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The visviva integral in thermodynamics
By P. DUHEM

Translated by D. H. Delphenich

|. — Some systems that admit & s viva integral.

In this article, which is a continuation of our “Comrtare aux principes de la
Thermodynamique”'j and our memoir that was entitled “Théorie thermadyiyue de
la viscosité, du frottement et des faux équilibres chimiq@e”we propose to study a
system whose various parts are at different temperatutasorder to simplify the
notation, we suppose that there exist only two such panish we denote by the indices
1 and 2, but the proof that we carry out will be compjeitalependent of the number of
these parts.

Part 1 will have an absolute temperattie In addition, it will defined by thaormal
variablesa, £, ..., A1. As we have always done in questions of this type, \senas

that if only T; varies thenm, £, ..., A1 will keep invariable values, while the various
material elements that comprise part 1 will remaimaonbile.

Likewise, part 2 will be defined to have a temperaifurand the normal variables,

By ooy Mo

We suppose thatbilateral constraints:
M oa, +---+P oA, +Mda ,+---+ P, ,=0,

(1) e
M) da,+--+Pa,+Mda ,+--+Ps,=0

exist between these two parts, in which the coefficisats ..., P',M/}, ..., P/ are
functions of the variables;, ..., A1, @, ..., A2, but notTy, Tz

The internal thermodynamic potential of the syshasithe form:
(2) F= ~7:1(0'1’:811-"'/]11T1)+~7:2(02':82v-- A 2'T2)+ EW @'l’ 1 A 14 2’8 2 4 2

F1 is the internal thermodynamic potential of part Iystdered in isolation.

() Journal de Mathématiques pures et appliquéed (#892), 2699 (1893), 29210 (1894), 203.

() Mémoires de la Société des Sciences physiques et lfestute Bordeaux (52 (1896). Paris (A.
Hermann), 1896.
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F2 is the internal thermodynamic potential of part 2)stdered in isolation.
EW is the potential for the interaction between bodiasd 2.

The conditions (1) give therelations:

M{ @i+ + PIA+ Moal+ -+ PAL=0,

(3) e,
M;a;+--+PA+M3a',+-+PA,=0

between the velocitiea;, G;, .... A, a,, G5, ..., A,
Suppose that the system is devoid of any viscosity and friction; we will then have:

Al——(}“+EqJ l)—ga—zﬂ'l M+ +M*M) =0,
oa, dt 0o,
(B) e e
Ll——(]-“+El4J T)—EG—TH‘I M+ +M*M ) =0,
oA dt 04,
AZ——(}“ +EW- E)—ga—zH'IM +.-+M*MJ =0,
oa, dt oa,
(o0 | ) S PR PPPT
(]—" +EWY - E)—EG—EH‘IM +-+MN*MS =0
dt 04,

for the equations of motion of the syste (
In these equations:

T is thevis viva of the system.

A4, ..., L; are the actions that the foreign bodies exert uperbody 1.

A, ..., Ly are the actions that the foreign bodies exert uperbody 2.
Finally,

Mt n2 ..., N*are quantities that depend upon:

. Al, Ty, a, ..., Az, T,
a, ... A, ay, ... Ay,
but not €) the quantities:

() “Commentaire aux principes de la Thermodynamique,” RarChapter Ill, no. 7, Journal de
Mathématiques pures et appliquéesl@j1894), 255.

() For a proof of this point, see “Théorie thermodyrgumei de la viscosité, du frottement et des faux
équilibres chimiques, Part I, Chapter I, § 4.
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n n n n
a, LA, ay, A

The number of equations of motion (3), (4), (4, cont(his+ n, + k), if n; denotes the
number of normal variables, £, ..., A1, andn, denotes the number of normal variables

o, ,32, ...,/]2.
On the other hand, we have to determine:

the fy + 1) variablesr, £, ..., A1, Ty,
the f, + 1) variablesy, £, ..., A2, Ty,
thek auxiliary variable$14, My, ..., My,

as functions of time
Hence, there ar@{+ n, + k + 2) variables, in all.
One then has the following proposition:

The number of equations that thermodynamics provides in order to determine the
motion of a systemisless than the number of variables that it takes to determine all of the
units in the system of the parts that are susceptible to being brought to different
temperatures.

In order to complete the formulation of the dynamical problem in terms of equations,
one must include a number of supplementary relations that are equal in number to those
parts, along with the hypotheses that are foreign to thermodynamics.

Let:
(5) 6. =0, =0
be these supplementary relations.

