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PREFACE

The theory of the electron that is due to Dirac isgofat interest from several
viewpoints. It constitutes the most perfect form tatcurrently possess for the wave
dynamics of the electron. It reconciles relaticistihnd quantum ideas (at least, to some
extent). It makes precise Uhlenbeck and Goudsmit’s vertfurthypothesis of an
electrified corpuscle that is magnetic and rotating inrenfihat agrees with the principles
of the new physics. Finally, it permits one to accdantsome important experimental
facts that are concerned with the fine structure oftspét the context of the anomalous
Zeeman effect, and with that, in turn, it receivé®autiful confirmation. It seems useful
to us to publish a general survey on that subject by editaoyise that we taught in the
most recent years at I'lnstitut Henri Poincaré.

In order to indeed show that Dirac’s theory is nat@y a game for theoreticians to
play, but a timely way for us to explain some impartfacts, we believe that in the first
part of the book we must survey some phenomena th& teneived a satisfactory
interpretation from that theory, while at the samnmeetishowing that those phenomena
defy any complete explanation in the old quantum theomyven wave mechanics in its
initial form.

We have also reserved a special place in the firstopaéine book for a review of the
general principles of the new mechanics and the concepfiphysical laws that arises
from it. Indeed, it is impossible to comprehend Dirabsory very well if one does not
have those principles in mind.

In the discussion of the theory that defines the ¢olmpédhe second part, we have
preserved the somewhat-asymmetric form of the equati@<irac himself employed
in the beginning without seeking to adopt notations #rat more symmetric from a
relativistic standpoint, as a number of authors have dowe then. Indeed, that search
for symmetry in form seems a little vain to us, siree we have sought to show in the
last chapter, Dirac’s theory, despite the invariancdoom of its equations under a
Lorentz transformation, must make time play a spewdd in order to remain in
agreement with the current general principles of quantuohamecs. At the end of the
second part, we have devoted a chapter to a systenaatidew of the entire theory that
might aid the reader in understanding the harmony in it.

The third part of this book consists of the interpretatif some of the facts that were
recalled in the first part by means of Dirac’s theoffhat is followed by a study of
certain consequences of the fundamental equations #hat lait strange — in particular,
its prediction of negative-energy states. We haveepted these difficulties without
advocating any solution to them. No matter what wagodfing them that we are led to
in the future, they deserve to be studied because theythgiveoots in the very basis of
the theory itself.

We hope that this book will permit the reader to knaw jast the beauty of Dirac’s
theory, but also its utility in interpreting some experntal facts, as well as its gaps and
weak points.

| would like to acknowledge Jean-Louis Destouches fainigaassisted me in the
correction of the proofs.

LOUIS DE BROGLIE
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SUCCESSES AND FAILURES OF QUANTUM THEORY
AND THE ORIGINAL WAVE MECHANICS
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FIRST CHAPTER

THE ATOMIC SPECTRUM OF HYDROGEN.
THE THEORIES OF BOHR AND SOMMERFELD.

1. The Balmer formula and the spectral terms of hydrogen- The oldest-known
series of lines in the visible light spectrum of hydrogethe Balmer series. It consists of
four principal lines (which are, in reality, small doubleas we shall see later on). Here
are the names and wave lengths of those four lines:

Ho:6.583 A, H:4.861A, H:4340A, H:4.102A

Balmer already arrived at a formula that gave thgueacies of those lines a half-century
ago. That formula is:
1 1

Vm:R[Z_F}, m:3, 4, 5, 6. (l)

vz is the frequency of the lineH vs is that of H;, etc. R is a constant that is called the
Rydberg constanand is approximately equal to 3.292010".

Some other line series in the non-visible hydrogpactrum that were discovered
later on obeyed analogous laws. Notably, one lasiltraviolet Lyman series, for which
the frequencies of the lines are given by the féamu

vm:R[l—iz] m=2,3, .. (2)
m

and the infrared Paschen series, for which one has:

1 1
Vm:R[g_F}, m=4,5, ... (3)

One sees that all of those formulas have the gétgre:

vm:R[iz—?l] n<m. (4)

n

n = 1 for the lines of the Lyman seriess 2 for those of the Balmer series, and 3
for those of the Paschen series.

One can elevate that statement to the statugyeharal law that is exhibited exactly
for all spectral lines of all bodies. It is tR&z combination principlewhich one states in
the form:
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“The frequency of any spectral line is equal to the dbfiee between two spectral
terms that are characteristic of the emitting body,”

or, in another form:

“For any emitting body, one can construct a tablewhlpers that one callpectral
terms, such that the frequency of any spectral line of the heillybe the difference
between two of its spectral terms.”

Formula (4) then shows that for hydrogen, the spetrais have the forrR / n,
withn=1, 2, ..., at least in absolute value.

A more precise experimental study of the lines of tladmBr series has shown,
moreover, that those lines are, in reality, each caegpof two very close lines. In other
words, when one analyses the Balmer series withcgerifi resolution, one will perceive
that each of the lines that one originally considdetbe simple is, in reality, a small
doublet. The difference between the frequencies ofwtbecbmponents is the same for
each of those doublets. Later on, we shall see hannfofeld could interpret that fine
structure in the Balmer series.

2. Bohr's theory of the spectral terms of hydrogen- In 1912, Bohr arrived at an
interpretation for the spectral terms of hydrogen, aany done that, he founded the
modern theory of the atom upon a new basis.

Somewhat before Bohr’s theory, physicists (not withe certain amount of groping)
followed the suggestion of Lord Rutherford and adopted a faanenodel of the atom.
According to that view, the atom of a simple body vehcank in the Mendele’ev series is
N will be endowed with a central nucleus of positive rghaNe where e is the
elementary electronic charge + 4910 e. s. u.N electrons of charge e-orbit around
that nucleus, in such a way that the atom will béectVely electrically neutral. Bohr
had the idea of subjecting that model of the atom taitzlon by applying the quantum
laws that Planck introduced successfully in his study ofkdtecly radiation. He
assumed that a planetary electron in the atom canilesnly certain motions around its
central positive “Sun” that are predicted by classicatmaaics. Those stable motions of
the electrons correspond to “stationary states,” duriniglwno radiation will be emitted,
contrary to the predictions of the classical elecagnetic theory. The emission of
spectral lines can then take place only during the briefagassf the atom from one
initial stationary state to another stationary stdtkess energy. What will the frequency
of the line that is emitted during such a passage be? d&drmined it by assuming that
the energy that is lost by the atom is radiated enfonm of just one quantum of light of
value hv — or rather, in the form of just onEhoton to employ the current language.
Hence, ifE; andE; denote the energies of the atom in the initial amall Stationary states,
resp., then the frequeneythat is emitted in the transition will be:

E-E
Vi = (5)
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That formula explains the Ritz combination principlemiediately, and we shall show
that the spectral terms of an atom are equal tenkegies of its various stationary states,
divided by the Planck constant.

The essential problem is then to determine the eneofid®e stationary states. In
order to do that, in his first paper, Bohr always assilithat the electron behaved like a
point-like charge that obeyed Newton’s laws of dynanbas,he restricted the number of
possible motions by introducing Planck’s quantization rulesthe era when Bohr was
writing, one knew only how to quantize the periodic magidhat were defined by just
one variableg. The method of quantization for that case is thieviohg one: Ifp is the
Lagrange momentum that is conjugate to the varigbiten one writes:

cﬁ pdg=nh (n, an integer), (6)

in which the integral is taken over an entire cycle lid motion, anch is Planck’s
constant. Bohr was naturally led to suppose that th@nsobf the electron that satisfy
the condition (6) are the stable motions that corredgonthe stationary states of the
atom.

The method permits one to easily calculate the gnafrgtable circular trajectories of
a hydrogen atom, and in Rutherford’s picture, that atomomposed of a nucleus of
charge +e and a planetary electron of charge. -f &is the azimuth of the radiusthen
condition (6) will give:

mr2d =n o (9:%) (7)
21T dt

That expresses the idea that the angular momentune @le¢ctron on a stable orbit is
an integer multiple o / 27z On the other hand, since the laws of dynamics protigle t
relation:

eZ

mr’ g = =, (8)
r

one can easily find that the energy oftﬂ‘aquantized circular motion is:

2 4
. e . 2IPmé
En :%mrzé?— —_— = %mrzé?: _z—hz
r n

(9)

Hence, if one sticks to the circular motions thies spectral terms of hydrogen must
have the form:

_2m’'mé

E _
h n’h

(10)

From formula (5), the lines of hydrogen must h&eguencies that are given by the

general relations:
2rme' (1 1 ,
Vo = —T(F—Fj (n" >n), (11)
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and one will get back to formula (4), which is inferredrirexperiments, by setting:

2°mée’

R= H

. (12)

Now, the numerical calculation of the right-handesof (12) shows that its value is
indeed approximately equal to the experimentalevalithe Rydberg constant.

One can begin the same calculation again by sumpdise one is dealing with an
atom of atomic numbeN that has been ionized — 1 times. One must then treat a
problem that is identical with the problem of thgltogen atom, except that the central
charge will beNe, instead of (). Upon repeating the calculation, one will easihd
the following spectral terms, in place of (10):

2'me* ,  RN?
B 2 h? N®=- 2

En -
- (13)

Hence, the spectral terms are multiplied by theasg of the atomic number. The
simplest case is that of singly-ionized helium, ¥anich one will haveN = 2. The
spectral terms and frequencies will then be qudddup Meanwhile, the experimental
numbers indicate that the Rydberg constant doebana precisely the same value for H
and Hé. Bohr could account for that difference by inéhglthe reaction of the electron
on the nucleus.

3. Quantized energies of elliptic orbits.— Bohr’s calculations that we recalled
above cannot be regarded as being complete bethesstudy of the motion of an
electron around a nucleus is, in principle, a problin two variables: viz., the radius
vector and the azimuth. Eliminating the variatiaighe radius vector by considering
only the circular trajectories is obviously only anificial procedure. However, in order
to treat the problem completely, one must firstwrimw to write the quantum conditions
for motions with several degrees of freedom. Hetrew one arrives at that:

Let a system witlm degrees of freedom, be definedrbyariablesqs, ..., g, . If all
variables admit the same period of variafion i.e., if they take the same values at equal
time intervalsT — then the system will regularly take on the s@mafigurations — i.e., it
will be periodic. If each variabley has a period of variatiom, and those periods are
commensurable with each other, then the systembetjuasi-periodic For systems of
the type that one had to quantize in the old quarteory, it was always possible to
choose the variables in such a fashion that theyldviorm a system oh “separate
variables”; i.e., each of the Lagrange momemnizould be expressed as a function of just
the one corresponding coordinaje. Having chosen the variables in that way, H. A.
Wilson and Sommerfeld showed that the quantizatimrst be expressed by the
conditions:

<'|5 pdg=nh (i, an integer) i=1,2,..n (14)

() One often says that an atom of atomic nunibirat has been ionizéd— 1 times isydrogenic.
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Sommerfeld appealed to that new statement in orderetd the problem of the
hydrogen atom more completely by accounting for all efeHiptic motions. Let be
the radius vector, and létbe the azimuth of the electron in its Kepleriagetory. The
kinetic energyl will be:

T=1Im(i*+r%0?), (15)
and the Lagrange momenta will be, by definition:

oT oT .
=—=mr, =— =mré. 16
Pr or 8] 00 ( )
The conditions (14) can be applied here, and one writes:
2m s
jo mr’ddé =ny h, <J’> mi dr=n, h. (17)

Now, from the areal theorermr’@ is the constant angular momentum in a central
field. The first condition (17) then gives:

mr?@ = nll, (18)
21T

and coincides with Bohr’s condition (7) for circulabis.
In order to calculate the second integral (17), we muge the expression for the
energy:

2 2\2 2
E:%m('r2+r26'?2)—e—=i{(mrze) +m2r2}i. (19)
r 2m r r

Hence, upon taking (18) into account, one will irtfeat:

2 2 12
mr:pr:i\/Zm(E+eTj—2n2T2, (20)

which is a formula that shows the separation ofées.

In the course of motion, the radius veatascillates between the valugsandr; that
annul the radical (20), becaupe must be real. Upon supposing that< r,, one can
write:

2 2 2
<J5 p, dr = erlz\/m( E+eTj—}n2T2 dr, (21)

because one must take the + sign in (20) whencreases and the — sign when it
decreases. Sommerfeld calculated the integralli Dauchy’s method of residues, and
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: 2mr'me' . .
found that it had the value | n; | h +W. Upon equating that tn, h, one will
m

easily find that:
2mr'me'

E =--_<tT° 22
" (In [+ YR (22)

That gives the quantized energy of the stationarye stiaat corresponds to the
guantum numbers; andn, . Since |n; | andn, are positive whole numbers or zero
(which cannot both be zero, as one easily sees),amseat:

[N |+n2=n n=1,2,..), (23)

and the formula (22) will give the same energy levelBahr’s original theory. In other
words, the fact that one is considering elliptical arbitll not lead to any new spectral
terms. The introduction of two degrees of freedom caerplain the fine structure of
the Balmer series by itself.

4. Sommerfeld’s fine-structure theory.— In order to explain the fine structure of
the hydrogen atom, Sommerfeld had the idea of attemptingniploy relativistic
mechanics, instead of classical mechanics. That woulasbiéed by the remark that the
speed of the electrons in the internal orbits of therBdom must be comparable to the
speed of light.

In relativistic dynamics, the kinetic energy of &#lectron has the expression:

T:moc{ ! —1}, (24)

J1- 2

in whichmy is the mass of the electron at rest, Aridhs the usual significance:
P2 +r262. (25)

However, here, one must no longer define the momenptuhat is conjugate to the
variableq; to be equal to the derivative dfwith respect tog . One must introduce the

relativistic Lagrangian:
L=-myc®1-53%-U, (26)

in which U is the potential energy, and pose the definition:

=t (27)

ag,
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In the problem of the hydrogen atom, the potential gnetii not depend upon the
gi, and one will have:

_oL__mc 9F _ mr
or 2\/1_lgz or \/1_ﬁ2’

Pr

(28)
oL _ mc LQ,BZ _ mr?o

zﬁ_z -5 00  J1-p

Here, the quantum conditions (14) will then be:

Pes

2 A .
jz M0 4o=n,h My

=mh. 29
N 5 " >

The detailed study of the trajectory that we joatried out here showed that the
electron describes an ellipse whose periheliooteting. In other words, at each instant,
the trajectory is tangent to an osculating ellifys# turns slowly in its plane. The radius
vector oscillates between two valugsandr,, but the time that it takes to describe the
cycler; - r, - rp (viz., the period of the variablg is a little bit longer than the time

that the azimuth takes to increase by(%iz., the period of the variabl®. The orbit
does not close precisely, so the motion will besgpariodic.

Figure 1.

The momentunpy is furthermore the angular momentum around théeceand one
easily proves that it is once more constant heee, that the areal theorem is always
valid. The first condition (29) then gives:

mre _
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The total energy is the sum of the internal enengy’ of the kinetic energy and the
potential energy. It is then equal to:

we_Me € (31)
1-p2 f

Upon taking (28) and (25) into account, one walsigy verify the formula:

2

W:c\/rrbc2+ pz+rﬂ§—e—. (32)

r

Let E denote the energy’ minus the ternmy ¢ E will then be the energy that one
defines in classical mechanics. Repl¢én (32) withE + my ¢ and solve it fop, . It
will become:

pr=, At2—+—, (33)

with the notations:
2 2
A-E—+2moE My C Kl ij —1},
c?

(34)

€ _pog_nh
¢z 0 am?

C=

Sommerfeld then introduced what one calls thee“fstiructure constant” into the
calculation:

2
- 2:09 (#=52x10%¢. g. s)). (35)
One can then write:
2 2
C= rz}; {1 :2} (36)

An application of the residue theorem permits nestablish that one has:

<JS \/E - 27 { ﬂj (37)



8. 4. Sommerfeld’s theory of fine structure. 9

Upon equating the right-hand side of (37)ntdh, conforming to (29), and replacing
A, B, andC with their values, Sommerfeld found, after a simplewation:

1+ 5 =

) -1/2
1+ a ,
mC [n, +y n’-a®]®

which is a formula that rigorously gives the eneligyf the stationary state that is defined
by the quantum numbers andn; .

Since the quantity? is very small, a first approximation will consisftneglecting the
terms of degree higher than onedh As one would expect, one then comes back to
formula (22) from the non-relativistic theory, aode does not find any fine structure. A
better approximation would consist of keeping &t ina” and writing:

" a2 —1/2: . a’ 1 a? (_1+ n, J (39)
[n, + n2 -a?]? 2(n [+ n, Y 2(n Fn ¥l 4 In

Upon substituting that value into (38), one willd that:

_ 2mPm € a? (1 n M
- 1 - . 40
mu+mfﬁ{+anhwf JWQ (40)

The third term between brackets explains the excst of a fine structure in the
Balmer series, because it depends upar} andn, separately, and not just ony|| +n.

We shall now change the notations slightly. Wk tt& numbem = |n; | + n; the
“total quantum number,” and the numlier |n; | the “azimuthal quantum number.” It is
obvious that one can characterize each quantungeitevel by the numbens andk,
instead of the numberg andn, . Formula (40) can now be written (upon introdgci

the Rydberg constant):
Rh{, a*(n 3
Ex=-— F|:1+—2(———j:| (41)

In the old quantum theory, one assumed that timeudlzal quantum numbek could
never take the value 0; for the circular traje@syrione has, = 0 orn =k, and for the
elliptic trajectories 0 « <n. From formula (41), each stationary orbit is eluherized by
an energ\Eq« that no longer depends upon jusbut also upotk. However, since? is
very small compared to unity, the various spedteains that correspond to the same
value ofn will be very close to each other, and one willdad get the fine structure of
the lines that was predicted by Bohr’s theory.

It is obvious that the Bohr spectral term thatresponds to a given value ofwill
decompose here intoterms that are close to each other, since onehanién values (1,

2, ..., n) for k for a fixedn. It is appropriate to remark that the range &f tlosely-

(38)
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spaced terms will become smaller msncreases, due to the presencengfin the
denominator of the term .

Consider the Balmer series. In the first approximatiba line frequencies are given
by the formula:

1 1
V=R|—=—-——|, n=3,4, ... 12
[22 n} (12)

In the second approximation, from Sommerfeld, onest replace the spectral term

2
BZ with BZ 1+a_2 2.3 and similarly, the spectral termB2 with
2 2 2°\k 4 n

2
n_FE{H%(_E_ZH . There is then one fine structure with constaidthvin the Balmer
series that is provided by the doubling< 1, 2) of the first fixed spectral term and
another fine structure with a width that decreaslksn one goes up in the series that is
due to the complexity in the second variable spétérm. That second fine structure is
practically unobservable, because it is too findhe first one corresponds to a
decomposition of each of the lines that were ptedidy the Balmer formula into a
doublet with constant width for the entire seres] is equal to:

_R|,,0a(2_3)|_R|,,a(2_3)|_Ra
AV”_?{H?(E 4)} 2{“ 2’3(2 4]} 16 (43)

2
The numerical calculation oflj%gives 0.365 cht upon replacing frequencies with

wave numbers. That value is in very good agreemattit the experimental number.
One then obtains an interpretation for the exisgtesicdoublets in the Balmer series by
completing Bohr’s theory with the introduction efativity.

If one recalls Sommerfeld’s calculation by suppgstihat one is no longer dealing
with the hydrogen atom, but with an atom of atomienberN that has been ionized —
1 times then one will recover the energy of théiatary state that is characterized by the

numbera andk:
RN?h a’N(n 3
Bk = - 2 {14— 2 (_ __j} . (44)

n n k 4

The relativistic correction in the bracket wilketih be multiplied byN?, and the width
of the doublets, bi{*. For ionized heliumN = 2), the width of the doublets in the series
that corresponds to the Balmer series must theh6bemes larger than in the Balmer
series itself. One then imagines that the studp@foublets in the spectrum of Hmn
serve to verify Sommerfeld’s theory; Paschen’s fisation of that fact was quite
satisfactory.

Sommerfeld’s theory of fine structure then gaveyygood results for H and He It
could then be successfully extended to an inteapoet of an important class of doublets
in the X-ray spectrum. However, one then percethas for X-rays, and even for the
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simple hydrogen spectrum, the application of formula (i) meet up with a grave
difficulty. We shall explain that in detail in Chaptéc




CHAPTER I

SUMMARY OF NOTIONS ABOUT THE OPTICAL
SPECTRA OF DOUBLETS AND THEIR
INTERPRETATION

1. Rydberg formula and line series

For some time now, the success of the Balmer fanamd some formulas of the
same type for hydrogen has led spectroscopists to sdbewxhiewould be possible to
find analogous formulas for elements other than hydrog&mce the combination
principle is valid for all optical lines, that would amrmtuo finding an expression for the
spectral terms of a general element that would gemerétiie expressioR / n’ that is
valid for hydrogen.

Rydberg showed that, in the first approximation, thetspbterms of an element can
be written in the form:

R

(n+A)*’ @

in whichR is the same constant as for hydrogen. In theessmn (1), the numberis a
positive whole number, anfil is a non-whole number that is capable of takingess
different values for each element. The Rydbergntda does not represent the spectral
terms very exactly: Ritz proposed a more exactesgon in which the whole number
and the quantityA appeared in the same way. Without going into rii@e exact
expression for the spectral terms as functions ahdA here, we shall assume that each
spectral term can be expressed with the aid ofthes quantities, and it can, in turn, be
represented by the notation, ). For a given value af, A is, in general, capable of
taking on several different values; the sameill then correspond to several spectral
terms. Spectroscopists have made it a habit obtdenthe possible values &f by a
sequence of letters; p, d, f, g, h, ..., and upon constructing a table of spectral $elone
will see that such a table has the following appeee to it:

@€, 2,9 3,9 4,9 (5,9 ...
2p GBp “4p 6P ...

(3,d) 4,d) (5,d) ...... (2
4, G, ...
5,9 ......

Therefore, fom = 1, A will have just the valus. Forn = 2,A can have the values
orp. Forn= 3,A can have the valuesp, d, etc. More generally, whamincreases by a
unit, the number of possible valuesXtovill also increase by unit.

As for hydrogen, the frequencies of the lineshef same spectral series are always
obtained by taking the difference between the @msterm that is characteristic of the
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series and a variable term. Here are the frequenciéisedfour series that have been
recovered in all spectra and are particularly famibaspectroscopists:

Principal series Vn=(1,9-Mp n=2,3, ... ......

Diffuse series, or v,=(2,9—-(,d) n=3,4, ... ......
1% second. series

Narrow series, or  va=(2,p)— (", s n=3,4, ... ...... 3)
2" second. series

Bergmann series, orv, = (3,d) — (n,f) n=4,5,... ......
fundamental series

Since the spectral terms always diminish in valuenwhicreases, one will see that
as one goes up in a spectral series, one will find lviesse frequencies approach the
constant spectral term that characterizes the seaes and more closely. That spectral
term can then be called thmit of the series.

One should note a peculiarity of the formulas for gbges (2) that one recovers for
all of the series that are obtained under the usualittomns: If one ranks the possible
values forA in the ordes, p, d, f, g, etc., then the values Afthat enter into a formula of
the series will always have values that are immedtjiatlose. If one denotes the values
of Aby1, 2,3, ..., instead &f p, d, ..., then one can say th&then one passes from one
term to the other in a formula for a seridswill vary by one unit, more or lessl'hat is
what one calls aelection rule which shows that, at least under the usual conditdns
emission, a great number of combinations of the spgeetras will not correspond to any
actual observable lines.

2. The doublet spectra of alkali metals— The table of spectral terms (2) is only a
rough first approximation; unfortunately, reality is hardhat simple. In particular,
progress in spectroscopy has shown that the linesverat considered to be simple in the
preceding Rydberg-Ritz model are, in reality, composedgrbap of neighboring lines
that constitute doublets or triplets, or multiplet®rengenerally. Since we cannot carry
out a complete presentation of that truly complicapeelstion, we shall confine ourselves
to an examination of the spectra of the alkali elememtshich the lines form doublets.

The study of the alkali metal spectra has shown thathfise elements, most of the
spectral terms in the Rydberg-Ritz model are doubled. M@@gely, the valus of the
quantity A will always remain unique, but the valupsd, f, g, ... will all be double:
There are two very close valugsandp, , two very close valued; andd,, etc. There is
then good reason to replace table (2) with the followerdue:

1,9 2,9 3,9 4,9 (5,9 ...
2,p) B,p) @&,p) G.p) ......
(2,p2) B.p2) (4p2) 5.pd) ...
(3,dh) (4,d) (5,d) ......

(3,d2) (4,d) (5,d) ...... (4)
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4,f) (5,f1) ...
4,f) (5,f2)) ......

The usual optical series are obtained by combining sgdetms in whichA takes
two neighboring values from the listp, d, f, g, ... That is the selection rule that was
pointed out before. However, we shall find another ®rpphtary one here. For
example, consider a diffuse series of formulas:

v=(2,p) - (n, d), %)

and envision the lines of that series for which 3. A priori, that group of lines can be
composed of the following four lines:

(2, p) — (3,0); (2, p) - (3,0); (2, p2) — (3,0h); (2,p2) — (3,c).  (6)

Now, experiments prove that the second of those isnesver manifested under the
usual conditions. That is a manifestation of a neectien rule whose precise statement
we shall give after we have introduced the notion of gquamtumbers into definition of
the spectral terms in Table (4).

3. Interpretation of the Rydberg-Ritz model by Bohr's theory.— Bohr’s theory
gave excellent results for hydrogen and ionized heliunit, was quite natural to see to
extend it to more complex atoms, and naturally, thengmy goal to be reached in that
attempt must be the interpretation of Table (2) oRldberg-Ritz spectral series.

One will encounter some grave difficulties when omeks to extend Bohr’s theory to
atoms that contain more than one planetary electibme dynamical problem becomes
complicated, and the application of the quantum rule®ipes uncertain. Meanwhile,
the general analogy between the spectra of all theeslsnand the intervention of the
Rydberg constar® in all of them leads one to think that the planetaogdet that is so
useful for the hydrogen atom must be utilized to at laastrtain degree for all of the
other elements. In order to do that, we begin by asguenvery crude hypothesis: In an
atom of atomic numbeX, considemMN — 1 of the planetary electrons to be orbiting in the
vicinity of the nucleus, so they form an “electronice’ around it, while theN™
planetary electron, which is called the “optical alect” will have its orbit outside the
shell. The transitions of the optical electron frone mtationary state to another will
determine the optical spectrum of the element. Thamkset hypothesis of the electronic
shell, one can assume approximately that the actitmeafucleus of chargeNe and the
shell of charge —-N — 1) e on the optical electron is equivalent, by compensato the
action of a central chargeet One is then reduced to the problem of the hydrogen atom
with just one quantum number. In the second approximatnah Sommerfeld, one
seeks to account for the fact that the charge of nudedsthat of the shell do not
compensate for each other to give precisely one unit. trajextory of the electron will
no longer be closed, so one must introduce a second quaatuberk, and one can then
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account for the transition from terms that have thérr form to terms of the fornm,(
A). Sommerfeld calculated (quite roughly, to be sure) ¢éhmg , A) that one will
obtain in that fashion and recovered the formulas afliRyg and Ritz. The theoretical
attempt by Sommerfeld, and some other, more complicatexs that one finds in the old
books on quantum theory)( have led one to make the various valuea ¢, p, d, ...)
correspond with Sommerfeld’s azimuthal quantum numb#rerollowing fashion:

k= 12 3 4 5
A= s pdf g h ... (7)

That will permit us to write any spectral term Q) in the form (, k): For example,
the term (2p) is written (2, 2).

Since the azimuthal numbkrs always less than or equal to the total nunmydaut
cannot take the value zero, one can explain whyferl, the quantityA can have only
the values, for n = 2, it can have only the valueandp, etc. The peculiarities of Table
(2) are then found to have been explained completdiyreover, by an argument that is
based upon Bohr’'s correspondence principle, the old quariteonyt showed that the
only transitions that must take place effectivelythieeones for whiclek =+ 1. That is,
in fact, the selection rule that we pointed out fobl&g?2), since, from (7), a variation of
k by plus or minus one unit would correspond to a displacemkone unit in the

sequence of possible valuesfof

4. Doublet spectra and the quantum numbeyj. — By introducing the two quantum
numbers andk, the theories of Bohr and Sommerfeld then arrivezhahterpretation of
the spectral terms (2) in the Rydberg-Ritz model. H@mnewe saw that this table is
insufficient because the spectral terms that appeararei multiplets, in reality. It is
natural to think that in order to characterize eachhef multiple spectral terms that
correspond to the same term in Table (2), one must inteodubird quantum number.
That is what had been done since the time of old quatttaary by introducing a third
number j in an entirely empirical manner, in addition to themfers n and k.
Sommerfeld then gave the namerdérnal quantum numbepo that new concept, which
is a name that is no longer very well justified today.

Without going into how the introduction of the quantoomberj has permitted one
to classify the complex optical multiplets here, \malkconfine ourselves to studying the
alkali doublets from that viewpoint. As we have seechespectral termn( A) in that
case will be double, in general. From the ideas that weesented in the last paragraph,
that amounts to saying that the same value of the nukbél correspond to two
neighboring values fak, instead of a single one. Those two neighboring valfiasthat
correspond to definite values mfandk must be characterized by different values of the
quantum numbg. One will then be led to attribute the two valueg of
=1+

j=k—1+

N
N

(8)

() In particular, see Léon BRILLOUIN:'atome de BohrParis, Presses universitaires (1931), ch. XII.
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to the two neighboring spectral terms, if one introdibesotation:
k -1-=I, 9)

whose usefulness we shall see later on. Furthermaeassumes that the number
cannot take on negative values, in such a way th&t#ot, one will have only the valge

= 1. One will then find the explanation for the uniquenefsthes terms in the table (4).

Formula (8) leads immediately to the following table tlee correspondence between the
guantum numberis andj and the values d:

k 1 2 3 4 5
| 0 1 2 3 4
o R R — (10)
J i 1 3 3 5 5 1 1 9

2 2 2 2 2 2 2 2 2
A S pp i fifo o1 ...

One can therefore represent each spectral termhbte T4) by the symboln( k, j),
and one will get the following table in place of (4):

(1,1,%) (2,1,%) 3,1,%) 413 5,11 ...
(2,2,4) (3,2,%) (4,23%) (5,2,1) ......
(2,2,3) (3,2,3) 4,23 (5,2,2) ......
(3,3,2) (4,33 (5,3,2) ...
(3,3,2) (4,3,2) (53,3) ....... (11)
4,4,3) (5,4,2) .......
4,4,2) 5,4,1) .......

We have remarked that for the spectral terms of #adi ahetals, there exists another
selection rule of the same type as the one thaalid for Table (2) (i.e.&k =+ 1), in
addition to that rule, since, for example, the secondheffour lines (6) cannot be
produced under the usual conditions. That new rule is esguesith the aid of the
numberj by the formuladj = {- 1, 0 + 1}. We then have, in total, the following two
rules:

+1
+1 .
&:{_f 5j=1 0. (12)
-1

We shall now verify those rules on the four linep 23d) that were given in (6).
With the present notations, they are written:
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(2,2,3)-3.33) (2.23)-3.33),

(13)
2,2,3)—(3,3,3), (2,2,1)—(3,3,3).

One hask = + 1 for all four of them, but one of them — namé®;,2, 1) — (3, 3,2)

— will not satisfy the second rule in (12). In fatdoes not exist experimentally, either.

In the old quantum theory, the meaning of the numivemained unknown, and the
attempts to interpret it proved to be insufficient.e Thlenbeck-Goudsmit hypothesis of
the spinning magnetic electron has revealed its truefisgmnie, and we shall see that
emerge quite naturally in Dirac’s theory.




CHAPTER THREE

X-RAY SPECTRA AND
THE THEORIES OF BOHR AND SOMMERFELD

1. Moseley’s law and Bohr’s theory

For the most part, the X-ray spectra present thee sgemeral character as optical
spectra. The principle of combination is applicable tonthéOne encounters series that
correspond to the combination of a fixed spectral terth avivariable spectral term. One
recovers selection rules for them.

In the first approximation, one can represent the yX-spectral terms by the
expression:

RN?

n? '

n=1,2, ... (1)

in whichR is the Rydberg constant, aNds the atomic number of the simple body that is
the emitter. That idMoseley’s law. The presence of the consté&here indicates the
close kinship between Réntgen spectra and optical spectra

In reality, the form (1) of the spectral terms isyoalrough first approximation, and
the true X-ray spectral terms will present the samee#egf complexity as the optical
spectral terms do for the alkali metals. The doubleis dhe encounters here initially
seemed to be explained by Sommerfeld’s fine-structurerythdmt a more careful
examination will show that his theory is insufficieahd that things are ultimately put
into order only by the theory of the magnetic electrand in the Dirac form, in
particular.

In the old, simplistic ideas of Bohr’s theory, thaigsion of X-rays was linked to a
reorganization in the electron shell. As we saw inlaisé chapter, Bohr considered the
emission of light lines to be due to transitions frthra outermost electron of one stable
orbit to another, while the set of innermost electramsnéd a sort of shell by the
interlacing of its orbits. The emission of X-rays Wwbuhen correspond to the
modification that the internal system would be suigi@¢o upon passing from one stable
state to another. Naturally, the exact calculatiothose stable states would be quite
complicated, even in the old quantum theory.

One will be led to an approximate calculation (whicuge crude, moreover) in the
following way: One assumes that the electronic orbitshe shell are individually
characterized by one or more quantum numbers, which,certain sense, amounts to
neglecting the interaction of the electrons andswaring them separately. One then
says that the electrons that possess equal or alewpstl energies form a “band”
(couchg. Moreover, a band can be comprised of orbits dfediht types that are
characterized by different sets of quantum numbergheuenergies of those orbits must
be very close.

The calculations that were made for hydrogen showed ushiaarbits of the same
band must be characterized by the same total quantum numbExperiments have
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revealed the existence of bands in atoms that one basmbeaccustomed to denoting by
the consecutive letters of the alphakiet, M, etc. One accounts for that by settimg 1
for theK band,n = 2 for thelL band, etc.

The orbits of the&k band have the smallest energy. From a well-knownrciple, it
would then seem that the normal state of all elestnoithe electron must be found in the
K band. The study of X-ray spectra and the periodicityhefchemical properties in
Mendele’ev’s table prove that this is certainly not tride must assume a sort of “band
saturation”; i.e., assume that there exists a maximumber of electrons in each band.
A critical examination of the facts that experimegntsvide on that subject permits us to
state the following rule:

The maximum number of electrons that can belong to the band that is defiotal by
quantum number n is equal 20%.

Later on, we shall see how one can refine theibligion of electrons amongst the
energy levels that belong to the same band.

We shall recall how Bohr and Kossel represented thissem of X-rays. An
external agent (e.g., material particle or radiatidwa} &arrives at an atom in the normal
state can strip off one of the electrons in thelsdred project it outwards. The atom will
then be in an abnormal state; it will have sufferetleep ionization.” Let\, be the
minimum normal energy of the atom then, andNebe its energy after deep ionization.

The differenceW; — W was provided by the ionizing agent: We see that it
corresponds (up to the factor k)/to the limiting frequency of a spectral series of Xstay
The atom then presents a free place in its shed, re@rganization of it can be produced
spontaneously, since an electron can abandon thetpktci occupied to begin with and
occupy the free place. Naturally, that transformatan be accomplished only if it
corresponds to a diminution of the total energy of tbenaand must be accompanied by
radiation that belongs to the X-ray domain.

Briefly: The origin of X-rays in this conception of tia¢om will be the transition of
an electron from a certain band to another one of de®sgy in which a previous
ionization has created an empty place.

After the reorganization of its shell, the atom Wwél found in a state of ionization that
is less deep and will possess an en&vgyhat is betweekipb andW; .

Imagine that second ionized state and remember thabfalhe electrons are
considered to be similar: That new state will be idetio the one that the external agent
would create if, instead of expelling the first electibexpelled the second one, which is
the one that was displaced during the reorganizatiomcéjehe energy\, — Wop will
represent the work that corresponds to the less-deemimm. Bohr’s rule then leads
one to attribute the frequency:

v= %(wl _W) = % (W — W) — (Wa —Wo)] 0

to the X-radiation that is emitted during the reorganiratio
We construct the list of energi&¥;, ... of the atom in its various states of deep
ionization by subtracting the enerilyy from the normal state: We will then obtain what
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we can call the energy levels of the atom when we stith the normal state. Upon
dividing by h, we will get the X-ray spectral terms:

WoW W W, -V -
7 . .

The X-ray spectral terms are then equal to the itinizawvork divided byh. The
frequencies of the X-ray lines will then have the form

V{W:N_m—w] @

h h

The lines in the same series correspond to the ¥&mee., to the same level that the
electron reaches at the time of the reorganizatiohe Jecond term in (4) differs for
different lines of the same series and tends to fmardines of higher order: It is the
frequency of the line when the order in the serigsiged to a limit that is equal to the
spectral term\{; — Wb) / h that characterized the series.

Moseley’s law teaches us that in the sequence ofeslesneach of the spectral terms
(3) will vary in the first (and very crude) approximation likee square of an atomic
number. In order to recover that law in Bohr's thearg,assume that an electron of the
shell can be regarded as being subject to a central ffigldst equal toN — 2) e/ r? in
which the termze/ r? crudely represents the repulsive action of the eledinah are
closer to the nucleus. We get the following generahffar the spectral terms:

N'2
R (5)

z is small for the deep bands of heavy atoms, and amnene&eN coincide withN".
One then recovers the form (1) for Moseley’s lawis [uite obvious that the calculation
is hardly rigorous: However, Bohr’s theory indicatiest it does prove Moseley’s law.

2. Summary analysis of X-ray spectra.— The first fact that struck the
spectroscopists in the Rontgen domain was the following>nay lines are very neatly
divided into disjoint groups by the scale of frequencies ovewlangths. One first
considers each of those groups of lines to be composedtaine series, and one then
distinguishes those series by consecutive letterseddiffhabet, starting with the lett€r
e.g., K series,L series,M series, etc. The series will collectively disgladowards the
high frequencies when one passes from one elementdavéehone, and roughly as the
square of the atomic number (Moseley). A more caetamination will then show that,
in reality, the groups of lines that are first called theseries,M series, etc., will,
however, decompose into sub-groups that form true sethese lines intermingle on
spectrograms. There will then exist sevdrdévels, severaM levels, etc., of slightly
differing energies. ThK level is the only one that is unique.
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Experiment has indicated that there exidt [@vels, 5M levels, and N levels. Of
course, each of those levels corresponds to a speatral tOne distinguishes the levels
from their associated spectral terms by Roman numendisre the lowest numerals
correspond to the deepest levels; i.e., to the higheigiaikon work.

By way of example, here is the table of X-ray linétheK, L, M series for the heavy
elements:

K series L series M series

Terms K LI LII LIII I\/II I\/III I\/IIII I\/IIV MV
L .
Ly lo s

L||| m
My 5

M A s
My B a,
My m

N 7 Vi

N W ¥
Niv W B, £
Ny B y )

Nvi B m
NV||

O Vi1 ,81

Oui o
Ow W ¥

oy B S I
P A A,
Pu

P||| J2:]

It is easy to interpret this table. The name of d@ehis inscribed at the intersection
of a row and a column. Its frequency is the diffeechetween the spectral term that is
located at the head of the column and the spectralttexims located in the first column
of the row. The lines of the same series are thend to be placed in the same column.

The uniqueK series is composed of a sequence of doultets:az, 51 — 5, Vi — )4,

. whose interval will get narrower. All of those doublevill dilate when the atomic
number increases, and their frequency bandwidth will iser@ath the fourth power of
the atomic number; one calls that kind of doublet a ‘l@gdoublet” or a “Sommerfeld
doublet.” Thel, series has a structure that is analogous to théiedt series; it is also
composed of regular doublets whose width will diminishmvbee goes up in the series.

On the contrary, thé, and L, series present a very different aspect from the
preceding ones. The homologous lines of those twoss@vigich appear in the same row
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in the table) form doublets with constant width from end of the seriesi— |, £ — a»,
-0, i =0, in— [, ¥, =) tothe other. That constant width is equakip— vim

and varies with\N? in the series of elements. Those doublets are omze fregular
doublets.

One can summarize the laws of X-ray lines in genasdlibn by saying that: The X-
ray spectral terms vary in magnitude whkf (viz., Moseley’s law). The difference
between the two consecutive spectral terms with éineesnamel(, M, ...), the first of
which is an even index (for exampigy — vui) varies withN* and gives rise to regular
doublets.

We further complete this discussion with the follogviremark: The difference
between two spectral terms with the same name, ttedfi which is an odd index (for

example, vy, — vui), will vary in the sequence of elements in such a fasttiat 4/ v,

-4/ Vv, Will remain constant, and will define what one calts“irregular doublet.”

3. Classification of X-ray spectral terms.— The Bohr-Kossel model leads one to
assume that the emission of an X-ray spectral ssreesonsequence of a deep ionization
of an atom. If that ionization makes the energyhef atom pass from its normal value
W to the valueh, then the characteristic spectral term of the sevikdbe Wo —W,) / h.
Assume that each electronic orbit can quantized separafe can then presume that
quantization will introduce three quantum number§ k, as it does for optical spectra.
The deep ionization to which the eneMf corresponds can then be represented by the
symbol f, j, k), which is composed of the three quantum numbers thateddfe orbit
that is traversed by the expelled electron before itiniza It then results from this that
we must make each X-ray spectral term correspond to otiee sfymbolst, j, k) that
were encountered before in optical spectra. Now the sttithe X-ray series shows that
they have entirely the same structure as the alkahlmpectra, in such a way that there
exists a one-to-one correspondence between the Xpagtral terms and the alkali
spectral terms [Table (Il) in the preceding chapter]reHgthat correspondence:

1,1,%1)=K
1s

(2, 1,1):L| (3, 1,1):M| (4, 1,1):N| (5, 1,1):O| (6, 1,1):P|
2s 3s 4s 5s 6s

(2, 2,%) = L|| (3, 2,%) = M|| (4, 2,%) = N|| (5, 2,%) = O|| (6, 2,%) = P||
2m 3P 4P Sp1 6p1

(2,2,3)=Ln B,2,%)=Mu (4,2,3)=Ny (5,2,2)=0u (6,2,2)=Py (6)
2p; 3p2 4p, Sp2 6p2

(3, 3,%) =My (4, 3,§) =Nv (5, 3,%) =0y
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3d1 4d1 5d1
(3, 3,§):MV (4, 3,§):NV (5, 3,§):OV
3d; 4d, 5d,

(4, 3, §) = NV|
4f,

(4, 3, %) = N
4f,

One must note that the construction of@andP bands is not achieved in this table,
even for heavy atoms, for lack of electrons.

Guided by the optical analogy, we now see thakilseries has the spectral formula
(1,9 — (n, p): It is then a primary principal series that is cosgmb like that of the alkali
doublets that get narrower. Theseries is a “secondary principal series” whose formula
is (2,9 — (0, p) and whose structure is analogous. The analogues fér éinelL, series
are then found to be interpreted.

From our present viewpoint, thg andL;, series decompose into two sets of lines.
The first set is composed of the regular doublets wdhstant width and simple
componentsy — |, y5— s, i1 — B, Vo~ B;, and is the analogue of the narrow serie)2,

— (n, 5) of the alkali metals. The second set of lines foemdiffuse series with the
formula (2,p) — (n, d) and refers to the most intense lines of the grloupThey form
doublets with constant width, but they present a fine strecthat is due to the
complexity of thed terms. One can, moreover, verify the selectionsrdle= £ 1, g =
{0, £ 1} in the table of X-ray lines that was given abovuestjas one does for optical
spectra. The classification of X-ray lines by analegsh the doublet spectra of alkali
metals, which is a classification that extends toMhandN series, provides a perfectly
clear and coherent schema, and seems to impose thbutiish of quantum numbers
amongst the levels that was given by Table (6).

4. Theoretical interpretation. Sommerfeld’s fine-structire formula. — We shall
now see how one can seek to account for the allutleeoX-ray spectral terms in the old
guantum theory. The oldest and most simplistic imagsists of regarding the atom of
atomic numberN as containingN planetary electrons that revolve around coplanar,
concentric, circular orbits (e.g., th€ circle, theL circle, etc.) In order to roughly
account for the mutual action of the electrons, one sgspthat it can be translated into
the simple effect of a screen that has an apparemhigdhing of the nuclear charge as a
consequence. HenceKaelectron will be subject to a forch K €/ r%, anL electron,
to a force l — ) €/ r?, etc., in whichk, |, ... are called the “screening numbers.” The
calculations that are valid for the hydrogen atom cam the applied here with no
difficulty, and one will find the spectral terms:

~-Rh(N- K? ~Rh( N- I)?

7 7 o @)
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i.e., roughly Moseley’s law. This initial approximatedhgis obviously insufficient for
many reasons, and in particular, because it predictsomely level, oneM level, etc.

In order to explain the multiplicity of levels by bandSommerfeld once more
introduced relativistic dynamics here, while consideringfthe orbits to be circular or
elliptic. We have seen that, by using that process, urfthe spectral terms:

= RN? azNz(n 3)
k= — 1+ —-= 8
h n? { n” (k 4 (®)

for an atom of raniN that had been ionize®ll~ 1) times, in whiclwr is the fine-structure
constant, andt is the azimuthal quantum number, such thatk&«. If one assumes that
one can roughly represent the mutual repulsion of theretecby a screening number
then theX-ray spectral term that is characterized by the quantum ngmizerdk will be

given by:
_ 2 _ 2
E.x - _ R(N . Zu) {14_ o’ (N zzk) (_n_EH, 9)
h n n k 4

in which z, is the screening number that relates to the trajethatyis characterized by
andk. Sincek can taken distinct values for a given value offormula (9) will predict 1
K-level, 2L-levels, 3M-levels, 4N-levels, etc., which is still insufficient, as we saw
the preceding paragraph. Sommerfeld’s theory, which ig momplete than the original
theory, is once more too restrictive then, since ésdieot introduce the quantum number
j-

Nevertheless, despite its obvious inadequacy, Sommexfileory seemed to score a
great victory by its quantitative explanation for regular detshl For example, take a
regular doublet of thé series. It is provided by combining & N, etc. term with the
termsL, andL,, respectively.

