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On thework done by deformation in elastic systems

By Prof.LUIGI DONATI

(Read at the session on 29 April 1888)

Translated by D. H. Delphenich

The goal of this note is mainly concerned with son@pgsitions in regard to the
internal work that is developed under the deformatioelastic bodies, which is then
called theprinciple of elasticityor thetheorem of minimum worthat was given by
Menabrea, and the theorem of Castigliano that ic@woed with thederivative of the
work, with the aim of shedding some light on the signifeand scope of some general
principles from the theory of elasticity. In thagard, it does not seem that one finds the
requisite clarity and uniformity of ideas, although fh®positions are, in themselves,
already common and in frequent use in the applicationsciafigein the science of
constructions, and the argument that one finds is tteateat least touched upon, more
or less directly in many publications. Other than werk of MENABREA () and
CASTIGLIANO (%, it would be enough for me to cite the work of ProERRUTI ()
and Prof. CANEVAZZI f), in which, as in the present writing, one considess th
argument from the viewpoint of the theory of elasticeptiils. At any rate, | believe that
the following considerations can turn out to be not elytiuseless, if only because of the
form by which the question is treated in its more gdraspect.

Let %, y, z denote the orthogonal Cartesian coordinates of tha&spof a body or
system under consideration (in which one always suppbsg¢shetemperature is kept
constany in its original state, which is denoted 8y, in which it is not subject to any
external force, so it will be found in its natural caimeh of equilibrium, and let:

X+U, y+v, z+w

be the coordinates of the same material point in tdite S when the body is found to be
deformed under the action of external forces, and thgoaents of the displacement of

() See L. F. MENABREA, “Nouveau principe sur la distribatides tensions dans les systémes
élastiques,” Comptes rendd6 (1858), and also by the same author: “Etude de Statique physipoea
Bros., Turin and Florence, 1868, aBdlla determinazione delle tensioni e delle pressioni neingiste
elastici Roma, 1875.

(®) See A. CASTIGLIANO,Theorie de I'équilibre des systémes élastiquasin, 1879, and other
papers.

() V. CERRUTI, “Sopra un teorema del Sig. Menabrea,l détla R. Accad. die Lincei (2 (1875).

(") S. CANEVAZZI, Sulla teoria delle travatureBologna, 1886.
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the point &, y, 2) are denoted, as usual, byv, w, which are supposed to continuous
functions of the coordinates and small enough in magnitiuaethey can be treated as
differentials in the calculations. Then &tb, c, f, g, h denote the six components of the
deformations in the neighborhood of the poigty( 2):

X oy’ 0z’
(1)
f:a_vv+a_v, :%+6_VV, h:@+@.
dy 0 0z 0x ox ay

For simplicity, always suppose that the v, w represent relative displacements,
except for a general motion of the body that one dgas rigid, or that is the same when
referred to a system of axes that are fixed in the bathder those conditions, thev, w
will be determined completely by means of the valueh®atb, ..., h, which are given
at all points of the body, and which one supposes to foongruent syster(l), by
which, we mean a system of admissible values — vies timat can effectively represent
the components of possible deformatioof the body when it is considered in its totality.
One knows that in order for that to be true, its valmesst satisfy six equations at all
points of the body that represent the necessary anatisoff conditions for agiven
system of six functiong, b, ..., hto be able to satisfy (1).

Let X«, Yx, ... denote the components of #teessesto use KIRCHHOFF’s notation,
in whichX,, Yn, Z, generally represent the components along the axée ainit tension
that is exerted upon a planar element with normalFinally, letX, Y, Z denote the
components of the external force that acts upon theses of the elements of the body
per unit mass, lep be the density, and lét, M, N denote the components of the unit
external force that is applied to the surface of thetybo

Let 7 denote the (connected) space that is occupied by the aondyeto denote its
bounding surface, whose interior normal will be denoted,l@nd letdu, dv, dw denote
the infinitesimal variations of the, v, w that correspond to artual displacement of the
points of the body after it has been deformed. By &kvmwn transformation [keeping
(1) in mind, along with the known relatioXs= Yy, X,= Zy, Y.= Z,], one will have:

[axx 9% axzj s

ox dy 0z
oy, oY, aY [X,cos(hx)+ X, cosfy) X cosfiz u
'[ +(GX+ ay+62j ov +'[ +[Y, cos(nx)+--- B
X y z +[Z, cos(nx)+:-- oW

0z, 0Z, 0z
+ X+ +—2 | ow
ox ody 0z

=~ [{X,0a+Y,0b+-+ X P d.

(") Translator: I. e., a compatible infinitesimal strai
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Set:

F= 6XX+0Xy+6XZ,

ox o0y 0z

oy,

) G:an+ y+6YZ’

ox dy 0z

Y = azX+62y+azzl

ox 09y 0z

If one takes into account the relations:

Xn = Xx cos (1X) + Xy cos (1y) + X, cos (2),
3) Yn =Y COS OX) + ...,

Zn=27xCOS (X + ...

then the formula above can be written more briefty a

(4) J'T{F5u+Gc5v+ HOW clr+ﬁ Xdu YO w ZOotw d
=~ [{X,0a+Y,0b+-+ X P d.

Along with that, one has the other analogous eguoati

(4.9) J’T{u5F+vch+ wo H dr+j;{ WX+VY+ W E d
== [{adX, +bdY,++ W X} d.

