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 We propose to study the curvature of surface more closely than when one limits 
oneself to considering the radii of osculating circles in sections.  We shall first present 
some considerations in regard to planar sections of surfaces. 
 
 

I. 
 

 1. Pass a vertical plane through a point that is taken arbitrarily on a surface.  Upon 
considering the section, we will have: 
 

dx = dη cos α,  dy = dη sin α, 
and as a result: 

dz

dη
= cos α (q tan α + p), 

 
in which η is the abscissa, when measured along the horizontal trace of the secant plane, 
α is the angle between that plane and the axis of the abscissa, and x, y, z, p, q, … have 
their usual significance. 
 By successive differentiations, one will obtain: 
 

 
2

2

d z

dη
= cos2 α (t tan2 α + 2 s tan α + r), 

 

 
3

3

d z

dη
= cos3 α (v tan3 α + 3w tan2 α + 3 ɯ tan α + r), 

and more generally: 
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n

n

d z

dη
= cos α 

1 1

1 1

tan

n n

n n

d z d z
d d

d d
dy dx
η ηα

− −

− −

 
 
 +
 
 
 

. 

 
We represent the right-hand sides of these equations by Z1 , Z2 , Z3 , …, Zn .  
 
 
 2. If a surface is such that the same value of tan α simultaneously annihilates two 
consecutive derivatives Zn and Zn+1 at each of its points then that value will annihilate all 
of their derivatives of order one or higher. 
 In order to prove that theorem, consider the equations: 
 

(1)     Zn = 0,  ndZ

dy
tan α + ndZ

dx
= 0, 

 
which must be true at every point on the surface, by hypothesis.  One can differentiate 
them with respect to each of the variables x and y.  When one takes the derivatives with 
respect to x and eliminates d (tan α) / dx from them, one will have: 
 

2 2

tan 2
tan tan

n n n ndZ d Z d Z dZ

dx dy d dxd dy
α

α α
 

+ + 
 

 = 
2 2

2tan
tan

n n ndZ d Z d Z

d dxdy dx
α

α
 

+ 
 

. 

 
In the same way, when one differentiates with respect to y and eliminates d (tan α) / dy, 
one will get: 
 

2 2

tan 2
tan tan

n n n ndZ d Z d Z dZ

dy dy d dxd dy
α

α α
 

+ + 
 

 = 
2 2

2 tan
tan

n n ndZ d Z d Z

d dy dxdy
α

α
 

+ 
 

. 

 
Divide these equations by each other.  The ratio of the left-hand sides will be – tan α, by 
virtue of the second equation (1), and one will have: 
 

2 2 2
2

2 2tan 2 tann n nd Z d Z d Z

dy dx dy dx
α α+ + +  = 0, Zn+2 = 0, 

 
while Zn+3 and all of its derivatives of order one or higher will obviously be zero, like 
Zn+2. 
 If a surface is such that a derivative Zn has a double root for each of its points then 
that value of tan α will be a root of dZn / dx, and as a result, of Zn+1 .  It will then 
annihilate two consecutive derivatives, and from what we just saw, all of the following 
derivatives. 
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 3. If the first two derivatives Z1 and Z2 are zero at the same time then all of them will 
be, and a horizontal line will pass through each point of the surface, and indeed, if one 
eliminates tan α from those two derivatives when they are equated to zero then one will 
find the known equation of surfaces that are generated by a line that is always horizontal. 
 Now suppose that the second and third derivatives are simultaneously zero: 
 
(2)     t tan2 α + 2s tan α + r = 0, 
(3)  v tan3 α + 3w tan2 α + 3ɯ tan α + u = 0. 
 
Monge showed that the surface will be a ruled surface in that case.  A brief discussion of 
that here seems necessary. 
 If just one of the two roots of equation (2) satisfies (3) then one can pass a rectilinear 
section through each point, and the surface will be skew. 
 If the two roots of equation (2) are equal then that value of tan α will satisfy equation 
(3), and the surface will be ruled, and even developable, because it will be easy to 
recognize that the tangent plane will not change when one displaces the contact point 
without varying α. 
 In the case where the two roots of equation (2) both satisfy equation (3), if those roots 
are real then the surface will be doubly ruled.  If they become imaginary then the surface 
will no longer admit rectilinear sections, but it will always have degree two, because the 
change can only come from a modification in the relative magnitudes of the numerical 
coefficients in its equation.  If the common roots are equal then the surface, which always 
has degree two, will become developable. 
 From that, upon expressing the idea that equation (3) is exactly divisible by equation 
(2), one will get a partial differential equation that represents second-order surfaces: 
 

(u t 2 – 3wrt + 2vrs)2 + (vr2 − 3ɯ t r + 2uts)2 = 0. 
 
