Excerpted from Ch. DupiApplications de géométrit de mécanique. Courcier, Paris, 1822.

FOURTH MEMOIR

ON THE PATHSTHAT ARE FOLLOWED BY LIGHT AND
ELASTIC BODIESIN GENERAL UNDER THE
PHENOMENA OF REFLECTION AND REFRACTION.

PRESENTED TO THE ACADEMY OF SCIENCESON MONDAY 22 JANUARY 1816.

81.
Geometric properties of light under the phenomena of refraction.

The theory of the paths that are traced, when appdiehe work that was done on
cutting and filling {], shows us in a general manner that for a sheafatifinear paths
that normal to the same given surface, we can always:

1. Consider that sheaf to be the set of paths ofrm@var return of a complete
system of paths, the most proper of which are eithes ohcutting or ones of filling.

2. Stop the same paths at a sequence of points that forabsalutely arbitrary
limiting surface.

3. Find a new sheaf of paths for the returns or advanaesmely, the ones that
correspond to the original advances or retuthat are capable of all being normal to a
certain surface, like the first sheaf, and consequemtyalso capable of forming two
groups of developable surfaces that always cross attaarigte.

We have proved that the laws that the correspondingnadsaand returns in this
general system of paths must obey are:

1. The paths of advance and return that agree at the pamt of the limiting
surface are both in a plane that is normal to thdace at that point.

["|  Translator: From the Frenatéblais et remblais That theory is discussed earlier in the book, but, as
Dupin himself says later in this memoir, the preshabty will established geometrically, with no further
reference to cutting and filling beyond some basicrasithat derive from that theory.
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2. At that point, the two paths form angles with lin@ting surface whose&osines
have a constant ratio, and consequently form angles twtlnormal to that limiting
surface whossineshave a constant ratio.

3. In the particular case where that same forcaff&gent to make one traverse the
same space at the same cost, the ratio of thoseesosnd sines will be unity along the
paths of advance or return. The path of advance and tth@fp@turn, which agree at the
same point of the limiting surface, must then subtendainee angle with that surface at
that point.

For the cases in which the paths meet, either in thenguir the filling, we have
shown that how they then present two sheaves thadegrarated completely by a surface
and how that surface enjoys the same properties wiffece$o the two sheaves as a
surface that is limited by both paths of advance andnetTherefore, when two paths
agree at a point of treeparatingsurface:

1. They will both be in a plane that is normal tattsurface at that point.

2. Those two paths will form angles with the nortoaihe separating surface at that
same point whose sines have a constant ratio. ltoeillhe ratio of the spaces that are
traversed on those same paths for the same cost.

3. Inthe particular case where the costs are tine $ar the paths that belong to the
two sheaves, the two paths that agree at a point cfefp@rating surface will form that
same angle with that surface.

We have further proved that the various sheaves of pHtlelvance or return,
whether they do or do not agree under cutting and fillingy dage the constant, general
character that they represent the system of nonmalcertain surface. That is why all of
the paths of the same sheaf will always form twoesystof developable surfaces such
that the developables of the one system will crosefalhe developables of the other
system at a right angle.

We have seen that for the most advantageous paths dsuthe ones that can be
normal to the same surface), when they are considerbd the set of paths of advance
that stop on &imiting surface of arbitrary form, one can always find a sloédiie most
advantageous paths of return, which will, consequentjgyeall of the properties that we
just enumerated with respect to the limiting surfacetti&first sheaf does.

Finally, we have seen, analogously, that if a shedh®fmost advantageous paths
terminates at aeparatingsurface of arbitrary form during the cutting and filling ttwere
can always find a second sheaf of the most advantagethss gathe other side of the
separatrix that enjoys all of the properties that weehast recapitulated with respect to
the separating surface as the first one.

These properties, by their nature, apply immediatelhéophenomena of reflection
and refraction of light.

When a light ray passes from one medium into amodhe whose density differs
from that of the first medium, that ray will experee a deviation that is known by the
name ofrefraction and is subject to the following law: If one draws ti@mal to the
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surface that separates the two media through the paointhat surface where the
refraction takes places then the first ray, which aalés encident and the second one,
which one callsrefracted will be in one and the same plane through that normal.
Moreover, if one measures the angle that is formest, ¢f all, by the normal and the
incident ray — i.e., thangle of incidence- and secondly by the normal and the refracted
ray — i.e., theangle of refraction— then one will find that the sine of the angle of
incidence and the sine of the angle of refraction hasenatant ratio for all of the rays
that traverse the two media that one considers irdaagtion.

Now suppose that a sheaf of incident rays that canobmal to the same surface
passes from one medium to the other, and regard the segaaface of the two media
as having the most general form. The theory of cuttirdy fding, whose principal
results we just summarized, will then lead us immelyidtethe following theorems:

First consider the separation of the media to lienging surfaceand the sheaf of
incident rays are paths of advance. The system of patteturn for which the cost of
transport igm times more dear than the cost of advance will forma sheaf of the most
advantageous paths on the same side of the boundamgoWo, they will be capable of
being:

1. Normal to the same surface.

2. Decomposing into two series of developables thatscats a right angle
everywhere, etc.

Regard the separation between the two media, in twm separating surface
between the two systems of paths (under cutting and)ll On the other side of the
separating surface, a third sheaf whose rays always themsame angle with the
separating surface as the paths of the second sheafow#ispond to the second sheaf
that we just found.

Now, the third sheaf of paths, thus-determined, is pFlcibe sheaf of rays that are
refracted upon passing from the first medium to the sbome. Indeed, each refracted
ray is in a plane that is normal to the separatingase of the media, along with the
incident ray, and the sine of the angle of incidencemnwillcease to have a constant ratio
m with the sine of the angle of refraction, and tfadib is given by experiment.

Therefore:

When a sheaf of light rays is decomposable into two series of develspdidlees
that cross at a right angle everywhere, one can make it traverse amaytmumber of
homogeneous media that are separated by arbitrary surfaces (with simgleubte
curvature) without that sheaf ceasing to enjoy the following properties:

1. Itis composed of normals to a surface.

2. It is decomposable into two series of developable surfaces that crassghitt
angle everywhere.

The proofs upon which we have based the general propertipatled are purely
geometric. We could apply them immediately to thedeéor laws that would correlate
the rays of one sheaf of light that is refractedt gmsses from one medium to another
upon traversing a surface of the most general formweder, we think that instead of
giving the same proofs twice, while changing only some iterlogy, it would be more
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interesting to science to present an agreement thatssesmarkable to us between the
laws of most advantageous transport and the general faw8axction. It is in that same
spirit that we shall consider the phenomena of radfiec

gll.
Fundamental properties of the paths of light under the phenomena of reflection.

As we have learned from experience, if a sheaigbt rays falls upon a surface that
does not let it pass through and does not absorb it — thkeesurface is, in a word, in a
limited space from which the light cannot leave — thaechereflected ray will obey the
following relations with respect to the incident ragtthbroduced it:

1. The plane that contains those two rays is norotlé reflecting surface at their
point of agreement.

2. That surface will form the same angle with onetaiedther ray at that point.

We can then consider the paths of advance to ben¢ident rays and the paths of
return to be the reflected rays in a system of pathisatte most advantageous for cutting
and filling (upon assuming that it requires the sameefdcctraverse the space under
advance or return). The general laws that we haveegréor similar systems of paths
apply immediately to the sheaves of light rays thatesent them.

Moreover, we first conclude the following principle:

When a sheaf of light rays is decomposable into two systems of devekpédides
that cross at a right angle (which will be the case whenever tlaysecan be considered
to be the normals to a unique surface), if one receives that sheaf orroa afian
arbitrary form then the reflected rays must form a new sheafishdike the first one,
decomposable into two systems of developables that cross at a right angle.

Consequently, once the character of being normal to queirsurface belongs to a
sheaf of light, it will be ineffaceable despite all b&treflections that the rays of that
sheaf can possibly experience by a sequence of mirrarbitdary form; similarly, it will
persist despite all of the refractions that the rafyshe sheaf can possible experience
when it is led to traverse media that are separatedigce of arbitrary form.

If all of the rays of the original sheaf emanaterfrjust one luminous point then they
will obviously all be normal to each sphere whoseteeis at that point. Therefore, a
sheaf of rays that emanates from a luminous pointrefhects or refracts as many times
as one likes from mirrors or separating surfaces oflatrary form will always present a
sheaf of rays that can be normal to the same surdaddijke them, can form two systems
of developable surfaces that cross at a right angle.

A sheaf of parallel paths can be considered to be prdducéhe normals to a plane.
Therefore, when a sheaf of parallel rays is reftbttg a sequence of mirrors of arbitrary
form, it will always present a sheaf of reflected efracted rays that can be normal to the
same surface.
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The Sun, by reason of the immensity of its distanceomparison to the magnitude
of the objects around us that it illuminates, projecys r@hose parallelism seems perfect,
even for the observer that is endowed with the mostatelinstruments. It follows from
this that when a sheaf of solar rays is refractecefbeated by a sequence of mirrors or
arbitrary separating surfaces, it will always be ti@msed into sheaves whose rays can
both be normal to the same surface for the same.sheaf

Malus made these latter consequences of the generappeithat we just presented
known in his paper on optics. However, he thought thaptineiple was true only when
the light rays either emanated from a unique point or warallel and only for a single
reflection and a single refraction. He asserted tthatreflection from a second mirror
(and, a fortiori, the refractions upon traversing a second separatingcsunfeould no
longer define a sheaf of rays that were decomposablewi@systems of developable
surfaces. In that sense, our results differ fromdhafsthat geometer, and the sciences
will deplore the discrepancy)(

Since Malus made use of an extremely complicatedytacell procedure, just one
error in calculation led him to believe that it would longer be possible to satisfy the
equations of condition upon which the orthogonality ef dlevelopable surfaces that are
defined by the reflected rays would depend for reflectionsacsecond mirror ().
However, the false conclusion that resulted fronh éneor (to some extent, mechanically)
should not mean that he does not deserve to be creditedaving discovered one of the
most beautiful theorems of the application of geomitryptics.

In order to further leave no doubt about the extensiahwe claim to have given to
Malus’s theorem, we shall prove that principle dine@dk catoptrics, with the aid of only
geometry, and no considerations that are deduced frommebey of cutting and filling.
At the same time, we have preserved that advantage afighawade known some
extremely striking analogies with questions of a veiffjedent nature, and several
identical laws. $eeNote | at the end of the memoir.)

