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I. – Some systems that admit a vis viva integral. 
 

 In this article, which is a continuation of our “Commentaire aux principes de la 
Thermodynamique” (1) and our memoir that was entitled “Théorie thermodynamique de 
la viscosité, du frottement et des faux équilibres chimique” (2), we propose to study a 
system whose various parts are at different temperatures.  In order to simplify the 
notation, we suppose that there exist only two such parts, which we denote by the indices 
1 and 2, but the proof that we carry out will be completely independent of the number of 
these parts. 
 Part 1 will have an absolute temperature T1.  In addition, it will defined by the normal 
variables α1, β1, …, λ1.  As we have always done in questions of this type, we assume 
that if only T1 varies then α1, β1, …, λ1 will keep invariable values, while the various 
material elements that comprise part 1 will remain immobile. 
 Likewise, part 2 will be defined to have a temperature T2 and the normal variables α2, 
β2, …, λ2. 
 We suppose that k bilateral constraints: 
 

(1)   
1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

0,

.........................................................................,

0k k k k

M P M P

M P M P

δα δλ δα δλ

δα δλ δα δλ

′ ′ ′ ′+ + + + + =


 + + + + + =

⋯ ⋯

⋯ ⋯

 

 
exist between these two parts, in which the coefficients 1

jM , …, 1
jP , 2

jM , …, 2
jP  are 

functions of the variables α1, …, λ1, α2, …, λ2, but not T1, T2 . 
  The internal thermodynamic potential of the system has the form: 
 
(2)  F = 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2( , , , , ) ( , , , , ) ( , , , , , , , )T T Eα β λ α β λ α β λ α β λ+ + Ψ… … … …F F . 

 
 F1 is the internal thermodynamic potential of part 1, considered in isolation. 

                                                
 (1) Journal de Mathématiques pures et appliquées (4) 8 (1892), 269; 9 (1893), 292; 10 (1894), 203. 
 (2) Mémoires de la Société des Sciences physiques et naturelles de Bordeaux (5) 2 (1896).  Paris (A. 
Hermann), 1896. 
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 F2 is the internal thermodynamic potential of part 2, considered in isolation. 

 EΨ is the potential for the interaction between bodies 1 and 2. 
 
 The conditions (1) give the k relations: 
 

(3)   

1 1 1 1
1 1 1 1 2 2 2 2

1 1 1 1
1 1 1 1 2 2 2 2

0,

.................................................................,

0

M P M P

M P M P

α λ α λ

α λ α λ

′ ′ ′ ′ + + + + + =


 ′ ′ ′ ′+ + + + + =

⋯ ⋯

⋯ ⋯

 

 
between the velocities 1α ′ , 1β ′ , …, 1λ′ , 2α ′ , 2β ′ , …, 2λ′ . 

 Suppose that the system is devoid of any viscosity and friction; we will then have: 
 

(4)   

1 1
1 1 1 1

1 1

1 1
1 1 1 1

1 1

( ) 0,

.............................................................................................,

( ) 0,

k k

k k

d
A E M M

dt

d
L E M M

dt

α α

λ λ

∂ ∂ − + Ψ − − + Π + + Π = ′∂ ∂


 ∂ ∂
 − + Ψ − − + Π + + Π =

′∂ ∂

⋯

⋯

F

F

T
T

T
T

 

 

(4, cont.) 

1 1
2 2 2 2

2 2

1 1
2 2 2 2

2 2

( ) 0,

..............................................................................................,

( ) 0

k k

k k

d
A E M M

dt

d
L E M M

dt

α α

λ λ

∂ ∂ − + Ψ − − + Π + + Π = ′∂ ∂


 ∂ ∂
 − + Ψ − − + Π + + Π =

′∂ ∂

⋯

⋯

F

F

T
T

T
T

 

 
for the equations of motion of the system (1). 
 In these equations: 
 
 T is the vis viva of the system. 

