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I. 

 

 The principle of virtual displacements, when applied to a deformable body, will yield the 

known relationship: 

 

(1)   ( )x x y y z z x x y y z z dV P w            + + + + + −   = 0 , 

 

with the usual notations from engineering statics in which  and  are the stresses,  and  are the 

associated deformations (distortions), w are the displacements along the line of action of the 

external forces P, and dV is the differential of spatial volume. 

 The theorem assumes only equilibrium of the forces and compatibility of the deformations, so 

it will be valid for arbitrary deformations. For completely elastic bodies, the first term in the 

complete variation of a function A, namely, the deformation work (energy of distortion, elastic 

potential). Therefore, from (1): 

A P w −  = 0 , 

 

or when one separates the variation symbol and lets the subscript w suggest that the variation acts 

upon only the deformations: 

 

(2)  [ ]w A P w −  = 0 . 

 

 The bracket expression will then be an extreme value, and indeed a minimum, as is easy to see. 

The variational principle that is expressed by equation (2), which we would like to refer to as the 

first one, in order to distinguish it from a second one that will be derived later, was found before 

with a different expression by Kirchhoff (1). 

 
 (1) Kirchhoff, Vorles. über math. Physik, Mechanik, 1876, Lecture 11, § 5. 
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 If one imagines that A is represented as a function of the displacements w then due to the fact 

that: 

w A = m

m

A
w

w






  

 

and the theorem that is named after Green, one will have: 

 

(3)  
m

A

w




 = Pm , 

 

and furthermore, since P are regarded as functions of the w, one will get: 

 

(4)  m

n

P

w




 = n

m

P

w




 

 

by another differentiation with respect to wn. 

 That relationship is a counterpart to the known laws of engineering statics that are due to 

Maxwell. 

 Moreover, Green’s theorem will give: 

 

(5)  A = P dw  

upon integrating. 

 That is the general form of Clapeyron’s law of engineering statics. Under the assumption of 

Hooke’s law of deformation, (5) will go to: 

 

(6)  A = 1
2

P w . 

 

 Of all the cited laws, the last one is almost the only one that is applied in engineering statics to 

any appreciable degree. However, one should take care when using it, since it is by no means 

correct in all cases. A simpler case in which it does not apply occurs in the buckling of straight 

rods. If one denotes the Euler buckling load by PE, the sag that emerges from the compression of 

the length of the rod by l, and finally, the further sag that emerges from the bending of the rod by 

w then one will obtain the usual imprecise theory in which an arbitrary deflection is possible when 

one achieves the Euler buckling load, and under the assumption that the domain of validity of 

Hooke’s law has not been exceeded, the work done will be: 

 

A = 1
2

P l P w + E E , 

 

which is by no means Clapeyron’s law. Even in the more precise theory, which makes a well-

defined loading P1 > PE belong to each deflection of the rod, there is no agreement with equation 
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(6) since P1 is much smaller than PE, so the additional term in the more precise expression for A 

will hardly matter. 

 The basis for the deviation from the general law lies in the fact that two different types of 

deformations are being combined. In such cases, it would be simplest to start from the first 

variational principle, which is always appropriate. That is all the more advisable in engineering 

statics since many problems that are not as simple can be treated quite clearly and concisely with 

its help. 

 As an example of the application of the principle, let us cite the determination of the buckling 

load of a rod when one considered the shearing forces (1). With the usual notations (M is the 

moment, Q is the lateral force), one will have the starting equations (2): 

 
1 2 2

0
2 2

w

M Q
dx P w

E J G F




  
+ −  

  
  = 0 . 

 

 Since we restrict ourselves to small deflections, the rod axis and the chord can be switched. 

The work done by the longitudinal force is dropped right from the outset since its influence will 

be cancelled. If l0 denotes the original length of the rod then we will have: 

 

l = 0 1
P

l
E F

 
− 

 
 . 