In addition, the same process will yield:

(5) [{FurGvr HW d+[{ X u Y v Zlwd
:_'[T{an+Y)/ b+ X b d,
and more generally:

(6) [{FU+GV+HW d+[f X u+ YW ZW o
== [{X,@+Y, Bt X B o,

in which the primed quantities refer to any othetessS".
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As one knows, the right-hand side of (4) represergsvitiual work done by the
internal forces, where the left-hand side provides atoamed expression for that work.
Suppose that in the staBethe body is found to be deformed and in equilibrium uticer
action of external forces, whose corresponding vinwgak is expressed by:

[{o(Xou+Yow z5w} d+[{ B M w N} d.

If one sums the two works and equates the sum to teen, from LAGRANGE's
principle, one will have the general equation afigorium:

j{(pX+F)5u+(pY+ QIw(pZ+ HI W at+j{( X o u--} d=0,

which must be verified for and, dv, ow). If one then sets the coefficient equal to zero
then one will have:
(7) pX+F=0, pY+G=0, pZ+H=0

at the interior points, which are the known indidinequations of equilibrium, from
which, one can pass to the equations of motiorepiacingo X, oY, p Z with:

d?u d?v d®w
X——, Y—|, Z- ,

respectively, which include not only the exterraickes, but also thrces of inertiathat
gives rise to the accelerations, and at the pammsthe surface, one will have the
equations of condition:

(7) Xn+tL=0, Y,+M=0, Z,+N=0.

The quantities=, G, H that are defined by (2) represent the componehntiseoforce
(per unit volume) that acts upon the individuahedats of the body by virtue of the state
of stress that exists in it as a result of the ltastiaction of the contiguous parts, and
which are equal and opposite to the external for@condition of equilibrium, which is
expressed by (7) (and in the condition of motionthiat force, when it is modified as was
said as a result of the accelerations). XheY,, Z, will then be the components of the
stresses that are exerted upon the surface obtheftom the inside, which are equal and
opposite to the external force that is applied doheelement, in the sense of equations
(7). The first one, as well as the second one, sepits the elastic reaction that the
deformation creates. In what follows, | shall oftend it convenient to substitute the
aforementioned reactions in the equations in theqs where the external forces appear.
Their significance will depend solely upon the stat stress in the body, which will often
give a more intrinsic and general significance hmse relations. For linguistic
convenience, they will be denoted by the speciatenafelations (elaterii), and when
one must distinguish them, the G, H will be calledinternal elationsand theX,, Y., Z,
will be calledsurface elations.
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Starting from the known concepts upon which the notioeredfrgy is based, one
assumes that the expression:

corresponds (atonstanttemperature) to the exact variation of a function thegends
uniquely upon the state of deformation in the vicinity o thoint &, y, 2), which
represents the energy of deformation per unit volumegsoone says, thelementary
elastic potential.

In the usual way that the theory is presented, one supfusen the original sta®
of the body, when it is not subject to external fereed is at rest, all of the elements of
that body are found in the natural state, in such a wayatty piece of it will keep its
own form, even when they are supposed to be isolatedeamolved from the action of
the other ones. The stresses will theizd&®everywhere, anthe energy of deformation
of any individual elemenuill be zero.

For any other stat§ if one calls its energg then one will find that under those
conditions, one must have:

(8) e=g(@bcfgh),

in which gis the symbol of a homogeneous function of degree abisalways positive
and vanishes only fa=b=c=... =h = 0; i.e., in the stat& : One can then equate the
preceding expression to the variation of that functemg one will have the known
relations:

de de de
9 Xy = —, Y, = —, Xy = —,

which gives the components of the stress as lineatidunscof the components of the
deformations with the reciprocals:

(9.9) a:ﬁ, b:ﬁ, . h:ﬁ,
oX, o, oX,

in which one intends thashould represent the energy that is produced by theestress
the reciprocal quadratic form tp(a, b, ..., h).
One will then have:

Xxoa+Yydb+ ...+ X, h=3dp(@ Db, ..., h),
Xxa +Yyb +...+Xh =2¢(@ b, ...,h),

a,b,...,h
jz X,a+Yyb+ ... +X ' h,

X, d+Y, b+ + X, = w(a’ b,... H
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. e a,b,...,h
the primed quantities in the last of these refer to amoshateS’, and w( j

a,b,...n

denotes the bilinear form that is associated wit(@, b, ..., h) and ¢ (&, b, ..., h).
WhenS'is infinitely close tdS one can sed' =a + da, ..., and reduce the preceding one
to:

Xxda+Yydb+..=adX+boyy+ ...,

and from the first one, one will then have:
aoXy+badYy+ ... +hoX,=dp(a b, ..., h).

If one multiplies byd7r and integrates then one will deduce the correspondiagiar|
for whole body, which can be transformed by means whddas (4), (4), (5), (6) and
give:

0 jZ(F ou) dr+j2(xnau) cb:—ajqp(a,b,...,h) o,
(1.a) jZ(uaF)dHJZ(ua)g)cb:—djqp(a,b,...,h)dr,

D) jZ(Fu) dr+j2(xnu) % :—qup(a,b,...,h)dr,

(1) jZ(Fu')dr+j2(xnu) Vo) :—J'w(;’t:":.'mdr: jZ(F'u)dr+j2(x;u) o,

in which theZ sign indicates that one must combine the writermtwith the two
analogous terms that relate to the other two coeptsn

The first of these relations once more translétesprinciple of energy from which
we started by means of the equality of the tramséak expression for the virtual work
done by deformationd, dv, ow) for an arbitrary system with the correspondingat&on
for the energy of deformation of the whole body,evdas the following relation é)
gives a new expression for the equality for theatemm of that energy. (Il) implies the
value of the total energy of deformatibw (a, b, ..., h) dr as a function of the elations
and the displacements. Finally, the last one sgmis a law of reciprocity that refers to
the case of equilibrium, and when the elationsrapgaced with the external forces, it
will reduce to a known theorem that was given byrBE(%).