Consider a sheaf of incident rays that fall upon a miwhose form is arbitrary.
Suppose only that these rays are all normal to the sarfece X) and seek to determine
the reflected sheaf of rays.

For that, suppose that a sphere of variable radiugsasnter constantly located on
the mirror, and its surface constantly tangent to tinfase &) that has all of the incident
rays for normals. That surfacg)(will be the envelope of the space that is traverged b
the sphere in front of the mirror.

The space that is occupied by the part of the sghatdas found behind the mirror is
analogously bounded by an enveloping surface whose normathatpeint agrees with
the radius of the sphere that touches that envelope samhe point. We shall now prove
that this new normal is the prolongation of a refldatey behind the mirror.

When an arbitrary surface, which does or does not haegiable parameter, moves
in such a manner that one of its points traverses l@aay director line, the space that
the entire surface traverses will be bounded by anathdace that one calls the

() Seethe papers that were inserted into the Journal deléEeolytechnique, 1%letter, and the
special article that was published much later undeiitteeé Théorie de la double réfraction de la lumiére,”
art. 11.

(") Cauchy corrected the calculations. Analogously, hequrdhat the equations of condition for the
orthogonality of the developables that are formed by ligyg after a second refraction will be satisfied.
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envelope while one calls the moving generator tbeveloper (See theGéometrie
analytiqueof G. Monge.)

Each enveloper cuts the one that follows it immediaa¢dng a curve that is found
completely on the envelope: viz., the curve of cordhthese two surfaces.

One can, in turn, suppose that the envelope variesri #md position in such a
manner that one of its points will describe an arbitdarg. The space that is then
traversed by the enveloper will be bounded by an envelopirigcsuof the envelopes
which will have no other relationships with the original @oper than that they should
touch at a point or at several isolated points.

If one considers three infinitely-close envelopers twmnot belong to the same first
envelope then the points that are common to these émeelopers will be their points of
contact with the envelope of the envelopes.

For example, take the particular case in which the lepwvey surfaces are spheres
whose center moves on an arbitrary mirror. If omesaers three infinitely-close spheres
whose centers do not lie along the same line ther thél be two common points to
those three spheres, which will produce two disjoint tshea the enveloping surface.
The first sheet will be in front of the mirror, and tbecond one will be behind it. The
two points that are thus fountdone on each sheetwill be placed symmetrically with
respect to the plane that is drawn through the ceofehe three spheres. Consequently,
the rays that are drawn through the center of one séttigee spheres to one or the other
of these two points will be in a plane that is pedpewmar to the plane of the three
centers. Moreover, these two rays define the samle anth that plane. Finally, since
each of them is normal to the sphere that theyngelm, they will, analogously, be
normal to the general envelope that touches that sphéne end of that ray.

Since the three centers are taken infinitely closeach other on the mirror, and not
on a straight line, the plane that contains themlvéltangent to the mirror. However, of
the two rays that we considered, the one that is faonflont of the mirror is, by
hypothesis, an incident light ray. Therefore, the tia¢ is found on the other side of the
mirror is the prolongation of the reflected ray. Tfere, it finally suffices that the
incident rays should be normal to an arbitrary surfagdat which the reflected rays will
be analogously normal to a surface for whatever foemthror should take.

Elastic bodies have the property that when they stnikenmovable body (elastic or
rigid and bounded by an arbitrary surface) they are reffect such a manner that the
angle of reflection is equal to the angle of incideand that the two paths will be in a
plane that is normal to that of the rigid body & fgoint where the reflection takes place.
Therefore, if one supposes that an infinitude of elastitecules start from an arbitrary
point and follow arbitrary rectilinear directions thernem those molecules strike the
surface of the immovable body they will reflect in sucimanner that their paths will
define a double sheaf of developable surfaces that crasgigit angle. Finally, the
property that these paths will be normals to a uniquaseinivill be preserved no matter
how many times the elastic molecules experience ssigea®flections.

If one makes a sonorous point vibrate then the distaebtnat it experiences will be
communicated step-by-step in the atmosphere with aiyelmed intensity that depends
upon the density of the atmosphere and the distancetfi@sonorous point to the point
where the observer is placed. Now, suppose that thesph@iee has the same density in
the extent where sound rays that are not too extensiverogpagate. Imagine that a
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sequence of spheres has the original sonorous pointhéar common center. The
propagated sounds will diminish as they grow distant froam torigin. However, they
will have the same intensity at all points of the sasphere. Finally, the radii of those
spheres will obviously be the shortest-possible linesdha can follow in order to pass
from the original sonorous point to the points whdre sound no longer has a given
intensity. These rays are what one csdland rays.

If the propagation of sound is presented with a limitingasgrfthat does not permit
the sound to extend beyond the space that is it define@rnittkvill be reflected, not in
such a manner that it extends in all possible direcimtiferently, but in such a manner
that:

1. The reflected sound rays are in a plane that maldo the reflecting surface with
the incident sound ray.

2. The two rays define the same angle with the plaseishdrawn tangentially to
that surface through the point where the reflectionsgliace.

From this, it is obvious that the reflected sound raymeef sheaf of lines that can all
be normals to the same surface. If one determinesvihasurfaces that are the locus of
centers of the largest and smallest curvature of thddice, respectively, then they will
be the locus of successive intersection of the reftesbund rays. They will then be the
locus of echoes of the sonorous point with respethdaeflecting surface that produces
the echo.

In general, when a sound emanates from a unique point aedeerated by a
sequence of arbitrary surfaces, the locus of echoesbwiilifor each repercussion, the
system of two surfaces that are the loci of cemdéisurvature of a third surface that is
perpendicular to the reflected sound rays.

Sometimes, the two surfaces that are loci of cerdércurvatures can be situated at
the same time in the part of space that is filled i atmosphere; there will then be
two series of real echoes. Sometimes, just oneasktisurfaces is located in that way,
while the other one is found in the space that isréefged by the reflecting surface.
Only the first surface will then be the locus of reaehoes, and the other echoes will be
imaginary. Finally, the two surfaces can be in the esphat is intercepted by the
reflecting surface; all of the echoes will be imagyniden.

When one of the surfaces that is a locus of echoeseedaa line, the echoes will
acquire incomparably more intensity. They will then aegw@ven more when that
surface reduces to a point and above all, when theuviacss reduce to the same point.

We now return to the principal object of this memdihe comparison of spheres that
helped us to arrive at the proof of the general theohatwas stated above on pp. 4 can
also make some remarkable properties of sheaves ofeefleght rays known to us.

Suppose that the radius of the moving sphere becomes equeabt The curve that
is traversed by the center of that sphere will thancode with the enveloping surface of
the space that is traversed by the sphere itself. eldrer not only is that curve situated
on the mirror where it must constantly remain theeraof the sphere, but the space itself
that is traversed by one and the other envelope ofmtinang sphere will reduce to a
point.
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Consequently, if one determines, on the one hand, @aheoturfaces that have the
incident rays for their normals and on the other halidyfahe surfaces that have the
reflected rays for normals then the surfaces of thieréiit systems will intersect pair-
wise along a curve that will be located completelyhl@nmirror.

Since each of these curves is, at the same timen®surface whose incident rays are
just as many normals and on another surface wholeetexf rays are, analogously, just
as many normals, we first conclude that the curvef ibged all of the incident or reflected
rays that end on it for its normals.

If one draws a plane through the incident ray anadfiected ray that cross at a point
of that curve then, as we know, it will be normathat point on the mirror; moreover, it
will necessarily be normal to that curve.

Therefore, if one traces a new system of curvediemtirror that are the orthogonal
trajectories to the first curves at each point of thban the two incident and reflected
rays will project onto the mirror tangential to thajéctory that passes through that same
point.

That tells us that if the incident rays, for examyhat end on each of the first curves
form just as many developable surfaces then the firseswvill be the lines of curvature
of those developables. However, the sheaf of incideyg is decomposable into two
series of developable surfaces that cross at a righe.afiherefore, the surfaces of the
other series will obviously pass through the orthogorsédtories of the first curves.
Meanwhile, those trajectories are not necessariigsliof curvature of the second
developable surfaces; in order for that to be true, itldvba necessary that they should
be the lines of curvature of the mirror itself.

8llI.
Properties of cyclide surfaces, aswell as second-degree curves and surfaces.

Before we can examine the properties that are enjoydighiyor sound rays that are
reflected from a surface later on, it is necessargisouss some general principles of
geometry that were developed for the first time in oMiefhoire sur le contact des
cercles et des spheresy.(

We shall first prove that there exists a family offsces whose characteristic
property is that they have only circles for the linégreatest and least curvature; that is
why we call those surfacegclides

We first remark that the sphere is included in that famf surfaces, since two
systems of circles that are traced on it at rightesntp each other can be considered to
be its lines of curvature.

Surfaces of revolution, whether conical or cylindrieak also part of the family that
we would like to study. Indeed, their lines of curvature arethe one hand, parallel
circles and on the other hand, straight-line merigiessch one can regard as circles that
have an infinite radius. It is, moreover, obvious tha developable surface other than
the cylinder or the cone will have circles for itsels of curvature, because each point of

() The analysis of the results of this paper is found éQbrrespondence polytechniquiae paper
itself was not printed.



Dupin — The path of light rays. 9

the edge of regression of that developable must be a gibnegression for one of the
lines of curvature, and the circle has no point of regjos.

In order for the circle to be a line of curvature aragbitrary surface, it is first of all
necessary that the lines that are drawn normal tostivéce and each point of such a
circle must form a developable surface. It will them,turn, be necessary for that
developable surface to have that circle for a line wivature. Consequently, that
developable surface must be a right circular cone tmathe circle for its base.

Therefore, the surfaces whose lines of curvature #reiragles will have the
characteristic property of being cut normally by a rigintudar cone along the entire
extent of each circle.

Take the summit of each of those cones to be theerceha sphere on which that
circle is placed. Since the sphere has the same moasdhe desired surface along the
entire extent of that circle, it will have the sataagent planes.

Consequently, the general surface whose lines of curvaterall circles can be
generated in two different ways by the motion of a sph@hose radius varies
conveniently. The first manner of generation willggthe lines of one curvature of the
cyclide surface, while the second one will give the limethe other curvature.

