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 These pages refer to a succinct presentation of the six lectures that I had the honor of 
giving at l’Institut Henri Poincaré in November and December of 1929.  Those lectures 
were on the following topics: 
 
 I. The massive gravitational field. 
 II. The electromagnetic gravitational field. 
 III. Application to wave mechanics. 
 IV. Electrodynamics of moving bodies. 
 V. Electromagnetostriction and relativistic thermodynamics. 
 VI. Synthesis. 
 
 I was forced to show that general relativity provided an instrument that was adapted 
perfectly to the study of those problems.  Contrary to an opinion that is very widespread, 
Einsteinian gravity does not need to be modified: When it is conceived in a sufficiently 
broad sense, it will still remain in harmony with the most modern theories of wave 
mechanics. 
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Einsteinian gravity 
 

 1. The fundamental equations of the gravitational field. – Consider a function 
M

g that depends upon only gαβ, gαβ,i, …  Its variance under an arbitrary change of 

variables x1, x2, x3, x4 is that of a multiplier or density factor.  We call Mg the 

characteristic function of gravity. 
 In addition, consider a function M that has the same variance, but which can depend 

upon other functions such as uα, Aα , etc., independently of the gαβ, gαβ,i.  That function 
will be made explicit later on; it will be given the name of phenomenological 
characteristic function. 
 The fundamental variational principle of gravity consists of equating the 
tenvariational derivatives with respect to gαβ to zero.  One will then obtain the ten 
fundamental equations of the gravity, namely: 
 

(1)      
( )g

gαβ
δ

δ
+M M

 = 0. 

 
 The variational derivative δ / δgαβ is written: 
 

(2)    
gαβ
δ

δ
≡ 

2

, ,j jk
j j k

d d

g dx g dx dx gαβ αβ αβ
   ∂ ∂ ∂− +   ∂ ∂ ∂   

− … 

 Set: 

(3)     g
αβT  ≡ 

g

gαβ
δ
δ
M

  and Tαβ ≡ − 
gαβ

δ
δ
M

; 

hence: 
(4)       g

αβT  = Tαβ . 

 
 We call g

αβT  the symmetric covariant gravitational tensor and Tαβ , the symmetric 

covariant phenomenological tensor, or more simply, the symmetric tensor. 
 Let C denote the curvature invariant, and let a and b denote universal constants.  
Take the value: 

(5)      M
g = (a + b C) g−  

for Mg. 

 Upon performing the indicated operations in (9.II), one will obtain: 
 
(6)     − 1

2 (a + b C) gαβ + b Cαβ = Tαβ , 

in which: 

(7)      Tαβ = 
g

αβ

−
T

, 
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and Cαβ are the components of the well-known Riemann tensor. 
 
 Remark. – The variational principle that we just presented obviously amounts to a 
generalization of Hamilton’s principle; i.e., that one must annul the variation: 
 

(8)     1 2 3 4( )g dx dx dx dxδ
Ω

+∫ M M = 0, 

 
in which Ω is a portion of space-time on whose boundary the variations must be annulled. 
 
 
 2. The gravitational identities. – Upon applying the gravity identities (1) to the 
function Mg, one will get: 

(9)     ,1

2

g g
ij ij

j ij
i

g g
x g g

α
α

δ δ
δ δ

∂ +
∂

M M
 ≡ 0, 

or even, by virtue of (3): 

(10)    ,1
2

gi
ij g

ij
i

g
x

αα∂ +
∂
T

T = 0, 

in which: 
(11)    gi

αT  = ij g
jg αT . 

 
 
 3. Energy-impulse theorem. – The ten equations (4), when combined with the four 
identities (10), will immediately give the four equations: 
 

(12)    Fα ≡ ;
i

iαT  ≡ ,1
2

i
ij

ij
i

g
x

αα∂ +
∂
T

T  = 0, 

 
in which we have set, as in (24.II): 
(13)     i

αT  = g ij Tαj . 

 
 We say that the four equations (12) express the energy-impulse theorem.  One can 
also express that theorem by saying that the generalized force Fα is zero. 

 
 
 4. Gravity waves and rays. – One chooses the new variables x1, x2, x3, x4 in such a 
way that the new gαβ satisfy the four complementary equations (2): 
 

                                                
 (1) Th. DE DONDER, Théorie invariantive du Calcul des variations, Bull. Acad. Roy. Belg.; cl. des 
Sciences (5) 15 (1929), see § 12. 
 (2) Th. DE DONDER, La Gravifique einsteinienne, Annales de l’Observatoire Royale de Belgique, 
1921.  (or Gauthier-Villars, Paris).  See § 29. 



De Donder – Einsteinian gravity.  3 

(14)     gαβ α β
σ

 
 
 

= 0, 

or – what amounts to the same thing: 

(15)     gαβ α β
σ

 
 
 

= 0. 

 
 Upon using those new variables, the fundamental equations of the gravitational field 
will become: 
(16)     gαβ gστ, αβ = (σ, τ), 
 
in which the right-hand sides (σ, τ) do not contain any second derivatives of the 
Einsteinian potentials.  We further remark that each of the left-hand sides of (16) contains 
only second derivatives of just one Einsteinian potential. 
 With HADAMARD and VESSIOT, we say that the solutions f = f (x1, x2, x3, x4) of: 
 

(17)     G ≡ gαβ 
f f

x xα β
∂ ∂
∂ ∂

= 0 

 
yield characteristic manifolds or (elementary) gravity waves: 
 
(18)      f = 0. 
 
 Now consider the (CAUCHY) characteristics of G = 0; one will then have the 
bicharacteristics or gravity rays.  VESSIOT (1) showed that they are null-length 
geodesics of the gravity field. 
 
 
 5. Massive gravity field. – In the case of a gravity field that is due to some masses, 
we set: 
(19)     M ≡ − gαβ (N uα uβ + Pαβ), 

 
in which N is the generalized mass density, uα are the covariant components of the 

velocity, and Pαβ  are the massive stresses. 

 Upon using (3) and (13), one will obtain the tensor: 
 
(20)     β

αT  = N uα uβ + β
αP  . 

 
 The energy-impulse theorem (12) then becomes: 
 
(21)     Fα = Nα + Pα = 0, 

                                                
 (1)  Th. DE DONDER, La Gravifique einsteinienne, Annales de l’Observatoire Royale de Belgique, 
1921.  (or Gauthier-Villars, Paris).  See § 29. 
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in which: 

(22)     Nα ≡ NAα + uα 
xβ

∂
∂

(Nuβ) 

and 

(23)     Pα ≡ ;
β

α βP  = 1
,2 g g

x

β
βγ εα

εγ α β
β

∂ −
∂
P

P . 

 
 Upon multiplying (21) by uα and summing, one will obtain the equation of continuity: 
 

(24)     
xα

∂
∂

(Nuα) + Pα uα = 0. 

 
 
 6. Electromagnetic and massive gravitational field. – Now consider the case in 
which the gravity field is due to electric charges and mass. 
 To that effect, we introduce the characteristic function: 
 

(25)   M ≡ gαβ 
2

ij
i j

g
u u g H Hα β αβ α β

 −
− − + 
  
N P . 

 
 The functions Hα i are the components of the electromagnetic force.  They are 
antisymmetric; i.e.: 
 (26)     Hα i = − Hiα . 
 
 Thanks to (3) and (13), one will have the tensor: 
 

(27)  β
αT  ≡ N uα uα + 

1

4
ij i

ij ig H H gH Hβ β β
α α αε+ − + −P . 

 
 The energy-impulse theorem results immediately from that: 
 
(28)    Jα ≡ Nα + Pα + ( )e

αJ  = 0, 

 
in which Nα and Pα were defined before (22 and 23), and: 

 

(29)   ( )e
αJ ≡ 

( )ij
ijj

j
i i

H g H
g H H

x x
α

α

∂ ∂ −
− − ∂ ∂  

. 
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 The notation 
ij

H  signifies that one must adorn H with two indices that form, along 

with ij , an even permutation ijij  of the indices 1234.  Upon multiplying (28) by uα and 

summing over α, one will get the continuity equation (1): 
 

(30)    ( )( )( ) eu
u

x

α
α

α α
α

∂ + +
∂
N

P J = 0. 

 
 Upon multiplying (28) by Aα and summing over α, one will obtain the relation (1): 
 

(31)    N = 
( )( )eA

A A

β
β β

α
α

− +J P
. 

 
 
 7. Maxwell’s equations. – Now, introduce Maxwell’s equations: 
 

(32)

(33)

    

( )
,

0,

i

i

i

i

g H
u

x

x

α
α

α

σ

∗

 ∂ −
= ∂


∂ = ∂

H
 

in which we have set: 
(34)     iα

∗H = 
i

Hα . 