 

 Now, if y represents the ordinate of the bending line then one will have: 

 

M = − P y , Q = 
dM

dx
 = − P y . 

 

 The sag that is due to deflection alone is: 

 

w = 

1

2

0

( 1 1)y dx+ −   

1

21
2

0

y dx . 

 

 Thus, from the starting equation, one will have: 

 
1 2 2 2

0
2 2 2

w

P y P y y
dx

E J G F




  
+ + 

 
  = 0 . 

 

 
 (1) The problem was solved in a different way (by combining the bending lines) before by F. Engesser [Zentralblatt 

der Bauverwaltung (1891), pp. 483].  

 (2)  is the usual coefficient of the work done by shearing forces. It is  = 6/5 for a rectangular cross-section and 

b = 32/27 for a circular cross-section. 
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 If one varies y then one will get: 

P P
y y y

E J G F


 − +  = 0 , 

 

from which it will follow, in the known way, that: 

 

P

F
 = 

2

2

25

E

l

i




 

+ 
 

, 

with G = 0.4 E and J = 2F i . 

 

 

II. 

 

 Along with the first variational principle that was just explained, there is yet a second one that 

seems to have remained unknown up to now, even though some of its individual consequences 

have been much-used in engineering statics. It is the complete counterpart and extension of the 

first one. It admits some remarkable applications that can be put to use in not only the theory of 

elasticity, but also in engineering statics. 

 Before we derive the theorem, recall that the deformations of elastic bodies that occur are so 

slight that they do not affect the original force distribution noticeably and can then be substituted 

in the principle of virtual displacements. One then arrives at the well-known theorem of 

engineering statics (1): 

 

(7)   ( )x x y y z z x x y y z z dV P w           + + + + + −   = 0 , 

 

 The forces and deformations in that can be assumed to have no mutual dependencies, except 

that the internal and external forces must be in equilibrium, and the internal and external 

displacements must be compatible. 

 In the special case where forces and displacements are paired together, one calls the first term 

in equation (7) the virtual work Av done by internal forces and arrives at the relationship that the 

internal virtual work is equal to the external “virtual” work. It is remarkable that one can also 

substitute the deformations that result from temperature effects in equation (7) with no further 

discussion. 

 However, this theorem will also remain correct when one introduces mutually-compatible 

variations of the forces into it; it will then read: 

 

(8)   ( )x x y y z z x x y y z z dV P w            + + + + + −   = 0 . 

 
 (1) The theorem defines the foundation for the calculations with elastic systems in the statics of building 

construction (cf., e.g., Müller-Breslau, Graph. Statik der Baukonstr. II.1 or Neuere Methoden der Festigkeitslehre).  
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 That theorem already admits one very general application. In the special case where the first 

term in the complete variation is a function B, one will get: 

 

B P w −   = 0 , 

 

and when one takes the variation symbol out of that expression and lets the subscript P suggest 

that the variation refers to only the forces: 

 

(9)  [ ]P B Pw −  = 0 . 

 

 That theorem shall be referred to as the second variational principle. The function B can be 

written: 

B = ( )x x y y z z x x y y z zd d d d d d dV           + + + + + . 

 

 By partial integration, one finds immediately that: 

 

(10) B = Av – A . 

 

 Therefore, B is a complete integral for completely-elastic bodies. According to Engesser, who 

developed the concept directly from equation (7) (1), B is the called the work done by extension. 

One can also call it the “work done by stress,” as a counterpart to the work done by deformation. 

If Hooke’s law of deformation is valid and temperature deformations are excluded then due to 

equations (6) and (7), one will have: 

B = A . 

