental equations a form that is invariant under a 
Lorentz transformation: One can form quantities from its four Ψ that have a tensorial 
character in space-time.  Nevertheless, one can hardly pretend that Dirac’s theory, in its 
present state, is in complete accord with the concepts of relativity, even in its special 
form.  Indeed, one of the guiding ideas of relativity theory seems to be that one should 
always involve the coordinates of space and time in a symmetric fashion.  Now, that 
symmetric intervention of the variables x, y, z, t is not realized in Dirac’s theory, because 
one assumes the general principles of new mechanics, which are general principles that  
(at least, in their present form) give an entirely special role to the variable of “time.”  We 
must insist upon that point. 
 First, the new mechanics makes any observable physical quantity correspond to a 
Hermitian operator.  Now, the Hermiticity of an operator is defined in a spatial domain, 
and that will already suffice to make the definition itself of some operators that are 
employed in the new mechanics non-relativistic.  Time enters into those operators only as 
a parameter, and the derivatives ∂n / ∂tn can never enter into them. 
 Having defined the operators that correspond to observable quantities, the new 
mechanics assumes that the possible values of one of those quantities are given by the 
proper values of the operator.  However, the proper values and the proper functions of an 
operator are, in turn, defined in a domain D of space.  The variable “time” plays no role 
in the calculation of proper values and proper functions of a Hermitian operator; when it 
does enter in, it enters only as a parameter.  Once the possible values of an observable 
quantity A have been calculated, the new mechanics supposes that the various respective 
probabilities of the various possible values of that quantity will be given by the square of 
the modulus of the coefficient of each proper function in the development of the wave 
function Ψ in proper functions. 
 In the general case (1), those probabilities depend upon the parameter t, and it is 
precisely for that reason that the state of the system generally evolves. 
 Briefly: Up to now, the new mechanics has considered time to be something that 
plays a completely different role from that of the spatial coordinates.  Dirac’s theory, 
which assumes the general principles of new mechanics, cannot be truly “relativistic” 
then.  One sees that very easily, for example, when one studies the mean values of 
quantities in Dirac’s mechanics.  The mean-value densities are defined in space, and in 
order to pass from the density to the mean value itself, one must integrate over space, 

                                                
 (1) That is, when A is not a first integral.  
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which is an operation that is not relativistically invariant.  One can then explain certain 
very obvious peculiarities in the table of mean values that is found at the end of Part II of 
this book, such as the very asymmetric use of the operator α4, for example. 
 
 
 2.  The fourth uncertainty relation. – We shall once more raise a question that 
relates to the particular role that is played by time in wave mechanics. 
 The Heisenberg uncertainty relations are the following ones: 
 

∆px ⋅⋅⋅⋅ ∆x ≥ h, ∆py ⋅⋅⋅⋅ ∆y ≥ h, ∆pz ⋅⋅⋅⋅ ∆z ≥ h .    (1) 
 
 From the mathematical standpoint, they are derived from the fact that wave 
mechanics makes the classical quantities px , py , pz correspond (up to a constant) to the 
derivatives with respect to the conjugate variables x, y, z, respectively. 
 From the physical standpoint, the relations (1) must be interpreted by saying: At a 
given instant, the product of the uncertainty in one of the coordinates of a corpuscle with 
the conjugate component of the quantity of motion is always at least of order h. 
 The relativistic symmetry between space and time demands that the three relations (1) 
must be completed by a fourth relation: 
 

∆W ⋅⋅⋅⋅ ∆t ≥ h,      (2) 
 
since the energy W is the temporal component of a “world impulse” quadri-vector whose 
spatial components are px , py , pz . 
 However, in the present state of the new mechanics, that fourth uncertainty relation 
cannot at all be interpreted in the same way as the first three, because, on the one hand, 
time t must be considered to be a parameter that has a well-defined value with no actual 
uncertainty, and on the other hand, the quantity “energy W” will correspond to the 

Hamiltonian operator, and not to the operator 
2

h

i tπ
∂
∂

, which cannot be considered to be 

Hermitian in the proper sense of the word. 
 It is nevertheless possible to give meaning to the equality in (2).  Indeed, it is well-
known that if one observes the passage of a wave from a fixed point in space during an 
arbitrary finite time interval ∆t then one can assert only that the wave possesses a 
frequency v with an uncertainty of: 
 

∆v ≥ 
1

t∆
.      (3) 

 
 For a wave Ψ, if one takes into account the relation W = hv then one can write the 
inequality (3) in the form: 

∆W ≥ 
h

t∆
.      (4) 
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 One then perceives the sense of the relation (2).  It expresses the idea that an 
experiment or observation that is made at a fixed point during an interval ∆t cannot reveal 
the energy of a corpuscle with an uncertainty that is less than h / ∆t. 
 The fourth uncertainty relation then has a meaning, but it is a very different meaning 
from that of the first three.  That is a new aspect of the asymmetry between space and 
time in wave mechanics. 
 
