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These pages refer to a succinct presentation of theaixés that | had the honor of
giving at I'Institut Henri Poincaré in November and Decemiifet929. Those lectures

were on the following topics:

I.  The massive gravitational field.

[I.  The electromagnetic gravitational field.

[ll.  Application to wave mechanics.

IV. Electrodynamics of moving bodies.

V. Electromagnetostriction and relativistic thermoaymcs.
VI. Synthesis.

| was forced to show that general relativity providedrastrument that was adapted
perfectly to the study of those problems. Contrargri@pinion that is very widespread,
Einsteinian gravity does not need to be modified: Whes donceived in a sufficiently
broad sense, it will still remain in harmony with th@snh modern theories of wave

mechanics.
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Einsteinian gravity

1. The fundamental equations of the gravitational field— Consider a function
M? that depends upon onty”®, g, ... Its variance under an arbitrary change of

variables xi, %2, Xs, X4 is that of a multiplier or density factor. We caWt® the
characteristic function of gravity.
In addition, consider a functioM that has the same variance, but which can depend

upon other functions such a$, A,, etc., independently of ttg®’, g”'. That function
will be made explicit later on; it will be given theame of phenomenological
characteristic function.

The fundamentalvariational principle of gravity consists of equating the
tenvariational derivatives with respect ¢4° to zero. One will then obtain then
fundamental equatiornsf the gravity, namely:

OM°+M) _ 0

(1) 590[3

The variational derivativé/ & is written:

@) 556_‘1(6,} dz(a.j—...
og”  og¥ dx|ag” ) dxdxlo §*
Set:
g
hence:
(4) T;};:%ﬁ.

We call 7_; the symmetric covariant gravitational tensand 7,5, the symmetric

covariant phenomenological tensar more simply, theymmetric tensor.
Let C denote thecurvature invariant,and leta andb denoteuniversal constants.
Take the value:

() MP=@+bC -9
for M°.
Upon performing the indicated operations in (9dhe will obtain:

(6) —3@+b Q) gas+b Cap=Tgp,
in which:

Taﬂ
(7) Tap=

ek
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andCgs are the components of the well-known Riemann tensor.

Remark. — The variational principle that we just presented ob\oamsounts to a
generalization oHamilton’s principle;i.e., that one must annul the variation:

(8) S (M°+M)dx dx dx dx=0,

in whichQ is a portion of space-time on whose boundary tr@tions must be annulled.

2. The gravitational identities. — Upon applying the gravity identitied) (to the
function M9, one will get:

0 jOM® 1 y,OM°

i =
9) ox -9 5q" q g 0,
or even, by virtue of (3):
(20) aTg +ig" “T° =0,
ox
in which:
(11) ;) =9'T).

3. Energy-impulse theorem— The ten equations (4), when combined with the fo
identities (10), will immediately give the foequations:

(12) faE,T;-i = 6’]’0{ +1 gll mz- =0,
’ ax

in which we have set, as in (24.11):

(13) Ti=g'7,.

We say that the four equations (12) expressetiergy-impulséheorem. One can
also express that theorem by saying that the gerentdorcer, is zero.

4. Gravity waves and rays— One chooses the new variablgsx,, X3, X4 In such a
way that the new,s satisfy the foucomplementargquations):

() Th. DE DONDER,Théorie invariantive du Calcul des variatigrull. Acad. Roy. Belg.; cl. des
Sciences (5)5(1929), see § 12.

() Th. DE DONDER,La Gravifique einsteinienneAnnales de I'Observatoire Royale de Belgique,
1921. (or Gauthier-Villars, Paris). See § 29.
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(14) 6" {” b } 0,
o

or — what amounts to the same thing:

(15) g {a A } - 0.
o

Upon using those new variables, the fundamental equaticdhe gravitational field
will become:

(16) gaﬁ Qor, ap = (g, 1),

in which the right-hand sidesg( 7) do not contain any second derivatives of the
Einsteinian potentials. We further remark that eadheieft-hand sides of (16) contains
only second derivatives @fst oneEinsteinian potential.

With HADAMARD and VESSIOT, we say that the solutidrsf (i, X2, X3, X4) Of:

o O _
ox* ox*

a7 G=g

yield characteristic manifoldsr (elementaryyravity waves
(18) f=0.
Now consider the (CAUCHY) characteristics Gf = 0; one will then have the

bicharacteristics or gravity rays. VESSIOT {) showed that they areull-length
geodesic®f the gravity field.

5. Massive gravity field.— In the case of a gravity field that is due to some esass
we set:

(19) M == g% (N Ua Us+ Pap),

in which A/ is the generalized mass density, are the covariant components of the

velocity, andP,s are the massive stresses.
Upon using (3) and (13), one will obtain the tensor:

(20) TP =Nu, P +PF .
Theenergy-impulse theore(d2) then becomes:

(22) Fa=Nag+Pa=0,

() Th. DE DONDER,La Gravifique einsteiniennéAnnales de I'Observatoire Royale de Belgique,
1921. (or Gauthier-Villars, Paris). See § 29.
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in which:
(22) Na= NG+ Ug -2 (M
axﬂ
and
op* .
(23) Pa=TFl; = PV 97 9,,.Ps -
B

Upon multiplying (21) by“ and summing, one will obtain tleguation of continuity:
0 a_
(24) — (MU + P u"=0.
0x,
6. Electromagnetic and massive gravitational field— Now consider the case in

which the gravity field is due to electric charges and mass.
To that effect, we introduce the characteristic fuonrcti

(25) M= gaﬁ -N uauﬂ _730[3 + ;g gij Hai Hﬂi

The functionsH,; are the components of the electromagnetic fordéhey are
antisymmetric; i.e.:

Thanks to (3) and (13), one will have the tensor:
(27) 77 ENUaUa"'Hﬂ'*'%gf\]_gHinij+\/_9HiaHﬂ-
Theenergy-impulse theorenmesults immediately from that:
(28) Ja=Na+Pat TP =0,

in which N/, andP, were defined before (22 and 23), and:

— OH- [ — i
(29) J=|{-g H"Ja—x”—Haj—a( ai'H) -
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The notationHﬁ signifies that one must adokh with two indices that form, along

with ij, an even permutatioi]'lij_ of the indices 1234. Upon multiplying (28) bf and
summing ovem, one will get thecontinuity equatiorf’):

o(Nu”) N
ox

a

(30) (P, +7)u=0.