 

 The known laws of engineering statics follow immediately from the second variational 

principle. If one expresses B as a function of the external forces P then due to the fact that: 

 

P B = m

m

B
P

P





  , 

 

that will imply the theorem of the derivatives of the work done by extension (Castigliano and 

Engesser): 

(11) 
m

B

P




 = wm , 

 

or when the bearing C that is necessary to achieve support experiences displacements wc : 

 

 
 (1) Engesser, “Über statisch unbestimmte Träger bei beliebigen Formänderungsgestze und über der Satz von der 

kleinsten Ergänzungarbeit,” Zeit. d. Arch. u. Ing.-Vereins zu Hannover (1889), pp. 733.   
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(12) 
m

B

P




 = wm + c

m

C
w

P





 . 

 

 When the statically-indeterminate quantities Xa can be considered to be loads and their 

displacements wa = 0, one will have: 

(13) 
a

B

X




 = 0 . 

 

 That is the law of the minimum of the work done by deformation, or really the work done by 

extension in the ordinary sense of engineering statics. 

 It follows from equation (11) by a further differentiation with respect to Pn that: 

 

(14) m

n

w

P




 = n

m

w

P




 , 

 

which is then Maxwell’s law for an arbitrary law of deformation. From Hooke’s law, B is a 

homogeneous function of degree two in P, from which Clapeyron’s law will follow immediately, 

due to equation (11), moreover. Due to that same equation, equation (14) can be expressed simply 

as the equality of two constants: 

wmn = wnm , 

 

in the indicial notation that Müller-Breslau introduced. 

 

 

III. 

 

 The principle of virtual displacements makes it possible to not only exhibit the relations 

between forces and given displacements – so the equilibrium conditions – but also to find, 

conversely, the displacements under known forces. Since the equilibrium conditions can mostly 

be much simpler to exhibit than the compatibility conditions for deformations, the second 

variational principle will have a special meaning in the applications as a means for exhibiting such 

relationships. 

 The bending lines for straight or curves rods shall be considered initially. Those lines are often 

necessary for pre-calculating the deflections. However, they are much more important due to the 

fact that they are the influence lines of static quantities under statically-indeterminate systems, so 

they will be used in the calculations themselves. 

 It is known that there are two processes for determining such a bending line. Either one applies 

the principle of work in a form that follows from the application of equation (11): 

 

wm = 
m

B

P




 

or the one that follows from that by derivation: 
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wm = 
2

m

B

P X



 
, 

 

or one employs a second-order differential equation that can be derived from relations involving 

the deformations. Both processes have their advantages and disadvantages. With the first one, one 

will get only isolated ordinates since the expression B must ordinarily be calculated in each special 

case. With the second one, however, one must first integrate and then obtain the entire course of 

the influence line. Both processes seem completely unconnected, and yet they must go back to the 

same source. It will be shown in what follows that both paths will emerge from the second 

variational principle. 

 The derivation using the first process has been shown before. What is essential in it is that the 

external forces P are chosen to be independent quantities. 

 Now, one can also introduce other functions of the external forces as independent quantities. 

What come under consideration for rods are the longitudinal force, the lateral force, and the 

moment. Since only the independent variables and their differential quotients occur in the integral 

to be varied (since the lateral force is the differential quotient of the moment and the longitudinal 

forces come under consideration only for curved rods and can also be expressed in terms of the 

moment), only the moment remains as something that would be useful as an independent quantity. 

 

 1. The differential equation for the bending line of a straight beam when one also considers 

the shearing forces will initially be exhibited. 

 From the second variational principle, when y denotes the ordinate of the bending line and p 

represents a continuous loading that is all that shall be varied, one will have: 

 
2 2

0
2 2

l

p

M Q
p y dx

E J G F




 
+ − 

 
  = 0 . 

 Now, one has: 

Q = 
dM

dx
 = M  , p = − 

dQ

dx
 = − 

pM  , 

so 
2 2

0
2 2

l

p p

M M
M y dx

E J G F




 
+ + 

 
  = 0 . 

 

 Performing the variation of M will yield: 

 

M M
y

E J G F

 
− +  = 0 

or 

(15) y  = − 
M M

E J G F

 
+ . 
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 One sees immediately that the shearing force alone generates a bending line that is similar to 

(affinely associated with) the moment line. 