The two lines of the doublet then have frequenciek@fdrmv,, —vi andvyy — Vv .
Their frequency differencév. (or width of the doublet) is; — viy . In his theory,
Sommerfeld passed over the level as temporarily inexplicable, and attributed the
quantum numbera = 2,k = 1 andn = 2,k = 2 to theL, andLy, levels, respectively.
Formula (9) then gives)

M =V —vii =R & %(é‘%} = ZZThf (N-2z)* (10)

The width of theL doublets must then vary lik&lz)* and that is quite reasonably
the experimental law, becaugemust be small in comparison kbfor atoms that are not
too light. If one setdl = 1,z = 0 then one will revert to the widfkvy of the doublets in
the Balmer series [formula (43) of Chapter I]. Qwvikk then have:

on = oy (N = zD)*. (11)

() Upon lettingz,;, andz, coincide and setting both of them equat.to
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Formula (11) is verified numerically quite well in exipeents, on the condition that
one must set, = 3.5, which is a reasonable hypothesis. The doublets séthesM and
N are also predicted quite well an application of foar(9l). That exact prediction of the
regular doublets initially seemed to be a great succe&owimerfeld’s fine-structure
theory, but a grave objection then appeared, which wershaldiscuss.

5. Inadequacy of Sommerfeld’s fine-structure theory— By introducing only the
two quantum numbens andk, Sommerfeld’s theory did not give enough levels fa th
X-ray spectrum. We must then introduce the third numpand the optical analogy
constrains us to distribute the quantum numbers amongkvils in the manner that is
indicated by Table (6). From Table (6), theandL,, levels have, in effect, the symbols
(2, 2,%) and (2, 2,3); they will then have the same number Kqviz., 2) and differ by

their numbeyj. However, that would ruin the interpretation of thgular L doublets by
formula (9), as Sommerfeld had done, because that forreslares that thie numbers
for Ly and Ly, differ by unit. One might then believe (which wouldcalke quite
surprising) that the success of Sommerfeld’s theory waely fortuitous. The
development of the more recent theories, and in pdaticthe ones that constitute the
focus of this book, has since then shown that thisiifous character was only apparent.
It is, in fact, the introduction of relativity that petsiione to correctly interpret the
regular doublets, but on the condition that one musthetsame time, introduce the
magnetic character of the electron, and it is theeabe of the latter element from
Sommerfeld’s theory that is the source of its weaknes

We just saw that a careful examination of the Xgpgctra will show the inadequacy
of Sommerfeld’s fine-structure theory. However, eurethe simple case of hydrogen, a
deeper examination of the doublets in the Balmer seagsiown that those doublets are
not interpreted correctly by that theory. Consider Hy line of the Balmer series: It
comes from the transition from a stationary statenthichn = 3 to a stationary state for
whichn = 2. In reality, that line is multiple, and if walize a mode of representation of
the levels that is well-known today then Sommerteltieory will give us the following
model for the fine structure of that line:

k=3
n=3< k=2
k=1
2 3
1
k=2
n=2
k=1

Figure 2.
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Upon applying the selection rulkk = 1, one will predict the three lines that are
indicated in the fine structure of,H The Sommerfeld doublet is composed of the line 1

and the set of two lines 2 and 3 with closely-spaceduéacies that are generally
indiscernible.

Using the model with three quantum numherk, j, one predicts the following fine-

structure:
k=3 { 1:25/2
] =3/2
] =3/2
]=1/2
k=1 ]=1/2

n=3< k=2 {

k=2 1_23/2
n=2 j=1/2

k=1 j=1/2

Figure 3.

The selection rulegk =+ 1 anddj = 0, + 1 allow for the seven lines that are
indicated in the figure above. However, for reastivat will become clearer later dor
hydrogen,one must consider levels that have the spar@ differentk as coinciding in
the new theories of the magnetic electron. Onéthd@n have the following simplified
model:

k=3, j=5/2
k = i=
n=3 3, j 3/2
k=2, j=3/2
k=2, j=1/2
k=1 j=1/2
k=2, j=3/2
n=2{k=2 j=1/2
=1, j=1/2

Figure 4.
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We must then have five components to the fine structuirg, whereas Sommerfeld
predicted only three. Now, the organized study of thre §tructure has allowed us to
assert that it involves more than three lines, whielm tonfirms the new model, and not
the Sommerfeld model. The study of the doublets dftée allowed us to confirm that
conclusion.

Therefore, even for hydrogen and ionized helium, Sonalaesftheory fails, in the
final analysis, at least in its original form.

6. Distribution of electrons amongst the levels. Stonerisile. — As we have said,
for a heavy atom, the various electrons distribute sladves into a certain number of
bandsK, L, etc. Those bands decompose into sub-bands or lbeesise, thé band will
consist of the levelk,, Ly, Ly .

We have seen that no band can possess more thamaia oember of electrons; we
spoke of a saturation of the bands. It is quite natorahink that there might exist a
saturation of the bands. While being aided by the chemrogderties of the elements
and the character of their optical and Roéntgen speetnagus authors (Bohr, Main
Smith, Dauvillier and L. de Broglie, etc.) arrivedthé study of the distribution of the
electrons amongst the levels for the various eleme@tse will then have to know what
the maximum number of electrons that each level casgss would be. On that subject,
Stoner stated a rule that has been generally adoptedibyrhe level that corresponds to
the symbo(n, k, j) contains a maximum @& + 1 electrons.

Stoner’s rule permits one to calculate the maximwmlver of electrons that belong
to the band that is defined by a given value of the totaltgopanumbemn.

Indeed, sincg can take the valuds— 1+ 3 for a given value o, the levels:

(nkk-21) and @, kk-2)
will possess a maximum of:
2(k-4)+1+2(k-3)+1=2 (k- 1)

electrons, resp., and the electrons of the lpand| possess a maximum of:

2§n: (k-1)=2[n(n+1)—n]=2n°. (12)

k=1

That is precisely the law that was pointed ouganagraph 1.




CHAPTER IV

THE MAGNETIC ANOMALIES AND
THE SPINNING ELECTRON HYPOTHESIS

1. The gyromagnetic anomalies

Some simple electromagnetic considerations permit@establish a general relation
between the magnetic moment that is produced by the displacement of charge under

the action of a central force and the constant amgubmentunM that corresponds to
the moment.

Consider a closed, planar trajectory that is
traversed by a corpuscle of mass and
electric charge under the action of eentral
force (). From the areal theorem, the
angular momentumM = nmgvr sin a is

constant. IfdA is the area that is swept ouf MM =v dt

by the radius vector during the tinok then area MOM’= 3r [ dtsina
one will have:

Figure 5

dA=3r D/dtsina:iM dat. (1)
2m,

SinceM is a constant, from the areal theorem, one willl fupon integrating over a
periodT of the motion that:

= ﬂ T’ (2)

2m,

whereA is the total area that is bounded by the trajgctor

On the other hand, the motion of the chaggis equivalent to the existence of a
currenti. That current is, by definition, equal to the ity of electricity that traverses a
unit area normal to the trajectory every seconthceSa charge passes through it during
the T, one will have:

€
'—?, 3

() We shall denote the mass of the corpusclenfynstead ofm, in order to avoid confusing that mass
with the quantum numben later and in order to prepare us for the passage tovigtia equations.
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upon assuming thatis expressed in electromagnetic units. One infers {@nand (3)
that:

. Mg
= , 4
= (@)

From the magnetic viewpoint, that current is eglaat to a leafféuillet) of strength
and aread. The magnetic momefX of that leaf will be:

m=ia=M (5)
2m,

That relation is valid in magnitude and directionthe vector$t andM. Hence:

m £
— : (6)
M 2m,
One can prove in a more general fashion that & oansiders an ensemble of
corpuscles of the same mamgsand the same chargehat form a system in a stationary
state then the relation (6) will also be valid betw the total magnetic moment of the

motion of these charges and the constant totallangwmentunM of the system}.

From Bohr’s theory, atoms are ensembles of elastio stationary motion. One can
thus apply relation (6) to atoms, with the condititbat one must set=- e/ c, wheree
is the unit positive charge that is commonly expedsin electrostatic units. One will
thus have the formul&)

m___ e (mo = mass of the electron) (7)
M 2m,c

That fundamental formula leads to the idea of “Batagneton.” Indeed, the old
guanta theory always set the total moment of trentity of motion for an atom equal to

an integer multiple of / 27z so:

M =n LD € - n eh (n = positive or negative integer).  (8)

2m 2m,c 4rm,c

The magnetic moment of the atom will thus alwagsb integer multiple of a certain
unit that is called “the Bohr magneton,” and is &do:

() The proof is due to Einstein. See the report of DEABAN Atomes et ElectronfRapports du
Conseil de Physique Solvay de 19&authier-Villars ed., Paris, 1923)

() This formula is truevith its sign, under the following conditions: One takessiesy ofdirect axes
and one defines the moments in such a way that théemmgamentum of a corpuscle that spins around the
z-axis in the direct sense (inverse to the hands ack)cls directed in the positive sensepaf
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B=_°" (9)
4rmm,c

The well-known Stern-Gerlach experiment exhibitieel actual existence of the Bohr
magneton.

Meanwhile, the relation (7) is not verified in angral and complete fashion. One
must discover whether upon subjecting a magneti¢cdoa magnetic field that bar will be
put into rotation: Indeed, the theory suggeststiiatar must take on a rotational motion
such that ratio of its magnetic moment to its aagahomentum is given by the relation
(7). The phenomenon does, in fact, exist (thetEinand de Haas experiment), but the
ratio Mt / M) was found to be equal ®/ my ¢, instead ok / 2my ¢! Barnett found the
same abnormal ratio by studying the inverse phenomeglviz., the creation of a
magnetic moment by the rotation of a bar). Theas & grave difficulty in it that led to
the idea of a proper magnetism of an electron,eawill confirm.

2. The normal Zeeman effect— Another difficulty that suggests the magnetic
electron hypothesis is the existence of anomatiéba Zeeman effect.

First, recall briefly the classical theory of thermal Zeeman effect that was once
given by Lorentz. Consider the motion of a corpristf massmy and charges in a
uniform, magnetic fieldd. The corpuscle is subjected to a force that etgual

= £ v (10).
C

Sir J. Larmor proved a very interesting and celedat theorem on the motion that
then results:

If one considers a reference system that rotatesirad the direction of a uniform,
magnetic field with the constant angular velocity:

—1& (cine.s. u.) (11)

then the motion of the corpuscle in that referesystem will be the one that one would
have in a fixed reference system in the abseneenmdgnetic field when the other forces
remain the same.

We apply that to an intra-atomic electron thaangmated with a periodic motion of
frequencyv. If one creates a uniform, magnetic field thee #ame motion can be
executed by the electron in the reference systamrtitates with the Larmor precession
velocity (11). The frequencoy / 277that corresponds to that precession will be added
subtracted from the frequency of motion of the tetet according to the relative
orientation of the magnetic field and the orbitwill then result that a material that emits
radiation of frequency in the absence of the magnetic field must alsd &#sguenciey
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+ e andv — e in the presence of a uniform, magnetic fiegld Upon

4rrm,c 4rrm,c
examining the theory more closely, one will easige that upon observing at a right
angle to the magnetic field, one must see a lineegfuencyv that vibrates in the sense of

the field and two lines that vibrate at a right lengith frequencies + %T%: whereas
when one observes them in the same sense as ltheofie must see only the last two
lines with circular vibrations in the opposite sensThis constitutes the normal Zeeman
effect, which has indeed been observed in a certamber of cases, and which was
discovered some thirty years ago, and which canest a brilliant verification of
Lorentz’s conception of the electron.

The old theory of quanta did not introduce anygimat was essentially new in regard
to the prediction of the Zeeman effect. Let arcteda in an atom be in a stable state in
the absence of an external, magnetic fieldWegtdenote the energy of that electron, and
let M denote the magnetic moment of its orbit, and asstimat we have the right to

consider one of the electrons of the atom thusiedl In the presence of a uniform,
external, magnetic fielt, the energy of the electronic orbit will be:

Wy =Wp — (‘:)Jt EH), (12)
or, by virtue of (6):
Wi = Wo + —=— (M TH). (13)
2m,c

In order to definePt [H), we must consider the componentfalong the field and

that component must be a multipletof 277 from the old quantum theory)( Formula
(13) will therefore become:
ehH

WH=Wo+m .
4rrm,C

(14)

m s the quantum number that one calls the “magmgt@ntum number.”
Now consider the line that is due to the passégleccelectron from the stable state of
energyW, to a stable state of lower energy . In the absence of an external field, that

line will have the frequency:

Vo = w. (15)

In the presence of a uniform fiet] by virtue of (14), it will become:

VH:—WH_V\C' :V0+(m—n1) et )
h 4rrm,C

(16)

() See Léon BRILLOUINL’Atome de Bohroc. cit, pp. 167.
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where (h — nT) can take on all positive or negative integer valuedudmeg zero. In
order to recover the normal Zeeman effect, the oldngua theory, guided by the
correspondence principle, assumed the selectiondrale 0,+ 1. It then arrived at the
same conclusions as the classical theory, and thatbeesuse the constaht was
eliminated in the combination of formulas (14) and (15).

3. Anomalous Zeeman effect. Landé factor The theory of the normal Zeeman
effect that was given in the preceding paragraph is verdi@y in a small number of
cases. Most of the Zeeman effects are abnormal. skiié content ourselves by
describing the abnormal Zeeman effect for the alkalmels, because they are the
simplest ones, and they are also the only ones fazhwibirac’s theory, which has been
powerless to account for the interaction of electrapso now, can be made complete.

The Zeeman effect for alkali metal is subject tofthlewing general rules:

a) Homologous lines of the various alkali elements exhif@tdame Zeeman effect.

b) Lines of the same spectral series exhibit the samengeusition (Preston’s rule).

c) Lines that are displaced by the action of a magrietid always define a figure
that is symmetric in frequencies and polarization tonitvenal effect with respect to the
original line.

d) The spectral interval (difference of frequencies)Meein a displaced line and the
original line is always equal to the product of the norbhwkntz interval with a simple
fraction (Runge’s rule).

Therefore, for a certain line, the displaced comptmenh the Zeeman effect will
always be in the scale of frequencies with distana®s the original line that are given

by the expressiot s
r 47rm,C

(Runge denominator), and whesavill take on a certain number of integer values] &

a number that determines the multiplicity of thealaposed line.

Runge’s rule ) can be interpreted in the following fashion: Fréme combination
principle, the decomposition of a line translatet® ithe decomposition of the spectral
terms. One is then led to think that each spetgrat must have its Runge denominator.
Letr; andr, be the denominator of the two spectral terms. Hhege rule can be stated
by saying that under the effect of the magnetid fiethose terms will be modified by
quantitiesoy / r1 Avy andap / r2 Avy, respectivelyp; andg, are integer numbers, afa,

, Wherer is a characteristic integer of the line in questio

denotes the normal Lorentz intervzhl":i. The line that is due to the combination of
Tm,C

the terms considered is, in fact, subject to tleespl displacement:

(& —&j Ay, = —CIJZ ~9h Avy, (17)
n r r,,

and can be written in the forgY r Ay, ; we then get back to the statemdhof Runge’s
rule.
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The manner by which the spectral terms decomposeeiprigsence of a magnetic
field was specified by Landé, who contributed much to theawaling of abnormal
Zeeman effect. He stated the following rules:

1. Each spectral term whose symbolnisl(j) (upon employing the notatidr= k +
1) decomposes in weak magnetic field into R+ 1 terms that are characterized by the
half-integermagnetic quantum numbersj, — (j — 1), ..., + [ + 1), +].

2. Upon taking the Lorentz normal interv%li to be the unit, the frequency
Tm,C

gaps in the decomposed terms with respect to tiggnal term will be given by the
following table:

s terms:[n,04] -1 +1

p, terms:[n, 14| -1 +1

p,terms{n 13| -5 -2 +2 +8 (18)
d, terms:[n,23 ]| -8 -2 +2 s

d,terms:[n, 23| -%¥ -9 -2 +3 9 415

This table shows that the Runge denominatorsqualé¢o 1 for thes terms, 3 for the

p terms, 5 for thel terms, etc. In a more general fashion, the Raeg®minator for the
term (@, 1,j)is 3 + 1.

3. Inthe transitions that give rise to observdinles, the magnetic quantum number
can vary only between — 1, 0, +1. Pon=4= 1, the emitted line will vibrate rectilinearly
in the normal direction to the field when it is ebged at a right angle to the field; #im
=0, it will vibrate parallel to the field whenig observed under the same conditions.

If the magnetic numbean has the values that are given by rule 1 then Lanuée
down the gaps that are listed in table (18) inftmen mg, whereg is a number — viz., the
Landé factor that can possess the following values:

L] j= 4 2 o 8 T
| 2 2 2 2
S 0 2
pi1l 5 3 (19)
d i 2 el L s
fl13 RN R L

One can summarize the table (19) by the formula:

|+

Nl

_2j+1
21+1°

g= (20)

| +

Nl
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This is the value of the Landé factor for the tengi,(j) of an alkali metal
The spectral term of the alkali atom that has #@dae/(, I, j) in the absence of a field
can take on thej2 1 values:

(D=1, o+ mg%:()c 21)

in the presence of a uniform fielti, whereg has the value (20), amd can take any half-
integer value that is found betweepand + (%).

The old quantum theory is just as incapable oflamxmg the intervention of the
factor g as the classical theory was. We confirm that wenexhanics is not more
fortunate here. It is only the introduction of tmagnetism of the electron that explains
the origin of the factog, and Dirac’s theory will allow us to predict thercect form with
no objections.

Formula (21) is valid only for a weak magnetiddie But, what can be the reason for
that? We say that a magnetic field that producesm@malous Zeeman decomposition in
an alkali doublet is weak if the displacement @&f terms in the spectral sequence that the
presence of the field produces is small in comparts the gaps in the components of the
doublet in the absence of the field. From thatnitedn, the same magnetic field can be
regarded as weak or strong depending upon theisituaWhen the field is weak in the
sense that was just defined, formula (21) will ppleable. When it cannot be regarded
as weak, one will find a more complicated phenomethat obeys a law that was stated
by Voigt, although we shall not insist upon it hetdowever, if the field is very strong —
i.e., if the Zeeman displacement that it produselange compared to the normal gap in
the doublet — then one will once more get a siqgblenomenon, namely, tligaschen-
Bach effectOne will then observe theormal Zeeman decomposition that is centered on
the center of gravity of the two components ofdhginal doublet.

4. Hypothesis of the spinning, magnetic electror- If one considers the law of the
anomalous Zeeman effect and compares it to theicédd orentz theory then one will
perceive that in order to recover that theory, mist pose the relation:

‘%‘ —g_ % (22)
M 2m,c
in place of relation (7).

That will then lead us to think that the theresexangular momenta and magnetic
moments in matter that are not related by relatf@h The anomalies of the
gyromagnetic effect that were pointed out at theé ehparagraph 1 suggest the same
conclusion. One can therefore not assume thabfathe magnetism of the atom is
provided by the circulations of the electrons, whiegy are imagined to be point-like
charges. The idea can then be presented in the apattributing a proper magnetic

() Preston’s rulely) is explained by remarking that the Zeeman decompositiolwis/s independent
of the total numben; only that number will vary now when one passes from kine to the other in the
same series.
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moment and a proper angular momentum to the eledseli that are related to each
other by a relation that is different from (7). Ithet idea that Uhlenbeck and Goudsmit
proposed in an ingenious manner before the very developofight new mechanics
itself.

Uhlenbeck and Goudsmit assimilated an electron of tsiclal type to a sphere of
electricity in rotation around one of its diameteratthossessed a angular momenim

= %2_21 and a magnetic moment that is equal to a Bohr magf#te

,in such a
4rm,c

way that one will have the valuee— that is revealed by the Einstein and de Haas
m,C

Since the rati#ﬁ

M

experiments f+ﬁ for the electron is therefore twice the

normal ratio (7), one can speak of the “double nretigm” of the electron. After the
success of the Uhlenbeck-Goudsmit hypothesis, waraitempts were made to obtain a
classical model of an electron that spins, butdhatempts have lost much of their
interest today, since the development of the newhaneics has forbidden us to consider
the electron to be a small body that is very |l@ealiin space.

The hypothesis of the spinning, magnetic electbgrits appearance, has permitted us
to glimpse the solution of some difficulties that whall enumerate. First, take the
guestion of the regular X-ray doublets. Uhlenbeckd Goudsmit assumed that the
magnetic axis of the electron is always normah plane of its trajectory. Since there
remain two possible senses for the proper angutementum vector (which is frequently
called the “spin” vector), each trajectory with qtiam numbers andk will correspond
to two possibilities. One will then understand tieeessity of introducing a new number
j that is capable of taking on two distinct valuesthe givern andk in order to achieve
the quantum determination of the stable trajectd®ince the total angular momentum is
the sum of the angular momentum of the electrom all@f its orbit, which is equal tk

h : . 1h .
—, and the is spit —=— , one can write:
2 22T

1)\ h
Miotal = (k igjgf (23)

so one will be tempted to spt= k + 1. However, we will soon verify that the new

mechanics leads us to repldcavith | = k — 1; one thus imagines that the true formula
that relates$ to k is the formula that was pointed out before:

j=k—1%i=|+1, (24)

N

. . . h
The number thus appears to be express the total angular ntomen units of2—.
Vg

With the classical ideas, the small magnet th&risied by the electron displaces in the



36 Chapter IV — The magnetic anomalies and the spinnéoty@h hypothesis

Coulomb or quasi-Coulomb field of the nucleus and thd.st#lerything then happens
as if the small magnet were subjected to the magnekit f

H=-2vm, (25)
C

whereh is the Coulomb field. Formula (24) gives the actidan electrostatic field on a
magnetic pole in motion with the velocity Since the fieldH is perpendicular to the
planar orbit that is described by the small electronigmatain the Coulomb field, the
potential energy of that small magnet in the fidlavill be:

U=+9H, (26)

wheredt is equal to a Bohr magneton, according to the Uhlenbecid&nit hypothesis,
and one must take the + sign or the — sign accorditigeteense of the momeit that is

normal to the trajectory with respect to the sensisodlescription. As a result of the
existence of the potential energy (25), each lewek)(of the Sommerfeld theory can be
decomposed into two levels,(k,j). From the calculations that were made by Uhlenbeck
and Goudsmit, which were later reprised and perfected by ah@nd Frenkel, upon
always appealing to the old quantum theory, one will benjped to recover a law iN*
for the doublets that are provided by the spectral terhssa numbeyj differs by one
unit, and thus makes the difficulty that was encounteredhbyoriginal Sommerfeld
theory disappear (see, paragraph 5 of the last chaptenuevdr, those calculations are
prone to some objections and arrive at good results onlymbgns of artificial
hypotheses, such as, for example, the substitution eofgtlantum numbel for the
guantum numbek, which is a substitution that is unjustified when @maploys the old
quantum theory. It is certain today that one canre#t tintra-atomic problems by the
methods of the old quantum mechanics, and that one mustetakase to those of wave
mechanics. We shall not therefore insist upon thaulzlions of the original theory of
the magnetic electrori)(

The anomalous Zeeman effect and the Landé formula teeeived the beginnings of
an explanation by the hypothesis of the spinning, mage&taron. We shall always
limit ourselves to the case of the alkali metals. &kternal, optical electron of an alkali
element possesses a total angular momentum (i.e., orfaitaént + spin) that is equal to
j =1 £ 3 times the unit moment / 277 upon assuming the substitution lofor k,

somewhat arbitrarily.

What will the potential energy of that optical efect be in the presence of an
external, magnetic fielti? With the old quantum theory, assume that the compdmen
of the total angular momentum in the sense of thd Feis of the formm h/ 277 where
m is the magnetic quantum number, to which we imposeuleetiat it must take one of
the half-integer values between and +j. The total magnetic moment will thus form an
angle with the fieldH whose cosine im/j. If the electron does not have proper double
magnetism then its energy in the fiéldwill be:

() See Léon BRILLOUIN]|oc. cit, chapter XVI.
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e M H=Wo +m ehH

WH=Wo -y [H=W, + .
2m,c 4rrm,c

(27)

One comes back to formula (14) and the normal Zeegffect. However, by virtue
of the double magnetism of the electron, one vallen(upon always writing in place of
K):

M= g e d hgho_ e phele o
2m,c 2ir | 2mc 221 | 2m,c 21 |

and as a result:
+
Wi = Wb — 90Ty CH = Wp + m - 21 &N H

, 29
j 4mmc (29)

which is a formula that is equivalent to the engailirelation (21), under the condition

that one must set:

_2j+1
21

1+1 ]
i

+ |+
NI INY'S

g= (30)

This formula, which was obtained under some fairlyitrary hypotheses, presents an
air of uncontestable kinship with Landé’s empirifcaimula (20).

The hypothesis of the magnetic electron that wasehiow developed in the context
of the old quantum theory thus gave some intergsgnrults. However, today the success
of the new mechanics has shown that the questhmtsrélate to the electron must be
posed in a completely different manner. We musrdlore now summarize the
fundamental concepts of wave mechanics. At theedamme, we shall have to examine
how we have sought (without much success) to intedrelativistic ideas into the
original form of that new mechanics. That introitue has not permitted us to resolve
the difficulties that were pointed out in the préiog pages. It is Dirac’s theory that can
smooth out those difficulties by simultaneouslyaaucing the principle of relativity and
the proper magnetism of the electron in the cordéxtave mechanics.




CHAPTER V

SUMMARY OF THE PRINCIPLES
OF WAVE MECHANICS

1. Viewpoint of the new mechanics

In the old mechanics, one considered corpuscles or mateims to be small objects
of negligible dimensions that had a well-defined positlospace at each instant. If a
corpuscle is in motion then the set of its successiveigas will constitute its trajectory.
The classical equations of Newtonian dynamics (or timeesvhat-modified equations of
Einsteinian dynamics) allow one to predict the entirers® of motion when one knows
the forces that the corpuscle is subject to and cerdial conditions. The corpuscle is
found to be attached to a certain number of quantgiesh as its coordinates, its energy,
the components of its quantity of motion, and thoset®fangular momentum with
respect to a point, etc. The old mechanics attributedliedefined value to them at each
instant, and its equations allowed one to rigorously tatleuhe sequence of those values
in the course of time.

The viewpoint of the new mechanics is completelyedéht. Indeed, for it, the
guantities that are attached to the corpuscle do not digrnemse well-defined values, in
such a way that it is not possible to speak rigorously pdsition at each instant or a
trajectory. One can only assign a certain number dfiplesvalues that are attached to
the corpuscle at each instant, each of which is afeefth a certain probability: That
must say that if one performs a precise measuremeahieajuantity in question at the
instant considered then that measurement will give btleeovalues that were predicted
to be possible, and the probability that one of thossiplesvalues will be the result of
the measurement can be calculated in advance.

Hence, whereas the objective of the old mechanicdavpeedict the evolution from
a given initial state of the quantities that are &ttacto the corpuscle rigorously and
uniquely, the more modest objective of the new mechaniamlig to calculate the
possible values of those quantities at each instant, alitg their respective
probabilities. From the mathematical viewpoint, théfedence between the two
mechanics translates into the following fact: Wherélas old theory started with
differential equations that permitted one to expresstimdinates of material points as
functions of time, the new one starts with a paditerential equation that has the form
of an equation of wave propagation. We shall learn tnen fof that fundamental
equation by restricting ourselves to the case of justcmmpuscle that is placed in a
known external field, because the general case of amyst corpuscles in interaction,
which was easy to treat with the original wave meawsmwill not interest us here, since
Dirac’s theory has not arrived at a translation at fhroblem for the magnetic electron in
a satisfactory way, up to now.
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2. Constructing the non-relativistic equation of propagation— We shall write the
equation of propagation of the new mechanics in its iniia-relativistic form. That
equation is obtained, in a sense, automatically by sgiawtith the expression for energy
in the old Newtonian mechanics. Let a corpuscle of madssplace in a field that is
derived from a potentidl (x, y, z t). The classical expression for the energy of the
corpuscle is:

E=1mV+U (x Y, zt). (1)

The quantity of motion is, by definition, the vector:

p=myv (2)
whose components apg = m\y, €tc.
There then exists the relation:
— 1 2 2 2
_%(px+py+pz)+u(xiyizit) (3

between the energy and the components of the quantitptdn.

The right-hand side of (3) can be representedHlly, vy, z t, px, py, py): It is the
Hamiltonian function that expresses the energy ah @astantt as a function of the
coordinates of the corpuscle and the components of itgiguahmotion (or Lagrange
momentum).

Here is how one obtains the equation of propagation afewnechanics for the
corpuscle in question. One replapg# the Hamiltonian function with:

h o , h a , h o
-—, py with - ——, p, with ———.
270 0X 271 oy 271 0z

One thus obtains an operator:

h o h o h o
HiIxXY.zZt-———— = = —
2mox  2moy 2oz

that is called thédamiltonian operator One will then obtain the wave equations of the
new mechanics by writing:
h o
HW)=——. 4
) o 3t (4)

W(x, vy, z t) is the wave function of the corpuscle, and thatcfion is essentially
complex. Upon specifying the form of the operdtpione will easily find the following
expression for (4):
_ 8mr'm 4rim 0W

uUix,y, zt)= ————,
h? xy.z9 h ot

AW (5)
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in whichA is the well-known Laplacian symbol. Since the wagaation is of first order
in time, that will permit one to calculate the forrhtbe wave function at any instant
when one knows its form at the initial instant.

In the very important case wheté does not depend upon time (viz., a constant
external field), the wave equations will admit monachatic solutions; i.e., ones that

2n
depend upon time by only a factor of the fOHWEt. Such a monochromatic wave
satisfies the equation:
AY +[E-U (XY, 2]W¥Y=0, (6)

or Schrodinger equatigrwhich is a degenerate form of (5).

In the even more special case in wHitks zero (viz., no external field), one can once
more write equation (6) witbh = 0 for monochromatic plane waves, and in that case,
will get the following monochromatic plane-wave soluatio

271
ZZEt—J2mE(a % B yy ]
W=aeh , 0

in whicha is a constant amplitude, and 3, yare the direction cosines of the direction of
h
=h/

\ 2mE
mv.

In the beginning, it was the monochromatic plane w#éwa® wave mechanics
associated with the free, uniform, rectilinear motibéma @orpuscle of mass, energyk,
and quantity of motiomv.

propagation. The wave (7) has a frequeneyE / h and a wave length =

3. New conception of the quantities that are attached to a qmuscle.— We just
saw that the transition from the old mechanics tortee is effected by replacing the

components of the quantity of motion with the operatog&%, etc. That is only a
V1

particular application of a general idea from the maechanics, which is an idea that
consists of substituting operators for all the quastibieclassical dynamics. It is easy to
specify how one defines those operators. We alreadw kvhat the operators are that
correspond t@y, py, p.. On the other hand, the operator that correspondi tertergy

will be the Hamiltonian operatdd that was defined above. One makes a coordinate of
the corpuscle —x, for example — correspond to the operatgr which signifies
“multiplication by x.” All of the other mechanical quantities are quantitieat are
derived fromx, y, z t, px, py, .. Hence, whenever a quantity is expressed as an entire,
rational function of the coordinates and the momerdag can construct the
corresponding operator)( Hence, for example, the-component of the angular
momentum of the corpuscle with respect to the orifithe coordinates will be replaced
by the operator:

() One can have ambiguities that come from the ordéaasbrs, but we shall not address them here,
because we will not encounter them.
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h 0 0
MZZXW—VQ:_Z—M(X&— &j (8)

upon taking the direct axes and agreeing that a motiorctimestists of a rotation in the
positive sense in they-plane will correspond to a positive angular momentum.

The operators that one is led to construct in wavehamcs that correspond to
measurable mechanics quantities are complex operatogeneral, and they will all
belong to one particular class — viz., the Hermitiarraipes.

Here is how one defines the class of Hermitian opesatVe shall first introduce a
convention that will persist in all of what followa this book: A certain letter will
represent an operator or a function, and the same, letten endowed with an asterisk,
will represent the complex-conjugate quantity. Having assutinat convention, |k be
an operator of the type that we just consideredi7 Hdenotes the spatial volume element
dx dy dzhen the operatdk will be Hermitian, by definition, if one has:

ijA(g)dr:ngD(fD)dr, (9)

in which the integrations extend over all spaced &me functionsf and g of the
coordinates are finite, uniform, and continuouslinspace, and tend to zero at infinity
sufficiently rapidly that the surface integralsttlaae obtained by parts on the left-hand
side of (9) are zero. The operators that are emas in wave mechanics are all
Hermitian. It is easy to verify that for every ogir, and in particular, one can verify it
for the operatoM; in (8), for example.

Along with their Hermiticity, the operators of wawnechanics always have another
common character: They are linear — i.e., one a&wmag:

A (P + $2) =A(p1) +A(P2), (10)
A(cg)=cA(9). (11)

One must make an important distinction between dperators that the new
mechanics attaches to a corpuscle. The one kimdc@ncerned with the set of three
coordinates, y, z, and are calledompleteoperators.

The others are concerned with only two coordinasesl for that reason, they are
calledincompleteoperators. For example, the Hamiltonian opendte complete, while
the operatorgy or M, are incomplete. Later on, we shall see the ingmog of that
distinction.

Briefly, in wave mechanics, we make any dynamaguntity that is attached to a
corpuscle correspond to a linear, Hermitian operaktowever, it is quite obvious that if
one makes a precise measurement of one of thodsamieal quantities then the result of
that measurement will be expressed as a real nunfizewe said in paragraph 1, the goal
of the new mechanics is, first of all, to say whkize real numbers are that a precise
measurement would yield as the values of a mechlagiantity. We can then deduce a
list of real numbers that represent all possibleulte of a precise measurement of a
quantity that is attached to a corpuscle from thernkitian operator that the new

and as a result:
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mechanics associated with that quantity. Now, that mallpossible because all of the
Hermitian operators of wave mechanics possess a seqotfm®per values” that are
real numbers. We shall now explain what that means.

4. Proper values and proper functions of a Hermitian operator— Let A be a
Hermitian linear operator. Write the equation:

A(p) =adg, (12)

in which a is a constant, and is a function of the coordinatgsy, z.

By definition, we sayproper values of the operatdk to mean the values of the
constanta for which equation (12) admits at least one soludR, y, z), which one calls
a proper function of the operatgk, and which enjoys the following propertie3: (it is
everywhere finite, uniform, and continuous, and the imtlegi the square of its modulus
over all space is well-defined and convergent. Naturiilthe operatoA depends upon
time then the same thing will be true for its propeugaland proper functions.

We assume the existence of proper values of the Jikkimitian operators of wave
mechanics, but we shall prove that those proper valueseaessarily real. Indeed, the
conjugate equation to (12) can be written:

AN(@p)=a ¢, (13)
and sincéA is linear, one will have:

[ 9Ny dr-[ @A) dr=(a—a) [ p¢dr, (13)

in which the integration extends over the entire dorbaof the variables that enter into
@; i.e., intoA. Now, the left-hand side of (13) is zero, sidcés Hermitian. Since the
integral in the right-hand side is essentially posijtivee must haver = a’, soa will be
real.

The set of real proper values of a Hermitian openata@alled thespectrumof that
operator. That spectrum will bdiscontinuousif the proper values are isolated, and
continuousif they form a continuous set. A spectrum can evepdéally-continuous
and partially-discontinuous. We shall first argue witkcdntinuous spectra.

Let ai denote an isolated proper value: There exists at leasprper functio; (x,

y, 2) that corresponds to it. The set of proper functionmégfanorthogonal systemn
the sense that th and ¢, are two proper functions that correspond to two distinct prope
valuesa; anda; then one will have:

.[D¢iD¢j dr=0. (14)

() Here, we consider only linearly-independent functimnise distinct.
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Indeed, ifa; is real then one will have:

AB)=ad. A (@) =a g, (15)

and as a result:

[ oA @ dr-[ ¢°Ng) dr = (a-a) [ ¢7¢ dr. (16)

Since the left-hand side is zero by reason of theritieity of A, anda; — a; is non-
zero, by hypothesis, equation (14) will be proved.

The proof breaks down for two linearly-independent propections that correspond
to the same proper value. When that case presents @se says that there is
degeneracyand that the proper valueraultiple. Let a; be a multiple proper value that
corresponds t@ linearly-independent proper function$:, @o, ..., #p . Since the
operatorA is linear, any linear combination of tig, ..., @i, will be a solution oAg = &;

@. One can then replace tpdinearly-independent proper functiogs, ..., ¢p with p
linearly-independent linear combinations of those funsti@md one will easily see that
one can choose those linear combinations in such aofashat they are mutually-
orthogonal. In other words, when a proper value is plaltithe system of linearly-
independent proper functions will be determined only up foeail transformation, and
one can profit from that partial indeterminacy in ordemget a system of independent
proper functions that are orthogonal. Therefore, care always assume that the set of
proper functions of a Hermitian operator is orthogonal

The proper functions of a Hermitian operator are datexd only up to a complex
constant factor (and even when there is no degenerdcyrder to fix the modulus of
that complex factor, one is accustomeadomalizingthe functionsg; ; i.e., to setting:

[ ¢ dr=] |¢ Fdr=1, (17)

which is an equation that will be meaningful, sincg | ? is summable. The proper
functions will still have an arbitrary factor of therfio € once they have been
normalized.

Upon introducing the symbdaj; that is equal to oneiif=j and to zero if # j, one can
summarize the formulas (14) and (17) with the formula:

IREXISER (18)

All of the preceding formulas apply to the discontinuspsctrum. If the operatdy
possesses a continuous spectrum then any proper wvaloé that spectrum will
correspond to a proper function that we writega&, X, y, 2), because whemnr varies
continuously in the continuous spectrum, it would be astnatural to write it as a
variable as it would be to write it as an index. Thepprdunctionsg (a, X, vy, 2) are
orthogonal to the proper functions of the discontinuspectrum, if there is one.
However, in order to avoid certain difficulties regagliconvergence, it will be more
convenient in the study of continuous spectra to consiagead of the proper functions
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@ (a, X, y, 2 themselves, the expressionAéL— I H+M¢(a,x, Y, 2) o, which are called
a a

proper differentialsthat correspond to intervals - «a + da that are chosen to be as
small as one desires in the domain of continuous vamiaifoa. The use of proper
differentials leads one to replace formula (18) with filrmula:

=t [ eaxy | [V@ x v d|=ae a9

Before concluding this paragraph, we must further pount & very important
property of the proper functions of a linear, HermitgreratorA: They define &omplete
system That says that, under very broad conditions, a immcif the variables that relate
to A (which vary in the domaiD) can always be developed into a series of proper
functions of that operator. For exampld, (X, y, 2) is a function of three variablesy, z
then it can be developed quite generally in proper functidres complete, Hermitian
operatorA in the form of:

fxy.2=2 dg(x v 9+] da)gl@, x y 3 d, (20)

in which the sun}. is extended over the discontinuous spectrum, bedntegral, over
the continuous spectrum.

If we exhibit the proper differentials that comesad to the various intervalsx of the
continuous spectrum then we can replace (20) with:

f(y.2=Y dg(xy 9+ d(a)[A—laj:%(a, XY 3 d}Aa. (21)

Upon utilizing formulas (18) and (19), one willsdg find that:

di:j¢imf(x, y,2) or;

d@= [, [A—laf ACASA okr} f(xy.2dr. (22)

The quantities andd (a) are calledhe Fourier coefficient®f the development of
the functionf (x, y, 2) in proper functions of the operatdr The Fourier series and the
Fourier integral represent simple special casé¢latftype of development.

5. General principles of wave mechanics- In paragraph 1 of this chapter, we said
that the objective of the new mechanics is to daleuthe possible values of the
guantities that are attached to the corpuscle la@id tespective probabilities. We then
learned how to associate a wave functé(x, y, z t) with the corpuscle that is a solution
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to equation (5), which is a wave function that we alwagsumed to have been
“normalized” by the condition'):

jwqﬁdr: 1. (23)

We then make each quantity that is attached to thusole correspond to a linear,
Hermitian operator that permits us to define a set alf nembers, namely, its proper
values, and a complete system of normalized, orthdganations, namely, its proper
functions.

We are then in a position to state the following twadlamental principles of the new
mechanics:

First principle: The possible values at the instaof a quantity that is attached to a
corpuscle — i.e., the possible results of a precise nemasut of that quantity that is
performed at the instabt- are the proper values of the linear, Hermitian operatbat
corresponds to that quantity at the instant

Second principle: If a corpuscle has a certain solutigh (x, y, z t) of its wave
equation for its wave function then the probabilitytthaprecise measurement of the
quantity that corresponds to the complete operatat the instant will prove a certain
proper value is equal to the square of the modulus ofaéiicent of the corresponding
proper function in the development of the wave fumcté in normalized, orthogonal
proper functions of the operatar

More explicitly, if the function¥ is developed in proper functions Afin the form
[which is analogous to (21)]:

W=3 6+ ca) [A—la J7 @ da}Aa (24)

then |c [ will give the probability of the proper value, and |c(a)  Aa will give the
probability thata has a value that is found in the interal- a + Aa. Since the
function W is normalized, the total probability of all thegsible hypotheses will indeed
be unity, as one easily verifies. Naturally, thehabilities that are provided by the
second principle are, in general, functions of tithd.e., the instant at which one
measures them.

If the operatorA admits multiple proper values then the stateménte second
principle must be completed: Let be a multiple proper value that correspond$ to
linearly-independent normalized, orthogonal progenctions @1, ..., @, . The
probability that one will find the valueg; for the quantity in question when one measures
it will be:

lca P+ lca P+ +cp

() Later on, we shall prove that if the condition (28)shtisfied at a certain instant then it will be
satisfied at every instant.
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i.e., the sum of the moduli of the coefficientsgf, ..., @ in the development d¥ in
proper functions ofA. That probability is independent of the manner by which one
chooses the proper functions, ..., ¢, as it should be.

When the operatoA is incomplete, the statement of the second principlstrhe
modified. Indeed, the proper functions Afwill not contain all three variables vy, z
then, and thes; and thec(a) in the development (24) will obviously be functions of
variables that are contained in tieand ¢(a). The probability of a proper values
cannot be [  then, which will be a quantity that will further depend mpzertain
variables. In order to obtain the probabilities, itl when be necessary iategratethe
expressions that were pointed out above over theeadtimain of the variables that enter
into A. For example, iA depends upon onlyandz then thec; will depend uporx, and

the probability of the value; will not be |c; [, but in fact,j_mh:I F dx. One will verify

that this modification is, indeed, in agreementhwite idea that the total probability of all
the possible hypotheses must be unity.

We shall indicate some examples of applicationshefgeneral principles. A very
simple example is the application to the Hamiltonmhich is, as we know, a complete
operator. For the Hamiltonian operator, equatif?) can be written:

H(¢) =E ¢, (25)

if one writesk in place ofa. One will have proper valuds and proper functiong .
Those proper values and proper functions will ddpgron time whe does; i.e., when
the system is not conservative. A precise measmepnf the energy can yield only one
of the value<; that relate to the instant of timevhen the measurement was performed
as a result, and the probability that one will tnet valueky (t) is equal to the square of
the modulus of the coefficient of the functignin the development of the wave function
W of the corpuscle in proper functions of the eneagyhe instant. That is what we
called “the spectral decomposition principle” imsmother discussions.

We now seek to apply our principles to the quarttiat is thex-coordinate of the
corpuscle. Equation (12) takes the form:

xp=adg. (26)

That equation can be regarded as being satisfiedariy real value otr by the
function o (x — ), which is theDirac function and it enjoys the following properties:

1. Itis an even function of the argumext{(q).
2. The integralj f(X)o(x—a) dx is zero if the integration interval does not camta

the valuex = a, and is equal td (a) for any integration interval that does contaiatth
value.

Equation (26) will then admit a continuous spectrinat includes all real values af
between- o and +co.

From the first principle, a measurement of therdomate can then give no particular
value between- o and +co, a priori (as it must). Moreover, as one easily sees, the
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proper differentiaIsAi j e o(x—a)da of that continuous spectrum define a complete,
a a

normalized, orthogonal system. Since one has, fhendéfinition of thed-function, that:
Yxyzt=] Waxyz)d(xa)d, (27)

from the second principle, the probability that aasurement of the coordinate will
give a value that is found in the intenaal> a + Aa will be:

Jf:dzjj: dyjW(a, x y z¥ | d. (28)

It will then easily result that the probabilityrfa simultaneous measurement of the
three coordinates to give values that are fourtienntervalsae - a + Aa, 5 - [+ AL,
y - y+AQyis |W (a, By 1) FdadBdy. That amounts to the same thing as saying that
the probability that a measurement will permit eméocalize the corpuscle in the volume
elementdx dy dzaround the point whose coordinatessarg zis |¥ (x, y, z t) [ dx dy
dz That is what we called the “interference priteipn other presentations.