That is why a cone of revolution, for example, cangbeeratedfirst of all, by a
sphere whose center moves along a straight line, whiggliis increases or decreases in
proportion to the distance that is traversed by itderemhe lines of curvature that are
produced by that manner of generation will be circl€@econdly,the same cone of
revolution can be generated by a sphere of infiniteusadie., by a plane that constantly
defines the same angle with the axis of the cone. liiée of curvature that are produced
by this second manner of generation will be the meritirees that serve as the edge of
the cone.

We return to the general case. It is obvious that epblre of the first manner of
generation must be tangent to all of those of therskcgince each line of one curvature
of the cyclide must be cut by all of those of the pttwrvature, and each line of that
second curvature will belong to a sphere of the secomh@naf generation.

However, if one is content to take three spheres@fitst manner of generation (
then that will suffice to determine all spheres @& second one. It is then necessary that
if one takes the first spheres three at a time andrdetes all of the second ones from
that simple given then the second spheres will cotigtdme the same ones.
Consequently, it is the possibility or impossibility thit identity alone that can show
whether there do or do not exist other surfaces tharptieres, the cone, and the cylinder
of revolution that have only circles for their linefscarvature.

We have seen that two spheres of a different marningereration will touch at a
point that is located on the cyclide surface. Whenlergpof the second manner of
generation is determined by the condition that it mustalpgent to three of the first
spheres, one will have three points of contact. Thbese points will belong to the
cyclide; they will be located on the same circlenamely, a line of curvature.
Consequently, they will determine that circle compietel

() In general, there are only a finite number of sphété) that can be tangent to four given spheres at
the same time. One needs only to take three fixed splreceder to get the infinitude of moving spheres
whose envelope is the desired surface.
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Draw a plane through those three points of conthanill cut the generating sphere
along the circle that is the line of curvature of whieé speak. It will cut each of the
three fixed spheres along a particular circle.

We regard each of the four circles thus-determined alas$e of a right cone that is
tangent to the sphere on which that circle is locatedirder to get the axes of those four
cones, one must draw a perpendicular through the ceinéarch sphere to the common
plane of the four bases. The four axes will thembeually parallel.

At the point of contact of the first sphere with eaclthe other three, two of the four
cones will be, analogously, in contact. Therefolne, done that is circumscribed by the
first sphere will be touched by each of the other thoeees at a different point.

Now, two cones of revolution that have parallel aaed touch at a point will be
necessarily similar. Indeed, the same plane thanigent to these two cones will make
the same angle with the two axes.

Therefore, the four cones that we consider are mutamhilar. Consequently, the
spherical segments that they circumscribe will havieinaes that are proportional to
those of the spheres that they belong to. Theretbeebases of those segments, which
are also the bases of the circumscribed cones, wileparated from the center of the
sphere that they belong to by quantities that are propalttonthe radii of those same
sphere, respectively.

Draw a line in the plane of three fixed spheres withstnces to their centers are
proportional to the radii of those spheres. Any pldnae is drawn through that line will
cut out segments on it that are proportional torthelumes, and no other line can enjoy
that property.

Thus, the three points of contact of the generatingrephigh the three fixed spheres
will determine a particular plane that always pasksesigh the unique line that we speak
of, and which we call thdirector line.

All of the tangents to the circles of curvature tiag traced on the generating spheres
that are cut by those planes will obviously pass throhghsame line as all of those
planes in which they are found to be located, respdgtiveAmong those various
tangents, the ones that belong to the various poiradiné of second curvature will form
a developable surface by that fact already.

However, a developable surface whose rectilinear edges aflugass through a
director line can be only a plane or a cone. If it is a plane timat plane that passes
through the director line will be one of the ones ttattain the lines of first curvature.
The lines of second curvature, far from cutting the brsts at a right angle, will coincide
with them everywhere. It follows from this that tfamgents to the lines of first curvature
that are drawn through each of the points of a lineodsd curvature will define a cone.

Now, consider the sequence of points of contadi@fenerating spheres with one of
the fixed spheres. These points will necessarily fareecond line of curvature for the
envelope of the generating sphere, since the commonai®tmthe envelope and each
fixed sphere will form a conic developable surface.

Hence, the line of second curvature that is tracedach ef the three fixed spheres
will have lines that form a cone for its normals.e \Move that this line must be planar
and circular.
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Since each of those two circles of second curvat@eetermined on a fixed sphere,
those two circles will suffice to determine the pasitof each generating sphere, and as a
result, the enveloping surface of all those generatingephe

It is obvious that the three fixed spheres are symeeith respect to the plane that
is drawn through their three centers. Consequently:

1. The generating spheres are arranged symmetrically amalvbelow that plane.

2. Any sphere that has its center on that plane anchés two of the generating
spheres above the same plane will, analogously, touchttweo ones below it.

We shall determine a new fixed sphere that touchesdbthie generating spheres
that were determined previously. We can replace onkeothree old spheres with that
new one. The other two, which preserve four pointsarftact with four generating
spheres (which are assumed to stay the same) willl@aahthe same circle of contact
with the envelope as well as with all the generatingesgs. Consequently, that
enveloping surface will not change under the substitutidheonew fixed sphere for one
of the old three. Therefore, we finally have that saene enveloping surface can be
produced by an infinitude of new spheres, each of which argent to all of the
generating spheres, and each of which will produce a ciecleghe line of second
curvature of that envelope.

Therefore, it is first of all possible to find otharrfaces than the sphere, the cylinder,
and the cone of revolution that have only circleslifoes of curvature. Secondly, in
order to define those cyclide surfaces, it will suffioedemand that a sphere of variable
radius should constantly touch three fixed, but arbitrgpperes. Thirdly, there is no
other possible manner of generation that will produce alingaces of the same family.

The lines that are loci of the centers of curvatdréhe cyclide surfaces have some
remarkable properties: We shall discuss the ones thabeapplied to the subject that
we are treating.

We have seen that the centers of the fixed spheeesllssituated in the same plane.
We could have taken the generators to be the sphaaxesvéhhave called fixed, and
conversely, take the fixed spheres to be the oneswthdiave regarded as generators.
Therefore, the spheres of each manner of generatibhave their centers located in a
unique particular plane. It is easy to see that th@septanes must intersect at a right
angle.

The cyclide surface is, as we have seen, symmeitiicrespect to the first of those
planes; the same thing is true with respect to the decna. Now, when a surface is
symmetric with respect to two planes, it will be nseeg that these planes must intersect
at a right angle’y.

In order to distinguish the two manner of generatingtiodide surface by successive
intersections of enveloping spheres, we call the splerene manner of generatitirst
spheresand those of the other manner of generasenpnd spheres.

Draw all possible normals to the cyclide surface fittwn center of one of the first
spheres. Those normals, which start from the same, pailhform a cone. They will
end on the cyclide at various points of a circle ofature that will serve as the basis for
that cone, which will be right and circular. Finalthe axis of that cone will be tangent

() Atleast, when the surface is one of revolution andhantersection of the two given planes for its
axis.
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(") to the curve that is the locus of centers of thet §pheres. However, each normal
edge of that cone will pass through the center of ortbeoecond spheres. Therefore,
the entire system of edges of the cone will pass thrthegkurve that is the locus of the
centers of the second spheres. Now, we have provad this curve is planar.
Consequently, the curve that is the locus of centesecdnd curvature of the cyclide
surface will be a plane section of the cone — i.ee@nd-degree curve. It is obvious that
the planar curve that is the locus of centers of fitgvature will, analogously, have
degree two.

If we compare all of the cones that one can definknleg that are drawn from each
center of the first spheres to the various centetheotecond spheres, while supposing,
moreover, that each line that is terminated by thed®mers that it connects, then they
will consist of:

1. Avradius of the first sphere.

2. Aradius of the second sphere.

Upon terminating all the edges of the same cone inwth§t one will see that they
have in common the radius of the first sphere whostecserves as the summit of the
cone. Consequently, the difference between these edbes, taken pair-wise, will be
equal to the difference between the radii of the se@mpiheres that correspond to those
edges.

Consider two of those cones. Trace two edges on efathem that begin at the
centers of those two spheres of the second mannernefa®n, respectively. The
difference between the two edges of the first cone hedlifference between the two
edges of the second cone will be equal to the differemtche radii of the two spheres of
the second manner of generation, respectively.

The following theorem results from this:

For all of the cones whose summits are located on the first afnaenters and
whose common base is the second curve of centers, | say thdtd¢hende between the
two edges that begin at two given points of the base, respectivEbg tie same.

One can then regard the edges of each of them as béingddiey the edges of only
one of them by lengthening or shortening all of the edgeshanitial cone by the same
quantity.

The property that is enjoyed by the second curve of kegfiges us a means of
describing that curve by a very simple continuous motion.

One attaches a string to each point of the firsteeur@ne lets all of those strings
become united at any point of the second curve. Ondéhgthens or shortens all of the
strings by the same quantity. While always keeping thfébose strings tense, which
will suffice to determine the position of the point wiéiney are united:

1. All of the other strings will be equally tense.

2. All of the strings will form a right circular o@ whose center describes the second
curve of centers.

3. Finally, the axis of that cone will always be tamge that curve.

(") The latter property is general for the surfaces #natgenerated by the successive intersections of
spheres of variable radius in an arbitrary manner.
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One can then regard those strings as radius vectothamoints of the first curve of
centers as foci with respect to the second curve.

Since all of the properties of these two curvesracgrocal, one must also conclude
that all points of the second curve can be considerbd foci of the first one.

Each of these curves is symmetric with respect topthee of the other one. It
follows from this that both of them must have an dket is located on the common
intersection of those two planes. The summits effitst curve that are located on that
axis will be the ordinary foci of the second curve, eaodversely. That general property
of second-degree curves results from this.

Imagine a first curve of degree two in a horizontahpland then a new line of the
same degree that is drawn in a vertical plane througimtjor axis of that curve and has
the foci of the first curve for its summits and tleensnits of that same curve for its foci.

“All points of the first one will be foci of the send one, and all points of the second
one will be foci of the first one. All of the radiwectors that are directed from the
same point of one of those curves to all points ofdtier one will form a right
circular cone whose axis is tangent to the first catve point that serves as the origin
of all the radii. Hence, each curve will define tleane angle with all the radius
vectors that intersect at one of its points.”

One sees how these properties generalize the onesméHatown about the radius vectors
that emanate from just two foci.