 In order for the true sense of equation (15) to emerge clearly, some explanatory remarks would 

be necessary. Namely, the equation is true for any given loading P, so for isolated forces, as well. 

In order to be able to apply the second variational principle, one imagines applying a continuous 

loading p, which is the only thing that should be varied, as stated before, and it can be set equal to 

zero after exhibiting the differential equation. Since the loads P are not varied, the external work 

that they do can even be dropped from the Ansatz equation. Similarly, only the part Mp of M that 

depends upon p will be varied. That is explained by the fact that one must set p = − 
pM  , with the 

index. The Ansatz equation must properly be written: 

 

0

l

p p p

M M
M M M y dx

E J G F


  

 
 + +  

 
  = 0 . 

 

 Those considerations will also be true for the following cases. 

 The given derivation of the 

differential equation shows that the 

second differential quotient of the 

bending line must appear on purely-

static grounds. The basis for the fact 

that it does not give the precise 

equation with the radius of curvature 

lies in the fact that the moment, 

lateral force, and path of integration 

are referred to the unbent beam axis. 

 

 2. When w is the positive-inward 

pointing radial displacement, v 

means the tangential displacement, 

and p1 and p2 are the continuous 

loadings to be varied, as in Fig. 1, the 

differential equation for the bending 

line of a circular ring will follow from: 

 
2 2 2

1 2

0
2 2 2

s

p

M Q
p w p v ds

E Z G F E F




 
+ + − − 

 


N
 = 0 . 

 In that, one has: 

N = N − 
M

r
. 

 

w 

Q 
p1 ds 

p2 ds 

ds M + dM 

N + dN 
Q + dQ 

r r 

N 

M 

d 

Figure 1. 
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 Z is the value that is introduced for curved rods that deviates only slightly from the moment of 

inertia (1). 

 The variation of p1 will yield: 

 

1 1 1 1

0

s
M Q

M Q p w ds
E Z G F E F


   

 
 +  +  −  

 


N
N  = 0 . 

 

 The subscript 1 is supposed to emphasize the fact that only the terms in the variations that 

originate in p1 will need to be considered. 

 
 Now, from Fig. 2, one has: 

Q = 
dM

ds
 = M  , 

in general, so: 

a) Q1 = 1M  . 

 

 Furthermore, from the moment about the center of curvature: 

 

dN1  r – dM1 = 0 , 

or 

 
 (1) For these formulas, cf., Müller-Breslau, Die neueren Methoden der Festigkeitslehre, 4th ed., 1913, pp. 236, et 

seq. 

Figure 2. 
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1
1

Md
N

ds r

 
− 

 
 = 0 , 

or finally: 

1
N  = 0 , 

one will have: 

  b) N1 = C . 

It will then follow that: 

N1 = C + 1M

r
. 

 

 Finally, for the forces in the radial direction, one has: 

 

p1 ds + dQ1 + 1

ds
N

r
 = 0 , 

or 

p1 = − 1
1

N
Q

r
 − , 

so 

c) p1 = − 1
1 2

M C
M

r r
− − . 

 The basic equation will then be: 

 

1
1 1 1 2

0

l
MM M C

M M C w M ds
E Z G F E F r r


   

  
  +  +  +  + +  

  


N
 = 0 . 

 

 Performing the variation will give: 

 

2

M M w
w

E Z G F r

 
− + +  = 0 . 

 

 The known equation will then follow: 

 

(16) 
2

w
w

r
 +  = − 

M M

E Z G F

 
− , 

which has been extended here. 

 It is very noteworthy that the elongation of the centerline has no effect. 

 If one proceeds analogously with p2 then one will easily find that: 

 

a) Q2 = 2M  . 
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 Moreover, from the forces in the radial direction, one has: 

2 2

ds
dQ N

r
+  = 0 

or 

N2 = − 2M r  , 

so 

b) N2 = − 2

M
M r

r
  − . 