6. Quantities that are or are not simultaneously measurable: One can deduce a
very important consequence of the general prinsipi@at were stated in the preceding
paragraphs: Two mechanical quantities can be medssimultaneously and precisely
only if the corresponding operatoksandB commute; i.e., only if one h#s8 = BA

Indeed, ifg and y; denote the proper functions AfandB, respectively, and; and 3
denote their respective proper values then in dodest simultaneous measurement of the
two quantities in question to be made preciselis itecessary that one must be able to
simultaneously attribute a certain valgeo the first quantity and a certain valGeo the
second one with certainty. From the second priecip will then be necessary that one
must be able to write the wave functiénof a corpuscle in the form:

W=cg=dy. (29)

If A'is an incomplete operator thercan depend upon variables that do not entergnto
and ifB is incomplete thed; can likewise depend upon variables that do narentoc;.
One infers from the preceding equation that:

; ABW)=AB(di x) =A@ S x)=GAC ) =La"¥ (30)
an
BAW)=BA(c #) =B ag)=aB(dx)=asgW¥. (31)

One must then have:
AB (W) =BA (W) (32)
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for any value of¥ that has the form (29), which implies tiAdéB = BA

The simplest and most important example of quantitias are not simultaneously
measurable is that of a coordinate and the correspprdimponent of the quantity of
motion. Indeed, one has:

h (o 0 h
- = —| —xFXE— | = —. 33
XBemBex 277i(6x axj 27 (33)

In other words, the operatap — px is equivalent to the multiplication dy/ 2.
Hence,x andpx do not commute, and as a result, a coordinatetl@mdorresponding
component of the quantity of motion cannot be mesbprecisely and simultaneously.
A coordinate and its corresponding Lagrange monmran be known at a given instant
t only with certain uncertaintie®x andApy, which cannot both be zero. One can show
that one will always have:

Ax Apx = h, (34)

at least, in order of magnitude. The inequali)(8nd the two analogous inequalities for
y andz constitute theHeisenberg uncertainty relationgpon which we have insisted for
some time in other bookd)(

() Introduction & I'étude de la Mécanique ondulatgiFermann, Paris, 1930.

La théorie de la quantification dans la nouvelle Mécanjdiermann, Paris, 1932.

In those two books, one will find a more detailed discussibthe principles that were presented in
summary form in the present chapter, as well as ifotfeving one.



CHAPTER VI

SUMMARY OF PRINCIPLES OF WAVE MECHANICS
(CONT.)

1. Some definitions that relate to algebraic matrices

One calls a table of numbers that involves eithenigefior infinite number of rows
and columns anatrix. If the table is finite-dimensional then we shalase that it is
square. More generally, we could assume that it amgalar, but that would be a
useless complication for us here. Each number th&rsmto the table (viz. each
elementof the matrix) can be located with the aid of twdices that define the row and
column to which it belongs, respectively. Thereforé ale denote the matrix element
that is found to be written in the table at the irgetion of thé™ row and th&™ column:
The matrix will then be collectively represented dyr | ax |. The elements; with
equal indices are situated along the diagonal of the »matrd are calledliagonal
elements. We say that two matrices andB areequaland writeA = B if their elements
with the same indices are all equay} € b).

Matrices present themselves in algebra when one stlides transformations.
Indeed, if the variableg’ are linear combinations of other variabtethen one will have

transformations of the type:
X =2, 8%, (1)
J
which are formulas that one can condense by writingél&orial relation:
X' =AX, (2)
and upon agreeing that the vectAX has the quantity AX) = 2qj>g for the
i
component with the index
Formula (1) leads one to define the sum and product @fratrices that have its

same number of lines and columns by the following comwesit

1. The sum of two matrice& and B is the matrixA + B whose element with the
indicesik is ay + by .

2. The product of the matrix with the matAxis the matrixAB whoseik element is

(AB)i =D & [ .
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It results from definition 2 that the matrix prodddB is not equal t@BA, in general.
One generally says that two matrices do pmimuteor do notcommute. If AB = — BA
then the matriceanti-commute.

The elements of a matrix can be real or complexe tAke the general case of
matrices with complex elements. The transformafiymulas (1) will then express the
idea that one passes from certain complex variabtesother complex variableg . We
shall now define some very important special casesroptEx matrices.

We say that a matrix Hermitian if the elements that are symmetric with respect to
the diagonal are complex conjugateg € a;). The diagonal elements of a Hermitian
matrix are real. If all of the elements of a Heram matrix are real then the matrix will
be symmetric with respect to the diagonal. We sayahaatrix isanti-Hermitianif one
hasax = —a;. The diagonal elements of an anti-Hermitian madre pure imaginary.
The product of two Hermitian matrices is Hermitian orfilhey commute; if they anti-
commute then the product will be anti-Hermitian.

One calls the matrix that is obtained by startinghvli and permuting the terms
symmetrically with respect to the diagonal and takingnmlex conjugate quantities the
adjoint matrix to the matrix And denotes it bA" ; one will then havea, =a;. One
easily proves the formul#B)* =B* A", and it is obvious thai’\)" = A.

A matrix is calleddiagonalwhen only its diagonal elements can be non-zero. rj ve
important diagonal, Hermitian matrix is the identity matwhich one represents by 1: It
is the matrix whosé& element is equal téy .

If one is given a matriA, and there exists another matAixX such thaA A = A™ [

A = 1 then the matria™ will be called thematrix inverse of A.That matrix inverse (if it
exists) is always uniqgue. Wheénhas a finite number of rows and columns, the matrix
inverse will always exist if the determinant that is edi with the aid of the table af

is not zero. Whe# has an infinite number of rows and columis, might not exist, and

it will be necessary to verify its existence in eaplecial case. One easily verifies the
formula AB) ™ =B A™.

WhenA is a matrix with real elements, and one has:

2.3 3 =4, 3

one says that the matrk is orthogonal It defines an orthogonal transformation that
leaves the quantityz x* invariant. That is well-known. One can generalibe t

definition to matrices with complex elementsAlfs a complex matrix, and if one has:
2.8 3= 4

then one will say thatA defines acomplex orthogonaltransformation gic], or
furthermore, that it isunitary. The quantityZ)g x” remains invariant for a complex

orthogonal transformation. The condition (4) cariurséher written:
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D a; g =, or A"A=1, A"'=A" (5)
i

Hence, in order for a matrix to be unitary, its agjonust coincide with its inverse.

Let A once more denote a matrix, and &be a unitary matrix that has the same
number of rows and columns. The maBix S* A Sis said to be obtained frofby a
canonical transformationIf A is Hermitian theB will also be Hermitian. Indeed, since,
by hypothesisS' = S™* andA* = A, one will have:

B' = (S'AS" =S A" (SH" =St AS=B. (6)

One then has the important theoref:canonical transformation transforms a
Hermitian matrix into another Hermitian matrig).

2. Matrices in wave mechanics— Suppose that we know a complete system of
normalized, orthogonal functiongs, ..., ¢, ; we call thenbasis functions.For example,
such a system is provided by the set of proper functioadHsrmitian operator.

If one is given a basic system then any linear opekailb correspond to a matrix.
Indeed, letA be a linear operator: The application of that operatasrnte of the basis
functions ¢ will yield a function that must be developable in teroisthe complete
sequencd;, ..., #n, ... We then have a relation of the form:

A(p) = z a; ¢, (7)

and therefore, by reason of the propertieg;of
aj = jD¢jDA(¢i)dr, (8)

in whichD is the domain of the variables that appear ingthe

By definition, theg; in formulas (8) are elements of the matrix that isegated by
the operatoA in the basis system of tige. We also denote that matrix by the leteif
we would like to make the system of basis functions usek rexplicit then we might
denote it byA?.

The matrices thus-obtained can be callednila¢rices of wave mechanicdVe shall
verify that they indeed satisfy the rules of additiard amultiplication of algebraic
matrices. In order to do that, consider two linear opesétandB. We will have:

Ap) = z a4, B (4) = z b . 9)

SO

() That statement assumes essentially that the n@fixhe canonical transformation is unitary.
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(A+B)(p) = z (a; +h)g . (10)

The elemenfi of the matrixA + B is theng; + b; ; that is indeed the rule for the
addition of algebraic matrices. One has, moreover:

AB(¢i):ijiA(¢j): ijiz & P, :Z[Z & bjij¢k' (11)

k

The elemenki of the matrixAB is then z a, b;; that is indeed the rule for the
j

multiplication of algebraic matrices.
The condition for a matriA to be Hermitian in wave mechanics is:

3= [ ¢ A@)dr = a] = [ ¢ A(g])dr. (12)

Now, we know that if that condition is satisfiear fall of the functionsp; then the
operatorA will be, by definition, Hermitian, and converselydence, the necessary and
sufficient condition for a matrix to be Hermitiam wave mechanics is that the operator
that it is derived from must also be Hermitian. eTHermiticity is then an intrinsic
property of the operator, in the sense that a Haamoperator will generate a Hermitian
matrix in any system of basis functions.

Since all of the operators that we shall considevave mechanics are Hermitian, the
matrices that correspond to them will likewise beriditian.

3. Mean values in wave mechanics- Imagine a corpuscle, and assume that the
wave functionW® that it is associated with is known. On the othand, let one of the
mechanical quantities that are attached to theuscte correspond to the operafoin
the new mechanics. When speaking of that operatershall say “the quantiti,” to
abbreviate.

The general principles that were stated in the daapter permit us to predict the
possible magnitudes of the quan#yand their respective probabilities. Since thegs a
in general, several possible values with non-zerobabilities, one cannot speak
unequivocally of the value of the quantfyat each instant, but one can speak of its mean
value, where that mean value is defined in the Ifaishion as the sum of the products of
each possible value with the corresponding prolbgbillf a; and ¢; denote the proper
values and proper functions of the operatorand if the wave functiol admits the
development:

W=>c4¢ (13)

then the mean valué will be, from general principles:
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A= algf. (14)

That can be written in the form that essentiat@ve mechanics:

A= jD WIA(W) dr . (15)

The equivalence of (14) and (15) results fromftmenula:

[, WAw)dr=[ > c.wm[z o ¢kj &= ¢af 4. dr, (16)

and from the fact that the functiogtsare normalized and orthogonal. The mean value
that is defined by (14) and (15) is obviously a crantity.

The reasoning by which we just established theddumental formula (15) is
rigorously valid only for complete operatofs with no continuous spectrum and no
multiple proper values. However, it is easy toeext it to incomplete or degenerate
operators and continuous spectra: Formula (153negl.

The form of the expression (15) fok will permit us to say tha$’” A (¥) is the
density of the mean valwé the quantityA. However, that “density” has a very different
nature from the ones that one considers in cldstiearies. Indeed, the integration
element¥” A (W) dr (which is generally complex) cannot at all be édexed to be a
certain amount of the quantifythat is localized in the elemedt, and only the integral
(15), which is always real, will have any physisahse. That is an important remark that
one must keep in mind.

Formula (15) provides a statistical interpretationthe matrices of wave mechanics,
or at least, their diagonal elements. Once moeeshall show that by arguing on the
basis of complete, non-degenerate operators witlcaminuous spectrum, since the
general argument would involve some complicatiomest twould not alter the result.
Suppose that the development of the wave funcibim proper functionsg; of the
operatorA reduces to just one term. One will then have:

V=c¢, (17)

with | ¢ | = 1, sincéd is always assumed to be normalized. In that easeyill be sure
that a measurement of the quan#ityill yield the valuea; . Now, let another quantity
be attached to the corpuscle and correspond tparatorB. We will then obtain the
mean value of the quantiB/by applying the formula (15), and we will find:

B = ijDB(w)dr: jD¢iDB(¢i)dr. (18)

Now, the second integral in (18) is nothing b thagonal element of the indeof
the matrix that is generated by the operatar the system of functiong . One then has
the theorem:
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The diagonal element with index ii in the matrix that is generatedebggerator B in
the system of proper functions of the operator A is equal to the meenofdahe quantity
B when one knows that the quantity A hasthe value a; .

4. Mean value of a coordinate. Ehrenfest’s theorem= Consider one of the
coordinates of a corpuscle — for example, Xf@ordinate. From formula (15), and in
accord with the interference principle, its mean vadue

X :ijWDLPdr. (19)

That is then the coordinate of dictitious fluid whose density at each point will be
given by:
o=WY' (20)

We call that fictitious fluid thgrobability fluid. The quantity of that fluid that is
contained in a volume elemedr is WY dr (Y), the total quantity of fluid will remain
constant in time, and that will be equal to 1 if thadtionW has been normalized. Since
the distribution of the probability fluid varies in tieeurse of time, we shall attribute a
velocity with it at each point in the course of tinmdich we define by the formula:

LIJtJDélmi'm [W grad¥” - " grady]. (21)

It is easy to show that under those conditions, tbealility fluid will be preserved
in the course of time, and that proof will incidentalstablish the following proposition,
whose exactitude we have assumiédhe functionW is normalized at a given instant
then it will remain normalized at any other point in time.

Here is the proof in question: One easily infers friv@ wave equation that the
function W obeys [viz., equation (5) of the preceding chapter], along it8 conjugate
equation, that:

|
94ww3:mwa—wAw3:——i— 9 yo¥ _yod¥ , (22)
ot 4mm 57| 0X 0X 0X
or again, from the definitions (20) and (21):
0 . _
+div (ou) =0. (23)

ot

() From the interference principle, that quantity isnttegual to the “probability of presence” of the
corpuscle in the elemedt.
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Now, equation (23) is the hydrodynamical continuity equatibat expresses
precisely the conservation of the fluid whose distidoutand motion are defined by (20)
and (21).

We now make a remark. From our definition of a medoevaff (x, y, z t) is a
certain scalar or vectorial function then we shall the quantity:

f(t) = ijDEf(x, y,z )W o (24)

themean value of that function at the instant t.
That being the case, we can state an important tinethigg is due to Ehrenfest:

THEOREM : The point whose coordinates are, y, Z displaces in the course of
time as it would under the laws of classical meatgfior a material point of mass m
under the action of a force that is equal to theamealue f (t) of the real force at each
instant t.

From (19), and upon employing (22) and integrating by partsywonkr st get:

LS L L L S [ LL iAo
dt b ot 4mm oy 20X 0X 0x
LY ! (YA ST SLch [ uwwdr=ug,. (25)
47mmJo ox 0Xx

One will then find that:

- ot ax ox ot Hdt 0

2 O 0 2o 2
d*x_ _h {a_waw _OW oWt 0t 00 w}dr
dt® 4mm-o t

O O
_L_ 6_‘1—'6‘1—' _616_‘1—' dr, (26)
2mmJpl ot dx  Ox Ot
which will give, by virtue of the equation of pragsgion:
d*x h ow 8m'm oV 8
=- Aw -2 My y AW - My |dr . 27
dt*  8mm’ J'D{ ax ( 1 j 6x( H H (27)
Now, Green’s theorem gives (after integrating byt$):
| |
| O A+ 0¥ pyr dr:j o - Di(Aw) dr=0, (28)
b ox 0X 0x 0X

in such a way that (27) will give us:
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d®x 0 ou ou _ —
m—-=| U—(W¥)dr=| | -—— |WWdr =—— = f, . 29
dt? ID ax( ydr JD( 6xj ox X (29)

That is indeed the expression for Ehrenfest’s theomenx{ and one will likewise
establish corresponding formulas f@rand z .

In order to conclude this paragraph, we shall once moee the definitions of the
mean densities of electric charge and current that sfmynel to a corpuscle of charge
when one knows the functidH. Since the chargeis a physical quantity that is capable
of taking just one value, it will be equal to its mealugaand one can write:

fze:ngwqﬁdr. (30)

One can then consider the quantity:
o= Wy’ (31)

to be the mean density of the electric charge thadgsciated with the corpuscle. On the
other hand, from the classical viewpoint, the corpustleharge¢ that moves with a
velocity ofv is equivalent to a current element sv. Here, we have to replaggwith 1

/ mpy, etc., and the three componentsiy, i, of the current in question will correspond
to the operators:

_hedo __heo _hed
2 mox  2mmoy  2mmaoz’
resp.
From (15), the mean value igf for example, will always be:
O
i :—h_‘_gj’ LpDa_LP r :h_,-s wai_qﬂa_w dr, (32)
2mmJp - 9x 47m <D 0x 0X

and one will have analogous expressionsij)‘oandij. It results from those expressions
that the vectorial quantity:

i= % [y grady’ - W gradw] (33)
4mm

can be considered to be the mean density of tlotrieleurrent that is associated with the
particle. Upon comparing formulas (30) and (33jhwiormulas (20) and (21), one will
see that the densitigsandj are the charge and current densities that exst) €lassical
theory, if the charge of the corpuscle is distributed throughout thebatwlity fluid in
proportion to its densitWw’.

5. First integrals in wave mechanics.— In classical mechanics, one calls a
mechanical quantity that is expressed in terms haf toordinates, momenta, and
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sometimes time, &irst integral when it remains constant in the course of motion by
virtue of the equations of motion themselves.

How does one define a first integral in the new meds&niHere is the answer that
one must give to that question: If a mechanical quaotityesponds to an operatdithen
that quantity will be a first integral for a well-defohg@roblem (i.e., for a given form to
the HamiltoniarH) if one has:

0A  2rmi

T (AH-HA =0, (34)

in which 0A / ot represents the operator that one obtains by forndéfigrentiating the
expression foA with respect to the variabte If A does not depend upadrthendA / dt
will be zero, and the condition (34) will express siyniple idea thaA commutes withH.
One shows moreover thathf is independent of time then the condition (34) will dav
the following significance: The matrix elements that ge@erated by the operatarin
the system of proper functions of the oper&tare constant.

If the field is constant theid will not depend upon time, so energy will obviously be
a first integral: One the recovers a classical theoréf thex component of the field is
zero therH will not depend upow, and it will commute witlpy : The x-component of
the quantity of motion will be a first integral, asciassical mechanics, etc.

The most interesting case for us will be that of amgolomentum. When the field
presents cylindrical symmetry around an axdsH will not depend upon the azimugh
around that axis. Upon taking direct axes and agreein@gtr@ation in thexy-plane in
the positive sense will correspond to a positive rotatio@ operator that corresponds to
the angular momentum arouodwill be:

h( @ d
M,=Xp -y Q= —| y—— X— |. 35
B-YR Zm(yax ayj (35)

Upon taking spherical coordinates whose polar axg isne will find that:

= 9 (36)
27 0¢
As a resultM; will be independent of, so it will commute withH, and it will be a
first integral. If the field has spherical symnyetaround O then each of the angular
momentaMy, My, M, will be first integrals.
We can simplify the form of the condition (34) inyroducing the operator:

L=H-"9 (37)
271 ot
Since one has:

9 _0A of
aDA(f)—E(f)+A(atj,
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if f is an arbitrary function then the opera@@v/ ot will be equivalent to the operat%qtL O

A-A D% The condition (34) can then be written:

— (AH — h (0. - _hoy (- ho
0=(AH HA)+2ﬂi(atDA A[—l(%j A(H 277i6tj (H majA, (38)

or simply:
AL — LA=0. (39)

The condition for the quantit to be a first integral is then simply that the i@per A
must commute witlh.




CHAPTER VII

RELATIVISTIC FORM OF WAVE MECHANICS
WITH ONE WAVE FUNCTION

1. Review of some formulas from relativistic mechanics

Long before the appearance of the new mechanicsttioeluiction of the principle of
relativity into mechanics led Einstein to modify thesslaal equations of Newtonian
dynamics. That modification implied only a simpleange of form in certain formulas,
moreover. Einstein’s relativistic mechanics preseniedfahe classical concepts of a
material point, velocity, trajectory, mechanical det@ism, etc. In comparison to the
new mechanics, the Einstein’s dynamics then appeaitss aoly a slight modification of
the classical theory that had the goal of makingprifarm to the principle of relativity.
In paragraph 2 of Chapter V, we started with the formfNewtonian mechanics in
order to obtain the equation the equation of propagatiomawe mechanics. We thus
obtained a wave mechanics that was naturally nonriskati In order to get relativistic
wave mechanics, it seems quite natural to operate asdagrpph 2 of that chapter, but
while starting with formulas from Einstein’s theoryn order to do that, we begin by
recalling some of those formulas.

In relativistic mechanics, every corpuscle is charasd by an invariant quantity,
namely, its proper mass. One of the fundamental piexiof the theory of relativity is
the proportionality of mass and energy, so a corpugateassm, will possess an internal
energy or “proper energy,” even at rest, and it valigiven by:

Wo = mp &, (1)
in whichc is the speed of light vacuo If the corpuscle moves with a velocitywof

then its energy will be:

w= M 2)

J1-52

There will still be a proportionality between egigrand mass, on the condition that
one must consider the mass to have increased asud pf the motion, and to have

becomem, /\/1- 5> .

One can call the quantity:

T= M, —mocZ:mOCZL ! —1}, (3)
1_ﬁ2 1_ﬁ2
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the kinetic energyof the corpuscle that has been animated with a speéd ahd it will
represent the increase of the energy due to the motion.

The preceding formulas are valid in the absence ofd fié the corpuscle is subject
to a force field that is derived from the potential fumctihen one must write:

W= mc +U (XY, 2 1), (4)

-7
instead of (2).

If B is small compared to unity (i.ey <c) then one will get, in the first
approximation:

W=moc®+impVV +U (X, 2 1), (5)

and if one sets:
E=W-m ¢ (6)

then one will recover the classical formula.is then the energy in the sense of classical
mechanics, which differs from the energy of relativistic mechanics by the constant
term of proper energyy ¢

In Einstein’s theory, the quantity of motion ofetltorpuscle of massy that is
animated with the speed= [ is:

m

p =
\J1-5°
It is, in summary, equal to the product of theoe#ly with the mass in motion

m, /1= 5.

The three components of the quantity of motion thedquantity:

V. (7)

m,C

constitute the four components of a space-timeovect

The preceding formulas must be modified in theyweportant case of a corpuscle of
electric chargee that displaces in an electromagnetic field. Onews that the electric
field h and the magnetic field can be defined by the relations:

(=W/c, when there is no field)

H = rotA, h =-gradV - 10A (8)
c ot

with the aid of a scalar potentiI(x, y, z t) and a vector potentid (X, y, z t).
The force that the field exerts upon the corpusé€leharges that is animated with a
velocity ofv will then be given by the Lorentz formula:
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f= £(h+%[v[ﬂ-l]j . (9)
The energy of the corpuscle is then:

w= " 4 evixy z ), (10)

J1- 2
myv

and its quantity of motion is:
se A Y20 (12)
1- p? c

p:

The new fact here is that the quantity of motjost like the energy, contains a term
that depends upon the field, in addition to thenténat depends upon the velocity. In
general, the quantity of motiom will no longer be directed along the velocity. €Th
components op and the quantityV / ¢ will then once more define the components of a
vector in space-time.

Equation (10) and (11) give us the relation:

C—lz(W—eV)Z—Z[pX—%j -mié=o, (12)

X,y,Z

which must play an essential role when one wantgetoa relativistic wave equation in
wave mechanics.
If we solve (12) foW then we will get:

W= c\/mfc“Z(g—%j +eV. (13)

XY,z

The right-hand side of that equation can be dehbyed (x, y, z px Py, P t), and it is
the relativistic Hamiltonian function; howeverjstnot a rational function.

2. Relativistic wave mechanics.— In order to obtain the wave equation of
relativistic wave mechanics, it seems completelyinad to proceed as in paragraph 2 of
Chapter V by starting, no longer with the formutd<lassical dynamics, but with those
of relativistic dynamics. Unfortunately, that imdiately presents a complication: Since
the Hamiltonian function that is defined by thehtidnand side of (13) is not rational, the

expressions that one will obtain by replacmgvith _ZL% etc., will not be rational in
7

0 / 0x, etc., and will not represent well-defined operstoOne cannot apply the method
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of paragraph 2, Chapter V literally then; i.e., one camuse the wave equation in the

formH (W) = La_LP

2m ot
Meanwhile, there is an indirect means of avoiding dhBculty by using equation
(12), instead of (13). In order to do that, one remar&sdieady in the non-relativistic
method of Chapter V, when one passes from the classicationH = E to the wave

equatiorH (W) = %%P one replaces, in short, the eneEgwith the operatorz%%.

It would then seem natural to replagewith that operator here, and that would be much
more logical from the relativistic viewpoint, since ene and the quantity of motion

define a space-time vector, so if one replaces gauwhth - Zii thenW must be
7a

replaced withi_i A.
27 ot

Upon making those substitutions in the left-haide f (12), one will get:

1(h o ? h o €
| ——-&V | - —+ 14
cz(zm ot j ;Z(Zmax cA‘j (14)
i.e., a rational operator.
Upon applying the operator (14) to the functiérand upon equating it to zero, one
will find that:

1( h @ 2 h d e ,
Sl—=-&V | Y- | —— W =m’cY, 15
cz(zmat j XZy:Z(ZHI 6x+cA‘j m (15)

and that equation can be regarded as the natuelvigtic extension of the wave
equation of the original wave mechanics.

If we develop equation (15), while taking into agot the Lorentz relation between
the potentials:

E%—\t/+ divA =0 (16)

c
then we will obtain:

1 02
"2 a2 —AW -

{m) +—(v2 A)}v 0. (17)

() The difference in sign is explained by remarking that:

0 o0 o0 0
ax'ay'az'at

are covariant components, wherpas,, p,, Ware the contravariant components of the world-impulse.
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For reasons that we shall explain later, Dirac cersid that relativistic equation of
propagation to be insufficient. Moreover, we see imatety that it differs greatly from
the non-relativistic equation in a very important respitds a differential equation that
has second order in time, instead of one that hafider in it.

In the important case in which the electromagnegid fis zero ¥ = A = 0), equation

(17) can be written:
10°W _ 4
l'IJ - ? atZ = h2 IT]JZCZLP y (18)

and it will admit the monochromatic plane wave:

27\t poe B v B 2

W=Ceh (19)

as a particular solution, because, from (12), oititiven haveW / ¢ —p,2 —p,> —p; =
m>c. The wave (19) possesses a frequensyW / h, and a wave length =h/p. It

corresponds to the uniform, rectilinear motion afoapuscle whose energy and quantity
of motion are perfectly determined, while its positis entirely indeterminate. If one
compares formula (19) with formula (7) in Chapterthén one will see that the only
essential difference that is introduced by relgtifiere is the substitution of the complete
energyW for the energ¥ = W —my ¢ of classical mechanics.

3. Probability density and current that correspond to equation(17). — The
application of the general principles that werdestan Chapters V and VI to the wave
equation (17) raises some great difficulties. #&mtipular, there will no longer be any
clear meaning to saying that the wave function nbeshormalized, because one can no
longer show with equation (17) that4 is normalized at a given instant then it will
always remain normalized. As we will see in Chap{e that difficulty is essentially
attached to the fact that equation (17) has seoodher in time, so its solution will not be
determined when one knows only the initial fornthegf function¥.

It is, nonetheless, still possible with equatidi@)(to consider a probability fluid that
is conserved in the course of time by virtue of ¢g@ation of propagation itself, but the
density of that fluid will be expressed as a fumatof not just¥, but alsooW¥ / ot.

Indeed, set:
h ow” oy £ o
=- o @l | _E oy 20
P 4nimocz( ot atj m ¢ (<0)
u=—"1  (Wgrad¥”-¥° gradd)-—— A wy”, 20
p 477in1002( g grad¥) m (20)

which are equations that will define the distributiand the motion of a fictitious
probability fluid, sinceo andpu are real.
Now, write the conjugate equation to (17):
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1 0%y . 4771 £y oy” 4771 £ oy”
— -AY +
2 ot? h c2 ot XZyZZA‘

{m) <:2+—(v2 A )}PD
=0. (17)

Multiply (17) by W™ and subtract (1, when it is multiplied by¥. On the one hand,
one will find the terms:

2 2 ] - ]
iz wmatf_wau; _4m_2V waw wmaw
C ot ot h ¢ ot ot

which one can write as:

2 2
i{i(qﬂa Y o j €\ e }ﬂiwﬂa‘/

ot| c? ot? ot? h ¢ h & ot

and on the other hand, one has terms like:

—y Ay +quJ*—4T’"fZ(A;vDaw s j
CX,y,Z

which one can write as:

d oW oW _4mie 47t € . 00A
z{—Kw W j A;w} - Zyy }

vz LOX o0x 0X h c C 0X

When summed, we will get the equation:

2 2
i{i(qﬂa w_wawj 4”'ivw}

ot| c? ot? ot? h ¢

+ div [ grad¥” - ¥ grad¥ —4Tm£A Wy
+ A E Gyo (}ﬂ+d|VAj 0. (21)
h ¢ c dt

The last term is zero, by reason of the Lorenkatio: (16). If one multiplies it by

- and takes (20) and (30nto account then one will get:
471 m,

0 . o
57 div (ou) = 0; (22)
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i.e., the equation that expresses the conservatigredfuid ().

We can make the distribution and motion of the prolvglfiuid that is associated
with a corpuscle with an electric chargeorrespond to an electric charge dengityand
a current density € u, as we did at the end of the preceding chapter in time no
relativistic case.

One can account for some difficulties that arise rwbee attempts to reconcile the
general principles that were assumed in Chapter V wéhrefativistic form (17) of the
wave equation by referring to the manner by which therfitence principle was
justified in paragraph 5 of Chapter V. It will result frahe argument that was presented
in that regard that the probability for a measuremeitishaade at the instahto permit
one to localize the corpuscle into an elen@mnof space will bePW” dr. That result is
obtained without making any hypothesis about the wave equidlad the wave function
W must obey, so it must still be valid here, as wélleanwhile, the density of the
probability fluid that is given by the relation (20), whisha density whose expression is
imposed by the necessity of satisfying the conservatiowliton, does not reduce to
WY, The general principles of Chapter V then contradiietrelativistic form (17) for
the equation of propagation. It was the desire to awaitl a contradiction that led Dirac
to found the relativistic wave mechanics of a corpuscle upalfferent basis than
equation (17).

() It would seem that one could defipeandp u by taking the right-hand sides of (20) and'J2thd
multiplying them by an arbitrary real constant, but dedinitions (20) and (2D are imposed when one
desires to recover the expressipn WW" in the Newtonian approximation, as one will easily see.



CHAPTER VI

SUCCESSES AND FAILURES OF WAVE MECHANICS
WITH ONE WAVE FUNCTION

1. Calculation of quantized energies. Example of the hydrogeatom.

As an application of its general principles, (nonireistic) wave mechanics
determines the stationary states of quantized systeroal@iylating the proper values of
the corresponding Hamiltonian operator. That new neetifoquantization, which was
inaugurated by the celebrated work of Schrodinderldd one to recover the results of
the old quantum theory in certain cases and to theeatatre old results in a sense that
would better conform to experiments (e.g., the linear lasai) in other cases.

Here, we shall recall only the quantization of the bgeén atom, and like
Schrédinger we shall appeal to the non-relativistiome

We consider an electron of massand charge - in a field that is produced by a
fixed nucleus of charge e:

Write the equation:

H (a) =E &, (1)

2

upon takingH to be the OperatOZI’l—m[IDx2 +p, + P, _e_r.

We then get:

Na + Bﬁm{aﬂa:o. )

Take polar coordinates g ¢ around the nucleus and set:

a(r, 64 =R() Y (4 9). 3)

Upon taking the form of the Laplacian in polar mtinates into account, we will
have:

Y

2 2
PR YOR 1 0¥, 1 i(sinHa—Yj+8n22m £+ |Ry=0, (4)
dr rdr r°sin“dod¢g“ r-sindoé 08 h r

or furthermore:

2| LAR 11dR T n E+—éﬂz—l{ 1 o, 1 i(siné?a—Yﬂ.(S)

Rd? rRdr h r Y| sin2@ g2 sind a8 06

() See E. SCHRODINGERbhandlungen zur Wellenmechanlk A. Barth, Leipzig.
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One of the two sides of (5) depends upon only the radiusryeghile the other
depends upon only the polar angles, so they must both la¢ tegthhe same constast
and one will have:

2
1 ov, 1 i(sinea—Yj+)lY:0. (6)
sin"@0¢° sind ol e

One shows that equation (6) has solutions thafimte, uniform, and continuous on
the sphere of unit radius only if one has:

A=1(1+1), with 1=0,1,2, .. 7)

The values (7) ofl are proper values of equation (6). A proper vaha is defined
by a certain integer value focorresponds to (2 1) proper functions (un-normalized):

d|+m

s _ |
Good]™ 01 -coé 8. (8)

Y™(8,4)= €™ P"(cosd) = €™ sid"g

The functionsY™ are Laplace’s spherical functions. They defireomplete system for

the variablegp and g, which justifies the decomposition (&@)posteriori
Having posed that, it will again result from (5atR must satisfy the equation:

2
d 2R+E$+R(A+—B+—Sj=0, (9)
dr r dr rr
with:
8”mE 8/°m
A= ot B= iz e, C=1(+1). (10)

Schrodinger proved that all of the positive valoé& are proper values of (9) and
form a continuous spectrum, in turn. However,maslassical mechanics, those positive
proper values for the energy correspond to freaametof the electron outside the atom,
and are of no interest to us here.

In order to find the negative proper values, vieoriuce the real variable:

,0:2,/—Ar:4Tn -2mE [t. (11)

It is obvious in equation (9) that for very large R will have the asymptotic

forme™'2, so the solutio®™’? must be discarded, because it will be infiniténginity.
Therefore, set:

R=e?y (0). (12)

Upon substituting (11) and (12) into (9), we ea#iid:
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dv (2 _.)dv B . |1_I0+1| _
d,02+(,0 1jd,0+K2\/—7A 1}10 pe }U 0. (13)

That is a linear differential equation that admitsyatle singular poinpp = 0 at a
finite distance. The theory of linear equations thempsrone to easily see that equation
(13) admits just one solution that is regular in a neidgitad of the poinp = 0 and finite
at that point, and that solution will have the form:

vied=) ap". (14)

Upon substituting (14) in (13), one will find the recurrerelation:

[(v+|+1)(v+1)+2(/+l+1)—I(I+1)]av+1:{v+l+1— }a\,. (15)

B
2/ -A

The functionR (o) will be zero at infinity if all of thea, are zero when one starts with
a certaina, . From formula (15), in order for that to be tritewill be necessary that one
must have:

B :
=p+l+1=n n = integer= 1). 16
P ( ger= 1) (16)
Hence, from the values (10):
2rmée
E.=- W (17)

Non-relativistic wave mechanics then gives therBohmula.
We remark that there is a pronounced degeneraey because, from (16), a proper
valueE, (i.e., a given value af) will correspond ta possible values df namely, O, 1,

..., n—=1, and each value bWill correspond to P+ 1 spherical function§™. Hence, a
proper valueE, will correspond to some proper functicms RY, and their total number

n-1 —
will be equal toZ(ZI +1)=2 n(n2 ) +n =n% Al of the proper values will then be
1=0

multiple, except for the one that corresponds tol.

The quantum numbércorresponds to the number 1 of the old quantum theory. It
can taken on the values 0, 1, n~ 1, while the numbeéqin the old theory could take on
the values 1, 2, ..n. The numbem depends upon the choice of polar axis, which is
entirely arbitrary in the absence of an externalfi It is easy to verify that the angular
momentaM,, My, M, are first integrals, since that would follow frothe spherical
symmetry of the Coulomb field.

We finally note that upon repeating the calculadidor an atom with a central charge
+ Nethat has been ionizedl & 1) times, we will get:
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_27Pmé N

En = nh?

(18)

Hence, one can infer an approximate justificatmmMoseley’s law, as in the old theory.

2. Fine structure and relativistic wave mechanics—- We have recovered Bohr’'s
simple result by calculating the possible valueglie energy of the hydrogen atom. It is
quite natural for us to now demand to know whethercan recover Sommerfeld’s fine
structure by employing the relativistic form of veamechanics that was developed in the
preceding chapter. However, that immediately pressa complication, since we cannot
seek to determine the proper values of the Hanétooperator, because that operator
was not well-defined, as we saw in the theory efl&st chapter. Nevertheless, there is a
very natural way of avoiding that difficulty (altbgh it does not agree with the general
principles). Indeed, seeking the proper valuesrargy amounts to looking for proper
frequencies of the wave equation. Therefore, thkerelativistic wave equation (17) of
the last chapter and suppose thais a monochromatic wave that depends upon time

27,
only by way of the factoe " Wt. Upon noting tha# = 0O for the hydrogen atom, one will
then find that:

4717
h?c?

AY + = [(W-eV)2-ng ¢ W=0. (19)

In the case of the hydrogen atans; — eandV =e/r. Inside the bracket in (19), one
can write:

(moc2+ E+eTj —nfé:E2+2TbczE+zTe(m)cz+ E)+r%, (20)

27
and since, by hypothesi¢,=a(r, 6, ¢) e " Wt, one will have:

417

Aa + g

{E2+2m)CZE+2—(:2(naé+ ag}a:o. (21)

Upon posing the decomposition (3) here again,wifieeasily see thal (6, ¢) must
be a Laplace spherical function, @dr) must obey the equation:

2
d 2R+ZEQ+[A+—B+—S}R:O, (22)
dr r dr rr

with the notations:

_ 8'm, E _8mrm (. E _ 4re’
A= 2 E[1+2WBCZJ,B_—h2 e[Hm)czj’C_ I(I+1)+—h2c2' (23)
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The expression fo€ can also be written:

C=-1(+1)+d, (23)

2

in which a = 2%
hc

We deduce from equation (22) thRt has the asymptotic forre” ' 2 with p
=2,/ - All, and upon setting:

is Sommerfeld’s fine-structure constant.

_p
R0 =e?v(p), (24)
if we substitute that in (22) then we will get:
2
d‘é+[3_1jﬂ+ B -1 —B+—C2 v=0. (25)
dp P dp 2\ -A P P

That is a linear differential equation that admiits pointp = 0 as its only singularity
at a finite distance. From the general theoryiddr solutions, there exist, moreover,
two solutions of (25) that are regular in a neighlbod ofp = 0 and have the form:

v =p"2 ap (2#0). (26)

The exponenty (which is not necessarily an integer) is given thg defining
equation:
y(y-1)+ Y+ C=y(y+ 1) +a? -1 (1 + 1) =0, (27)

which one can just as well write:
1)? 1)?
+= | =|1+=| - &~ 28
(y 2j ( 2j 9

One thus has the two valuesyof
y=-1,/(1+1) -a?. (29)

One discards the solution that corresponds to-theign by remarking that the
corresponding functiow (o) will have a pole ap = 0. We then keep formula (29) with
the + sign. It is appropriate to remark that eebaosing the + sign will raise a small
difficulty if | = 0O, since that will then give a very small negatvalue fory, and the
function v (p) will be infinite (granted, it will have a very sih order) atpo = 0. We
agree to pass over that difficulty, which we slemitounter once more in Dirac’s theory,
because the functiom(p), although infinite ap = 0, is nonetheless square-summable.

If we introduce the form (26) into (25) then wdlwhbtain the recurrence relation:
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[(V+y+D)v+p+2¢+y+1)+C av+1={l/+y+1—

B
ZJ_—AJaV- (30)

The functiorR will be zero at infinity if all thea, that are greater than a certagare
zero, which will happen if one has:

B
+y+1= : 31
pry+l=_— (31)
Upon substituting the values Af B, andyinto (31), one will find that:
C{ZHECZJ
= (prd) +(14) e, (32)
2E 1+ E
mc | 2mé
SO
2E E
— 1+
a’ _ m¢ ( 2m¢ j
) = 5= —. (33)
(2 e f(+2)-a?|  [1e E
m,¢
Upon adding one to both sides of this and takmvgrises, one will easily get:
-1/2
2
1+ icz: 1+ a . (34)
il [(p+;)2+ (I+§)2—az}

This is a formula that is quite analogous to tlieSommerfeld formula [formula (38)
of Chapter I], but in which the whole numbegsandn; have been replaced with:

1 1
p+3 and |+3,

respectively.
If we define a total quantum numhbeby the relation:

n=(p+i)+(1+i)=p+I+1, (35)

and develop (34) in powers af, while neglecting terms of order higher than ttf@n
we will obtain the approximate formula:



72 Chapter VIl — Successes and failures in wave mechaitlt®ne wave function

Rhi, a*( n 3
Eo=-—1+ L 12
o2 { n? {I+; 4}} (36)

in whichR = Rydberg constant. Formula (36) should be coagarith formula (41) of
Chapter I.

When one repeats the same calculation for an atoankN that has been ionizedl (
— 1) times, one will find:

En|:—R22N2 {1#’ N [ n —§ﬂ, (37)

1
n 1+3 4

instead of (36), which is analogous to formula (#Chapter I.
In the case of X-rays, if one limits oneself tonsinlering the inner electrons crudely
as forming an electrostatic screen then one will ge

£y = - 7”'){1+”2(N_ %)( ”—§ﬂ, (38)

n n’ l+1 4

and that formula will give the fine structure oétK-ray spectral terms, which should be
compared with the old formula (9) in Chapter I11.

Unfortunately, the agreement between the old Sarfiedeformulas and experiments
is not recovered here. For example, take the @tailh the Balmer series. In Bohr’s
original model, a line in the Balmer series wasegated during the transition of the H
atom from an initial state of ener@yto a final state that is characterizedrby 2. For
Sommerfeld, the quantum number= 2 corresponds to two possible values of the
azimuthal quantum numbé&r= 1 andk = 2. Hence, one has a fine structure for ea&h lin
that is, in reality, a doublet, so the frequencytiiof the doublet must be, from formula
(40) of Chapter I, equal to:

1 2

& = %(Ezz—Ezl) = = = 0.36 cni (39)

RaZ(Z_Zj_ Ra?
16

That number is in good agreement with experiméngt somewhat better. With our
new formula (36), we must attribute the quantuminersn = 2,1 =0, andh=2,1 =1 to
the two levels that are responsible for the Baldmrblets, and we will find that:

_Raz(z_ Zj_Raz
2 \1/2 3/2 16 3

(40)

We then find the 8 / 3 of the old number, whichli®ady a bit too large!

Similarly, one will also find a number that is téerge from formula (38) for the
width of the Sommerfeld doublets for the X-rays.

Moreover, the difficulty that was pointed out befatill remains here: It is certain (at
least, for X-rays) that the levels that are respm@gor Sommerfeld’s fine structure have
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the same quantum numbler(i.e., the same numbér= k — 1) and differ by a quantum
numberj that the preceding theory ignored completely.

Therefore, the relativistic wave mechanics that wageldped in the preceding
chapter is shown to be inadequate, since it introduceddifégulties without resolving
the old ones.

3. Wave mechanics with one wave function and the Zeeman Effeet We shall
now see that the original wave mechanics (with oneewanction) cannot account for
the anomalous Zeeman Effect.

Consider an atom that is embedded in a uniform magnekid{i Take the direction
of the field to be the-axis. We can then write the vector potential fromacht is
derived in the form:

A=—2, Ay=—, A, =0, (41)

since the relatiofl = rot A will then giveHy = Hy = 0 andH, = H. The relativistic wave
equation (17) of the last chapter can then be writen-(e):

1 0°Y 47 eV oV Z4me aw Vivig

AY - ——+—
c® ot hcatxyyzhc h?

{mfcz—i—z(vz—Az)} W =0. (42

We shall prove the following theorem, which is nothing the transposition of
Larmor’'s classical theorem, which was recalled in GCéapV, para. 2, into wave
mechanics:

Theorem. — When the fieldH is very weak, and one can neglect the relativistic
corrections, the wave equation of the atom, when expressed in anedethat rotates
around the direction of the field with the angular velocity:

0= Eﬂ, (43)

2mc
will be the same as if the reference system didatate and the fieléH did not exist.

From our hypotheses, we suppose thas small andH? is negligible. Similarly, we

suppose thay = iczis small (i.e., the Newtonian approximation) ayfds negligible.
m

Finally, we also neglect the produg.
We can always take a direct system of asegz The oz axis will serve as the
cylinder axis, and we define cylindrical coordirstgo, ¢ by the usual formulas:

X=pcosy, y=psing, z=z (44)
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Thanks to (41), one will then have:

4771 e _ 27 e oWy aw ow
— == — _AmE o : 45
Xzy:ZA‘ ox h c [yax ayj = g’

and equation (42) can be written in cylindrical cboates as
O°W 0W 10V, 10 10W 4ieVow ame, 0w
022 0p° pdp p°o¢g® c*ot* h ccat h c 0¢
417 e’V?
if one neglects\?.

Now take a system of cylindrical coordinagsg, ¢ that rotates aroundz with
angular velocity (43). One will have:

Z=z, g=r, ¢ =¢g-—0ot [t =t

(47)
and as a result (upon neglectifgin the order oH?):
2 2 2
9-2, 2220 0.9 .0 2.9 %% . an
0z 0z 0p 0p ot ot 09 ot° ot 0¢' ot
Equation (46) can then be written:
62W+62W+ 1 6HJ+ 1 0%y 162W+ 4 eV oW
0z 0p'* p' oo ,0’26¢’2 c?at2 h ot
20 o*y 477106W_2mg ow
ccag'ot h 9¢' h c o¢
417 e’V?
= 2 [mozcz— Z jw (48)
in the system of primed variables.
Now, upon taking (43) into account and neglectirpgone will have
2
200% 2 a,[z mocz(lm)w} Rk (49)
c-ogg'ot c d¢ h c 0¢
2
The term—0 Ui

5ot then compensates for the last term in the left-tsade of (48), in

the assumed approximation. As in the Newtoniarr@pmation, the potential energy
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must be regarded as being very small in comparison to timah energym, ¢, so the

4 eV oW 4 eV 6‘4—'
term— will be negligible in comparison to the teFm—
h & 6¢ @ ot
Finally, equation (48) reduces to:
Y oW 1o¥ 1
+ +——+——
0z 0p'* p' oo ,0’26¢’2 c?ot®> h c®at n?

2| 2 2\ /2
RY, 1aw+4mevaw 4#( Zcz—e\zlj”’- (50)

That equation is the same as if the primed systiehmot turn and the fielti did not
exist: Larmor’s theorem is then proved.