Multiply both sides of equations (4) by,, 5, ..., A, and both sides of equations
(4, cont.) bya,, G,, ..., A,, respectively. Add the corresponding sides of the iesult
thus-obtained, while taking the equalities (3) into accoiie will find:

Acaj+ ...+ LA +Acant L oA

- %ai+...+%jl'+afza'2+...+%A'2 _Ed_w_d_zzo
da, oA oa, oA, d dt

Suppose that the actions that are exerted upon thensyst the bodies that are
foreign to the system depend upon a potential:

Q(O’l, ...,Al, >, ...,Az).
The preceding equality will become:

0F, dT, 07, dT,_
aT, dt AT, dt

(6) %(Q+]—"1+]-“2+EW+Z)—
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In order for the relation (6) to immediately yield a first integral (viz., aVIS VIVA
INTEGRAL) of the second-order equations (4) and (4, cont.),it is necessary and
sufficient that the expression:

9% g, + 9% g,
oT, o,

must represent the total differential of a function of a1, ..., A1, @z, ..., A2, T1, Ty, either by
itself or by virtue of the supplementary equations (5).

Il. — Some classical systems.

The functionF; depends upon only the variables £, ..., A1, T1; the functionF;
depends upon only the variables 5, ..., A2, T2. In order for the expression:
0F, 0F,

—LdT, +—=2dT,
0T, 0T,

to be a total differential in its own right, it iseessary and sufficient th%]il must be a
1

function of only the variabl&; and thatg_jl_:2 must be a function of only the variallg.
2

Therefore:

In order for a system that is subject to external actions that are derived from a
potential to admit a vis viva integral, no matter what form the supplementary relations
might take, it is necessary and sufficient that one must have:

@ { F@y o AT =G EY (@A),

Fol@pse s A To) = G,(T)+ BY @ .. A )

We give the name oflassical systems to the systems for which the equalities (7) are
verified and which are devoid of any viscosity or friction

We shall give an example of such a system; that pleawmill justify the terminology
of classical system that we have attributed to them.

Imagine an arbitrary number of bodies ¢, ¢, ... that all have the same

temperaturel;, which varies from one instant to another. Supposedael of these
bodies is an invariable solid whose state is invariableept for temperature. The
internal thermodynamic potential of each of them faraction of only the temperature;
let g1(T1), 9,(T,), 9,(T)), ... denote the internal thermodynamic potentials of taies

n

Ci1, q, G, ...
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In order to form the partial system 1, take the bodies;, ¢, ..., and let them be

independent of each other, or even linked by bilateral comstraith neither viscosity
not friction. The partial system 1 will then be ateys without viscosity or friction. If
we letm, 4, ..., A1 denote the independent variables that fix the relatiggipn of the

! y

bodiesci, ¢, ¢, ... then the internal thermodynamic potential of theiplaslystem 1
will be:
Fi(a, B, - AL T) =0u(Ta) + 0,(T)+gi(T) + ... +Egn(an, B, ..., A1),

in whichE¢a(aw, B, ..., A1) is the potential of the interactions between theidsxc,, ¢ ,

n

Cy .

That internal thermodynamic potential has the forat thas presented in the first
equality (7).

Form the partial systems 2, ... in a similar manner, ahdhkem be independent of
each other, or maybe associated by some bilateral aoristrwithout viscosity or
friction; one will obtain a classical system.

Moreover, one indeed sees that such a system, fehwame can attribute very small
dimensions to the bodies, ¢, ¢, ... of the kind that some schools attribute to

molecules, constitute just the general type of systems that @msidered in mechanics
before the recent epoch, during which thermodynamicvénae that enlarged the scope
of that science.

Let us examine the properties that thermodynamicshatid to these classical
systems. That examination is important for the fhat it informs us of the links that
unite the old mechanics with the new thermodynamics.

We have seen, first of all, that order for a classical system to admit a vis viva
integral, it is necessary and sufficient that it must be subject to external actions that are
derived from a potential Q.

Indeed, letGi(Ty), Gx(T2), ... denote the functions that are defined by the equalitie

dGl(Tl) — gl(Tl)a dGZ(TZ) - g2(T2),

8
(®) dT, dT,

By virtue of the equalities (7) and (8), the eqwya(6) will become:

9) %(Q+f1+fz—gl—gz+E‘P+T)=0,
or then again:
(10 LR +EW gt w) +T] =0

We then apply this last formula to the example lté tlassical system that we just
defined.
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In that caseE(¢a + ¢» + W) will be the potential of all the actions that besk,, c,

n n

¢, ..., Cy C,, C,, ... €xert upon each other. The equality (10) will thenl lEathe
foIIowmg proposmon for such a system:

The sum of the vis viva, the potential of the external actions, and the potential of the
internal actions will remain invariable under any motion of the system.

One recovers the statement of this viva theorem as it is given in classical
mechanics.
The internal energy of a system is given, in general, by the formula:

eu=r-1, % _1,9%
o, T,

By virtue of equalities (2) and (7), this equality will become

dg, (T, dg, (T
(11) EU=E (¢ + ¢+ W) + Gu(Ty) -T2 S8 4 gy 1, 9T
dT, dT,
for a classical system. Set:
dg, (T, dg, (T
(12) EA (To. To) = Gu(T) - T, 390 | g1y -1, 9%(T2).
dT, dT,
so the preceding equality will become:
(13) U=+ +P+A(T, T).