Upon multiplying (28) byA” and summing ovew, one will obtain the relatiort)

_TAITP + )

(31) N A A

7. Maxwell's equations.— Now, introduceMaxwell’'s equations:

(32) d(y-gH") -
o
o _

in which we have set:

(34) HT=H_.
It will result immediately from (33) and (34) that

a _acbﬂ

(35) Haﬂ = -,
ox, 0%,

in which @ is the electromagnetic potential.
It is important to note that MAXWELL's equation82) can be derived from a
fundamental function:

(36) DO = ou’ @+ 32 g g Hoi Hy

upon taking the variational derivatives with redpgesp, and supposing that tité,s that
enter into it have the form (35). The symlsok an electric density factor.
It results immediately from (32) that one will leav

() Th. DE DONDER,Théorie des Champs graviquddémorial des Sciences mathématiques, fasc
XIV. Paris 1926) (See chapters Il and VI).
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(37) ai(aua) =0,

a

which expresses trednservation of electric charge in motion.

Upon accounting for equations (32) and (33) in the value (2978, one will find
that:
(38) JP =+0uHg.

Upon multiplying 7® by u? and summing, one will get:
(39) JOu=0.

Introduce the valug7'® in (31); we then obtain a relation between the deffiaittors
N andg; namely {):
_ ~A°(0Uu'H, +Fy) |
AN

(40) N

By definition, one calls the following relation betwvethe electromagnetic potentials
MAXWELL’s complementary equation:

1 0
41 W=——_~ (/-gd?)=0,
(41) T3 (/-g o)
in which we have writterd” = g% ®; . MAXWELL's electromagnetic equations can
then be simplified. After some calculations, oné abtain:

a A2
ou =Kg+¢0' —6 %,

J-9 0x0x,

in whichK, does not contain any second derivative®qf®,, ®3, P, .

(42)

8. Lagrangian form and canonical form of the energy-impulse teorem. —
Consider the case of an incoherent mass — i.e., onghfich the P,z are zero. If one
takes (38) into account then the energy-impulse theorencg28)e written:

_ vl da6wd))_(eawd)], [d(au)_(au)] _
@ aew G SPHEHE) e

(*) Loc. cit, eq. (341).
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in which one has set:

(44) W2 = gaﬂ Ua uﬂ,
(45) U =uo,.
Set §):
(46) TV=N & Mo Kz Fa, 01O = T o Kz O .

When one takes (39) and the fact tRgg = O into account, it will then result from the
continuity equations (30) and (37) that:

d d
47 —|or'™ =0, —|or® =0.
(47) dsj dsJ.

Upon multiplying the last two members of (43) by a voluteenent and integrating,
one will get:

(m) i a(%wz) _ a(%wz) (e) i a_U - a_U —
o a0 (0] g {202

() Loc. cit, equations (188) and (184).



De Broglie-Schrodinger wave mechanics

9. Relativistic mechanics of point-like charges- In order to study the dynamics of
point-like charges in space-time, based upon (46), we inteothe twoconstantsr ™
and7®, which characterize the particle from standpoint aésnand charge, resp.

We then write equation (48) in the form:

d( oL oL
49 —| —|-|—[=0,
(49) ds(au’j [6)5,}
in which we have set:
(50) L=1W +U*
and

7(m

(51) E= E.

Introduce theanonical variables:

(52) LI
ou
and theHamiltonian function:

It is easy to calculate the value of that functimpmeans of (52). One will find that:

(54) H =

N

Equations (49), when combined with (52), will then be eqaiato the system:

dx, _ oH dp, __ oH
ds dp, ds ox,

a

(55)

The Hamiltonian (53) can be expressed as functionseotamonical variablep,,
thanks to (52); one will get:

(56) H=19% (pa— £ Do) ps—£Dp).
We now propose to find the JACOBI system (55); to dffgct, set:

s
ox,

(57) Pa

Hence, by virtue of (56), thiacobian equation:
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(58) Bi1g#| 235 ca, | 25 c0, |=0,
0s 0X, 0%

in which S is the JACOBI function. On the other hand, thessilzal theory of JACOBI
teaches us that:

(59) P - H=-1,

Upon substituting that into (58), one will get:

0S S
60 Bl "~ || —-d,|-1=0.
(60) g {ax,, aj(axﬂ ﬂj

We finally remark that, thanks to (59), the JACOBI fumatcan be written:

(61) S=-5+S (X1, X2, X3, Xa).

10. Relativistic equation of wave mechanics: Set:
(62) k S=logW¥,

in whichk is a universal constant whose value will be giverr late One will then have:

(63) Y =- Ea_LP
k ds
and
(64) 9S__1awjox,
0x, 2 0¥/os

We then represent the Jacobian equation (6@anlthen be written:

2
(65) Egaﬂ 16_l.|)+£cbaa_l.|.1 1_6_l.|J+£cDﬂa_l.|J —(a_q)j =0.
20X, 0s )| 20% 0s 0s

In order to obtain the relativistic equation of weamechanics, we propose to
extremize the expression (65); we then write:

(66) 3OV-9) _q
M
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in which symbold/ &V signifies that one must take thariational derivativeof J./ - g
with respect ta¥, namely:

o 0 & d 0 X7 =S X%, %, %, %,
67 — ==y | —
(67) NV ;deg Pad { 0=0,1,2,3,4.
1)

Equation (66) explicitly gives thgeneralized DE BROGLIE-SCHRODINGER
equation(*):

(68) DW—Zkfqu”gTw—kawﬂkf)z(F—g—lzjwzo,

a

in which one has set:

(69) Dw:—zai(Fzg”ﬂa j a,B=1,2,3,4,

1 0 “
(70) DE—Za—[\/—ng "cbﬂj,
(71) F=Y 0,0,
B
The universal constaktis given by:

(72) Ck=a7™C
hc

in whichmy is therest mass of the electron. By virtue of (72), one Wwéle:

(73) 2'—’k7 = 2.42x 102 A.

In the right-hand side of (73) one sees tmve length that corresponds to the
transformation of the energetic contengahof an electron into a light quantum.