We shall now recover the normal Zeeman Effectctlye Indeed, in the absence of
an external magnetic field, the stationary state th characterized by the two quantum

numbersn andl, and an energy o will correspond to a wave function of the form:

W(zpdt)=F(2e™e e (51)

in the fixed systems, p, ¢, in whichm is a positive or negative integer. By virtue loé t
theorem that was proved above, the functiénvill have the same form that it would
have in the system, p’, ¢, in the presence of the fieldl. One will then have:

(moc2+E€)f

W, 0, ¢, t)=F'(d,Z) e e (52)

By virtue of (47), the wave function will have thgpression:

(moEﬁ

S LR (53)

W(zp ¢ 1) =F (p,2em? °°eh

in the fixed system.
The energyE/ of the atom in the fixed system in the presendd@fieldH is then:

Bz B0 —miP= g0 - m SN (54)
4rm,c
The spectral terms are then modified by the amlditf a multiple offh H , and the
c

line that had the frequency:

10 0
= E(En'r - Enl)

ehH
47mm,c

will now have the frequency:

v+ (m-—m)
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in the presence of the field. It will suffice to assuthe selection ruldm = 0,+ 1, which
we shall justify later, in order to recover the nok@eeman Effect, but there is no trace
of the anomalies or the Landé factor in this theo¥yave mechanics with one wave
function then gives nothing more than the classto@bty or the old quantum theory.

4. *“Selection rules” in wave mechanics- In classical electromagnetism, when a
distribution of electricity is animated with an accated motion, it will emit
electromagnetic radiation. H (X, y, z t) is the density of the electrical distribution then
the intensity of the emitted radiation will be deterndini the first approximation, by the
electric moment; i.e., by the vectorthat is given by:

mx:'[”pxdxdydz, m},:jﬂpydxdydz, WZJJJpZdXdde, (55)

in rectangular components.
If one supposes that the quantities (55) are developeBanraer series in the form:

m, = cont. +)_ m cos(2Tvt+e ) (56)

then the energy that is emitted per second by tiadi@f frequency; whose electrical
vibration is parallel to the-axis will be equal tGG;C—IZAvi“(ni)Z.

Knowing the electric moment of a distribution wilen permit one to predict the
frequencies, polarizations, and intensities ofdimited radiation.

According to the classical way of thinking, radat is emitted in a continuous
fashion, and radiated energy is progressively heetbfrom the motion of the electric
distribution, which will be a motion that dies away a consequence. Things present
themselves very differently in quantum theory: R&éidn is emitted in the form of a
gquantumhv during the transition from one quantum state te thher. In order to
evaluate the intensity of the energy that is embitie the form of radiation by an
assemblage of atomic emitters, one must arguestitatly as follows: IfN, is the
number of atoms in the energy st&tethen there will be a certain probabil®y, dt that
one of those atoms will pass to the state with gynEx, during the time intervadt, and
the energy that is radiated per second will berié supposes that, is very large, so its
decrease will be negligible):

Nn Pam (En — Ev) = Ni P hvi (57)

The problem is to evaluate the probabily, . In order to do that, Bohr started with
a very fertile idea, namely, correspondence. Hwuaed that one must recover the
classical laws asymptotically for very close stadiny states that correspond to large
values of quantum numbers, and one can then statairc rules for the prediction of
intensities and polarization. The developmentheftew mechanics has permitted us to
make the rules that Bohr presented more precise.
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In order to understand how one can arrive at the ndes rior predicting the
intensities and polarizations, we begin by arguing asd8atger first did. Consider an
atomic system with one electron whose wave fundason

W=cha1(wz)é7mE”t- (58)

We have seen that one can associate it with theen rakectricity distribution that is
defined by the density= — e WY the electric moment that corresponds to it is:

m.=~e [[[ x¥W-dr = const. +Y" (-e) G, G.[[[ xa & d g(%_%)t, (59)

etc. Now, the integral that appears in the rigintichside of the last equation in (59) is the
with indicesmn of the matrix that is generated by the operator the system o& . If
one denotes it bYm, then one can write (59) in the form:

m = const. +2n¢f(—e)uq 16 Bl X |COSE[ E”;Em t+¢m‘¢n] (60)

The frequencies that appear in the developmen) @@ precisely the Bohr
frequencies/mn = (En— Ey) / h. It is then entirely natural to think that a séatoms that
is found in the state that is defined by the wawecfion (58) will emit a line of frequency
Vmn With an intensity that is proportional W | Xmn [

However, as we saw, the fact that the radiatioendtted as quanta that are linked
with the transitions between stationary stategeBlius to depart from the classical image
of an electric distribution of radiation of densitye WY’ that radiates all of the Bohr
frequencies simultaneously and continuously. Conilog to the spirit of the new
mechanics itself, we are constrained to adopt alpwtatistical statement. Here is the

statement that we must adopt in order to avoidcamgradiction:

Let there be an assemblage of identical atoms foctwone has proper functiong a
for the Hamiltonian operator, and as a result, caments of the matrix that take the
form:

X = [ @, x(a, dr .

Suppose that there are,Mtoms in the state with energy B that assemblage. The

guantity of energy that is emitted per second leysit of atoms in the form of radiation

of frequency M, = (En — Ey) / h that vibrates electrically parallel to the x-axislivihen
64"

3C3

be equal toN,, valI X, F.

Upon comparing this with (57), one will see thae tprobability P.x for the
transition that produces the radiation in questidhbe given by:
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641" v}
[an]X :? h | an |2 (61)

That is then the transition probability per umte for an atom in the stakg to go to
the stateéEr, with emission of radiation whose vibration is pilego thex-axis. When the
three probabilitiesBam]x, [Pamly, and Pan]; are found to be zero simultaneously for the
two statesk, and E,, the emission of radiation with frequengy, will not actually
happen. One shows that the same thing will be towueall transitions that do not
simultaneously satisfy the relations:

0
d=1, dn:{ﬂ. (62)

Wave mechanics then permits us to justify the ctiele rules for the quantum
numberd andm. Of course, it cannot justify the third selectiote that we encountered

0o . o : . .
J= { 1 since it ignores the numbger We shall see that Dirac’s theory permits one to

recover all three selection rules.




PART Il

GENERAL PRINCIPLES OF
DIRAC’'S THEORY OF THE MAGNETIC
AND ROTATING ELECTRON



CHAPTER IX

PAULI'S ATTEMPT

1. Electron rotation and the polarization of light

We saw that wave mechanics, in its original forrd, bt resolve any of the problems
that one was led to attach to the existence of propgnetam for the electron. It has
then become obvious that wave mechanics will remain inampls long as it does not
contain an element that would correspond to that propgnetism. However, the idea
of a spinning, magnetic electron cannot be developedsly @athe new theory as it
could in the old one. Remaining in the context of ctadstoncepts, Uhlenbeck and
Goudsmit imagined the classical electron to be a ssphlkere of negative electricity in

. 1 _h :
rotation that presented a angular momentum that wad &quzagz— and a magnetic
T

moment with the same axis that is equal to a Bohr Btagin% . However, in wave
mechanics, it seems to be forbidden to make a septation that is also precise, and one
must always introduce the language of probabilities

In order to have some idea of the manner by whigh must pose the problem, it is
good to reflect on the manner by which one defthespolarization of the light quantum
using the new ideas. Consider a sheaf of recitigepolarized light that propagates in
the oz direction.

Let ox andoy be two axes that are perpendiculanm The normal vector toz has
the form:

ao Sin 7w (t—5+¢j,
o
and it has components aloagandoy whose amplitudes are given by the formulas:

ax = ap Cos¥f, ay = ag Cosg, (1)

if one lets@d denote the angle between that vector@ndhe light intensity of the sheaf is
2

a;.
If one places a Nicol prism that lets only viboas that are parallel tmx pass in the
path of the sheaf then the light vector after theoNwill be reduced toax sin 2w

(t—5+¢j, and the intensity will be? co$ 6. If one then turns the Nicol by 9¢hen
C

the light vector in the transmitted vibration vk parallel tay and equal to:

ay sin Zm(t—§+¢j;
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the transmitted intensity will ba? sirf .

How is one to interpret all of this if one is to s the existence of photons? If one
attributes a polarization to the photons individuallyntlibe causal description of the
phenomenon will become impossible. Indeed, since one sgme way, constrained to
attribute the polarization that is defined by the lightteeof the incident wave to the
incident photon, one cannot perceive how it would be plessibexplain causally why
certain photons do not traverse the Nicol, while othersodo traverse it by taking a
polarization that is directed alomax, for example. Upon adopting the probabilistic
viewpoint of the new mechanics, one must consider that aannot attribute a well-
defined polarization to the incident photon, but one rounst define the probability for
the photon to reveal itself as having a polarization haarallel toox upon traversing
the Nicol with the aid of the associated light wavt tprobability will be cdsé. One
can say that before traversing the Nicol the photah darobability of cds @ that it
would reveal itself to be polarized parallelawand a probability of s that it would
reveal itself to be polarized paralleldg.

Now return to the electron spin. The hypothesis efgbinning, magnetic electron
leads one to associate two directed magnitudes withleb&ran that are proportional to
each other, namely, the proper magnetic moment and tpempangular momentum.
Whereas the polarization of the photon is defined biyrection that has no sense to it,
the spin vector for the electron has both a direcdod a sense. However, just as we
cannot attribute a definite polarization to the photoncamnot attribute a definite spin to
an individual electron in a theory of the magnetic tetecthat conforms to the general
principles of the new mechanics. The only thing that are speak of is the probability
that an experiment that permits us to determine trectibn of the spin of an electron
will give this or that result.

It was upon that fundamental idea that Pauli basetstaafitempt at a theory of the
magnetic electron in the context of wave mechand& must elaborate a little bit upon
that attempt, because it guided Dirac in the developnidns anore complete theory.

2. Pauli’s theory.— Pauli {¥) made a first attempt to neatly pose the problem of the
magnetic electron in the context of the general idé&lse new mechanics.

If one considers a system of rectangular axes themx@griment that permits one to
assign a value to the component of the moment of propetion of an electron aloray

will give either +EGE or —1G£ for a result, from the Uhlenbeck-Goudsmit picture.
2 2ir 2 2ir

Moreover, it is natural to suppose that one must &sothe electron, not with one
functionW, but two functions¥y(x, y, z, t) andWa(x, v, z t), in such a way thatWy, |2 dx
dy dzmeasures the probability for the coordinates of thdreleat timet to be found in

the intervaldx dy dzand for thez component of its angular momentum to b(—%@zE
T

while | W, P dx dy dzmeasures the probability for the coordinates at titnebe found in

(*°) Zeitschrift fiir Physik43 (1927), pp. 601.
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the intervaldx dy dzand thez component of the angular momentum to—bée Gzﬂ Pauli
T

therefore introduced the idea that in order to take intmwaa the magnetism of the
electron, one must increase the number of functi¥ns Naturally, the normalization
condition will become:

[[Jl1w.f+|w, ] dxdydz=1 2)
here.
Pauli looked for the equation of propagation thatuld determine the two wave
functionsW. In order to do that, he always started with #@miltonian function, but
while taking the magnetic moment of the electrdo sccount.

If one denotes the components of a unit vesttrat points in the direction of the

electron spin b, s,, S, then the magnetic moment will ls»t-:-i (5.

4rm,c
The Hamiltonian function in a constant field willen be of the formi(x, y, z, px, py,
Pz S S S), and the quantities,, s;, S, will appear linearly in it, as is easy to see.w\o
the artifice that permits wave mechanics to obtlanequation of propagation consists of

replacingpy, py, p; with the operators%@% , etc., and writing:
i

h a h o h o
Hlxyz-——-—— -——.,5,S,S|Y=E¥ 3
(Xyz,ZﬂiaX 271 oy 277i62§§§j )

for the monochromatic waves of frequert€y h. However, we must have two equations
for the twoW. Guided by some general considerations thatlltaaitly pass over, Pauli
imagined replacing the componerss s, ands, , respectively, with three Hermitian
matrices with 2 rows and 2 columns:

01‘, 5= @)

10

0 —i
+i 0l

5, = +1 0
- 0-1
Moreover, he agreed to pose the following defomitilf A is a matrix with 2 rows and

2 columns then the operatid® will be defined by the relation:

AW =Y a W, (i,k=1,2), (®)

which is a natural generalization of some formuleg we encountered before that were
concerned with matrices. In particular, an appilicaof the relation (5) to the matrices
S, &, S3 will give:

sWi= Wy, gW= WY,

Wi=-i¥,, W= ¥, (6)

gWi= W, sW=-Y,.
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Pauli then replaced equation (3) with the two equations:

H(x,y,z,— ho_ho_hogs, gjwl_EwL

27i ox ' 2mi dy ' 27 oz
(7

0 h o h o
H X!ylzl_ ._1_
oriox 27 dy ' 27 oz

Sy ,Sy %j WY, =EWY, .

These are two simultaneous equations that the fusdHgandW¥, must satisfy.

However, the theory that was developed above makesztées play a special role,
since the wave function¥#; andW¥, give the probabilities of the two possible values for
the component of the spin thatparallel to oz If one wishes to obtain the probabilities
for the component of the angular momentum that isllpata another arbitrary axi®Z
to be equal to %GZhTT or-— %Gzh; then one must take another system of rectangular axes
OXYZin which OZ is the third axis and then calculate the two wavetfans in that
system — sayP1(X, Y, Z) andd,(X, Y, Z) — whose moduli squared will give the desired
probabilities, and naturally, since nothing will physicaligtinguish the system of axes
OXYZfrom systenoxyz the functionsp must obey the following equations, which one
will obtain immediately from (7) by transposition:

H(X vz-L 9 _ho _hos, gjcbl-Ecm,
27 X ' 21 dY ' 2m 0z
(8)
H(XYZ—Li _ho _hogs, §j¢z—E¢z
27 X ' 21 0Y ' 2m 0z

The position of the axe®XYZwith respect to the axesxyzcan be defined in the
following fashion: If we replace, y, z, X, Y, Z with x;, X, X3, X1, Xz, X3, respectively,
then we will have transformation formulas of thenfio

X.:qu>g : 9)

in which theo; are elements of a real, orthogonal ma(rEo”. Q =9 j In short, the
j

matrix O defines the passage from the first system of aixése second one.

If that matrix is known then how can one expréwsfunctionsd with the aid of the
functionsW? That was the question that Pauli posed and dolé one starts with
equations (7) and one replacey, z as functions oK, Y, Z with formulas that are inverse
to (9) then, as we will verify later on in a spédase, one will obtain the equations:
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ho ho hoa
HiX,Y z-——2 -1 9 Wy(X, Y, 2) =EWi(X, Y, Z
( 27 X 27 oY mazslszgj (X 2 =ERLO N 2),
(10)
ho ho hoa
HIXYZ ——  — — - W (X, Y,2) =EW(X, Y, Z
( 27i 0X ' 27 OY mazslszgj X 2) =B RN 2)

The operatoH in equations (10) is defined in the following manner: Ongesithe
classical Hamiltonian function:

H(CX Y, Z, px, Py, Pz, S% Svy &)

in the systenXYZ which is a function in which appear the componentsy, ands; of
the unit vector that points along the proper magnetic mowfettite electron. One then

replaces, on the one ham, py, pz with, —%aix etc., resp., and on the other hasg,

Sy, Sz with the Hermitian matriceSx, Sy, Sz, resp., which are defined by the relations:

S = Z,,J, (11)

by starting with thes that are defined by (4). Ti& will always figure linearly in the
operatorH that is formed in this way. Finally, the functio®s(X, Y, Z) andW¥,(X, Y, 2)
in formulas (10) are obtained by starting Wih(x, y, 2) andW(X, y, 2) and replacing,
Yy, zwith their expressions in terms XfY, Z.

Pauli then proved [and we shall carry out an analogoud jrddirac’s theory %]
that that there always exists a unitary ma#yiwith two rows and two columns such that
one will have:

S=A"sA, ANt=AY =123 (12)

In other words, there exists a canonical transformdtiat takes each of tigeto the
correspondingS, . The matrix/A corresponds to an operation that is defined by the
formula (5), and upon applying that operation to the twossafehe equations (10), one
will obtain:

h o hao hd
AH| XY, Z——,—— - WY, =EAY,,
( 27 0X ' 271 oY mazsls?gj ! !

(13)
h 9 hao hoao

AH[x Yy z-2+¢2¢ 00 N7 W, =EAY, |
( 2niox ' 2noy’ mazsls?gj 2 2

(*° Cf., Chapter XI, paragraph 2.
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in which theW are expressed in terms X¥fY, Z. Since the5 figure linearly inH, AH
contains the termAS linearly, which are equal te A, from (12). Since\ commutes
with X, d / X, etc., moreover, one will have:

hd hao h o
A )W =H[ XY z-—+~2 19 19 5 s s|W=EAY,, (14
()% ( o7 oX ' 27 oY 2mi oz XSV%} ! o (14)

and an analogous equation#z . Upon comparing this with (8), one will see toaie
has:
D1(X)Y, Z2) =AW((X)Y, 2), DAX)Y, Z2) =AW,(X)Y, 2) . (15)

Formulas (15) teach us how the wave functidhsare deduced from the wave
functionW because in each particular case if the ma&rigs known then one can find the
matrix/A. We shall give a concrete example in the follayyraragraph.

Of course, sincd is unitary, the sum®; [ + |,  will be equal to {1 F + |W, f,
which expresses the fact that the total probabdiftyhe two possible hypotheses on the
sense of the angular momentum will always be unity.

3. Example of an application of the preceding theg. — In order to illustrate the
theory of the preceding paragraph, it is usefusttedy a very simple example that was
developed by Pauli himself, namely, that of antetetat rest in a magnetic fiekdl.

First, take a system of axegyzsuch that the positive direction oz coincides with
the direction oH. One will then havély = Hy= 0, H, = H. Upon introducing the Bohr

magneton = 2 eh , the Hamiltonian function will reduce @ s, H (*%), and one will
c

have:
/,loSgHLIJl:ELPl, ,UoSsHLIJz:ELPz (16)

for equations (7), or, due to (6):
/JQHLIJ]_:ELIJ]_, —/,lquJzquJz. (16)

This system will have a solution for orfiy= + 1o H. Since W1 f + |W, f =1, one
will have:
for E = to H: W, =¢”, W, =0,
(17)
for E = - (o H: W, =0, W, =¢”,

Therefore, forE = 1p H, the magnetic axis of the electron certainly moitd the
positivez and forE = — 1o H, it will certainly point to the negative These are, in fact,
the results that one must expect.

(* In this paragraph, the lettét will no longer denote the Hamiltonian, but the magietwf the
magnetic field.
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Now take a second system of ak®sYZsuch that th€©Z axis makes an ang@with
the fieldH. The classical Hamiltonian function will then be:

Mo (STH) = Lo (Sx Hx + sy Hy + 57 Hz),
and, from (8), the wave functiolds and®, will be solutions of the equations:

Mo [Hx st + Hy s + Hz s3] @1 = E &y,

(18)
Mo [Hx S1 + Hy s + Hz sg] @2 = E @y,
which will give, upon making them explicit:
Mo [(Hx — iHy) @2 + Hz ®4] = E &y,
(19)

Ho [(Hx + IHy) ®; + H; ch] =ED,.

In order for these two homogeneous equation®; ito be compatible, it is necessary
that:

bHy —E  f(Hy—iH,) —

_ 0; (20)
H(Hy+IH,) -uH,-E
le.:
E= 4 HZ+HZ+H2 =% 1o H . (21)
Here, there are once more two cases to distinguish:
First case:E=pH .
One will then have:
@, = H_Hz = HZ_HZZ(HX'l'iHY): H_EZ [Hp €9 (22)
®, H,-iH, H;+Hy HZ

upon settingr = arc tarHx / Hx and lettingHp denote the component Hfthat is normal
to OZ One will then also have:

@, _ M) d? = tang e (23)
0N H siné 2
Since |1 [ + |®, F = 1, one must have:

.a-ml2 La-ml2

I<D1|2:cosi§ e 2, |CDz|2:isin§e' 2, (24)
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Second cas€E =— (o H .

One then has:

@y o HAH, _ H¥H; o 13C00 0 o Opda (2)
o, H,—iH, H2 sin@ 2
and, in turn:
|ch |2:;e :Sir? g, ICDZ |2:C0§g, (27)
1+cot25 2 2

which permits one to set:

_a-ml2 ia—rrlz

CDl:isingDe' 2, CDz:cosEIZIe 2 (28)

The results thus-obtained signifyto take an example that if a first experiment
shows us that the electron points in the direatibthe field with the energy qioH then
the probability that a second experiment will shasvthat it points in th€©Z direction
will be cog 8/ 2.

It is easy to calculate Pauli's unitary matricksin the simple example that was
treated here. Compare the functidihen (17) (upon taking the arbitrary argumeptsnd
oto be zero in order to the simplify things) wittetfunctionsb in (25) and (28). We see
that the unitary matri is equal to:

2l _a-nl2 _a-ml2
cosz & 2 [ sinE (& 2
A= a-rl2 ] a-rl?2 ! (29)

isin—[& ? cos—[e& 2
2 2

The elementd\j, which are special cases of the Cayley-Klein patans, satisfy the
relation:

N11 N2 —N12 N1 = 1. (30)
One easily finds that:
FAVSRE AN
/\+ — ‘ 22 12 , (31)
_/\21 /\11

from which, one infers that:

(32)

AAF = ‘ /\22/\11_/\12/\ 21 A 1{\ 12+/\ 14\ 11 =1

/\21/\22_/\22/\ 21 A 2{\ 11_/\ 14\ 2

A is thus indeed unitary. The formAfcan be predicted by Pauli’s argument, moreover.
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4. Insufficiency of Pauli’'s theory.— We have given only a sketch of Pauli's theory.
That theory is not entirely satisfactory, in factirsFof all, it is not consistent with the
principle of relativity; viz., it only envisions spatiab@rdinate changes and not space-
time coordinate changes in the relativistic sense. ebMar, it does not lead to a
prediction of the hydrogen spectrum that is completetyect.

For these reasons, we shall not study it any furtherwbumust remark that it does
introduce the following essential ideas:

1. The magnetism of the electron corresponds te@xistence of several functions
W,

2. The wave function¥ must permit one to define the probability of the possible
orientations for the spin in a certain direction.

3. One can preserve the form of the equations of prtipagahile changing the
coordinate axes, but the wave functions will then transfm a certain manner that is
defined by a matrix.

Darwin % made another attempt to introduce the magnetism oélétron into
wave mechanics in a manner that conformed to the principielativity: He sought to
define four functiong¥ that were the components of a space-time vectoe attempt
was not entirely successful, and he then lent his supp®irac’s theory, in which four
functionsW also figure, but they are not the components of a sjraeevector.

(*® Proceedings of the Royal SocietylA6 (1927), pp. 227.



CHAPTER X

DIRAC’'S THEORY

1. Review of previous results

In order to introduce the idea of the proper magnetisthpaoper rotation of the
electron into the equations wave mechanics, Diracestavith some considerations that
were more general than those of Pauli. He assuna¢dhih equations of wave mechanics
must be made to agree with the principle of special vélgtbut he criticized the manner
by which that agreement had been sought. In order to uadersis criticisms, we shall
first rapidly recall how we have written the equatiafswave mechanics for a wave
functionV.

The general equation of propagation for a corpuscle inrelativistic wave
mechanics is:

Hi XYy z- h.i,— h.i,— h.i,tq’:i.a—w, (1)
27 ox 2oy 2oz 27 ot

in which H is the Hamiltonian operator. In the case of a corpustlmassm that

displaces in a field that is characterized by a potedti{al y, z t), one will have:

h? h ow
- AY+U (X y,z)W=—— 2
8/°m *xy.z1 271 ot @)

If the corpuscle carries a chargec-and moves in an electrostatic field that is
derivable from an electric potentil(x, y, z t) then one will havéJ = £V, and (2) can
be written:

h? h oW
- AW +eVXy zt)W=——. 3
87°'m v,z 27 ot 3

In particular, if the charged corpuscle is antt@cthen one must set=-ein (3).

We have seen that in the non-relativistic thedhg necessarily-positive quantity
WY’ represents the probability density of presence,the total probability thus-defined
is conserved (viz., equal to unity) in the courbéirne. The quantity YW (which will
be- e WY’ for the electron) is the mean electric charge itetisat one uses to calculate
the emitted radiation.

If one would like to construct a theory of wave am@nics that is accord with the
principles of special relativity then one will imdiately obtain a new equation of
propagation that will replace (1) by a very naturaluction. We have seen that for a
corpuscle of mass and charge that displaces in an electromagnetic field thakeined
by a scalar potentid (X, y, z t) and a vector potentidl(x, y, z t), that new equation can
be written:



90 Chapter X — Dirac’s theory
c®\ 271 ot S\ 271 ox '

For an electron, equation (4) will take the form:

1( h @ 2 ho e,Y ,
| ——teV| Y- | —— = Y =micw. 5
cz(zm'afe j Xzylz(max caj m ®)

We introduce the notations:

Pl :—L_i+EA(, P2 :—L_i+_e ’
2mox ¢ 2moy c
(6)
h o e h o e
P; =———+—A, Py =——+-V.
° 27 0z CAZ T oma ¢
That will permit us to replace equation (5) with:
3
[32-292—%2 &jw:o. ™
i=1

As we have seen, the relativistic equations opagation (4)-(7) no longer permitted
us to take the quantit¥” to be the probability density of localization besa the
integral of that quantity over all space was n@&Emecessarily constant in the course of
time. We had to adopt a more complicated expradbiat was written:

O
p=——t [P _yedP €y gy 8)
4mmyc| ot at) mé

in the case of the electroa£ - €), which is an expression that will reducedt&?” when
the Newtonian approximation is sufficient. Hetes mean electric charge density will be
p €=— pe with the value (8) fop.

2. Criticisms of equations (4)-(8) that were addressed byirac. — Dirac
addressed some serious criticisms of the attermgt wWe just recalled at defining
relativistic wave mechanics. In particular, heacked the expression (8) for the
probability density. Since that expression is isgubby the form itself of the equation of
propagation (7), that would amount to attacking dgpuation itself.

We shall summarize Dirac’s arguments. A firsticldm that one can address in the
expression (8) fop is that it is not necessarily positive-definitdthaugh a negative
value ofp can obviously have no physical meaning. Anothiicism that was pointed
out already at the end of Chapter VIl is the follegvone: The general principles of the
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new mechanics demand that no matter what form the ediagggjuation of propagation
might take, the probability that one finds for the coor#isaf the corpuscle — i.e., of the
values that are found in the intervals. x + dx, y - y +dy, z - z+ dz— will be WY~ dx
dy dz and that demand is not consistent with formula (8).

Faced with these difficulties, Dirac maintained thhé probability density of
localization must necessarily have the always-posfaven WY, or if one (with Pauli)
assumes the existence of several wave functinthen it must necessarily have the

likewise-always-positive formz W W=  However, upon adopting that postulate, one

will be led to a conclusion of paramount importance: fbe equation (or equations) of
propagation for relativistic wave mechanics must beref-trder with respect to the four
variablesx, y, z, t. We shall present his reasoning:

The non-relativistic equation (1) is of first order time, and the corresponding
expression for the probability densityd8¥". If one is given the initial forr¥ (x, y, z,
0) then it will be found to be determined completely gy ¢quation of propagation, and
as a result, one can say that when one gives tlie Wi, the ultimate evolution of the
density will be determined. One understands that the oc@tger of probability (and
electricity) will then be a necessary consequenceec&tiuation of propagation itself, as
we have proved. Things are no longer the same in de aiathe relativistic equation
(4). Since that equation is of second ordet;, imne must, in fact, give values ‘#$ and
oW /ot at the initial instant in order for the wave functtorbe determined.

One must then adopt the expression (8) for the probabdihgity if one wishes that
conservation of probability should result from the equetbpropagation. Now, adopt
the postulate that the probability density must necegshele the formWW™ or

ZHJNJ.D as Dirac did. We shall see that the equation (or mosatof propagation

must then be of first order thand that equation (4) cannot, in turn, be exact.

Indeed, if the equation of propagation is of second ordethien its solution will be
determined only if one gives the initial valuesHranddW / ot.

Suppose that one is given only the init#gl but not the initiab¥ / dt. With Dirac’s
hypothesis, the initial density will then be known, siricdepends upon onl/, but the
ultimate evolution of the functio will not be. Upon giving an arbitrary initial form to
oW / ot, if one starts with a known initial form for therdsty then one can arrive at no
particular ultimate state of evolution for that dens#gd the conservation of probability
will not be automatic. Dirac then concluded that tfpeagion of propagation would be of
first order int, and since the principle of relativity always makesdpatial coordinates
and time play a symmetric role, it must be of first ondith respect to the four variables,
X, Y, z,t. The same reasoning and the same conclusion are vadiad tvere are several
functionsW and several simultaneous equations of propagation.

Dirac was then compelled to seek one or more equat@tsvould be of first order
in the variablex, y, z t in order to replace equation (4). We shall see hosubeeeded
in that quest.
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3. The Dirac equations in the absence of a field: In order to establish the new
equations, Dirac started with the case of the free matidhe electron in the absence of
any electromagnetic field.

One will then havé/ = A = 0, and the operatoRs [formula (6)] will become:

d _hd

__h _ __ho -
= odx T ohey iz P Zdca

In this simple case, one can assume with somaicgrtthat the functior? will
satisfy the equation:

2 3
p-L0¥ _ 4T my W, or[pf—z pz—mfczjwzo, (10)
i=1

¢’ ot? h?

because in that case, it would result from fundaaiezonsiderations that grow out of
_mc

hy1- 5

. . . W
wave mechanics that the monochromatic plane Wamafmquencyrz and

hy 1- 3 .
wavelengthi = Dp: —’8 would have to be a solution, and one would e#sdly
m,V

verify that the same thing would be true for equa{(10).

However, equation (10) is of second order, andwwald like to have equations of
first order. In order to arrive at that, Dirac poged that there existed several wave
functionsW,, W,, ..., Wy and that each of the them satisfied the equation:

(pf—i pz—nfczjwk:o k=1, ....N), (11)

but these equations of second order mustcdmesequencesf the true equations of
propagation, which are of first order.
Dirac wrote those true first-order equations afgagation in the symbolic form:

(pa+taprta@p+tazspstasmc)¥ =0. (12)

The symbolic equation (12) signifies that one has:

3
(pﬁZainwmbcj W.=0 (13)

i=1
for eachW.

The a; are matrices witiN rows and\ columns, and one defines the operatpky,
as we did already in our study of Pauli’'s theosythe formula:
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N
ai l'I'Jk = zai,kl l'IJ| ) (14)
1=1

in which a; y denote the indiceld of the matrixa; .
However, equations (13) must have equations (11) as aquemsee, and that will

3
impose certain conditions upon the matrices Indeed, apply the operalm—Zai p -
i=1

a, Mg € to equation (13); we will find that:

{pf‘[i”ﬂ*%m)cj :lwzoi (15)

and equation (15) will coincide with (11) only if one sets:
a =1, a ap+aa=0. (16)

We must then impose the conditions (16) on the matace Moreover, we also
impose the condition upon them that they must be Hermitike all of the matrices that
enter into the new mechanics.

Dirac sought to make the numhbérof wave functions as small as possible. Rot
4, one cannot find four Hermitian matrices that sattéky conditions (16). On the
contrary, it is possible to find them ftd = 4, and it will be convenient to adopt the

following a; matrices:

0 001 0O 0 0 +i 0O 01 10 0 O
0010 0O 0 -i O 0O 00 -1 01 0 O

al = ) a2: . ) a3 = ) a4 = (17)
0100 O+ 0 O 1 00 O 0 0 -1 0
1 0 00O -i 0 0 O 0 -10 O 0 0 0-1

They are obviously Hermitian, and furthermore, they hidnee matrix 1 for their
squares and anti-commute with each other, as the @nw({{L6) would desire.

Briefly, we (with Dirac) shall assume the existeédour functions\¥; that satisfy
the four simultaneous first-order equations (13). These déguations can be written
explicitly with the choice (17) of matrices:

(Pa +MoC) W1 + (1 +ip2) Wa+p3W3=0,
(pa +moC) Wo + (P —ip2) Ws—psWs=0,

(18)
(Pa—moC) W3+ (L +ip2) Wo+psW1=0,

(Pa—moC) Wy + (L —ip2) W1 —p3 W1 =0.
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Upon starting with the system (18), one can see inldetai that system has the second-
order system (11) (witN = 4) as a consequence.

For example, apply the operatmr— my c to the first equation (18), and the operator
p1 + i p2, which commutes with the preceding one, to the foedbhation; one will
obtain:

(P =M ) W+ (pa—mocC) (pr +i P2) Wa+ (Pa — MoC) ps W5 =0,

(19)
(P +1iP2) (Pa—moC) Wa+ (p°+ p)W1— (pr+ip) psW2 =0,
so the result of eliminating’, will be:
(PZ—MP )W+ (P2 + p/) Wi+ (P +ip2) ps W2 + (Pa — MoC) ps W5 = 0. (20)

However, upon applying the operamrto the third equation (18), one will find:
Ps (s~ MoC) Wa=—pg (P +i p2) W2 - Wi, (21)

and since thg@ commute with each other, upon substituting this in (203,will obtain
the equation:

[pf—i nz—mfczj W, =0, (22)

and one will similarly find second-order equations thatteeta the other thre®. One
has then verified a certain result in advance, sineanatrices (17) satisfy the conditions
(16).

The Dirac equations (18) present a very asymmetric aspeet z-axis and the
operatoms clearly play a special role in them.

TheW; that are solutions to these equations are then inigallpled to the choice of
axes as in Pauli’'s theory; they must be used in oa@alculate the probabilities for
which thez-axis plays a special role. If one takes other ax@s ¢ime can write equations
of propagation that still have the form (18), but theyl wdve other function&; for
solutions that are coupled to the preceding ones by tramsfions that are analogous to
the ones that we encountered in Pauli's theory; wal gixamine that point in the
following chapter.

There are some interesting remarks that can be niede the passage from the old
equation (10) to equations (18). That passage is somevdiagans to the passage from
the equation for light waves to Maxwell's equationsdded, the equation of propagation
of light waves in vacug is:

1 d%u
u P (23)

It is a second-order equation in whicllenotes a quantity that characterizes the light

perturbation. In electromagnetic theouwycan be any of the six components of the two
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fields of the light wave — viz., the electric field atice magnetic field. One will then
have six equations of type (23) for the six quanthiges, h,, Hy, Hy, andH,.

The passage from those equations of propagation to Miéxwegluations consists
precisely of replacing the second-order equations withl&meous first-order equations
that couple the six quantitids, ..., H, in such a fashion that the six second-order
equations of type (23) will be a consequence. That is indeedtl® path that Dirac
followed on order to pass from the second-order equatihby to the first-order
equations (15).

If the wave of wave mechanics has any physical reialithie classical sense then one
would expect that the fou#; would be the four components of a space-time vector.
However, we know today that the wave of wave mecharassno physical reality in the
classical sense: It is a complex expression thateseonly as an intermediary in the
calculations and permits one to define certain real egpres that do have some physical
meaning, such as the probability density”". In Dirac’s theory, the fou#; do not by
any means need to have the character of vector comppaedtsve effectively see that
they do not. However, there exist certain real coatitons of these quantities that have
a physical sense (as a probability) and possess a vectoaiacter. We expect to learn
about them soon.

4. The Dirac equations in an electromagnetic field- Equations (18) are suitable
only in the case where a field is absent. What musttake to be the equations of
propagation when the electron displaces in a field ithdefined by a scalar potenthl
and a vector potentid@d? Dirac answered that question by saying: It sufficesplace
the operationg; of the formulas (9) with the operatoPs of the formulas (6) in the
symbolic equation (12).

If one assumes Dirac’s postulate then the equations opapgation in an
electromagnetic field can be written symbolically as

(P4+0'1P1+0'2P2+0’3P3+0'4moC)qJ:O, (24)
or, explicitly:
(P4+IT]0C)L|J1+(P1+i Pz) Y, +Ps; Y3 =0,

(P4+IT]0C) WY, + (P]_—i Pz) Y,-P3; Y, =0,
(25)
(P4—IT]0C) WYs + (P1+i Pz) Y, + P Y, =0,

(P4—IT]0C) l-|J4‘|'(|:);|_—i Pz)qu—P;gLPz:O.

What is truly remarkable is that these equations, whrehobtained by means of
general considerations that are completely independenheofdifficulties that were
pointed out in the first part of this book contain theparties of the rotating, magnetic
electron! We shall begin to understand this fact by isgeto define second-order
equations that generalize equations (15) in the case valnesdectromagnetic field is
present upon starting with equations (25).
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3

In order to do that, we apply the operaRar— [Zail?+a4m)cj to the symbolic
i=1

equation (24). We will then obtain:

[a—ime—amcj( W P+a4na§w=0- (26)

If we develop the indicated operators while taking thatisais (16) into account then
we will find that:

{Pﬁim(%— PRI-2 P-2(aq PP+gq RB- @ QC}P =0. 7)

3
i=1 i %]

We now recall that the electromagnetic fields arapted to the potentials by the
relations:

h =-gradV - EG_A H = rotA. (28)
c ot

Upon taking into account the definitions (6) and theditons (16), we will obtain,
after a simple calculation:

3 h e
> a,(P,R-PR =- ——(ahx+ amhy + azhy),
= |( 470 i 4) zmc( 1 2hy 3 )

(29)

h e
z(aiajl:i)l:j)+ajq PP :_Z—Hig(az asHy + as anHy + a1 o Hy).

iZ]

Equation (27) will then become:

) N2 2 e h
{Pa, _Z;,I? —'TBCZ—EGZE(%Q*LUZU*L%Q)

+§ E)Z%(azang +aaH, +ag H Z)} Y =0. (30)

If just the first three terms in brackets existrihone will be back to equation (5),
which will then be valid for eacH; . The new element that is introduced by Dirac’s
theory is the intervention of the supplementaryngein (30). In order to discover the

sense of those supplementary terms, look at therelativistic equation (2), which we
can write in the form:
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3
[Z%CDQ—Z pz—ZnaUJW:O. (31)
i=1
Upon comparing (31) with (30), we perceive that we can denshe supplementary
terms in question to be the potential energy termspohuthe condition that one must
divide by — 2ny , except that the role that was playedntyin the previous theories will

be played by -a4 my in Dirac’s mechanics, as we shall see latedn (Ve then agree to
define potential energy terms pye-multiplying the two supplementary terms in (30) by

1 o . , .
= . Taking into account the commutation relationsMeen thea; , that will
2mya,  2m,
lead us to set:

Ue =— eh i(O’l arhy+ O’4hy+0'3 0’4hz),
4rrm,
(32)
eh .
Un=- i (p azauHy + oz nauHy + an a2 s Hy).
4rrm,

Now, one must remember that a body with an eleatoment) that is placed in an
electric fieldh will possess a potential energy ofsB (h), while a body with a magnetic
moment ofIt that is placed in a magnetic fieldl will possess a potential energy -of

(™Mt OH). We are then led to attribute a magnetic montenthe electron whose
components are:

: eh . eh
My = o azas, My= s avas, M=

- 4rm, C 4mrm, C 4rm, C

i aL 4o Qy, (33)

and an electric moment whose components are:

eh i0'10'4, ‘By: eh i0'20'4, ‘BZ: eh i0'30'4. (34)
4rm, C 4mm, C

Pz 4rm, ¢

In order to speak more precisely, the quantitg® @nd (34) are theperatorsthat

correspond to the components of the two momerits:esél%: is the Bohr magneton,
one sees that the Dirac equations automaticallybatit a proper magnetism to the
electron that is coupled to the Bohr magneton. thén see the magnetism of the
electron appear, and we will soon have occasiom#ie that first indication more
precise. Moreover, formulas (34) show us that Eme@c electron also possesses an
electric moment whose significance we shall sesr la.

(*® See Chapter XV, para. 4.
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The components of the two moments that were defined by 488) (34) are
operators, since they are expressed with the aid ofitheThat should not surprise us,
since we are accustomed to seeing physical quantitiesmgiygo operators in the new
mechanics. Moreover, it is easy to verify that dperators (33) and (34) are Hermitian,
Indeed, since the; are Hermitian and anti-commute with each other, pradsigth as
o o Or q ap au, for example, will be anti-Hermitian, and as a tggteir product with
i will be Hermitian. The operators (33) and (34) willthmdeed have the desired
character for something that would represent physical gigsntit

We then find that we have eliminated a difficulty tleaisted in Dirac’s original
presentation, which wrote formulas (33) and (34) withoet fdctor of as, and thus
obtained non-Hermitian components for the electricneot.




CHAPTER Xl

RELATIVISTIC INVARIANCE OF
THE DIRAC EQUATION

1. Invariance of the form of the Dirac equations under a Loretz transformation.

The Dirac equations make thaxis play a special role, and, as in Pauli's thedry, t
wave function serves to answer some questions of pipahbi which the z-axis is
involved. If we would like to pose the same questiongrolbability for an axi®Z that is
distinct fromozthen we must write the Dirac equations in a systdéraraoZ is the third
axis. We must be able to write the Dirac equationthe same fornfor all systems of
axes, while the four wave functions transform in aasertashion when we pass from one
system of axes to the other.

Not only do the Dirac equations, like the Pauli equafipnssess just that invariance
of form with respect to spatial coordinate changes, ey aire also invariant in form
underall Lorentz transformations, and thus satisfy the prieai relativity.

One knows that a Lorentz transformation of the tngeneral type can always be
decomposed into three successive transformations. nStaritih the original system vy,

z, t of space-time coordinates, one performs:

1. Arrotation around thez axis, which is defined by formulas of the type:

X=X cosa -V sina, y =Yy cosa +X sina, z=Z, t=t. (1)
2. A rotation around they axis, which is perpendicular tzand is defined by:
z=Z7 cosfd-x sing, X=X cosa +Z sina, y=Y, t=t. (2

3. A simpleLorentz transformation — i.e., the passage from gs&Eemoxyztto a
systemo'X'y'Zt' that is in uniform relative motion with respect to tmst one, with thez
and Z axes sliding over each other, while the other axesireiarallel, respectively.
One will then get the well-known transformation farlas:

Z'+ﬁCt t = C (3)

in which Sc is the velocity of the second system with respethe first one. If we set:

= coshy, B . \ costf y— 1= sinhy 4)

1-B? 1-B?

X=X, y=Vvy, zZ=
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then formulas (3) can be written:
x=X, y=Yy, z=Zcoshy+ctsinhy ct=ct coshy+Z sinhy (5)

Upon combining three formulas of the types 1, 2, and 3,caneperform a Lorentz
transformation of the most general type.

The invariance of form of the Dirac equations undgeeral Lorentz transformation
will be proved if one can arrive at a solution of théofwing problem: Knowing that the
Dirac equations:

P+ P+ Py+asPs+asmpc) W =0 (6)

admit the function®1 (x,y, z 1), W2 (X, ¥, z 1), W3 (X, ¥, z t), W4 (X, ¥, Z 1) In a system of
Galilean axesxyzt show that in another system of Galilean axg&zt’, the Dirac
equations:

(B +a,R+a,R+a,B+a mo¥ =0, (7)
in which, one has:
h 0 e h 10 e
P=-———+=A, ..., P =— = +2V', 8
Y 27 ax' cA‘ Y 2mcot ¢ ®)

will admit functionsW,(x, Y, Z, t), W,(X,VY, Z,t), W,(X,Y,Z,t), and W,(X,VY, Z, 1)

for solutions that can be expressed linearly as functadnd;, ..., Y4 by means of
formulas that involve the parameters that define theagasom the systewxyztto the
systeno'xX'y'zZt'.

It suffices to solve the problem thus-posed for the thr@esformations 1, 2, and 3
that were pointed out above, since any Lorentz tramsfbon can be decomposed into
transformations of those three types.

1. Arotation arounodz

Start with the equation:

(P4+IT]0C)L|J1+(P1+iPz)LP4+P3L|J3:0,

(Pa+mpc)Wo+ (PL—iP2) W3—-P3sWs=0,

(Ps—mpc) Wz + (PL+iPy)W+Ps W, =0, ©)
(Pa—mpQ) Wat+ PL—iP) W, -PsW,=0.

Since the change of variables is expressed by the farijlaone will have:

P.= P cosa-P, sina, P,=P, cosa-P sina, P;=P,P,=P, (1)

and upon substituting this in (9), one will easily findttha
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(R+moW, +(RE+ iR E)W + BW =0,

(a"*'”b@wz'*'(l:l’ém_ in’é”)‘Ps— E"PEO’
(10)
(P4"”1>©W3+(F1’@'+ i%’g)‘“ﬁ ELIJJ:O’

(B, -moW,+( Eém_ iR éa)wl_ B ~=0.

In these equations, thé; are assumed to be expressed as functions of the primed

variables with the aid of the transformation relasi¢h). Multiplying the first and third
equations in (10) bg'?’ 2 and second and fourth one &§’ 2 and adding them will

give:
(P+mow, 62 +( P+ IR)W 87+ g ¥" =0,

(P4'+m>©q’1é”/2+('?— ie)wsémz_ E"Paiélz =0,

(11)
(Pi—mQW, e +( P+ iR)W, e+ R¥, & =0,

(ﬂ—"b‘jq’lé”/“('?‘ ie)wzlglz_ E"Pziélz =0.

The system (11) shows us that the functifitjsare coupled to the functioli4 by the
simple formulas:

W (X,y,Z,t) =W (X,y,Z,t)e?'?
W (X,y,Z, t) =W (X,Y,Z,t)e"?
_ (12)
W (X,y,Z,t) =W (X, Y, Z,t)e'?
W (X, Y, Z,t) =W, (X, Y, Z,t)e?
and the required proof is found in this case.

2. Rotation aroundy.

Since the transformation of coordinates is giver(2)y the transformation of Dirac
wave functions is given by the formulas:

W (X, y,Z,t) =W (X, Y, Z, 1) cosg+ W, (X,V,Z,t) sing,
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W, (X,y,Z,t)=¥ (X,Y,Z,t) cosg—wl x,y,z,t) sing,
(13)

I ! ! —_— ! ! H ! ! H H

W,(x,y, Z,t) —Wg(x,y’,z',t)cos§+ l4J4(x,y',z’,t)s|n§,

W (X, Y, Z,t) =W (X, Y, Z,t) cosg— W3 (X, Y, Z, 1) sing.