However, one can certainly say that even in tlszate of external forces, by virtue
of the connections between the various parts obbtingy, it will be found in a certain state
of mutual constriction, and what was supposedeanpiteceding is therefore not verified —
i.e., that in the stat®, the elements of the body are all in the natuedkesof zero stress.

() Cf., “Teoria dell’elasticita,” in Nuovo Cimento (2)ols. VI, VII, IX, X.
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One can seek to once more reduce the question to thedipge@ase by way of
decomposition by replacing the given body or system tth consideration of more
neighboring bodies, each of which is taken to satistyaforementioned condition and
which are coupled to each other by reciprocal streddesvever, here it is better to deal
with the more general case, which naturally includegitsie

In order to do that, observe that under the hypothlesisn the stat&/, in which one
defines the displacement, (v, w), the elements of the body are not found in the nhtura
state, so the quantities b, ..., h that are defined by (1) do not represent the absolute or
total deformation around the point, §, 2), but thenewdeformation that, by the effect of
the aforementioned system of displacements, is supesed with the one that is already
present in the stat® (which is supposed to be one of stable equilibrium). Weienf
ourselves to the considering the case in which the laséiethe same order of magnitude,
so we can replace tl®Db, ..., h with the differences a vwab -0, ..., h— 13, where the
new symbols refer to the absolute deformations, winsses would take any particle
of the bodywhen considered separatglyack to the natural state. Since, by hypothesis,
the connectivity of the body does ramtllectivelysubmit to that return to the natural state,
it will then follow that the (&, kb , ..., hy) or the (a, b, ..., h) do not constitute a
congruent systenm the sense that was described above. That obvioustyrbbeletract
from their significance with respect to the individuartpaof the body considered in
itself.

We then set:

a=a—-a, b=b-h, .., h=h-Rh
and get:
o=¢@, b, .., h), e=(ab,....,h)

for the values of the unit energy of deformation intihe statess, andS, respectively,
and:

oe ode

(Xxo = —2, (Yy)o = =2, cees
da, Y5 o,
x, = %€ v, = 9%
* oa’ Y7 op’

for the respective stresses. If one considersalation:

p@b, ..)=¢@g@+a,k+b, .., k+h

= o, b, ) +o@b, )+ A% B )
0a,
then one will have:
(8) e—e@=g¢g@hb ...)+X)a+ Mob+..+K)h,

which gives the expression for the variation of éimergy under the transition fro® to
S which can also be negative in some parts of ity band one will have:
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_xy 0@ b, oy _0@a,b,..)
(9) xx (XX)O - da ) Yx (Yx)O —ab )

for the stresses, in addition.
One will obtain the following system of relationsiin this:

[Xx = (X3o] A+ [Ye— (Yi)o] D+ ... =d¢p(a b, ...),
[Xx—= (Xdo) @ + [Yx= (Yol b+ ... =2¢(a b, ...),

D= (%Jal @ + [Ye= (R b+ .. =[X, =(X)] aH Y, =( ) d b+ ...

[xx_(xx)o]@‘l'[Yx_(Yx)O]d) =aéXx+béYy+...,
aoXx+boyy,=odp(a b, ...),

which agree with the corresponding relations that aredf@oove and differ from them
only by the terms that contain the initial stressg€3o( (Yx)o , ... that are lacking from
them.

However, if, as one usually does, one integratesdlatians over the entire body,
then transforms them with formulas (4) to (6) and nthes the elationsre all zeroin
the initial states), from the definition itself of that state, then dlltbe terms that relate
to § will disappear from the integral equations, and the reglllonce more be (1), (&),
(1, (1), which will then be valid for the more gersd case that we now consider, as
well.

Along with that, one then has the other relation:

(V) jedr—j%dr:jqa(a,b,...)dr,

which is deduced from (Bby integrating and similarly reducing, and thalt show that
whereas the variation of the energy under the itiandrom & to S can be negative for
any part of the body, as was said above, the ndarrdation will necessarily imply an
overallincreasein energy for the body as a whole. It will theava itsminimumvalue in
the states), which is generally non-zero and depends uporaheectivity of the system,

and which can be called theentor constrainedenergy. The expressiqrw(a, b,...)dr,

which represents the excess of energy in the bodagnwt is in any stat& over the
energy when it is in the stafg, can also be taken to be a measure ofdta work done
by deformatiorduring the transition fror§, to S

Along with the aforementioned equations, we addftilowing ones, which relate to
two different arbitrary statesi(b, ...), @ + Aa, b + Ab, ...), and from the preceding, its
deduction will present no difficulties:

) jZ(FAu)dr+j2(anu) cb:—qup(a,b,...) dr+j¢(Aa,A h...)d,
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(V.a) jZ(AF u) dr+j2(uA>g) W= —qua(a, b,...) dr+j¢(AaA h...)d,
(V1) jZ(AFAu)dr+j2(A><nAu) cb:—zjqo(Aa,Ab,...)dr.

