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We propose to study the curvature of surface more gldeah when one limits
oneself to considering the radii of osculating ciralesections. We shall first present
some considerations in regard to planar sections of sarface

1. Pass a vertical plane through a point that is takbitrarily on a surface. Upon
considering the section, we will have:

dx=dn cosa, dy=dnsina,
and as a result:

dz
—=cosa (qtana +p),
dn

in which 77 is the abscissa, when measured along the horizoatal of the secant plane,
a is the angle between that plane and the axis oflibeissa, and, y, z, p, g, ... have
their usual significance.

By successive differentiations, one will obtain:

2

z
~=cos a(ttarf a+2stana +r),

d3z

~=cos a(vtar a + 3wtarf a + 3w tana +r),

and more generally:
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dn—lZ dn—l 7
nZ d,7n—l d d,7n—1
= cosa tang + ——

" dy dx

We represent the right-hand sides of these equabips; , Z», Zs, ..., Z,.

2. If a surface is such that the same value ofdasimultaneously annihilates two
consecutive derivatives, andZ,.; at each of its points then that value will anratel all
of their derivatives of order one or higher.

In order to prove that theorem, consider the eqast

Z
Q) Z,=0, dz, tana+dZ” =0,
dy dx
which must be true at every point on the surfagehypothesis. One can differentiate
them with respect to each of the variabteandy. When one takes the derivatives with
respect tx and eliminatesl (tana) / dx from them, one will have:

2 2
dz, d'2, tana + ¢z + 2 da| . _d4 [d2 tana +—Olz 4 :
dx | dydtana dx dtarny dy) dtana| dxdy dx

In the same way, when one differentiates with respey and eliminatesl (tan a) / dy,
one will get:

2 2
dz, d'2, tana + ¢z +2OIZ - 4% (d Z1tana+ ¢z :
dy | dydtana dx dtarny dy) dtana| dy dx dy

Divide these equations by each other. The ratih@fleft-hand sides will be — tan by
virtue of the second equation (1), and one willdhav

2 2
d_zntanza'+ Zd_zn.{_tam.{_ﬂ :0, Zn+2:01
dy’ dx dy dx

while Z,+3 and all of its derivatives of order one or higkal obviously be zero, like
Zn+2.

If a surface is such that a derivatiehas a double root for each of its points then
that value of tanx will be a root ofdZ, / dx, and as a result, &1 . It will then
annihilate two consecutive derivatives, and fromatmve just saw, all of the following
derivatives.
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3. If the first two derivativeg; andZ, are zero at the same time then all of them will
be, and a horizontal line will pass through each pdinhe surface, and indeed, if one
eliminates tanx from those two derivatives when they are equated totheroone will
find the known equation of surfaces that are generatedithg that is always horizontal.

Now suppose that the second and third derivatives atgtamaously zero:

2) ttarf o+ 2stana +r =0,
(3) vtarf a + 3wtarf a + 3utana +u = 0.

Monge showed that the surface will be a ruled surfackaindase. A brief discussion of
that here seems necessary.

If just one of the two roots of equation (2) satis{i@sthen one can pass a rectilinear
section through each point, and the surface will be skew.

If the two roots of equation (2) are equal then that vafuan a will satisfy equation
(3), and the surface will be ruled, and even developableauise it will be easy to
recognize that the tangent plane will not change whendsplaces the contact point
without varyinga.

In the case where the two roots of equation (2) botsfg&guation (3), if those roots
are real then the surface will be doubly ruled. If thbegome imaginary then the surface
will no longer admit rectilinear sections, but it wallways have degree two, because the
change can only come from a modification in the redathagnitudes of the numerical
coefficients in its equation. If the common rootsegeal then the surface, which always
has degree two, will become developable.

From that, upon expressing the idea that equation (3ptlgxdivisible by equation
(2), one will get a partial differential equation thapresents second-order surfaces:

(ut?—3wrt + rrs)® + (vri = 3w tr + 2ut9® = 0.

We can deduce some other consequences from the theoeetitle2, but the ones
that we just pointed out will suffice for this study, irhieh we shall not consider the
derivatives above order three.

4. Let a, B, and y be the angles that a tangent to the surface at d& poder
consideration forms with the axes, resp., andRdte the radius of curvature of the
normal section that contains that tangent. Fromoavkrformula, one will have:

2 2
@ rR=PT
ZZ

when one sets:
Z, =t cog B+ 2scosfBcosa +r cog a .