One proves this by an argument that is analogous tthéhat was made for case 1.
3. Simple Lorentz transformation:

Since the transformation of coordinates is expressdthidoyormulas (5), that of the
Dirac function will be given by:

W (X, Y, Z,t) =W (X, Y, Z, 1) coshg+ W, (X, Y, Z, 1) sin ‘2’

W (X, Y, Z,t) =W (X, Y, Z,t) coshg— W, (X, Y, Z,t) sinhiz’,
(13)
WX, Y, Z,t) =Ws (X, Y, Z, 1) coshg+ W, (X, Y, 7, 1) sin ‘2’

W (X, Y, Z,t) =W (X,Y,2Z,t) coshg— Wy (X, Y, Z, ) sin ‘2’

One again proves this in the same fashion, and the ingarianform of the Dirac
equations for the most general Lorentz transformatiadhen proved.

One sees from formulas (12), (13), and (14) that ¥hedo not transform like
coordinates. As we have said already, they do not th@veharacter of components of a
space-time vector. However, we hope to soon define nekpressions with the; that
do have a vectorial or tensorial character and areptysically significant.

2. A more synthetic proof of relativistic invariance.— We shall indicate a more
synthetic proof of the invariance of the Dirac equatiofise proof that was developed by
von Neumann is a generalization of the one that wadogred by Pauli in order to prove
the invariance of his equations with respect to the aharigectangular coordinates in
space.

Take the Dirac equation in its symbolic form:
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3
[a+Zaiﬁ>+a4rrchW=0, (15)
i=1

and first apply the operater . We will then gets? = 1):

3
[a4P4+Za4ail?+rrbch:0. (16)

i=1
We shall now take the variables of the Minkowski universe:
X1 = X, X2 =Y, X3 =2, X4 =ict, a7)
in place of the variables y, z t, and define the corresponding operators:

h 0 e

= =+ :Pl ]E:Pl ]E:Pl
B maw e 2 :
h 0 e P,
m=—-—————+—=IV =%, 18
2mox, c [ (18)

Equation (16) is then written:

3
(a4ﬂ4+2ia4aizz+imocjwzo. (19)

=
With von Neumann, we then set:
W=iaya, Y=lia,a, B=Elasas, y=as. (20)
It is easy to verify that one has:
w=1 WR+yu=0  (#)), (21)
which one can summarize by writing:
YU+ yu=29 0L, (22)
in which 1 is the identity matrix. One also vezgfithat thgs are Hermitian.

With those notations, equation (19) will take tbendensed form that is used
frequently:

(iyizzﬂmocj W =0. (23)
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Now suppose that we make a change of Galilean axes Ywfa general Lorentz
transformation. It is well-known in the theory ofla@vity that a general Lorentz
transformation is equivalent to a rotation of the axethe Minkowski universe. The
new variablesx after the transformation will then be coupled to ¢iek variabless by

the formulas:

Xi :Z 0|,>< ' (24)

in which o is a matrix with four rows and four column that satisfy the orthogonality
relation:

Z O G = A - (25)
Now, it is obvious that the transform like thes ; i.e., that:
= z Oy 77; . (26)
After the change of coordinates, equation (23) will thenvritten:
4 4
(Z%Z%HIH%CJWﬂ, (27)
i= i=1

in which the function$’ must be expressed with the aid of new variabjes|f we set:

Y, =20 ¥ (28)

then we can replace (27) with:

[iyin} +imocjlv:0. (29)

Equation (28) expresses the matrigesas functions of the matricggs. If one would
like to make its meaning more precise then one can:write

4
Vj,mn :zolj yi,mn ' (30)
i=1

in which, for exampley mn denotes the element of the matgixvhose indices anma, n.
Since one has:

4 4
j,Em = ZOUDVi]mn = zOu'Dyimn 7 Vj,mn’ (31)
i=1 i=1

() The matrixo is not real; those of its elements that contairirttlex 4 once will be pure imaginary.
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by reason of the Hermiticity of the, one sees that, in general, tjjearenot Hermitian,
because not all of thay are real.
It is easy to verify that thg/ satisfy conditions of the form (22). In fact, onsha

Vi = XonXan+Xqx ek
:zzokiq]' (ABIAD) (32)

The essential point of the argument is that tleaists a matrix\ with four rows and
four columns such that one has:

V. =Ny A (=123 4). (33)

If the relation (33) is true then the fact that yhsatisfy the relations (22) will imply
that they satisfy the analogous relations:

VY. +V ¥ =24. (34)

Equation (33) can be written:
ANy =yN (i=1,2 3,4, (35)

so in order to prove thexistenceof the matrix/A, one must show that there exist 16
guantities\y that satisfy the 64 equations:

Z/\m Viim = Zyi,kl/\lm ; (36)

in which the indice&, m, i can take on the values 1, 2, 3, 4. The existehtee matrix
is then by no means obvioaspriori. Meanwhile, we shall assume the existence of that
matrix temporarily, and then justify that hypotlsssiposteriori

Before going any further, we remark that the matvicannot be unitary, in general.
In fact, if it were unitary then we would have:

A=A A=Y (37)
and as one will infer from (33) upon taking thecaalj equation:

Y =W N =N (AT (38)
one will have:
Y=ENTRA= Y, (39)
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by virtue of (37) and the Hermiticity of.
It will then result thaty/ will be Hermitian, which is not generally true, as lsve

seen.
Now, recall equation (29) by introducing the relation (38)will become:

4
[Z/\‘lyj/\ng +imocj W =0. (40)
j=1

Multiply this on the left by\, and upon remarking that the matrfixcorresponds to
an operation that is performed on the Dirac index,roate it with 77, . One will get:

4
[ZVJ- 7T i mocj/\w =0. (41)
j=1

Formula (41) expresses the following theorem:

THEOREM : When one makes a Lorentz transformation, one can keep the same form
for the Dirac equations, but the new wave functi@fjswill be related to the old onés;

by a linear transformation:
4
WX, Y, Z,t) =AW (X, Y, Z,t) = D AW (X, Y, 2, 1). (42)
k=1

That is precisely the result that was establistiezhdy in paragraph 1.

We can now justify the hypothesis of the existen€déhe matrixA. Indeed, we
learned in paragraph 1 how to calculate the linesarsformation that each functid is
subjected to for each of the three types of coatdinchange into which one can
decompose any general Lorentz transformation. Néa know (at least, in principle)
how to calculate the linear transformation of t¥Hethat corresponds to an arbitrary
Lorentz transformation; i.e., to determine the edata of the matriX\ such that:

W,y Z,t) =AW (X,y, Z,t). (43)

Now, from (42), that matriX\ must be the same as the one that enters into 468),
since we know how to calculate it, we are sure ithetists.

Upon referring to formulas (12), (13), and (14)eaan immediately write down the
expressions for the matrices that correspond to the simple cases 1, 2, 3, ef th
preceding paragraph. For example, consider the @&sviz., a simple Lorentz
transformation. Formulas (14) show us that therimna will then have the following
form:
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coshZ 0 sinh‘f 0
2 2
1% o
A= 0 coshE 0 smlcg . (44)
sinhZ 0 cost 0
2 2
0 —sinhZ 0 cosh{{
2 2

It is easy to verify that this matrix is not unitax*(z A™). It will then result that

4 4

D> WY, is not equal toy | Wi"W; . The probability density will then change in value
i=1 i=1
for a simple Lorentz transformation. Indeed, we thee this density is not an invariant,
but the temporal component of a space-time vector.

3. Electromagnetic invariance of the Dirac equations— Aside from relativistic
invariance, the Dirac equations present another typenwdriance that | will call
“electromagnetic invariance” (it is the “gauge” invarian@g Eichinvarianz of the
German authors). Let me explain what that means.

Since the electric field and the magnetic field are defined by the formulas:

h =-gradV - EG_A H = rotA, (45)
c ot
it is obvious that if one replac&sandA with:
V'=V- 109 : A' =A + gradd, (46)
c ot

in which® is an arbitrary function of, y, z t, then one will not modify any of the fields,
because one will have:

—gradV’'- %aait =-—gradV - %%—T 47)

rotA’ = rotA,
Since it is the fields that express the dynamicabastiand since they are insensitive
to a transformation of the potentials of the form (4%, would have to expect from this
that the Dirac equations would be invariant under thossfsemations (46). That is the
electromagnetic invariance in question.
We write the symbolic Dirac equation:

h 10 e 3 hl10 e
———+-V |+ )a|————+—A |[+ta,mc| ¥ =0, 48
KZMC()t c j ,Zzl‘ ‘{ 2mi cox, j 4%} (48)
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and then suppose that we have subjected the potentidls t@hsformation (46). Upon
replacingV andA as functions o¥/”and A, we will then get:

h 10 e e o 4 h1 6 e
— otV r—— |+ | —— = +—A ——=— |+a,m c|¥ =0, (49
KZMcat c czatj 2 ’( 2ricox ¢ caxj 'Tb} (49)

in place of (48).
_2nie
It is easy to verify that if one sed =W e "¢ then one will recover an equation
that has the same form as (48), namely:

h 10 e 2 hl10 e
———+-V a|——-—+—A |[ta clW=0. 49
{(chat c j ,Zzl‘ ‘{ 2micox j 4%} (49)

The passage from the potentigleandA to the potential¥”andA’ does not modify
_z2de
the form of the Dirac equations then, but each ofthwill be multiplied bye "¢ .
However, we know that it is not tH&y that have any physical sense, but certain
combinations oMy . Now, one can verify that any of the combinationghait type,
which we hope to understand soon, will not be modified wdrenreplace® with Wy
_2rie 4
e "¢ ; that is immediately obvious for the probability densE/lPElPk, for example.
k=1
That insensitivity of quantities that are physically meanihghder the transformations
(46) constitutes the electromagnetic invariance obinec equations.




CHAPTER XII

DENSITY AND CURRENT IN DIRAC’S THEORY.
PLANE WAVES

1. Expressions for the probability density and current.

In Dirac’s theory, we must seek to transpose the iddasave mechanics for a
functionW. In particular, we must seek to define a probabilitysdgm of presence and
a currento u for that probability. Here, the expressiongg-and —eo u once more give
the mean electric charge density and the mean eleatrient, with the aid of which, one
calculates the mean radiation that is emitted by afssectrons.

In order to find the form fop andpu, we must always be guided by the idea that the
total probability of presence must remain constant (ggqual to 1), and that the equation
of continuitydp / ot + div (o u) = 0 must be, in turn, a consequence of the equations of
propagation.

We write the four Dirac equations and their four conjugates

(P4+IT]0C) l-|J;|_‘|'(|:);|_‘|'i|:)2) Y,+P3 Y53 =0,

(P4+IT]0C) l-|J2‘|'(|:);|_—i|:)2) Y,-P3¥, =0,

(1)
(Pa—mpc) W3+ (P1+iPy) Wo +P3 W, =0,
(Pa—mpc) Ws+ (P1—iPy) W1-PsW, =0,
and
(P/+moW +(R'- iB)W,+ R¥W:=0,
(PR/+moW,+( R+ iB)W,- BY, =0,
(2)

(P/-moWs+(R' - iR)W,+ BW =0,
(7~ MW+ (R+ IRWI- BW =0,
Multiply equations (1) byWw?, W), W2 WY respectively, and equations (2) Y,

W,, W3, W, respectively. Then take the sum of equations (1) abttasa the sum of
equations (2); that will eliminate the termangc. One will find terms of the form:

WP -y Pyl = w?(iii +fvj w-y (——h_—li +_er e
2mcot c
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h 10

= ___(LIJ?.IJ|)1
271 ¢ ot
WPY -y Pyl = wﬁ(—l_i +§A&jwi -~y (—h_i+_e,gjwiﬂ
et ' ' 271 0X C 20X C
= - Li(q,}ltlpl) .
271 0X

Finally, after multiplying byzlhc, one will find that:

WIW +WOW s WLW Wiy )

+

—c(WIW, WL W W s Wy |

+

—c(iWPw, —iWoW i WIW - Wi |

+
Rlo2loglog|e
1 r— 1 —~

—c(WiW,-wow, Wi —wiw )] =0, 3)

Equation (3) will be equivalent to the continugiguation if one sets:

o =WIW +WIw 1ty 4ty

puc=—c (WU, +WoW +Wip + oy ),

puy=—c (i{WIW, -iWiw +Wiw Wi ),

puy, =—c (WW,-Wow + Wiy -y ) 4)

One effortlessly verifies that the expressionsge real, because they are equal to
their conjugates. One can then consider them tohéedefinition of the probability
density of presence and the components of thesreling current, respectively.

The expression fop indeed has the form that was postulated by Diftdoreover, it
shows that one must normalize tHeby writing:

jjj(w?w1+w§w2+w§w3+waw9m:1, (5)

and that if that normalization is realized at abitaary epoch then it will always remain
realized.

One can give a condensed and elegant form tootimeufas (4) by appealing to the
three matricesr, a», as, and the matrix 1 (with four rows and four column¥Ve write
those matrices as:
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0001 0 0 0 +i 0 01 0 1000
0010 0 0 -i O 0 0 0 -1 0100
ap = , b = . , O3 = , 1= ) (6)
0100 0O +i 0 O 10 00 0010
1000 -i 0 0 O 0 -10 0 0001
and compare them with formulas (4). We see forththigh they can be written:
4 4
p=>y wnw,, pu=-c) W,
i=1 i=1
(7)
4 4
puy=-cd W,W, pu,==cy Wik, W, .
i=1 i=1

Naturally, the mean electric charge dengignd the components of the mean current
ix, Jy, andj, will be obtained upon multiplying, o u,, etc., by -e. One has:

o=-ep,  [x=—eplUy, jy=—eply, j;=-epu,. (8)

2. Vectorial character of the density and current— The quantities (4), which have
a physical sense, present the character of compooém space-time vector, wighas
the temporal component. In order to prove thatuffices, for example, to verify that the
guantities (4) will transform like coordinates feach of the three transformations that
were envisioned in the first paragraph of the pilewechapter, so it will then result that
the same thing will be true for the most generakbtz transformations.

We indicate the path to verification for a tramgfation of the type 1: viz., a rotation
aroundoz One will then have the following relations beémnehe old and new variables:

X=X cosa -V sina, y =Yy cosa +X sina, z=2Z, t=t, 9
so one will also have:
X =xcosa +ysina, Yy =ycosa-xsina, Z=z t =t 9
We have seen that the functidHsthen transform in the following manner:
W =y, gial2 W =y, gial2 W =y, gial2 W =, ghal2 (10)

It is then obvious that one will have:

4

p=S o v =

i=1 i=1
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The densityo remains invariant under the transformation, as thebkai does. One
then sees just as easily that one will hgp, = pu, ; i.e., thez component of the current

will remain invariant like the variable For thex component, one will have:
pu, =-c (qleqJ'A, + LIJ'ZDLIJ'3+ LIJ’3DL|J’2+L|J'4D W)
=—c (W W, +WYJW e +WY & +Ply &9
=—c (W V¥, +¥YJ¥Y +¥YIW +WYIW) cosa
—c (W W,-iVY) W +iWIW - WIW) sing

=puccosa+ pusina. (13)

The componenp uy thus transforms like the varialyte and one can likewise verify
that o u, transforms likey.

One proceeds in a similar way in order to study the wamsitions of the density and
current in cases 2 and 3 (i. e., rotation aroapdand simple Lorentz transformation,
resp.), and one will arrive at the conclusion that fthe quantities (4) are indeed the
components of a space-time vector.

One knows that if a space-time vectohas spatial components, ap, az, and a
temporal componend, then the quantity?a,® — &> — a,> — ag>, which measures its
length in space-time, will be an invariant that is indeleen of the chosen system of
reference. If one calculates the length of the atirdensity vector then one will find
from a calculation that presents no difficultiegi{atgh it is a bit long) that:

C2p2_(pux)2_(puy)2_(puz)2:c:2 [le-l_QZZ], (14)
with:
4
Q= quDqJ1+qJZDqJ2—qJEqJ3—qJEqJ4: ZWiDWNi '

i=1

4
Q= +iW W +iWwW —jwlw —jwiy = ZwF a,aa W . (15)
i=1

The quantitie€2; andQ, are invariants, in such a way that the length (14 uafeat
density vector in space-time is indeed invariant. Theixatra, as asthat is utilized in
the condensed expression fO% is calculated easily by starting with th® ; it is
Hermitian, and has the expression:

0O O +i 0

O O O =i
aL o Q3 Q= . 16
1 U2 U3 Uy +i O 0 O ()

O+ 0 O
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3. The plane wave in the absence of a field.It is very instructive to treat the case
in which a field is absent (viz\/ = A = 0). In that case, the Dirac equation will take the

form:
(LE£+%quJ1— ii+|_hi LP4 __h-al'Ps :0’
271 c ot 2/ 0X 271 oy Zn 0z
(inw jwz— hd ho),, hav,
271 c ot 2m 0X 271 oy 2 0z
(17)
e B A . Lo P
271 c ot 2m oxX 271 oy i oz

N LA W LR
271 c ot 27 oxX 2 oy i 0z

Let us see if equations (17) admit the monochromatogwave solution that is
defined by:

W, = a.eh (18)

Upon substituting this into (17), one will find that:

jal+(px+ipy)a4+pza,3:0,

a+t(Ex—ip)a—pas=0,

o|§

%
oo .
(e

“MmCla+ (Px+ipy)a+p.a=0,

o|§

( mOCJ at+ (Px—ip)a-pa=0.

The homogeneous, linear equations can be satisfied amaalisly by non-zere
only if the determinant:
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w )
?+moc 0 R R+ iR,
w .

0 —+mcC Rp-Ip - R

¢ (20)
) w
pz px+|py ?_n‘bc 0

w
C

p, —ip, -p, 0 -mc

is zero. The calculation of this determinant, whiceasewhat lengthy, shows that it is
equal to:

WZ 2 2 2 22
[——m)cz—a—@-gj-

CZ
It is zero ifW, px, py, p-are coupled by the well-known relation of relativisticamenics:

WZ
=z P~ Py - pS= myc. (21)

Suppose that relation is satisfié)l (Not only is the determinant (20) zero, but so are
all of its first-order minors. We can then assigro tef the foura arbitrarily. For
example, we give two arbitrary valudsaandB to a; andas , respectively. Equations (19)
then determin@; anda,, and one will find that:

A+(p +ip,)B -ip,)A- p,B
a = - p,A+(p +ip) P (P, —ip,)A-p, _ (22)
W/c+mec W/c+mec

One then sees that the plane wave (18) is define@gntione knows the amplitudes
A andB.

One can make an interesting remark about formulas (82he new mechanics, as in
the old relativistic mechanics, we can say that thevtNieian approximation is valid
when the energV is slightly greater than the rest energyc?® (velocities that are small
with respect to the velocity of light).

It results from (21) that if the Newtonian approximatienvalid then each of the
quantitiespy , py , p. Will be very small in comparison toy c; we would then refer to
formulas (22). When the Newtonian approximation is vdhejr denominators will be
reasonably equal tand c, and one will see that; anda; are very small in comparison to
A andB. It will then result that in the Newtonian approxtroa, the function$V; andW¥,
will be almost negligible in comparison ¥; andW¥,. In that case, one is then reduced

() We assume, for the moment, thatis positive; i.e., that one has, from (21) thet:/ ¢ =
+/mic+ pi+ g+ p>. Later on (Chap. XX), we shall want to know what tegative solutioW /¢ =

- m’c+ p’+ g+ @’ signifies.
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to a problem with twd¥;, as in Pauli’s non-relativistic theory. A partialjasimple case
in which the Newtonian approximation is found to be rigoypusllid is that of one
electron at rest in the system of reference thamployed. The functiorg; are then:

2—ﬂimo 2t 2—ﬂimo 2t

W, =W,=0, P;=Aeh y Y,=Beh . (23)

Therefore, the wave#; andW, will be rigorously zero in a system of Galilean axes
that are attached to the electron.

4. Density and current for a plane wave— We just saw that in the absence of a
field, the Dirac equations will admit the solution:

i 27
W=~ PA* (P Ipy)BeTONt-wX-Wr 924’
W/ c+ mc

—i - 27
WY, =- (P Ipy)A szeT(VVt‘RX‘RyY 9?,
W/c+mc

(24)

27
— Wt-pxpy R2
S ) =Aebh b

27
— Wt-pxpy R2
W4:Beh b ,

in which the constantd/, px, py, p.are coupled by the relation (21). The constansd
B are arbitrary, except for the normalization conditio
We calculate the densigyof the plane wave (24):

2 * * * * 2+ 2+ 2
p=> WiW = AN +BE + (AN +BB) > P T P
i=1

W/ c+ m¢*
= (AN +BB) |1+ W/CTMC | ax 4Ry _DVIC
W/ctmq W/c+mc
We likewise calculat@ uy, from the definition in (4):
PU=—C(WIW, +WIW +WIW s Wiy = AA +BE) —2PC (26)
W/c+mc

which one can write by taking (25) into account:
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CZ
puc=p (27)
w
The componenty of the velocity the probability of presence is then:
(28)

Now, the componeniy of the velocity of the electron in its classicainception is
that:

c w
Px = MC _ — W, (29)
Ji1-p> ¢
from which, it will result from a comparison with (28jat:
Ux = Vy . (30)

Upon reasoning with thg and z components, one will obtain formulas that are
analogous to (26), (27), and (28), and one can conclude that:

Uy =Vy, U =V;. (31)

Briefly: the velocityu of the probability in the plane wave is everywhere etghe
velocity v that old corpuscular concept would attribute to the edadthat is associated
with that plane wave.

Naturally, in Dirac’s theory, as in wave mechanichwuist one functiotV, the plane
wave will correspond to the case in which one knowsliimamical state of the corpuscle
(i.e.,px, Py, Pz, and, in turnW are known) exactly, but its position is totally unknown

The expressions for the density of electricity arel dbnsity of electric current here
are:

0=-¢€p, x=—epVWw, jy=—epw, j;=—ep\V, (32)

in which p has the value in (25).




CHAPTER Xl

THE PROPER MAGNETISM OF THE ELECTRON

1. The “probability globule” in wave mechanics.

The original idea of Uhlenbeck and Goudsmit consisted cfidering the electron as
a small sphere of electricity in rotation around oneitefdiameters and, in turn,
possessing (at least, in its proper system) a magnetizentathat is directed along that
diameter. That concept cannot be preserved to the iletiee new mechanics, due to the
impossibility of attributing a position and structure te thlectron. Nevertheless, we
shall see that with the aid of the fiction of a “probaypifiuid,” it is possible to obtain a
sort of mean image of the electron in Dirac’s thethgt approaches the image of
Uhlenbeck and Goudsmit. In order to do that, we mustresdll some points from the
wave mechanics of one functith

When we imagine an electron motion that takes place gnand scale — for example,
the deviation of an electron by a magnetic field — ffices for us to be able to describe
that motion in the classical fashion, and thus, tebatte a localization to the electron that
is compatible with the uncertainty relations. Nowisieasy to see in the formulas that
under the usual experimental conditions, the wave lergth is associated with the
electron is much smaller than the smallest lengthleatan measure directly. It then
results that it is possible to construct a small grotipvaves that is defined by the
superposition of monochromatic plane waves of extrgmielse frequencies and whose
dimensions are negligible at our scale. A precisendation that is made on an electron
will thus permit us to attribute a state of motion andifian to the electron that is well-
defined in practicat our scale without violating the uncertainty relations. The fictis
probability fluid — whose density is, by definition, equal to the inten$ity” - forms a
sort of small globule in this case, in whose intetlog applied force can be regarded as
constant. Since the globule agrees reasonably wdillitgicenter of gravity, it will then
result from Ehrenfest’s theorem that the globule @solke a material point that obeys
the laws of classical mechanics. Since the corpusolenaaifest its presence only in the
interior of the globule, and the dimensions of thebgle are negligible in practice,
everything will take place as if the corpuscle itselfysukthe classical laws. That is how
things happen in the macroscopic domain that is at théiganoetween the old and the
new mechanics.

However, one must remark that the probability glololdes not represent the internal
structure of the electron, as one would be first ledhitaikt The electric density eo in
the interior of the globule does not represent a @&leetric density that exists in the
interior of the electron, which one assumes to bereldd. In the present theory, one
assumes that the electron is point-like and the tensep is, as we have explained
already, only a mean electric density. The probalglitypule is therefore only a sort of
meanimage of the possible localizations of the electrtins that mean representation of



118 Chapter Xl The proper magnetism of the electron.

the classical conception of the electron that is aguggred most closely by the new
mechanics. Moreover, it is upon studying the probabiliypgle in the Dirac theory that
we expect to see the proper magnetism of the eleappear in a form that is analogous
to the original idea of Uhlenbeck and Goudsmit. We shali see that it is a good form.

We shall recall how one can obtain a simple modéh® probability globule in the
context of the wave mechanics of one functiéDarwin). Suppose that the waNkehas
the form:

XP+yPH P _zimnb(vijw\”
W(x,y,z 0)=ae 2 eh "

)

at the initial instant = 0, where the amplitude, which has spherical symnatrynd the
origin of the coordinates, is a Gaussian functiothefradius vector'). The amplitude
becomes negligible once the distance from the mbgcomes a small multiple of One
can say that the globule at the initial instant hasedsions of order oz The second
exponential factor in (1) represents the phase fadtar mplane wave at time zero. In
order for the wavéV to be equivalent to a group of waves, the quamtithat measures
its dimensions must be small with respect to the wargthh / myv. By reason of the
extreme smallness of the latter quantdgan nevertheless be negligible at our scale.

Darwin studied the propagation of a globule of the f@ihh He showed?| that
during a sufficiently short time interval the globule wleb be transported collectively
with the velocityv, in such a way that one would have:

_ov (P HZ ¥ op

W(x,y,zt)=ae 20° eh

Wit- X
| Wt=my(y -y ¥ YA (2)
at timet.

This is in accord with Ehrenfest’'s theorem. Howetbg globule always has a
tendency to spread while it evolves in time.

Without insisting upon thus latter point, we can dat Darwin’s spherical globule
provides us with a sort of image of the macroscopic anotf the electron. 1t is
interesting to calculate the density and current optbéability that corresponds to it. In

order to do that, we must appeal to some formulas fragewnechanics in oné:

p=WYY pu= ——[¥ grad¥ - W grad¥]. (3)
One easily finds that:
Ras ez
p=a’e o oU=WY v =py, 4)
at the initial instant, so:
u=v.

() In order for¥ to be normalized, one must haeg$ 72 572
(® One will find the details of the calculations in thathor's book:Introduction & I'étude de la
Mécanique ondulatoireParis, Hermann, 1930, chapter XIII.
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The motion of the probability (or of the mean electtistribution) is therefore a
convection with velocityw, and the Darwin globule indeed gives a mean macroscopic
image of the classical electron from that viewpointlpon transposing the Darwin
globule to Dirac’s theory, we shall see Uhlenbeck anddSmit's spinning, magnetic
electron appear.

2. The spherical probability globule in Dirac’s theory.— Now, let us pass on to
Dirac’s wave mechanics with 4 functioks We have seen that one can give the initial
amplitudes oW; andW¥, arbitrarily, and that’; andW¥, will then be deduced from the
equations of propagation. We then giweandW¥, a form here that was inspired by (1):

S P
Wi(x,y,z 0)=Ae 20° eh " ,

(6)
_X+y*+Z o
Wi(x,y,z 0)=Be 2 en T

Suppose that the Newtonian approximation is valid: We shat that signifies in the

last chapter. We can then replaercl;% 0%, and h_ v, with mec?, and first two Dirac
2m ot 2m ot

equations will give:

Wy :LL (i-Hiqu +6LP3
'o2myec2mi|\ox ax) ¢ az]

(7)
1 h (6 .aj ov,
W= | —=i— W, - :
2myc 2|\ 0x 0X 0z
Set:
x+y?+ 2 o
P=e 27 @ n (% \“H“. (8)
We find the values of the derivatives'Bf andW¥, upon substituting in (7):
1 [ h z . h x+ iy)]
Yixy,z 0)=—— A +—— [+ + Iy)+— F,
1%y, 2 0) 2myc| (m)\é 277i02j E{na(y Y 2t o’ j
i i 9)
1 . h x+iy h z
Wax,y,z 0)=———| A +iv)+— - +——|| F
2( Y ) 2n_bc_ (m)(\(( y) 277 0_2 j %m\! 27710'2)_

These formulas givi; andW; at the instant O for a small valuewofc.
The functiond¥; andW, are almost negligible in comparison‘tg andW¥,, as we
predicted.
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4
If we form the expression for the density ZHJPHJi then the first two terms in the
i=1
sumy. can be neglected in comparison to the last two, anidl suffice to write

Rasazs
p=(AA +BB) e %

(10)
Naturally, one must have (normalization):

X+ y2+ 2
(AA+BB)” Je 20 dx dyd:=0.

Upon multiplying (10) by -e, one will obtain the mean electric density

Naturally, one must calculate the compongntsnow. Here, none of the terms will
be negligible, since the four terms in the expresdionthese quantities will be products
of wave functions of small value with wave functiamfdarge value. One will have, for
example:

(11)

PU=—C (W W, +WW +WW + W)

(12)
which will give, from (7) and (9):
pue=| Ay N Y )ipe(ye N Y] h Zagmyle s
* 2mm, o? 2mmy 0? ) 2mim o?
h y 7 Xy A
= pv, + [(AAD— BB)—= - — (iAB'- iBﬂ)} e o
2mm, o o
SO:
h Ras ez
P = pv, + {(AAD BBJ)——(M?B— |A§)—} < (13)
47,
One likewise finds:
puy:—c(—iqﬂw HYIW - W+ WY )
Rasazs
= pv, + [(ABD+ BAF)——( AR - BE)—} -
47,
(13"
P =—c (YW, -WW, +YW -y

= pv,+

h Rasas
{(iAD |ABD)——(AB“+ AB— } N
4rmm,
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In order to obtain the components of the density ocaArmelectric current, it will
suffice to multiply puy, ouy, ou, by — e, or more precisely, in order to obtain the
expression in e.s.u., multiply them be+c. One will then find that:

Rasass
jX:—Eva+ eh (BB’ - A,d?)i—(iA@— iNBi e &
c 4rmmy, oy 0z
Ras ez
jy= -2 pu, +—N [—(ADB+ AB) - (BB- /-“\Ai} e’ (14)
c 7 4mmg 0z 9 x
Rasazs
= -Cov +—N iag-ig S —(Ae- AB) L | e o
c 4rmmy, 0 X oy

These formulas must now be interpreted.

3. Proof of a formula from electromagnetism.— In order to arrive at an
interpretation of formulas (14), we shall have néada formula from electromagnetism
that we shall prove in this paragraph.

One knows that the magnetic action of a permacement of density is defined by
the vector potential:

A= m’g (d7 = volume element), (15)

and the magnetic field is deduced frénby the formula:
H =rotA . (16)

If one considers the electric current to be coradas a sheaf of electrons in motion,
and if 0 denotes the mean density of the charge in thatf sifeelectrons then one must
setj = dv, wherev is the velocity of the electrons, which is assurt@de uniform.
However, if the electrons are endowed with a magmebment then the expression jor
must be completed by taking into account the intertd the magnetizatioh that then
exists in the sheaf. We shall examine ha¥epends upoh

Let a small magnet that is composed of two magmetisses # and —u be situated
at a distancé from each other. Ifr, 5, yare the direction cosines of the axis of the same
magnet then the magnetic momenbf the magnet will have the components:

my=aul=am, m,=4m, m;=ym (a7)

The magnetic potentigtthat is created by the magnet at a pMrthat is situated at a
distance from it center is:
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)(:E—E:,u(% I+a ,3|++ y{j:(m@rad%j, (18)

Figure 6.

and the field that is createdMtwill have the components:

a)( 1 azl azl-
Hy=— 4 =— r o r

ox (m‘axz M oxay rT1axazj

oy SE R PR L
Hy=--+%=- L+ L+ — |, 19
Y= oy (m‘ayax Moy Mavaz (19)

We shall show that the vector potentdal whoseH field, as defined by (19), must
be its rotation- is given by:

= [m @radﬂ : (20)
in which the brackets indicate an exterior produntleed, one has fdiy :

oA, A, 07 ot) 0 0l 0!
tA)y = —| m—/- m—
= (1otA) dy 0z ay( - axj 62{ m 0 X ma zj

621 62; 621 621 21
— r 4+
= T Mayax ™azax m{aﬁ az} @D

so, by virtue of the well-known relaticml = 0, one will infer the first expression (19)
r

for Hy . One will likewise find the expressions (19) yandH,. This is, indeed, the
vector potential (20) that corresponds to the magfield (19).
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Now, suppose that we are concerned, not with a snmadhet of momenin, but
with an extended magnetic body whose magnetizatiwe know at each point. We must
replacem with | dr in the latter formulas and integrate, which will give

A= m[l @radﬂ dr. (22)

Suppose that the vectdris zero on the boundary of the magnetic body. An
integration by parts will then permit us to write:

w1 Gt G o =TI G5 or =111 ar. o

(whereV is the volume of the magnetic body) and we wiNdanalogous formulas for
Ay andA; . We will thus have the vectorial relation:

A= ”J'rotl (24)

Finally, if we are dealing with a body that is balectrified and magnetized and in
uniform motion with velocity then the vector potential that is created by Huaty will
be, by virtue of (15) and (24):

A:'[\J;J'M ar. (25)

Similarly, it will then be created by a currentdensity:
] =ov +rotl. (26)
It is formula (26) that must serve for the intetation of formulas (14).
4. Interpretation of formulas (14). — Return to formulas (14), and define a eett
by giving the following values to its components:

Rasazs
B-AB)e &

4ﬂﬂh

Rasass
ly = 4 (|ABD iABj e o | (27)
7m,c
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eh Rasass
(BB"-AR)e
477m)C

I, =

The vectorl is real (becausé = |, etc.) and it is zero on the boundary of the

probability globule; i.e., at infinity, here. Withat vectod, formulas (14) can be written
vectorially:

] :—(—Spv+rotl ) (28)

Formula (28) has great interest to us because apomaring it with formula (26),
we see that the probability globutewhich is a mean macroscopic representation of the
electron — cannot be assimilated into a simple rgpbé charge -e that moves with a
velocity ofv, but into a sphere that is both electrified andynedized whose intensity of
magnetization is equal foat each of its points.

The total magnetic moment of the globule is thetwet that one obtains by

integrating the vector. Taking (27) into account and the normalizationdition (11),
one finds that the componentst are {):

_ _eh , o SE eh KBt AB

zm_jj | dr = 477m)c( A"B A§)jjje =2 c ART BB’

o o =2 800
_ _eh BB'- AA

mz_” AT = 4rmyc AN+ BB

The length of the vect@pt is then:

| 90T | =/ 2+ M2+

_ _eh |(A'B+ AB)’-(AB AB’+( BB- AN
47m,c (AA+ BBY

eh
Ammm,c

(30)

*) In reality, 0, <My, M, are only the mean values, as we shall indicate in aspretanner in the
following chapter. One must then wri@x, instead oy, etc.
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The globule thus has a magnetic moment that is éq@aBohr magneton.
Now, recall formula (13), and seek to write it in thenfopux = pw + pv,. We are

thus led to set:

h : y . - 7 _x2+y§+z2
= (BB'- AR) = —(iAB'- iIAB— | e °
2mm,p o g
__h |BB-AAR iAB-iAB, (31)
2mmo? | AR+ B8’ AR+ BB |’
upon taking (10) into account. We likewise set:
v = h -(AB+ AFBZ_(B§— Aﬂ)x
Y 2mmgo?| AA+ BB AA+ BB |’
(31, cont.)
v = h iABD—iADBX_—(ABD+ AB
*  2mmgo?| AR+ BB AA+ BB 7|’
and then set:
o = h (AB'+ A'B __~h iAB”-iA'B
2rmyo® AA'+ BB “ 2rmo® AA'+ BB
-h  BB'- AA
= , 32
“ 2nmmo’ AA'+ BB (32)
Formulas (31) and (31, cont.) then become:
V. = wz-y W, V, =W X-Zd, V, = y—-Xda . (33)

Since we have =v + V', from the manner itself by which we have introdlieewe
will see that the velocity of the probability issteum of the velocity of translation of an
ensemble of the globule and arernal velocity v' that is due to a rotation of the
ensemble that is defined by the velocity of rotatiswhose components ate, w, & .
That velocity of rotation will be represented by thectorw, which passes through the
center of the globule and is parallelf® (since one will havey : aj: @ = My : My, :

2M,) and has a length:

|| =Ja+af+at = — (34)

2o’
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This internal rotation of the ensemble of the meantat fluid explains the origin of
the magnetic momenDt. It becomes faster as the globule becomes smalldch is
easily explained, since the magnetic mom#ht must always be equal to one Bohr

magneton. The probability globule in Dirac’s theotyug gives a sort of mean
macroscopic image of the spinning, magnetic electron.




CHAPTER XIV

THE “MAGNETIC AND ELECTRIC MOMENT”
TENSOR DENSITY

1. The magnetic moment of the Dirac electron in the Newtdan approximation.

In the last chapter, while studying the spherical pribalylobule that was defined
by THE wave functions (6) and (9), we were led to extabitectorl that was given by
formulas (27), which was a vector that represented #gmnatization intensity i.e., the
magnetic moment density — in the globule. Now, & ¢akes formulas (6) into account
then one can write formulas (27), which give the comptmefl, in the form:

eh
Iy = 4mc(_wgw4_w3w2)a
N LR RS (1)
4rm,c
eh

I, =

4ﬂmoc(w5w4—w§w3).

In this new form, the expressions for the comptsehthe vectot are valid for any
Dirac wave in the Newtonian approximation (i.e.,emt¥Y; and W, are negligible in
comparison td¥s; andW¥,), and not just for the spherical probability gltduhat was

envisioned in the last chapter.
The components of the mean magnetic moment ofCtinec electron are then

obtained by integrating the expressions (1) oMesfapace. One will then have:

227 h 0 O
m, = [[[1,dr = 4:%ijj(—w3w4—w3w4)dr,

_ N oepp e on
m, = [[[1,dr :4%ijj(uw3w4—|w4w3)dr, @)

'3 7 h 0 0
m,= [[[1,dr = 4:%ijj(w4w4—w3w3)dr.

One must not forget that these formulas all haug a statistical significance. If one
considers a very large number of electrons thatafiriound in the same state and are
defined by the same function8; and ¥, , and if one measures, for example, the
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component of the proper magnetic moment alongxtaris for each of these electrons
then one will find different results according to t#@ecial cases, but the mean value of

the result that is obtained for the ensemble wilthe9t, of formulas (2). That is only

an application of the general ideas of new mechanioarticular, one recalls that by
virtue of a remark that was made in Chapter VI, paragrapte3gxpressions (1) are not
true physical densities in the old sense, but are the tjaarthat one must integrate in
order to obtain the mean values (2).

The third formula in (2) must merit some of our atemti We know that if one
measures the proper magnetic moment of the electrafigddo thez-axis then one must
necessarily find= a Bohr magneton. The Dirac equations must plaleathat is specific
to the zaxis precisely, because the probabilities of these lmjootheses must be
expressed simply with the aid of tdg . If one then casts one’s eyes upon formula (2)

for 91, is

then one will see that the probability that one niumt a value of +
4rm,c
eh s [[Jww,dr. Thisis in perfect accord
4rm,c
with Pauli’s ideas, which is what Dirac’s theoryduees to when one assumes the
Newtonian approximation here. The mean value 20 will indeed represent the

mean result of the measuremen®lf for a large number of electrons in the state that i

defined byW; andW¥, .

The expressions for the components efi.e., the expressions (1) — are invariant in
form for every change of coordinates in space.t fingst say that if one passes from one
rectangular coordinate systexny, z to another rectangular system y’, z’ then the
components of in the new system will be expressed with the didhe new wave
functions W! in the same way that the old components$ wfere expressed by (1) with

the aid of thé¥; . We shall not verify this here, since it is easy

However, that invariance in form is no longer tfaea Lorentz transformation. One
thus notes that the expressions (1) have the deamicthe Newtonian approximation. In
order to obtain relativistic invariance, one muaste¥; andW¥; into account and insert
the three components of the magnetization intemsityo the six components of an anti-
symmetric tensor of order two, as we shall see.

”J W, W, dr, whereas that of finding

2. Mean magnetic moment of a plane wave in the Newtonian approxation. —
Consider a plane wave that is defined in the Nelatoapproximation by the two wave
functions:

2n
—[Wt- x 1z
W3:Aeh M Y% VHVY'@X,
(3)

.
T”'[Wt-nb\w My y Myl

Y,=Be

What are the components of the mean magnetic m@ment
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With the aid of formulas (2), and upon taking the noizasibn into account'}, one
will easily find that:

4mm,c AN+ BB

— _ eh _AB'+iA'B
My = 477m)cDIAAF+ BB’ )
— _ eh _BB'- AA
M. = 477m)cDAA?+ BB

z
m
6"
| Y
¢ ~J
m
X
Figure 7.

Formulas (4) coincide, moreover, with formulas (29)the last chapter. We
could expect that to be true since the aforementionedulas (29) are valid for any

value ofgin formulas (6), and if we maketend to infinity then the spherical globule in
the last chapter will tend to the plane wave (3).

Refer the direction of the vectlit to a spherical coordinate systéandg.
We will then have:
MM, 29N, = (- AXB—AB¥) : (i AB* —i A*B) : (BB* — AA¥)
=sindcos¢g : sindsing : cosd, (5)
so one easily infers that:

() One might hesitate to write the normalization dto since the integration domain is infinite, and
rigorously speaking one must introduce proper differentidisvever, one can get around the difficulty in
practice by first supposing that the domain is finite andviohsmeV. The normalization condition here
can then be written:

MW f+Ww,F)dr = (AA +BB) V=1,
and one will infer from (2), for example:
— _ eh . . _ eh -AB-BA
M= ame CABBAVE e AdvBE -
Since this result is exact, no matter how lavgs, formulas (4) will be found to be justified.
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(9 (D0

=2 cotg cosg: 2 cotg sing: (cotzg—lj. (6)

Now, one satisfies equations (6) by setting:

~BocatZ e @)
A 2

and the complex relation (7), which is equivalentwo real relations, will show us how
the orientation ofJt is coupled to the value of the raBd A.

One can express this coupling in the followinghfas (Darwin, Jordan): Consider a
sphere of unit radius. The orientation of the veébt is defined by the coordinates
and ¢ of the pointM at which that vector pierces the sphere. Onesptsjthat poiniv
stereographically onto the plane of the equatolenthie center of the projection is the

North pole.
The projection poinm has the coordinates:

X = cotg C0S9, y= cotg sing. (8)

Figure 8.

If one considers thay-plane to the plane of a complex variable then ribhenber
cotgge”j will be affixed to the pointn and, from (7), it will be equal toB/A. One

will then have the following result: The ratioB-/ A is coupled to the direction of the
magnetic moment by the same relationship that esutile number that is affixed to a
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point in the plane of a complex variable with the cli@n that it corresponds to on the
sphere by stereographic projection.

3. The “magnetic and electric moment” tensor density— We have seen that the
expressions (1) possess invariance in form for coordina@ges in space, but not
necessarily for Lorentz transformations. It is méweess possible to find six quadratic
combinations of the four functiont; that transform under Galilean coordinate changes
like the components of an anti-symmetric tensor of aider Here are their expressions,
which are all real:

eh eh .&
/,zyzzlxz4 C(wﬁu2+w§wl—w§w4—w€w9 by Cukz:;wfmzagaNK,
L=ty = — Wi Wiy oy 4 iy ) = 0 iiqﬁmaaw
ZX — - - )
y 4ﬂn_bc 1 2 271 37 4 4 4ﬂrrbc — k 314 T k
Ly =l = — (i iy iy iy ) = ON iiqﬁmaaw
Xy — 1z — - )
y 4ﬂn_bc 11 2 2 3" 3 4 4ﬂrrbc — k 124"t k
9
eh . . . . eh .&
,uxt:JX:4 C(uwﬁv4+|w§w3—|w§uz—|wiw]) =2 C';”’Emﬁ”ﬁ’k’
fe=dy = —N (—wiy iy iy iy y = ON iiqﬁmaw
Y Yy 4 c 1 4 2" 3 3 2 4 4 c — k 24 T ko
=3 =N (W Siwy iy gty ) = O iiqﬁmaw
ZL — vz — = .
4 c 1 3 2 4 371 4 2 4 c — k 34T k

With the aid of the six quantities (9), and upasipg the antisymmetry relatiops,
= — l4, etc., one can define an antisymmetric table of fows and four columns:

0 Ly Hyy My
Hy O py, U,
Mo My O p,)
My Hy M, O

(10)

It is easy to verify that the table (10) defin@samtisymmetric tensor of order two. In

order to do this, it will suffice to verify that e¢hys will transform according to the
following schema:
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, dx dX
U = 2 o, ——1 11
ij ki d)& d)f ( )

k.l

for each of the three simple transformations into Whene can decompose a general
Lorentz transformation.

If one can neglect the wave functiods and W,, which will be true when the
Newtonian approximation is valid, then the quantitigs L4y, andzsy will reduce toly, 1y,
and |, respectively, by formula (1). It is therefore natum@lthink that these three
components ofs will be the three components of the mean magnetiztio their exact
relativistic expressions.