One returns from (V), (\&) to (1), (l.a) by supposing that the states are infinitely close
[with the caveat thap (Aa, Ab, ...) reduces to a second-order quantity whanAb, ...

get smaller], and one returns to (II) from (VI) bypposing that the first state coincides
with § . One should note that @), along with (Ia), preserves its significance and also
persists for anon-congruent systewf variations fa, Ab, ...) or (&, d, ...), which is
easy to believe if one recalls the manner by whiolas deduced. One would like to say
that they are also applicable to a variation ofitftevidual parts of the body, when they
are regarded as independent, and such that theydwuat result in a possible
deformation of that body as a whole.

Finally, observe that all of those equations (Il &/1) can also be valid in the case of
complex systems that are composed of neighboring.padence, one will not see any
sliding between the separation surfaces, or evemdf does, if the opposing surface
tensions or elations prove to be normal to theaserfwhich can always happen when
one ignores friction) then the parts of the intégthat relate to those surfaces will cancel
in the results, and it would be as if no separasiagaces existed and one were dealing
with continuous systems.

One infers the proof of theniquenes®f the system of displacements ¢, w) from
equation (VI), which will bring about equilibriumith the given external forces, or in our
other way of interpreting things, they will develejations. It is enough to observe that if
one supposes that all of thé, AX, are equal to zero and one consequently annuls the

left-hand side of that equation then one must aisioul jw(Aa,Ab,...)dr. That will

imply that one hag (Aa, Ab, ...) = 0 and thereforAa = Ab = ... = 0 at all points of the
body. Therefore, there will be just onengruentsystem &, b, ..., h) and thus just one
system (), v, w) that corresponds to the given elations. The ems®is also true, and the
value of the resulting elations are determined detaly when one is givera(b, ..., h)

or (u, v, w), independently of the stress conditions that exigtethe state $to begin
with, which is a consequence of the fact that thecglatare all zero in that state.

It then follows that one has a unique correspocelebetween elations and
displacements, in such a way that if one is givea of them then the other one will
prove to be determined completely, and in that esemge can say that the elations are
functions of the displacements avide versa In addition, they are homogeneous linear
functions, which will be obvious if one supposestttine displacements vary with a given
ratio that is the same for all of them, while thetiens all vary in that same ratio.

The work done by deformation of the body undertthasition fromS, to S when it

is given as above or else b'W(a, b,...)dr, will present itself analogously as a

homogeneous function of degree two of the syseem, (..., h) of the components of the
deformation. Therefore, it will be completely detned when one is given tleeb, ...,

h at all points of the body and by takiagb, ... to be equal t&a, kb, ..., respectively,
everywhere, wherk is an arbitrary number, then it will vary by thatio 1 tok®.
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If one is given that the systena, (b, ..., h) is congruent— i.e., one treats a
deformation of the body that is actuappssible— then that work done by deformation
can also be obviously regarded as a function of the depkact (, v, w) by means of
which the &, b, ..., h) are determined completely, and as such, it will also be
homogeneous of degree two. Moreover, it is by virtue & #iorementioned
correspondence between displacements and elations wilitfollow that the work can
also be considered to be a function of the elatitwvas s similarly homogeneous of
degree two. Hence, if one starts with (II) and regards$=th.., X,, ... in the left-hand
side as functions of the displacementsyioe versathen one will have that work as a
function of the displacements or elations, respegtivel

The ternfunctionis used here in a sense that corresponds to an extefhsienusual
concept, in the sense ofgaantity that depends upon all of the values that one or more
functions take in the given regioand that will be specified by the name dtiaction of
the region for the sake of clarity. We will then say thaé th v, w that relate to a well-
defined point are functions of the region of the inteamal surface elations, and that are,
by and large, functions of the positions of the point®coordinates and functions of the
region of the elations. The same thing will be trueveeosely for the elations with
respect to the displacements.

Such an extension of the concept of a function was takder consideration in some
recent work by Prof. VOLTERRA'Y, who made it the subject of some interesting
studies. It is also convenient for our own purposes to reake brief observations in
regard to that type of function, especially as far ttedgte to the way by which one can
hope to extend derivation to them.

Say that a function of a regionasntinuousif giving variations to the function or to
functions that it depends upon that are arbitrary, bwedoin absolute value than a
numberk, means that the corresponding variation of that fanatan be made less than
any given quantity by reducirlg

Therefore, suppose that a continuous functiotinat depends upon the functigns
given in the fieldew and consider a portioa@, of the region that defines a neighborhood
of a pointp. Imagine that is given a continuous variatiohé inside of ay that is
everywhere of equal sign and lower in absolute value tmraberk. If A® is the
corresponding variation @b and one sets:

jAEdwz £

then as long as there exists a well-defined, finité lithe ratio:

a0
&

() V. VOLTERRA, “Sopra le funzioni che dipendono da altrezioni,” Rendiconti della R. Accad.
dei Lincei, vol. 111, fasc. 4, 1887.
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for all of the possible variationsé ask anda, tend to zero, we shall say, with Volterra,
that the limit in question represents therivative of® at the point p That derivative,
which | shall also call thderivative in the regiopwill depend upon the position pfand
the values of, so it will be a function of the region gfand a function of the position of
the point.