Minkowski field— Suppose that the gravity field is that of MINK@WI, and that the
componentsp;, ®,, 3 arezero. In addition, set:

() Th. DE DONDER, Bull. Acad. Roy. Belgique, cl. de Sc.§%1927); Session in February 5.
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(74) ds=cV, so  o'=ly
Cc

Since the system considered is stationary, with EIK, we set:

_@Em

(75) YP=0e M |,

in which® no longer depends uponandE is a constant.
Substitute this in equation (68); hence, by virtue of (74):

A7

e [(E-e V)Y +2€E-aV)mc] W =0,

(76) AV +

in which one has set:
(77) E=E-m A

The preceding equation can be writsgproximately:

8
(78) AW + Cthmocz(s—a)V)] W =0,
in which:
o*y
79 AY = .
(79) Z 0x’

The latter equation is trerdinary DE BROGLIE-SCHRODINGERequation.



Electrodynamics of moving bodies

11. Gravitational equations.— We have seen that the ten fundamental equations of
the gravity field can be deduced from the variational ppiec(1). Here, we set the

function M equal to:
(80) M= =W+ M™ ™94 A8,

in which \V'is the tensorial mass factor:
(81) W2=gu’uf=1,

and in which M{™, M{™9, M!? represent the characteristic functions of ressive,
mass-electromagnetiandpurely electromagnetiphenomena, respectively. We also say
that M{™® characterizes the phenomenon of electromagnetéstrior more simply,
striction.

12. Electromagnetic equations.— We write the equations of the generalized
Maxwell field in the form:

aB
(82) KT o

dxﬂ

aB

(83) A - e,

dxﬂ
in which:
(84) 7= Je u? +L(0:9) ,
(85) Cl= g u'+L,,

in which the index &) signifies electric and the index /) signifies magnetic. The
expressionso u? and £ represent the components of the convection curremds a

generalized conduction currents, respectively.
In the most general case, we define electromagnetic forcéy the antisymmetric
tensor:

(86) K¥=HP-RL,

and theadjoint electromagnetic fordey the antisymmetric tensor:

(87) K= H = Fgh,
in which:
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(88) HP =H,,.

With EINSTEIN, we now write theolarization forcethat is defined by the six
components in the form:

(89) R = RoW -RA,

in which 73(;’) are the four contravariant tensorial componentefritensity of electric

polarization. Recall thau” = dx, / ds

We likewise express thenagnetic polarization forcdoy means of thenagnetic
polarization intensity:
(90) R = Pouf =Ro U

() () ()

One immediately infers from (82) and (83) that:

dc” _ o deg

dx, dx,

(91) = 0.

In order to be able to easily give the physical inetigiron of the terms above,
suppose thak;, X, X3 represent the right-handed rectangular coordinates, hatdt
represents the time Instead ok, X2, X3, we also employ the notatioqy, z It is then
convenient to employ the usual notations of electrom&gngtipon setting:

K#=cH,, |[KZ=cH]
K¥*=cH,, < K3'=cH),
K?=cH,, | Kj*=cHj,
K*=-B, [K"=8,

X

K*=-B, {K*=B,

y

K*=-B, | K¥*=B,

A

(92)

The symbols in this table have the following physical $iggnce:

(Hx, Hy, Hz) = components of the magnetic force,
(Bx, By, B,) = components of the magnetic induction.

On the other hand, one has set:
(93) Hl=H-HZ, H)=Hy—H;, Hl=H,-H2,

in which:
(Hx, Hy, H;) = components of the electric force,
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(H7,HJ,H}) = components of the applied (Gezingeprag} electric
force.
Finally:
(Bx By, By) = components of the electric induction.

It is almost pointless to add that all of those exjpoes must be taken in a
generalizedsense.

Thanks to the notations (92), the electromagnetic equsa(i&?) and (83) for moving
bodies keep the Maxwellian form:

(94) divB = gig u* + L), ot = %(%_?+U(e)U+£(e)j ’
: ~_1( oB
(95) divB =gy u* + Ly rotH = E(—E+a(mu+£(mj.

The rectangular components of the veayu + L are gy U +L (=1,2,3)
The same thing will be true for the vectgy u + L, .

13. Return to the gravity equations.— Take the variational derivative of the
function (80) with respect tg,z and set:

(m) (m,e (e)
(96) To=- M7 e M o OMP
5g0,5 5gaﬂ 5gaﬂ

We will then have:
(97) 7;7,8 — NUa Uﬁ + /]-a(ﬂm) + /]'a(ﬂm,E)+ /]'a(;‘) ]

In the case of an arbitrary electromagnetic fia]el,setb:

(98) M =1/-gg” g K, K.
It will then result that:

(99) T == 2 07 (KA + KK )+ 32 g, 6 ¢ KAV
We then set:

(100) Pas= T3 +To5' %

() Th. DE DONDER,The mathematical Theory of RelatiyitMassachusetts Institute of Technology,
Cambridge, MA, USA, 1927. See page 77.
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hence:
(101) Top=N Us Up+ Pop+ TS

It is easy to deduce the values of the mixed comporEfitd, P?, T/ from (99),
(100), (101), resp. Thenergy-impulse theore(i2) becomes:

(102) Ja = 7;,{5 = Ng+Pg+ ,Tgﬂ(e)

here, in which\V, andP, were defined in (22) and (23), while taking (100) into account.
In addition, one will have:

(103) T,9= T/©

=- {J_g” 0" (KK + KK )+3y= 0 d ¢~ (WCD)}

14. Electromagnetic hysteresis— By definition, theelectromagnetic hysteresis a
quadri-vector{'® (a =1, 2, 3, 4) that is given by)(

(104) HO =L, -T9,
in which one has set:

a5 A7 AKL

105 Lqa= K] ,
(105) a= K dx, ™
or, by virtue of (82) and (83):

(106) L, =K*cr -KPc’.

One sees that the expression (105) is identical to (28ysirems that are devoid of
electric and magnetic polarization, in such a way ithéat caseH ¥ = 0. It then results

thathysteresisas we have defined i§ essentially due to those polarizations.
Upon introducing the notations (92) into (106), it is eesgee that the first three
components of (106) can be put into vectorial form; namely:

L
(107) L, L=[CB]+cH C*'+[CB]+ cHC.