Up to now, we have supposed that all of the radius \&eti@ located on the same
sheet of each cone, and we have proved that their differe/ould then be constant.
That must be true for the generation of the hyperblideed, for the hyperbola, the foci
are outside of the summits. However, in order teegie the second-degree curve that is
the locus of all foci of that hyperbola, one must ng® the foci into summits, and
conversely, the summits into foci. Therefore, teeosid curve will have its summits
outside of its foci. It will consequently be an elépsnd that ellipse will be on the sheet
of the right circular cone that has it for its oblidueese.

On the contrary, we would like to generate the ellipsmbgns of the hyperbola. We
will see that all of the radius vectors that s&rtwo points of the same branch of the
hyperbola will have a constadifference while all of the radii that start at two points that
are taken on different branches will have a constam taken pair-wise. That is
obviously what is true for the two summits of the e#igbat serve as the foci of the
hyperbola.

In the case where one of the curves becomes paraltbé other one will be
parabolic, analogously. One of the parabolas has atsches turned towards the right
and the other one, towards the left. It is thendifierence between the radius vectors
that must be constant.
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§1V.

Application of the properties that were discussed in § 111 to the search for new
properties of the path of light under the phenomena of reflection.

When a second-degree surface is formed by revolving a cirtiee same order
around the axis on which its foci are located, those paiitde, at the same time, the
foci of the entire surface; we call theganeral foci

If we make an arbitrary plane section of that surthes it will be obvious that the
section will include the two general foci of the surfameong its particular foci.
Therefore, the cones that have that section far theese and one or the other general
focus for their summit will be right and circular.

The following general property of second-degree surfagshtive either ellipsoids,
paraboloids, or hyperboloids for general foci resulbsnfrthat: All of the planar curves
that one can possibly trace on those surfaces willaapime be circles when they are
regarded from one of the foci. Therefore, when onestakes perspective table to be the
surface of a sphere that has its center at one dbthef the second-degree surface, all
of the plane sections that are traced on it, in pets@eon the spherical surface, will
form circles.

Now consider the infinitely-small plane section tlsatves as the indicatrix of the
curvature of the surface at a point. We first seeftrahe surfaces whose properties we
are studying, when all of the indicatrices are viewedhfane of the general foci, they
will seem to be circles that have the visual ray guas from a general focus to the point
P of the surface whose indicatrix gives the curvaturgHeir axis.

Suppose that all of the elements of that surface gr@mpoptionally and with an
infinite ratio, while starting from the poiRR. The indicatrix will then take on a finite
extent, and the summit of the cone of revolution vehalslique base it is will be stretched
to infinity. The cone will become a cylinder of revolutio

When the indicatrix (which is the oblique base of thencidr) is projected onto the
circle (which is the direct base of that cylinder)e thiameters of the indicatrix will
project onto the diameters of the circle. Any paragehm will circumscribe the
indicatrix (which is a second-degree curve), and the targugate diameters that are
parallel to the opposite sides of that parallelograrspeetively, will project onto the
circle with ceasing to be parallel. The parallelograith not cease to circumscribe the
circle and will become a squargu@arré). Finally, the two conjugate diameters that are
parallel to the sides of that square, respectively, wrifiss at a right angle in that
projection.

Two arbitrary conjugate diameters of an indicatrix cfeaond-degree surface with
general foci are then in two planes that pass througkahee general focus and cut at
right angles.

While discussing the theory of indicatrices and conjugatgetats of surfaces
(Développements de géométharst memoi), we proved that those conjugate tangents
are always located on two conjugate diameters of tfieatrix. Therefore, the second-
degree surfaces that have general foci enjoy the remariladtacteristic propertyfwo
arbitrary conjugate tangents are on two planes that pass through the samaldenes,
respectively, and they cut at a right angle.
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One sees from this that when one views a second-degréece from one of its
general foci, its conjugate tangents will seem to catraght angle everywhere.

Now, let us extend those properties of second-degreecssré# revolution to the
surfaces of an arbitrary form. For that, we can appe#te theory ofndicatricesand
Conjugate tangents. As one sees, that theory casts a very remarkaipe tin the
guestion; it makes it easy to find some solutions thateweaccessible to simple
geometry up to now.

Let P be the point that one considers on an arbitrary seirfd. Take the plane of
horizontal projection to be the tangent plane to shaface aP. Moreover, letPO and
PQ be the projections of two incident and reflected rélyat[are reflected byg].

The two rays are in a plane that is perpendiculdngddangent plane that is taken to
be the plane of horizontal projection; consequentlgy thill project horizontally along
the same lin©PQ;, .

Now, regard the point® andQ as the foci of a second-degree surface of revolution
that passes through That surface will be tangent to the general suri8cat(that point,
since, by hypothesis, the tangent planeSoat P makes the same angle with the two
radius vectors that project on@P, andPQ,, and it will be perpendicular to the plane of
those two rays.

One determines, here and now, the indicatrix of tlwerskdegree surface for the
point P by the condition that the indicatrix must be the trata right circular cylinder
whose axis i$0 or PQ on the horizontal plane of projection.

Indeed, if we take a vertical plane of projection tlsaparallel to the rayRO, PQ
then those rays will be equal to their vertical prages PO, PQ,, respectively. Since
the major axis of the indicatrix is equal &dP), , which has an arbitrary magnitude, its
projection a Py will be equal toa Py, , and the minor axiggPa, will be twice the
distance from the poir, to the rayPQ, .

Now, if the focusO remains the same, as well as the pBiin the surfaceS), then
one can arbitrarily vary the magnitude of the indicatgBy0 of the second-degree surface
whose focus) will become increasingly distant or approach the pBionveniently.
We demand that among these similar cureg®0, a’B’y'd, a’f"y’o" ..., they are the
ones that are tangent to the indica&kBCD of the surfaceS).

In order to do that, regardfyd and ABCD as the horizontal traces of the two
cylinders that havd?O for their axis. By hypothesis, the first cylinder wihe of
revolution, so all of its diametral planes will bermal to its surface. Therefore, in order
for that cylinder to be tangent to the one whose te&BCD, it is necessary that the
diametral plane that is drawn through the edge thaieidoicus of contact should also be
normal to the cylinder whose baseABCD along the entire extent of that edge.

When a second-degree cylinder is not one of revolutiome thee only two planes
that pass through its axis that enjoy that property: Eneythe two principal planes, and
those two planes will necessarily intersect at latrangle.

However, we know that the conjugate diameters ofvir@us plane sections of a
cylinder are placed on the conjugate diametral planesatf aylinder, respectively.
Therefore, the two principal planes of the cylinder tletABCD for its oblique base will
trace out two conjugate diametdvsN’, M"N" on ABCD. The two curvesa’By0,
a”B"y’d”, which are similar tay8yo and tangent t&\BCD at MN andMN, respectively,
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will pass through the extremities of those diamete(Seenote Il at the end of the
memoir.)

It is easy to see that the second-degree surface widisatrix is a’8” y’ 0" has the
three pointdV’; P, N”in common with the surfac&), so the tangents to the avtPN’
will be the same d¥1’, N’for the two surfaces. However, the indicatrié&CD, a’B’yo’
at the pointaM and N, resp., will be mutually tangent. Therefore, the saamgents
M‘m’, N’ n”are common to the two indicatrices, and consequeitlthd two surfaces.
Therefore, the tangent planes to those surfaces at gittor N’ will be identical.

Consequently, if we draw an incident ray from the p@irib the pointM “or N’ then
the reflected ray will be the same for the originatface and for the second-degree
surface of revolution that hasf’ y’ &” for its indicatrix. However, sinc® is one of the
general foci of the latter surface, all of the rdyattemanate from the poif will be
reflected to the other focu®@'. Therefore, the rays that are reflected by the rartyit
surface § at the pointdv” and N’ will combine at the poinf)’, which is the second
general focus of the second-degree surfaces whose mdisat’3’ y’ d'.

Similarly, the rays that are reflected by the arbjtrsurface § at the pointdM ” and
N” will meet at the focu€' of the second second-degree surface whose indicatrix is
a’Byd

Since there are no other points ABCD besidesM’, N” andM ”, N” for which the
tangent plane taj coincides with the tangent plane to one of the sg@tegree surfaces
of revolution that hav® for a focus, there will be no other incident raysnt®M’, ON’,
OM”, ON”that will meetPQ when they are reflected.

We can then assert the general principles:

1. When one starts from a poift of an arbitrary surface, there will be two
directionsM N, M "N” such that the rays that emanate from the arbitraingt @and are
reflected by the surface Bt’, N, M”, or N”, which are infinitely-close t®, meet the ray
PQ that is reflected by the poift

2. The two direction$1N’, M"N” are those of the twoonjugate diametersf the
indicatrix ABCD, and consequently, they are also those of thecomjugate tangent
the surface) at the poinP.

3. Those two directions are situated on two planes ttatsect at a right angle
along the incident ray, since they are the directidnth® two principal planes of the
cylinder that ha&A\BCD for its base an@®P for its axis.

4. The planes that are drawn through those two direcamd the reflected rd3Q
define the same angle between them as the precedindidyand analogously intersect
at a right angle.

In order to prove the last property, we imagine thre& cylinders that have the
reflected rayPQ for their common axis and’B’y'd’, a”3"y"0”, ABCD, resp. for their
bases. The first two cylinders are once more cylindémgvolution. They touch the
third one along four edges that pass through the pbintsl’, M” N” respectively, and
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which are located pair-wise on the principal planes ofldke cylinder. Therefore, the
two planes that are drawn through the reflected €44’ Q'P’, Q'N’ on the one hand,
andQ"M” Q"P” Q"N” on the other, will intersect at a right angle gléxP.

The direction of the incident ra@P will remain the same, no matter what the
position of the focu® is along that ray, so the form of the indica@igyo will not vary.
That is why the two conjugate directiofsN’, M"N” will not vary. Suppose that as
many incident rays as one desires start from the vapomss ofOP. The reflected rays
can meePQ only by passing through the pois; N”or M”, N”that are located on two
conjugate diameters ABCD, which is the indicatrix of the original surfacg),(and
consequently, they will be located on two conjugate tatisge that original surface at
the pointP.

We now shall show what modifications the general priesiphat we just presented
can experience according to the various forms thahtheatrices of the mirror and those
of the auxiliary second-degree surfaces can present.

The second-degree auxiliary surfaeesimply because they have two general foci
will have their two curvatures directed in tkamesense everywhere. Therefore, the
indicatrix of their curvature will be everywheediptic.