Differentiating this will give:
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(5) RdR:_(§+q2+1)§%+(ps+qnmai;(m+qgcmgds
2 2

when one sets:
Z3 =vcos B+ 3wcog Bcosa + 3u cosBcos a+ucos a,

anddSis the differential of arc-length, which is eqt@tx/ cosa anddy/ cosg.

The polynomials that are representedZbyndZ; are not the same as the ones in the
first part of this study, but when one divides theycod a and co3 a, one will find that
they are composed from cg& cosa in the same way that the former are composed in
terms oftana .

If one differentiates the value 8f then one will find that:

(6) dZ, =Z3dS+ 2 (scosf+r cosa) d cosa + 2 ¢ cosf+scosa) dcoss;
one must then determimkecosa andd cosf.

The secant plane contains the normal to the sudad the tangent that is determined
by the angle®, £, andy; its equation is:

(cosp+qcos)y (x'—X —(cosa+pcos)) (y—y + (pcosf—-qgcosa) (z-2 =0,
in whichx’, y’, z’"are variable coordinates.
The differentialsd cosa, d cosg, d cosymust be such that the new tangent is in the
secant plane. That condition will give:

(cosp+qcos)y dcosa— (cosa+pcos)y dcosf+ (pcosf—qcosa)dcosy=0.

Since the axes are rectangular and the anglg% and y belong to a tangent, one will
have:

(7)

from which, one deduces:

cosa+ cod B+ cosy= 1
pcosa +qcoB— cog= |

cosadcosa + cosfdcosf+ cosydcosy=1,
p dcosa+qdcosf—dcosy+Z,dS=0.

We now have three equations for the determinatfoch @sa, d cosf, d cosy, from
which we deduce:

dcosa=-—F 7,dS dcosﬁ:—zLszS;

p’+q’+1 p’+q’+1

when one substitutes those values in equatioro(®) will have:
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(ps+ g cosB+ (pr+ gs) cosx

= -2
dZ; =Z3dS S Z>,
and finally, from equations (5) and (4):
dR _ —(p*+ " +1)Z,+3Z[( ps+ gicosS+ (pr g9 cosr |
(8) Rd_S = 3 :
2

dR _ (p*+q +1)Z -3Z][( pst gicosB+ (pr q9cos
ds 23\ p*+ o +1 |

(9)

It should be remarked thaRZ—z iIs equal to the radius of curvature of the

development of the section considered, becauseisfthe contingency angle then the
radii of curvature of the section and its developtaavill bedS/ ¢ anddR/ &, resp.

One can construct a parabola that is super-osculat a curve at a given point when
one knows the radius of curvatuReand its derivativelR/ dS If X — 2px = 0 is the
equation of the parabola then one will have:

{sas)
R X 3dS

- 1dR23/2, - 1dR23/2'
1+ =— 1+ =—
(3o | (3o

The first equation gives one the parameter of tralmpla, while the second one gives the
abscissa of the point where super-osculation castablished.

5. — We propose to find the normal sections of aag@rfthat can be super-osculated
by a circle. In order to determine them, we muagstag¢e the value afR/ dSto zero:

(p2+q2+1)[x(ﬂj+m{&ﬂam(ﬂsw
3\ cor cosr cos

—[(pS+ ) 2% s (pr+ qs)}{ {%TQ sF ﬂ: 0.
cosxy (0]

cowr cog

(10)

That equation, which has degree three, will alwglys at least one real value f&g,
cosa

and as a result, a surface that has a normal setia is super-osculated by a circle at
any point. It can sometimes have three of theno, @ivwhich coincide. Finally, there
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S'B Wlth — |n
cosa dx

equation (10) then we will have the differential equatbthe curves that are tangent to
the normal sections that are super-osculated by a aetrelach of their points:

dy dy2 dy wu
(p*+q +1)|: (dxj \A{dxj iy dx+§}
_ dy dy dy,
[(DS+ qt)—dx+( pr+ Qﬂ{ {_dxj +2 s d ﬂ 0.

Z, will be a common factor in equation (10) for the seededree surface. It
represents the rectilinear generators that are, indeger-esculated by a circle of
infinite radius. The equation will have degree one wbe@ makes that factor vanish.
One will then see that there exists just one nomseation that is super-osculated by a
circle of finite radius at any point of a second-deguadace.