L,

That expression generalizes the classical expressiahd LORENTZforce (multiplied
by c).

() Th. DE DONDER, C. R. Acad. des Sc. de Paris, 2 T938.
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The fourth component can be written:
(108) Li=-c(H @) +c(HD),

which is the general expression for the JOWHftect

15. Equation of continuity. — That equation is obtained by multiplying the
components7® byu?and summing. One finds that:

(109) M) 4 (1,4 79)ue = 0
dx,
or furthermore:
(110) dis NI, ..., XY = _(pa +j;e>)u“ o0, ..., X,

It is easy to transform (109) and to put it into the form

d(MNU7)

(111) o

(Tt TP T =0

The expressions in the parentheses can be integraealtsy for example, one will
have:

d(7Ameye
(112) Taf,’[gm-e)u” = M +me)
’ dxﬂ
in which one has set:
(113) ™9 = —1( 7m0 4 T a(m) 3” L
X dx

dua _ dUB —ldgaﬂ Taﬂ

1 Tﬂ(m-e)_Ta(me) _
4( B ) dXﬂ d)$ 2 ds (m, €

a

One will then have analogous expressionsd8t andC®©.
Thanks to the preceding formulas, the equation of coiyi can then be finally
written:
d[(/\/+Tﬂ”‘m) +Tﬂa(me)+f]'ﬂa(e))uﬂ]

+K =0,
dx?

(114)

in which:
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(115) =KK™+ Mo+ @

16. Fundamental principle of electromagnetostriction.— We say thatC™®, as

defined by (113), is thpower (per unit volume)of the striction. Upon generalizing a
hypothesis in the classical theory of electromagmettisn, we assume') that we have:

(116) K™ =H .

In other wordsThe power of the striction is equal to the power of the hysteresis.

The principle (116) can again be written:

(117) KM = (HOV + 1O )ut, V= ‘Z—f (i=1,2,3)
Upon assimilatingi* to 1 /c, one will have:
(118) K™ = %(Hf@v‘ +HP),

in the first approximation.
On the other hand, thanks to the notations (92), onevdeas H ® , which is defined
by (104), in the form:

(119) H®= %KHD‘)—BJ—(B aHDj{H%—?j—(Ba—HH +§div A[H*X] - [B OB))

ot ot ot

In the case of oscillating deformation$ the body considered, we assume that one
has thebalance principle:

(120) FICRY +§div C([H*] - [B 0B]) = 0.

We can then finally write the fundamental prineigl 16) in the form:
|
121) oo L[4 88) (p20), (5, 38) (50 )]
2c ot ot ot ot

17. Calculation ofK™® as a function of the deformations— Set:

) Loc. cit, above.



De Donder — Einsteinian gravity. 18

(122) =X +A00 %, %) =123,

in which A4 represents the infinitely-small displacement thatts with the initial point
X’ (i =1, 2, 3); fort = 0, one will haves = x°. The body considerezbllectivelyis then

at restwith respect to the trinedrom(, X2, Xs).
It then results that:

(123)
Set:

Lo
ot

% A;  hence, V= A, i=1,23.

We also adopt the classical notations:

_0A _ 04, _ 04,
T BTy Ao
oA 04, 0A, . 04, 01, 04
124 —y =—L4+ "2 =—z=_"14""3 = z=—"2+4"3
(124) NENE o e XT AT e % o gy
o] SRR | ot
and
(125) Gmw=22-2% o= 0 5, 0N O
oy 0z 0z 0x ox oy

It is good to recall that one can identi) with x (i = 1, 2, 3), up to an infinitesimal.
We can replace the in (80) with thex; . It will then result that the expressions that
appear in (113) will become:

M _0A . OV _ 0V

—_ =_"1= , yx, —_ =

(126) ox, 0x 6)(2 0%
o v . oV oV “x OV, 0V _
X, axl v 6x3 ax T ax 9% °F
and
(127) =00 v, v
"oy oz’ Y0z ox’ ©oox oy’

where the dot over the, yy, ... indicates a partial derivative with respect.to

Thepower of striction K” can then be written (113), in the same approximatidn (
=1/c).
(128) KM =
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1(m,e) g 2(m, ¢ 4 3(m §-
7%+ T, y,+ T Z

1 oime o1 | e -
+§(r12( ,)+T21(m,e)) )SI+_2(-|-23(m€)+ 'I;Z( 9) ¥+_2( -gl(m)q_ -[3( )e Z

1 oo 1 S | e
_E(le( ,)_Tzl(ma)wz__z(TZS(me_TgZ( ,ﬁwx__z(-gl( me_ -E3( ,Ta)y

i +Tl4(m,e)x _|_-I-24(m,e)yt +T34(m,e)z

18. Calculation of the right-hand side of(121). — We return to the right-hand side
of (121) and assume that we have:

(129) H=>¢B, Hi= Y 1B .
j j
Set:
(130) W= T,

Hence,W represents the density of electromagnetic energyishlaicalized in the
volumev:

(131) jvwavs%jv[(H B) +(H B)] v
= %J'sz(gi;a B +4BB)ov.

The right-hand side of (121) can then be written:

(132) —E(Mj ov,
c\ 0t Jgs

in which the indice®, B serve to remind one that the partial derivativehwespect td
is performed while keeping th& and5; (i = 1, 2, 3) constant; one will then have:

10(0W 1 o¢! o
133 -=||— ov=—-—— BB +—-BB |JV.
(133) C'[( ot jBB ZCIVZ‘Z‘[ ot ' ot ‘j Y

Suppose that the coefficients; and g are functions of thdinear angular

deformations x ..., z, therotations w', and the velocitieg. In other words, the density
W of the electromagnetic energy depends upon:

(134) { XY Z, X Yo %

wx’wy’wz Xt'yt’zt
explicitly.
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The right-hand side of (121) can then be written:

axx B.,B ayy B.,B ’ aé B.,B
0 0 19
@3 () ] (e a0 s
cv{ ot ow) . (ow) . (ow) .
H—| QF| | @t | @
0w, 65 ow, 65 ow, 65

o] o) ol
% Jou WO Jps 07 )y,

Il
—_—
<

19. Electrostriction tensor.

-I—ll(m,e) - M
0% g
(136) Tamo =| O
6yy B.B
-I—33(m,e) - aﬂ
0Z, Jg 5
;(-I—z(m,e) +T1(m,e)) - M
2\ 2 axy s
(137) %(T;’(mve) + ng(mv e)) = M ,
ayZ B,B
m,e m ow
%(Tsl( ; )+T13( ,e)) = 2
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, (e ey (W)
2\"1 2 awz .
W
(138) 1(T3mO _T2mey = _ ow |
x /BB
m,e aW
sy = 2

-I—l4(m,e): M ,

0% Jo s

(139) T, ™ = oW :
ayt B,B

-I—34(m,e): M .