For a function® that depends upon several functions, one can speak iartigevgay
of its partial derivatives of the region with respecé&ah of them.

That definition of the derivative in the region agredé#the one that one arrives at,
as we do here, from much simpler viewpoint that comsisregarding a function in the
region as thdéimit of a function of a finite number of variables. Givea tontinuity of
®, as above, imagine that the regianis divided into a large number of parts and
assume that asincreases and with a convenient distribution of thesparte can arrange
that in each partg, where ¢ is not constantly equal to zero, it has the same sign
everywhere, and itescillation (or the difference between the maximum and minimum)
proves to be less than a given numkerIf one now supposes that one replaces the

variable valuef everywhere with its mean valu?%, which is given by:
§w,=[ édm,

and lets®; denote the modified values that will result for tlmmction ® then the
difference® — ®; can be made less than any given quantity by decrekseg well as
increasingn. One will then be led to regad as the limit asn becomes infinite of a
function of then quantitiesé,, &, ..., &, ..., &, or even betted, A2, ..., Ap, ..., /A,
which result from them by multiplying them by the respecpertions of the region:

A= & @, = L}pfdw.

If one regardsb as a function ofl;, A2, ..., in that way, and takes its derivative with
respect to anyl, then, as is easy to see, that limit will reduce ® dlerivative in the
region that was defined above. In substance, it repeske limit of the ratio of the
variation of the® that corresponds to the variationoihside of a small regiooy, to the
mean of the latter variation multiplied by the volumg of the region considered, so it
will give theamount so to speak, of the variation §fnside a, .

The complete variation of corresponds to an infinitesimal variatia¥d of the
function £ in all of the region, so it will present itself dgetlimit of the variation of a
function of a finite number of variables:

. 0P . 0P -
oD =lim 2675Ap = I|m2675§(pmp,
p p

in which @') denotes simply the derivative in the region. One théh have:
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&b = j(cb')afdw,

which will coincide, in substance, with the expiesaghat VOLTERRA found by using a
more rigorous analysis. Conversely, if the expoesd®d has the form:

&D:jeafdw

then one can conclude that:
6= (@").

The same line of reasoning can be extended tadke of a function that depends
upon more functions that are given in one or meggons. For example, one of them
might be the work done by deformation, when regdrades a function of the
displacements or as a function of the interior sundace elations. We would like to refer
these brief considerations to the latter preciselyije making no pretense of rigor with
respect to the analytical question that one corsithegeneral.

We then commence with our application of the fatteCASTIGLIANO’s theorem in
regard to the derivative of work. In order to doatt observe that from the
aforementioned double dependency of the work dgnddformation, the two different
expressions for its variations that one infers fr@jrand (Ia) will match. The former
regards the elations as functions of the displacésrend gives the variation of the work
when it is considered to be a function of the dispments, while the latter regards the
displacements as functions of the elations andsgilwe variation of that work when it is
considered to be a function of the elations. Fthenforms of those expressions, if one
remembers what was said above then one will medawbnclude directly that:

The derivatives in the region of the work done by deformation with atespehe
displacements, when that work is given as a function of the displacearen¢gjual and
opposite to the corresponding elations at any point of the interior and th&csuiand
the derivatives in the region of that work with respect to theoglatiwhen given as a
function of the elations, are equal and opposite to the displacements.

Refer to an elementary portia@n, of the volume or the surface of the body, and note
that the produce of the elations (unit force) wghwill represent the effective forces that
are exerted upon the element considered. It wiklear from what was said before that
the same proposition can be stated by saying ffa: derivatives of the work with
respect to the displacements of the element wi# gineeffective elationshat act upon it,
and the derivative with respect to thective elationsvill give the displacements. The
statement is then brought back to ordinary demrestiand can also be applied to the case
of finite forces that act upon its points (limitirgase of the forces whose actions are
concentrated in a restricted region), such as, wlen one treats a deformed body under
the action of external forces that are applied ¢édi-defined points of its surface.

Therefore, suppose that the volume and surfatkeobody are divided into as many
elementary portions, and from now on let the commgmbol 7 denote any one of the
components of the effective elations that relatth&interior or surface of each portion,
and letu denote any one of the components of the displasemeOne can write the
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expression for twice the work done by deformation tias$ given by (II) more simply in
the form:
- 2 lndl,

in which the symboE now means that, along with the sum over the thregpooents, it
now denotes the sum over all elementary parts of tHeme and surface, which
generally replaces the integration symbol, and thdoaes to a finite humber of terms
when then vanish everywhere, except for isolated points where thestpreceding
statements have a finite value. The two expressimnthé variations of that work that
are given by (1), (B) will then take the form:

=>nou, =X [uan],

and twice the preceding proposition [where simplyu) and® () will denote the work
done by deformation when it is given as a functionhefdisplacements or the elations,
respectively] will generally translate into the forngila

od) _
(v TR
(Vll.a) M: -u
a7

Refer to the case of equilibrium and set thoséogis equal to the external forces
with the signs changed. One will then have:

The derivatives of the work done by deformation, when given in tefnike
displacements, with respect to the displacement of the variousohs)are equal to the
external forces that are applied to those points (elements), and thatders of that
work, when given as a function of the external work, with respetiet forces that are
applied to the various points, will give the respective displacements.