 
 It will result immediately from (33) and (34) that: 
 

(35)     Hαβ = 
x x

βα

β α

∂Φ∂Φ −
∂ ∂

, 

 
in which Φ is the electromagnetic potential. 
 It is important to note that MAXWELL’s equations (32) can be derived from a 
fundamental function: 

(36)    D
(e) = σ uα Φα + 

4

g−
gαβ gij Hα i Hβ j  

 
upon taking the variational derivatives with respect to Φα and supposing that the Hαβ that 
enter into it have the form (35).  The symbol σ is an electric density factor. 
 It results immediately from (32) that one will have: 
 

                                                
 (1) Th. DE DONDER, Théorie des Champs graviques, Mémorial des Sciences mathématiques, fasc 
XIV.  Paris 1926) (See chapters III and VI). 
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(37)     
xα

∂
∂

(σ uα) = 0, 

 
which expresses the conservation of electric charge in motion. 
 Upon accounting for equations (32) and (33) in the value (29) for ( )e

αJ , one will find 

that: 
(38)     ( )e

αJ  ≡ + σ ui Hαi . 

 
 Upon multiplying ( )e

αJ  by uα and summing, one will get: 

 
(39)     ( )e

αJ uα ≡ 0. 

 
 Introduce the value ( )e

αJ  in (31); we then obtain a relation between the density factors 

N and σ, namely (1): 

(40)     N = 
( )i

iA u H

A A

β
β β
α

α

σ− +P
. 

 
 By definition, one calls the following relation between the electromagnetic potentials 
MAXWELL’s complementary equation: 
 

(41)    Ψ = 
1

( )g
xg

α

α

∂ − Φ
∂−

= 0, 

 
in which we have written Φα = gαβ Φβ .  MAXWELL’s electromagnetic equations can 
then be simplified.  After some calculations, one will obtain: 
 

(42)    
u

g

ασ
−

 = Kα + gij 
2

i jx x
α∂ Φ

∂ ∂
, 

 
in which Kα does not contain any second derivatives of Φ1, Φ2, Φ3, Φ4 . 
 
 
 8. Lagrangian form and canonical form of the energy-impulse theorem. – 
Consider the case of an incoherent mass – i.e., one for which the Pαβ are zero.  If one 

takes (38) into account then the energy-impulse theorem (28) can be written: 
 

(43)  Jα = N 
2 21 1

2 2( ) ( )W Wd d U U

ds u x ds u xα α
α α

σ
       ∂ ∂ ∂ ∂ − + −         ∂ ∂ ∂ ∂         

 = 0, 

                                                
 (1) Loc. cit., eq. (341).  
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in which one has set: 
(44)     W 2 = gαβ u

α uβ, 
(45)     U    = uα Φα . 
 Set (1): 
(46)  δτ(m) ≡ N δx1 δx2 δx3 δx4 , δτ(e) ≡ σ δx1 δx2 δx3 δx4 . 

 
 When one takes (39) and the fact that Pαβ = 0 into account, it will then result from the 

continuity equations (30) and (37) that: 
 

(47)    ( )md

ds
δτ∫ = 0,  ( )ed

ds
δτ∫ = 0. 

 
 Upon multiplying the last two members of (43) by a volume element and integrating, 
one will get: 

(48)  
2 21 1

( ) ( )2 2( ) ( )m eW Wd d U U

ds u x ds u xα α
α α

δτ δτ
       ∂ ∂ ∂ ∂ − + −         ∂ ∂ ∂ ∂         

∫ ∫  = 0. 

 
___________ 

 
 
 
 
 
 
 
 
 
 
 

                                                
 (1) Loc. cit., equations (188) and (184).  



De Broglie-Schrödinger wave mechanics 
 

 9. Relativistic mechanics of point-like charges. – In order to study the dynamics of 
point-like charges in space-time, based upon (46), we introduce the two constants τ (m) 
and τ (e), which characterize the particle from standpoint of mass and charge, resp. 
 We then write equation (48) in the form: 
 

(49)     
d L L

ds u xα
α

 ∂ ∂ −   ∂ ∂   
= 0, 

in which we have set: 
(50)     L = 1

2 W2 + Uε  

and 

(51)     ε = 
( )

( )

m

e

τ
τ

. 

 Introduce the canonical variables: 
 

(52)     pα ≡ 
L

uα
∂
∂

 = uα + ε Φα 

and the Hamiltonian function: 
(53)     H = − L + pα uα . 
 
 It is easy to calculate the value of that function, by means of (52).  One will find that: 
 
(54)     H = 1

2 . 

 
 Equations (49), when combined with (52), will then be equivalent to the system: 
 

(55)    
dx

ds
α = 

H

pα

∂
∂

, 
dp

ds
α = − 

H

xα

∂
∂

. 

 
 The Hamiltonian (53) can be expressed as functions of the canonical variables pα, 
thanks to (52); one will get: 
(56)    H ≡ 1

2 gαβ (pα – ε Φα)( pβ – ε Φβ). 

 
 We now propose to find the JACOBI system (55); to that effect, set: 
 

(57)     pα ≡ 
S

xα

∂
∂

. 

 
 Hence, by virtue of (56), the Jacobian equation: 
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(58)    1
2

S S S
g

s x x
αβ

α β
α β

ε ε
  ∂ ∂ ∂+ − Φ − Φ   ∂ ∂ ∂  

= 0, 

 
in which S is the JACOBI function.  On the other hand, the classical theory of JACOBI 
teaches us that: 

(59)     
S

s

∂
∂

 = − H = − 1
2 . 

 
 Upon substituting that into (58), one will get: 
 

(60)    
S S

g
x x

αβ
α β

α β

ε ε
  ∂ ∂− Φ − Φ   ∂ ∂  

− 1 = 0. 

 
 We finally remark that, thanks to (59), the JACOBI function can be written: 
 
(61)     S = − s + S0 (x1, x2, x3, x4). 
 
 
 10. Relativistic equation of wave mechanics. – Set: 
 
(62)     k S = log Ψ, 
 
in which k is a universal constant whose value will be given later on.  One will then have: 
 

(63)     Ψ = − 
2

k s

∂Ψ
∂

 

and 

(64)     
S

xα

∂
∂

= − 
1

2

x

s
α∂Ψ ∂

∂Ψ ∂
. 

 
 We then represent the Jacobian equation (60).  It can then be written: 
 

(65)  J ≡ gαβ 
2

1 1

2 2x s x s sα β
α β

ε ε
  ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ + Φ + Φ −     ∂ ∂ ∂ ∂ ∂   

= 0. 

 
 In order to obtain the relativistic equation of wave mechanics, we propose to 
extremize the expression (65); we then write: 
 

(66)     
( )J gδ

δ
−

Ψ
 = 0, 
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in which symbol δ / δΨ signifies that one must take the variational derivative of J g−  

with respect to Ψ, namely: 

(67)  
δ

δΨ
= 

4

0

d

dx
x

σ σ

σ

=

 
 ∂ ∂
 − ∂Ψ∂Ψ  ∂ ∂ 

∑   1 2 3 4, , , , ,

0,1,2,3,4.

x s x x x xσ

σ
 =


=
 

 
 Equation (66) explicitly gives the generalized DE BROGLIE-SCHRÖDINGER 
equation (1): 

(68)  2
2

1
2 ( ) 0,k k D k F

x
α

α α

ε ε ε
ε

∂Ψ  Ψ − Φ − Ψ + − Ψ = ∂  
∑□  

 
in which one has set: 
 

(69)  Ψ□ =
1

g g
x xg

αβ

α βα β

 ∂ ∂Ψ−  ∂ ∂−  
∑ ∑  α, β = 1, 2, 3, 4, 

 

(70)    D ≡ 1
g g

xg
αβ

β
α βα

 ∂ − Φ ∂−  
∑ ∑ , 

 
(71)    F ≡ α

α
β

Φ Φ∑ . 

 
 The universal constant k is given by: 
 

(72)    − k = 2iπ 
2

0m c

hc
, 

 
in which m0 is the rest mass of the electron.  By virtue of (72), one will have: 
 

(73)    
2i

k

π
−

 = 2.42 × 10−2 Å. 

 
 In the right-hand side of (73) one sees the wave length that corresponds to the 
transformation of the energetic content m0 c

2 of an electron into a light quantum. 
 
 Minkowski field. – Suppose that the gravity field is that of MINKOWSKI, and that the 
components Φ1, Φ2, Φ3 are zero.  In addition, set: 
 

                                                
 (1) Th. DE DONDER, Bull. Acad. Roy. Belgique, cl. de Sc. (5) 8 (1927); Session in February 5. 
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(74)    Φ4 = c V, so Φ4 = 
1

c
V. 

 
 Since the system considered is stationary, with O. KLEIN, we set: 
 

(75)     Ψ ≡ 
2i

E t
he
π− ⋅

Θ , 
 
in which Θ no longer depends upon t, and E is a constant. 
 Substitute this in equation (68); hence, by virtue of (74): 
 

(76)   ∆Ψ + 
2

2 2

4

c h

π
[(E – e0 V)2 + 2(E – e0 V) m0 c

2] Ψ = 0, 

in which one has set: 
(77)     E = E − m0 c

2. 