 A1, …, L1 are the actions that the foreign bodies exert upon the body 1. 
 A2, …, L2 are the actions that the foreign bodies exert upon the body 2. 
Finally, 
 Π1, Π2, …, Πk are quantities that depend upon: 
 
 α1, …, λ1, T1,  α2, …, λ2, T2, 
 1α ′ , …, 1λ′ ,  2α ′ , …, 2λ′ , 

but not (2) the quantities: 

                                                
 (1) “Commentaire aux principes de la Thermodynamique,” Part II, Chapter III, no. 7, Journal de 
Mathématiques pures et appliquées (4) 10 (1894), 255. 
 (2) For a proof of this point, see “Théorie thermodynamique de la viscosité, du frottement et des faux 
équilibres chimiques, Part I, Chapter I, § 4. 
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1α ′′ , …, 1λ′′ , 2α ′′ , …, 2λ′′ . 
 
 The number of equations of motion (3), (4), (4, cont.) is (n1 + n2 + k), if n1 denotes the 
number of normal variables α1, β1, …, λ1, and n2 denotes the number of normal variables 
α2, β2, …, λ2 . 
 On the other hand, we have to determine: 
 
 the (n1 + 1) variables α1, β1, …, λ1, T1, 
 the (n2 + 1) variables α2, β2, …, λ2, T2, 
 the k auxiliary variables Π1, Π1, …, Π1, 
 
as functions of time t. 
 Hence, there are (n1 + n2 + k + 2) variables, in all. 
 One then has the following proposition: 
 
 The number of equations that thermodynamics provides in order to determine the 
motion of a system is less than the number of variables that it takes to determine all of the 
units in the system of the parts that are susceptible to being brought to different 
temperatures. 
 In order to complete the formulation of the dynamical problem in terms of equations, 
one must include a number of supplementary relations that are equal in number to those 
parts, along with the hypotheses that are foreign to thermodynamics. 
 
 Let: 
(5)      θ1 = 0,  θ2 = 0 
be these supplementary relations. 
 Multiply both sides of equations (4) by 1α ′ , 1β ′ , …, 1λ′ , and both sides of equations 

(4, cont.) by 2α ′ , 2β ′ , …, 2λ′ , respectively.  Add the corresponding sides of the results 

thus-obtained, while taking the equalities (3) into account.  We will find: 
 
 A1 1α ′+ … + L1 1λ′  + A2 2α ′ + … + L2 2λ′  

 − 1 1 2 2
1 1 2 2

1 1 2 2

d d
E

dt dt
α λ α λ

α λ α λ
 ∂ ∂ ∂ ∂ Ψ′ ′ ′ ′+ + + + + − − ∂ ∂ ∂ ∂ 

⋯ ⋯

F F F F T
= 0. 

 
 Suppose that the actions that are exerted upon the system by the bodies that are 
foreign to the system depend upon a potential: 
 

Ω(α1, …, λ1, α2, …, λ2). 
 
 The preceding equality will become: 
 

(6)    
d

dt
(Ω + F1 + F2 + EΨ + T) − 1 1 2 2

1 2

dT dT

T dt T dt

∂ ∂−
∂ ∂
F F

= 0. 

 



Duhem – The vis viva integral in thermodynamics 4 

 In order for the relation (6) to immediately yield a first integral (viz., a VIS VIVA 
INTEGRAL) of the second-order equations (4) and (4, cont.), it is necessary and 
sufficient that the expression: 

1 2
1 2

1 2

dT dT
T T

∂ ∂+
∂ ∂
F F

 

 
must represent the total differential of a function of α1, …, λ1, α2, …, λ2 , T1, T2, either by 
itself or by virtue of the supplementary equations (5). 
 
 

II. – Some classical systems. 
 

 The function F1 depends upon only the variables α1, β1, …, λ1, T1; the function F1 

depends upon only the variables α2, β2, …, λ2, T2 .  In order for the expression: 
 

1 2
1 2

1 2

dT dT
T T

∂ ∂+
∂ ∂
F F

 

 

to be a total differential in its own right, it is necessary and sufficient that 1

1T

∂
∂
F

 must be a 

function of only the variable T1 and that 2

2T

∂
∂
F

 must be a function of only the variable T2 .  

Therefore: 
 
 In order for a system that is subject to external actions that are derived from a 
potential to admit a vis viva integral, no matter what form the supplementary relations 
might take, it is necessary and sufficient that one must have: 
 

(7)    1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

( , , , ) ( ) ( , , ),

( , , , ) ( ) ( , , ).