 

 From the moment about the center of curvature, one will have: 

 

2
2 2

M
p N

r


+ −  = 0 , 

p2 = − 2
N , 

c) p2 = +
M

M r
r


 + . 

 

 Substituting that in the basic equation will give: 

 

2 2
2 2 2 22 2

0

l
M MM M

M M M r v M r ds
E Z G F E F r r


   

    
   +  +  −  − −   +    

    


N
 = 0 , 

 

and from that one will get: 

/M M r r v
v r

E Z G F E F r

   +
− − + +

N N
 = 0 . 

 

 With the use of equation (16), that can be easily converted into: 

 

− 
2

/w r r v
w r v r

r E F r

  + 
 + + − + +  

   

N N
 = 0 

or 

2

2 2

w
v

d w r E F
v

ds r E F r

 − −
 

 − − + 
 

N

N
 = 0 . 

 

 In addition to the solution: 

 

w
v

r E F
 − −

N
 = 1 2cos sin

s s
C C

r r
+ = C1 cos  + C2 sin  , 
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 which corresponds to a parallel displacement, one also has the known solution: 

 

(17) v  = 
w

r E F
+
N

. 

 

 When all of the forces vanish, equation (16) will also have the solution: 

 

w = C1 cos  + C2 sin  , 

so a parallel displacement. 

 

 3. For rods of a different form, one would do better to refer the deflections to a rectangular 

axis-cross. The perpendicular deflection w for an originally curved loaded rod shall be determined. 

 It easily follows from Fig. 2 that: 

 

Q = 
dM

ds
 = 

dM dx

dx ds
  = cosM  , 

 

Np = − sin
cos

p

C
M 


 + , 

 

p = − 
tan

p

d
M C

d




 + . 

 

 Since d is negative in Fig. 2, the radius of curvature will be: 

 

r = − 
d

ds


. 

That will then give: 

 

N = 
M

N
r

−  = 
d

N M
ds


+  = cos

d
N M

dx


+  = 

sind
N M

dx


+ , 

and as a result: 

Np = − 
sin

sin
cos

p p

d C
M M

dx





 + +  . 

 

 The path of integration is ds, and the independent variable is x so the basic equation will read: 

 
2 2 2

0
2 cos 2 cos 2 cos

l

p

M Q
p w dx

E Z G F E F




  

 
+ + − 

 


N
 = 0 . 

 

 Substituting the values that were determined will produce: 
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0

cos sin
sin

cos cos cos

l

p p p p

M M d C
M M M M

E Z G F E F d

  
   

   

  
  +  +  − + + 

 


N
 

 

+ 
tan

p

d
w M C dx

dx




 
 − 

 
 = 0 . 

 That will give: 

sin
( tan )

( cos ) cos

cos cos

d d

M d M dx dx w
E Z G F dx E F




  
 

+ 
  − + +

N N
 = 0 . 

 

 When one observes the foregoing equations, that is easily converted into (1): 

 

(18) 
2

2

d w

dx
 = − 

1
( tan )

cos cos

M dQ d

E Z G F dx E F dx r




 

 
−  + − 

 

N
N . 

Observe that: 

Q = 
dM

ds
. 

 

 The differential equation for horizontal deflections is obtained from this by a reasonable 

conversion to the other axes. 

 

IV. 

 

 The applications of the second variational principle in the previous section assumed Hooke’s 

law. However, it is easy to see that no assumption whatsoever regarding the properties of the 

deformations will be necessary when one applies the principle the form of equation (8). The results 

of the variation are then simply relations between the internal deformations, i.e., elongations and 

shears, and the external ones, namely, the displacements. One will then get the conditions for the 

compatibility of the internal and external deformations, namely, the so-called “compatibility 

conditions.” If one applies that argument to the first example in the previous section then one will 

get: 

0

[ ]

l

M M M y dx      +  +   = 0 

 

when one denotes the change in curvature that results from the moment by  and the shear that 

results from the lateral force by , so: 

 
 (1) This formula was already given by Müller-Breslau in a different way [Graph. Statik II.2, 1908, pp. 513, eqs. 