That is CASTIGLIANO'’s theorem, which he proved fibve case of an articulated
system, and then generalized, with no further apsions, by supposing that any body
can be regarded as the limit of an articulatedesysivhose vertices correspond to the
molecules of the body, and the tensions in the ectimg rods correspond to the inter-
molecular forces. In addition to its generalitiye targument that was given here has the
advantage of determining the significance exactlany case. It appears from this that
when one treats the forces that are exerted upmates points, in which case, the
expression for the work will reduce to a finite ruen of terms, the statement of the
theorem will refer directly to the effective forcdsat are applied at the isolated points.
However, when one treats continuous distributiohdocces that act upon either the
volumes of the elements of the body or upon thaifases, the theorem will refer to the
forces that are exerted upon elementary portimnef the volume or surface (around the
point p that one considers) or to the unit forces thatiitsom dividing them by, .
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The consideration of the elations at the locatidrithi®@ external forces will then give that
theorem a more intrinsic character.

One can note that the first part of (VIl) basicatlypresents only the ordinary
expression for the characteristic property of the pate¥iz., potential energy) of a
system, according to which, its derivatives, when takegatnesly, will give the forces
that are developed in the system. When one regards ttt@futhat represents the work
done by deformation as the limit of a quadratic form im#e number of variables, the
other part of (Vlla) will take the form of a consequence of the first dmeyirtue of a
known property of reciprocal quadratic forms. That iscdyahow one gets the
reciprocal relations (9) and €).between the elementary deformations and the tensions

Among the more direct applications of the theoremuastion, one has the one that
serves to calculate the displacements of the pahtthe body or system when one
knows, in some way, the effective expression fomtbek as a function of the force. Let
us make an observation in regard to that.

If such an express presents itself in a finite fors \(epuld ordinarily happen in
effective problems) that treats only the forces thatagpplied to certain points then one
demand to know how one must proceed in order to calclHetalisplacement of the
other points to which no force is applied. In ordernisveer that, it is enough to observe
that the given expression must be considered, in arg; tasbe a descendent of the

general forc&%Z[n u] when the () are functions of therf), in which all of the terms

that relate to the parts of the body that do notdeglapplied forces disappear, insofar as
the corresponding will be equal to zero. For the calculation of theptacements, one
must, as a rule, intend the derivation that one appliesetan the general expression and
then set they equal to zero at the stated points. However, iteigrahat (except for the
point p at which one seeks the displacement) the resultbsilthe same as if one had
supposed that the were zero at those points from the outset (whichlavoualy cancel
the terms that would cancel later on), and therefoi® @nough to derive the particular
expression that relates to the concrete case tlatomsiders. As for the poipt the
force that cannot be supposed to be zero from the onmsst be differentiated with
respect to it, so in the case where no actual forappsied top, one nonetheless agrees to
take the expression for the work that results from supgasiat along with the forces
that actually exist at the other points, one also applirearbitrary undetermined force to
p and differentiates with respect to it, after whichgajives the value aferoto that
derivative.

Finally, observe that one can easily give a more rgémxpression to the foregoing
by considering an arbitrary system of quantities (ofsdo@e order of magnitude) instead
of the displacements along the three axes of theagointhe body, by means of which
one would determine the deformation. If we preserveséime symboly) to denote this
new quantity then one will also have:

20 == Y[nu,

in which ® denotes the work done by deformation amjl fepresents the generalized
components of the internal forces that tend to vaey(h and we will then have that
those functions are linear and homogeneous in upheafd conversely. It would be
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useful to have all of the preceding relations for the geantities, and therefore, (VII),
(VIl.a), as well. Hence, when one specializes them, ongetathe various propositions
that one is wont to give by just as many particulaotéms.

We now turn to the question of the minimum of workt ttiENABREA'’s theorem
refers to.

We take into consideration the condition of equilibritor the deformed body under
the action of external forces and briefly let:

D [Xau

denote (in the notation that was adopted above) tiheaVwork that those forces do for
an arbitrary system of displacemends)( in whichX denotes any of the components of
the effective forces that act upon the elementshefliody or its surface. The general
equation of equilibrium that is given by LAGRANGE's prineipyvhen one takes the

work doneZ[X ou] by the internal forces to beda®d will take the form:
= [Xa.
If the external forces have a potential, such that:
D [Xdu ==  (P=potential energy)

then that equation will become:
D+P=0(®+P)=0.

If we let E denote the total energy of deformation and recall (iM)ich will now
take the form:
®=E-b,

then the same equation can also be written:
O(E+P)=0,

which expresses the idea that the (stable) equilibriate sbrresponds to a minimum of
the total potential energythat is represented by the sunt+ P of the energy of the
deformation and the energy of the system of extermeéfo It is included as a particular
case of the known general law of equilibrium that veamtilated by DIRICHLET.
However, if one would like to refer to the enefgwr the work done by deformation
@, when considered by themselves, then obviously one capeak sf a minimum in the
absolute sense, except in the special case in which ther@ocaexternal forces to
consider. The total energy will then reduce to justetiergy of deformation, which must
therefore be a minimum. Indeed, it has already been directly that the work done by
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deformation will be zero in such a case, and theggrérwill have its minimum value
Eo, which will depend upon only the connectivity of the syste
In the general case, one says that the valugé of ® must be a minimum that is
compatible with the imposed conditiondHowever, such a statement has too much
indeterminacy in it, and among other things, it can leadexact interpretations. Here is
briefly how the question can be posed in general iprigper terminology, in my opinion:
Starting from the stat8 of equilibrium, consider the variatiak® of the work done
by deformation for any changAd, Ab, ...), which will properly be (V), (\a) in its two
forms, with the abbreviated notation:

A® =® (Aa, Ab, ...) = D [nAd],
A® =@ (A, Ab, ...) = > [uldrq] .
It is composed of two distinct parts. One part:
® (Aa, Ab, ...) or jqa(Aa,Ab,...) dar

is common to the two expressions. It is esseptfadisitive and will reduce to a second-
order quantity whe\a, Ab, ... get smaller. From its form, that part can b#ed the
relative potential of the deformatipand its value is given by (VI):

20 (Aa, Ab, ...) == [AFAU],

and one sees that it represents the part of thrgetieat depends upon the new state of
elation that gets superimposed with the preexistimeg)

The other part, which can be positive of negativesxpressed by Z[/] Au] in the
first form and will depend upon the value of thegxisting elations in the sta In the
second form, it is represented by the expressioE[uAn], which is equivalent to the
first one by the law of reciprocity when the syst@a, Ab, ...) iscongruent

If one takes the difference betwei# and the second part, which is represented in
its two forms by:

AD +> [ Au] and  A®+) [ulr],

resp., then one will have what one calls téguced variationwhich is equal tab (Aa,
Ab, ...), and is therefore agssentially-positive quantity that will become acsel-order
quantity whema, Ab, ... get smaller. If one then equates the first-order part to Zero
an infinitesimal variationda, &, ...) then one will get back to (1), &), or:

& =~ >"[ndu] and b ==>Tudq .
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With the first of these, if one introduces the exédrforces then under the hypothesis
of the existence of a potent@lfor those forces, one will get the minimum®df+ P, as

above. However, one should note tlﬁt[n ou] can, in any case, be regarded as the

expression for an external work that is produced or a Videnelopment of the external
energy for part of the system, and therefore the egjoresvill contain only quantities
that are inherent to that system, so the reduced \ariatill have an autonomous
significance that will also persist when one ignotes external forces and the
equilibrium condition. The same thing will be true foe other form.

What was said before about the reduced variation willrgdpesignify a minimum
of the work® in the reduced sensehen one abstracts from the corresponding part of
the extrinsic energy. It will then follow, in parniar, that one has a proper minimum of
that work with respect to all changtisat do not involve the externalization of energy
That is,® will be a minimum in the stat®with respect to all of the neighboring stais
such that the transition froif to S’ is not connected with a development of external
energy. Hence, if one specializes that then onlgyefla minimum ofp (or of the energy
E) that is subordinate to the conditions:

Ynou] =0 and > [udg] =0.

Leaving aside the first one, which will yield the ordinggtential equations, we
focus more especially upon the other, while taking atcount the fact that the equation
that it refers to is true for congruent variationsyad as for non-congruent ones. As far
the congruent variations are concerned, recall thatnhgalations §) correspond to a
unique and well-defined system of displacements and thasymtgm of variationdqu)
will therefore necessarily include some variationshef ¢lations. Thus, if one supposes
that the elations are given at all points then no aggrvariation that is compatible with
those values will be possible. That will no longettioe when one treats non-congruent
variations, under which, one no longer considers atesys with the same connectivity,
but only the individual parts of them, when they are mdg@d as independent, so it will
then be possible to consider the different variecesttt correspond to the same elations;
i.e., such that all of thér are equal to zero. One can therefore no longer spethe of
displacements of the points of the body as a whoteohthe work done by deformations
being regarded as a function of the displacementsabtipes$, but simply as the sum or

integral j @(a,b,...)dr of the works that relate to the elements of theybtitht was
considered initially.

That caveat is necessary if one is to clearlythe meaning of MENABREA's
theorem, which one can state as:

The work developed under deformation of any boduthe action of given external
forces is a minimum.

Therefore, if one intends that the external for@@selations)should be given at all
points (while keeping the value akerofor the points where no force is applied) then no
system @u) would be possible, and there would be no sensaying that the work is a
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minimum that iscompatible with the given valueahere one does not consider, more
generally, the non-congruent variations either, jusistagement that was made just now.
More explicitly, the theorem will then say that:

Given elations correspond to just one well-defined system of digmadcs(u), i.e.,
just one congruent systefa, b, ..., h), which is the one for which the work done by
deformation is a minimum with respect to the varied values that rigsuft any non-
congruent variatior(da, &, ..., &) that leaves the elations unchanged.

The consideration of non-congruent variations reptesamabstract process in which
one regards deformations that are not actually possibleerefore, when one does not
regardall of the elations as being given — i.e., one does ketdl of thedr; to be zero —

while maintaining only the general conditioE[qu]z 0, it is enough to consider

congruent variations, or possible displacemed ¢f the points of the system. From
the law of reciprocity, that condition will be equieat to the other oneZ[n ou] =0,

and one will get back to the usual equations of energy. Wbdarms differ only with
respect to the analytical process of application, @nehich refers to theu) and the
variables in the function that represents the wotkleathe other one refers to the)(

At any rate, in the final analysis, everything is themsarized by the tendency to
the minimum of the potential energy, which rules thanner by which the state of
tension is transmitted and equilibrated across elabtdies (like an physical
phenomenon, in general) and can be intended to reptasgontinciple of elasticity in the
broadest sense. One finds an application of that ifaittethat one can determine the
modality of the state that corresponds to the specialimistances on the basis of the
minimum condition, in any case.