T T E

T T E

α λ ψ α λ
α λ ψ α λ

= +
 = +

… …

… …

F G

F G
 

 
We give the name of classical systems to the systems for which the equalities (7) are 
verified and which are devoid of any viscosity or friction. 
 We shall give an example of such a system; that example will justify the terminology 
of classical system that we have attributed to them. 
 Imagine an arbitrary number of bodies c1, 1c′ , 1c′′ , … that all have the same 

temperature T1, which varies from one instant to another.  Suppose that each of these 
bodies is an invariable solid whose state is invariable, except for temperature.  The 
internal thermodynamic potential of each of them is a function of only the temperature; 
let g1(T1), 1 1( )g T′ , 1 1( )g T′′ , … denote the internal thermodynamic potentials of the bodies 

c1, 1c′ , 1c′′ , … 
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 In order to form the partial system 1, take the bodies c1, 1c′ , 1c′′ , …, and let them be 

independent of each other, or even linked by bilateral constraints with neither viscosity 
not friction.  The partial system 1 will then be a system without viscosity or friction.  If 
we let α1, β1, …, λ1 denote the independent variables that fix the relative position of the 
bodies c1, 1c′ , 1c′′ , … then the internal thermodynamic potential of the partial system 1 

will be: 
F1(α1, β1, …, λ1, T1) = g1(T1) + 1 1 1 1( ) ( )g T g T′ ′′+ + … + Eψ1(α1, β1, …, λ1), 

 
in which Eψ1(α1, β1, …, λ1) is the potential of the interactions between the bodies c1, 1c′ , 

1c′′ , … 

 That internal thermodynamic potential has the form that was presented in the first 
equality (7). 
 Form the partial systems 2, … in a similar manner, and let them be independent of 
each other, or maybe associated by some bilateral constraints without viscosity or 
friction; one will obtain a classical system. 
 Moreover, one indeed sees that such a system, for which one can attribute very small 
dimensions to the bodies c1, 1c′ , 1c′′ , … of the kind that some schools attribute to 

molecules, constitute just the general type of systems that one considered in mechanics 
before the recent epoch, during which thermodynamics is a venue that enlarged the scope 
of that science. 
 Let us examine the properties that thermodynamics attributed to these classical 
systems.  That examination is important for the fact that it informs us of the links that 
unite the old mechanics with the new thermodynamics. 
 We have seen, first of all, that in order for a classical system to admit a vis viva 
integral, it is necessary and sufficient that it must be subject to external actions that are 
derived from a potential Ω. 
 Indeed, let G1(T1), G2(T2), … denote the functions that are defined by the equalities: 
 

(8)    1 1

1

( )dG T

dT
 = G1(T1), 2 2

2

( )dG T

dT
 = G2(T2), … 

 
By virtue of the equalities (7) and (8), the equality (6) will become: 
 

(9)    
d

dt
(Ω + F1 + F2 − G1 − G2 + EΨ + T) = 0, 

or then again: 

(10)   
d

dt
[Ω + E (ψ1 + ψ2 + Ψ) + T] = 0. 

 
We then apply this last formula to the example of the classical system that we just 
defined. 
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 In that case, E(ψ1 + ψ2 + Ψ) will be the potential of all the actions that bodies c1, 1c′ , 

1c′′ , …, c2, 2c′ , 2c′′ , … exert upon each other.  The equality (10) will then lead to the 

following proposition for such a system: 
 
 The sum of the vis viva, the potential of the external actions, and the potential of the 
internal actions will remain invariable under any motion of the system. 
 
 One recovers the statement of the vis viva theorem as it is given in classical 
mechanics. 
 The internal energy U of a system is given, in general, by the formula: 
 

EU = F – T1 1

1T

∂
∂
F

 – T2 2

2T

∂
∂
F

. 

 
By virtue of equalities (2) and (7), this equality will become: 
 

(11)  EU = E (ψ1 + ψ2 + Ψ) + G1(T1) – T1 1 1

1

( )d T

dT

G
+ G2(T2) – T2 2 2

2

( )d T

dT

G
 

 
for a classical system.  Set: 
 

(12)  EA (T1, T2) = G1(T1) – T1 1 1

1

( )d T

dT

G
+ G2(T2) – T2 2 2

2

( )d T

dT

G
, 

 
so the preceding equality will become: 
 
(13)    U = ψ1 + ψ2 + Ψ + A(T1, T2) . 
 