For the general ruled surfacg, andZ, will have a common factor of degree one that
represented the rectilinear generators. Upon makingnisk, equation (10) will have
degree two; sometimes it will have two solutions, but rotinges it will not.

There exists an infinitude of second-order surfacesafigasuper-osculated at one of
their summits by an arbitrary surface at a given poilfihose second-order surfaces
traverse the surface in question, and the curves ofeton are obviously tangent to
the normal sections that are super-osculated by & cittthe osculated surface has order
two then it will have three lines in common with th&culating surface, namely, two lines
and a curve tangent to the normal section that is sigperdaded by a circle of finite
radius.

will be an infinitude of them at some exceptional pinlf we replace——

(11)

2
6. — We can make the fact«%t (%’j +23%/ + r] which represents the generators,
X X

vanish from equation (10) for the second-degrefaser and we will have:
v d
[g(pz+ q° +1)- (pst qb}d—z
(12)
+[3—ur(p2 +q*+1) - (pr+ qs)} =

When we apply that equation to the surface witleatster at:

we will find, after various simplifications thatgsent themselves spontaneously, that:
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hence:
c? X c?
> 2

Hence, the curves that are always tangent to the hggotons that are super-osculated
by a circle (as the lines of curvature are to the primhapetions) will project onto any of
the principal planes of the surface along second-degree<ctitat are mutually similar.
Those projections are hyperbolas in the plane perpendicuthe axis that is parallel to
the circular sections, and ellipses on the other tweipal planes.

An arbitrary normal section to the surface is supetHased by a circle at the
summits of the surface, but it will not be contactedhg of the lines that is represented
by equation (13). Those curves envelop the summits withassing through them.
Only two of them will cross at the summits that arethe axis that is parallel to the
circular sections. Their projections onto the plgegpendicular to that axis will be
composed of two lines that one will obtain when on&esahe constant in equation (13)
equal to zero. Consequently, they will be planar.

If the surface is one of revolution then the curvels ba parallel. If it is a sphere
then equation (13) will vanish, and any curve will be atsmh to the problem.

Now consider the second-degree surface that has no:center

If one substitutes the partial derivatives in equati@f) (then one will find, after
integration, that:

and

One sees that the projections of the curves arabpls on the principal plane of the
surface and ellipses on the tangent plane to timenstu

7. — As an example, we take the skew surface of dhare-threaded screwa(vis a
filets carré3. It will have the equation:

Zz=haa
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in which h is a constant anais the azimuth of the horizontal projection of a poilit
one calls the distance from that point to the valtxisp then one will have:

dw __sinw  dw _cosw  dp cos@ dp

— : = =sinw
dx Yo dy Yo dx

When one calculates the partial derivatives of fthection z from those formulas and
substitutes in equation (9), one will get:

2 2 3 2 ]
n +2'0 ECOSC'IQJ(COS’BJ - sin&(%j - cos@ Cc’ﬁ+—lsim’:1
h 3 coy co®r cog 3
z =0.
2
—(sinwﬁ—cowj —1$in Z)(ﬂj + cos@i’g——lsimz
cosa 2 cosr cog 2

For the surface of the square-threaded screwgcuheatures are identical along the
different generators. One can then confine onaeedtudying what happens for one of
them, such as the one whose azimuth is zero.eletscw= 0 then one will find that:

(14) cosﬁK congZ_ 22 :l 0

cosa |\ cosr) h*+p?

If one letsi denote the angle that the axis of the absciss&@snakh the projection of the
tangent to the normal section that is super-osedlay a circle then one will have:

3p°
t - - 0.
anu (tanz,u h2+p2j 0

We find three values for tam: The value zero indicates the rectilinear gemeratve
can make it vanish from the beginning of the calttahs by exhibiting and suppressing

cos .
the factor(cosa)—’g— sma)j. The other values qf are always real, and as a result,
cosa
two normals sections at any point of the surfack hvaive third-order contact with their
osculating circles. If we replace tanwith the analytical expression for the tangent of
the angle that a curve makes with its radius vettien we will have the differential

equation of the tangent lines to the normal sesttbat are super-osculated by a circle:

Integrating this will give:
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-1
p= De(“"“")/\/g E.}- '0_’2+1 _D (w3 E.}- '0_’2+1 :
2 h h* 2 h rt

p’and w' are the coordinates of the point through whick passes the curve. Upon
giving two signs to the radical, in turn, one witlid two curves that pass through each
point.