Frequent examples of the practical utility are encaedteabove all, in the science of
constructions, where one then arrives, often along plsipath, at a knowledge of the
elements that relative to a system that is composesglastic materials, which would
remain undetermined if one did not take elasticity intcoaat. As one of the simpler
and more interesting examples, we cite the one thainserned with the determination
of the tensions in the supernumerary rods in articdilaystem, which is also the one in
which the discussion that related to MENABREA's th@orgas mainly rooted. Without
entering into the details or repeating the well-knovarysof that discussion, recall only
that CERRUTI showed, in the cited paper, how the treatnoé the problem of
articulated systems could be made much simpler by an apphioof the theorem of the
elastic potential, while adding that the theorem of mimmwork, when taken in its full
generality, would be nothing but that theorem of the ga@tienTo that end, it would be
enough for me to recall the preceding observations. Oothee hand, as we said before,
CASTIGLIANO established the theorem of the derivatiyetree work for articulated
systems, from which, one can deduce the theorem anitienum as a corollary.

The preceding considerations are general, and also intfledease otonstrained
systemswhich is a name that is meant to referetdernal constraints that give rise to
external forces, and are distinct from the connectithad result from the internal
structure of the system, which have already been takeraggount expressly. We now
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conclude precisely by showing how one can treat the guestithe determination of the
unknown forces that represent tiesistance of the linki& those systems in general with
the principles that were presented.

In general, such links consist of a certain numbeelations that must be satisfied at
the points of the system, and their effect, as is know to translate to those points
everything that is implied by the introduction of new fareehose values depend upon
the undetermined quantities, whose number is equal toutder of those conditions,
and one can always make the dependénegr.

Hence, consider the totality gfven forces, which are also denoted by the symbol
(X), and the new ones that depend upon the links, which widkbeted byX’), and the
deformed system that is equilibrated under their colleciistion. One can then regard
the displacementsi) of the points of the system as functions of &l fbrces X) and )
or of the corresponding elationg)(@nd ¢7”). As one says, the value ot’() or (") will
depend linearly upon the undetermined quantities, which areatebgt() and which
are as numerous as the conditions. Therefore, suppas¢heliteral expressions are
known as functions of theg{ and ¢7”). Replace theuj that are implied in the condition
equations with the values af)(that would result from the equations that would contain
the (1) by means of ther(”), and since the equations are as numerous asithe¢se
equations can serve to determine the (Afterwards, the 4”) or the K’) will also
remain to be determined.

That will be true independently of the manner by which @adculates the
aforementioned displacements, and therefore also whersupposes that the expression
for the work done by deformatioh is known as a function of the elationy @nd "),
since one deduces tha from that expression by differentiation as in (d)l.

However, when one treats links, properly speaking -invariable links — one can
proceed more directly, based upon the proposition that:

The derivatives of the wodk with respect to thél) are equal to zero.

One proves this immediately by observing that ¥®@ 6Or (/”), from the very nature
of forces of resistance that are developed by invariatits, Iwill satisfy, on the whole,

the condition_[7'ul = 0, D [1'du] = 0, from which, it will also result that:

3 [udn] =0.

If one supposes that thg’() are expressed in terms of th® that they depend upon then
one will have:

on’= Z%—ZJA.

If one substitutes that in the preceding relation thenl take the form:

D AA=0,
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in whichX = Zu %—Z and one will then have, in general (\&l.u=-0® /07, so:

oban' _ 0P

T “ogar oA

Now, the preceding equation must persist for ahywhich will demand that thA are
all equal to zero. One will then have:

0d

— =0

0A

for each of theA), which we wished to show.
The () can themselves be considered to be forces, andinttisat sense that the
preceding proposition can also be stated by saying that:

The derivatives of the work done by deformation with respect tiotbes that are
developed by the links are equal to zero.

We then have as many equations as the numben)oto( be determined, and
therefore, from what was said, it is clear that thegeations are linear, so one sees that
the solution to the problem of the search for the unkneesistances is unique and well-
determined.

Now, observe that from the last proposition, onealeeady conclude with no further
analysis that the development of the resistancescaitie about in such a way that the
work done by deformation that result for each part bala minimum. However, it is
easy to see how that follows directly from what wased above.

Indeed, recall the general conditi@[u on] = 0 that related to the minimum, which
splits off the ) from the ¢’) here, by writing:

D [udn] +> udg] =0.

Note that this will be satisfied if one supposes thato&lthe () are invariant that
correspond to the given — active— forces, while one can vary thg’( in any way. All
of the (0n) will then be annulled, so the first sum will vanishile the second one will
also be equal to zero from the characteristic propErtgsistance that was noted above.
It will then result that the workd in the stateS of equilibrium will be a minimum with
respect to any neighboring st&éthat corresponds to a variation of the forces that ar
developed by the links or resistances, while the actikeefowill remain invariant, and
the value of that resistaneall be determined by the condition that renders a minimum
for the work®.

With that, one can then suppose thais given as a function of theg and the §’),
and that the latter depend upon thg (The search for the minimum & will then lead
back to the equations:
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which will serve to determine the unknown resistancesbave.
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