27 and 28. Furthermore: Neuere Methoden der Festigkeitslehre, 4th ed., pp. 248, formula (120), which includes a 

mistake. If one compares formula (60) on pp. 176 then one will see that the factor of ds / dx should be dropped from 

the last terms of formulas (120) and (121). Formula (122) is still correct.] 
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y   + − +  = 0 , 

i.e.: 

(19) 
2

2

d y

dx
 = 

d

dx


− + . 

 

 Since only small deformations can be considered, in principle, one will get only terms of first 

order in the deformations. 

 The following example will show how the theorem can be applied to deformable bodies (and 

even inelastic ones): 

 

 1. Exhibit the relations between the elongations and shears and the external displacements u, 

v, w of a homogeneous body for a rectangular axis-cross. 

 

 If X, Y, Z represent body forces (per unit spatial volume) along the three axes then, as is known, 

the following three equilibrium conditions will exist: 

 

yx z X
x y z

   
+ + +

  
 = 0 , 

y x z Y
y z x

    
+ + +

  
 = 0 , 

y xz Z
z x y

   
+ + +

  
 = 0 . 

 

 From the second variational principle, variation of the integral over the entire body will vanish 

by itself: 

 

[ ]x x y y z z x x y y z z X u Y v Z w dV              + + + + + −  −  −   = 0 . 

 

The work done by the external forces will appear in only the boundary integrals, so they will drop 

out of the spatial integral. 

 One introduces the three expressions for X, Y, Z above into the integral: 

 

yx z
x x u v w dV

x y z

 
    

       
+ +  + +  + +  +     

       
  = 0 . 

 

Performing the variations of the six stresses individually will give the equations: 

 

x

u

x



−


 = 0 ,  x

v w

z y


 
− −

 
 = 0 , 
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(20) y

v

y



−


 = 0 , 

y

w u

x z


 
− −

 
 = 0 , 

 

z

w

z



−


 = 0 ,  z

u v

y x


 
− −

 
 = 0 . 

 

 Those are the well-known relations for homogeneous infinitesimal deformations. Their 

derivation then assumes the knowledge of only the initial basis for the calculus of variations, in 

addition to the equilibrium conditions. It is clear that the body forces can also be assumed to be 

arbitrarily small. 

 It is known that one can make the three equilibrium conditions between the stresses inevitable 

by introducing three stress functions. The substitution of those functions will then give known 

relations between the deformation quantities, for which a single stress function might be given 

here since that will suffice for the case of planar problems. Here (when one excludes body forces), 

one has: 

x = 
2

2

F

y




, y = 

2

2

F

x




,  = −

2F

x y



 
. 

 

Therefore, since the external loads, in turn, appear in only the boundary integral: 

 
2 2 2

2 2x y

F F F
h dx dy

y x x y
     

   
 +  −  

    
  = 0 , 

 

from which, it will follow that (1): 

 

(21) 

22 2

2 2

yx

y x x y

  
+ −

   
 = 0 . 

 

 One will obtain the differential equation for the stress function of the planar problem: 

 
4 4 4

4 2 2 4
2

F F F

x x y y

  
+ +

   
 = 0 

 

from equation (21) when one substitutes the relations between stresses and distortions that follow 

from Hooke’s law. One will arrive at that equation even more simply when one expresses the 

stresses in terms of the expression for B in terms of F that is defined by Hooke’s law and then takes 

the variation with respect to F. 

 

 
 (1) Cf., Love, Lehrb. d. Elatizität, German by Timpe, 1907, pp. 59.  
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 2. Derive the compatibility conditions for the planar problem under the assumption that polar 

coordinates are being used. 