0% Jos

In these tables:
(140) T4l(m,e) , T42(m,e) , T43(m,e) , T44(m,e)

no longer occur.
Meanwhile, we remark that one has, in a general:

(m, e (me —

(141) T, = TP, = ghTema= Y grThme,
4 ¥
In a MINKOWSKI field, those relations will become:

T =T, =-TA™=-T ™  abh=123

(me (me¢ —
1
ad _—T4d4a — _ a(me _ _ T4(mg
(142) Tmeg = Time = §T4 =-T
1
4 — — T 4Mme)
T(m,e)—CzT4 :

It results from (142) that thg™° are symmetric herea(b = 1, 2, 3); hence, by

virtue of (138), the functiokV will not refer tow, «j, a explicitly. It results from (142)
that theT,2™9 differ from the T,*™® that are provided by (139) only by the facter (
2
c).
We have thus calculated all of the componentseftéensorT ™ (a, f=1, 2, 3,
4), except forT,™2. One knows thafl,"™® has the dimension of energy per unit
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volume; there is then good reason to equate it to tastie@ energy density (of
deformation). One can also reproduce all of theseridgem space-time by using the
perfect bodies that are defined in diméorie des champs gravifiqu@sc. cit, eq. 328).

20. Radiation stresses— With Léon BRILLOUIN ¢), imagine the case of an
electromagnetic wavéhat propagates along theaxis; letH, (or HyD) be the electric

field, and letH, be the magnetic field. By virtue of (130) and the dedin of an
electromagnetic wave, one will have:

(143) -W=B[H=B0OHA.
The wave velocity will then be:
(144) v=_%_

T

in which £ and i are the specific inductive power and magnetic permealufitthe
system considered, respectively. One has:

alogD:

(145) >

0
— (X + Wy + 2,
at( Yy + )

in whichD represents the mass density. Hence, fas@ropic body:

(146) [«Mj _[ow [«Mj J[aw ( ow j
0X, 65 ay, . 0z, 55 (X +y,*+2) . dlogD -
By virtue of (143) and (144), one will easily get that ttéek also:
(147) = w[2logv )
dlogD J, »

Upon forming the tensor that relates to both electrave@gm and striction:
(148) [T+ T

by means of the formulas (136 and 139) and formulas (142), dinenadly obtain L.
BRILLOUIN’s complete tensor:

() Léon BRILLOUIN, “Les tensions de Radiation; leurdrgretation en Mécanique classique et en
relativité,” J. de Phys. (@ no. 11 (1925), 337-353.



(149)

_YW

W_Walogv
dlogD

0

cz{ 2

1+ (c/ V)

H

2
0 0 _\g 1+(c/V) . A
c 2 0% )y 5
_WalogV 0 ow
dlogD Y Jg 5
0 _WalogV oW
dlogD 07 )y 4
WG L e
0% Jos \ O Jos  \0% )y ¢
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21. Helmholtz-Lippman formula (MINKOWSKI field). — Consider the case of the
perfect, isotropianassive bodwt rest and suppose that thariation of the mass density
in time is negligibleas well as the MAXWELILstresses On the other hand, 1&{D) be
the expression for the pressure as a function of thsitgle Upon taking into account the

formulas that we found for the electrostriction tensee will get very easily:

(150) (mj (D-D,) = e0I09£+ ﬂalog,u’
D o dlogD  “dlogD

in which:

(151) W,=4iB[H, and W,=1iB0OM.




Relativistic thermodynamics

22. First law of thermodynamics.— We write the first law in the forn)¢

(152) dis[Z/Ié(xl, o X)] = Q O(Xq, ..., Xa) =K O(Xq, ..., Xa),
or in the equivalent form:
o(Uu”)
1 =Q-K.
(153) 2 -9k

The symbol/ is the factor ofnternal energy density of the systei;is the factor of
the caloric input to the system. An element ofcgpime is represented By(xy, ..., X4).
The symbolXC was defined in (115). Here are the dimensiongshote symbols in
Cartesian coordinates:

QX ad =energy,
K Xoydd =energy,
UX A =energyx length.

We useright-hand rectangular coordinatesThe relation (153) is written:

-1
(154) IUVV) _ 5 i
0x,
in which:
(155) Ve _o and VEd—S.
dt dt

Multiply the two sides of (154) bglv, which is defined bylv = & dy &z. Hence, by
virtue of the theory of integral invariants:

(156) %jvuv-lav = jvgav—jvzcav.
Set: o
(157) v jvuo*v = jvuv-lo*v.

in which V™ represents the mean\dt taken over the entire system in question.
Similarly, set:

() Th. DE DONDER, Comptes rendus de I'Acad. des Sc. dis P86 (1928), 1599-1601ibid. 187
(1928), 28-30.
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u=1 j Uy,
(158) ¢

aQ_ XQév, or XJ’Qév,
dt v cYv

upon representing the mean\bbver the system considered Wy
Equation (156) can then be written:

(159) %[c\?u} :%vc—jvicav.