The cosines of the angles £, and y are always coupled by equations (7). The
second one simplifies becaugas zero here. We can calculate aposvith those two
equations and equation (14). We will find thatvitdue is+Z, so it will result that the

lines that we study will meet the rectilinear gexters and cut them at angles of sixty
degrees.

8. — Equation (11) will simplify even more for suréscof revolution. Indeed, its two
terms will then contain a common factor that repnes the parallels. One can exhibit it
by taking the partial differential equations foretliirst three orders of surfaces of
revolutions, and eliminates five derivatives witlkein; for examplep, g, w, w, andv.

We shall go about doing that in a manner that peitmit us to discuss the results
more simply.

Let:

z=1(0)

be an equation that represents the surface ofugenlor its meridian, along which one
considersoto be a radius vector or an abscissa.

We calculate the partial derivatives using the esalavice as in articlé, and after
settingwequal to zero, we substitute their values in dqodtl1); we will then have:

o) 2las) o
doldp*) 3|l dp do®
(15) taf = p° ,

2 2
pdz_dz( a2,
do® dp|{ dp

in which y represents the angle that the axis of the absms&as with the projection of
the tangent to the normal section that is supewtatad by a circle, as in articleand tan

osf

c
M replaces——.
cosa

Equation (15) has degree only two. The coeffic@ithe third-degree term is zero,
which will give a value of ninety degrees forwhich will indicate the parallels.
If one would like to have the equation of the @sthen one would have to replace

tan in equation (15) Witho:—w and integrate.
P

If we call the radius of curvature of the meridgthen we will have:
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2

L[ o2
do

d?z

dp?

3/2

g=-

and upon differentiating:

- dpldp?) 3 do

do = (d?z)’
dp?

With those values, equation (14) will become:

dg__ {“[3;” {dz[ ¢ zjz_l{l{_dﬂ%?

d?z
2

1 d
(16) taf =~ :_3:02 1[2) 12 :
dz dz
p| 1+ — t9-——
do do

tan i is always zero for the torus and the cone. Thedmas of those surfaces will
indeed solve the problem. For the other surfatesvolution, one will find two series of
lines that cross while always meeting the meridiangqual angles. Those lines will
vanish when the value of taw is negative. One can derive a geometric method fo
recognizing when those lines actually exist froraaapn (16).

If one equates the denominator on the right-haskel sf equation (15) to zero then
upon integrating one will get a circle with its temon the axis. The surface will then be
a sphere. The numerator in equation (15) will beexero at the same time as the
denominator, and taawill be arbitrary.

9. — If one studies the curvature of a surface atiiat phen one can simplify equations
(8) and (9) by supposing that the tangent plaieitgzontal. One will then have:

dR_ _vsin’a+3wsifa cosr+ & sid céer+u cdg

17 =

(17) ds (tsin®a + 2ssina cosr+r coxr °)
and

(18) dR_ vsin®a+3wsirfa cosr+ B sir cdr+u

das” (tsina + 2ssing cosr +r cosr °)
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If one projects the centers of curvature of the dgraknts of the normal sections
onto the tangent plane then one will get a curve thaepsesented by (15), with an

azimuth ofa and a radius vector diki—z. That curve generally has degree six. It will

drop down to fifth degree for skew surfaces, and to fodetlree for the ones that have
order two. It will have two asymptotes that are pardlkelthe asymptotes of the
indicatrix.

The curve that is situated in the tangent and is suchitdhatdius vectors are
proportional to the derivativedR / dS has degree only four. Its equation in rectilinear
coordinates is:

(ty? + 25 xy+ A2 +v Y + 3wxy? + 2u Xy + ux = 0.

The degree of the equation will reduce by one for skew ssgfad-or second-order
surfaces, the equation will become:

ty2+25xy+rx2+¥y+2x:0;
r

for the umbilics, the curve will be a circle.

One sees that the curvatures of the second-order esirfaed the simply-ruled
surfaces define special categories, and that a surfadeecauper-osculated by a second-
order surface or a ruled surface only at exceptional foint