 
 The preceding equation can be written approximately: 
 

(78)    ∆Ψ + 
2

2 2

8

c h

π
m0 c

2 (E – e0 V)] Ψ = 0, 

in which: 

(79)     ∆Ψ = 
2

2
i ix

∂ Ψ
∂∑ . 

 
 The latter equation is the ordinary DE BROGLIE-SCHRÖDINGER equation. 
 



Electrodynamics of moving bodies 
 

 11. Gravitational equations. – We have seen that the ten fundamental equations of 
the gravity field can be deduced from the variational principle (1).  Here, we set the 
function M equal to: 

(80)    2 ( ) ( , ) ( ),m m e eW ∗ ∗= − + + +M N M M M  

 
in which N is the tensorial mass factor: 

 
(81)     W 2 ≡ gαβ u

α uβ = 1, 
 
and in which ( )m

∗M , ( , )m e
∗M , ( )e

∗M  represent the characteristic functions of the massive, 

mass-electromagnetic, and purely electromagnetic phenomena, respectively.  We also say 
that ( , )m e

∗M  characterizes the phenomenon of electromagnetostriction, or more simply, 

striction. 
 
 
 12. Electromagnetic equations. – We write the equations of the generalized 
Maxwell field in the form: 

(82)     
d

dx

αβ

β

K
= Cα, 

 

(83)     
d

dx

αβ

β

∗K = α
∗C , 

in which: 
(84)     C

α ≡ σ(e) u
α + ( )e

αL , 

 
(85)     α

∗C ≡ σ(µ) u
α + ( )

α
µL , 

 
in which the index (e) signifies electric and the index (µ) signifies magnetic.  The 
expressions σ uα and Lα, represent the components of the convection currents and 

generalized conduction currents, respectively. 
 In the most general case, we define the electromagnetic force by the antisymmetric 
tensor: 
(86)     K

αβ ≡ Hαβ − ( )e
αβP , 

 
and the adjoint electromagnetic force by the antisymmetric tensor: 
 
(87)     αβ

∗K = ( )
αβ αβ

µ∗ −H P , 

in which: 
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(88)     αβ
∗H  = Hαβ . 

 
 With EINSTEIN, we now write the polarization force that is defined by the six 
components in the form: 
(89)    ( )e

αβP  ≡ ( ) ( )e eu uα β β α−P P , 

 
in which ( )e

αP  are the four contravariant tensorial components of the intensity of electric 

polarization.  Recall that uα = dxa / ds. 
 We likewise express the magnetic polarization force by means of the magnetic 
polarization intensity: 
(90)    ( )

αβ
µP  ≡ ( ) ( )u uα β β α

µ µ−P P . 

 
 One immediately infers from (82) and (83) that: 
 

(91)    
d

dx

α

α

C
 = 0, 

d

dx

α

α

∗C  = 0. 

 
 In order to be able to easily give the physical interpretation of the terms above, 
suppose that x1, x2, x3 represent the right-handed rectangular coordinates, and that x4 
represents the time t.  Instead of x1, x2, x3, we also employ the notation x, y, z.  It is then 
convenient to employ the usual notations of electromagnetism, upon setting: 
 

(92)   

23 23

31 31

12 12

14 14

24 24

34 34

, ,

, ,

, ,

, ,

, ,

, .

x x

y y

z z

x x

y y

z z

c cH

c cH

c cH

B

B

B

∗
∗

∗
∗

∗
∗

∗

∗

∗

  = =
  = = 

  = =  


 = − =
  = − = 
 = − =  

K H K

K H K

K H K

K K B

K K B

K K B

 

 
 The symbols in this table have the following physical significance: 
 
 (Hx, Hy, Hz) = components of the magnetic force, 

 (Bx, By, Bz) = components of the magnetic induction. 

 
 On the other hand, one has set: 
 
(93)  xH ∗ ≡ Hx − a

xH ,  yH ∗ ≡ Hy − a
yH ,  zH ∗ ≡ Hz − a

zH , 

in which: 
 (Hx, Hy, Hz) = components of the electric force, 
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 ( a
xH , a

yH , a
zH ) = components of the applied (Ger.: eingeprägt) electric  

 force. 
 Finally: 
 (Bx, By, Bz) = components of the electric induction. 
 
 It is almost pointless to add that all of those expressions must be taken in a 
generalized sense. 
 Thanks to the notations (92), the electromagnetic equations (82) and (83) for moving 
bodies keep the Maxwellian form: 
 

(94)  div B = σ(e) u
4 + 4

( )eL ,  rot H = ( ) ( )

1
e e

B
u

c t
σ∂ + + ∂ 

L ,  

 

(95)  div B = σ(µ) u
4 + 4

( )µL ,  rot H* = ( ) ( )

1
u

c t µ µσ∂ − + + ∂ 

B
L . 

 
 The rectangular components of the vector σ(e) u + L(e) are σ(e) u

i + ( )
i
eL  (i = 1, 2, 3).  

The same thing will be true for the vector σ(µ) u + L(µ) . 

 
 
 13. Return to the gravity equations. – Take the variational derivative of the 
function (80) with respect to gαβ and set: 
 

(96)  ( )m
αβT ≡ − 

( )m

gαβ
δ
δ

∗M , ( , )m e
αβT ≡ − 

( , )m e

gαβ
δ

δ
∗M , ( )e

αβT ≡ − 
( )e

gαβ
δ
δ

∗M . 

 
 We will then have: 
(97)    Tαβ = N uα uβ + ( )m

αβT + ( , )m e
αβT + ( )e

αβT . 

 
 In the case of an arbitrary electromagnetic field, we set (1): 
 

(98)    ( ) 1
2 .e ij j

ig g g K Kαβ β
α∗ ∗≡ −M  

 It will then result that: 
 

(99)  ( )e
αβT  ≡ − ( )

2 4
i kl i l

i i ki

g g
g K K g g g Kγ βγ αγ γ γ

α β αβ∗ ∗ ∗

− −
+ +K K K . 

 
 We then set: 
(100)     Pαβ = ( ) ( , )m m eT Tαβ αβ+ ; 

                                                
 (1) Th. DE DONDER, The mathematical Theory of Relativity, Massachusetts Institute of Technology, 
Cambridge, MA, USA, 1927.  See page 77. 
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hence: 
(101)    Tαβ = N uα uβ + Pαβ + ( )eTαβ . 

 
 It is easy to deduce the values of the mixed components ( )eβ

αT , Pβ
α , T β

α  from (99), 

(100), (101), resp.  The energy-impulse theorem (12) becomes: 
 
(102)    Jα ≡ ;

β
α βT ≡ Nα + Pα + ( )eβ

αT  

 
here, in which Nα  and Pα were defined in (22) and (23), while taking (100) into account.  

In addition, one will have: 
 
(103) ( )e

αT ≡ ( )
;

eβ
α βT   

≡ − ( ) ( )1
4

1

2
i kl l

i i ki
i

d d
g g g K K g g g K

dx dx
εν τ τν αν τν ν

α τ
α

∗ ∗ ∗

 
− + + − 

 
K K K . 

 
 
 14. Electromagnetic hysteresis. – By definition, the electromagnetic hysteresis is a 
quadri-vector ( )e

αH  (α = 1, 2, 3, 4) that is given by (1): 

 

(104)     ( ) ( ) ,e e
α α α≡ −H L J  

in which one has set: 

(105)     Lα ≡ 
dd

dx dx

βγαβ
αβ αβ

γ γ

∗
∗ − KK
K K , 

or, by virtue of (82) and (83): 

(106)     .αβ β αβ β
α ∗ ∗≡ −L K C K C  

 
 One sees that the expression (105) is identical to (29) in systems that are devoid of 
electric and magnetic polarization, in such a way that in that case ( )e

αH ≡ 0.  It then results 

that hysteresis, as we have defined it, is essentially due to those polarizations. 
 Upon introducing the notations (92) into (106), it is easy to see that the first three 
components of (106) can be put into vectorial form; namely: 
 

(107)   
1

2

3







L

L

L

 L = [C ⋅ B] + c H* C4 + [C* B] + 4c ∗HC . 

 
That expression generalizes the classical expression for the LORENTZ force (multiplied 
by c). 
                                                
 (1) Th. DE DONDER, C. R. Acad. des Sc. de Paris, 2 July 1928.  
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 The fourth component can be written: 
 
(108)    L4 = − c (H* ⋅⋅⋅⋅ C) + c (H⋅⋅⋅⋅ C*), 

 
which is the general expression for the JOULE effect. 
 
 
 15. Equation of continuity. – That equation is obtained by multiplying the 
components ( )e

αJ  by uα and summing.  One finds that: 

 

(109)    ( )( )( ) ed u
u

dx

α
α

α α
α

+ +N
P J  = 0 

or furthermore: 

(110)   
d

ds
[N δ (x1, …, x4)] = − ( )( )e uα

α α+P J δ (x1, …, x4).  