We say thatJ is the internal energy of the body at the insta@ind thatdQ is the
heat that is received by the body durdig

In the case of a perfect, massive body, when one {ak&3 into account, it will be
easy to write (159) in the form:

dr o= dQc _ —= ou
160 —|cviu|= —==-pcV oo+ cp—0\,
(160) dt[C J dt v pe CJSU\(' ¢ ot '

in which v, represents the component along the exterior semialorto the body at a
point whose elemerdois taken on the closed surface that bounds the body.
Now, one will obviously have:

dv
161 Voo = —.
(16D 950 ! dt

We then recover thast law of classical thermodynamids the first approximation:

(162) di/=dQ-pov |

23. Second law of thermodynamics- In general relativity, we write the second law
as follows:

(164) i[S O(X1, ..., Xa)] = Q+Q
ds

TD

O(X, ..., Xa),

in which S is the factor oentropicdensity, Q" is the (positive) factor aincompensated

heat input (or of physico-chemical viscosity).
One deduces from (164) that:

(165)

d(Su”) _ Q+Q°
ox TO

a

Return to the Euclidian image; as in (156), onéhaive:
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d e 1
(166) ajsv 15V = ﬁjV(Q+QD)5v,

in which T is the mean of * over the system considered.

Now, set:
(167) s= [ sV,
and, as in (158):
dQ”_ V™' 5
168 = — ov.
(168) T [o

Equation (166) can then become:

(169) ds_ ¢ (dQ, do)
dt T8/ dt  dt
Set: ~
(170) TsT*V?

by which the differential equation will express treecond law of classical
thermodynamics:

(171) ds:@.

24. Thermodynamics of electromagnetic systems endowed with bgresis and
animated with an arbitrary motion. — We use the first law of thermodynamics by
substituting (115) into (152); hencd:(

(172) dis [US(Xe, oo Xa)] = Q (X, ooy Xa) = [K™ + HOUT+ K@) 3(xq, ..., Xa).
Now use the second law of thermodynamics by switisiyy (172) in (164); hence:

(173) i[ua(xl, ey Xa)] —T*i[s O(Xe, ..., Xa)] =
ds ds
= [K™ + HOuT+ KO F(xq, ..., Xa) = Q I(Xa, -, Xa).

() Addenda.In order to complete this energetic theory, thegisl reason to suppose that:

U=U™ + 1™ +19,
and to assume that:
Me) = Ta(;) u” Uﬁ
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One can make the functién—T 'S, which generalizes tHeee energyappear in this
relation.



Generalized Dirac wave mechanics

25. Gravitational and electronic equations— We shall now present the study of
some electromagnetic systems that are more genaratith ones that were considered at
the beginning of our present work in a form that is elgtsgnthetic. To that effect, first
recall theten gravity equationspamely:

5(M9—NW2+ (m)+MD(me+MD($) —o

174
( ) 590[3

in which the characteristic functionst’, etc., that are written above have been defined

previously.
We now pass on to the fowlectronic — or Maxwellian — equations, whose
generalization we indicated in (82) and (83), angp®se that there is no magnetic

current; i.e., thaCj = 0. Inthat case, one can write:
(175) K%=®gp-Dpa.

In other words, those quantities derive from aat®bmagnetic vector potentid;,
..., @4 . We shall also write these Maxwellian equatiomghe form of variational
derivatives, namely:

(176)

SM® — NW? + M + M0+ M%) _
= .

a

We shall specify the manner by which the varialaferivatives with respect @,
must be taken in (176) in order for one to obtam aforementioned equations (82) and

(83). In order to do that, let us turn fet'® , whose value is given explicitly in (98). In
that expression, we consider thg; to be function®f only %, ..., x4 (but not thed,).
The variations of those functions with respect®, will then be zero.

Return to (176). We know that, W2, M™ do not depend upon tle,.

Set:

oM™
(177) T
in which Cg, represents the (total) electric current.

The tengravity equations (174) can then be written explicitly:
(178) -2 (@+bQ gaptbGup=NuUsUs+Pyp+ T,

and the fouMaxwellianequationsare written explicitly by means of (177):
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K? _ .,

(179) =Cg-
axﬂ

26. Photonic equations— We assume that the equations of phetonic fieldhave
the same form as the electronic (i.e., Maxwell) eiquatthat are given by (82) and (83).
We then set:

ou* .,
(180) o e
B
ou* .,
(181) aTD_ C><(ph)
B

as those photonic equatiory, in whichi/“” representshe photon forceand U, the
dual photonic force. Those antisymmetric tensors are then the analogu&€and

K. The symbolsC?,  and Cy are thetotal currents in the photonic field

(ph)
considered.

All of the quantities that enter into this paragraph bdlregarded as beimgpmplex;
they each then involve both a real part and a pure maagpart.

In order to establish link between the photon field and (Maxwell's) electronetgn
field, set (cf., previous footnote):

(182) Cly =EXPUT+ A,

ph)

(183) o

x(ph) =XPp umaﬂ + AL
Therefore, thed” and A? define thediminishedphotonic currents of the interaction

currents between the electric and photonic field.
Upon substituting (182) and (183) into (180) and (181), onegwilla new form for
the photonic equations:

S
(184) Ll A°,
| dx,
aB
(185) L TS
| dxg
in which one has set:
(186) i} =9 _vo,.
_dxﬂ dxﬂ

() Th. DE DONDER, “Le champ photonique,” Bull. Acad. RBglgique (2 June 1928), 307-312.
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We have set:

(187) = 2A7EC

h

By analogy with the way that one expresses eleatiec magnetic forces in terms of
electromagnetic potentiat®, , set:

(188) XUu=[Pu] +[Q,],
(189) cU,, =[P,]-[Qul
in which:
_|dr _dp, _[dQ _dQ,
(190) Pul = { dx, d)J, [Qu] = { ax, o }

in which thebracketsthat appear in the right-hand sides of (190) must beeapfieach
of the terms that they contain; they have the sagmefisance as in (186). The symbol

Q,, signifies that one must take the dual®# . On the other hand, ti& andQ, are

the photonic potentialg').
We have set:
2irtmc

(191) X et

We write down the complementary photonic equationgays by analogy with the
Maxwellian electronic field, namely:

(102) a7 1=y,
dx, |

(103) do" | - v,
| dx, |

in whichS andB are theether potentialg?).

Now reducethe photonic currentst? and A° of the (contravariant) gradients of
those potentialS andB of the ether; hence:

(194) DY =A%~/ -gg”? {E}
dx,

(194) D= A7 - [~gg” [ﬁ}
dx,

() J. M. WHITTAKER, Proc. Roy. Sod@88 (1928), pp. 543.
() Th. DE DONDERJoc. cit. (2 June 1928).