 We can deduce some other consequences from the theorem in article 2, but the ones 
that we just pointed out will suffice for this study, in which we shall not consider the 
derivatives above order three. 
 
 

II. 
 

 4.  Let α, β, and γ be the angles that a tangent to the surface at a point under 
consideration forms with the axes, resp., and let R be the radius of curvature of the 
normal section that contains that tangent.  From a known formula, one will have: 
 

(4)      R2 = 
2 2

2
2

1p q

Z

+ +
, 

when one sets: 
Z2 = t cos2 β + 2s cos β cos α + r cos2 α . 

 
Differentiating this will give: 
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(5)   R dR = − (p2 + q2 + 1) 2
3 2
2 2

( )cos ( )cosdZ ps qt pr qs
dS

Z Z

β α+ + ++ , 

when one sets: 
 

Z3 = v cos3 β + 3w cos2 β cos α + 3ɯ cos β cos2 α + u cos3 α , 
 
and dS is the differential of arc-length, which is equal to dx / cos α and dy / cos β . 
 The polynomials that are represented by Z2 and Z3 are not the same as the ones in the 
first part of this study, but when one divides them by cos2 α and cos3 α, one will find that 
they are composed from cos β / cos α in the same way that the former are composed in 
terms of tanα . 
 If one differentiates the value of Z2 then one will find that: 
 
(6)  dZ2 = Z3 dS + 2 (s cos β + r cos α) d cos α + 2 (t cos β + s cos α) d cos β ; 
 
one must then determine d cos α and d cos β . 
 The secant plane contains the normal to the surface and the tangent that is determined 
by the angles α, β, and γ ; its equation is: 
 

(cos β + q cos γ) (x′ – x) − (cos α + p cos γ) (y′ – y) + (p cos β − q cos α) (z′ – z) = 0, 
 
in which x′, y′, z′ are variable coordinates. 
 The differentials d cos α, d cos β, d cos γ must be such that the new tangent is in the 
secant plane.  That condition will give: 
 

(cos β + q cos γ) d cos α − (cos α + p cos γ) d cos β + (p cos β − q cos α) d cos γ = 0. 
 
Since the axes are rectangular and the angles α, β, and γ belong to a tangent, one will 
have: 

(7)     
2 2 2cos cos cos 1,

cos cos cos 0,p q

α β γ
α β γ

 + + =


+ − =
 

from which, one deduces: 
 
  cos α d cos α + cos β d cos β + cos γ d cos γ = 1,    

  
  p d cos α + q d cos β − d cos γ + Z2 dS = 0.  
    
We now have three equations for the determination of d cos α , d cos β , d cos γ , from 
which we deduce: 
 

d cos α = − 2 2 1

p

p q+ +
Z2 dS,  d cos β = − 2 2 1

q

p q+ +
Z2 dS ; 

 
when one substitutes those values in equation (6), one will have: 
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dZ2 = Z3 dS − 2 2

( ) cos ( )cos
2

1

ps qt pr qs

p q

β α+ + +
+ +

 Z2 , 

 
and finally, from equations (5) and (4): 
 

(8)   
dR

R
dS

 = 
2 2

3 2
3
2

( 1) 3 [( )cos ( )cos ]p q Z Z ps qt pr qs

Z

β α− + + + + + +
, 

 

(9)      
dR

dS
 = 

2 2
3 2

2 2 2
2

( 1) 3 [( )cos ( )cos ]

1

p q Z Z ps qt pr qs

Z p q

β α+ + − + + +
+ +

. 