 
 It is easy to transform (109) and to put it into the form: 
 

(111)   ( )( ) ( , ) ( )
; ; ;

( ) m m e ed u
u

dx

α
β β β α

α β α β α β
α

+ + +N
T T T  = 0. 

 
 The expressions in the parentheses can be integrated by parts; for example, one will 
have: 

(112)    ( . )
;

m e uβ α
α βT  = 

( )( . )m ed u

dx

β α
α

β

T
 + K(m, e), 

 
in which one has set: 
 

(113)  K
(m, e) ≡ − ( )( . ) ( . )1

4
m e m e du du

dx dx

α β
β α

α β
β α

 
+ +  

 
T T  

 

 − ( )( . ) ( . )1 1
( , )4 2

m e m e
m e

dgdu du

dx dx ds

α β
αββ α αβ

α β
β α

 
− − −  

 
T T T . 

 
 One will then have analogous expressions for K

(m) and K(e). 

 Thanks to the preceding formulas, the equation of continuity can then be finally 
written: 

(114)    
( )( ) ( , ) ( )m m e ed u

dx

α α α β
β β β

α

 + + + N T T T
+ K = 0, 

in which: 
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(115)     K ≡ K(m) + K(m, e) + K(e). 

 
 16. Fundamental principle of electromagnetostriction. – We say that K(m,e), as 

defined by (113), is the power (per unit volume) of the striction.  Upon generalizing a 
hypothesis in the classical theory of electromagnetostriction, we assume (1) that we have: 
 

(116)     ( , ) ( ) .m e euα
α=K H  

 
 In other words: The power of the striction is equal to the power of the hysteresis. 
 
 The principle (116) can again be written: 
 

(117)   K
(m,e) = ( )( ) ( )

4
e i e

i v +H H u4, vi ≡ idx

dt
 (i = 1, 2, 3). 

 
 Upon assimilating u4 to 1 / c, one will have: 
 

(118)     K(m,e) = ( )( ) ( )
4

1 e i e
iH v H

c
+ , 

in the first approximation. 
 On the other hand, thanks to the notations (92), one can write ( )

4
eH , which is defined 

by (104), in the form: 
 

(119) ( )
4
eH ≡ 

1

2 t t t t

∗
∗  ∂ ∂ ∂ ∂     − + −       ∂ ∂ ∂ ∂       

B H
H B

B H
H B +

2

c
div ⋅⋅⋅⋅ ([H* ⋅⋅⋅⋅H] − [B ⋅⋅⋅⋅ B]) 

. 
 
 In the case of oscillating deformations of the body considered, we assume that one 
has the balance principle: 

(120)    ( )e
iH vi +

2

c
div ⋅⋅⋅⋅ ([H* ⋅⋅⋅⋅H] − [B ⋅⋅⋅⋅ B]) = 0. 

 
 We can then finally write the fundamental principle (116) in the form: 
 

(121)   K(m,e) = 
1

2c t t t t

∗
∗  ∂ ∂ ∂ ∂     − + −       ∂ ∂ ∂ ∂       

B H
H B

B H
H B . 

 
 
 17. Calculation of K(m,e) as a function of the deformations. – Set: 
 

                                                
 (1) Loc. cit., above.  
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(122)    xi = 0 0 0 0
1 2 3( , , , )i ix x x x tλ+  i = 1, 2, 3, 

 
in which λ4 represents the infinitely-small displacement that starts with the initial point 

0
ix (i = 1, 2, 3); for t = 0, one will have xi = 0

ix .  The body considered collectively is then 

at rest with respect to the trihedron (x1 , x2 , x3). 
 It then results that: 

(123)     vi = i

t

λ∂
∂

. 

 Set: 

id

dt

λ ≡ iλɺ ; hence,  vi ≡ iλɺ ,  i = 1, 2, 3. 

 
 We also adopt the classical notations: 
 

(124)  

31 2
0 0 0

3 31 2 1 2
0 0 0 0 0 0

31 2

, , ,

, , ,

, , ,

x y z

y x z x z y

t t t

x y z
x y x

x y x z y z
y x z x z y

x y z
t t t

λλ λ

λ λλ λ λ λ

λλ λ

∂∂ ∂ = = = ∂ ∂ ∂


∂ ∂∂ ∂ ∂ ∂ = = + = = + = = + ∂ ∂ ∂ ∂ ∂ ∂
 ∂∂ ∂= = = ∂ ∂ ∂

 

and 

(125)  ω1 = ωx = 3 2

y z

λ λ∂ ∂−
∂ ∂

,      ω2 = ωy = 1 2

z x

λ λ∂ ∂−
∂ ∂

,      ω3 = ωz = 2 1

x y

λ λ∂ ∂−
∂ ∂

. 

 
 It is good to recall that one can identify 0

ix  with xi (i = 1, 2, 3), up to an infinitesimal.  

We can replace the 0ix  in (80) with the xi .  It will then result that the expressions that 

appear in (113) will become: 
 

(126)  

1 2 3
1

1 2 3

1 2 1 3 2 3

2 1 3 1 3 2

, , ,

, , ,

x x z

y z z

v v v
x y z

x x x x

v v v v v v
x x y

x x x x x x

λ ∂∂ ∂ ∂= = = = ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ + = + = + =
 ∂ ∂ ∂ ∂ ∂ ∂

ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

 

and 

(127)  xωɺ = 
3 2v v

y z

∂ ∂−
∂ ∂

, yωɺ = 
1 3v v

z x

∂ ∂−
∂ ∂

, zωɺ = 
2 1v v

x y

∂ ∂−
∂ ∂

, 

 
where the dot over the xx, yy, … indicates a partial derivative with respect to t. 
 The power of striction K(m,e) can then be written (113), in the same approximation (u4 
≈ 1 / c). 
(128)  K(m,e) ≡ 
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≡ −

1( , ) 2( , ) 3( , )
1 2 3

2( , ) 1( , ) 3( , ) 2( , ) 1( , ) 3( , )
1 2 2 3 3 1

2( , ) 1( , ) 3( , ) 2( , ) 1( , ) 3( , )
1 2 2 3 3 1

4( , )
1

1 1 1
( ) ( ) ( )

1 2 2 2
1 1 1

( ) ( ) ( )
2 2 2

m e m e m e
x y z

m e m e m e m e m e m e
y z x

m e m e m e m e m e m e
z x y

m e
t

T x T y T z

T T x T T y T T z

c
T T T T T T

T x

ω ω ω

+ +

+ + + + + +

− − − − − −

+ +

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ
4( , ) 4( , )

2 3
m e m e

t tT y T z

 
 
 
 
 
 
 
 + ɺ ɺ

. 

 
 
 18. Calculation of the right-hand side of (121). – We return to the right-hand side 
of (121) and assume that we have: 
 
(129)    Hi = ij j

j

Bε ′∑ ,  Hi = ij j
j

µ′∑ B . 

 Set: 
(130)     W = 4( )

4
eT . 

 
 Hence, W represents the density of electromagnetic energy that is localized in the 
volume v: 

(131) 
v
W vδ∫  ≡ 1

2 [( ) ( )]
v

vδ⋅ + ⋅∫ H B H B  

 = 1
2 ( )ij i j ij i jv

i j

B B vε µ δ′ ′+∑∑∫ BB . 

 
 The right-hand side of (121) can then be written: 
 

(132)     − 
1 W

v
c t

δ∂ 
 ∂ BB

, 

 
in which the indices B, B serve to remind one that the partial derivative with respect to t 

is performed while keeping the Bi and Bi (i = 1, 2, 3) constant; one will then have: 

 

(133)  − 
1 W

v
c t

δ∂ 
 ∂ 
∫

BB

 = − 1

2
ij ij

i j i jv
i j

B B v
c t t

ε µ
δ

′ ′∂ ∂ 
+ ∂ ∂ 

∑∑∫ BB . 

 
 Suppose that the coefficients ijε ′  and ijµ ′  are functions of the linear angular 

deformations xx, …, zz, the rotations ω i, and the velocities vi.  In other words, the density 
W of the electromagnetic energy depends upon: 
 

(134)    
, , , ,

, , , ,
x y z y z x

x y z t t t

x y z x y z

x y zω ω ω




 

explicitly. 
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 The right-hand side of (121) can then be written: 
 

(135) − 
,

1
v

W

c t

∂ 
 ∂ 
∫

B B

δv ≡ 

,, ,

, ,,

, ,,

, ,

x y z
x y z

y z x
x z z

x y x
x z z

t t
t t

W W W
x y z

x y z

W W W
x y z

x y z

W W W

W W
x y

x y

ω ω ω
ω ω ω

    ∂ ∂ ∂+ +     ∂ ∂ ∂    

     ∂ ∂ ∂+ + +     ∂ ∂ ∂    

     ∂ ∂ ∂+ + +     ∂ ∂ ∂    

   ∂ ∂+ + +   ∂ ∂   

BB B

B BB

B BB

B B

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

BB B

B BB

B BB

B B ,

v

t
t

v

W
z

z

δ

 
 
 
 
 
 
 
 
 
 
 

  ∂
  ∂   

∫

B

ɺ

B

. 