However, since the mirror is supposed to have an anpitvam, its indicatrix can be
elliptic, hyperbolic, or parabolic. We examine thesedihcases, in turn, which comprise
all of the general forms that the curvature of surfaeesbe affected with.

In the first case, where the indicatrix is an slipas is represented in Fig.T]], fhe
cylinder that has the incident ray for its axis and #tlgise for its horizontal trace will be
an elliptic cylinder. There thus exist two principal plattest pass through that axis and
four principal edges that are located on those placgsaisely. Those edges have the
pointsM’, N”andM”, N” for their horizontal traces on the plane of pragett As we
have seen already, we can always find two indicaacg’y’d’, a”f”y’d” that are tangent
to the indicatrixABCD of the mirror aM’, N’andM ”, N”, respectively.

We demand to know how to determine the position of thetpQ', Q" where the
reflected raysM’'Q’', N'Q" andM”Q", N”Q", resp., meet the raBQ that is reflected at
the pointP. Since the indicatriceg’3’y’d’, a”3”y0” are determined by the means that
we have presented, their major axé®y’, a” Py” will be determined analogously. Lt
be the radius of curvature of the normal section ohthlreor that is made in the direction
of that axis. Let' andr” be the radii of curvature of the sections that ardenay that
plane in the two auxiliary second-degree surfaces tha &ag/y’o’, a”3”y’0” for their
indicatrices, respectively. We have:

'p2 n"p2
r=R I—apz; r"=R I—apz.
AP AP

Now, with r' as its radius, trace the osculating circle of themab section that is
made alongaPyin the auxiliary surface that hasf’y’o’ for its indicatrix, as in Fig. 2.
We can replace that section with that circle withchanging the poir that is the locus
of points where the rays that are reflected from tiimitely-close pointsP, M’ meet.

[l Translator: The cited figures were not availabléhattime of translation.
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However, the chord®p and Pr, Mm and Ms in the osculating circle are equal,
respectively, since they define the same angle witltitlcteamference of that circle pair-
wise. Therefore, one has the following relationsveein the arcs that are subtended by
the chords:

Pp=Pr, Mm= Ms.
Hence:
Mm - Pp = Ms - Pr,

and upon suppressing the pBpthat is common to the first two arcs, as welllses part
Mr that is common to the second two:

therefore:

However, the triangleQ'PM, Q"rs are similar. The anglBQ'M is infinitely small,
and therefore the ardBM, pm, rs are equal to their chord&V, pm, rs, respectively.
Therefore, one has:

PQ'Pr::PM:PM+rs=PM+ 2PM + pm= 3PM + pm,
o)
PM [Pr

I —

" 3PM+pm’
The similar triangle©PM, Opmlikewise give:

PO:Pp: PM:PM—-pm

hence:
PM—pm= PM EPp.
PO
However:
PO’ = PM[Pr _ PM [Pp .
3PM+pm  4PM-(PM- pm)’
therefore:
L PM [Pp _ PO[Pp
PQ' = PV TPp )
PO

Let a denote the angle that the incident RY makes with the plane tangent to the
mirror atP. Twice the radius’, multiplied by sine of that angle will be the ctd?p of
the osculating circle. Lek denote the distance from the po@tto the pointP, so we
will have:
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PO’ = AL2r'lsing _ A[Sing
AN-2r"sinag  2A-r'sina
for the value oPQ’'. (SeeNote IllI.)
For the same values dfand sina, that quantity can be infinite, positive, or negative,
according to the value @, i.e., according to the position of the po@ton the incident
ray, whose direction is assumed to be constant.

1. When 2 —r' sina = 0, the reflected ray1Q’ will become parallel to the ra3Q’,
sinceQ’, as the point of intersection of two rays, will bansported to infinity.

Therefore, when the radiusprojects onto the incident ray, with a projectiosin a
= 2A = twice PO, the auxiliary surface will haver’3’y’o” for its indicatrix with its
reflected rays mutually parallel. It will be a parabd] and along the directiavd " PN/,
the light rays that emanate from the pdinand reflect from the mirror at the potwill
be parallel.

WhenPp, which is one-half of the chorélp, is smaller or larger tharP® = 2A, the
rays that are reflected by the auxiliary surface tlstais’y’d” for its indicatrix will no
longer be parallel. In the former casé W®ill be larger tharr’ sin a. Therefore, the
valuePQ' = Lm_a will have the same sign As(sincer’ is assumed to be positive,

2A-r'sina
as well as sir). The pointQ will then be on the same side of the mirror aspihiat P.
Consequently, the second-degree auxiliary surface thatwmagointsO, Q' that are
located on the same side of the tangent plane fgeneral foci will be elliptic. In that
case, the imag@' of the focugO will be on the same side of the mirror as that pOin

Whenr' is positive, if A is found to be less thanh sin a then the quantityeQ’' =

Ar'sing
2A-r'sina
the tangent plane a. In that case, the second-degree auxiliary surface hweill
hyperbolic.

will become negative, and the second foQuwill pass to the other side of

=Ar'sing _ Ar'sing
—2A-r'sina  2A+r'sing
become positive. Hence, when the pdrnpasses alongO, when prolonged to the other
side of the mirror, the point of intersecti will stay on the same side. Therefore, the
second-degree auxiliary surface will again be hyperbolic.

Among all of the cases that one can study, the one/ticch the indicatrixABCD is
elliptic is remarkable: That is the case in which thalidatrix is similar to the curve
apyo. That indicatrix will then coincide with one of thwo curvesa’5’y o, a”B"y"o”,
instead of being touched by them, as in Fig. 1. In that, cdkof the incident rays that
fall on the curveagfyo will reflect and pass through the focQsof the second-degree
auxiliary surface whose indicatrix & is afyo. The infinitely-close rays t&O that
emanate from the poif@ will all meet at the same poifit of the reflected raPQ after
reflection.

We pass on to the case in which the indicatrix oftireor atP is a hyperbol&M B,
CND, as in Fig. 3, instead of an ellipd8CD, as in Fig. 1. No matter what direction the

When A becomes negativeRQ' = will necessarily
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incident rayPO has, that hyperbola can only be the trace of a hypertginder that has
PO for its axis. Of the two principal planes that pdssugh that axis, only one of them
will cut that cylinder along two edges that have the pbintN’ for their traces on the
horizontal plane of projection. From this, it willesa that there is only one real direction
M PN’ along which the reflected r&8Q is met by the infinitely-close reflected rays when
the mirror has a hyperbola for its indicatrix.

However, the indicatrix at the poiRtis nothing but a section of the mirror that is
infinitely close to the tangent plane Rtand parallel to that plane. That section can be
made above or below the tangent planePthen the two curvatures are directed in
contrary senses. The first indicatrix will then icate the curvature that is convex
downward, while the second one will indicate the curvaitaeis convex upward.

Since indicatrices are determined by only the ratiheif taxis, and not their absolute
magnitude, one of those axes will pass from real tayinaay, and the other one will
simultaneously pass from imaginary to real withoutrthatio changing in the process.
That is why their asymptotes will be the same. Faptalindicatrices, the two axes will
pass from real to imaginary together, while no longghileting a real curve.
Consequently, they must exhibit only curves of one aadg#éme form.

The trace of the cylinder is the second hyperboliccatdix with two real principal
edges. It distinguishes two poiés”, N” on the plane that is tangent to the mirroPat
Those points indicate the new directisif PN” along which the ray that emanates from
the pointO and reflects from the poiRt is cut (along)”) by the infinitely-close reflected
rays. Since the two hyperboladMB, CND, and aM™, cNd are similar, the
parallelograms that have their summits on the asymptbssare common to those
hyperbolas will be the same for one or the other @frth Consequently, those two curves
will have systems of conjugate diameters that are supesed exactly. However, each
of the hyperbolas can have only one system of conjugateetiers in common with the
similar ellipses a’B’yd’, a’B”y"d0”. That system will then be the same for both
hyperbolas. Consequently, the diamedBN’, M "PN”will be mutually conjugate.

It follows from this that the two directiongl PN, M "PN” represent a system of
conjugate diameters with respect to the oblique Bg8670" of a right circular cylinder
that hasPO or PQ for its axis. Consequently, those two directions ase aten to cut at
a right angle at an arbitrary point of the incidentP® or the reflected raQ.

Suppose that the surface of the mirror has one eclitgatures zero &, instead of
having both of them pointing in opposite directions; iteis developable at that point.
Its indicatrix at the same point will be the systefiwo linesM'm, N'n that are parallel
to the edge of the developable that passes thrBughhe problem will again have two
solutions.

The first of them will be given by the curegB’y’d’ that is tangent to those parallel at
M”andN’. The second of them will be given by the conjugate diantetM PN’ i.e.,
by M"PN”, which is the true diameter of the system of two feraihesM m, N'n when
they are considered to be the branches of the satoads€éegree line.

Up to now, we have studied the laws of reflection doylystarting at a poirfe of the
mirror and ones that are infinitely close to that poinwe shall now pass from the
reflected ray at that poift to one of the infinitely-close reflected rays thagemit. We
then pass on (and always in the same direction) fhensecond reflected ray to a third
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one that is infinitely close to the second and als€s ¢y and then from the third to a
fourth, etc. We shall then define a surface that 8onisly developable, since it will be
the system of infinitely-close straight lines thatleaneet the one that precedes it and the
one that follows it.

We define a second surface that is analogously developabs&aling with the
reflected ray at the poit and passing to a new infinitely-close ray that cutditeeone
along the second direction (which is conjugate to theding). From that new ray, one
passes on to a third that analogously cuts it, and whichalgd be in the second
direction, and then from the third ray to a fourth, etc

We then conclude, first of all, that when an arbytrsurface is illuminated by a sheaf
of light rays that emanate from the same point, thigiyreflect along a new sheaf whose
rays form two systems of developable surfaces, in swedyahat each reflected ray will
be found, at the same time, on two developable surfatebd#long to each of those
systems, respectively.

If one determines the trace of the developable surfateeflected rays on the
reflecting surface or mirror then a first system ofedepables will produce a first series
of curves that succeed them on the mirror while varynfoitely little in form and
position. The second system of developables will, anaklgptrace a second series of
curves that succeed it on the mirror while varying onlynitdly little in form and
position.