What do the three components, 41, L& then represent? In the theory of relativity,
one must combine the magnetic field and the electeid fin order to define an anti-
symmetric tensor of order two. In a memoir on the meéig electron before Dirac’s
theory, Frenkel showed the necessity of completingrthgnetic moment of the electron
with an electric moment'Y, Here is how Frenkel reasoned: In the old theoryhef
magnetic electron, the electron was a corpuscle plogsessed a proper magnetic
moment. In a reference system in which the elecisoin motion, it must create an
electric field around it that is due to its magneticnrmeot because just as an electric
charge in motion is equivalent to a current, and wilstbreates a magnetic field around
itself, a magnetic pole in motion will create anctle field around itself. The magnetic
electron in motion must therefore possess an elatiiment, and in order to satisfy the
demands of the principle of relativity, the three congis of the electric moment must
be combined with the three components of the magneticembim order to permit us to
define an antisymmetric tensor of order two. We wilirttbe led to considgx, f4t, Lot
to be the three components of an electric moment gensit

The six quantities (9) permit us to form two invariantg.,ithere exist two
combinations of thgs whose value is the same in all reference systentsesel two
combinations are the following ones:

12-P=12+12+12-32-32-372 ()=l d+l, 3 +1,d,. (12)

Indeed, if we introduce the two invariants that wereoantered already in Chapter
XIl, paragraph 3 then:

4
Q, = quq'IJ1+qJ§qJ2_qJD3LP3_qJD4qJ4: ZLPEWNJM
k=1

(13)
4
Q= iV, +iWW -iWWw Wiy = wamlazag;vk .
k=1

One easily verifies the relations:

() Zeitschrift fiir Physik, 37, 4-5, pp. 243.
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IZ—JZ:(e—hj Q7 -Q3), ( EU):( eh jﬂlﬂz, (14)
4rm,c 4rm,c

which indeed shows the invariance of the two qtiasti That invariance is, moreover,
obvious from the tensorial viewpoint, since on time hand|? —J? is the “length” of the
tensor in space-time, and on the other hand, #larsgroduct:

(I D) = Lhyz Lt + Lox Myt Ly Lot

is obviously an invariant under coordinate changespace, but no longer for a simple
Lorentz transformation, as is easy to verify. ihgariance under a general Lorentz
transformation will result from that.

As before, we can remark that the expressionar@hnot physical densities in the old
sense of the word: They are only quantities tha& st integrate in space in order to
obtain the mean values of the components of thenaetagand electric moments of the

electron. These two mean moments, which we demo®® and‘]3, will be given by the
formulas:

zm:mmr, qsszdr, (15)

in which the vectors andJ are defined by their component in (9). Naturalhe values
of the component8x_, etc., must be interpreted statistically. Therfola:

m, = [[[1,dr = 4::Bcjjj(wfwl—w§wz—w§w3+wﬂ4w)dr (16)

signifies that a measurementBt, can provide the valuezi with a probability of
m,c

, with a probability of:

Hj(‘“f‘ﬂ +WIW )dr and the value
4rmmyc

[[[(wow,+ww)dr.

The sum of the two probabilities is equal to utigyvirtue of the normalization condition
onWYy.

Frenkel {), by arguing with the old, purely corpuscular ireaf the electron, showed
that the magnetic momeft of the electron in a system where its velocity isust be

coupled to its electric momefj# in the same system by the relation:

*) Loc. cit.
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P = [ﬂﬁ @ﬂ : (17)

We shall see, in an example, that the Frenkel comdittmains exact in Dirac’s
theory.

4. Simple example: the monochromatic plane wave. We appeal to the formulas
of Chapter Xll, paragraph 3, and simply take the directibpropagation of the plane
wave to be the-axis. We will then havpy = px = 0, and the fou#; will have the form:

278 - 2 27 - 2
w3:AeT(thl), W4:Beh(thl),
(18)
__ pA P _ pA P
Y, = W+rrbce ) qu——W+rrbCe .
c c
With that form for¥;, formulas (9) are given easily:
2
|x:—4eh (A'B + AB) 1+WL ,
me I e
c
3= eh WZIDZ (AB - AB),
47, Wime
c
2
|y:'4eh (AB' - BA) 1+WL ,
me I e
c
(19)
3= eh WZIDZ (A'B +AB),
47, Wime
c
2
|Z:—4eh (BB - AA) | 1+-—P= 3 =0.

me Vo
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One verifies painlessly that one has:
(I'dm) =0. (20)

This is, moreover, a consequence of the second forim(da), since the invariaf2,

will be zero in the present casg. (
The examination of formulas (19) provides the relations

W
2 _
pz( c +"Bcj

ond it

=1y

V.
c
(21)

W
2 -
o[Mmd

Jy:_lx :_Ixﬁ, JZZO

(V:+mocj2+ o] ¢

Upon integrating the relations (21) over all of spac@rder to make the components
of Mt and’P appear, one sees that the Frenkel relation (17) Beee(sincevy = vy, = 0).

When the Newtonian approximation is valid, the raﬁeL will be reasonably
W/c+t+mc
myv, _ 1y, , , - .
equal t02— =5 and its square will be negligible compared tayunOne will then
myc

find the values foly, |y, 1, that one obtained in the preceding chapter upantirsg with
formulas (27) by lettingrtend to infinity, which is a result that one coblaive expected.

One can make the following remarks about the gériermulas (19) and (20): The
vectorJ is normal to the plane that is determined by thetar| and the vectop. If the
speed tends towards the speed of light — i.g; tends toward$V / ¢ (which is then
much greater tham, ¢) — then the trihedron that is composed of theethwectors, I,
andJ will tend to become a tri-rectangle, while thegths ofl andJ will tend to become
equal.

() Indeed, one can obviously calculate that invariant iparticular Galilean system — for example, in
a system where the velocity of the electron is z&tow, in such a system, one will ha¥e =¥, = 0, and
(13) will give Q, = 0.



CHAPTER XV

MATRICES AND FIRST INTEGRALS
IN DIRAC’S THEORY.
PROPER ANGULAR MOMENTUM OF THE ELECTRON.

1. The proper values and proper functions of the Dirac eaations.

The proper values and proper functions of the Dirac expsatre defined easily by
analogy with the situation in the theory of a sirfglection¥.

When the external field is independent of time, thei exist monochromatic
solutions of the Dirac equations; i.e., solutions for wilwh fourW, depend upon time

27

only by the same exponential facmTWt. The four¥, will then satisfy the equations:

KV?V+EGVj+alPl+a2P2+a3I%+a4rrb%qu:0 k=1, 2, 3,4). (1)

The values of the constawW for which there exists at least one set¥afthat are
finite, uniform, continuous, and zero at infinity are theoper values” of equations (1).
Any proper valuah, will then correspond to at least one s¢of proper function$Vy, ,
W,n, W3, andWs, . We give two indices to eadby, such that the first one is the index
that is introduced by Dirac’s theory, and the secondobaeacterizes the corresponding
proper value.

By definition, the four function&/y, that correspond to the proper valldis will
then satisfy the equations:

Km+fvj+iail?+a4nbc}%,n=0 k=1,23,4). (2)

Cc Cc i=1

Since one can multiply the four functioWs,, by the same arbitrary constant without
them ceasing to satisfy equations (2), one will see éhah proper solution is defined
only up to a complex multiplicative constant. One datees the modulus of that
constant with the aid of the normalization conditiahich, as we have seen, must be
written:

jiwf,nwk,ndr =1. 3)
k=1

We shall now show that:

() The set of four proper functiotig, can be called a “proper solution” of equation (1).
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1. The proper valuéd,, are all real.
2. If the proper functionx, and¥ym correspond to distinct proper valuds and
Wi then one will have the orthogonality condition:

| iwfmw d7=0. (4)
k=1

Indeed, since the functioté, obey equations (2), the functioNetEm will obey the
equations:

WD 3
K Cn . j+ZaiDI?D+af m)c} W .=0 k=1,2,3,4). (5)

i=1

Multiply (2) by LIJE,m and (5) by, and then sum each equation over the irkdex
and subtract them; one will get:

4 3
3oy v v Sapw, v, Sawiw,
1 i=1
Fmoc(W,aW, W, AW )] =0. (6)

We shall now show that K is a linear operator that operates on the coatesn@nd
not on the Dirac indicelg then one will have:

4 4
wan FaW,,= z FW, . @'w,, (i=1,2 3). (7)
k=1 k=1

Indeed, upon taking into account the Hermiticityre a; , one will find that:

4
ZLPE,nDFaiLPk,n
k=1
4 . 4 4 .
= zwk,nDFZ(ai)k,quj,n = 2 qu,n(ai)k,jF LIJj,n
k=1 =1 jk=1
4 4 4 . .
= D V@) FW, =2 F¥ D @)W,
jk=1 j=1 k=1
4
= ZF l-I-JD I])'.Dl-l-J Q. E.D. (8)

.ﬂ

We first infer a special case of (7) by settihg 1:
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4 4
zwfnmlwkn: zl'lenlj}llD LIJEn (9)
k=1 k=1

It will then result that the terms m A, e A/, a A, andnmy ¢ disappear from (6).
Equation (6) will then reduce to:

h 0 0 0
—z—mq—'kyn(—alm+a—af+a—zafjwfm} 0. (10)

4 a 4
Wy — gy = L) AV etc., 11
z k,n 6X i k,n z a i k,n ( )

and formula (10) will become:

4
Z { em Wi
k=1

h

0 00140 a
_Z_Hi{&(wknlw )+ (kargz et (wkﬁyawaH 0. (12)

Upon integrating over all of space, the term in curbckets will give zero, because
the Wy are zero at infinity, and what will remain is:

_ 4
%j > Wl W, dr =0. (13)
k=1

If one next sets = m then one will deduce from (13) the "= W, for any value of

n, and that will signify that all of th&\i, are real. If one next takes# m, while
remembering thai\, # W, , by hypothesis, then one will deduce the orthogonality
formula (4) from (13). The theorem that was justestatill then be proved.

The orthogonality relation generally breaks down fao tproper solutions that
correspond to the same proper values (viz., the degersaxsd® However, the proper
solutions that correspond to the same proper valueheitl be determined only up to a
linear transformation, so one can always chooseetposper solutions in such a fashion
that they will be orthogonal.

The case of a continuous spectrum of proper valuegiwdirise to the same remarks
as in the wave mechanics of a single functén Moreover, in a general fashion, the
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parallelism between the two theories is complete hétevertheless, one must note that
there is a difference: In the formulas that involagegration over space, such as the
normalization and orthogonality formulas (3) and @He must sum over the indé&xn
Dirac’s theory. The presence of that summation winsejuite natural once we have
developed the synthetic viewpoint, in which one considieesindexk to be a sort of
discontinuous supplementary variable (cf., Chapter XVI).

2. Matrices and first integrals in Dirac’s theory. — In the wave mechanics of a
single functionW, one makes any linear, Hermitian operakocorrespond to the matrix
whose elements are defined by the formula:

Am= [ WIAW ) dr, (14)

in which dr is the volume element for the domain of existeDctr the functions¥,, .
One then says that the operatas afirst integral for the problem in question if all of the
Anmn are independent of time, and we have seen that upargse

L=t-LZ,
2m ot

the necessary and sufficient #ato be a first integral will be that:
LA —AL=0. (15)
How should we translate these definitions into Dsabeory?

In order to define the matrix elements, we take icmant the remark that was made
at the end of the last paragraph — i.e., that we suppasa summation over the index of
the Dirac functions enters into the integration that occurs in the oldndefn (14).
The matrix elements that correspond to a linear, Heamitiperato® (*) will then be
defined by the relation:

4
Am= [ D Wl AW, )dr. (16)
k=1

We will always say that is a first integral if all of thé\y, are independent of time.
In order to find the condition that expresses tleaithatA is a first integral, we write the
symbolic Dirac equation in the condensed form:

L (W) =0, a7
with

() Naturally, in Dirac’s theory, an operator can opetgien the index, as well as on the coordinates.
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3
L{%Zmﬁwmcj, (18)
i=1
and we remark that upon setting:
3
|-|:—{ev+zcai P+a, m é] (19)
i=1
one can write:
C 2 ot 2m ot

The operatoH that is defined by (19) is the Hamiltonian operatoDirac’s theory.
The operatoH is Hermitian; i.e., it satisfies the condition:

4 4
[ D WenHW )dr= | > W, HY(W. )dr (21)
k=1 k=1

for all values ofm andn. Equation (21) is the obvious generalizationhef Hermiticity
condition in the mechanics of oNé& moreover, it expresses simply that one Has =
H._ , from the definition (16). Formula (21) is provedsily upon taking into account

the Hfrmiticity of thea; and the property of th&, , that they must be zero at the limits
of D ().
In order to express the idea thais a first integral, we write:

ow, .,

ot

0A 4 . ow, . o 0A
e WAl — = [t W (W)t AW, )|dr=0. (22
ot J'D;|: m ( ot k"“c’it( o d (22)

() In order to carry out that proof, one replaces theaipeH in (21) with its expression (19), and one
will verify that the relation (21) is valid for eachrite That verification is immediate for the terms that
containV. For the terms that contadq, A, A, one will have, for example:

4 4 4 4 4
ZeA Z (alu)quJk,n: ZeALP]umz (alu)J,quk,n: Z ij\_ylmalq',j'n'
k=1 =1 j=1 k=1 j=1

due to the Hermiticity of the;, and the relation (21) will thus be proved for those teriibat will remain

are terms like:
& h d .,0
——a Y, ¥ .
Elzniax Pokme o kn

One next has, due to the Hermiticity of e as always:
h 4 h 4 gt 4
i[alDka‘m} qu,n - m

— z Z (@) Wy
27T «,j=1 0x 271 j-1 0X o Yk Ten
and then upon integrating parts, one will have:
aLpJ'D.m

h 4 4 h 4 4 al-l-’k‘n 4 h a9
— X Y@ W dr==—— [ 3 Wi ¥ (@), Tdr: bZ ij,m(_ﬁ&jalwk,ndr '

271 j=1 k=1 il j=1 k=1 k=1
because th¥/,, are zero on the boundarydf Q. E. D.
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. R A
Next, since we have (Wxn) = 0 andL (\PEYm) =0, we replace the derlvatlvesat"—’”

v, .,
and —— 3t T with ZTm H (Wkn) nd—T H’ (W), respectively, which will give us:

aA“”—j Z[ AW, aA(w r)— qﬁ AW k;} (23)
One can transform that expression with the aih@formula:
2 | | 2 |
[ HAWL AW, ) dr= [ 3 W HAW, ) dr, (24)
k=1 k=1
which is proved like (21). Upon substituting (24)23), one will find that:

aAﬂ 40 [GA 2 }
—m = | MW —+=—(AH-HA) |V, d 25
6t .[D = k,m 6t ( ) k,n L. ( )

One then concludes from (22) that the necessatysafficient condition foA to be a
first integral is that:
‘Z—? 2—m(AH HA) = (26)

because th&y , form a complete system.
One can further write the condition (26) in a eli#int way upon remarking that one
has:

of
—A(f)——(f)+A(atj (27)

for an arbitrary functiom, so one will have, symbolically:

A _Imp_add. (28)
at ot ot

Therefore, upon replacing the operadér / ot with its value (28) in (26), one will
have:
LA-AL=0, (29)
by virtue of (26).
The conditions (26) and (29) have the same forthasanalogous conditions in the
mechanics of on®, but with a different definition for the operatdr&ndH.
We remark that equation (1) can be written infthen:

H (ka) = WLPk (30)
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upon introducing the definition (19) &f.
The proper value®y that were defined in paragraph 1 will then indeed be the proper
values of the Hamiltonian operator — i.e., the proparesbf energy.

3. Examples of first integrals. Proper angular momentunof the electron.— We
shall first examine the cases in which the Hamiltorogerator that corresponds to
energy is a first integral. For that to be trues meécessary that one must have:

LH = HL= E(_H +Lij H-H }(—H +i2j =0, (31)
c 2 ot c 271 ot

or, more simply, that:

ot ot ot

Oy_nl=%=o (32)

The necessary and sufficient condition for thergyeo be a first integral is then
always that the external field (which is definedthg four functions/, A, Ay, A, here)
must be independent of time. That is the theorérpaservation of energy in Dirac’s
mechanics.

One also easily sees that if the potential veistaero, and if the scalar potential does
not depend upon one of the coordinates — %aythen the corresponding component of

the quantity of motior{ p, = —Lij will be a first integral.
271 0x

The study of the theorem of the conservation efrttoment of the quantity of motion
is much more interesting in Dirac’s theory. Indeae have seen that in the wave
mechanics of a single functio#, the angular momentum around theaxis, which
corresponds to the operator:

h{ o _o
Me=XP =Y R= —| Yoo = X— |, 33
p-YR Zm(ya ayj (33)

will be a first integral when the force field posses cylindrical symmetry around the
axis. Now, we shall see that this result does paisist in the mechanics of four
functions, and we shall now look for what shouldlaee it.

We first verify that in a field that is derivedofn a scalar potential with cylindrical
symmetn(p, 2) with:

2 2

p=xX+y,

M is not a first integral in Dirac’s mechanics. drder to do that, we must show tihat

does not commute with. It is obvious from the outset thist, commutes withl_%,

271
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a3zimai, andas mec. It also commutes with the terFEqV, because one will have (in
74
operators):
\V yi—xi - yi— Xi V= Xi—yi, (34)
ox ay ox ady dy ~ox

which will be zero, because by hypothe$isyill depend upon only:

2

0= X+Vy .

: . h a
However, by contrastM, does not commute with the terms fmlTa— and
71 OX

—azi_i, because one will have:
271 oy

h o0 h 0) h 0 0
-0, —— |——| Y X— |~
271 0X 2moy ) 2m\ " ox oy
L yi—xi —aii—a _hi :h_2 ai—ai (35)
2m\ " ox oy ‘oiox ‘2may) 4m\ Cox  dy)
One will have, in total:

h? 0 0
LM;-ML=—|a,——-a,— |, 36
4772( % 0x 1ayj (36)

andM; will not be a first integral.

Consider the operator:

Nz = Mz_ o az L (37)
Ar
then.

That operator is Hermitian, because the produth@two matricegr; anda, which
are Hermitian and anti-commute, is anti-Hermitiang the quotient by is Hermitian.
We shall show thal, is a first integral in the case considered. Ideorto do that, we
form the difference:

h h
Laonao, ——-oa, —L.
Y un TN 4

The terms ird / ot, V, andas my ¢, andL obviously commute witl; a» ; the same thing

will be true for the termas%ai, by virtue of the properties af; . What will then
71 0z

remain is:
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h h
Layorb———ay ao—— L
Yun Tt an
" a2 S raad 9 aayi—aggi (38)
8]72 1~1 2 2 lax 26y .

Sinceonehags o= =1, o ana>=—ay anday a» a1 = — a», one will find
that:

h h h? 6 0
Laoao,—— o ar—L = -a.— | =LM,—M, L. 39
Yun M an 4772( 1ayj (39)
One then concludes the relation:
LM,—M,L=0 (40)

from that, and one will see thiat is a first integral.

One can present an argument that is analogous to #wedimg one for the
components with the indicesandy by permuting the roles of the axes. One will then
see that in Dirac’s theory, thetal angular momentum of the electron is a vector with
components:

Ny = My + S, Ny=My+S, N,=M;+S, (42)

in which the operators that correspondvg, etc. are:
2m\ oy “o0z 2m\ 0z 0x 2" ox oy

h h h
=— az—, =z h—, == r—.
> ? 3477i ¥ s l4771 > ! 24771

My, My, M; are the components of the “orbital” angular momantf the electron, and
one will be led quite naturally to consid8r, S,, S, to be the components of the proper
angular momentum of the electron — i.e., the “Spin.

4. Explicit calculation of N, . Sign of the proper mass for the wavéP, . — It is
very interesting to calculate explicitly the operdtl, that corresponds to the privileged
axis and to see the results that one will get ipmeessively applying it to the folk .

Upon starting with the values that we know tarand a» , we easily calculate the
matrix product with the aid of the rules for the lnplication of matrices, and we will
find that:
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i 0 0 O
0 +i 0 O
arao = . 43
Y7lo 0 -i o (43)
0 0 0 +i

One will easily infer from this that:

h
N; (W) =M, (W) +—W4,
4

Nz (W2) =M, (W2) _h Y,
4
(44)
Nz (W3) =M, (W3) +—h Ys,
4

h
NZ (LP4) = MZ (LP4) - l-|J4.
4

We then see from formulas (44) that the proper angndanentum will be +4L for
T

the wave functions with odd indices, &mjl,l for the ones with even indices.
T

We now write the mean value Nf. We have:
4

NS — h

N= [[[ 2 WiN, ) dr = MZ+ZTJ.H[LP1DLP1—W2DW2+LPELP3—LPELIJjdr. (45)
k=1

One must interpret that formula by saying: Thepproangular momentum of the

. h h -
electron along the axis can take on only the two vaIuEs and—4—, so the probability
Ve Vg

under the first hypothesis will be:
[[[w e +wiwar,

and the probability under the second hypothesisbeil
[[[lw;w,+w v ]dr.

One then compares formula (45) with formula (¥6Chapter X1V, which gives the
mean magnetic moment of the electron along
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M, :m(wfwl—wswz—wgw;wiwA)dr. (46)

We see that one can make the following correspurese

the wave¥s; : a magnetic moment eh
4rrm, C
h
and an angular momentum—,
4
. eh
the waved, : a magnetic moment
4rrm,

h
and an angular momentum4—.
T

For these two waves (which are dominant in the tdei&n approximation, as we

. : e
have seen), the ratio of the two moments will beaéto ——— , as one would expect
m, C

from the double magnetism of the rotating elec(fon
However, we will obtain a surprising result foetvaveW; andW, . In fact, from
(45) and (46), one can make the following corresienes:

. h
the waveV; : a magnetic moment €
4m, C
h
and an angular momentum—,
4
. eh
the wave¥; : a magnetic moment
4m, C

h
and an angular momentum4—,
s

so the ratio of the two moments will bei, which differs by a sign from the expected
m, C

value. Where does that anomaly come from? Inrdodenderstand that, we first remark

that everything will take place as if the properssiaf the electron werem, instead of

my, as far as the waw; andW; are concerned. One will certainly see this inDimac

equations themselves:

4
[a+zai|?+a4m,cjw4:0 k=1,2,3,4), (47)
i=1

() The ratio -e/ my cis indeed twice the normal ratio that was given by fdenf7) in Chapter IV.
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when one retains the explicit form for the matmix:

10 0 0
01 0 0
a, = 48
““lo o -1 0 (48)
00 0 -

The termmy has a different sign in the first two equations (40 the one hand, and
the last two, on the other.

One can express that fact by saying that in Dira@er the proper mass, of the
old mechanics is replaced with the operatag#y . Since one has:

—armpW1=—my Wy, —asmpcWo=—my W7,
(49)
—asmy cW3 =my W3, —asmMpCWs=1moWs,

it is obvious that the waves; andW¥, will correspond to the mass,, while the waves
W, andW, will correspond to the massmr . If the reader would now like to review the
argument that preceded formula (32) in Chapter X then He camprehend its
importance better in light of what was just said.







CHAPTER XVI

SYSTEMATIC SUMMARY OF THE RESULTS OBTAINED

1. Considering the index of the functior¥y to be a variable.

Up to now, we have presented Dirac’s theory by sayiagithnvolves the existence
of four wave functions¥V;, W,, W3, W, of the four variables, y, z, t. We can take a
different viewpoint and say that therejust onefunction¥ that depends upon the four
continuous variables, vy, z, t that are capable of taking on all of the real valuesf—oo
to + 0, and a fifth variable” — namely, “spin” — that can take on the four values 1, 2, 3
That amounts to considering the indexof the functionsW to be a discontinuous
variable with four possible values.

The operatorsy, operate on the discontinuous varialflevhile the operators likpx,
for example, act upon the continuous variables. It iifegte to consider operators that
operate on all four variables)(x, vy, z t, such as the Dirac Hamiltoniaf that was
defined by formula (19) of the last chapter.

Now write the Dirac equation in the form:

[a+iai|?+a4rrbch(x,y,z,t,Z):O. (1)

Up to now, we have regarded that equation as a symimliation that summarizes
four distinct equations. We can now consider it to lsngle equation of propagation
through the space of four variablesg, z, {in the course of time.

The integrations that one performs over the spatkre¢ dimensions, y, z in wave
mechanics “without spin” must be performed over the spégey, z {, here. That will
explain the deep reason for the following fact, which wamted out before: All of the
formulas from wave mechanics in which an integratimerospace occurs must be
completed with a summation over the indefrom 1 to 4 in Dirac’s theory.

4
In effect, that summationz corresponds to a sort of integration over the
k=1

discontinuous variabl€, and it will often be convenient for us to represirity an
integral [... dZ. Thus, for example, the normalization conditionwave mechanics
without spin:

J'ZE'[ W(x,y,zt) OP(X Y, 2 t) dx dy d= 1 (2)

will become:

() Although Dirac’s theory is relativistic, in a sengime plays a different role from the other four
variablesx, y, z, Zin it; we shall return to that point later on.
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jTJinBPkdxdydz
:H“ jTJ Wixyzt dOWXyY zt Jdxdydzd=1 (3)

in Dirac’s theory.

Similarly, the new viewpoint permits one to easilg $®w one must write the series
developments in proper functions in Dirac’s theory. é&wjeletf (x, y, z t, () be a
function of the five variables, y, z t, {. It is equivalent to four functiorfs, f, f3, f4 of
the four continuous variables y, z, t. Suppose that we know the system of proper
functions of the Hamiltonian operator. We have ayeagreed to denote a proper
function of that system by the set of four functi®s, , Wom, Wam, Wam, in which the
second index characterizes the corresponding proper vefoen our new viewpoint, we
must represent the set of four functidis, by the single functio®(x, y, z t, ).

The development of the functidifx, y, z t, {) in the complete system B(x, y, z t,

) is then written quite naturally as:

fy.zt =2 6 ¥nxy. 2t Q, (4)

which is equivalent to the four relations:

fic (%Y, 20 =D ¢, WerdX, ¥, Z 1) k=1,2,3,4). (5)

One then sees that each of the four comporigiat® developed in proper functions
W m with the same index, land in addition the coefficients of the developmentsthe
same for the four components. That proposition, whigghtmot seem to be obvious
when one considers to be an index, seems, in the contrary, quite natuh&n one
argues as we just did by replacing the inkexth the discontinuous variabté

2. Statement of the general principles in Dirac’s theory= The introduction of the
discontinuous variabl€ permits one to immediately find how the general prinsigé
wave mechanics transpose into Dirac’s theory.

First of all, we assume that any observable physjoahtity that is attached to the
electron corresponds to an operadhat can generally operate on all four varialxleg
z, {. That operator must always be Hermitian in the spdcey, z {; i.e., one must
have:

”“ 'y, zt, QAgXx Yy, zt, Q) dxdydzd
=[] fxyzt QA g (xy 2t )dxdydzd. ()
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The proper values of the operatoare defined to be the values of the conssaiair
which the equation:

Ap(xy,zt, )=ag(xy.ztJ) (7)

admits at least one everywhere-finite, continuoud,wform solution ir, y, z for each
of the four values of. These proper values, which are generally functionsre, are
real, and two proper functiorgs, and ¢, that correspond to two distinct proper valags
anda, will be orthogonal in the spacey, z {; i.e., one will have:

[[]] 8¢y, 2t 9 ¢n(xy, 2t ) dxdydzg=0. (8)

We shall prove these results by the same method thagmyployed in Chapter V,
paragraph 4, by always adding a summation a¥¢o the integrations ovex, y, z
Moreover, we shall always suppose that the proper fume#i, have been normalized by
the condition:

”” P XY, 2t ) da(X Y, 2t )dxdydzd=1. (9)

Having said that, it is easy to state the fundamemtatiples of the new mechanics
in the context of Dirac’s theory.

The first of these principles can be stated withdainging anything by saying that a
measurement of the quant#ythat is performed at the instanwill necessarily yield one
of the proper values of the operafoat that instant as a result.

In order to state the second principle, we supposeofirsll, that the operatok is a
completeoperator; i.e., that it involves all four variablkes, z, { Furthermore, we also
suppose that it isondegeneratei;e., that it has no multiple proper values. Thesftat
W(x Y, z t, {) be the wave function of an electron. That wawugfion can be developed
in proper functions of the operatarin the form:

WX Y, 2t )= C (XY, 2t ), (10)

in which thec,, are complex constants that are generally functidrisne. The second
principle then asserts that,| (t)  is the probability that a measurement of the quaAtity
will yield the proper value, that corresponds i@, .

If A possesses multiple proper values then the sgmall correspond to severd, .
The probability of getting the valia, for the quantityA will then be equal to the sum of
the squares of the moduli of the coefficients thatteeto thes@, in the development of
Wp.

If the operatoA is incomplete — i.e., it involves only some of the ablesx, y, z, {—
then the corresponding, will depend upon only those variables and coefficiept
the development o¥ in @, that depend upon variables that do not figurd.inin that
case, if one is to obtain the probability of the promduea,, then it will be necessary to
integrate the quantityd.(t) | over the entire domain of those variabley, z, ¢ upon
which ¢, depends. For example,Afis an operator that acts only upon the variable
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like one of thea; , then those proper functions will have the fogm ({), and one will
have:

WXy, 22 =36, (Y21 ¢l (12)

The probability that the quanti#y has the valua,, will then be given by:
jjj | cn(X, Y, Z 1) P dx dy dz

We will see an application of that result in thddwling paragraph.
Having assumed those principles, one will see thatnten value of the quantifyis
indeed, equal to:

A= ”” W AW) dx dy dz § = jTJWkDA(HJk)dr, (12)

as we assumed, because if one repldgesind W in that expression with their
developments in proper functions Athen one will easily see that it is equal to thens

4
of the products of each proper value with its plolig. The quantityz W AW,) can
k=1

then be called the “mean-value density” for themgiina A, but as we pointed out in
Chapter VI, paragraph 3, such a density cannotbsidered to have the same physical
sense as the densities in classical theories. ritheess, we shall soon see that the
densities of that type that correspond to the dpesa; and to Hermitian operators that
are composed of products of teewill be real and possess a tensorial character that
permits us to get closer to certain quantitiesla$sical physics.

Finally, recall that the elemeijtof the matrix that corresponds to an operatomnust
be defined in Dirac’s mechanics by the formula:

A =[] Wiy zt QA (Wix Y. 2 t0))dxdy dz g

= jfji WoAW, ) dr, (13)

and is equal to the coefficient % (X, y, z t, {) in the development of the functiéq¥;)
in proper functions of the Hamiltonian operator.

In the foregoing, we implicitly supposed that th@ectrum of the operatdkx was
purely discontinuous. What we said in Chaptersw ¥l about continuous spectra will
permit the reader to see effortlessly how the fdaswahat were written above will be
modified when there exist proper values that dedim@ntinuous sequence.
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3. Example: proper values of the operatofit, = eh i a» a; . — As an
4rrmyc
example of an operat@that acts upon only the spin variable, we takeotherato®)t, =
eh
4rrm,C
magnetic moment of the electron (cf., Chapter BXha end).
In order to abbreviate the writing, we set:

I ;1 a2 a4, which we have made to correspond tozltemponent of the proper

B = eh
4rrm,C

= Bohr magneton. (14)

From (7), the equation that defines the propeuesland proper functions of the
operatofi; is:

B i (i = G=1,234. (15

Upon taking into account the values of the eleseritthe matricesn, a», a,, one
will find that for each of the four values of thariabled, one will have:

Bp(1)=+¢(1), Bg(2)=-¢(2), Bg(3)=-¢@3), Bp(4=+9(4). (16)

These equations will admit a solutign(¢) that is not identically zero only if one has
a =* B. The operatofi, will then have only the values B for proper values, as we

expected.
For the proper valua = + B, there exist twandependenproper functions that we
call:

¢(¢) and ¢2(J).

These proper functions are defined by their valioesghe four possible values of the
variabled, namely:

D=1, ¢(2)=0,  $7(3)=0, ¢P(4)=0,

(17)
$P(1)=0, 9 (2)=0, $P(3=0, ¢2(4)=1.
These functions are normalized and orthogonalusecane has:
[lw@[dz=1,  [|w@[de=1, [ww@ds=o. (18)

The proper value B is then a double one.
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Similarly, the proper value = — B is double, because it corresponds to two
independent proper functions that are normalized and omiabdg@®™(¢) and ¢?({)
are defined by:

poM=0, ¢P@=1  ¢P(d=0, ¢P@=0
(19)
pPMm=0,  ¢P@2=0, ¢PQ)=1 ¢P@=0.

One verifies that the two functiogs are orthogonal to the functiogs .
Therefore, leW (x, y, z t, {) be the wave function of an electron. By virtuetlod

first general principle, the possible values of theomponent of its proper magnetic
moment are the proper values of the oper@ligr namely,x B; i.e., £ 1 times the Bohr

magneton. In order to find the probabilities for thivee respective hypotheses, we must
write the development as:

Yy ztd=c(xy 2980 (x ¥y z)+ £ (xyzp?(xyz)
+ (Y2 00P(xyz 3+ P(xyzp?( xyz) (20)

From the second general principle, the probability efuctor +8 is:
[T {1+ ] ar,
and similarly that of the valueB-is:
[[f[jef +|ef] or

Now, upon successively substituting the valdes 1, 2, 3, 4 in formula (20), one will
easily find that:

ct?

¢ =W (x Yy, 2 t), c? =Wi(xy,2Y),
(21)
CEJ-) = l'IJZ (X, Y, Z, t), CEZ) = l'IJ3 (Xa Y, Z, t)

The probability of the value B will then be:

jij:]“ W, +] HJ4|2} dr,

and that of the value B will be:
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jiEJD W, |2+|HJ3|2} dr.

That is indeed the conclusion to which we arrived before.

The simple example that we just treated shows hosvcan obtain the values of the
proper functions of the operators that act upon only §he In particular, those
considerations are applicable to the operators that ale sgfeak of at the beginning of
the following paragraph, which are operators whose double pvapers have the values
+ 1.

4. The 16 fundamental operators of Dirac’s theory. Correspondop quantities
and densities.— With the aid of the operators and the matrix 1 (with four rows and
four columns), one can form the following table thattaors sixteen Hermitian operators
that act upon only the variabfe

as
o an oz 1
i a» a3 Ay i a3 a1 Ay i a, 4o Ay i a1 Ay i a» Ay i az ay (22)
i0'20'3 i0'30'1 ialaz i0'10'20'3
a1 3 Ay .

In that table, one has multiplied the products of ¢ghédy i when they are anti-
Hermitian, in such a fashion as to obtain Hermitiperators. Naturally, one can obtain
further operators — such as, a;, for example — upon permuting tise, but each of the
new operators will be equal or equal with the opposite tigone of the operators that
appear in the table.

Upon multiplying some of the operators in the table (223 kyitable factor, we will
find operators that correspond to the quantities that stedbed before. Therefore, from
formulas (7) and (8) of Chapter XII, the operators ofgbeond row will correspond to
the components of the mean electric current and the eileatric density when the first
three are multiplied bgc and the last one, bye-resp.

From equations (9) of Chapter XIV, the operators of tiel row will correspond to
the coordinates of the proper magnetic moment and propetriel moment of the

electron when they are multiplied by the Bohr magneie(i. Finally, from formulas
Tm,C

(42) of Chapter XV, the first three operators @ thurth row will correspond to the three
componentss,, §,, S of the proper angular momentum when they are niigitigoy h /
47t From what we said at the end of the last chapter shall also propose that the
operatora, can indeed correspond to the proper mass whemitltiplied by —my .

With the 16 operators of the table (22), we caiindel6 mean-value densities that
have a tensorial character and are all real, anchwte can write as follows:
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4
Q1= Waw, (@
k=1
4 4
ii=ec) WlaW, i2=ec) W a,W,
k:l k:14 (b)
is=ec) WlaW, iz=-ec) VAW,
k=1 k=1
Mz2= Hia= Hiz=
eh . eh . & eh .3
4leOCI 2 Woa,a,aW, 2 i z quDO’10’4qu 47TmQCI . W ama,W,
TMHE i (c) (23)
Hoa= Ho1= Hza=
eh . & < eh <
iy Wla,a,W, eh ; W aa.aW, i) WoaaW,
arrmyc & arrmyc & 47mm,C i
h . 4 0 h H . O
ga=—iy YaaW¥W, o&=—i) Yaa¥,
477 k=1 477 k=1
how hoa (d)
a=—Ii) Y aao,¥ o =—1i) Y ao.a¥
4]7 ; Kk UU T 4 4]7_ ; k Y1~ 2¥3 " k
4
Q; = z l'IJKD0'167'20'ﬂ5l'|'Jk C)
k=1

The quantitie€2; andQ, are invariant under Lorentz transformations; weady know
that. When envisioned as mean-value densitiey, \thi be invariant densities. The
physical significance (if it exists) d®, is still unknown; that of the quantiQi will be
discussed later on.

The four quantitiesb) form a space-time quadri-vectdj.( We already know that it
corresponds to the four components of the “wordgtteic current” that is well-known in
relativity. Upon integrating the componeantover all space, we will obtain an invariant
guantity that is the total electric charge ef the electron, up to a factor af

The six quantities d are the six distinct components of a second-oralei-
symmetric tensor. In fact, we already know ofTihey are the magnetic moment and
electric moment densities that were studied in @aylV, paragraph 3.

The four quantitiesd) transform like the components of a space-timaorec The
first three of themg;, ¢, o; are, as we know already, the mean-value densifiése
proper angular momentuBi(i.e., the spin). The temporal componentcompletes the
space-time vector; its physical interpretation dogsseem to be very clear.

(*) In table (23), the components with an index 4 refehédaurth space-time variable, namedy= ct.
One will then haveé, =cp.
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5. Remarks on the vectoro. — From the preceding, the space-time veotaan be
called thespin vector By definition, the length | of such a space-time vector is given
by the formula:

|0.|2:0212_012_0.22_032. (24)

If one does the calculation then the result will be

h2
167

| 0_|2 = _(le + sz) (25)

The spin is then a spacelike vector, as one sayslativity theory. That is clearly
distinguished from the current vector, which isdiike, from formula (14) of Chapter
XII.

Now recall the monochromatic plane wave with tlavevfunction:

27
W, = - Ap, T(Wt—pzz)’
W/c+mec
271
w, = Bp, eT(Wt—pzz)’
W/c+mec
(26)
27
W, = Aen (Wt pzz>’
27
l.IJ4 - BeT(Wt plz)’

in whichW=c /nf &+ p’.

We carry out the explicit calculation of the compats ofoin this particular case;
we will find that:

o :L(ADB+ ABj)[l—p—zzzj,
ar W/c+ma
— h H OUp _ (1 _ pzz
o) ——4n|(A B AB)[l Wit md naozj’

(27)
— h A QD_ B pzz
_471( 5 )[1+(\N/c+n3c)2j’

o =L oAN-BE)— P
arr W/c+mc
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Since the components of the “world electric current’dyueector for a plane wave

are:
2

i1=jx=0, i2=jy=0, i3=jz=—epcv\5)z,i4205=—epc,

which results from the formulas of Chapter XllI, patawe will easily find that:
(im:i4021—i101—i20'2—i30320. (28)

Therefore, the space-time scalar product of the vectond g is zero. Hence, for the
monochromatic plane wave, the two quadri-vectors ‘varlirrent” and “spin” are
orthogonal in space-time. (Of course, that is nosag that the corresponding spatial
vectors are perpendicular.)

One can also write (28) in the form:

c
m:@pwzzalvl+azv2+@v3. (28 cont.)

The componenty is thus interpreted here as Satial scalar product of the “proper
angular momentum density” and “velocity” vectors.

WL will be close to 1, and from (27),

/ctmc

the componentss, & will be almost zero. Upon confronting this reswlith what was
said at the end of the last chapter, one will kaéinh Dirac’s mechanics, a particle that is
animated with a velocity that is closed@nd is associated with a monochromatic plane
wave will have its three spatial vectdrsl, and o mutually perpendicular, and the last
one will directed along the normal to the wate (

We conclude these remarks on spin by pointingaogeneral relation between the
components of that vector and the invarigyt . That relation, which is due to
Uhlenbeck and Laporte, is written:

For a speed that is closedothe ratio

1ladg, +601+602+603 _ i a0,
cot o0x o0y 0z T ox
with our notations.

=-mycQ (29)

() One might be surprised to see that the proper anguaremtums of the Dirac electron does not

always coincide in direction with the magnetic mont8haind believe that this contradicts the relation:
m_ e *
ST Tme *)

by which, one expresses the double magnetism of tbaie However, must remark that the relation (*)

is valid only for reference systems in which theelmn is rest, becau$® andS do not transform the same

under a Lorentz transformation. Indeed, for a magnetiment, it is thedensitiesof the components that

transform like the components 23, 32, and 12 of a tenedhecontrary, for an angular momentum, it is

the components themselves that transform in that way.
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In the case of the plane wave, it is satisfied idatl}i because all of the terms are
zero separately. One proves the relation (28) easilstdoying with the Dirac equation
and its conjugate; its true physical significance remaiksown.

6. Remarks on the invariant Q; and the operator — nmpa; . — We have seen
already that, in a certain sense, the physical qudptibper mass” will correspond to the
operator -mpa, under the Dirac equations. If we assume that correspoadéen the
mean-value density that one deduces from it will be:

4
-mp Y Wa,W, =-mQ;. (30)
k=1

It is invariant. If one integrates that density ospeace then one will obtain the mean
value:

rT}):—rrbj_fjiwkmaﬁdrz—nbjTJQldr, (31)
+00 k=1 —c0
or, upon makind; explicit:
m, =moj+fJ(WSDW3+HJEW4—WEHJl—HJ§qJ )dar, (32)

which is a formula that indeed confirms the ideat tihe wave functions with indices 3
and 4 correspond to the proper massyt+ and those with indices 1 and 2, to the proper
mass -y .

The mean value (31) is not invariant. If one wiolike to deduce an invariant
guantity from it then one must integrate over therth space-time variable= ct. One
will then obtain:

tmocdt:—moc ‘dt T Q, dr. (33)
I Jaf[f

In order to try to penetrate the physical sigaifice of the formulas a little, we again
recall the case of the monochromatic plane wave 486 calculate the value thag will

have in that case. We easily find from (30) that:

- my Q; =my (AA" +BB) :L—'D—Z2 :mo(AA*+BB*)M. (34)
(W/c+ m 9 W/c+mec
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In order to getm,, one must integrate the expression that this will gipen taking
into account the normalization of the(Y):

_ 2m, & 1
= , 35
m W/c+mec p/ (35)
(W/c+m9’
or furthermore:
m=%dLW&:% 1-5°, (36)

in which A is the velocity that corresponds to the enevigyaccording to relativistic
dynamics.

The integral invariant (33) is therefore nothingt lthe action integral (up to a
constant):

[ ‘maf1- 42 dt (37)

of the material point in question in relativistigrihmics. We then have the following
theorem:

For a Dirac electron that is associated with a ptamonochromatic wave, the time
integral of the mean value of proper mass will cale with the action integral of
Einstein’s dynamics.

() See the note on page 129.
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Table of quantities and densities that are associatedivetélectron.

Physical quantities Operators Mean-value densities Retativis
variance
of the density

4
Proper mass (?) (=) as - My z WoaW, =-mQ Invariant
k=1
2 |
Electric charge —ell 5:‘:00:‘9;% Ao,
4
ecm x=—pey=ec) ¥a¥, _
k=1 Space-time vector
. 4 world current)
Electric current eca jy=—pey=ec) ¥a,¥, (
k=1
- 4 D
ecas j;=—peuy=ec kz:wkaswk
=1
eh <
M. Omasas 1y= d‘IZWﬂy%aNk
4rrm,c 4rmye i .
Magnetic M oh 4 Second-rank anti-
y p l, = iSwlag. a.a W symmetric tensor
moment Oasanan 'Y 4rrmyc ; k Ugth U7y Part 1
M “Oawma 1. - N S wo
‘ 10205 |, = Izwkalaza4wk

4rme o
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Table of quantities and densities that are associatediveitblectron (cont.)

Physical
guantities

Electric
moment| Y

Proper
angular <S
momentun

(?) S

(?) (?)

Operators

h
ETD 0'2 0’3

“ O az 1

“ O a1 ab

“O a1a» a3

a1» A3,

Mean-value densities

3=—" iy wigaw,
477rn)ckl

Jy = | \Paaw
477rn)ckl
4

J = eh iy WlaaW,
4mm,c o

h . & o
oG=—1Ii>y WY a, a¥
4ﬂ;k23k

h &
oy = E' zq)kma:%alwk

G=—iy Y aa,W,
4]7_; 12

h &g
OAZZTII(Z:;LP,( a,a,aW,

4
o
zwk a,a,a,a,%¥,

k=1

Relativistic
variance
of the density

Second-rank anti-
symmetric tensor

(Part 2)

Completely anti-
symmetric
third-rank tensor

= Space-time vector

Completely anti-
symmetric
fourth-rank tensor

= invariant



163
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Table of the 16 fundamental Hermitian operators in Dardeory
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PART llI

APPLICATIONS OF DIRAC'S THEORY
CRITICISMS AND VARIOUS SPECIAL TOPICS



CHAPTER XVII

EXPLANATION FOR FINE STRUCTURE
IN DIRAC’S THEORY

1. Wave equations for the motion of an electron in a centraldld (%)

In this chapter, we propose to show that Dirac’s theoovides a good explanation
for the fine structure of optical and X-ray spectra tthags not raise the same issues as
Sommerfeld’s older theory of fine structure.

Consider an electron that moves in a static ceriiedd that is derived from a
potentialV(r). The Dirac equations for that electron will be:

a) 2m W+ev+m)c W, - i+ii l4J4+1W3:0,

h| ¢ ] o0x 0y 0z
b) 2mWreV, w2 i |lw + Ly =0,

h| ¢ ] ox 0y 0z

i i 1)

0 2mWreV elw [ 9419w, -9y =,

h| ¢ } ox 0y 0z
d) 2mWreV ey, [ 2o |y + 9y o

h| ¢ ] ox ady 0z

It is natural to seek to express each of $heas a product of a Laplace spherical
function with a function of the radius vector.
Recall that Laplace’s spherical functions havefttiewing form:

I+m

(dd—ﬂn(l ~c0d 8. (2

m — +img m — +img .;
Y, "(8,¢) =C ™ P™(,4) =C €™ sif" 6 o)

Since the constar®@ is arbitrary, with Darwin, we choose it in suchvay that we
will have:

Y"©6.9) = (-m1 em— 9 ((1‘°°§ )

(dcosg J*™ 20! j irf™ 3

() Here, we follow the method that was employed by CD&win [Proc. Roy. Soc. A18(1928), pp.
554].
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withl =0, 1, 2, ..., andn=-1,- (1 - 1), ..., +l. Moreover, we remark that the function
(3) is not normalized on the surface of the sphere ofradius.