 
 
 19. Electrostriction tensor. 
 

(136)   

1( , )
1

,

2( , )
2

,

3( , )
3

,

,

,

,

m e

x

m e

y

m e

z

W
T

x

W
T

y

W
T

z

  ∂=  ∂  


 ∂ =    ∂  


 ∂ =   ∂ 

B

B

B

B

B

B

 

 

(137)   

2( , ) 1( , )1
1 22

,

3( , ) 2( , )1
2 32

,

1( , ) 3( , )1
3 12

,

( ) ,

( ) ,

( ) ,

m e m e

y

m e m e

z

m e m e

x

W
T T

x

W
T T

y

W
T T

z

  ∂+ =   ∂  


 ∂ + =  ∂ 


 ∂ + =   ∂ 

B

B

B

B

B

B
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(138)   

2( , ) 1( , )1
1 22

,

3( , ) 2( , )1
2 32

,

1( , ) 3( , )1
3 12

,

( ) ,

( ) ,

( ) ,

m e m e

z

m e m e

x

m e m e

y

W
T T

W
T T

W
T T

ω

ω

ω

  ∂ − = − 
 ∂ 

  ∂− = −  ∂ 


 ∂ − = −   ∂ 

B

B

B

B

B

B

 

 

(139)   

4( , )
1

,

4( , )
2

,

4( , )
3

,

,

,

.

m e

t

m e

t

m e

t

W
T

x

W
T

y

W
T

z

  ∂=  ∂  


 ∂ =  ∂ 


 ∂ =   ∂ 

B

B

B

B

B

B

 

 
 In these tables: 
(140)    1( , )

4
m eT , 2( , )

4
m eT , 3( , )

4
m eT , 4( , )

4
m eT  

no longer occur. 
 Meanwhile, we remark that one has, in a general: 
 
(141)   ( , )m eTαβ  ≡ ( , )m eTαβ ≡ ( , )m eg Tγβ α

γ
γ
∑ ≡ ( , )m eg Tγα β

γ
γ
∑ . 

 
 In a MINKOWSKI field, those relations will become: 
 

(142)  

( , ) ( , )
( , ) ( , )

4 4 ( , ) 4( , )
( , ) ( , ) 42

44 4( , )
( , ) 42

, , , 1,2,3,

1
,

1
.

ab ba a m e a m e
m e m e b b

a a a m e m e
m e m e a

m e
m e

T T T T a b

T T T T
c

T T
c


 ≡ ≡ − = − =

 ≡ ≡ − = −

 ≡

 

 
 It results from (142) that the ( , )b m e

aT  are symmetric here (a, b = 1, 2, 3); hence, by 

virtue of (138), the function W will not refer to ωx, ωy, ωz explicitly.  It results from (142) 
that the ( , )

4
a m eT  differ from the 4 ( , )m e

aT  that are provided by (139) only by the factor (− 

c2). 
 We have thus calculated all of the components of the tensor ( , )m eT β

α  (α, β = 1, 2, 3, 

4), except for 4( , )
4

m eT .  One knows that 4( , )
4

m eT  has the dimension of energy per unit 
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volume; there is then good reason to equate it to the elastic energy density (of 
deformation).  One can also reproduce all of these theories in space-time by using the 
perfect bodies that are defined in our Théorie des champs gravifiques (loc. cit., eq. 328). 
 
 
 20. Radiation stresses. – With Léon BRILLOUIN (1), imagine the case of an 
electromagnetic wave that propagates along the x-axis; let Hy (or yH ∗ ) be the electric 

field, and let Hz be the magnetic field.  By virtue of (130) and the definition of an 

electromagnetic wave, one will have: 
 
(143)     − W = B ⋅⋅⋅⋅ H = B ⋅⋅⋅⋅ H. 

 The wave velocity will then be: 

(144)      V = 
c

εµ
, 

 
in which ε and µ are the specific inductive power and magnetic permeability of the 
system considered, respectively.  One has: 
 

(145)     
log D

t

∂
∂

= − 
t

∂
∂

(xx + yy + zz), 

 
in which D represents the mass density.  Hence, for an isotropic body: 
 

(146)  
,x

W

x

 ∂
 ∂ B B

= 
,y

W

y

 ∂
  ∂ B B

= 
,z

W

z

 ∂
 ∂ B B

= 
,

( )x y z

W

x y z

 ∂
  ∂ + + B B

= − 
,

log

W

D

 ∂
 ∂ B B

. 

 
 By virtue of (143) and (144), one will easily get that the latter also: 
 

(147)     = − 
,

log

log

V
W

D

 ∂
 ∂ B B

. 

 
 Upon forming the tensor that relates to both electromagnetism and striction: 
 
(148)     || T αβ (e) + T αβ (m,e) ||, 
 
by means of the formulas (136 and 139) and formulas (142), one will finally obtain L. 
BRILLOUIN’s complete tensor: 
 

                                                
 (1) Léon BRILLOUIN, “Les tensions de Radiation; leur interpretation en Mécanique classique et en 
relativité,” J. de Phys. (6) 6 no. 11 (1925), 337-353. 
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(149)  

2

2

,

,

,

2
44( , )

2 2

, , ,

log 1 ( / )
0 0

log 2

log
0 0

log

log
0 0

log

1 ( / ) 1
[

2

t

t

t

m e

t t t

V VW c V W
W W

D c x

V W
W

D y

V W
W

D z

VW c V W W W
W P

c x y z c

  ∂ + ∂− − +   ∂ ∂   

 ∂ ∂−  ∂ ∂ 

 ∂ ∂−  ∂ ∂ 

      + ∂ ∂ ∂− + − +       ∂ ∂ ∂       

B

B

B

B B B

B

B

B

B B B

. 

 
 
 21. Helmholtz-Lippman formula (MINKOWSKI field).  – Consider the case of the 
perfect, isotropic massive body at rest, and suppose that the variation of the mass density 
in time is negligible, as well as the MAXWELL stresses.  On the other hand, let f (D) be 
the expression for the pressure as a function of the density.  Upon taking into account the 
formulas that we found for the electrostriction tensor, we will get very easily: 
 

(150)   0
0

( ) log log
( ) ,

log loge

f D
D D W W

D D Dµ
ε µ∂ ∂ ∂  − = + ∂ ∂ ∂ 

 

in which: 
(151)    We = 1

2 B ⋅⋅⋅⋅ H,   and Wµ = 1
2B ⋅⋅⋅⋅ H . 

 
___________ 

 



Relativistic thermodynamics 
 

 22. First law of thermodynamics. – We write the first law in the form (1): 
 

(152)   
d

ds
[U δ (x1, …, x4)] = Q δ (x1, …, x4) – K δ (x1, …, x4), 

 
or in the equivalent form: 

(153)     
( )u

x

α

α
α

∂
∂∑
U

= Q – K. 

 
 The symbol U is the factor of internal energy density of the system; Q is the factor of 

the caloric input to the system.  An element of space-time is represented by δ (x1, …, x4).  
The symbol K was defined in (115).  Here are the dimensions of those symbols in 

Cartesian coordinates: 
 Q δx δy δz δt ≡ energy, 

 K δx δy δz δt ≡ energy, 

 U δx δy δz δt ≡ energy × length. 

 
 We use right-hand rectangular coordinates.  The relation (153) is written: 
 

(154)     
1( )V v

x

α

α

−∂
∂
U

= Q – K, 

in which: 

(155)    vα =
dx

dt

α

 and V ≡ ds

dt
. 

 
 Multiply the two sides of (154) by dv, which is defined by dv = δx δy δz.  Hence, by 
virtue of the theory of integral invariants: 
 

(156)    1

v

d
V v

dt
δ−

∫ U  = 
v v

v vδ δ−∫ ∫Q K . 

 Set: 

(157)     1

v
V vδ−
∫ U  ≡ 1

v
V vδ−

∫ U . 

 

in which 1V −  represents the mean of V−1 taken over the entire system in question. 
 Similarly, set: 
 

                                                
 (1) Th. DE DONDER, Comptes rendus de l’Acad. des Sc. de Paris 186 (1928), 1599-1601; ibid. 187 
(1928), 28-30. 
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(158)   

1
,

, or ,

v

v v

U v
c

dQ V V
v v

dt c c

δ

δ δ

 ≡

 ≡


∫

∫ ∫

U

Q � Q

 

 
upon representing the mean of V over the system considered by V . 
 Equation (156) can then be written: 
 

(159)    1d
cV U

dt
− 

 
 = 

v

dQ c
v

dt V
δ− ∫ K . 

