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 1. – If one considers a surface to be flexible and inextensible then one will see how a 
surface can assume different forms and therefore take on the form of another surface.  
That is, one will see how it can be wrapped around another surface by deformation 
without breaking or duplicating it.  Having said that, the surfaces that can be wrapped 
around another in the aforementioned way are called mappable, and in this brief work, I 
propose to find the differential equation that will give all of the surfaces that can be 
mapped to a given one when it is integrated. 
 That equation was found by BOUR (cf., Journal de l’École Polytechnique, t. XXII) in 
the case where the coordinates that are adopted on the surface are a system of symmetric 
imaginary coordinates such that the square of the line element on the surface will have 
the form: 

ds2 = 4λ du dv . 
 

 Considering the fact that reducing the line element of a surface to one of that form in 
any case often comes with much difficulty, I therefore propose to find that equation in the 
case in which the line element has the most general form and then deduce BOUR’s 
equation as a particular case that does not correspond to the other form of ds2 that one 
uses more often in science and that coincides better with the surfaces that one considers 
in the special cases. 
 
 
 2. – In order to solve the problem that I posed, first allow me to recall the conditions 
that two surfaces must satisfy in order for them to be mappable. 
 Take a curvilinear coordinate system u, v on a surface S, so the coordinates X, Y, Z of 
any point on it with respect to three orthogonal axes can be expressed as three functions 
of u, v, and the square of its line element can be expressed by: 
 
(1)     ds2 = E du2 + 2F du dv + G dv2, 
 
in which E, F, G are three functions of u and v such that one will have: 
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 In order for a second surface S′ to be mappable onto S, it will obviously be necessary 
and sufficient that the points of S′ can be made to correspond to those of S in such a way 
that the line elements of the two surfaces will prove to be equal to each other in all 
directions around the corresponding points. 
 Having said that, take a coordinate system u′, v′ on the surface S′.  It is clear that one 
can establish the correspondence between the points of S and those of S′ in an infinitude 
of ways, so it will be enough to establish two relations between u, v and u′, v′ : 
 

ϕ (u, v, u′, v′ ) = 0, ϕ1 (u, v, u′, v′ ) = 0, 
 

under which the line element of S′ will be expressed by: 
 

ds′ 2 = E′ du2 + 2F′ du dv + G′ dv2. 
 
 However, because the surfaces S and S′ are supposed to be mappable, one needs to be 
able to establish two relations between u, v and u′, v′ such that it will result that: 
 

ds = ds′ 
 

in any direction around the corresponding points independently; i.e., for increments du 
and dv.  One will then need to have: 
 

E′ = E,  F′ = F,  G′ = G. 
 

 Moreover, if one regards the expressions for E′, F′, G′ in terms of the coordinates X′, 
Y′, Z′ of a point on S′, which are analogous to (2), then one will conclude that if the 
surfaces S and S′ are mappable then when the coordinates X′, Y′, Z′ of the points of S′ are 
expressed in terms of u and v, they will be such that when they are used in place of X, Y, 
Z in equations (2), those equations will be verified identically, and conversely, when that 
happens, the surfaces that belong to the coordinates (X, Y, Z), (X′, Y′, Z′ ) that verify (2) 
will be mappable. 
 
 
 3. – Now, that is the problem of the search for surfaces that can be mapped to each 
other that GAUSS posed in the form of equations, and one can say that from the 
analytical viewpoint, in order to solve it completely, one would have to determine three 
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functions X, Y, Z of the independent variables u and v in a general manner that are 
coupled with the quantities E, F, G in such a way that the relations (2) will become 
identities. 
 The first thing to do then will be to eliminate two of the variables from equations (2) 
– for example, X, Y – and to then find the differential equation in Z that must be satisfied 
in order to then go on to the search for the corresponding equations in finite terms by 
means of integration.  The problem in question will be solved completely when one finds 
those equations, since it would be given in the form of classifying all imaginable surfaces 
that can be mapped to a given one. 
 Unfortunately, although the differential equation can be found with the greatest ease, 
even in the case where the line element has the most general form (1), nonetheless, it 
seems almost impossible to find the integral equation by any methods that science 
currently possesses, and one then agrees to just stop after finding that differential 
equation.  That notwithstanding, I believe that is useful to present that differential 
equation, and I shall then move on to the search for it immediately. 
 