 
 3. Can one establish symmetry between space and time in the new mechanics? − 
In order to establish symmetry between space and time in the new mechanics, one must 
try to modify the general principles in that sense.  Without stating that this is impossible, 
we shall show that there are some great difficulties associated with that ambition. 
 The first thing to do will be to define the Hermiticity of operators in space-time, 
instead of defining it in space.  For example, let an operator A act upon both the time and 
space variables (and also possibly upon the spin variable ζ).  One will then have to define 
the Hermiticity by the condition: 
 

 
D
∫ ∫ ∫ ∫ f * (x, y, z, t) A g (x, y, z, t) dx dy dz dt 

= 
D
∫ ∫ ∫ ∫ g (x, y, z, t) A* f * (x, y, z, t) dx dy dz dt.   (5) 

 
D is a space-time domain, and for the free electron, it will be all of space-time. 
 One might possibly need to add a summation over the variable ζ in the condition (5). 
 The proper values and proper functions of the operator A will then be defined by the 
equation: 

A [ϕi (x, y, z, t)] = αi ϕi (x, y, z, t),    (6) 
 
in which ϕi is finite, uniform, continuous, and zero on the boundary of the space-time 
domain D.  The wave function Ψ (x, y, z, t) is developed in the form: 
 

Ψ (x, y, z, t) = i
i

c∑ ϕi (x, y, z, t),    (7) 

 
and one can transpose the usual statement of the general principles by saying: 
 
 A measurement of the physical quantity that corresponds to the operator A can give 
only one of the values αi , and the probability of the value αk will be equal to | ck |

2. 
 
It will result from this that the mean value of the quantity A will be: 
 

A  =
D
∫ ∫ ∫ ∫ Ψ* A (Ψ) dx dy dz dt .    (8) 
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 Unfortunately, there is a grave objection to this: The quantities αi and ci , with their 
new definitions, are independent of time, and naturally the same thing will be true for A .  
We will then get a theory of physical statics from which all time evolution is banned. 
 A different aspect of the difficulty is the following one: When we “quantize” a system 
with the current principles of the new mechanics – a hydrogen atom, for example – we 
mentally isolate that system from the rest of the universe.  Rigorously speaking, that is 
not permissible: In order to determine Ψ, one must, in principle, take into account not 
only the force field that is created by the nucleus, but also all of the force fields that exist 
in the entire universe.  Fortunately, the influence of the force fields that are external to the 
atom on the form of the stationary waves Ψ in the atom is completely negligible, because 
the waves Ψ tend to zero very rapidly when one extends them outside of the atomic 
domain.  In principle, the determination of the stationary waves – viz., proper functions – 
demands the consideration of all space and everything that it contains, but in practice, the 
structure of the material world allows one to cut away systems that are sufficiently 
independent of the rest of the material world and consider them to be isolated.  However, 
if we would like to define proper functions in space-time then that would no longer be 
true, because it does not seem possible to decompose the existence of a physical 
individual – such as an atom – into mutually-independent sections.  Consider a hydrogen 
atom: In the course of its history, it will be subjected to various effects, such as being the 
site of the Stark or Zeeman effect, for example.  If we would like to define the proper 
functions and proper values in space-time then we would find that the stationary states of 
that atom will be invariable and will be determined by the set of all the effects that it is 
subjected to during the entire course of time.  That hardly seems acceptable. 
 In reality, even in the theory of relativity in its classical form today, the time and 
space variables are far from equivalent.  The variable “time” always varies in the same 
sense in it, and the world-lines of all material objects are lines that have a positive sense, 
and that positive sense will always subtend an angle of at least 45o with the ct axis.  In 
other words, space-time possesses an essential “polarization.” 
 In the relativistic conception of things, an observer A considers the world-points that 
are contained in a certain three-dimensional section of space-time to be simultaneous and 
to correspond to the same value of its proper time.  That is because that section cuts all of 
the world-lines that the observer A can cut out from its space of almost-independent units.  
However, such a cutting of the sense of world-lines would be impossible.  There would 
be a sort of fibrous structure on space-time in the sense of time.  It is that fibrous 
structure that we find to be inconvenient here, and we see that the difficulty has its roots 
in classical relativity itself. 
 