 
 We say that U is the internal energy of the body at the instant t, and that dQ is the 
heat that is received by the body during dt. 
 In the case of a perfect, massive body, when one takes (115) into account, it will be 
easy to write (159) in the form: 
 

(160)   1d
cV U

dt
− 

 
= 

4
1

v

dQ c u
pcV v cp v

dt V tσ
δσ δ− ∂− +

∂∫� , 

 
in which vv represents the component along the exterior semi-normal v to the body at a 
point whose element δσ is taken on the closed surface that bounds the body. 
 Now, one will obviously have: 

(161)     vv
σ

δσ∫�  ≡ 
dv

dt
. 

 
 We then recover the first law of classical thermodynamics, in the first approximation: 
 

(162)     .d dQ p vδ= −U  

 
 
 23. Second law of thermodynamics. – In general relativity, we write the second law 
as follows: 

(164)    
d

ds
[S δ (x1, …, x4)] = 

T

∗

∗

+Q Q δ (x1, …, x4), 

 
in which S is the factor of entropic density, Q* is the (positive) factor of uncompensated 

heat input (or of physico-chemical viscosity). 
 One deduces from (164) that: 

(165)     
( )u

x

α

α

∂
∂
S

 = 
T

∗

∗

+Q Q
. 

 
 Return to the Euclidian image; as in (156), one will have: 
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(166)    1d
V v

dt
δ−

∫S  = 
1

( )
v

v
T

δ∗

∗
+∫ Q Q , 

 

in which T ∗  is the mean of T * over the system considered. 
 Now, set: 

(167)     S = 1

v
V vδ−

∫ S , 

and, as in (158): 

(168)     
dQ

dt

∗

≡ 
1

v

V
v

c
δ

−
∗

∫ Q . 

 
 Equation (166) can then become: 

(169)     
dS

dt
= 

c dQ dQ

dt dtT V

∗

∗

 
+ 

 
. 

 Set: 

(170)      T ≡ T * 
V

c
, 

 
by which the differential equation will express the second law of classical 
thermodynamics: 

(171)     .
dQ dQ

dS
T

∗+=  

 
 
 24. Thermodynamics of electromagnetic systems endowed with hysteresis and 
animated with an arbitrary motion.  – We use the first law of thermodynamics by 
substituting (115) into (152); hence (1): 
 

(172) 
d

ds
[U δ (x1, …, x4)] = Q δ (x1, …, x4) − [K(m) + ( )e

αH uα + K(e)] δ (x1, …, x4). 

 
 Now use the second law of thermodynamics by substituting (172) in (164); hence: 
 

(173) 
d

ds
[U δ (x1, …, x4)] – T *

d

ds
[S δ (x1, …, x4)] =  

− [K(m) + ( )e
αH uα + K(e)] δ (x1, …, x4) − Q* δ (x1, …, x4). 

 

                                                
 (1) Addenda.  In order to complete this energetic theory, there is good reason to suppose that: 
 

U = U(m) + U(m,e)  + U(e), 

and to assume that: 

U
(e) = ( )e

αβT uα uβ. 
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 One can make the function U – T *S, which generalizes the free energy, appear in this 

relation. 
__________ 

 

 



Generalized Dirac wave mechanics  
 
 25. Gravitational and electronic equations. – We shall now present the study of 
some electromagnetic systems that are more general than the ones that were considered at 
the beginning of our present work in a form that is entirely synthetic.  To that effect, first 
recall the ten gravity equations; namely: 
 

(174)    
2 ( ) ( , ) ( )( )g m m e eW

gαβ
δ

δ
∗ ∗ ∗− + + +M N M M M

 = 0, 

 
in which the characteristic functions Mg, etc., that are written above have been defined 

previously. 
 We now pass on to the four electronic – or Maxwellian – equations, whose 
generalization we indicated in (82) and (83), and suppose that there is no magnetic 
current; i.e., that Cα

∗  = 0.  In that case, one can write: 

 

(175)     αβ
∗K = Φα, β – Φβ, α . 

 
 In other words, those quantities derive from an electromagnetic vector potential Φ1, 
…, Φ4 .  We shall also write these Maxwellian equations in the form of variational 
derivatives, namely: 

(176)    
2 ( ) ( , ) ( )( )g m m e eW

α

δ
δ

∗ ∗ ∗− + + +
Φ

M N M M M
 = 0. 

 
 We shall specify the manner by which the variational derivatives with respect to Φα 
must be taken in (176) in order for one to obtain the aforementioned equations (82) and 
(83).  In order to do that, let us turn to ( )e

∗M , whose value is given explicitly in (98).  In 

that expression, we consider the Kα i to be functions of only x1, …, x4 (but not the Φα).  
The variations of those functions with respect to the Φα will then be zero. 
 Return to (176).  We know that Mg, N W 2, ( )m

∗M do not depend upon the Φα . 

 Set: 

(177)     
( , )m e

α

δ
δΦ
M

= ( )eCα , 

 
in which ( )eCα  represents the (total) electric current. 

 The ten gravity equations (174) can then be written explicitly: 
 
(178)   − 1

2  (a + b C) gαβ + b Gαβ = N uα uβ + Pαβ + ( )eTαβ , 

 
and the four Maxwellian equations are written explicitly by means of (177): 
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(179)     
x

αβ

β

∂
∂
K

= ( )eCα . 

 
 
 26. Photonic equations. – We assume that the equations of the photonic field have 
the same form as the electronic (i.e., Maxwell) equations that are given by (82) and (83).  
We then set: 

(180)     
x

αβ

β

∂
∂
U

= ( )phCα , 

 

(181)     
x

αβ

β

∗∂
∂
U

= ( )phCα
×  

 
as those photonic equations (1), in which Uαβ represents the photon force, and αβ

∗U , the 

dual photonic force.  Those antisymmetric tensors are then the analogues of Kαβ and 
αβ
∗K .  The symbols ( )phCα  and ( )phCα

×  are the total currents in the photonic field 

considered. 
 All of the quantities that enter into this paragraph will be regarded as being complex; 
they each then involve both a real part and a pure imaginary part. 
 In order to establish a link between the photon field and (Maxwell’s) electromagnetic 
field, set (cf., previous footnote): 
(182) ( )phCα  ≡ x Φβ U

αβ + Aα, 

 
(183) ( )phCα

×  ≡ x Φβ 
αβ
∗U  + α

×A . 

 
 Therefore, the Aα and α

×A  define the diminished photonic currents of the interaction 

currents between the electric and photonic field. 
 Upon substituting (182) and (183) into (180) and (181), one will get a new form for 
the photonic equations: 

(184)     
d

dx

αβ

β

 
 
  

U
 = Aα, 

 

(185)     
d

dx

αβ

β

∗
 
 
  

U
 = α

×A , 

in which one has set: 

(186)     
d

dxβ

 
 
  

 ≡ 
d

dxβ

− κ Φβ . 

                                                
 (1) Th. DE DONDER, “Le champ photonique,” Bull. Acad. Roy. Belgique (2 June 1928), 307-312.  
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 We have set: 

(187)     κ = 
2i ec

h

π
. 

 
 By analogy with the way that one expresses electric and magnetic forces in terms of 
electromagnetic potentials Φα , set: 
(188)     χ Uµν = [Pµν] + [ ]Qµν

∗ , 

(189)     c Uµν
∗ = [ ]Pµν

∗ − [Qµν], 

in which: 

(190)   [Pµν] = 
dPdP

dx dx
µν

µ ν

 
− 

  
,  [Qµν] = 

dQdQ

dx dx
µν

µ ν

 
− 

  
, 

 
in which the brackets that appear in the right-hand sides of (190) must be applied to each 
of the terms that they contain; they have the same significance as in (186).  The symbol 
Qµν

∗  signifies that one must take the dual of Qµν .  On the other hand, the Pα and Qα are 

the photonic potentials (1). 
 We have set: 

(191)     χ ≡ 
2i mc

h

π
. 

 
 We write down the complementary photonic equations, always by analogy with the 
Maxwellian electronic field, namely: 

(192)     
d

dx

α

α

 
 
 

P
 = χ S, 

 

(193)     
d

dx

α

α

 
 
 

Q
 = χ B, 

 
in which S and B are the ether potentials (2). 

 Now reduce the photonic currents Aα and α
×A  of the (contravariant) gradients of 

those potentials S and B of the ether; hence: 
 

(194)    D
α  ≡ Aα − 

dS
gg

dx
αβ

β

 
−  

  
, 

(194)    α
×D ≡ α

×A  − 
dB

gg
dx

αβ

β

 
−  

  
. 

 

                                                
 (1) J. M. WHITTAKER, Proc. Roy. Soc. 788 (1928), pp. 543.  
 (2) Th. DE DONDER, loc. cit. (2 June 1928).  
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 We say that Dα and α
×D  are the photonic currents, properly speaking. 