 
 4. – As was just said, one first eliminates the two variables X, Y from equations (2) in 
order to find the differential equation that Z must satisfy.  In order to do that, observe that 
when one lets p and q denote the partial derivatives of Z with respect to u and v, resp., 
one can set: 

(3)    

2 2
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 One will, in fact, get the first and third of equations (2) upon squaring and summing 
these, while the other one will become: 
 

cos (ϕ – θ) = 
2 2

F pq

E p G q

−
− −

 

 
with those conventions.  Then set: 
 

(4)   2E p− = µ,  2G q−  = ν,  
2 2

F pq

E p G q

−
− −

 = λ, 

 
to abbreviate, so the system of equations (3) can be replaced with these equations: 
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and the problem will be reduced to eliminating X, Y, θ, ϕ from those equations. 
 The elimination of X and Y is accomplished directly by differentiating the first four.  
We indicate the derivatives with respect to u and v with the subscripts (1) and (2), resp., 
for brevity, and find the equations: 
 
 µ2 cos θ – µ sin θ ⋅⋅⋅⋅ θ2 = ν1 cos ϕ – ν sin ϕ ⋅⋅⋅⋅ ϕ1 , 
 
 µ2 sin θ + µ cos θ ⋅⋅⋅⋅ θ2 = ν1 sin ϕ – ν sin ϕ ⋅⋅⋅⋅ ϕ1 , 
 
which do not contain X or Y. 
 If one sets: 

(6)  

1 2 1 2

1 1 2

cos ( )
,

cos( )

L

M

ν ϕ θ µ ν λ µ
ν ν

ν µ ϕ θ ν µ λ
µ µ

− − − = =
 − − − = =


 

then one will get: 
sin (ϕ – θ) ϕ1 = L, sin (ϕ – θ) θ2 = M . 

 If one further sets: 
 
(7)      sin (ϕ – θ) = h, 
 
in which, from the last of (5), h must satisfy the relation: 
 
(8)      h2 = 1 – λ 2, 
 
then one can further infer that: 

(9)     ϕ1 = 
L

h
, θ2 = 

M

h
. 

 
 However, from the last of (5), one has: 
 

(10)   ϕ1 − θ1 = − 1

h

λ
, ϕ2 − θ2 = − 2

h

λ
, 

so one will have: 
 

(11)    ϕ2 = 2M

h

λ−
, θ1 = 1L

h

λ−
, 
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and along with (9), that will lead directly to the desired equation. 
 Indeed, if one differentiates the first of equations (9) with respect to v and the first of 
(11) with respect to u then one will get the equation: 
 

2 2
2

L L h

h h
− = 1 12 2 1

2

( )M M h

h h

λ λ− −− , 

and with: 
h h1 = − λ λ1 ,  h h2 = − λ λ2 , 

 
it will be transformed into this one: 
 
(12)   (L2 – M1 + λ12) (1 – λ2) + λ (L λ2 – M λ1 + λ1 λ2) = 0, 
 
and since this no longer contains E, F, G, or the partial derivatives of Z and the latter 
quantities, it will be precisely the equation that we seek. 
 It should be observed that one will find another equation when one operates on the 
second of equations (9) and (11) in the same way that one operated on the first ones.  
However, it cannot be different from (12), since when one assumes that ϕ12 = ϕ21 , one 
must also have θ12 = θ21 . 
 In order to exhaust the question that I posed, it then remains to substitute equation 
(12) for L, M, λ and replace their derivatives with the values in E, F, G, Z.  The 
calculations will necessarily be long, but easy.  Upon writing equation (12) in the form: 
 

(L + λ1) 2 – M1 − λ2 [(L + λ1) 2 – M1] + λ [L λ2 – (M  + λ2) λ1] = 0 
 

and appealing to (4) and (6), one will finally arrive at the equation: 
 