The general law that links the developables of thé diystem to those of the second
is that the first ones will be cut at a right anigjethe second ones along the entire extent
of various rays that are the loci of their commoeriséctions.

The general law that links the curves that are tramedhe mirror by these two
systems of developable surfaces is that the first cuoeastantly cross the second one
along directions that are given by tt@njugate directionso the surface of the mirror. In
a word: the second curves will be everywhssejugateto the first ones.

If one regards the first curves as the bases forgsignany cones that have their
common summit at the point where the light emanated,similarly regards the second
curves as based upon a new series of conical surfacdsmtlethe same summit as the
preceding ones then all of the cones of the firsesewill cross the cones of the second
series at a right angle.

A general property of surfaces that are illuminated ¢igtlrays will result from the
theorems that we just presented:

If two reflecting surfaces touch along line that is the trace of aloable surface of
reflected rays for one of them (while the incident rays are as$umemanate from a
unique point) then that same developable will be analogously a system ofeckefiay
for the second reflecting surface when it is substituted for tise dime. All of the
developable surfaces of reflected rays of a system that is difftn@m the first
developable will traverse it on one and the other mirror along cuivatswill be tangent
to it at each point and at the conjugate tangents to the common curve to thefaees.

Instead of supposing that the rays emanate from onetlendame fixed point,
suppose that the point advances or retreats along tldemncay that passes through the
point P of the mirror. We know that the ray that is refegttby the point will not
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change. The conjugate tangents of the surface areiplames at a right angle that both
pass through that incident ray or the reflected rapecs/ely, so | say that these those
tangents will not change either. Therefore, the splaees will be tangent, on the one
hand, to all cones of incident rays that have themmit on the incident rays that falls on
P, and on the other hand, to all developable surfaceaysf that are reflected by the
mirror where one finds the poiRt

The following general property of light rays then resfriom this:

If other light rays emanate from the various points of a line thatégarded as an
incident ray in arbitrary directions then:

1. When those rays are reflected by an arbitrary mirror, they foiln a series of
developable surfaces.

2. All of the developables that one can possibly form in that way withtogent to
one or the other of the conjugate tangents that are seen to cut at a right@nlgéeray
that is common to all those developables.

3. All of the cones that are formed from the incident rays that passighrthe
traces of those developables on the mirror will analogously crossraght angle and
will be tangent to one or the other of the conjugate tangents to thensifsaé we just
determined.

At the beginning of this memoir, we provéahd along two absolutely independent
paths) that a sheaf of light rays that is decomposialbte two series of developable
surfaces that cross at a right angle will further g@mes the property that it is
decomposable into two series of developable surfaces saiclltiof the surfaces of one
series will cut those of the other series at a ragigle after it is reflected by an arbitrary
mirror.

Suppose, moreover, that the developable surfaces oftaséiries of incident rays
correspond to the developable surfaces of a first sefeflected rays in such a manner
that those curves are each the common trace on tierraf a developable surface of
reflected rays and a developable surface of incident ralyssay that all of the
developables of the one series enjoy the same properstefdle, in the second series,
as in the first, each developable surface of incident asgsa developable surface of
reflected rays will have the same trace on the mirtdoreover, two of those traces that
belong to two different series of developable surfacéisalways be touched by two
conjugate tangents to the surface of the mirror at te@mon point of intersection.

In order to make the proof of that principle clearet,(D) and (D) represent the

two developable surfaces of incident rays that pass thrayghntP of the mirror, and
let (D;) and (D;) represent the two developable surfaces of reflected theyspass
through the same poiRt Finally, suppose thgiD) and (D,) are the two developables

(from different systems) that have the same tradd@mirror.

Take two infinitely-close pointB, M “on that trace. Since the two incident raysne
of which falls onP, while the other one falls oM’ — are located on the developable
(D)), they will meet at a certain poi@t Similarly, since the two reflected raysRaand

M “are located on the developalflg,), they will meet at a certain poif'.
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If we regard the point®, Q' as the two general foci of a second-degree auxiliary
surface that passes throughhen that surface will analogously pass throitgh It will
have the same tangent plane as the mirror at thasedints, since otherwise the two
surfaces could not have the two incident r&® OM’ and the two reflected rayQ’
and M’'Q’" in common. Therefore, the intersection of those tonsecutive tangent
planes will be common to the two surfaces. Consequehdy,intersection and the line
that is drawn through the two poiRt M’ will form a system of conjugate tangents for
one and the other surface. (S&&velop. de GéomEirstMémoire)

Now, two conjugate tangents to a second-degree surfaegheitgeneral foaD, Q'
will be on two planes that both pass through the s — eitheO or O’ - and they
will cut and a right angle. Therefore, the two conjegangents to the mirror, one of
which passes through the elem@M’, will also be on two planes that both pass through
the incident ray©P or through the reflected rdQ' and cut at a right angle.

One of these planes that passes through the infintete edge©P, OM’ of the
developable(D)) is tangent to that developable. Therefore, the glaatepasses through

OP and it perpendicular to it will be tangent to the secdevelopablgD)), since, by

hypothesis, that second developable cuts the first oaeight angle all along the extent
of the rayOP.

Therefore, the trace of the second developgbl® in the mirror is touched by the

conjugate tangent to the directiBM’ of the first developable.

One likewise proves that the two planes at a rigbteatihat pass through the reflected
ray PQ' and two conjugate tangents to the mirroPatespectively, are tangents to the
developablegD,), (D;), respectively, that pass through the reflectedP@y

Therefore, the two developablé®;) and (D;) are touched by the same conjugate

tangent toPM’on the mirror. Consequently, their traces on theaniare also touched
by the same conjugate tangent. Therefore, they thersseglitenutually touch.

If the (D) have the same trace as t{l®)) on the entire extent of the mirror then
since the (D) and (D;) must have their traces mutually tangent everywhitrés

necessary that the latter traces must be identi€aht consequence will complete the
general theorem that we would like to prove.

The converse of that principle is likewise true. Wheshaaf of incident rays
decomposes into two series of developable surfacesrtieg at a right angle and trace
out two series of curves on the mirror whose dioeiare conjugate everywhere, the
same curves will be the traces of developable surfdwdsare composed of reflected
rays, and those developable surfaces, like those dhteent rays, will again present
two series such that the surfaces of one seriesusia a right angle by all of those of the
other series.

Here is what will happen in the particular case whéee incident rays that are
infinitely close to the poinP meet the incident ray that falls #hat the same poir®,
while those rays meet at another pditthat is analogously the same for all reflected
rays after reflection:

| say that the indicatrix of the mirror at the umbH will be a circle when it is seen
from an arbitrary point of the incident or reflecteg that that passes through
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All of the developable surfaces of incident rays offife series(D;) pass through

the incident ray that falls on the umbilical polnt
All of the developable surfaces of the reflected raye ffst seriegD;) pass through

the ray that is reflected by the umbilical point.
Each of those two rays (viz., incident or reflectegpresent just one surface of the
second seriegD),(D,). Upon starting from each ray, those developable s fadé

present the form of an infinitely-acute right circutane that has one or the other rays for
its axis, respectively, and the luminous point orntage for its summit. As a result, the
developable surface®.) , (D,) will get gradually larger and take on a form that depends

upon the curvature of the mirror.

One then sees that on the mirror, the traces dirteseries will all pass through the
point P while those of the second series will be:

1. The point.

2. (At an infinitely-small distance) the indicatiox the curvature of the mirror at the
point P.

3. Curves that are more or less different from ihdicatrix, and whose figure
depends upon the form of the mirror itself.

Therefore, the points of the mirror that provide org goint of intersection for the
reflected rays after they emanate from just one fadlie the same thing with respect
to a system of conjugate traces that are common tmeftent or reflected developable
surface that thembilicsare for the lines of curvature. Furthermore, the rattebilics
are only a particular case of the systems of conjugasegd. They are the ones for
which the rays are perpendicular to the mirror, andvaich it is not only necessary that
the traces should be conjugate, but that they should egeit a right angle’),

One can subsume all of the umbilical points thatpaoeided by reflection of light
under the general term c&toptric umbilics.

If an arbitrary reflecting surface is illuminated byuaninous pointO then we propose
to determine the point8 of that mirror around which the rays that are infilyitddose to
the ray that are reflected by each of those péinteet the same reflected ray at a unique
point Q.

Since the indicatrix of the mirror must appear to beadecwhen one regards it from
the focusO or the pointQ’ for the umbilical pointP, it is, first and foremost, necessary
that the major axis of that indicatrix must be in angl that is normal to the mirror and
passes through the poidtfrom which the incident rays begin.

However, the major axis of the indicatrix of thermow at P is tangent to the line of
least curvature at that point. Therefore, the plaaé ithnormal to the mirror & and
which passes through the major axis of the indicatrixyeower, is tangent to the
developable surface that is defined by the rays of leagattue of the mirror that pass
through the poinP.

Draw a plane through the poi@tthat is required to touch the surface that is the locus
of the centers of greatest curvature of the mirronaldgously, that plane touches one of

() In the third and fith memoirs that comprise fhéveloppements de géométriee have presented
the theory of the various kinds of umbilics of surfacesansiderable detail. That theory can find its
application here.
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the developable surfaces that are defined by the raysasif dairvature of the mirror.
That developable surface traces a line of least curvatutbe mirror. Finally, the edge
that is the locus of contact points of that developatith its tangent plane that passes
through the poinO distinguishes a point on that line of curvature wheig @bviously
touched by the plane that is both normal to the mainal tangent to the that developable.

The sequence of points that is thus determined on esbflieast curvature defines
a line on which one necessarily finds the desired umdlints.

At every umbilical point, the cylinder that has the aadiix for its base and the
incident ray for its axis will be a cylinder of revolutionNVhen the major axis of the
indicatrix is projected onto a plane that is perpendictdathe incident ray, it will be
equal to the minor axis as a result. Therefore,dtie of these two axes will be equal to
the sine of the angle that is defined by the majoraklsthe incident ray: It is the cosine
of the angle of incidence.

Therefore, the ratio of the squares of the axed@fridicatrix is equal to the square
of that cosine. However, that ratio is the ratichad radii of curvature of the mirror for
the point to which the indicatrix belongs.

We conclude: Any catoptric umbilic of a mirror of arbity form enjoys the
following properties:

1. The normal plane that contains the major axis of the indicatrix belongs to the
umbilic point that passes through the focus from which the incident raysagen

2. The ratio of the two radii of curvature of the mirror at that pointgsia to the
square of the cosine of the angle of incidence.