 We remark that by virtue of (180) and (181), one will have the laws of photonic 
conservation: 

(196)     ( )phd

dx

α

α

C
 = 0, 

(197)     ( )phd

dx

α

α

×C  = 0. 

 
 
 27. Correspondence principle for wave systems. – Now introduce the characteristic 
function: 
(198)     M

g + ( )e
∗M  + M(ph). 

 
 If we compare that function to the one that figures in (174) then we will see that we 
have replaced all of the massive terms [− NW 2 + ( )m

∗M + ( , )m e
∗M ] in the latter with just the 

one photonic term M(ph).  We shall now define the function in terms of the photonic 

potentials Pµ and Qµ and the electromagnetic potentials Φα .  We write, to simplify: 
 
(199)     ξµ = κ Φµ . 
 With J. M. Whittaker, set: 
 

(200)  M
(ph) ≡ { 2( ) 2( )}g U U SS BB P P Q Qµν µ µ

µν µ µ− + − − − , 

 
where the overbars that enter into (200) indicate that one must take the imaginary 
conjugate of the expressions that are affected with them. 
 Take the variational derivatives of Mg + ( )e

∗M  + M(ph) with respect to gαβ, Φα , and 

the photonic potentials Pµ , Qµ , Pµ , Qµ .  We will then have the gravity equations of 

wave mechanics: 

(201)    
( ) ( )( )g e ph

gαβ
δ

δ
∗+ +M M M

 = 0, 

 
the electronic (or Maxwell) equations of wave mechanics: 
 

(202)    
( ) ( )( )g e ph

α

δ
δ

∗+ +
Φ

M M M
 = 0, 

 
and finally, the photonic equations of wave mechanics: 
 

(203)  
( ) ( )( )g e ph

Pµ

δ
δ

∗+ +M M M
= 0,  

( ) ( )( )g e ph

Qµ

δ
δ

∗+ +M M M
 = 0, 
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(204)  
( ) ( )( )g e ph

Pµ

δ
δ

∗+ +M M M
= 0,  

( ) ( )( )g e ph

Qµ

δ
δ

∗+ +M M M
 = 0. 

 
 Upon performing the indicated calculations in (201), we will obtain explicitly: 
 
(205)    − 1

2 (a + b C) gαβ + b Gαβ = ( )eT αβ  + Mαβ, 

 
in which ( )eT αβ  is the contravariant expression of (9), and in which we have set: 

 

(206) Mαβ ≡ − 2Lαβ +( )1
2 L P P Q Qµ µ

µ µ− + gαβ + 2Nαβ – 2Oαβ + 2P Pα β − 2Q Qα β . 

 
 In this expression, the symbols Lµν, L, Nµν, Oµν are defined by the following relations: 
 

(207)  g Lκαλβ ≡ ( )
2

2 2 4
[ ][ ] [ ][ ]

4

h
P P Q Q

m c αβαβ κλ κλπ
− + , 

 
(208)   Lαβ = gγδ L

αβγδ,  L = gαβ L
αβ, 

 

(209)  Nαβ ≡ ( )1
2

1 dS
P g P g

dx
µ αβ β αµ

µχ
  

−       
+ conjugate − 1

2 SS gαβ , 

 

(210)  Oαβ ≡ ( )1
2

1 dB
Q g Q g

dx
µ αβ β αµ

µχ
  

−       
+ conjugate − 1

2 BB gαβ . 

 
 Upon performing the indicated calculations in (202), we will get explicitly: 
 

(211)  
d

dx

αβ

β

K
= − ( )2

conjugate
e g

U P U Q S P BQ
mc

αβ αβ α α
β β∗

−
+ + − + . 

 
 Finally, upon performing the indicated calculations in (203) and (204), we will get the 
following relations, along with their conjugates: 
 

(212)    
d

dx

αβ

β

 
 
  

U
 = 

dS
gg

dx
αβ

β

 
−  

  
 − χ Pα, 

 

(213)    
d

dx

αβ

β

∗
 
 
  

U
 = 

dB
gg

dx
αβ

β

 
−  

  
 − χ Qα. 
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 Upon identifying (1) equations (178) and (205), (179), and (211), (184), with 
equations (212), (185), and (213), one will get equations that express the correspondence 
principle in wave mechanics. 
 Equations (178) and (205) give: 
 

(214)    ,Nu u P Mα β αβ αβ+ =  

 
in which Mαβ is given by (206). 
 Equations (179) and (211) give: 
 

(215)  ( )( ) 2
conjugate .e

e g
U P U Q SP BQ

mc
α αβ αβ α α

β β∗
−

= − + + − +C  

 
 Finally, when one takes (194) and (195) into account, equations (179) and (211), as 
well as (184) and (212), will give: 
 

(216)   ,α αχ= −D P  .α αχ× = −D Q  

 
 One then sees that it is possible to express the matter tensor, the electric current, and 
the photonic currents, properly speaking, as functions of Whittaker’s photonic potentials. 
 
 
 28.  Energy-impulse theorem and the law of conservation of electricity, 
expressed in terms of photonic potentials. – Return to the energy-impulse theorem 
(102) and replace the massive part N uα uβ + Pαβ of the tensor Tαβ with its value Mαβ that 
is given in (206).  One will then have: 
 

(217)     ( )( ) ,eM Tαβ αβ
β

+ = 0, 

 
which expresses the photonic energy-impulse theorem. 
 Likewise, return to the law conservation of electricity (91) and replace the ( )e

αC  in the 

equation: 

(218)     ( )ed

dx

α

α

C
= 0 

with its value (211). 
 One will then have the law of conservation of electricity (expressed by means of 
photonic potentials). 
 
 

                                                
 (1) I have indicated that method of identification in order to find the correspondence principle in my 
prior papers. [See my note that appeared in Bull. Acad. Roy. des Belg, Cl. des Sciences (5) 13 (1927).] 
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 29. D’Alembertian equation or the equation of propagation of the photonic 
potentials. – Upon replacing the Uαβ and αβ

∗U  in (212) and (213) with their values (188) 

and (189), resp., one will get second-order equations: 
 

(219)  gστ (Pµ)στ + Gµν Pv −
4 iec

h

π
(Pµ)ν + 

2 2 4 2

2 2 2

4
1

m c e
P

h m c
ν µ

ν
π  

− Φ Φ 
 

 

 − { }2 iec
H P H Q

h
µν µν

ν ν
π − = 0 

and 

(220)  gστ (Qµ)στ + Gµν Qv −
4 iec

h

π
(Qµ)ν + 

2 2 4 2

2 2 2

4
1

m c e
Q

h m c
ν µ

ν
π  

− Φ Φ 
 

 

 − { }2 iec
H P H Q

h
µν µν

ν ν
π − = 0, 

as well as conjugate equations. 
 
 
 30. Dirac wave equations. – We shall apply the general equations above in the 
particular case of a Minkowski field, and we choose the variables in such a fashion that 
the ds2 that they define have the form: 
 

(221)    ds2 = dt2 – 
2

1

c
(dx2 + dy2 + dz2). 

 
 Instead of the vector potential Φα that we have used above, with Whittaker, we shall 
use the potential α′Φ  that is coupled to the preceding one by the relation: 

 

(222)     α′Φ  =
2

1

c
Φα . 

 
 Upon using the notations that we have defined before, we will have: 
 

(223)  1′Φ  = −
2

1

c
Ax ,    2′Φ  = −

2

1

c
Ax ,    3′Φ  = −

2

1

c
Az ,    4′Φ  = c V. 

 
 We likewise set: 

(224)     Xµν = 
x x

µν

µ ν

′∂Φ′∂Φ −
∂ ∂

, 

which will give us: 

(225)    Xµν = 
2

1

c x x
µν

µ ν

 ∂Φ∂Φ −  ∂ ∂ 
= −

2

1

c
µν
∗K , 

by virtue of (175). 
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 In this paragraph, we will suppose that there is neither electric nor magnetic 
polarization, in such a way that we can write: 
 

(226)     Xµν = −
2

1

c
 Hµν . 

 
 We remark that for Whittaker and his school, the indices µ, ν, etc., vary from 0 to 3, 
instead of 1 to 4.  For more uniformity, we use that manner of proceeding here and 
choose 0, 1, 2, 3 to be the fundamental permutation. 
 Thanks to (221), we can deduce the components Hµν from (226) very easily; namely: 
 
(227)     Xµν = − c2 Hµν . 
 As before, we write: 
 

(228)  

01 142

02 242

03 342

1 1
,

1 1
,

1 1
,

x

y

z

X H H
c c

X H H
c c

X H H
c c

 = =

 = =

 = =


 

23 232

31 312

12 122

1 1
,

1 1
,

1 1
.

x

y

z

X
c c

X
c c

X
c c

 = − = −

 = − = −

 = − = −


H H

H H

H H

 

 
 It results from (227) that: 

(229)    

01 23

02 31

03 12

, ,

, ,

, .

x x

y y

z z

X cH X

X cH X

X cH X

 = − =
 = − =
 = − =

H

H

H

 

 
 Recall that H and H are the electric and magnetic forces, respectively. 