(A)  4 (EG – F 2)(r t – s2) + 2 [(GG1 + FG2 – 2GF2) p – (EG2 + FG1 – 2FF2) q] r 
 

+ 4 (E2 G p + EG1 q) s + 2[(EE2 + E1F – 2EF1) q – (E1 G + E2 F – 2FF1) p] t 
 

+ (2E22 G – 2G G11 + 4G F12 + E2 G2 + 2
1G − 2G2 F1) p

2 

 
+ (4FG11 + 4E22 F – 8FF12 + E1 G2 – E2 G1 + 4F1 F2 – 2E2 F2 – 2F1 G1) p q 

 
+ (2EG11 – 2E E22 + 4E F12 + E1 G1 + 2

2E − 2E1 F2) q
2 

 
+ 2 (E22 + G11 – 2F12)(EG – F2) − 2 2

2 1E G EG−  − EE2 G2 – E1 GG1 + 2E1 F2 G + 2EF1 G2 

 
+ 2E2 FF2 + 2FF1 G1 – E1 FG2 + E2 FG1 – 4FF1 F2 = 0, 

 
in which r, s, t are the three second-order partial derivatives: 
 



Dini – The differential equation of surfaces that can be mapped to a given one. 6 

2

2

Z

u

∂
∂

,      
2Z

u v

∂
∂ ∂

,      
2

2

Z

v

∂
∂

. 

 
Observe that this equation is linear in rt – s2 and r, s, t. 
 
 
 5. – That equation will become much simpler in some special coordinate systems. 
 For E = G = λ, F = 0, it will become: 
 

4λ2 (rt – s2) + 2 (λλ1 p – λλ2 q) r + 4 (λλ2 p + λλ1 q) + 2 (λλ2 q – λλ1 p) t 
(B) 

+ 2 2 2 2 2 2 2
1 2 11 22 11 22 1 2( 2 2 )( ) 2 ( ) ( )p qλ λ λλ λλ λ λ λ λ λ λ+ − − + − + − + = 0. 

 
 For E = G = 0, F = 2λ, when (A) is divided by 16λ2, it will become: 
 

rt – s2 − 2 1 12 1 2 1 2
2 2

2 2qr pt pq pq
λ λ λ λ λ λ λ
λ λ λ λ λ

− + − + − 2 λ12 = 0, 

 

or, upon adding and subtracting 1 2
2

λ λ
λ

pq : 

 

2 (pq – λ) 12 1 2
2

λ λ λ
λ λ

 − 
 

 – s2 + 1 2r p t q
λ λ
λ λ

  − −  
  

= 0, 

and since: 

12 1 2
2

λ λ λ
λ λ

− = 
2 log

u v

λ∂
∂ ∂

,  1λ
λ

= 
log

u

λ∂
∂

,  2λ
λ

= 
log

v

λ∂
∂

, 

 
it can be put into the form: 
 

(C)    2 (pq – λ)
2 log

u v

λ∂
∂ ∂

– s2 + 
log log

r p t q
u v

λ λ∂ ∂  − −  ∂ ∂  
= 0. 

 
One then recovers the equation to which BOUR arrived upon starting directly from the 
form of the line element ds2 = 4λ du dv. 
 When one supposes that E = 1, F = 0, one will obtain the following equation from 
(A): 
 
(D)   4G (r t – s2) + 2 (GG1 p – G2 q) r + 4G1 qs + 2 2

1 1( 2 )G GG p− − 2G11 q
2 + 2GG11 − 2

1G   

= 0, 
 

and one should observe that, like equation (C), it has the advantage that it does not 
contain s, whereas the other one did not contain t. 
 Suppose that the G in (D) is a function of only u, so it will reduce to: 
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(E)  4G (r t – s2) + 2GG1 pr + 4G1 qs + 2 2
1 1( 2 )G GG p− − 2G11 q

2 + 2GG11 − 2
1G = 0, 

 
and that equation, which characterizes the surfaces that are mappable to a surface of 
revolution, from WEINGARTEN (cf., Crelle’s Journal, t. LIX), also characterizes the 
surfaces that are the loci of the centers of curvature of the surfaces for which one of the 
radii of principal curvature is a function of the other one, and in the case where G is a 
function of degree two with respect to u, they will further represent certain particular 
ruled surfaces. 
 If one supposes that E, F, G are constants in (A) then it will reduce to: 
 
(F)      r t – s2 = 0, 
 
and since it is only for planes that E, F, G will become constants, one will conclude, as 
one already knows, that this equation characterizes developable surfaces. 
 
 Pisa, July 1864. 
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