 

 It should be remarked that 
dR

R
dS

 is equal to the radius of curvature of the 

development of the section considered, because if ε is the contingency angle then the 
radii of curvature of the section and its developments will be dS / ε and dR / ε , resp. 
 One can construct a parabola that is super-osculated by a curve at a given point when 
one knows the radius of curvature R and its derivative dR / dS.  If x2 – 2 px = 0 is the 
equation of the parabola then one will have: 

p = 3/22
1

1
3

R

dR

dS

  +  
   

,  x = 3/22

1
3

1
1

3

dR
R

dS

dR

dS

 
 
 

  +  
   

. 

 
The first equation gives one the parameter of the parabola, while the second one gives the 
abscissa of the point where super-osculation can be established. 
 
 
 5. – We propose to find the normal sections of a surface that can be super-osculated 
by a circle.  In order to determine them, we must equate the value of dR / dS to zero: 
 

(10) 

2
2 2

2

cos cos cos
( 1)

3 cos cos cos 3

cos cos cos
( ) ( ) 2 0.

cos cos cos

v u
p q w щ

ps qt pr qs t s r

β β β
α α α

β β β
α α α

       + + + + +       
        


     − + + + + + =         

 

 

That equation, which has degree three, will always give at least one real value for 
cos

cos

β
α

, 

and as a result, a surface that has a normal section that is super-osculated by a circle at 
any point.  It can sometimes have three of them, two of which coincide.  Finally, there 



De la Gournerie – Study of the curvature of surfaces. 6 

will be an infinitude of them at some exceptional points.  If we replace 
cos

cos

β
α

 with 
dy

dx
 in 

equation (10) then we will have the differential equation of the curves that are tangent to 
the normal sections that are super-osculated by a circle at each of their points: 
 

(11)   

2
2 2

2

( 1)
3 3

( ) ( ) 2 0.

v dy dy dy u
p q w щ

dx dx dx

dy dy dy
ps qt pr qs t s r

dx dx dx

     + + + + +     
      


     − + + + + + =         

 

 
 Z2 will be a common factor in equation (10) for the second-degree surface.  It 
represents the rectilinear generators that are, indeed, super-osculated by a circle of 
infinite radius.  The equation will have degree one when one makes that factor vanish.  
One will then see that there exists just one normal section that is super-osculated by a 
circle of finite radius at any point of a second-degree surface. 
 For the general ruled surface, Z3 and Z2 will have a common factor of degree one that 
represented the rectilinear generators.  Upon making it vanish, equation (10) will have 
degree two; sometimes it will have two solutions, but other times it will not. 
 There exists an infinitude of second-order surfaces that are super-osculated at one of 
their summits by an arbitrary surface at a given point.  Those second-order surfaces 
traverse the surface in question, and the curves of intersection are obviously tangent to 
the normal sections that are super-osculated by a circle.  If the osculated surface has order 
two then it will have three lines in common with the osculating surface, namely, two lines 
and a curve tangent to the normal section that is super-osculated by a circle of finite 
radius. 
 
 

 6. – We can make the factor 
2

2
dy dy

t s r
dx dx

   + +  
   

, which represents the generators, 

vanish from equation (10) for the second-degree surface, and we will have: 
 

(12)   

2 2

2 2

( 1) ( )
3

( 1) ( ) 0.
3

v dy
p q ps qt

t dx

u
p q pr qs

r

  + + − +    


  + + + − + =   

 

 
When we apply that equation to the surface with its center at: 
 

2 2 2

2 2 2

x y z

a b c
+ +  = 1, 

 
we will find, after various simplifications that present themselves spontaneously, that: 
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2 2

2 2 2 21 1
c x dx c y dy

a a a b

   
− + −   

   
 = 0; 

hence: 

(13)    
2 2 2 2

2 2 2 21 1
c x c y

a a a b

   
− + −   

   
 = C. 

 
Hence, the curves that are always tangent to the normal sections that are super-osculated 
by a circle (as the lines of curvature are to the principal sections) will project onto any of 
the principal planes of the surface along second-degree curves that are mutually similar.  
Those projections are hyperbolas in the plane perpendicular to the axis that is parallel to 
the circular sections, and ellipses on the other two principal planes. 
 An arbitrary normal section to the surface is super-osculated by a circle at the 
summits of the surface, but it will not be contacted by one of the lines that is represented 
by equation (13).  Those curves envelop the summits without passing through them.  
Only two of them will cross at the summits that are on the axis that is parallel to the 
circular sections.  Their projections onto the plane perpendicular to that axis will be 
composed of two lines that one will obtain when one makes the constant in equation (13) 
equal to zero.  Consequently, they will be planar. 
 If the surface is one of revolution then the curves will be parallel.  If it is a sphere 
then equation (13) will vanish, and any curve will be a solution to the problem. 
 Now consider the second-degree surface that has no center: 
 

z = 
2 2

2 2

x y

a b
+ . 