 

 With the notations of Fig. 3, when 

Xr and Xt denote the volume forces per 

unit spatial volume, as is known (1), 

one will have: 

 

 
1r tr

rX
r r r

  



− 
− + +

 
 = 0 , 

 

 
1 2t

tX
r r r

  



 
+ + +

 
 = 0 . 

 

The second variational principle gives: 

 

[( ) ]r r t t r tX w X v r dr d h         +  + −  −   = 0 . 

 

 If one substitutes the values above for Xr and Xt and varies the individual stresses then the 

equations will follow: 

  
( )

r

wr
r w

r



− +


 = 0 , 

 t

v
r w




− −


 = 0 , 

( )
2

w v r
r v

r




 
− − +

 
 = 0 , 

or (2): 

  r = 
w

r




, 

(22) t = 
1w v

r r 


+


, 

   = 
1 w v v

r r r

 
+ −

 
. 

 

 

 

 

 

 
 (1) Cf., Love, Elastizität, pp. 107.  

 (2) Cf., Love, Elastizität, pp. 66. 

 

r r 

d 
 

t 

 

r 

t 

 

v 

 w 

Figure 3. 
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V. 

 

 The work done by deformation A0 per unit volume leads to the name of “elastic potential” due 

to the fact that its partial derivatives with respect to the distortions  and  yield the respective 

stresses, so: 

(23) 0

x

A






 = x , etc., 0

x

A






 = x , etc., 

 

 That already follows immediately from the explanations for equations (1) and (2). Those 

relations will also be valid then for an arbitrary law of deformations when the deformations are 

only completely elastic. 

 The group of equations: 

(24) 0

x

B






 = x , etc., 0

x

B






 = x , etc., 

 

follow from equations (8) and (9) in exactly the same way. 

 The law of deformation can also be arbitrary here when only complete elasticity is present. 

 The two variational principles then show a complete parallelism in their consequences, and it 

is instructive to briefly juxtapose the corresponding theorems once more: 

 

 a) If one chooses the stresses and distortions in order to represent the two works A and B then 

one will arrive at the differential laws (23) and (24) that were just mentioned. 

 

 b) The representation of the work done by deformation A in terms of the force displacements 

w corresponds to the representation of the work done by extension B in terms of the external forces 

P. It then corresponds to the theorem of Green (3) and that of Castigliano and Engesser (11). 

 

 Those are the actual differential relations. It follows from the variational laws that: 

 

 c) If one represents the works A and B in terms of the stresses and distortions then one will 

get the relations between the distortions and displacements [equation (20)] from the second 

variational principle with the use of the equilibrium conditions. One will get the equilibrium 

conditions for the stresses in an infinitely-small prism (1) from the first variational principle with 

the use of the relations in equations (20) in an entirely-analogous way. 

 

 d) The representation of the work B in terms of functions of the external forces and moments 

M corresponds to the representation of the work A in terms of functions of the displacements w 

and the ordinates of the bending line. The buckling problem that was treated in Section I is an 

example of the latter case. 

 

 
 (1)  Cf., Love, Elastizität, pp. 198. 
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 One now sees a further parallelism that appears in the same way for each of the two principles: 

The differential relations in a) correspond to the variational relations in c), and the laws in b) and 

d) correspond to each other in a similar manner. 

 The replacement of the stresses in the work done by extension B with stress functions has no 

actual counterpart in the first variational principle. Such a thing does also not seem to be necessary 

because the possibility of expressing the six stresses in terms of three stress functions is juxtaposed 

with the fact that the six distortions can be expressed in terms of the three displacements. 

 

 

VI. 

 

 Whereas the theorems that were cited up to now correspond to each other, but also differ in 

their content, Maxwell’s law [equation (14)]: 

 

m

n

w

P




 = n

m

w

P




 

 

defines a remarkable exception because it says something that differs from its counterpart 

[equation (4)] only in form, but not in fact: 

 

m

n

P

w




 = n

m

P

w




. 