Upon appealing to the formulas for the transformatibreotangular coordinates to
polar coordinates, one can prove the following relatianswhich f (r) denotes an
arbitrary function of the radius vector:

9,9 fym= 1 [ﬂ—lf}(lﬂ*l—(l—m)(l—m—l)(ﬂ+il fj e
ox ady 20+1(|dr r dr r

0 ) um_ L [ [df 1. Toms df  1+1
(&—'@jf\ﬁ —2|+1{ [dr rf}ﬁﬂ +(1+m(l+ m- 1)(r - ij’”} (4)

O pyme L [(dE 1\ NGNEE
N R |

With the aid of formulas (4), we will be able to sjie¢he derivatives that figure in
(1), since we suppose that ed¢h is the product of a function af with a Laplace
function. We then make the hypothesis that the fomc¥y is proportional to the
functionY ™ with given values folF andm.

Upon now regarding equatior)(of (1), we will see that the terms ivy™ that are

oW, —(aiﬂaij W, will cancel the term V5, and the other terms
X y

must cancel each other. It will then result thatand W, must depend upon the same

m

function of the radius vector, and must be proportidaaY ] and Y ™, respectively;

provided by-

namely, toY 7 andY T, resp.

Likewise, equationd) of (1) shows that’; and W, must depend upon the same
function of the radius vector and th#t must be proportional t§ ™.

Finally, we are led to first imagine a solution that gan write {):

=iaF, (NY(6,9), W,=ia,F (NYIT@.9), } 0

W,=a,G,(NY"(6.¢), ¥,=aG(NY"(6.9)

We introduce the forms (I) into equatio3 &nd @) of (1) and obtain:

21| W + eV
_T[ +mo<:}qEY+“l

SN ISP W Wk
2|+1{(dr rGjYﬂ (I=m(l m+1)( + Gj }

(l) We introduce the factarinto W; andW¥, so thata; anda, will be real. Cf., formulas (9).
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A (98T gy g 98 g o
2I+1{( dr rGJY'”jL(Hm)(I rr)(dr i j'_l} 0.

(5)

_ 2_77[W+ eV

+mecla F Y
e R %}@ )

— aS _ dG+ _I_ m-1 d_ci |L1 -1
2I+1{ (dr rGJY”l (I m(l+ m—l)( dr ¥ r Qjﬁ }

(98 Lo et menf S50 6 e
+2|+1{( ar rajm +(1+m=1)(l m+1)( o T G|Y :

In order to make the terms ¥, disappear in the first of equations (5) and thense
in Y™, in the second, it will suffice to set:

a_|l-m+1

a, l+m ©)

On the other hand, substitute the forms (I) irqoagions ¢) and ¢) of (1); one will
get:

2_77i[W+eV_
h

%%%GW

+

a, dFE. 1+1 j m (dE | +2 j ml _
- ——=F, |Y%, +(I+m+1)(I- m+1 +—°F = 0.
2|+3{( a1 e (I+m+1)( ) o Y

_ia, J(dF, _I+1 o o] _ {dﬁ |+_sz m
2|+3{(dr - F+jY|+2+(-)(l m+ 2)(I- m+1 a Y

(7)

2_77i[W+eV

. —%%@GW*

ia, [ (dF. 1+1_\_ma dF 142 ) una
- ~| == -2F, YT (1 me1)(] F+— S F
2|+3{ [dr : j T+ me )<+m)(0Ir Ry

ia, [(dF. 1+1_ \ym dF 142 ) Uoal _
- - - |+ m)(1- m+2 —E = 0.
2|+3{[ e Ejm (1 m)(I-m+ )(dr SRy

r

In order to make the terms M, disappear from the first equation in (7) and the
terms inY, 7", in the second one, one must set:

au=—a.

(8)
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The ratioa; / a, is arbitrary, because we can incorporate it Fté G, . We can then
satisfy the conditions (6) and (8) by setting:

a; =1, a=--1, a=l-m+1, a=l+m, 9)

in such a way thads +a, =2 + 1.
Under those conditions, the two equations (5) will redadee single equation:

2| W+ eV dG I
= +myc|FE+—-—-G =0. 10
h[ C mo} dr rq (10)

Equations (7) will likewise reduce to the singtgiation:

df. , *2 . (11)
dr r

The solution (1) is characterized by the fact tiat lower indices oY arel and| + 1.
The mean of those two valueslis 1 / 2, which we call. The solution (I) is then
characterized by the quantum numbejs=1 + 1/ 2, andn.

We just found a first solution in whicHs; is proportional toY,™. However, we have
seen that there can exist another one in wiicis proportional toY";, andW, to Y} *.
We are then led to imagine a solution (1) of fiweamn:

Wy = ial F(r)Y,"™(6,0), W, =ia, F_(r)Y,7'(6,9),

(I1)
W, =a,G (1 Y"(4,9), W3 =a, G.(r)Y™"(6,9).

Upon substituting the forms (I) into equations dhd arguing as above, one will be
then led to the conditions:

G-I a--a (12

I

a [-m

which are analogous to (6) and (8), resp. Onesatilsfy those conditions by setting:
a ==-(1-m, a =l+m-1, a =1, a, =-1. (13)

One will then find the following equations fér andG- :

2_IT[W+ ev+n-bc} F_ +£+E‘G_: O,
h C dr r

(14)
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_2_IT[W+ eV_rTbC} G +£—E F= O,
h (o dr r

which are the analogues of (10) and (11), resp.
The wave functions (II) constitute the solutioratticorresponds to the quantum

numberd, j =1-3, andm.
We now remark that the solution (I1) will not etxfer | = O (i.e., thes terms), because
there are no functiong] with negative indices.

We shall soon see that the determination of thetfonsF andG involves a quantum
numbern (viz., total quantum number) in such a way that emmplete solution will be
characterized by four quantum numberd, j =1+ 1, m.

We then summarize the results that were obtainglis paragraph by the following
table:

Solution ():n,I,j =1 +1, m

W =iF, YT, W, =—iF, YT,
W;=(1-m+1)G Y", Wy=(1+m) G, Y™,

21| W+ eV daG, |
— +mclE+—--G=0,
h[ C mo} dr rq

21| W + eV dF I+2
Tl e ™esT

Solution (I1):n, I, j=1-3, m

Wy =—i(-—mF Y", Wo=i(l+m-1)F Y7,
Wy=G. Y, Wy=-G. Y,
l+1

dG
ClE+—+—G=0,
mo} dr r

2_77[W+ eV+
h c
-1

dF
c|lG+——-—E=0.
m)} dr r

_2_77[W+ ev_
h c

One remarks that the equations in this table @éhatsatisfied by-- and G- can be
deduced from the ones that are satisfiedbgndG. by changing into — ( + 1).
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2. Number of solutions that correspond to a given value af and |. Angular
momentum of the electron in stationary states-— It is very interesting to demand to
know how many stationary states can exist that cosresgo a given value of the
guantum numbens andl. It is obvious that there ara priori, only as many states as the
values ofm that are permissible whenand| are fixed.

First, consider the solution of the type (1), and cotlne&t possible values oh by
remarking that the upper index in tNefunctions must be at most equal to the lower
index in absolute value. There is no reason to prewemtrom takingn=0, 1, ...,l. It
might seem impossible to take=1 + 1, becaus&; would then contain the non-existent
function Y,'**, but the coefficiens is found to be zero for the value=1 + 1, and as a

result, one can once more take that valuenfor By contrast, the values af that are
greater thath + 1 are unacceptable.

On the other hand, we can take the negative values-21,..,— (I — 1) with no
difficulty. Can it take the value ? Yes, becausa will be zero then. However, the
values ofm that are less thanl-are unacceptable. Finally, for the solutions of the typ
() such thag =1 + 1/ 2, one will havel2+ 2 possible values fan, namely,| negative
values, the value zero, ahd 1 positive values. In that case, there willbe 2 =23 + 1
distinct stationary statea,priori.

Take the solutions of the type (Il), socan take the values 0, 1, |5 1, and it can

also take the value which makes the non-existent functiy, appear i, but it will
simultaneously annud, . The values ofn that are greater thdror less than - 1) are

unacceptable. Therefore, we havga@assible values fam, namely,l positive values, the
value zero, and ¢ 1) negative values.

In summary, there arej(2 1) distinct solution for the solutions (ll), as thexre for
the solutions (I). Later, we shall see how that ltggermits one to justify Stoner’s rule
that relates to the distribution of electrons inahem.

We shall now seek to characterize the types of sokitid) and (lI) by their
corresponding angular momenta. In order to do thatstad with the result that we
proved before: The first integral operator that corredpoio the angular momentum

aroundoz in Dirac’s theory is noM; = L yi— xi =- Li but in fact,N, =
2" ox oy 2 09
M;+S =- Li—i m a> . Now, if one remarks tha?iz imY,"™ then one will
271 0¢ Ari 09
easily see that one will have the formulas:
h oW h
N, (W) = - k — . ar Wy, 15
== i o am 2™ (15)

fork =1, 2, 3, 4, for a solution of the type (I), aslias one of type (II). One will then

: h :
see that the total angular momentNpwill be equal to- (m—%)z— for a solution that
T

corresponds to the quantum no matter whether it has type (I) or type (INow, see
what the extreme values will be that this momentam take for a given value bf For a
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solution of type (1), the numben can vary from —I(— 1) to +I for a givenl. The
momentuni, can then vary from:

L

and a solution of type (I1) will then be found toreespond to a maximum absolute value

of N, that is equal tﬂEI —lji :
2)2r

Now, to employ the old language, one must say tlcég% Is the “orbital” angular
T

momentum of the electron. We then perceive that dblutions of type (I) can be
characterized by saying that they correspond tocdme in which spin and orbital
momentum are parallel in the same sense. On the&ary, the solutions of type (II)

correspond to the case in which spin and orbitalnen@um are parallel in the opposite
sense.

3. Calculation of the energy levels for the hydrogen atom- We shall calculate
the energy levels for the hydrogen atom. In tlhegtec one must s&t = e/ r in the
equations of the first paragraph. We shall examméurn, the case of solutions of type
(1), and then that of solutions of type (lI).

a) Solutions of typé):

For the solutions of type (1), we have the twoaauns:

27T|:W+§+n'bc} E+£—_I’IQ = 0,

h| c cr dr
(16)

2mW €& dF.  |+2

-—\|—+—+mc +—-——F =0.
h{c cr %}G* g r

Set:

2iT(W 2T W

A== D vmecel, BZ:—(—— cj, 17
(% e mel (W, a7

. We would like to find the levels of

) . 27T
and introduce the fine-structure constant H
c

discontinuous spectra. As we know, those levelszspond to an energy Bf=W—-my
c¢?, which is negative. The quantiBf will then be positive, an@ will be real. With
those notations, equations (16) will become:
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(AZ +gj F,+ ds, 1 G,=0,

r dr r
(18)
(BZ —ﬁjq SO TR2 ey
r dr r
Asymptotically, for very large, one will have:
w2+ 3G -0 g+ 3R, (19)
dr dr
so one will infer that:
2 2
d—G;:A2BZG+, d—f*zAZBZF+, (20)
dr dr
and upon integrating:
G, =e"®  F.=¢"" (21)
If F+ andG. are to be zero at infinity then we must take tlsggn, so:
Gi(asyp)= CoOnste™, Fiasyp)= conste ™", (22)

These asymptotic forms suggest that we try totgubs the following forms into
(18):
Fo=e™[agr’+arr’™+ ... +asr+ ..],
(23)
Gi=e™® [bor/+b "+ . +bsr 7+ L],

in which the exponengmust, in principle, be assumed to be positivé,iendG. are to
remain finite wherr = 0. Upon substituting (23) into (18) and annyglie coefficients
of r’%, one will obtain:

aag+ yby—1bo =0, —abo+ybo+(+2)a=0. (24)

The two equations (24) are compatible only if theterminant is zero, which will
give us the condition:
@+ (Y1) (y+1+2)=0. (25)

Upon solving (25) with respect 9 one will find:

y==1+1-[a?-1(1+2)] =- 1+ (1 +1?-a?. (26)

We keep only the + sign in front of the radicaécause the — sign will give an
unacceptable negative value forIf we setl = 0 in the expression (26) then we will find
a very small negative value fpr It might seem that one should reject that vadirge it
corresponds to functiorts, andG. (and in turn, wave functiongy) that become infinite




§ 3. — Calculation of the energy levels for the hydrogtem. 173

forr = 0. Now, the results to which we shall arrive latél show clearly that one must
keep that solution with= 0.

One can explain that anomaly by remarking that (duke@mallness of?) the wave
functionsWy will become infinite to an order at= 0 that is small enough to make the

integralsj j jwk f dr remain convergent. The condition that the wavetfans must

be everywhere finite will then seem much too rigoroug:h&he essential condition is
that they should be square-summable. Moreover, we sea@ that the same difficulty
exists in the relativistic theory of one wave functi¢@f., Chap. VIII, para. 2.) We then
adopt the values (26) with= 0, 1, 2, ... as the possible valueg.of

Having said that, if we return to the substitution of (#8p (18) and annul the
coefficient ofr”*® then we will find that:

AAa-Bb)+aas+ (y+s+1-l)bs1=0,
(27)
-BAa-Bb)-abs1+(yts+1—-3)as1=0.

Multiply the first equation (27) b, the second one, W, and add them. One will
get:
as+1 [Ba+A(y+s+l+3)]+bs1 [B(y+s+1+3)-Aa]=0, (28)

which will permit one to set:

as+1= Cer1[B(y+s—I+1)-Adj,
(29)
bsi1 =—Csi1 [Ba+A(y+s—1+3)],

in which cs+1 IS a certain constant. Upon substituting the ratati(29) into equations
(27), along with the ones that one deduces by chargyihd intos, one will find the
recurrence relation for the :

Ac[-a (A’ =B + 28B (y+s+ 1) =cs1 [Ad? +A(y+s+1) (y+s—-1+1)]. (30)

In order for the functionk., andG. to be definitely zero at infinity, from (23), it will
suffice that the seriesy r + ... andbg r + ... should be bounded. In order for that to be
true, it is necessary thad:; should be zero, but not, for a certain value & namely,s
= p. It will then be necessary that the coefficientcoin (30) must be zero fa = p,
which will give us:

A* - B?
y+p+l=a AR (31)

A? - B?
|+1)?-a’+p=a . 32
V(I +1) p AR (32)

or, from (26):
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However, if we refer to the definitions (17) then wel sde that:

A-B_ W _ E+m¢@ _ 1+E/m
2AB [mi-w? J-2mcPE-E | 2E 1+ E
mc . 2mé

in which E = W — mg ¢ is negative here. Equation (32) can then be ewjtafter
squaring:

34
_2E 1+ E (34)
mcl 2m¢é
or for that matter:
2E E
— ]_4_
m)&[ Z%EJ _ a? (35)
2 2°
1+ B pyi+27-a |
m,¢
If we add 1 to both sides of (35) then we willdin
2
1 -1+ a . (36)
1+ E P+ -a?
m,¢
and thus, the ultimate formula:
-1/2
E _ a’
1+ =1+ : (37)

mC (i -a?)

Since one hajs=1 +4 for the solutions of the type (1) that we addrkese, formula

(87) can also be written:
-1/2

1+ =1+ : (38)
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Formula (38) is analogous to the Sommerfeld formt)lar( which the integef +1 =
| + 1 plays the role of azimuthal quantum number, @pthys the role of radial quantum
number.

As one sees, the energy levels of type (1) are eéfcompletely by the four quantum
numberd, j (=1 +1), m, andp. In place of the integqrthat can take the values 0, 1, ...,
one can just as well imagine the numberp +1 + 1, which can take the values 1, 2, ...
The numbem is thetotal quantum numberand the set of numbenrs |, j, m fixes the
solution that one envisions.

If one develops the right-hand side of (38) up to secodedran o then one will get

the approximate formula:
2
g=- Ry, n 3} (39)
n n“{ j+3 4

which is entirely comparable to the Sommerfeld’pragimate formula?), but with
+1, in place of the numbéx
Recall that the relativistic wave mechanics of amectionW led us to an expression

that was inconsistent with the experimental faetsich was an expression that had the
same form as (38), but within place of (3).

b) Solutions of the typ@l).

We might repeat the calculations that we just ditile starting with the equations
that the function&- andG_ satisfy this time. However, that would be poissiebecause
we remarked that we could obtain those equationshangingl into — ( + 1) in
equations (16). It is then obvious that upon adgpdevelopments of the form (23) for
F- and G-, we will get the equation for determiningthat is deduced from (26) by
changing into — ( + 1), as we said; i.e.:

y=—1+.1°-a”. (40)

Here, one must obviously exclude the casé =f0, which will give an imaginary
value: Moreover, we already know that there willngesolution of type (Il) fot = 0. Ifl
= 1 then formula (40) will give a very small negatialue fory. Here again, we assume
that value of by remarking that if the corresponding wave fumasi are infinite of lower
order at the coordinate origin then they will nekeless by square-summable. Briefly,
we assume thathas the possible values 1, 2, ...

Upon pursuing the calculations, we will obvioualyive at a formula that is deduced
from (37) by the substitution of + € 1) forl, namely:

() Cf., formula (38) of Chapter .
() Cf., formula (41) of Chapter .
() Cf., formulas (34) and (36) of Chapter VIII.
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-1/2
E a’
1+ =1+ : (42)
myc { (p+y IZ—aZ)Z}
However, for the solutions of the type (ll), onél\wave:j =1 —1. We will then get

back to formula (38).

Instead of characterizing a solution of the tyihelly the four quantum numbetrsgj
(=1-3), m p, we can just as well characterize them by the faumbers, I, j, m, with
n=p +1, and we easily recover the approximate formulg.(39

In summaryin any case, the energy of the level that is attarized by the quantum
numbers, I, j, m) is given (up to second orderdn) by the formula (39).

We then recover Sommerfeld’s fine-structure foamtdr the hydrogen atom, but
with the essential difference that the azimuthahberk of the old quantum theory is
replaced with the integgr+3. It will then be between the levels whose numbeliffer
by one unit that one must find the Sommerfeld detsbl The levels that differ only by
the azimuthal quantum numbéxe dr ) will coincide. That is in perfect agreement with
the true fine structure of the lines in the Balrseries — for example, those of H One
will see that by referring to para. 5 in Chaptérdhd Figure 4, in particular.

Moreover, one can rigorously repeat all of thecpdéng theory for a hydrogenic atom
(i.e., an atom with atomic numbBrthat has been ionized — 1 times). One will easily

find:
2 2 N2
g=- RN, @ N n 311 (42)
n n j+1 4

in place of (39).
That formula indeed accounts for the fine struetfrthe Hé spectrum.

4. Application of the results obtained to the Rontgen sp&a. — The formulas that
are provided by Dirac’s theory permit us to intetghe structure of X-ray spectra, and in
particular, the existence and values of the regidaublets, without meeting up with any
of the problems that were encountered in the oddphof Sommerfeld. In Chapter lll,
we presented the principal experimental facts tihattheory had to interpret; the reader
can refer to them.

We have seen that in order to calculate the energgls in complex atoms, one can
take into account (if only coarsely) the interagtiof the electrons by introducing a
“screening number”; viz., by replacing the atomigrerN with a reduced numb& — z
in the formulas that are valid for hydrogenic nunsbeNaturally, the screening numlzer
will vary from one electron to another, and willughly increase as the electron gets
more peripheral. Guided by the old image of théwBatom, we can assume that the
screening number for an intra-atomic electron ddpempon only the quantum numbers
andl| that relate to that electron. Upon appealingotantila (42), we then write down the

() Note that there is degeneracy since the numméoes not enter into the expression for the quantized
energy.
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idea that the quantum numberxd, j, m of an electron in a complex atom have an energy
that is given by the following approximate formula:

EmIjm=- N Nn; 2)’ {1#’2( N~ %)2{ n —§H. (43)

n® j+3 4

That formula differs from the old Sommerfeld foradicf., Chap. Ill, form. (9)] by
the substitution of + 4 for k. However, that simple substitution will suffice @llow one

to interpret the regular doublets with formula (#8dhout lending itself to the objections
that were raised by the old Sommerfeld formuladebd, it is obvious that the regular
doublets can be predicted by formula (43), not ketwlevels with azimuthal quantum
numbers K or 1) that differ by one unit, but between levels witle same azimuthal
guantum number arjcdnumbers that differ by one unit. That is, in faghat experiments
demand, as we have seen.

For example, consider the levels &nd L, whose frequency difference corresponds
to the Sommerfeld doublets. We know that:

We then find from (43) that the frequency differerof the corresponding doublets is:

V|_II _V|_"| =- LYZ R( N- %1)4|:

2 | _ 4
% 141 §+J 16 (N-29", (44)
and we have seen that upon setiing3.5, we will get good agreement with experiments
and here, the doublet is predicted to be in its place between two levels with the same
[, andj’s that differ by one unit.

We have pointed out that there also exist irregdidaublets in the X-ray spectra. The
origin of those doublets is the difference in freqoy that exists between two
neighboring levels with the same quantum nunpi@ed! numbers that differ by one unit.
We can also explain their existence by using foami3). Indeed, if the screening
numberz does not depend updrhen the levels with the sameand different (such as
L, and L, for example) will coincide: That is what happewith hydrogen, because, of
coursezis always zero in that case. However, by reasaheovariation ofz with I, one
will see that those levels must not coincide in pax atoms, and one can even predict a
law for their frequency difference. Indeed, if ameglects the terms of order higher than

a” then one will have:

E(nlj)_ [Rh .
\/ h _\/ nz(N Zﬂ)’

E(nl+1j)_ |Rh
\/T_\/F(N Z,141)-

(45)
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Hence:

\/E(n,l, ) _ \/ E(n1+1j) = \/izh(zn,lﬂ_zn,l)- (46)
h h n

The left-hand side of (46) i§\/v for the two levels, while the right-hand side is
independent ol. One will then see that the spectral terms ferttto levels in the series
of elements are such that/ vis independent dl. That is, in fact, the law of irregular

doublets that was pointed out at the end of para Zhapter Ill. Those irregular
doublets exist between spectral terms that areactenzed by the same letter, but with
indices that differ by one unithe first of which is oddwhile Sommerfeld’s regular
doublets provide spectral terms that are charaet@iby the same letter and indices that
differ by one unitthe first of which is evenHence, the difference_ —v will give rise

to irregular doublets, and the differenge —v ~ will give rise to regular ones.

Dirac’s theory has then given us, and in a goohfahe entire Sommerfeld theory of
fine structure and has shown us that its originatess was not due to chance, as well as
showing us that, in the final analysis, the exiseéenf regular doublets is indeed linked
with relativity by the intermediary of electron spi

5. Number of electrons per level. Stoner’'s rule- Dirac’s theory has not only
allowed us to recover the fine-structure formulalile improving upon them, it has also
provided an interpretation for Stoner’s rule thalates to the distribution of electrons
between the atomic levels and a proof of the selecules that relate to the quantum
numberd, m, and;.

Here, we shall first address the first questiod aecall that Stoner’s rule is the
following one: One cannot have more th&) + 1 electrons in the energy level that
corresponds to the quantum numberg np We shall seek to justify that statement.

We saw above (para. 2) that there exjst2l levels that correspond to the set of
guantum numbers(1, j) for solutions of type (1), as well as for solui®of type (II). In
other words, since each level is defined complebglyour quantum numbers I, j, m,
there will exist 2 + 1 possible values fon, and in turn, P+ 1 possible levels for given
values of the three numbensl, j =1 + 3. Having recalled that, in order to go further,

one must appeal to a new principle that plays aldurental role in contemporary
physics: the Pauli Exclusion Principle.

We shall state the Pauli Exclusion Principle heyesaying:One cannot have more
than one intra-atomic electron whose stationary state is characterizétebyame four
integers nl, j, m.

Now, as we have seen, the energy of a stationary s an atom in the absence of an
external field will not depend upon the numberin such a way that each energy level is
characterized entirely by the three quantum numbglsj, which is what experiments
indicated before the theory, moreover (cf., Part Hence, if one assumes the Pauli
Exclusion Principle then the number of electrors thelong to the same leval, (, ) is
equal to at most the number of stationary solutithag are characterized by the four
quantum numbers, j, |, m, the first three of which characterize the levelder
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consideration. We know that this number of solutisng + 1. We have then justified
Stoner’s rule, whose experimental exactitude doesewn to be in doubt.

6. Selection rules in Dirac’'s theory.— In paragraph 4 of Chapter VI, we
explained how the correspondence principle leads opeettict selection rules in wave
mechanics. In Dirac’s theory, that prediction is madeéhe same fashion, but while
taking into account the fact that the expres$iH’ in wave mechanics with one wave
function is replaced with:

4
DWW,
k=1
here.
One will then have to consider the following quarditie

Xom= [ [ [ X(WaW,, +WEW, +WSW +WiW Ndr  (47)

to be theX matrix elements that serve to evaluate the tramsiprobabilities that
accompany radiation. The indicesand m characterize two stationary states, and in
reality, they will each represent four indiagd, j, m. If the elementXom, Yom, Znm are
zero then there will be no radiation that corregjsoto the transition — m. One infers
the selection rules from that.

As an example, consider the transition from theicstary state of type (I) with
quantum numbers, I, j =1 + 1, m to the stationary state of type (llI) with quantum
number:, | — 1,j =1 - 2, m, which is a transition for which one will havé || = 1,dm =

0, and |g | = 2. The first of those states has the wave immst

W, =i F+(I’)Y|Tl, Wy = —j F+(r)Y|Tl_l,
Wy =(—m+1)G(r)Y", W, = (1 +m) Gu(r)Y™,

and the second one has:

W ==i(l—m=1)F ()Y, W, =i (I +m=2)F(r) Y2,
Ws=G.(n)Y, W, == G()Y.
We then write the expression for ti@ematrix element that corresponds to that
transition, by setting:
A== [TRMF@rdr, B=[ G.(nG.(nridr, (48)

to simplify.
One will get:
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Zm=A (1 -m—1) [[cosoYT Y5, & +A (I +m-2) [[cosaY T Y
+B(-m+1) [[cosfYTY" @ ~B (I +m) [[cosf¥TY™ &, (49)
with dQ = sin 6 dd d¢, and the double integrals are extended over thiacgi of the

sphere otunit radius. Now, if one starts with the definitiontbe Y functions then one
can prove the following formulas:

[[eosoyL Y @ =0,

M \/m _ 4r _
[JeosoYT'Y" 2 = @D 1)(| +m)! (I—m),
[[cosov Yt @ =0,

m=100 \,ym-1 — 477 — —
[[cosayT Y™ @ = FDE 1 _1)(| +m-1)! (I —m)!

If one starts with (49) then one will find that:

B ar
2+DH@a-2
xX[(Il-m+1)(+m)!(I-m!'=(+m(-—m+21)!([1+m-1)]=0. (51)

Zom=

One will likewise find thatX,m = Yam = 0. The transition envisioned is then
forbidden.

One can repeat the same type of calculationskiggall combinations of a solution
of type (I) and a solution of the same type orypiet (11), and then all combinations of a
solution of type (Il) with a solution of the samge or of type (I1). The result of those
calculations will be as follows:

The only transitions that correspond to radiatiae #he ones for which one has:

Those selection rules are, in fact, the onesdhatfound empirically. The rules that
relate to the quantum numbdrandm are predicted by wave mechanics with just one
wave function, but the rule that relates to thenfua numbej can only be predicted by
a theory that introduces that quantum number, tieeisase for Dirac’s theory.
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CHAPTER XVIII

DEDUCTION OF THE LANDE FORMULA

1. Summary of the method of perturbations

In this chapter, we propose to show that Dirac’'s thgmarmits us to recover the
Landé formula for the anomalous Zeeman Effect ofafkali metals in a weak magnetic
field. However, since we must make use of the thebmpyecturbations in order to do
that, we shall first say a few words about that metfazhlculating.

Suppose that we have determined the stationary stagesystem — a hydrogen atom,
for example. We then know the proper valvésof its energy and the corresponding
proper functions¥y, , in which k always denotes the Dirac index, namely, $pén
variable. The symbolic equation:

W, +eV
n ™ © +> aP +a,mc|¥ =0 (1)

will then be satisfied when the system is not perairbe

However, now suppose that a slight, constant, pengiréaction is exerted upon the
guantized system and that it can be represented by theadtfita termAW to equation
(2). ¢\ is an operator that can contain aeand, in turn, operate on the indeXx As a
result of the presence of the small perturbing tere ptloper values and functions must
be slightly modified, and will becom&, + &, andWx, + /n, resp.

We suppose that thg and thernx, are very small, like the perturbing tevi¥, and
we neglect terms such as/xn, andAn .

In the perturbed state, the symbolic equation will be:

3
|:Wn +‘gcn+_eV+Zaij +a‘,rrrbc+/\}(‘l—'n +1,)=0. (2)
=1

Subtract (1) from (2); with the assumed approximatiamswill then find that:

3
(‘g_gw\jwn{wnzevﬂLZ”jpj+”4m>°}’7n:0' )
j=1

Now consider the four functiong,. It results from formula (5) of chapter XVI that

we can develop those functions in a complete systemnotifunsW, by means of the
formulas:
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Mkn = zcn,ml'IJ k,m (k: 1,2,3, 4)1 (4)

or symbolically:
/7n = zcn,mq)m' (5)

If one takes into account the equation that one obtginshangingn into min (1)
then one will have:

W +eV &
LILE e

c =t
+ 3
= chm an Cev+zajpj+a4rn)%wn
m =1
:zcnmwn_wmq)m1 (6)
m c
and, in turn, from (3):
chmw”_wmq’m{i”\j%, (7)
m c Cc
or, upon making that explicit:
Sy, (Gnlu,, ®
o Cc ’ c ’

Multiply (8) by \PEYm, sum ovek, and integrate over all space. One will get:

Wn _Wn v 0 — v 0 ‘gn
;cn,m - I_Ug”’m”’k,mdf- ILJ;%,{?”\jWk,ndP (9)
If one then takes into account the orthogonality andhadization of the proper functions
then one will infer from this that:

Cny = ﬁjij;wkﬁ(‘g—gw\jwmdr. (10)

That formula will give thes, for all values of.
However, formula (10) will give us an infinite coeféait c,, for | = n when the

integral that appears in (10) is non-zerolfem. Since that is not acceptable, we see that
we must have:
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jzjg%,ﬂ{g—gﬂ\j%,ndﬁo- (11)

The condition (11), which expresses a well-known theatRredholm in the theory
of integral equations, permits one to obtain the viariag, of the energy of the™
stationary state when it is provoked by the presendbeofperturbation. Indeed, one
infers from (11) that:

g—g=—j+fj§%i%,ndr, (12)

because th&¥y, are normalized.

It should be remarked that formula (10) is acceptable bntyleads to very small
values ofc, . Otherwise, the hypothesis of the smallness ofrthtd which we have
appealed will not be valid. Upon examining that point, viésge that formula (12) is
exact only if we can (as we have supposed implicitly)sater the perturbation of each
proper value as being independent of the ones that themthger values are subjected
to. For that to be true, the external perturbationstnbe small enough that the
displacement of proper values that is due to perturbatitbrbe small compared to the
difference between those proper values. That is Whappens with the Zeeman Effect
when the magnetic field is weak. If that conditisnnbt satisfied (the Zeeman Effect
with a strong magnetic field, for example) then theik good reasons to conduct the
calculation of the perturbations in a somewhat differeay; we shall not elaborate upon
that here.

2. Application of formula (12) in the case of the Zeeman Efée. — In Chapter 1V,
we saw how the Landé formula permitted us to represenmbdification of an energy
level in an atom with a doublet spectrum (e.g., an atkalial) by the action of a weak
magnetic field. Mo (n, |, j) is the energy of the level in the absence of thgnaac
field, and ifW4 (n, |, j) is that energy in the presence of the fidlthen one will have:

ehH

W (0, 1,]) =Wo (n, 1, j) +mg ) (13)
4rm,C
with
o .
=1tz =270 (14)
[+ 2+1

The numbemn is a positive or negative half-integer number. (ia integer plus;)

that will take on all half-integer values from to +j. We have modified the notations of
Chapter IV by writingm', instead ofn, in order to distinguish the half-integer numbeér

in formula (13) from the fourth quantum numimethat characterizes a stationary state of
the atom, and which is an integer. We see thahtimbersm andm are united by the

relationm = —(m—%). Let us make that point more precise: In forn{i@), we define
the energy level by its three quantum numioetsj, which will suffice since the value of
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the energy does not depend upon the fourth quantum numberHowever, the
displacement of the level by the Zeeman Effect will depeponm (%), and upon making
that dependency explicit, we can write (13) in the form:

WH (n, I,j, m) :WO (n, Ia]) _ (m—i)zj +1 ehH

: - (15)
21 +1 4rm,c

That is the formula that Dirac’s theory will petras to recover.

We consider an atom, in which it is permissibleit@gine that it has just one
electron: That is rigorously the case for a hydrogeom of rankN that has been ionized
(N -1) times. It is approximately the case for araklknetal atom in which the valence
electron is unique and in which one can roughlyoaot for the presence of other
peripheral electrons by a simple screening eff#é¢e suppose that this atom is embedded

in a uniform magnetic fieldd that is directed along theaxis. We can then take the
potential vector to be:

Ac=—-1yH A/=ixH A=0. (16)

The perturbing term in equation (2) is then:
e eH
/\HJ:E(ale+asz+agAz)wzz—c(xaz—yal)lv. a7
Upon expanding this by using the well-known valteesa: andas, one will find:

/\lei(X’fiy)ﬁ%, /\‘Pz:—i(x—iy)ﬁ%,
2c 2c
(18)
/\W3:i(x+iy)ﬂw2, /\W4:—i(x—iy)ﬁwl.
2c 2c

An application of formula (12) then gives us thepthcement of the level by the
Zeeman Effect in a weak magnetic field as:

_Wi(n kL jm-W(nl j)
C

£
c
:%jjj[—‘Pfi(x+iy)lP4+szi(x—iy)ws—wgi(xﬂy)w2+w§i(x—iy)qJ]drl (19)

The entire problem is now to calculate the intetivat appears in (19).

() One can say that the presence of the magneiicrfialde the degeneracy disappear that existed in its
absence.
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3. Development of the calculations= In order to perform the calculation, we must
distinguish two cases, according to whether the statyostate of energWp (n, I, j) has

type (1) or type (II).

a) Solution of typ€l):

Wi =iF. (r) Vi, W =-iF. () Y,
(20)
Wo=(-m+1)G (1) Y™, Wy=(+m) G (r) Y™,
in whichF. andG. are two real functions afthat obey simultaneous equations:
2| W, + eV dG, |
— +mc|lE+—--G=0,
h [ c M } dr r G
(21)

’ZT”[WO . ev‘moc} g+I M 2eog

As in the atom, the Newtonian approximation isagfgvvalid approximately, so the
functionsW; andW, will be very small with respect t¢/; andW¥, ; the ratioF. / G, will
then be very small. A more complete calculatioovps that this ratio has order the fine-
structure constan. We appeal to that fact in order to neglect tpease E. / G.)?,
which will afford some notable simplifications.

Upon multiplying the first of equations (21) I8y and the second one I and
adding them, one will infer that:

47TrrbCF+G+ +££[F+2+G+2:|+|+_2 F+2_I_ G+2 - 0 (22)
r r

h 2dr

Neglect the terms iR, multiply byr? dr, and integrate from O toc¢; one will get:

+oo +ol 12 2
[ FG, rdr=- h | rde ~1G2r2 |dr. (23)
0 4mrmyc/o | 2 dr

One will getG., which is zero at infinity, upon integrating thug parts:

["F.G. ridr= h (|+§j [Tezrtdr. (24)
0 4rrmyc 2)70

Endowed with those formulas, we can now beginctileulation of the integral that
appears in the right-hand side of (19). Upon t@gkialar coordinates, we will have:

x+iy=rsin@d?, x-iy=rsinfe™? dr=r?sin&drdfdg. (25)
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Hence:

T [ [-Wiiocriy), + W h0cin) W, -WSiocriy) ,+ 9 G- Jor

:—ﬁﬂj (YO+m Y™ E+ N7 (F ) ¥ @+ (4 mD), T 7 %

(+m)Y™y" & ]smed;'qu FG?d. (26)
Now, a study of th& functions will yield the integrals:

on m-10 m—1' 2 _ 4 _
[ j Ym & sin’6 d = @i0E3 +3)(I+m+1)!(| m+1)!,

2 m=10J P in2 - _ 477 _
jo j YUY 6?sin?g dp = —(2|+1)(2+3)(I+m)!(l m+2)!,
(27)
2L ymONmL § ain? —_ ar -
jo jOYI YT e sin?6 dp = (2|+1)(2+3)(l+m)!(l m+2)!,

2ﬂﬂm—le—'-Z — 477
'[0 .[O Y| Y+l e¢S|n 6 w = m(l+m+l)l(l_m+l)l

One will then find the following value for the egral (26):

_ 4
2+1(2+ 3

x 2 [( +m)(l +m+ 1) — (= m+ 1) — m+ 2)] j;‘”ﬁa r2dr

(+m!{-mt1)!

(28)
=- ;—”0 +m)! (1 — m 1)!

x[(I+m(@l-m+1)—(-m+ 1)(I—m+2)]4 h

[Tezrr,
C 0
in which the last term is obtained by introducihg expression (24).
Since one can easily verify the following identity
+m@l+m+1)—-(-m+1)(-m+2)=(2+2)(2dn-1), (29)

one can further write the expression (28) in thenfo
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-4 D22|—(2m DE+m!(l—m+ 1)'

h o o 2
Cjo GZrdr. (30)

In order to go further, one must invoke the nommadion condition, and upon
neglecting the terms if,> in comparison to the ones @7, that will give:

[ Ta-menpy ™y (e Y"P v sing @ g7 GFd=1  (31)

Now, one has:

[ 7]%] sing do dp _—(| +m)l (1= m),
(32)
jz”j ™[ sing do dp = —(| +m=-1)! (= m+ 1),
in such a way that the condition (31) will give us:
2 2 1
jo GZridr= . (33)

4l +m)!(l —m+1)!

Upon substituting that value into the expressid@),( we will finally see that the
integral to be calculated in formula (19) has syrtpk value:

_ 2 +2(2m—1) h

: (34)
20+1 4rrm,C

Formula (19) will then provide us with the follavg formula for the level
displacement by the Zeeman Effect:

We (0,1, m) = We (n, 1, ) - S 2 2 om gy D (35)
2 2+1 4rrm,C
Now set:
I+1_ j+3
m=-(m-41), = = 2 36
(m=3) J l+1  +3 (36)

while remembering thgt=1 + 1 here. We can write:

ehH

Wh (0, L, m=Wo(n,1,j))+m g :
4rrmyc

(37)
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If we now suppose only that we are given the three quantumbersn, I, j then we

will have:
ehH

: 38
47rm,C (38)

WH (n! I’J) :WO (n! I’J) +m g

Here,m is a half-integer that can vary from(s,;, =) to—(m,, —%). Now, when we

discussed the number of levels that correspontedriple of quantum numbers, (, ),
we saw that for a solution of type (I), one can exakvary from - tol + 1. For a given

(n,j,1), m canvary from{-1-3)=1+1=jto - (1 +1-1)=—(1+1)=-].
Briefly, we have formula (38) for the levels tlwatrrespond to solutions of type (1), in
whichm' is a half-integer that can vary fron) to +j. That is indeed the Landé formula.

b) Solution of typ€ll):

In order to carry out the calculation in the cas@ solution of type (ll), one starts
with the wave function:

Wi=—i(-mF YT, W =i (Il+m=-1)F- Y1,
(39)
W =G Y™, WY, =-G Y™,
in which the function$- andG- are real functions that satisfy the equations:
2_77[W+ ev+m)c} = +£+E‘G_: 0,
h C dr r
(40)

2| W + eV dF. I-1
Thl e ™ "

One will arrive at the following formula by calations that are analogous to the ones
that were developed above:

Wy (n,I,j,m):Wo(n,I,j)—i(Zm—l)ﬁ[-)L. (42)
20 +1 2 4mm,c
Since we havg=1 - 4 for the solutions (Il), we set:
m==(m-1),  g= =1 42)
o +3 143

and we can write (41) in the form:



§ 4. Summary of results. Remarks. 189

ehH

WH(nilij):WO(n!I’j)+mg y
Arrm,c

(44)

in whichn is a half-integer that varies from(+,, -1) to —(m,,,~%). Now (as we
have seen), we can makevary from — [ - 1) up to +, here. The numben can then
vary from-[-(1-1)-3]=1-4 to —(I -1); i.e., from +j to —j.

Briefly, we have formula (44) for the levels tltrrespond to type (lI), in whic
is a half-integer that can vary from to +].

4. Summary of results. Remarks— We have thus proved that for all of the levels
[of type (1), as well as type ()], the displacemef the level i, I, j) by the action of a
sufficiently-weak, uniform magnetic field is givéy:

ehH

Wa (N, L)) -Wo(n,I,j))=mg , (45)
4rm,c
with:
1 +1
9= 1+lz, (46)
| +1

in whichm' is a half-integer that can take all half-integalues between j-and +j. That

is, in fact, the anomalous Zeeman Effect, as itepresented exactly by the Landé
formula. Since the numben has 2 + 1 possible values, any levai, (, j) will be
decomposed by the Zeeman Effect intp#2) distinct elements, which can be expressed
by saying the external magnetic field has madealdgeneracy of ordef 2 1 that existed

in its absence disappear.

The argument that we just made is rigorously vdidhydrogenic atoms, but as we
have pointed out, one can also apply it to alka&tahatoms, at least approximately.

We have seen that the Landé formula is valid feakvmagnetic fields. By that, we
mean magnetic fields that are weak enough thatlidpdacement of the energy levels by
the Zeeman Effect is small with respect to the rardistance between those levels. |If
that condition is not satisfied then formula (12l wo longer be valid, and we must
repeat all of the calculations. It can be provBdHat we will then arrive at a formula
that is identical to that of Voigt [cf., Chap. I¥nd of para. 3], and for very strong fields,
we will find the Paschen-Back effect; i.e., themal Zeeman decomposition.

Dirac’s theory then gives us a completely sattsfigc solution to the anomalous
Zeeman Effect for the alkali metals. Dirac’s theoannot rigorously predict the Zeeman
Effect for atoms for which it is not possible tonealer just one optical electron, because
that theory does not further know how to treat tase of a system of interacting
electrons.

() See C. G. DARWIN, Proc. Roy. SAcl8(1928), pp. 654.



CHAPTER XIX

PROPER AND ORBITAL MOMENTS.
POLARIZATION OF ELECTRONIC WAVES

1. Impossibility of separating the proper magnetic moment fsm
the orbital magnetic moment (Bohr).

Bohr showed by a very delicate argument that it canagidssible to measure the
proper magnetic moment of an electron, because thetetteat are due to the existence
of that proper moment cannot be distinguished from the thag are due to the collective
motion of the electron.

We shall summarize Bohr’s argument.

In order to exhibit the proper magnetic moment ofdleetron, one can proceed in
two ways:

1. Seek to measure the effect of a small magnet teguisalent to the electron on a
magnetometer.

2. Make the electron traverse a non-uniform magrietid, and observe the effect
of that field on the small magnet.

Let us examine the first method. If the directiorthef motion of the electron is taken
to be thex-axis then we will place the magnetometer onyais at the point whose
ordinate isy. In order to be able to write the expression for effect on the
magnetometer with any precision, we must suppose tleatelgrtron is sufficiently
localized; i.e., that the electron must be assottiatieh a wave trait¥ whose dimensions
are small with respect to the distaryciEom the magnetometer to the axis of the motion.
For example, iAx is the length of that wave train along thexis (viz., the uncertainty in
the abscissa of the electron) then one must have:

AX < Y, (1)
and similarly:
Ny < . (1)

Having said that, upon passing close to the coordinaténotige electron must
produce two effects on the magnetometer: One of teedue to the magnetic field that is
created by the translatory motion of the electron. (¥he orbital fieldHy); its value is:

ey,
o (2)

The second effect is due to the proper magnetic moni¢iné @lectron that is created
by the proper magnetic field at the place that is occuipyethe magnetometer:

Ho:




§ 1. Impossibility of separating the proper magnetionert from the orbital one. 191

eh 1 3)

Hp =
F)477m)cy°‘

However, the value ofly is not known with absolute precision. That qusgnis
governed by an uncertainty of:

AH():E
Cc

AV, Yy ‘ , @)

y oy

since there is necessarily an uncertaifity in the x component of the velocity of the
electron and an uncertainfyy in its ordinatey (). However, from the Heisenberg
relations, if we limit ourselves to the Newtonigapeoximation then we will have:

Avy > : Avy 2 h : (5)
myAX mAy
and on the other hand, we must always suppose that:
Avy < vy, (6)
since otherwise we would not have any apprecialofgom along thex-axis.
If we now compare (3) and (4) then we will fincath
28]~ 27 () v, + v, ), @)
H, h
so it will result from (5), (1), and (6) that:
[8H,] >| X | 51 (8)
H, Ax Ay,

The uncertainty in the orbital magnetic field hetefore always much larger than the
value of the proper field, and in turn, the magnegter will not permit us to measure the
proper magnetic moment of the electron.

We repeat the same kind of argument for the behaofi the electron-magnet in a
non-uniform magnetic field. Once again, let arceeten be displaced along thxeaxis.
Imagine a magnetic field that is parallel to yhaxis and possesses a noticeable gradient
OH / dy.