 
If one substitutes the partial derivatives in equation (12) then one will find, after 
integration, that: 

2 2

2 2

x y

a b
+ = C 

and 

z = 
2

1
b x

a a
 − 
 

+ b C . 

 
One sees that the projections of the curves are parabolas on the principal plane of the 
surface and ellipses on the tangent plane to the summit. 
 
 
 7. – As an example, we take the skew surface of the square-threaded screw (la vis à 
filets carrés).  It will have the equation: 
 

z = h ω, 
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in which h is a constant and ω is the azimuth of the horizontal projection of a point.  If 
one calls the distance from that point to the vertical axis ρ then one will have: 
 

d

dx

ω
 = − 

sinω
ρ

,      
d

dy

ω
 = 

cosω
ρ

,      
d

dx

ρ
 = cos ω,      

d

dy

ρ
 = sin ω. 

 
When one calculates the partial derivatives of the function z from those formulas and 
substitutes in equation (9), one will get: 
 

3 22 2

2

2

1 cos cos cos 1
cos3 sin3 cos3 sin3

3 cos cos cos 3

cos 1 cos cos 1
sin cos sin 2 cos2 sin 2

cos 2 cos cos 2

h

h

ρ β β βω ω ω ω
α α α

β β βω ω ω ω ω
α α α

 +    − − +     
      


     − − + −     

      

 = 0. 

 
 For the surface of the square-threaded screw, the curvatures are identical along the 
different generators.  One can then confine oneself to studying what happens for one of 
them, such as the one whose azimuth is zero.  If one sets ω = 0 then one will find that: 
 

(14)    
2 2

2 2

cos cos 3

cos cos h

β β ρ
α α ρ
   −   +   

 = 0. 

 
If one lets µ denote the angle that the axis of the abscissa makes with the projection of the 
tangent to the normal section that is super-osculated by a circle then one will have: 
 

tan µ 
2

2
2 2

3
tan

h

ρµ
ρ

 
− + 

 = 0. 

 
 We find three values for tan µ : The value zero indicates the rectilinear generator.  We 
can make it vanish from the beginning of the calculations by exhibiting and suppressing 

the factor 
cos

cos sin
cos

βω ω
α

 − 
 

.  The other values of µ are always real, and as a result, 

two normals sections at any point of the surface will have third-order contact with their 
osculating circles.  If we replace tan µ with the analytical expression for the tangent of 
the angle that a curve makes with its radius vector then we will have the differential 
equation of the tangent lines to the normal sections that are super-osculated by a circle: 
 

d

d

ωρ
ρ

 = 
2 2

3
h

ρ
ρ+

. 

Integrating this will give: 
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ρ = 

1
2 2

( ) / 3 ( ) / 3

2 2
1 1

2 2

h h
e e

h h h h
ω ω ω ωρ ρ ρ ρ

−

′ ′− − −
   ′ ′ ′ ′

+ + − + +   
   
   

; 

 
ρ′ and ω′  are the coordinates of the point through which one passes the curve.  Upon 
giving two signs to the radical, in turn, one will find two curves that pass through each 
point. 
 The cosines of the angles α, β, and γ are always coupled by equations (7).  The 
second one simplifies because p is zero here.  We can calculate cos α with those two 
equations and equation (14).  We will find that its value is 1

2± , so it will result that the 

lines that we study will meet the rectilinear generators and cut them at angles of sixty 
degrees. 
 