 

That is intrinsically based in the fact that here one is dealing with only differential relations 

between forces and displacements, so the second series of relations must have the same content as 

the first. Mathematically, the agreement emerges from the following theorem: 

 

 If the series of relations exist between two groups of independent variables P and w: 

 

m

n

P

w




 = n

m

P

w




 

then the series of relations (“its inverse”): 

 

m

n

w

P




 = n

m

w

P




 

must also exist. 

 

 The proof of that theorem is simple, and its foundations were given already in the foregoing 

sections: It follows from the first series that Pm must be the partial differential quotient of a function 

A with respect to wm : After a partial integration, A = P dw  will imply that B = wdP  must 
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be a complete integral, so wm is the partial differential quotient of B with respect to Pm . A repeated 

differentiation will then give the second series. 

 Just as Maxwell’s theorem also has its extension, Betti’s theorem has only a formal 

counterpart. One finds the generalized form of that theorem to arbitrary laws of deformation in the 

following way: 

 One can consider the displacements w to be functions of certain parameters u : 

 

(25) wm = fm (u1, …, ui, uk, …) . 

 

Each of those parameters ui characterizes a certain displacement state that can be thought of having 

been created by a group of forces Pi. Now, it follows from the first variational principle that: 

 

i i

A w
P

u u

  
−  

  
  = 0 , 

k k

A w
P

u u

  
−  

  
  = 0 , 

 

so after repeated differentiations with respect to uk and ui : 

 

k i

w
P

u u

  
 

  
  = 

i k

w
P

u u

  
 

  
  . 

 

 If one performs the differentiation then after dropping the equal terms on both sides, one will 

get: 

(26)  
k i

P w

u u

  
 

  
  = 

i k

P w

u u

  
 

  
  . 

 

 That is the first form of the generalized Betti theorem. If the displacements w themselves were 

chosen to be the parameters then that would immediately give the counterpart to Maxwell’s 

theorem [equation (4)] since only the forces Pi remain on the left-hand side and only Pk remain on 

the right, while all of the remaining forces will drop out. 

 In order to derive the extended counterpart, one considers the forces P to be functions of certain 

parameters R, so: 

 

(27) Pm = m (R1, …, Ri, Rk, …) . 

 

 Each of those parameters Ri characterizes a certain state of loading that is associated with a 

group of displacements wi. It then follows from the second variational principle that: 
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i i

B P
w

R R

  
−  

  
  = 0 , 

k k

B P
w

R R

  
−  

  
  = 0 , 

and then: 

(26)  
i k

P w

R R

  
 

  
  =  

k i

P w

R R

  
 

  
  

 

will be the second form of the generalized Betti theorem, which corresponds completely to the 

above. If one chooses the P themselves to be parameters then the extended Maxwell theorem 

[equation (14)] will follow directly since only wi remains on the left-hand side, while only wk 

remains on the right, and all remaining displacements will drop out. 

 The two forms of Betti’s theorem differ only by the meaning that one attributes to the 

parameters. Mathematically, that difference is irrelevant, and therefore both forms say the same 

thing, in essence. Naturally, in the applications, one will find it convenient to either make the w 

take the form of linear functions of the u or make the P linear functions of the R. 

 If one uses Hooke’s law of deformation as a basis then the agreement between the two forms 

will become especially clear. That is because due to the law of superposition, the displacements, 

as well as the forces, will be linear functions of the parameters, which will then give: 

 

m

i

P

u




 = Pmi , 

m

i

P

R




 = Pmi , 

m

i

w

u




 = wmi , 

m

i

w

R




 = wmi , 

 

in which the first index gives the point of application of the force or the location of the 

displacement, while the second one characterizes the group of forces or displacements. It will then 

follow from (27), as well as (28), that: 

 

(29) ( )mi mkP w  = ( )mk miP w , 

 

or: The virtual work done by the forces in the loading state i as a result of the displacement state k 

is equal to the virtual work done by the forces in the loading state k as a result of the displacement 

state i. 

 

____________ 

 