By virtue of equalities (7) and (11), equations (4) and (4, cont.) will take the following 
form, which will thus constitute an acceptable form for the equations of motion of a 
classical system: 

(14)   

1 1
1 1 1

1 1

1 1
1 1 1

1 1

( ) 0,

.....................................................................................,

( ) 0,

k k

k k

d
A EU M M

dt

d
L EU P P

dt

α α

λ λ

∂ ∂ − − − + Π + + Π = ′∂ ∂


 ∂ ∂
 − − − + Π + + Π =

′∂ ∂

⋯

⋯

T
T

T
T
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(14, cont.)  

1 1
2 2 2

2 2

1 1
2 2 2

2 2

( ) 0,

..................................................................................,

( ) 0.

k k

k k

d
A EU M M

dt

d
L EU P P

dt

α α

λ λ

∂ ∂ − − − + Π + + Π = ′∂ ∂


 ∂ ∂
 − − − + Π + + Π =

′∂ ∂

⋯

⋯

T
T

T
T

 

 
 In the equations of motion of a classical system, one can substitute the product of the 
internal energy with the mechanical equivalent of heat for the internal thermodynamic 
potential of the system. 
 
 We have already pointed out (1) that the equations of motion of the system that one 
studies in mechanics can be put into the form (14) and (14, cont.). 
 The caloric coefficients of a system with bilateral constraints are given by the 
equalities (2): 

(15)  

1

1

1 1
1 1 1

1 1 1

1 1
1 2 2

2 1 1

2
2

,

..........................................................................................,

,

.

k k

k k

U d
E A M M ER

dt

U d
E L P P ER

dt

U
E Ec

T

α

λ

α α α

λ λ λ

∂ ∂ ∂ − + − − Π − − Π = ′∂ ∂ ∂


 ∂ ∂ ∂ − + − − Π − − Π = ′∂ ∂ ∂

∂ =
∂

⋯

⋯

T T

T T





 

 
 By virtue of equalities (11), (14), (14, cont.), these equalities become: 
 
(16)  

1
Rα = 0, …, 

1
Rλ = 0,  

2
Rα = 0, …, 

2
Rλ = 0,  

 

(17)    

2
1 1

1 1 2
1

2
2 2

2 2 2
2

( )
,

( )
.

d T
Ec T

dT

d T
Ec T

dT


= −



 = −


G

G
 

 
 For a classical system all of the caloric coefficients are zero, except for the caloric 
capacity of each of the parts that have uniform temperature; that caloric capacity is a 
function of only temperature. 
 
 We have already pointed out (1) the exceptional role that is played by the systems that 
are characterized by the equalities in the definition of entropy. 

                                                
 (1) “Commentaire aux principes de la Thermodynamique,” Part I, Chapter III, no. 4, Journal de 
Mathématiques pures et appliquées (4) 8 (1892), 324. 
 (2)  “Commentaire aux principes de la Thermodynamique,” Part III, Chapter III, no. 8, Journal de 
Mathématiques pures et appliquées (4) 10 (1894), 324. 
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 The quantity of heat δQ that the system releases during an arbitrary real or virtual 
modification will have the value: 
 
(18)    δQ = − (c1 δT1 + c2 δT2), 
 
or even, by virtue of equalities (12) and (17): 
 
(19)    δQ = − δA (T1, T2). 
 
 The quantity of heat that is released by the system during an arbitrary real or virtual 
modification is the total differential of a uniform function of the state of the system. 
 
 Here, the function A (T1, T2) plays exactly the role that the old physicists called the 
quantity of free caloric that is contained in the system.  Moreover, for those physicists, 
the quantity of latent caloric that is contained in our system would be invariable. 
 By virtue of equalities (7), which characterize a classical system, the equations of 
motion (4) and (4, cont.) will become: 
 

(20)  

1 1
1 1 1 1

1 1 1

1 1
1 1 1 1

1 1 1

( ) 0,

................................................................................................,

( ) 0,

k k

k k

d
A E M M

dt

d
L E P P

dt

ψ
α α α

ψ
λ λ λ

∂ ∂ ∂ − + Ψ + − + Π + + Π = ′∂ ∂ ∂


 ∂ ∂ ∂
 − + Ψ + − + Π + + Π =

′∂ ∂ ∂

⋯

⋯

T T

T T

 

 

(20, cont.) 