By virtue of equalities (7) and (11), equations &hd (4, cont.) will take the following
form, which will thus constitute an acceptable fofon the equations of motion of a
classical system:

A-2EU-0)-3 9% L pivisenimE =0,
da, dt 0

1

7 Y OO ,

Ll—i(EU _g)_ia_z’.;.nlpll.;-....;-nkp)lk =0,
0A dt 94,




Duhem — Thevisviva integral in thermodynamics 7

A - g (EU —E)—E:?+H1M§+~-+H"M'§=O,
2 2
(L4, CONL) 0 e .
Lz—ai(EU —z)—%%mlgwmmkp;:o.
2

In the equations of motion of a classical system, one can substitute the product of the
internal energy with the mechanical equivalent of heat for the internal thermodynamic
potential of the system.

We have already pointed od) hat the equations of motion of the system that one
studies in mechanics can be put into the form (14) and (4).co

The caloric coefficients of a system with bilatenstraints are given by the
equalities 9):
E ou 0% d 0%

-A-M'M;-----M*M =ER,,

oa, aa dt oa;
(15) Eau GT d 0% LT Pl . P"—ERA,
04, a)l dt a)l
eV - Ec,
oT,

By virtue of equalities (11), (14), (14, conthese equalities become:

(16) R,=0, ... R.=0, R,=0, ... R,=0,
d?G,(T)
Ec =-T —2
“=7h ar? -’
() d’G,(T,)
Ec, =-T,—22 2/,
C 2 dT?

For a classical system all of the caloric coefficients are zero, except for the caloric
capacity of each of the parts that have uniform temperature; that caloric capacity is a
function of only temperature.

We have already pointed odj the exceptional role that is played by the systémt
are characterized by the equalities in the dedinibf entropy.

() “Commentaire aux principes de la Thermodynamique,” Ra@hapter Ill, no. 4, Journal de
Mathématiques pures et appliquéesg{)892), 324.

() “Commentaire aux principes de la Thermodynamique,t RrChapter Ill, no. 8, Journal de
Mathématiques pures et appliquéesi@j1894), 324.



Duhem — Thevisviva integral in thermodynamics 8

The quantity of heatQ that the system releases during an arbitrary realrtravi
modification will have the value:

(18) d)z—(cléT1+czaT2),
or even, by virtue of equalities (12) and (17):
(19) Q== A (Ty, To).

The quantity of heat that is released by the system during an arbitrary real or virtual
modification is the total differential of a uniform function of the state of the system.

Here, the functiom\ (T, T,) plays exactly the role that the old physicists chtlee
guantity of free caloric that is contained in the system. Moreover, for ¢hplysicists,
the quantity of latent caloric that is contained in our system would be invariable.

By virtue of equalities (7), which characterize a cladssystem, the equations of
motion (4) and (4, cont.) will become:

T doT . . -
9 Ew+ s ™M+ +*ME =0,
A 0a, @+ )+ da, dtaa, ! !
(20) ettt
0T d o%
Ly B O G T TR e R <0
2
G20 o0 ] | 7 S PSP ,
T d oz ., -
9k - T 4P+ +MFPE =0,
L. oA, @+ %)+ 0, dt oA, 2 2

These equations show us, in the first place, thatderatio treat the motion of the
system that we have chosen to be an example akaichl system, one can substitute the
potential of the internal actions of each of the padystems 1 and 2 for the internal
thermodynamic potential of each of those partialesystin the equations of motion that
are provided by thermodynamics; one will then recoverwbk#-known equations of
dynamics. However, equations (20) and (20, cont.) leadctimsequence that is more
general since it applies to all classical systems:

The fy + ny) equations (20) and (20, cont.), when combined wittktbguations (3),
can be regarded as; (+ n; +K) linear equations in the{ + n, + k) unknowns:

() “Commentaire aux principes de la Thermodynamique,t RarChapter Ill, no. 6, Journal de
Mathématiques pures et appliquéesq4)893), 357.
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al, .. AL, an, .. A,
Nt n? ... .n<

These i1 + ny + K) unknowns are determined as functions of the coefiisief the
(n. + ny + K) linear equations. Now, the temperatufesT, of the various parts of the
system do not enter into any of these coefficientse d&n then state the following
proposition, in particular:

The quantitiesn®, N2 ..., M* are independent of the temperatufigs T, of the
various parts of the system.