De Donder — Einsteinian gravity. 31

We say thaD” and D7 are thephotonic currents, properly speaking.
We remark that by virtue of (180) and (181), one will haveléines of photonic
conservation:
dc’

(196) — =,
dx,

(197) i -
dx,

27. Correspondence principle for wave systems. Now introduce the characteristic
function:

(198) MO+ MO+ MO,

If we compare that function to the one that figureglird) then we will see that we
have replaced all of the massive terms\[W 2 + M™ + M™9] in the latter with just the
one photonic term\I®. We shall now define the function in terms of thetphic
potentialsP, andQ, and the electromagnetic potentidls . We write, to simplify:

(199) =KD,
With J. M. Whittaker, set:

(200) M= [—g{u™T, +2(SS- BB-2( P P- © O},

where the overbars that enter into (200) indicdiz bne must take the imaginary
conjugateof the expressions that are affected with them.

Take the variational derivatives 8% + M® + M®Y with respect t@®, ®,, and
the photonic potential®,, Q,, Eﬂ Q_ﬂ We will then have thgravity equations of
wave mechanics:

o(M° +MD(e)+M(ph) _o

201
( ) 590[3

the electronic (or Maxwell) equations of wave meutst

g C) (ph
(202) o(M°® + + MPP) -0
Jo )

a

and finally, thephotonic equations of wave mechanics:

5(/\/19'*' (e)+M(ph)_o 5(/\/19'*' (e)+M(ph) B

oP, ’ ’

(203) 5,
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5(/\/19'*' (e)+M(ph)_O 5(/\/19'*' (e)+M(ph) 0

204
(204) JP, 3Q,

Upon performing the indicated calculations in (201) witeobtain explicitly:
(205) -1(@a+bQg¥+bg¥=T7 +M%,

in which T(g/” Is the contravariant expression of (9), and in whiehhave set:

(208) MP=-2L7 +(1L-P*P,+ Q' Q) g%+ N”— 207+ 2P" P - 2" ¥ .

In this expression, the symbal¥’, L, N*, O*" are defined by the following relations:

h o=
KkaAB — _
(207) gLU= o (-IPAIRI M QI Q) ).
(208) L% = g,s L7, L =gas LY,
(209) N = (%ag”ﬂ -P g""){llzﬁﬂ + conjugate-1SS ¢*,
x| dx,
(210) 0% = (%&gaﬂ - gaﬂ)& {%D + conjugate-1BB g” .
W

Upon performing the indicated calculations in (R0%e will get explicitly:

ap — _ _ J— _
(211) KT __ & ng(u "B, +Ug"Q, + SP - BA +conjugaty.
dx, m

Finally, upon performing the indicated calculagan (203) and (204), we will get the
following relations, along with their conjugates:

Cdu | L ds |
212 = [—gg®| 2| - yp?
(212) . J-99 ™ XP
Ay | " dB |
213 4 1= [—gg”?| 22 -y on
(213) x| ag | XQ



De Donder — Einsteinian gravity. 33

Upon identifying (*) equations(178) and (205), (179), and (211), (184), with
equations (212), (185), and (213), one will get equations tha¢€xpnecorrespondence
principle in wave mechanics.

Equations (178) and (205) give:

(214) Nu“u’ + P¥ = M7,

in whichM% is given by (206).
Equations (179) and (211) give:

(215) © =TT ;g(U PP, +UPFQ,+ SP - Ba+conjugat% .

Finally, when one takes (194) and (195) into aotoequations (179) and (211), as
well as (184) and (212), will give:

(216) DY =—xP°, DY =—xQ°.

One then sees that it is possible to expresatteer tensgrtheelectric current and
the photonic currentsproperly speaking, as functions of Whittakgatsotonic potentials

28. Energy-impulse theorem and the law of conservation of ekeicity,
expressed in terms of photonic potentials— Return to the energy-impulse theorem
(102) and replace the massive pdartf” U° + P% of the tensof® with its valueM? that
is given in (206). One will then have:

(217) (M#+TF) =0,

which expresses thghotonic energy-impulse theorem.
Likewise, return to the law conservation of eleaty (91) and replace thé(’g) in the
equation:
dC _
(218) —==0
dx,
with its value (211).
One will then have théaw of conservation of electricitgexpressed by means of
photonic potentials).

() | have indicated that method of identification in ortterfind the correspondence principle in my
prior papers. [See my note that appeared in Bull. Acad. d&syBelg, Cl. des Sciences (8(1927).]
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29. D’Alembertian equation or the equation of propagation of the potonic
potentials. — Upon replacing th&* and U in (212) and (213) with their values (188)
and (189), resp., one will get second-order equations:

or v o _Ariec Arm’c*(, € v ) o
@19 ¢ Pt RPN [1 mzczcbvcbjp
_ZMeC{HyVR_HmQI}:O
and
or w ~ _ Ariec Arm’ct(, € o )
(220) g (Q/I)OT‘Fg Q h (Q/I)V‘F 2 (1 mZCZCDV(D jQ
2mecy el
- {H7p-H"Q}=0,

as well as conjugate equations.

30. Dirac wave equations— We shall apply the general equations above in the
particular case of a Minkowski field, and we choosevrgables in such a fashion that
theds’ that they define have the form:

(221) ds’ =df? — C—lz (A + dy? + d2).

Instead of the vector potentil, that we have used above, with Whittaker, we shall
use the potentia®), that is coupled to the preceding one by the relation:

(222) D =D,

Upon using the notations that we have defined beforayillveave:

(223) O =-A, O, =-SA, O =-SA, © =cV
C C C
We likewise set:

G L)

(224) X, = 0% 0%
ox, 0x,

which will give us:

0P —
(225) x/lv = iz ach — H - _izlcév,

c | 0%, 0x c

by virtue of (175).
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In this paragraph, we will suppose that there is neigdectric nor magnetic
polarization, in such a way that we can write:

We remark that for Whittaker and his school, the indigel etc., vary from O to 3,
instead of 1 to 4. For more uniformity, we use that manngrre¢eeding here and
choose 0, 1, 2, 3 to be the fundamental permutation.