1 1
2 1 2 2

2 2 2

1 1
2 1 2 2

2 2 2

( ) 0,

................................................................................................,

( ) 0,

k k

k k

d
A E M M

dt

d
L E P P

dt

ψ
α α α

ψ
λ λ λ

∂ ∂ ∂ − + Ψ + − + Π + + Π = ′∂ ∂ ∂


 ∂ ∂ ∂
 − + Ψ + − + Π + + Π =

′∂ ∂ ∂

⋯

⋯

T T

T T

 

 
 These equations show us, in the first place, that in order to treat the motion of the 
system that we have chosen to be an example of a classical system, one can substitute the 
potential of the internal actions of each of the partial systems 1 and 2 for the internal 
thermodynamic potential of each of those partial systems in the equations of motion that 
are provided by thermodynamics; one will then recover the well-known equations of 
dynamics.  However, equations (20) and (20, cont.) lead to a consequence that is more 
general since it applies to all classical systems: 
 The (n1 + n2) equations (20) and (20, cont.), when combined with the k equations (3), 
can be regarded as (n1 + n2 + k) linear equations in the (n1 + n2 + k) unknowns: 
 

                                                                                                                                            
 (1)  “Commentaire aux principes de la Thermodynamique,” Part II, Chapter III, no. 6, Journal de 
Mathématiques pures et appliquées (4) 9 (1893), 357. 
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1α ′′ , …, 1λ′′ , 2α ′′ , …, 2λ′′ , 
Π1, Π2, …, Πk.  

 
 These (n1 + n2 + k) unknowns are determined as functions of the coefficients of the 
(n1 + n2 + k) linear equations.  Now, the temperatures T1, T2 of the various parts of the 
system do not enter into any of these coefficients.  We can then state the following 
proposition, in particular: 
 The quantities Π1, Π2, …, Πk are independent of the temperatures T1, T2 of the 
various parts of the system. 
 That proposition implies the following one, in turn: 
 
 When the system being studied is a classical system, one can write the (n1 + n2 + k) 
differential equations (3), (20), and (20, cont.) in the (n1 + n2) unknown functions α1(t), 
…, λ1(t), α2(t), …, λ2(t), and the k auxiliary unknown functions Π1, Π2, …, Πk, in which 
the temperatures of the various parts of the system do not appear.  Apart from any 
supplementary relation, these equations suffice to determine the laws by which the system 
is displaced and modified, with the exception of the law by which the temperature of each 
part of the system varies. 
 Once the motion of the system is known, the supplementary relations will determine 
the law by which the temperature of each part varies. 
 
 One thus understands how Lagrange could develop the laws of mechanics of systems 
that were composed of solids without concerning himself with the variations of the 
temperatures of those bodies, and Fourier treated the variations of the temperatures of 
those solid bodies without concerning himself with their motions.  That is how one can 
study the motion of the Earth, when it is assimilated to a rigid solid, without being 
preoccupied with the temperature of that astral body, and how one can study the cooling 
of the terrestrial globe without being preoccupied with its motion. 
 Such an independence of the problems that relate to mechanics from the problems 
that relate to the theory of heat will exist only when the systems that one deals with are 
no longer classical systems.  For example, if instead of regarding the Earth as a rigid solid 
with an invariable state, one takes into account the changes in volume, form, and physical 
and chemical state that accompany its cooling then one can no longer separate the 
problem of the motion of the Earth from the problem of terrestrial cooling. 
 
 

III. – Some systems that admit a vis viva integral  
by virtue of supplementary relations. 

 
 When one is not dealing with a classical system, the expression: 
 

1 1 1 1 2 2 2 2
1 2

1 2

( , , , ) ( , , , )T T
dT dT

T T

α λ α λ∂ ∂+
∂ ∂
… …F F
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will no longer be a total differential.  However, it can happen that the supplementary 
equations (5) will imply an equality of the form: 
 

(21)    1 1 2 2

1 2

( ) ( )dT t dT t

T dt T dt

∂ ∂+
∂ ∂
F F

= 
( )dF t

dt
. 

 
In that case − and only in that case − the system will admit a vis viva integral, which will 
have the form: 
(22)    Ω + F1 + F2 + EΨ + T – F(t) = const. 

 
One can imagine an infinitude of forms for the supplementary relations (5) for which an 
equality of the form (21) is verified; we shall cite some remarkable examples. 
 Imagine that the supplementary relations (5) imply the consequence that: 
 
 Any modification of the system being studied is adiabatic. 
 