Wit the help of the various methods that were predentéhe course of this memoir,
one can see that it becomes easy to reduce the aropticated questions of catoptrics to
simple graphical operations of descriptive geometry. ddweer, that path has the
advantage that it makes several general laws thah#devas of light rays are subject to
under the phenomena of reflection that pertain to ngrobarbitrary form.



MAIN NOTES
ON THE FOURTH MEMOIR

FIRST NOTE

On the orthogonality of the intersections of developable surfacesthat are
defined by incident rays and reflected rays on amirror of arbitrary form.

In this note, we shall translate the proof that wagmin our memoir into analysis. In
order to do that, led, b, c represent the rectangular coordinates of the surfatleeo
mirror, and letc = ¢ (a, b) be the equation of that surface.

A sphere that has radiusnd its center &, b, ¢ has the equation:

X-32+(y -2 +@z—-9*=r’= m(ab) .

In this equationszis an arbitrary function af andb.

In order to get the equation of the envelopindame of the space that is traversed by
that sphere when its center passes through theusapoints of the mirror, one must first
suppose that anda, ¢, and therr andb, c are the only ones that vary in the equation of
the sphere. It is then necessary to differentith respect to those quantities, which
will give:

r
da
dc r
-b+@Z-9— =-r E—Id—
y @-9 db db

x—a+(z—()$ =—r
da

These equations Ky, z are those of two planes that are perpendicultteédangent
plane to the surface of the mirror at the painb, c.

The line of intersection of these two planes entiiself perpendicular to that tangent
plane. Finally, it is on that line that one findhe pointx, y, z of the envelope, which
corresponds to the poiat b, c.

In order to calculate more rapidly, let:

do_,  do_,
da ’ db ’
dr dr
— =m, — =n,
da db

with the notations that one receives.
If we now combine the three equations:
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x-3*+(y-b°+ @-9* =r’,
x-9 + +p(z—-9 =-rn
y-B +q(z-9=-rlh
then it will be easy to deduce- 3 y — i z — cfrom them.

In order to do that, we first substitute the values efaandy — bthat are deduced
from the other two; that will give:

(rm+ plz— 9> +(rm+ iz P+ (2 -9°=r’
or rather, upon expanding that:
Z-9*(L+p*+P) + 2 (z—9 (pm+qn) =r? (1 —nf —n?).

When that equation is solved far 9, one will have:

2
oo | PR [ oo
1+ p*+q 1+ p’+ o (1+ PP+

and upon reducing all of the terms to the same denominator:

pm+ qni\/(1+ g+ d)@- M- A)+( pm c)rzl

zZ—c=-r
1+p2+q2

Let:
pm+qgn=A, (1+p°+q) (1 -n?-n’) + (m+qn)°=B,

to abbreviate, so:

A+ /B

Z—C=-r .
1+p2+q2

By means of the preceding equations, that wilegiv

X—a=-rm-p(z-9 =-r | m- p1+|02+q2

1+p2+q2

y—-b=-m-q(z-9 =-r n—q[—lﬂ]

Since there are two values 0t g y — h z — ¢ they will give two points on each
sphere for the enveloping surface. Consequertft, énvelope must have two disjoint
sheets.
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In order to know the ratios of the position of thobeets with the surface of the
mirror, we look for the distance from the two poirtsy, z to the tangent plane to the
mirror ata, b, ¢, which is a plane whose equation is given by:

dc=pda+qdh
namely:
Z—-c=p(X-3+q(Y-0H.

That equation, when combined with these two:

X—a=-rm-p(Z-0,
Y-b=-m -q(Z-9,
will give:
Z-c=-mp-p@Z-9g-mg-q (Z-9,
or
(Z-9 (1 +p°+q) =-r(mp+na).
Therefore:
Z—-c=-rl mp: nq2: —rZD\ >
1+p°+q° 1+p°+q
Hence:
X—a=-r {m— p[—l%}
1+p°+q
Y—b:—l’ |:n_q|3ﬁ:|
1+p°+q

We now remark that these values are one-halfuheaf the two values of— gy —

b, z — ¢ respectively, that are found on the two sheetthefenveloping surface. We
conclude that the two points of the envelope thatiradicated by those double values are
not only equidistant from the poiaf b, c, but they are on a perpendicular to the tangent
plane to the mirror and located at the same distancthat plane — viz., one in front of it
and one behind it.

From that, it is obvious that the two radii of tegheres that is drawn through the
centera, b, c to the double points, y, z define the same angle with the tangent plane to
the mirror, and are both in a plane that is notmahat tangent plane.

One can, moreover, verify thé posteriori by calculating the cosine of that angle.
Indeed, that cosine is equal to:

J(X—a)2+(v— 07 +(Z- ¢ _ N (X-a+(Y-B*+(Z- ¢*
(x=a)+(y-B7+(z ¢ r

Consequently, it is equal to:
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pA Y A Y., R
m- 2 7|t n- 2 5|t ,
1+ p*+q 1+ p’+q 1+ p’+ f

\/rrlz—nz—ZE(mp+ ng A (1+ B+ 4) A

1+p*+q°  (I+ p*+ )°
or

(m’ + )1+ P+ o)~ (mp-_ny’
1+p2+q2 '

When that expression is simplified, it will finallyvg:

m’ + i’ +(mp- ni®
1+p2+q2 '

That quantity presents two values. One of them bsloéoghe angle that is defined
by the radius of the sphere that is drawn through ti@ ppb, c to the first pointx, y, z
where that sphere touches the envelope. The other valoegb to the second point
where the same sphere touches that envelope. Consggtlentivo radii that are drawn
from a, b, ¢ to those two points will define the same angle wha tangent plane.
Moreover, they are both in a plane that is perpendical#éhe tangent plane, as we shall
see in just a moment. Therefore:

If one of the two rays is considered to be incident then the othewidinge the ray
that is reflected by the point a, b, ¢ on the surface of th@mir

However, all of the incident rays are normal to therelope of spheres. That
envelope will have the greatest generality possible, owere since we have supposed
that the functionr = 7 (a, b) is perfectly arbitrary; finally, the reflected raysea
analogously, normal to the second sheet of that envelope.

Therefore:

In general, if a sheaf of light rays that is normal to an arbitrary ahisurface falls
upon a mirror of an analogously arbitrary form then those rays will beatftein such a
manner that they form a new sheaf that will generally be normal to the sarface as
the incident rays.

Often, the double values that we have found for thedioates of the envelope of the
spheres will lose their radical form, since the quagitinder the square root sign can be
perfect squares. The two sheets of the enveloping suWdt have the incident and
reflected rays for normals, respectively, so | &t that those two sheets belong to two
essentially distinct surfaces.
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In order to give an example of the general case, wsuggpose that a luminous semi-
ellipsoid is illuminated by rays that are normal tostsface, and that there is a mirror
located in the principal plane that serves as the tiad@at semi-ellipsoid. Each reflected
ray must then be normal to the other half of thpsdid that one considers.

We shall pursue the analytic study that was begun imtitaet In order to obtain the
equations that relate to the rays themselves — both incatehtreflected — recall the

equations:
x-3>+(y-B*+ @-9° =r%,
(x-9 + tp(z—9 =-rn
(y-B +aq(z-9 =-rmh.
If we set:
x—a:F, y—b:f
z-c¢C z-cC

in those equations, in whidhandf are convenient functions af b, c then we will have:

X—a F

r NIES I

y-b _ f

r JF+fiel
Z-C _ 1
r NI

Once we have determinédandf, their double values will give the direction of the
incident and reflected rays, respectively.

Now, upon combining the three equations that we justirdatavith the preceding
ones, we will have:

F + & =-m.F+p=-my F>+f'+1,

JFP+ 1 R+t

f d =-n.f+q =-n. F*+f'+1.

\/F2+f1+1+\/F2+f1+1

These equations will give #sandf in terms ofp, g, m, n.
In order to do that, divide the corresponding sidkthe two equations; one will get:

L p=mttmgnp . _ nFE+np-mq
n m

SO

F+p = (NF+np- mg?+ m B+ m,
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f+q :\/(mf+mq— np’+ A £+ A.

Upon solving these two second-degree equations &df, one will obtain the values of
the functiong= andf atp, g, m, n. Those values will necessarily become explict@sn
as one knows that equation of the mircor ¢ (a, b) and the equation = /7 (a, b) that
belongs to the spheres that cutiti@dentrays.



NOTE II

Necessary analytical conditions for two surfaces that touch at a point to have
conjugate tangents that are common to them; application to catoptrics.

We have proveddéveloppements de géométpe. 147) that if a surface has second-
order differential elements that are represented by:
dZ =r dx® + 25 dx dy+t dy?
then the equation of its indicatrix at the poiny, z will be presented in the form:
rX=X2+2X-=3(Y-y+t(Y-y*=C,
in which C is an arbitrary constant. Now, if one representdifierential equations of

the projection of the conjugate tangents ontoxihplane bydy/ dx = ¢, dy/dx= ¢/then
the equations between those tangents will be:

r+s(@+ ) +tpy=0. 6)
S (@ @)+t Y =0 9

Analogously, let:

be the equation between the conjugate tangents of a seadade that touches the first
one atx, y’, Z. (Développements de géométie. 95)

The conjugate tangents at the pointy’, Z are found to be located on the same plane
that is tangent to both surfaces, so it will obviousk§fice to express the idea that the
projections of the conjugate tangents ontoxyalane are identical in order to express
the identity of those tangents in their proper plane.

Upon supposing that equatiora,((@) are both true at the same time,deand¥ be
the values that satisfy both of those equations sametiusly; we will have:

P PY =0,
r+s(®+W¥)+toy } ®)

r'+s'(@+W)+t'oy =0,

so we infer immediately that:
_r+s® _r'+so
S+t S+{D

Upon clearing the denominators, we will have:

rs' —r's+ (it' —r't) ® + (st —st) d* = 0. (1)
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Since that equation will give two values f@r one might believe that there are two
systems of conjugate tangents. However, if one obsénmaedhe two equation®\) are
symmetric in® andW¥ then one will see that the values¥fatr, s, t andr’, s, t' must be
identical with those ofp. Therefore, the two values df that are deduced from the
preceding equation are precisely the ones that beloihg tovo conjugate tangents.

We first conclude from this that in general two suréattet touch at a point, y', Z
can have only one system of conjugate tangents in conairihat point.