The magnetic field has the valbigO) at the coordinate origin. Upon passing close to
the origin, the moving electron will be subjectedtihe Lorentz electrodynamical force
that is due to the orbital motion; that force vo# reasonably equal to:

() One must have the + sign inside the bracket in thautar (4), since the two uncertainties can
combine their effects in the must unfavorable case.
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fo:ev—gD-l(O). (9)

On the other hand, the magnet to which the elecsa@quivalent is subject to the
force (which is due to the proper magnetic moment):

o= N [a_Hj . (10)
4rmy,el 0y ),

However, since the wave train has a sizAyp#&nd the ordinate of the electron is, in
turn, affected with that uncertainty, one will have fbkowing uncertainty in the value
of fo:

|af | =S v{a—Hj Ay+ H(O)AVY, |, (11)
c ay J,
S0, upon comparing this with (10), one will get:
|Af, | _ 4, H
= VAYy+ — | AV, |. 12
f ho| &Y oH | A% (12)
oy J,
Since the relations (5) and (6) are again valre hene will then have:
CEL S DU D P N (13)
fo Av, | OH | Ax
oy ),

The effect of the non-uniform, external, magnéietd on the electronic magnet is
then masked completely by the uncertainty on theehiz force, and that method will no
longer permit us to measure the proper magnetic eanbm

These arguments, which one can, moreover, peffedhus make it very likely that
one cannot measure the proper magnetic momeng @léetron directly.

2. Impossibility of measuring the proper angular momentm. — As Darwin has
pointed out, one can extend the same kind of cersitns to the proper moment of
rotation.

() See DARWIN: “Examples of the Uncertainty Principl@foc. of the Royal Society A30 (1931),
pp. 637, and the report by Pauli to the Solvay Congne$830 (Gauthier-Villars, editor).
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For example, imagine a rectangular opening that is cubbatplanar screen and
whose edges ar& andAy.

Make an electron that is associated with a monochromptane wave fall upon the
left edge; the wave train of the electron on the righthe screen will have lateral
dimensionsgAx andAy. The components andy of the quantity of motion of the electron
after passing through the screen will thus be affectdudwricertainties:

h
IAIOxIZE, |Apy |2 (14)

i
Ay

Ay

X

Now, thez component of the orbital angular momentum of thetedac- i.e., the
angular momentum that is due to its translatory motias

Mz=Xp -V p. (15)

It will then have a value that is between 0 and:

AM; =AX | Apy | +Ay [Ap« |, (16)
so, from (14):
2 2
AM, = h| 2 BY | o XY (17)
Ay Ax AXAy

Since the fraction that appears in the right-hand cid&7) is greater than 1, one will
deducea fortiori, that:
AM; > L (18)
ar

The uncertainty in the component of the orbital angular momentum is therefore
greater than the proper angular momentum, and thamakle the measurement of that
quantity illusory.

The same argument can be applied toxtledy components of the proper angular
momentum.

These considerations seem to establish that the pemgerdar momentum of the
electron is no more measurable experimentally thgoraser magnetic moment.
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3. More general theory.— As Pauli, in particular, has showh, (one can apply the
preceding considerations from a more general viewpdimtorder to understand it, we
shall very briefly recall the method of approximationttisacalled theBrillouin-Wentzel
method

In non-relativistic wave mechanics, the principle lo¢ Brillouin-Wentzel method
consists of setting:

2

W=eh , (29)
with:
2 n
s:so+i_sl+(i_jsz+...+(i_j S+... (20)
2 2 2
and determining the tern, S, ... that figure in the development 8fin successive
powers of the quantity of very small modulug 2/7i by successive approximations. If
one is content with terms of order zero in this dewelent — i.e., the ones that persist
whenh = 0 — then one will recover geometrical optics for thgoaiated corpuscle, since
in that case one can consider a group of waves withsmeall dimensions to describe
one of the rays of the wave and assimilate it with pint-like corpuscle of the old
mechanics; the rays of the wave and the classicattoajes will coincide. However, if
one takes into account the terms of order 1, 2, h./i@si in the development (20) then
one will see some peculiarities appear that contragewptics with geometric optics and
the new mechanics with the old.

One can repeat the same method of approximation irc’Bitheory; that is what
Pauli did. Here, one sets:

27

We=eh k=123, 4), (21)
with:

a:s),k+i_sl,k+...+(i_j St oo (22)
271 27

and one will determine th§ by successive approximations. Upon proceeding in that
way, it seems that if one keeps only the terms of ordee® one will obtain geometrical
optics that corresponds teelativistic wave mechanicswithout spin i.e., the old
mechanics in the Einsteinian form. One can then imaggmee extremely small wave
trains that describe ray-trajectories that coincidaé the trajectories that are predicted by
the Einsteinian dynamics of the electron. Now, Einga@ mechanics considers the
electron to be a simple charged corpuscle and ignaréspin.” That could be predicted,
since the proper magnetic moment and the proper angulaentam of the electron are
proportional toh, and will disappear if one neglects the terms of onde

If, while pursuing the approximation, one takes terms déof, 2, ... irh / 2771 into
account in equation (22) then one will see some termsaagpat translate into the
existence of magnetism and the proper rotation of g#wtreh, but at the same time, as in
the non-relativistic theory, one will leave the domiainvhich geometrical optics applies,
and as a consequence, the concepts of the old pointiikbanics will cease to be exact.

() Helvetica Physica Acta, vol. V, fasc. IlI, pp. 179.
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One now comprehends why, conforming to Bohr’'s conclssi@m experiment in
which it is possible to treat the electron as a mat@oint cannot lead to the exhibition
of the proper magnetic moment or the proper rotation efdllectron. Indeed, from
Pauli’s analysis, it would be a contradiction to asstiméthe old point-like mechanics is
valid and that the characteristic effects of “spini t@ manifested.

4. Polarization of electronic waves— If it seems impossible to measure the
magnetic moment of an electron when it is consideneldeta magnetic corpuscle then
nothing, a priori, will oppose the experimental demonstration of theradtar of
polarization that is imposed on the electronic wdvey the existence of that magnetic
moment. Moreover, the polarization of the w&kaliffers noticeably from the classical
polarization of light waves. Whereas the lattededined for a plane wave by a vector
that always oscillates normal to the direction ofgagation, the polarization of the Dirac
wave ¥ is defined by the vectdr of its “magnetic moment density,” and for a plane
wave that vector will be, as we know, constant andnteek in no particular way with
respect to the direction of propagation. As a conse@g,aewmgcereas the properties of a
sheaf of polarized light, when examined from the varamiswuths around its direction of
propagation, will always present the periadthe corresponding period for a sheaf of
Dirac waves¥ will be 27z

In order to exhibit the polarization of electronic wayone can contemplate the use
of an arrangement that is analogous to the Nurembergappan optics. Suppose that
one has a sheaf of unpolarized electrons — i.e., a shediich the vectors that relate to
the various electrons are oriented at random. Ifreflects that sheaf on a crystalline
body then one can imagine that, by analogy with optics reflected sheaf can be
partially polarized. If one makes the reflected shakiupon a second reflector then the
second reflection will happen with more or less intgreccording to the azimuth of the
plane of incidence. The exact theory of the phenomerems to be very complicated
and has not been developed completely either; we sbaljm into it here. Loosely
speaking, one is led to predict a very weak effect oérsdvmillivolts for electrons,
which is an effect that must increase with the enerfgypm the experimental viewpoint,
the phenomenon does not seem to have been obsenfedmwitcertainty. Rupp has
indeed published some photographs in which one neatly seidltlieace of the azimuth
on the second reflection, but these results do non sediave been confirmed up to now
by those of other experimenters. The question remaias 0.

() The principal theoretical works on the polarizatibrlectrons are those of Mott, Proc. Roy. Soc. A
124 (1924), pp. 425 anihid., A 135(1932), pp. 429. One will find a complete bibliography imemoir
of Thibaud, Trillat, and v. Hirsch, J. Phys. Rad.37)1932), pp. 314.



CHAPTER XX

NEGATIVE-ENERGY STATES IN DIRAC'S THEORY

1. Negative-energy plane waves

We shall now address one of the great problems tha seggested by Dirac’s
theory.

Previously, we studied the form of the functidsfor a monochromatic plane wave
in the case of the absence of a field (see Chaptemp&dthgraph 3). In order to do that,
we wrote down the solution to the Dirac equation withozaostentials, and we tested a
solution of the form:

2 Wi px- By B 3

We=ac e (1)
We then found the following homogeneous, linear equatiarthiéay, :
w .
(?meocjal +(Px+ipy) astp.as=0,
w .
(?meocjaﬁ (Px—ipy) as—p:au=0,
(2)

W .
(?+%Cjas+(px+lpy)az+pza1:0,

w :
(?+%Cja4+(px_|py)al_pza2:0.

In order for there to be a non-zero solution, inécessary that the determinant of
equations (2) must be zero. That will give us the camliti

TR e i, ©

which is the classical relativistic relation. Upottisg:

W=+c /mc+ g+ g+ i, (4)

we will then find the solution:
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A+(p t+ip,)B -ip,)A- p,B
a = - p,A+(p +ip) , a2:_(px ip,) A= p, C ag=A a,=B, (5)
W/c+mc W/c+mc

whereA andB are arbitrary complex constants.
However, we can also satisfy condition (3) by sgttin

W=-c /mc+ g+ g+ i (6)
We will then find the following solution:

C+(p.+ip)D —ip,)C- p.D
ay= PCH(RA D) o, =(P=iP)C- p.D. @

a, =C, a, =D, )
m,c—-W/ ¢ m,c—W/ c

in whichC andD are two arbitrary complex constants.

We shall now modify the notations that we just esgpt slightly. For given values
of px, Py, P» We shall henceforth always defiki¢ by formula (4) with the + sign, and in
order to take the solution (7) into account, we say tleahave to consider both the wave
of energy +W and the wave of energyW. With that new convention, one must change
W into —W in equations (7).

Briefly, for a given value opy, py, p,, while W is defined by relation (4), we must
consider the monochromatic plane wave of positiveggneiV that is defined by:

271

ka —a eT(—Wt‘ BB Y B2 ’ (8)
with:
A+(p +ip,)B —-ip,)A- p,B
al - pz ( px py) , a2 - (px py) pz , a3 — A, a4 — B, (9)
W/c+mc W/c+mc

and the monochromatic plane wave with negative enely\that is defined by:

27
——(-Wt-p x- 2
qu:akeh VR R YR , (10)

with:

C+(p+ip,)D —-ip,)C- p,D
a =C, 2 =D, a = p,C+(p+ip,) , 2 :(IOX p,)C-p, . (1)
W/c+mc W/c+t+mc

We shall now examine these two waves.

For the positive-energy wave, we already know that component$V; and W,
which correspond in some way to the positive proper massg éutweigh the wave¥;
andW¥,, which correspond in some way to the negative proesmm, . These waves
W, andW¥,, which will be zero when the velocity is zero, vidécome important only for
velocities that are sufficiently close to that ight. It will only be in the limiting case of
v = c that one will have:
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| WP+ |Wo P = |Waf+ |Wal
In other words, one will always have:
Qu= Wi+ W P - |Wsf - |Waf <O, (12)

in which equality refers to the limiting cage c.

The conclusions will be the opposite for the negatinergy wave. The wavel;
andW, will dominate in that case. If the electron isedtr—i.e., ifpx, py, andp, are zero
— then one will have:

2n 27

21 2 2n 2
W, =Ce "' Y=pe "™  W,=y,=0. (13)

The wavesV; andW, become important for increasing velocities, but it \wé only
in the limiting case o¥ = c that one will have equality between:

| Wi+ W f and  Wsf+|WaF.
One will thus have:
Q.20 (14)

here, in which equality refers to the limiting case= c. Here, it is the waves that
correspond, in some way, to a negative proper massdhanaltes.

The existence of negative-energy states in Dira@srghconstitutes a grave difficulty
in that theory, since an electron that is in such a stéltehave properties that are
completely foreign and have never been observed. \Wlaeed in an electric field, it
will take on an acceleration whose sense is oppositeetiorce -eh, so one increases its
velocity by reducing its energy, its velocity will bethre opposite sense to its quantity of
motion (), etc. It then seems that Dirac’s theory forces to eliminate these negative-
energy states, since they do not answer to realitgwever, for reasons that we shall
now point out, that elimination does not seem easy.

2. The incomplete character of a system of positive-energyaves.— We return to
certain peculiarities of non-relativistic wave meclkani
In non-relativistic wave mechanics, the equation opagation:
h oW
— —  =H(VY 15
ra W) (15)

is of first order in time. The solution to that equatwill thus be determined completely
if one knows its initial form?(x, y, z, 0).
Consider the case of the absence of the field. Equéts) will then be written:

() By virtue of the relatiov = W /dp, which expresses the equality of the velocity of thrpuscle
and the group velocity of the associated wave (6ffi.od. a I'etude de la Mécanique ondulatqipg. 75).
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A = Arimo¥ (16)
h ot

and will admit the monochromatic plane wave:

2*ﬂi(Et‘ PRz R 2

W(x,y,zt)=ae" (17)
for a solution with:

= %H@i+ p; + p] (18)

(in which, there is no sign ambiguity).
Suppose that we give the wave function the initial form

W(x Y,z 0) =F(XxY, 2. (19
Suppose the(x, vy, 2) is developable into a Fourier integral of the form:

20 o X+ B2+ B3

F(x, Y, 2) = jTJg(px, p.p)e” dp dp dg. (20)

If one starts with the given functidhthen one can calculate the coefficients of this
development by the formula:

1.7 275 x+py 2+ )
9P Py P) = = [ [ [F(x v, e ™7 dxdyd. (21)
| then say that the function:
e 2—ﬂi(Et—pxx— Rz R
Yooy z9=[[[a(p. p, p)e dp dy dz (22)

This should be obvious, since:

1. W is a solution of equation (16), since it is a sum of nsbnomatic plane wave
solutions of that linear equation.
2. Fort =0, one will have, in factY(x,y, z, 0) =F(x, v, 2).

We conclude the following theorem from that:
In the non-relativistic wave mechanics of the free, material pamtochromatic

plane waves will constitute a “complete” system; i.e., It be possible to represent any
solution by a superposition of such waves.
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We now pass on to Dirac’s theory and look for thadiation of the argument that we
just made into that context. There, one will hawer mimultaneous first-order equations
in the four¥y . These four wave functions are thus determined cetelglif one is given
the initial formWy (X, y, z 0).

We always take the case of the zero field and fudbarand that it must be possible
to represent any sort of solution by a superpositionaiouohromatic plane waves. An
arbitrary solution is defined completely by the four fumas:

WX Y,z 0)=Fc(X Y, 2 k=1,234). (23)

Suppose that the are given arbitrarily and developed by Fourier’s theomm the
form:

270 o X B2+ B3

Fo (Y, 2 = jTJgk(px, B, R)e’ dp dp dg, (24)

in which thegy are given by:

27 (o x B2+ B3

Ok (Px Py, P2) = h—lg,jiEij(X, Y, 2) ezh dx dy d. (25)

We seek to represent the solution that correspondsetagiven initial W by a
superposition of monochromatic plane waves that contaimhs positive-energy waves.
In order to this, we must have:

Wt-p x-p,z p ¥

Wk (x Y,z t)=j+jmjak(px, Py P.) e’ dp dy dz  (26)

in whichW is defined by relation (4). These functions (26) indeed gisolution to the
equation of propagation, but in order for it to take thigal form Fy (X, y, 2, one must
have:

8k (Px Py, P2 = Gk (Px Py P) k=1,23,4), (27)

in which theg are known. However, we know that only two of the faufpx, py, p,) be
chosen arbitrarily, and that will show us that one ocarsatisfy the conditions (27), in
general. The positive-energy, monochromatic, plamees do not form a complete
system for the Dirac electron in the absence #ld then.

On the contrary, we will obtain a complete sysiewe consider the negative-energy
plane waves, as well as the positive-energy onadeed, if we set:

Wt-p x-p,z p ¥

W0y, 20= [ ] [a(p.p, per dp dy d;

“Wt-p xRz gk

+'[T'[bk(px’ Py, P) GZTM( dp dy d; (28)
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then, sinceW is always defined by (4), we will get a solution to trguagions of
propagation, since they are linear, and in order for th&lifWy to coincide with the
givenF (X, y, 2, we must write the conditions:

8 (Px, Py» P2) + bk (P Py P2 = Ok (P, Py, P2) k=123 4). (29)

Now, conditions (29), unlike conditions (27), are compatitdecause four of the
eightax andby that correspond to a setmf py, p; are arbitrary.

If we write the conditions (29) explicitly then wellobtain the following conditions
for every set opy, py, p; :

_ (p,t+ip,)A+ p,B
W/c+mc

+C= 01 (pX’ pY’ pZ)i

_(p,—ip,)A-p,B
W/c+mc

+D =02 (pX’ Py, pZ)i

(30)
p,C+(p,+ip,) D
W/c+mc

+A= 03 (an pY’ pZ)i

(p,—ip,)C+ p,C
W/c+mc

+B =04 (px Py: P2) -

If one studies the system (30), while taking the Heisgnbelations into account,
then one will see that in the most favorable casesllibe possible to represent a wave
train W by a superposition of positive-energy waves, but ontyef dimensions of the
wave train are appreciably larger thard my c. By contrast, if the dimensions of the
wave train are less thdn/ my ¢ then it will generally be entirely impossible to repent
it by a superposition of plane waves without appealingtmative-energy waves.

It is therefore impossible in Dirac’s theory to regmet an arbitrary wave train in a
general fashion without involving negative-energy waves, that impossibility shows
us why it is difficult to eliminate those waves.

3. The Klein paradox.— In the first place, one must recognize that the proldé
negative-energies exists even in classical relativitigleed, in classical relativity, energy
is defined as a function of the quantity of motion ia tase of the absence of the field by
the relation (3), which is a relation that gives thkofving two values toV:

W:ic\/nﬁcz+ g+ g+ & (31)

However, one must remark that, from (31), the possiualies of W will be
comprised of two separate domains, namely, fromte +my ¢ and from —my ¢ to —
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®. The interval from -m, ¢® to + my ¢® does not correspond to any possible value of
energy. Now, in the old mechanics — even relativisticalthe mechanical quantities,
and in particular, the energy, vary in a continuous ¢ashn principle. Therefore, if the
electrons have energies at the origin that are fourtbeinpositive domaim, ¢ — + o
then the same thing will always be true in what follparsd no value of the energy that is
found in the negative domainmy ¢® — — « can appear, since the two domains are
separated by the interviath > - — my ¢ which the values of energy cannot cross. The
objection that was raised against the existence oftiweganergies is thus found to be
lifted in Einsteinian dynamics.

The same thing is not true in the new mechanics, beciauganciple, it admits the
possibility of brief transitions between states whosergandiffers by a finite quantity,
which obstructs the priori elimination of the passage from the domain of positive
energies to the one of negative energies. Moredveyr,easy to imagine some simple
examples in which transitions of that genre are foorlgetrealized.

O. Klein was the first'j to point out an example of that transition, whialithout
being a transition from a positive-energy state to a theganergy state, properly
speaking, was nonetheless equivalent to one.

Klein considered a planar surfaS¢hat separated a region | in which the potential is
zero from a region Il in which one finds a constantasgaotentialV that is also negative
in such a way that an electron will have a potentiatgy ofU =—-eV> 0 inregion Il. A
Dirac electronic wave that comes from region | fallsrmally upon the separation
surface; that wave is assumed to be monochromatiqkmadr and to correspond to a
positive energy o¥V. One then calculates the waves that are reflecteédransmitted by
the separation surface. One shows that in orderrty oat the calculation, it is first
necessary to express the idea that there is contiiouieach of the fou#, upon crossing
the separation surface; i.e., to write the four equsation

Wy (incident) +Wy (reflected) =¥y (transmitted). (32)

Naturally, the reflected and transmitted waves cormesgo the same energy as the
incident wave,; i.e., the phenomenon is conservative.

Having posed that, Klein proved the following results, wHighall be content to
state without proof: For 0 ¥ < W—my ¢, there is both reflection and transmission, and
the transmitted wave, like the reflected wave, willdhéhe usual character of a positive-
energy wave.

ForW—my & < U <W + my ¢ there will then be total reflection with a vanishing
wave in the second medium.

ForU > W + my ¢ one will once more find a transmitted wave that @ssthe
surface, but — and this is the fundamental result —whae will correspond to the total
energy W, which is positive, but which one can call “the enegfya non-potential
nature” of the electron in region l; i.e., the quanW — Uwill be negative and less than
—mo ¢, whereas in classical Einsteinian dynamics, that qyamtuld always be greater
than myc®. The transmitted wave in the medium II, which is eqmed by the scalar
potentialV, is analogous to a negative-energy wave in the absercpaiéntial, and will

() Zeitschrift fiir Physiks3 (1929), pp. 157.



§ 3. The Klein paradox. 203

possess the same paradoxical properties. The existetiwd dansmitted wave must be
interpreted by saying that there is a certain probabitity &n incident electron to
penetrate into the region Il by passing through that strstage,

For Klein, that probability can itself be noticeabledeed, it seems that one cannot
consider the result of the calculation to be physiaatact, and that is the Klein paradox.

It is true that the case that Klein considered waseexly schematic. Other authors
imagined other examples that were a little lessi@glf The general result of that
research seems to be the following: Whenever the pakestergy of the electron is
subjected to a variation of at leasic® over a distance of less thar myc, there will be
the possibility that negative-energy states will appddrat result leads one to think that
if one can forbid the consideration of spatial distaribat are less tham/ myc then one
might succeed in eliminating these negative-energy wavdss must be compared to
what was said at the end of the preceding paragraph @ublect of the representation
of wave trains.

4. Remarks and conclusions- The negative-energy states appear once more in a
curious fashion in the theory of diffusion of light byetbirac electron. We shall not
develop that theory, but refer the reader to some giapers {). We note only the
result: The Dirac electron cannot diffuse light unléds tapable of taking on negative-
energy states. Since it is necessary to assunesketrons diffuse light in order to
explain the phenomenon of diffusion by material bodies, fact by itself will once more
show how difficult it is to liberate Dirac’s theofyom the apparent imperfection that
takes the form of the existence of negative-energyestatVarious attempts have
nevertheless been made to get around the problem. Wsahanly a few words about
them.

Schroédinger proposed a very ingenious modification efgéneral Dirac equations
that made the negative-energy states disappeatHowever, in addition to the fact that
his modification seemed difficult to reconcile witletbxistence of the diffusion of light
by electrons, it had a very neatly artificial chaeact

Dirac, instead of wishing to suppress the negative-eneaggsstsought to interpret
them €). In order to do that, he supposed that these stetesll§ existed, and that in
every subset of space one will find an infinite nundfezlectrons that occupy all of these
negative-energy states, which will be unobservabletreles. Some of these electrons
leave their usual negative energy states from timére in order to take on a positive-
energy state, and those will be observable electrofBe “hole” that is left in the
negative-energy state by the departure of an electribievivhat one calls a protofi |
The return of the missing electron to a negative-enesg@ye will constitute the
simultaneous disappearance of an electron and a protbich wmust then be

() Notably, see the remarkable treatise of E. Fei@uantum theory of radiation,” Reviews of Modern
Physics4 (1932), pp. 120.

() Notably, see Annales de I'Institut Henri Poincard, pp. 269.

() Ibidemt. I, pp. 357.

[l Translator's note: This was not my mis-translatioh the word “positron,” but a common
misunderstanding during the era between the publicationiraic’® first papers on the theory of the
electron and the discovery of the positron. (See fl@vimg comment by de Broglie.)
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accompanied by the emission of radiation. Unfortunatbse seductive hypotheses are
riddled with all sorts of objections and do not seem toapsble of being saved) (

In summary, the negative-energy states of the relegilay a very important role in
the structure itself of Dirac’s theory, although they dboseem to manifest themselves in
reality. It seems that, for the moment, one capose the problem without solving it.

() Dirac’s theory of holes is enjoying a return to faab the moment as a result of the experimental
discovery of the positive electron.



CHAPTER XXI

SCHRODINGER'S ZITTERBEWEGUNG

1. The motion of the center of gravity of the probability.

In this chapter, we shall avoid explicitly introduciran operator that would
correspond to the “velocity” of the electron. As Bdtas remarked, the velocity of a
corpuscle is a notion that one must use prudently in themechanics. Indeed, it is
well-defined only in certain cases, and it does not sestified to consider it to be an
observable physical quantity.

On the contrary, it is always permissible to imagime mean position of a corpuscle
— or the center of gravity of the probabilityand to study its motion. In effect, that point
is defined by its coordinates:

izjfjxkiq’fq’kdf’ VZITJykiWEWde, TZITJZZWEWde 1)
PR JIV& 122

in Dirac’s theory.

The velocity of the point with coordinatés, y, Z is itself a perfectly well-defined
quantity.

Let W1, W, W3, W,) be the solution to the Dirac equation that represetsvave
that is associated with the motion of a certaintedec As we know, we can develop
eachW in a series of proper functions of the form:

l'IJk: ZCnLIJkynl (2)
where thec, are complex constants. Upon substituting this indag, will get:
4
X =26 D (Wiaxw, ), (3)
m,n k=1

in which we have replaced the triple integral e summation in formulas (1) with just
one symbol. Upon denoting the element of the maltxat corresponds tand has the
indicesm, n by Xmn, formula (3) will be written simply as:

X =G Cy Xy - 4)

Now, by virtue of formula (25) in Chapter XV, ondl have:
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dxm - J z[wfmz_:i(xH - Hx)lPKn} dr, ()

whereH is Dirac’s Hamiltonian operator:

=—-[eV+c(P1+ > P+ a3 Ps+a;my Q)] . (6)
One easily finds:
2—m(xH HX)=c o (x[—la——ixj =-cao, (7)
h ox 0x
and in turn:
d
‘m = [ Z n(—ca)w, ldr. 8)

On then obtains from (4):
T z m Ch dxmn = '[ Z|:Cnmw l'IJE,m(_Call)z Cnl'IJ Kn:| dr
= '[DZLPE,m(_Cal)LPk,ndT' (9)
k=1
Naturally, one likewise finds that:
dy _ [ oy 0Z_ 1 <o
e jDkZ:;wk( ca,)W¥, dr, e jDkZ:;wk( ca,)W, dr . (10)

We previously found [formulas (7) of Chap. Xll]eHollowing expressions for the
components of the probability current:

=-cC Zwkmalwk,ndr. (11)

Upon comparing this with (9), one will then get:

ax _ o

pri J'D,ouX dr =u,, (12)
and similarly:

day _ _ dz _

- =u,, —=u,. 12

dt Y o | S (12)

The velocity of the center of gravity of the probity is then equal to the mean value
of the velocity of the probability, which is a rdistihat one could have predicteadpriori.
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One often interprets formulas (9) and (10) by sayingtti@bperators € a1, — C a>,
and — as are the operators that correspond to the three comysosiethhe velocity of the
electron. Since these operators have ontyand —c for proper values, one is led to say
that from the general principles of new mechanics, ¢hly possible values for the
components of velocity will be € and —c, which is a result that is very difficult to
comprehend. As we have said, we prefer to abstaininaking the operator correspond
to the “velocity” of a corpuscle.

2. Ehrenfest’s theorem is no longer exact in Dirac’s #ory. — In non-relativistic
wave mechanics, we proved Ehrenfest’s theorem, whiekpisessed by the formulas:

_ d?z -
e = f,, m e = f,. (13)

d’% _ - d’
e "

I
<l

m

If we apply this to the case in which a field is absban this theorem will lead us to
the following result: In the absence of a field, the motion of the cenfegravity is
uniform and rectilinear. This is, in a sense, the translation of the principleertia into
wave mechanics.

The preceding result is no longer exact in Dirac’®oithein general. Indeed, start
with formula (8) and once more apply formula (25) oa@ter XV; we will get:

d®x. . 4 7ii
d?;' = jDZ[WEYmﬁF(—calH + Hcal)BPkyn}Edr, (14)
k=1

and, in turn, from (4):

d*x 4 271
g > cnjDz[wim—h (—ca,H+ chl)wkyn}mr. (15)
m,n k=1

Now, aq does not commute witH, since it anti-commutes wittn, a3, andas. One
thus has, in general:

d*x o d*y d*z
z0, and similarly: z 0,
dt? y dt? dt?

0. (16)

The motion of the center of gravity of the proligpin the absence of a field is not
generally uniform and rectilinear.

We shall now examine more closely the reasongreatents this motion of the center
of gravity from being uniform and rectilinear, am@ shall see that it is related to the
existence of negative-energy states. We will thioigin some results that were obtained
by Schrédinger in a very different forr (

() Annales de I'Institut H. Poincarkac. cit.
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3. Schrédinger’s zitterbewegung-— In order to better comprehend why the center of
gravity of the probability does not generally have a uniforectilinear motion in Dirac
mechanics- even in the absence of a fieldve shall subject the expression:

dx 4
i [ > Wi-ca)w, dr (17)
k=1

to a detailed analysis.
We know that one can always write:

2 \Wi-px- g v B ¥

Wdx y, 2 1) = Iff a(Po Py, P,) €

2\ px- B v B ¥

+b(p. P, P) € " dp. dpy dpy, (18)

with

W:+\/mfc2+ g+ g+ & (19)

The eightax (px, Py, P2) andbx (Px, Py, P2 can be calculated by starting with four of
them that are arbitrary using formulas that weaalyeknow.

Now call the space that is defined by the rect&mgeoordinates of the quantitipg
Py, Pz “momentum space,” and divide that space into eetlsat are as small as we desire.
The quantities:

A0) = me’zf“’*””p”’dg dp dp (20)

are (up to a normalization constant) the “propéecdentials” of the continuous spectrum
of the monochromatic plane wave} énd we can write:

Wi, Y, 2 t):z{ak(px, B p)e" +h(p B P ‘ehWt}A(o), (21)

in whichp, py, p; are the coordinates of the center of the elera@ntmoment space, and
Z denotes the summation over all cedlg that space.

If that is true then we can write (17) in the form

x_ Zzi{ak(p;, 8. 8)e "+ h( b b D ’eh"”q

=—-C
dt o o k=1

O Z{ak(px, B, p)e" +h(p B B -eth 0] A%o)A(0)dr, (22)

() See the definition of the proper differential in Chapteparagraph 4.
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where the domain is naturally all of space here. Stheeproper differentials are
orthogonal and can be assumed to be normalized, we(have

dax 4 27y 2
?f :—czaz{ak(px, o, p)e" +h(p B B ehw}
g k=1

27

O {ak(px, B, p)e +h(n B P _e“Wt} (23)

or:

(o k=1 g

X =-c Yoy [ama +hah]-c Za[ZaEalakéhwﬁz G, Wtj. (24)

We must now transform this expression. From thefilas of the preceding chapter,
we have:

_PA+(p-ip)B __ (p.=ip,)A-P.B

a = ) 2 —
W/c+mec W/c+mec
az =A, a1 =B, (25)
so:
. AA’+ BB’
-cYala,a=-c(a’a,+4d a+ + =2p P ———— . (26
;ak a=-c(@g+aataatga =2p wime @
However, one also has:
4 . . 2+ 2+ 2 0
>a'a=(an +88) |10 DT BT R gy AATEE @7)
=] W/c+mg W+mé
S0, upon comparing this with (26), one will get:
P PC <& o
-cYaaa="2-%ala. (28)
k=1 w k=1
One likewise finds upon using the expressiorbidhat:
& PC <& 0
—c Y hla b =-">-%h'h . (29)
k=1 w k=1

On the other hand, the last two terms in the esgioa (24) are complex conjugates
(due to the Hermiticity o#r;), and one can write:

() Here, we denote the volume of the aelby o
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cY oA co{%WH ¢1j . (30)

Naturally, A, and¢, vary from one cell to another; i.e., they are fiorwes ofpy, py, p-
Finally, from (28), (29), and (30), we can wri] in the form:

2
&K aﬂ[iasak—ibfq}yw[
dt > W \ia k=1 o

4w

t+ ¢1j : (31)

Now, from the formulas of relativistic dynamicdiet quantityc’®p, / W is the x
component of the velocity that corresponds to tientjty of motionpx and to an energy
+ W. Likewise, one can considerc®p, / W to be thex component of a velocity that
corresponds to the same quantity of motion andgathe energy W. The first term in
the expression (31) fodx/ dt is therefore a sort of mean value for the compboéthe
velocity v« that corresponds to the spectral decompositiop4t8 the wavéd. We then
set:

v, =Za%é(a5@—b5Q): (32)

naturally, v, is independent of time. We then have:

% =V, +20’C Aco{— Wt+¢1j, (33)
so, by integration:
- _ hcA . (4m
=const. t/.t+ » o——sin Wi+ : 34
X X ; 471‘N ( h ¢1j ( )
Set:
X = const. +v t. (35)
One gets:
- hcA . [ ﬂv
=¢+ Y o——=sin| 27 f+e, |. 36
X=e Z[,: AN | h 4 (36)

One will likewise find:

= hcA . [ 2W
= o —d+¢, |,
y '7+Z[,:U4mNS'n_ h 4

(37)
- hcA . 2
=7+ —_— 2T [+ ,
¢ 20477\/\/5'”[ h ¢3}
with the definitions:

2k
n =", + const., Vy:ZU%VC D (aa-h'h),
k=1

g

(38)
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J=Vt +const., V, :ZU%V—CZQ{(:(aEq(—bEQ).
k=1

g

The point whose coordinates afer, { is displaced with a uniform, rectilinear
motion, but the center of gravity of the probalilvill exhibit a series of oscillations
about that point with a frequency o¥\2/ h: This is “Schrédinger’'zitterbewegung
Moreover, the amplitudes of these oscillationsveeak, in general, because they will be

proportional to the factonc / 474V, which is always smaller thaﬂhL = i[—ll
4rmm,c 4 myc

Now, the quantityh / mgc is often called the “Compton wave length” and esywsmall
(2.4M0* cm.).

The preceding analysis shows the origin of Scimgelis zitterbewegung very
neatly: It is due to thbeatingof the waves of positive enerdy with the corresponding
waves of negative energyW. The beat frequency is, as usual, the differesfcthe
frequencies of the beating waves, whichVWg/A, here.

There is no Schrodinger zitterbewegung for a trainwaves in a spectral
decomposition that involves no negative-energy wawnd Ehrenfest’s theorem will
remain valid. However, we know that in the geneesde, one must appeal to negative-
energy waves in order to represent a wave trafrat i§ why the theorem is not generally
valid in Dirac’s theory.

Schrodinger’s zitterbewegung and the non-validkyEhrenfest’s theorem are thus
coupled to the existence of negative-energy stateswill disappear with those states if
one can eliminate them.




CHAPTER XXII

SOME REMARKS ON RELATIVIVY
AND THE NEW MECHANICS

1. The absence of symmetry between space and time in tieav mechanics.

We have seen that Dirac’s theory conforms to the mimof relativity in certain
aspects. Indeed, one can give its fundamental equatifmmmahat is invariant under a
Lorentz transformation: One can form quantities fresnfour ¥ that have a tensorial
character in space-time. Nevertheless, one can harellgnd that Dirac’s theory, in its
present state, is in complete accord with the concdptslativity, even in its special
form. Indeed, one of the guiding ideas of relativityottyeseems to be that one should
always involve the coordinates of space and time in amgtnt fashion. Now, that
symmetric intervention of the variablgsy, z t is not realized in Dirac’s theory, because
one assumes the general principles of new mechanicshwahe general principles that
(at least, in their present form) give an entirgdgaal role to the variable of “time.” We
must insist upon that point.

First, the new mechanics makes any observable physiealityucorrespond to a
Hermitian operator. Now, the Hermiticity of an ogeras defined in apatial domain,
and that will already suffice to make the definitiaself of some operators that are
employed in the new mechanics non-relativistic. Tintersnnto those operators only as
a parameter, and the derivati@d ot" can never enter into them.

Having defined the operators that correspond to observablditggsanthe new
mechanics assumes that the possible values of on@sd tjuantities are given by the
proper values of the operator. However, the proper valnéshe proper functions of an
operator are, in turn, defined in a domairof space. The variable “time” plays no role
in the calculation of proper values and proper functiors dérmitian operator; when it
does enter in, it enters only as a parameter. Ormc@dhbsible values of an observable
guantityA have been calculated, the new mechanics supposesehadribus respective
probabilities of the various possible values of that quantill be given by the square of
the modulus of the coefficient of each proper funciiothe development of the wave
functionW in proper functions.

In the general casé)( those probabilities depend upon the parametand it is
precisely for that reason that the state of theesysgfenerally evolves.

Briefly: Up to now, the new mechanics has consideinme to be something that
plays a completely different role from that of th@asal coordinates. Dirac’s theory,
which assumes the general principles of new mecharaesgiot be truly “relativistic”
then. One sees that very easily, for example, wimen studies the mean values of
guantities in Dirac’s mechanics. The mean-value dessitie defined in space, and in
order to pass from the density to the mean value ,itsaf must integrate over space,

() Thatis, wherA is not a first integral.
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which is an operation that is not relativistically inaat. One can then explain certain
very obvious peculiarities in the table of mean valuasithfound at the end of Part Il of
this book, such as the very asymmetric use of the aparatfor example.

2. The fourth uncertainty relation. — We shall once more raise a question that
relates to the particular role that is played by timeave mechanics.
The Heisenberg uncertainty relations are the followimgso

ApcM\x=h, Ap,[Ny=h, Ap,Nz=h. (1)

From the mathematical standpoint, they are derivedn fitbe fact that wave
mechanics makes the classical quantpiespy, p. correspond (up to a constant) to the
derivatives with respect to the conjugate variaklgs z, respectively.

From the physical standpoint, the relations (1) musintexpreted by saying: At a
given instant, the product of the uncertainty in onghefcoordinates of a corpuscle with
the conjugate component of the quantity of motion is advedyleast of order.

The relativistic symmetry between space and time desndnad the three relations (1)
must be completed by a fourth relation:

AW [t > h, ()

since the energW is the temporal component of a “world impulse” quadriteegvhose
spatial components ap, py, p; .

However, in the present state of the new mechathes,fourth uncertainty relation
cannot at all be interpreted in the same way as tbetfiree, because, on the one hand,
time t must be considered to be a parameter that has aefeled value with no actual
uncertainty, and on the other hand, the quantity “en&ywill correspond to the

I h . :
Hamiltonian operator, and not to the opera%e&%, which cannot be considered to be
7ai

Hermitian in the proper sense of the word.

It is nevertheless possible to give meaning to the egual€2). Indeed, it is well-
known that if one observes the passage of a wave drfired point in space during an
arbitrary finite time intervalAt then one can assert only that the wave possesses a
frequency with an uncertainty of:

Avs i. 3)

For a wave¥, if one takes into account the relatidh= hv then one can write the
inequality (3) in the form:

AW > %. (4)
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One then perceives the sense of the relation (2)exptesses the idea that an
experiment or observation that is made at a fixed ghinhg an interval\t cannot reveal
the energy of a corpuscle with an uncertainty thigsis tharh / At.

The fourth uncertainty relation then has a meaningijthsita very different meaning
from that of the first three. That is a new aspaEcthe asymmetry between space and
time in wave mechanics.

3. Can one establish symmetry between space and time in thew mechanics?

In order to establish symmetry between space and tintleei new mechanics, one must
try to modify the general principles in that sense.théft stating that this is impossible,
we shall show that there are some great difficuiEeociated with that ambition.

The first thing to do will be to define the Hermiticiof operators in space-time,
instead of defining it in space. For example, let anaipeA act upon both the time and
space variables (and also possibly upon the spin vagabi®ne will then have to define
the Hermiticity by the condition:

“;“ "%y, zt) Ag(x Y, zt) dx dy dz dt

:'”'” gy, zt)Af (xy,zt)dx dy dz dt ()

D is a space-time domain, and for the free electramillibe all of space-time.
One might possibly need to add a summation over thablag in the condition (5).
The proper values and proper functions of the operateitl then be defined by the
equation:

Alg (xy,z)]=a ¢ (XY, z1), (6)

in which ¢; is finite, uniform, continuous, and zero on the bounddrthe space-time
domainD. The wave functio® (X, Y, z t) is developed in the form:

W(xy,zt)= z c & (XY, z1), (7)

and one can transpose the usual statement of the genecgbles by saying:

A measurement of the physical quantity that cowedp to the operator A can give
only one of the values;, and the probability of the valus will be equal td ¢ [

It will result from this that the mean value of theaqtity A will be:

A:”“ W' A (W) dx dy dz dt (8)
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Unfortunately, there is a grave objection to this: Thentjias a; andc; , with their
new definitions, are independent of time, and naturallystimee thing will be true foA.
We will then get a theory of physical statics from vhadl time evolution is banned.

A different aspect of the difficulty is the followirgne: When we “quantize” a system
with the current principles of the new mechanics — adyein atom, for example — we
mentally isolate that system from the rest of thevense. Rigorously speaking, that is
not permissible: In order to determidgé one must, in principle, take into account not
only the force field that is created by the nucleus,atsd all of the force fields that exist
in the entire universe. Fortunately, the influence ofdhnee fields that are external to the
atom on the form of the stationary waWsn the atom is completely negligible, because
the wavesW tend to zero very rapidly when one extends them autsidthe atomic
domain. In principle, the determination of the statigrwaves — viz., proper functions —
demands the consideration of all space and everything t@aitains, but in practice, the
structure of the material world allows one to cut awgsteams that are sufficiently
independent of the rest of the material world and consirean to be isolated. However,
if we would like to define proper functions in space-tithen that would no longer be
true, because it does not seem possible to decomposexigtenee of a physical
individual — such as an atom — into mutually-independent secti€onsider a hydrogen
atom: In the course of its history, it will be subggtto various effects, such as being the
site of the Stark or Zeeman effect, for exampleweéfwould like to define the proper
functions and proper values in space-time then we wanuddthat the stationary states of
that atom will be invariable and will be determined by s$ke of all the effects that it is
subjected to during the entire course of time. Thatihaekems acceptable.

In reality, even in the theory of relativity in itdassical form today, the time and
space variables are far from equivalent. The varialiee"talways varies in the same
sense in it, and the world-lines of all material olgeate lines that have a positive sense,
and that positive sense will always subtend an angé t#fast 45 with thect axis. In
other words, space-time possesses an essential “pttariza

In the relativistic conception of things, an obser&eronsiders the world-points that
are contained in a certain three-dimensional secdti@pace-time to be simultaneous and
to correspond to the same value of its proper timet i§hH@ecause that section cuts all of
the world-lines that the observa&rcan cut out from its space of almost-independent units.
However, such a cutting of the sense of world-linesild/de impossible. There would
be a sort of fibrous structure on space-time in the sehdeme. It is that fibrous
structure that we find to be inconvenient here, andegetisat the difficulty has its roots
in classical relativity itself.

4. A more restrictive form for the uncertainty relations (Bohr, Landau, and
Peierls). — If one introduces the relativistic idea that no actian propagate with a
velocity that is greater thanthen the relatiodW At > h will lead us to state some new
uncertainty relations. Those new relations, whicé aot contained in the general
principles of the new mechanics in its non-relativistiom, must be added to those of
Heisenberg and will augment the uncertainties thattrérsuh them.
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Without entering into the details of the argument batls to those new uncertainties,
we shall meanwhile seek to show their origin. We pus@ues in the case in which no
field is present.

In relativistic wave mechanics, the four parameWy9, , py, p; that enter into the
phase of a monochromatic plane wave are coupled by dla¢ion of Einsteinian

dynamics:
2

w 2
|p|2:?‘”bcz, 9)

from which, it will easily result thah |p |= AW/ c.

However, we know that if one seeks to determine tiie ©f an electron by means of
an experiment that lasts for a durationfthen one can know that state with only an
uncertainty oh / At ; i.e., if the waveéd is decomposed into monochromatic waves then
one will be concerned with a spectral interval of widt

(10)

The values of p | that enter into the spectral decomposition of theew will then
occupy an interval:
A|p|2M2L. (11)
c CAt

One concludes from this that an observation or expetiofame duratiomAt cannot
lead to knowledge of the quantity of motion that has aredainty that is less thdn/ c
At. That will yield an uncertainty relation with a nevachcter.

One can also recover the inequality (11) in another eranif an observer that is
placed at a point in space would like to bound the leag#ntrain of wavesV then he
must make it pass through an opening that has been pidnmrdylt a screen and is
closed by means of a shutter. He raises the shuttartime interval ofAt and then puts
it back in such a fashion as to bound the wave trainhdmtrossed the screen during that
time intervalAt. However, the front of that wave train cannot pregreith a velocity
that is greater thag so the length of the transmitted wave train thatses the screen
will be equal to at most At. Upon taking the axis to be in the direction of propagation,
the uncertainty in the coordinate of the corpuscle of the transmitted waviethrgn be:

Az < c At, (12)
and from the Heisenberg relation:
h h
Ap, 2 —=> ——, 13
P Az cAt (13)

and since one can confus@andp, here, one will recover the inequality (11).
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In the first place, it might seem that the relat{d@1) is in opposition with the notion
of a monochromatic plane wave because oneApas O for them. However, one can
dismiss that objection by remarking that in order toragsly have the right to associate
a corpuscle with a monochromatic plane w&¥eone must be able to state that the
corpuscle can be found at no particular point in spawkttzat statement can be justified
only for an experiment of infinite time duration, since means of investigation can
explore space with a velocity that is greater thatMeanwhile, it still remains from that
objection that an observer can never represent his kdge/lof the state of an electron
by an unbounded monochromatic plane wave rigorously.

Certain arguments lead one to believe that for a bmidproper masam, the
measurement of a length that is less thhamy, ¢ or of a time duration that is less thah
moc? is illusory ¢). That permits one to hope that if one can exclhdebnsideration of
distances that are less tHanm, c and time intervals that are less thahmy ¢? from the
theory of the electron as having no meaning then one nmgtte the difficulty of
negative energies disappear by means of that it$&kEn again, one only hopes for that.

() Cf., SCHRODINGER, Annales de I'Institut H. Poincdog, cit.