 With Whittaker, one further sets: 
 

(230)  P0 ≡ Pt , P1 ≡ − 1

c
Px , P0 ≡ − 1

c
Py , P0 ≡ − 1

c
Pz , 

and 

(231)  Q0 ≡ Qt , Q1 ≡ − 1

c
Qx , Q0 ≡ − 1

c
Qy , Q0 ≡ − 1

c
Qz . 

 
 Thanks to (221), we will have: 
 
(232)  P0 ≡ Pt , P1 ≡ − cPx , P2 ≡ − cPy , P4 ≡ − cPz , 
(233)  Q0 ≡ Qt , Q1 ≡ − cQx , Q2 ≡ − cQy , Q4 ≡ − cQz . 
 
 It finally remains for us to address the Uµν .  We set: 
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(234)    

01

02

03

1
,

1
,

1
,

x

y

z

U s
c

U s
c

U s
c

 =

 =

 =


 

23 2

31 2

12 2

1
,

1
,

1
,

x

y

z

U b
c

U b
c

U b
c

 =

 =

 =


 

which will give immediately: 

(235)    

01

02

03

,

,

,

x

y

z

U cs

U cs

U cs

 = −
 = −
 = −

 

23 2

31 2

12 2

,

,

.

x

y

z

U c b

U c b

U c b

 =
 =
 =

 

 
 Introduce the notations (223) and (236) into equations (212), (213).  We get: 
 

(236)    

1 2
[rot ] [grad ],

2 1
[div ] ,

1 2
[rot ] [grad ],

2 1
[div ] .

t

t

mi
mc S

c t h

mi S
mc P

h c t

mi
mc B

c t h

mi B
mcQ

h c t

 ∂ − − = +  ∂ 
 ∂ = −  ∂  


∂  − + = −  ∂ 


∂  = −   ∂ 

s
b P

s

b
s Q

b

 

 
 The brackets that enter into these equations have the same significance as before. 
 In the equations above, the symbols P, Q denote the ordinary vectors whose 
components are (Px, Py, Pz), (Qx, Qy, Qz), resp.  The scalars S and B, and the vectors b = 
(bx, by, bz) and s = (sx, sy, sz) are defined by the relations (188) and (189), which become: 
 

(237)    

2 1
[rot ] [grad ],

2 1
[rot ] [grad ],

2 1
[rot ] ,

2 1
[rot ] ,

t

t

t

t

i
mc Q

h c t

i
mc P

h c t

Pi
mc S

h c t

Qi
mc B

h c t

π

π

π

π

 ∂ = − − −  ∂ 
 ∂ = − −  ∂ 


∂  = +   ∂ 


∂  = +   ∂ 

Q
b P

P
s Q

P

Q

 

here. 
 By way of example, we show what the first vectorial equation (237) will become 
when one performs the operations that are indicated by the brackets; we get: 
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(238)  − 1

c t

∂
∂
s  − rot b – grad S +

2 ie

hc

π
{ V s – [A ⋅⋅⋅⋅ b] – A ⋅⋅⋅⋅ S} = 

2 i

h

π
mc P. 

 
 Equations (236), when specified in that way, can be considered to be wave equations, 
while equations (237) give the values of the vectors b and s, and the scalars B and S.  
Introduce these values into equations (236).  We obtain: 
 

(239)  

2
{ [ ] [ ] } 0,

2
{( ) ( )} 0,

2
{ [ ] [ ] } 0,

2
{( ) ( )} 0,

t t

t

t t

t

ie
D P Q

hc
ie

DP
hc

ie
D Q P

hc
ie

DQ
hc

π

π

π

π

 + − ⋅ + ⋅ − ⋅ − ⋅ =

 + ⋅ − ⋅ =


 + − ⋅ + ⋅ + ⋅ + ⋅ =


 + ⋅ + ⋅ =


P P H H Q H

H P Q

Q Q H H P

H Q P

H

H

H H

H

 

 
in which D is the operator: 
 

(240)  D = 
2 2 2 2

2 2 2 2 2

1 4 1
x y z

ie
V A A A

x y z c t hc c t x y z

π  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

−
2 2 2

2 2 2 2
2 2

4
( )x y z

m c
V A A A

h c

π − − − . 

 Set: 

(241)  1 2 3 4

1 2 3 4

, , , ,

, , , .
z t x y t z y x

x y z t y x t z

P iQ P iP P iQ Q iQ

P iP P iQ Q iQ P iQ

ψ ψ ψ ψ
ω ω ω ω

= + = + = − − = −
 = − + = − = + = −

 

 
 With those notations, equations (239) will be equivalent to the system: 
 

(242) 

1 2 2 1 4 4 3

2 1 1 2 3 3 4

3 3 3 4 2 2 2

4 3 3 4 1 1 2

2
( ) 0,

2
( ) 0,

2
( ) 0,

2
( ) 0,

x y z x y z

x y z x y z

x y z x y z

x y z x y z

ie
D i i i H iH H

hc
ie

D i i i H iH H
hc
ie

D i i i H iH H
hc

ie
D i i i H iH H

hc

πψ ψ ψ ψ ψ ψ ψ

πψ ψ ψ ψ ψ ψ ψ

πψ ψ ψ ψ ψ ψ ψ

πψ ψ ψ ψ ψ ψ ψ

 + + + − + − =

 + − − − − + =


 + − − − + − =

+ − − − − + =


H H H

H H H

H H H

H H H





 

  
to which one must add a system that is equivalent, but in which one has replaced the ψ 
with the ω.  Equations (242) are second-order equations that the Dirac functions ψ1, ψ2, 
ψ3, ψ4 must satisfy.  If one sets: 
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(243)  1 2 3 4

1 2 3 4

, , , ,

, , ,
z x y z y x

x y z x y z

a s iB a s is a ib S a b ib

s is s iB ib b ib Sβ β β β
= − + = − − = − + = −

 = − = − − = + = − −
 

 
then equations (236) and (237) are equivalent to four systems of four equations; the first 
one has the following form: 
 

(244)   

0 1 1 2 4 3 3 1

0 2 1 2 2 3 4 2

0 3 1 2 2 3 1 3

0 4 1 2 1 3 2 4

( ) ,

( ) ,

( ) ,

( ) ,

p p i p p mc

p p i p p mc

p p i p p mc

p p i p p mc

ψ ψ ψ α
ψ ψ ψ α
ψ ψ ψ α
ψ ψ ψ α

+ − + = −
 + + − = −
 + − + =
 + + − =

 

in which: 

(245)   p0 = − 1 1

2

h
V

i c t cπ
∂ +
∂

,  p1 =
2 x

h e
A

i x cπ
∂ +
∂

,  etc. 

 
 In order to obtain the second system, it will suffice to permute ψ and α ; namely: 
 

(246)   0 1 1 2 4 3 3 1( ) ,

etc........................................................

p p ip p mcα α α ψ+ − + = −



 

 
 In order to obtain the third system, it will suffice to replace ψ with ω and α with β in 
(244), and finally in order to obtain the fourth system, one must permute ω and β in the 
third one. 
 In will then result that if ψ1, ψ2, ψ3, ψ4 is a solution of the Dirac equations then: 
 
(247)   αµ = βµ = ωµ = ψµ ,  µ = 1, 2, 3, 4 
 
will constitute a solution of (236) and (237). 
 We now examine what the components of the electric current (215): 
 

( )eCα  = ( )

1
e

g
α

−
C   (α = 0, 1, 2, 3) 

 
will become here.  We set: 
 
(248)   4

( )eC = ρ, 1
( )eC  ≡ jx , 

2
( )eC  ≡ jy , 

3
( )eC  ≡ jz . 

 
 Upon introducing the notations (223) to (235) into (215), one will get: 
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(249)

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 4 2 3 3 2 4 1 1 4 2 3 3 2 4 1

1
( conjugate),

2

( conjugate),
2

..................................................................................

x

y

c
j

j

ρ ψ α ψ α ψ α ψ α ω β ω β ω β ω β

ψ α ψ α ψ α ψ α ω β ω β ω β ω β

= − + + + + + + + +

= − + + + + + + + +

= ....................................,

......................................................................................................................,zj








 =

 

 
in such a way that for a solution of the form (247), one will get: 
 

(250)   

1 1 2 2 3 3 4 4

1 4 2 3 3 2 4 1

2( ),

2 ( ),

.......................................................,
xj c

etc

ρ ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ ψ ψ

 = − + + +
 = + + +



 

 
which are precisely the expressions that Darwin found (1) that conform to Dirac’s theory. 
 

__________ 
 

 
 
 
 

                                                
 (1) DARWIN, Proc. Roy. Soc. A118, no. 780, pp. 660, eq. (3.3). 