Since the system is devoid of viscosity, the quantity of heat that is released by a real or 
virtual modification will have the value: 
 

δQ = −
1 1 2 21 1 1 1 2 2 2 2( )R R c T R R c Tα λ α λδα δλ δ δα δλ δ+ + + + + + +⋯ ⋯ , 

with 

(23)    

1

1

2
1 1

1 1

2
1 1

1 1

2
1 1

1 2
1

,

.............................,

,

,

T
R

E T

T
R

E T

T
c

E T

α

λ

α

λ

 ∂= − ∂ ∂



∂ = − ∂ ∂

 ∂= − ∂

F

F

F

 

 

(23, cont.)   

1

2

2
2 1

2 2

2
2 1

2 2

2
2 2

2 2
2

,

.............................,

,

.

T
R

E T

T
R

E T

T
c

E T

α

λ

α

λ

 ∂= − ∂ ∂



∂ = − ∂ ∂

 ∂= − ∂

F

F

F

 

 
We say that, as a result of equations (5), any real or virtual modification will be adiabatic; 
i.e., that equations (5) will imply the equality: 
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2 2 2

1 1 1 1
1 1 12

1 1 1 1 1

T
T

E T T T
α λ

α λ
 ∂ ∂ ∂′ ′ ′+ + + ∂ ∂ ∂ ∂ ∂ 

⋯

F F F
 

 + 
2 2 2

2 2 2 2
2 2 22

2 2 2 2 2

T
T

E T T T
α λ

α λ
 ∂ ∂ ∂′ ′ ′+ + + ∂ ∂ ∂ ∂ ∂ 

⋯

F F F
 = 0, 

 
which can be further written: 
 

1 1 2 2

1 2

dT dT

T dt T dt

∂ ∂+
∂ ∂
F F

 = 1 2
1 2

1 2

d
T T

dt T T

 ∂ ∂+ ∂ ∂ 

F F
. 

 
That equality will take the form (21) if one sets: 
 

F = 1 2
1 2

1 2

T T
T T

∂ ∂+
∂ ∂
F F

. 

 
There then exists a vis viva integral, which is, by virtue of the equality (22): 
 

Ω + F1 − 1
1

1

T
T

∂
∂
F

 + F2 − 2
2

2

T
T

∂
∂
F

 + EΨ + T = const., 

or rather: 
Ω + EU + T = const., 

 
which is a relation that follows immediately from the principle of the conservation of 
energy for an adiabatic modification that is accomplished as a result of external actions 
that are derived from a potential. 
 One of the forms of the complementary equations that imply the consequences that 
we have just detailed is obtained by expressing the idea that each of the parts that it is 
composed of does not receive or give up any heat during a real modification of the 
system; i.e., upon writing that one has: 
 
 

1 1Rα α ′  + … + 
1 1 1 1R c Tλ λ′ ′+  = 0, 

 
1 2Rα α ′  + … + 

1 2 2 2R c Tλ λ′ ′+  = 0, 

 
or rather, by virtue of equalities (23) and (23, cont.): 
 

1

1

d

dt T

∂
∂
F

= 0, 2

2

d

dt T

∂
∂
F

= 0. 

 
These are precisely the supplementary relations that were introduced by Laplace in his 
theory of the propagation of sound in a mass of air. 
 One will further obtain a relation of the form (21) if one takes the relations: 
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1dT

dt
 = 0, 2dT

dt
 = 0 

 
for the supplementary relations, or in other words, if one supposes that each part of the 
system keeps an invariable temperature while the system is being modified.  One will 
then have: 

F(t) = 0, 
 
and the vis viva integral (22) will take the form: 
 

Ω + F1 + F2 + EΨ + T = const., 

 
which will then be the form of the vis viva integral for isothermal modifications. 
 One knows that this form for the supplementary relations (1) was introduced by 
Newton and the geometers of the 18th Century in the theory of sound. 
 These considerations show that the questions that relate to thermodynamics will have 
to come to the attention of physicists before they can begin the study of systems other 
than classical systems, and in fact, it was the theory of the propagation of sound in air 
that provoked Laplace to create thermodynamics. 
 

___________ 
 
 

 
 
 

                                                
 (1) On the subject of these two forms for the supplementary relations, see L. NATANSON, Zeitschrift 
für physikalische Chemie 24 (1897), 302.  