That proposition implies the following one, in turn:

When the system being studied is a classical system, one can write the (n; + n; + K)
differential equations (3), (20),and (20, cont.)in the (n; + ny) unknown functions a(t),
., (D), ast), ..., As(t), and the k auxiliary unknown functions %, N2, ..., M in which
the temperatures of the various parts of the system do not appear. Apart from any
supplementary relation, these equations suffice to determine the laws by which the system
is displaced and modified, with the exception of the law by which the temperature of each
part of the system varies.

Once the motion of the system is known, the supplementary relations will determine
the law by which the temperature of each part varies.

One thus understands how Lagrange could develop theofawschanics of systems
that were composed of solids without concerning himseth whe variations of the
temperatures of those bodies, and Fourier treated tiegtions of the temperatures of
those solid bodies without concerning himself with tmeations. That is how one can
study the motion of the Earth, when it is assimilateda rigid solid, without being
preoccupied with the temperature of that astral bodyhamdone can study the cooling
of the terrestrial globe without being preoccupied wghmotion.

Such an independence of the problems that relate toameshfrom the problems
that relate to the theory of heat will exist only whbka systems that one deals with are
no longerclassical systems. For example, if instead of regarding the Earth agié solid
with an invariable state, one takes into account thegg®in volume, form, and physical
and chemical state that accompany its cooling then onenoalonger separate the
problem of the motion of the Earth from the problenteoffestrial cooling.

lll. — Some systems that admit avis viva integral
by virtue of supplementary relations.
When one is not dealing with a classical systemexipeession:

0F (a ,...,)ll,Tl)dT +67—"2(az,... ,)lz,Tz)dT
aT, ! oT, 2
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will no longer be a total differential. However,can happen that the supplementary
equations (5) will imply an equality of the form:

0F, dT(t) + 0F, dT,(t) _ drF(t)

(21)
aT, dt  oT, dt dt

In that case- and only in that case the system will admit &is viva integral, which will
have the form:

(22) Q+F +F +EWY +T —F(t) = const.

One can imagine an infinitude of forms for the dapgentary relations (5) for which an
equality of the form (21) is verified; we shallesome remarkable examples.
Imagine that the supplementary relations (5) impé/consequence that:

Any modification of the system being studied is adiabatic.

Since the system is devoid of viscosity, the qtamtf heat that is released by a real or
virtual modification will have the value:

Q= _(Ra15a1 oot R115A1+C15T1+ R0250'2+---+ R125A2+C9T2) '
with

(23) _ T, ¥R,
R, =—1_-*L
T E 00T,

(23, cont.) T, °R

We say that, as a result of equations (5), anymeairtual modification will be adiabatic;
i.e., that equations (5) will imply the equality:
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2 2 2
L 0% aj+---+ 07y )I1’+a}—1Tl’
E(da, 0T, 0A,0T, = 9T/
2 2 2
sl 0 ay+---+ 07 )I;+af2T; =0,
E\0a,0T, 04,0T, a1

which can be further written:

07, dT, 05, dT, _ d (105 g 0F,)
oT, dt dT, dt  dt| ‘oT, 24T,

That equality will take the form (21) if one sets:

F:T£+T af-z
'oT, Yo,

There then exists\as viva integral, which is, by virtue of the equality (22):

Q +]—“1—T1£ +]—“2—T2% +EWY + T = const.,
0T, 0T,

or rather:
Q +EU +% = const.,

which is a relation that follows immediately frometiprinciple of the conservation of
energy for an adiabatic modification that is accasfgd as a result of external actions
that are derived from a potential.

One of the forms of the complementary equations ithpty the consequences that
we have just detailed is obtained by expressing the idéadtiaof the parts that it is
composed of does not receive or give up any heat during a real modification of the
system; i.e., upon writing that one has:

R.a +...+RA+cT =0,
R, + ... +R A +c,T, =0,

or rather, by virtue of equalities (23) and (23, cont.):

dor_, dox_,

dt aT, dt aT,

These are precisely the supplementary relations tbed wtroduced by Laplace in his
theory of the propagation of sound in a mass of air.
One will further obtain a relation of the form (2Lpne takes the relations:
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for the supplementary relations, or in other wortlsne supposes that each part of the
system keeps an invariable temperature while the system is being modified. One will
then have:

F(t) =0,

and thevisviva integral (22) will take the form:
Q+F +F+EW+T =const.,

which will then be the form of thés viva integral forisothermal modifications.

One knows that this form for the supplementary refeti¢) was introduced by
Newton and the geometers of thé"IBentury in the theory of sound.

These considerations show that the questions tlae el thermodynamics will have
to come to the attention of physicists before thay loagin the study of systems other
than classical systems, and in fact, it was the thebthe propagation of sound in air
that provoked Laplace to create thermodynamics.

() On the subject of these two forms for the supplememédayions, see L. NATANSON, Zeitschrift
fur physikalische Chemi24 (1897), 302.