 
 8. – Equation (11) will simplify even more for surfaces of revolution.  Indeed, its two 
terms will then contain a common factor that represents the parallels.  One can exhibit it 
by taking the partial differential equations for the first three orders of surfaces of 
revolutions, and eliminates five derivatives with them; for example, p, q, w, ɯ, and v. 
 We shall go about doing that in a manner that will permit us to discuss the results 
more simply. 
 Let: 

z = f (ρ) 
 

be an equation that represents the surface of revolution or its meridian, along which one 
considers ρ to be a radius vector or an abscissa. 
 We calculate the partial derivatives using the same device as in article 7, and after 
setting ω equal to zero, we substitute their values in equation (11); we will then have: 
 

(15)   tan2 µ = 

2 22 3

2 3

2

22

2

1
1

3

1

dz d z dz d z

d d d d

d z dz dz

d d d

ρ ρ ρ ρ
ρ

ρ
ρ ρ ρ

    − +    
     
  − +  
   

, 

 
in which µ represents the angle that the axis of the abscissa makes with the projection of 
the tangent to the normal section that is super-osculated by a circle, as in article 7,and tan 

µ replaces 
cos

cos

β
α

. 

 Equation (15) has degree only two.  The coefficient of the third-degree term is zero, 
which will give a value of ninety degrees for µ, which will indicate the parallels. 
 If one would like to have the equation of the curves then one would have to replace 

tan µ in equation (15) with 
d

d

ωρ
ρ

 and integrate. 

 If we call the radius of curvature of the meridian g then we will have: 
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g = − 

3/ 22

2

2

1
dz

d

d z

d

ρ

ρ

  +  
    , 

and upon differentiating: 
 

dg

dρ
= − 

1/22

2 22 2

2 2 22

2

1
1

3 1
3

dz

d dz d z dz d z

d d d dd z

d

ρ
ρ ρ ρ ρ

ρ

  +              − +     
        

 
 

. 

 
With those values, equation (14) will become: 
 

(16)   tan2 µ = − 

2

2
2

1/ 22

1

3
1

d z

d

dz dz
g

d d

ρρ

ρ
ρ ρ

  + +  
   

. 

 
tan µ is always zero for the torus and the cone.  The meridians of those surfaces will 
indeed solve the problem.  For the other surfaces of revolution, one will find two series of 
lines that cross while always meeting the meridians at equal angles.  Those lines will 
vanish when the value of tan2 µ is negative.  One can derive a geometric method for 
recognizing when those lines actually exist from equation (16). 
 If one equates the denominator on the right-hand side of equation (15) to zero then 
upon integrating one will get a circle with its center on the axis.  The surface will then be 
a sphere.  The numerator in equation (15) will become zero at the same time as the 
denominator, and tan µ will be arbitrary. 
 
 
 9. – If one studies the curvature of a surface at a point then one can simplify equations 
(8) and (9) by supposing that the tangent plane is horizontal.  One will then have: 
 

(17)  
dR

R
dS

= − 
3 2 2 3

2 2 3

sin 3 sin cos 3 sin cos cos

( sin 2 sin cos cos )

v w щ u

t s r

α α α α α α
α α α α

+ + +
+ +

 

and 
 

(18)  
dR

dS
= 

3 2 2

2 2 2

sin 3 sin cos 3 sin cos

( sin 2 sin cos cos )

v w щ u

t s r

α α α α α
α α α α

+ + +
+ +

. 
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 If one projects the centers of curvature of the developments of the normal sections 
onto the tangent plane then one will get a curve that is represented by (15), with an 

azimuth of α and a radius vector of 
dR

R
dS

.  That curve generally has degree six.  It will 

drop down to fifth degree for skew surfaces, and to fourth degree for the ones that have 
order two.  It will have two asymptotes that are parallel to the asymptotes of the 
indicatrix. 
 The curve that is situated in the tangent and is such that its radius vectors are 
proportional to the derivatives dR / dS has degree only four.  Its equation in rectilinear 
coordinates is: 

(t y2 + 2s xy + rx2)2 + v y3 + 3wxy2 + 2ɯ x2y + ux3 = 0. 
 
The degree of the equation will reduce by one for skew surfaces.  For second-order 
surfaces, the equation will become: 
 

t y2 + 2s xy + rx2 + 
v u

y x
t r

+  = 0 ; 

 
for the umbilics, the curve will be a circle. 
 One sees that the curvatures of the second-order surfaces and the simply-ruled 
surfaces define special categories, and that a surface can be super-osculated by a second-
order surface or a ruled surface only at exceptional points. 
 

___________ 
 