Thanks to (221), we can deduce the componéfitérom (226) very easily; namely:

(227) X = - 2 HH
As before, we write:
1 1 1 1
x01:?H14:EHx’ x23__?H23:_EHX,
1 1 1 1
(228) XOZ—? H24:E Hy, X31__?H31:_EH>,,
1 1 1 1
X03:?H34:EHZ’ x12__?H12:__Hz'

It results from (227) that:
X%=-cH, X®=H,

(229) X% =~cH,, X¥=H,
X®=-cH,  X“Y=H,

Recall thatH andH are the electric and magnetic forces, respectively
With Whittaker, one further sets:

1 1 1

(230) Po=Py, PL=-=P;, Po=-=PR,, Py=-=P,
c c c
and
- _ 1 _ 1 _ 1
(231) Q=Q, Q=—=Q, Q=-=-Q, Q=--Q;.
c c c
Thanks to (221), we will have:
(232) P=P, P'=-cP,, P’=-cR, P's-cP,
(233) Q=Q, Q'=-cQ, Q@F=-cQ, Q'=-cQ.

It finally remains for us to address thg, . We set:
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1 1
U01:ES5<’ U23:?bx’
1 1
(234) Upo =S, Us =2 hy
1 1
U03:ESZ, U12:§bz’
which will give immediately:
U01:_C§(, U23:C2Q(,
(235) U%*=-cs, U*=c’h,
U%®=-cs, U =c,.

36

Introduce the notations (223) and (236) into eiquat(212), (213). We get:

0s
c[a} [r tb]—Tch+[gradS]

[div s]—%m P——[as}

(236) ab ot
c[ T } +[rotg] —Tch [grad B],

2mi 1/ 0B
[divb] = Y CQ_E[E}

The brackets that enter into these equations theveame significance as before.

In the equations above, the symbdls Q denote the ordinary vectors whose
components areP(, Py, P,), (Qx, Qy, Q), resp. The scalaSandB, and the vectorb =
(by, by, b)) ands = (s, S, ;) are defined by the relations (188) and (189) cwitiecome:

271 : 0Q
Tmcb— [rot P]— c[a} [grad Q],

2 mcs=[rot Q] ——1[%} —[grad P],
h cLo

(237) 2 P
27 e S=[rot P] + X [ }
h c| ot

27 0Q,
Tch [rotQ] +— [at}

here.
By way of example, we show what the first vectioequation (237) will become

when one performs the operations that are indidaydtie brackets; we get:
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(238) _10s —rotb—grad8+@{Vs—[A [(b]-A B = 2—mch.
c ot hc h

Equations (236), when specified in that way, can be cereddto be wave equations,
while equations (237) give the values of the vectbiends, and the scalarB andS
Introduce these values into equations (236). We obtain:

DP+2hl:{{H[H +HR{HQ -HQ 9,

DR + 2" ((H P) (1) =0,
(239) 2“9
DQ+theH'Hmz +HQH{HME +HB D,
2rie

DQ, +h—c{(H [@) +(H[P)} =0,

in whichD is the operator:

0> 0% 0% 1 0% d4me|. 10 0 0 0
240 p=249% .9 -9 29 A% pnl
(240) x> oy’ 07 cat hc{ oatA‘afoayAaJ
47°Pm? ¢
B h2c2 (VZ_A&Z_A?_A}Z)-
Set:
(241) wl:Pz+iQt’ wZZPx+iPy’ w3:_Pt_in’ ‘/’4:Qy_ iQx’
C({ = _Px +iPy’ w2 = Pz_ iQt’ C()3: Qy+ iQX, C()4: Pt_ IQZ

With those notations, equations (239) will be eglant to the system:

Dy, + 2 (g, +iH g+, H P g H ) =0,

Dy, + 27 (g, ~iHgp, =i Hgp,~H g, H @r#H g ) =0,

(242) he

Dy, + S (s 1 Hps i Mg ~H H ,H ) =0
2rie

Dl,l/4+h—c(in$3—iHy¢’3‘iH#’4‘H iy #’1+H ¥)=0,

to which one must add a system that is equivalaritjn which one has replaced the
with the w Equations (242) are second-order equationstiigaDirac functions/, ¢,
s, Ya must satisfy. If one sets:
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(243) { a=-s+iB a=-s5-i5, g=-ih+ S p= p- ip

B=s-is, B=-3-B B=ih+h, B,=-ib- ¢

then equations (236) and (237) are equivalent to four sysiEfosir equations; the first
one has the following form:

p@¢’1+(p1_i pz)¢’4+ p3¢’3:_ mar,
p0¢'2+(p1+ i pz)‘/’z_ p3¢’4:_ mar ,

(244) _
po¢’3+(p1_| pz)‘/’z'*’ p3¢’1: mar ,
po¢’4+(p1+i Pz)l/’l— pawzz mar ,
in which:
h 10 1 h 0 e
245 = =24V, = 2 +=A, etc.
(243) Po 2mcot ¢ P 271 0X cA‘

In order to obtain the second system, it will s&fio permutey anda ; namely:

(246)

In order to obtain the third system, it will suffite replacey with wanda with £in
(244), and finally in order to obtain the fourth systeng amust permutevandf in the
third one.

In will then result that it ¢, Y5, ¢ is a solution of the Dirac equations then:

(247) aﬂ:ﬁﬂ:aﬂll:wﬂ’ /'l:]-! 21314

will constitute a solution of (236) and (237).
We now examine what the components of the electrirect(215):

1
Cl = —
©~ g

will become here. We set:

ce, (@=0,1,2,3)

(248) ©= P Co =lxs  Cu =iy, Cy =iz

Upon introducing the notations (223) to (235) into (215), oieget:
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1, — — — - = — — — .
,0:_E(l/’lal+¢’202+¢’303+¢’4a4+w131+w282+w§ s w P i conjugate),

(249); = ‘g(él’la_ﬁ%?ﬁ%?ﬁwﬁﬁ wB,+wf +wf +w P #conjugate),

S e

[T OO

in such a way that for a solution of the form (247), aikget:

P==2 i YA+ Y YA,
(250) =2 WYY YYD,

which are precisely the expressions that Darwimdbf) that conform to Dirac’s theory.

() DARWIN, Proc. Roy. Soc. 18 no. 780, pp. 660, eq. (3.3).