 
 4. A more restrictive form for the uncertainty relations (Bohr, Landau, and 
Peïerls). – If one introduces the relativistic idea that no action can propagate with a 
velocity that is greater than c then the relation ∆W ⋅⋅⋅⋅ ∆t ≥ h will lead us to state some new 
uncertainty relations.  Those new relations, which are not contained in the general 
principles of the new mechanics in its non-relativistic form, must be added to those of 
Heisenberg and will augment the uncertainties that result from them. 
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 Without entering into the details of the argument that leads to those new uncertainties, 
we shall meanwhile seek to show their origin.  We put ourselves in the case in which no 
field is present. 
 In relativistic wave mechanics, the four parameters W, px , py , pz that enter into the 
phase of a monochromatic plane wave are coupled by the relation of Einsteinian 
dynamics: 

| p |2 = 
2

2 2
02

W
m c

c
− ,     (9) 

 
from which, it will easily result that ∆ | p | ≥ ∆W / c. 
 However, we know that if one seeks to determine the state of an electron by means of 
an experiment that lasts for a duration of ∆t then one can know that state with only an 
uncertainty of h / ∆t ; i.e., if the wave Ψ is decomposed into monochromatic waves then 
one will be concerned with a spectral interval of width: 
 

∆ν = 
W

h

∆ ≥ 
1

t∆
 .     (10) 

 
 The values of | p | that enter into the spectral decomposition of the wave Ψ will then 
occupy an interval: 

∆ | p | ≥ 
W

c

∆ ≥ 
h

c t∆
 .     (11) 

 
 One concludes from this that an observation or experiment of time duration ∆t cannot 
lead to knowledge of the quantity of motion that has an uncertainty that is less than h / c 
∆t.  That will yield an uncertainty relation with a new character. 
 One can also recover the inequality (11) in another manner.  If an observer that is 
placed at a point in space would like to bound the length of a train of waves Ψ then he 
must make it pass through an opening that has been pierced through a screen and is 
closed by means of a shutter.  He raises the shutter for a time interval of ∆t and then puts 
it back in such a fashion as to bound the wave train that has crossed the screen during that 
time interval ∆t.  However, the front of that wave train cannot progress with a velocity 
that is greater than c, so the length of the transmitted wave train that crosses the screen 
will be equal to at most c ∆t.  Upon taking the z axis to be in the direction of propagation, 
the uncertainty in the z coordinate of the corpuscle of the transmitted wave will then be: 
 

∆z ≤ c ∆t,      (12) 
 
and from the Heisenberg relation: 

∆pz  ≥ 
h

z∆
≥ 

h

c t∆
,     (13) 

 
and since one can confuse p and pz here, one will recover the inequality (11). 
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 In the first place, it might seem that the relation (11) is in opposition with the notion 
of a monochromatic plane wave because one has ∆p = 0 for them.  However, one can 
dismiss that objection by remarking that in order to rigorously have the right to associate 
a corpuscle with a monochromatic plane wave Ψ, one must be able to state that the 
corpuscle can be found at no particular point in space, and that statement can be justified 
only for an experiment of infinite time duration, since no means of investigation can 
explore space with a velocity that is greater than c.  Meanwhile, it still remains from that 
objection that an observer can never represent his knowledge of the state of an electron 
by an unbounded monochromatic plane wave rigorously. 
 Certain arguments lead one to believe that for a body of proper mass m0, the 
measurement of a length that is less than h / m0 c or of a time duration that is less than h / 
m0 c

2 is illusory (1).  That permits one to hope that if one can exclude the consideration of 
distances that are less than h / m0 c and time intervals that are less than h / m0 c

2 from the 
theory of the electron as having no meaning then one might make the difficulty of 
negative energies disappear by means of that itself.  Then again, one only hopes for that. 
 
 

__________ 
 

                                                
 (1) Cf., SCHRÖDINGER, Annales de l’Institut H. Poincaré, loc. cit.  