If we desire that the two surfaces should have maaa tine system of conjugate
tangents at the same poxity’, Z then we must satisfy the equations of condition:

rs-rs _0 rt'-rt _

, -9 hich give
st—st 0 st—st which giv

r t
rr ! tr *

olo

S_
S

It is then obvious that the indicatrices of the smofaces whose equations are:

r X=22+2 X=X (Y=Y +t (Y=-y?=C,
X =X)P2+25 (X=X (Y=y)+t (Y -V)’=C,

respectively, will become similar, concentric curvesl avill have parallel homologous
lines, moreover. Consequently, all of their correspanp@onjugate diameters will be
superposed, and the conjugate tangents on which they acktfobe located will be the
same for one and the other surface. Therefore, ircéisis— and only in this case all
systems of conjugate tangents will be common to the dwéaces. If we recall the
equation:

s —r's+ (it —r't) ® + (st —st) P>=0 (1)

then we will see that the two roots f@rwill both be real or imaginary. In order to make
the distinction between those two cases as simpessble, observe that we can always
makes disappear from the equation:

FX=X)P2+2 (X=X)(Y=Y)+t (Y=-y)°=C

by a simple transformation of coordinates. Therefarecan suppose thsit= 0, with no
loss of generality in the results. We will then have

—r's+ (' —rt) ® + st d* =0, (2)

instead of equation (1), which is an equation whose two nedktde real when the

quantity:
(rt "—rt jz
st

R S R S S e 1

N

r'
—+
t

is positive, or when the quantity:
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IS positive.
Consequently, if one manages to make that quantity negden equation (2) will
have only imaginary roots. For this to be true, it auiffice to make:

4sr't' negative and > — rt)%

o . ' -rt)
r't’ negative and :
2s

It is therefore necessary, first of all, thatandt' must have different signs, and
consequently, that the indicatrix:

FX=X)P2+2 (X=X)(Y=Y)+t (Y=-y)°=C

must be a hyperbola.
If one takes the other indicatrix, instead of this em@rder to makes disappear from
its equations then one will likewise arrive at this sequence:

The values ofb cannot be imaginary, at least when the two indicatrices are not both
HYPERBOLAS.

Now suppose that a mirror of arbitrary form receivagsrthat emanate from a
luminous point. Consider the incident ray that goes fitwath focus to the arbitrary point
P of the mirror to be the axis of a circular cylindefhe trace of that cylinder on the
tangent plane to the mirror & will be the indicatrix of the auxiliary second-degree
surface that has the luminous focus for one of its rgéfeci, and for the second general
focus, the point where the reflected rayPais met by a reflected ray &, which is a
point that is infinitely close t®. One will find two auxiliary surfaces, which will give
two pointsP’, P" on the mirror that are infinitely close # Those point$', P" are
located on two conjugate diameters that are commdretmdlicatrix of the mirror and to
the auxiliary surface that has the pdmt Now, since the latter indicatrix is the trace of
an elliptic cylinder on a plane, it is an ELLIPSE. féfere, not matter what indicatrix
the mirror might have, it wilhlwayshave a system @éal conjugate tangents in common
with that ellipse. Therefore, there are always tw@ojugate directions for which a ray
that is reflected by the mirror infinitely close Rowill meet the ray that is reflected by the
point P.

Let X, Y, Z be the coordinates of the luminous focus. Xet/, Z be those of the
mirror whose indicatrix is defined by the equation:

r(x—X)>+2(x-x%) (y-y) +t(y—y)’=C.

We demand to know the directions of the two conjutmtgents at the point, y', Z
of that surface that touch the two developable surfaespectively, that are composed of
reflected rays and both pass through the pojiyt, Z.

We already know the general equation of the conjugaigents:
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r+s(g+y) +toy=0.

It then suffices to express the idea that the twogddhat are drawn through the first and
second tangent, respectively, cut at a right angle. gFeater ease, suppose that xie
plane is parallel to the tangent plane to the mirtof,a/, Z. The equations of the two
planes will be:
p(x-X)--y)+tm(@z-2=0,
Yx-x)—-y-y)+n(z-2=0,

in whichm, n are two arbitrary constants that are determined byadlnelition that the
two planes must pass through the foEug Z, which gives:

pX-X)-(Y-Y)+m@Z-2)=0, .., m:_¢(><—>z<)_—z(v—y),
YX-X)=(Y-Y)+n@Z-2)=0, .., n:_l/’(x—;)_—Z,(Y—Y).

Upon substituting these values forandn into the preceding two equations, they will
become:
X=X)=(Y-Y
#x-x)-(v-9)- PEZLDED g2
YX=X=(Y=Y) 5 50
Z-7Z

YX=x)=(-y) -
In order for those two planes to cut at a right angls,necessary that one must have:

P(X=X) - (Y- V)d//( X=X-(¥-9Y ~0
Z-7 Z- 2 '

1+oy+

For more simplicity, represedt— X by &, Y —y by v, andZ — 2 by ¢, the preceding
equation will become:

J24 QYL+ (pE—V) (WE-V =0,
Vi A (g-P)+ (P +ED gy=0.

or

That equation will have the form:
(+S (p+y) +toyY=0

F2evi=r) -&=s, 7P+ g=t.

if one sets:

It then belongs to the conjugate tangents of a cedaiface, and those conjugate
tangents will all be seen to cut at a right angle wiwes regards them from the focds
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Y, Z. They then belong to second-degree surfaces of revollia haveX, Y, Z for their
focus and touch the mirror &t y, Z.

When one replaceas, s, t', with their values in equation (1) [vizs —r's+ (rt' —r't)
® + (st —st) ®? = 0] that will give the two desired directions. In artedo that, it will
suffice to solve the second-degree equation:

—r BV -sO+V) + [ ({P+ &) =t (P +V)] D +[s({+ X +t O] ©° = 0,

which will always have two real roots, in the usual manner

If one regards, s, t as functions ok, y', Z, which is the point on the mirror where
the reflection takes place, then if one sétequal to its valuely / dx, the preceding
equation will become one of ordinary differentials.will then represent the two systems
of curves that are traced on the mirror by the redl@cays.

That is why the two systems of lines of curvatureéhe surface are given to us by a

second-degree equation dly / dx that is expressed in terms of the coefficients ef th
partial differential, g, r, s, r of first and second order.
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NOTE Il

Graphical method of determining the points of intersection
of infinitely-close reflected rays.

Nothing is easier than to determine points of interseaifahe rays that are reflected
by a mirror around a poirR of the reflecting surface when the incident rays dtarh a
unique focu by means the results that were obtained in the cofitbés memaoir.

If the directions of greatest and least curvaturéhfemmirror are given & then those
directions will be those of the axes of the indisa&kBCD of the mirror. One can then
immediately trace out that indicatrix by employing thienple means that we have
presented in oubéveloppements de géométrie

One must then trace an ellipgg)dthat is big enough to c&BCD. In the course of
this memoir, we have indicated how one can determinaexés of that curve.

The ellipseafyd cutsABCD, which is the indicatrix of the mirror, at four poingnd
when they are joined pair-wise by lines, they will foanparallelogram whose opposite
sides are parallel to the conjugate diamedMmBN’, M "PN”, respectively. Those two
diameters each cut the ellipsg)o at two pointsM, N andm, n, resp. The ellipses
a’'Byd, a’B"y’o” are similar to it, and their homologous lines are,euwer, parallel or
superposed, so one will have:

Pm:PM’ ::Pa:Pa’ ::PS:PpS,
Pm:PM”:.Pa:Pa”::PG:.PS"

These proportions make the semi-akag, PS, Pa”, PB” of the two auxiliary
indicatricesa B’y o', a”3"y"d”, resp., which touch the indicatr&BCD of the mirror at
M’ N’andM” N” resp., known immediately.

We shall now determine the poirfds, Q" that are the loci of the intersections of the
reflected rays’Q’", N'Q"; M”Q", N”Q" that are infinitely close tBQ.

In order to do that, take Figure 2 to be the new vémicgection that corresponds to
Figure 1, so as to not make the first vertical projedimnconfused.

By means of the quarter-cirdiéy’, carry Py, = Py, to PI',. TakePC, to be equal
to PG, which is the semi-diameter &fBCD that is located on the major axis of the
auxiliary indicatrix.

Let PR be the magnitude of the radius of curvature at the poaftthe section of the
mirror at P by a normal plane that is directed along the WRC. We determine
immediately the radius & of the section that is made by the same plane ingtensl-
degree surface whose indicatrixag3’y’d’ by means of this proportion:

2
PC?: PI'?2 =Py?:: R: desired radius = :?(/;2 R

In order to construct that value, upon referf®@, (Fig. 1) toPC, (Fig. 2), draw the
line CI'" and the perpendicul®F to that line. We will then haveC? : PI'? = Py’ :: CF
T'F.
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ProlongFC in such a manner that one can t&ke= R on that line. Then drakK"’
through the poinK parallel toPF. DrawGIL parallel toKF through the poinG where
KK”meets the horizont®flCG. The similar trianglePFC, PIG; PF', PIL give:

Py?
PC?

PC*:Pr'?=Py?::FC:FI" = GI=FK =R: LI = R=r"

LI will then be the desired radius.

Presently, withPL"as radius antl’as center, we shall trace the cirM®Q that is the
osculator of the normal section that is made alahB )/ in the auxiliary surface that has
a’B’y'o’for its indicatrix.

Upon determining the poim where that circle cuts the incident r@pP, we can
immediately construct the value:

PO’ = PO[Pp
4PO- Pp
in the memoir on pp. 18.
1
In order to do that, put@ into the formw, and we will have:
4PO- Pp PO-+Pp

PO-1Pp: 1PC: 1Pp: PQ".

Take the poinD’at the middle oPO, the pointp’ at the middle oPp, andp” at the
middle of Pp. CarryOp’ = PO — +Pp from P to Z andPp' to Pp on the verticaPZ

Finally, draw the lingos parallel to the line that passes through the pdritandZ. We
will have:
_3POEPp_

Ps=
PO-1Pp

PQ'.

If we carry Ps along the reflected ray fro® to Q' then we will immediately
determine the poir®’ where the reflected raydQ’, PQ', N'Q" meet.

Upon employing the same method, one will deterntieesecond poir®” where the
reflected rays"Q", PQ", N"Q" meet with equal facility.



