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 In Volume 58 of these Annalen (*), Mayer extended the so-called Hilbert independence 

theorem to the case of the extremum of a simple integral with arbitrarily-many functions and 

condition equations, and in that way produced the means to derive the sufficient conditions for an 

extremum quite simply. In what follows, analogous considerations will be developed for the most 

general problem in the calculus of variations with one independent variable, which will be referred 

to as the Mayer problem and reads as follows: 

 

 “Among all continuous functions y0, y1, …, yn of the independent variable x that fulfill 

the r + 1 given first-order differential equations: 

 

(1)    0 1 0 1( , , , , , , , , )k n nx y y y y y y     = 0   (k = 0, 1, …, r < n) 

 

identically, and the last n of which possess given values for two given values x0 and x1 of 

x, but the first one y0, only for x = x0, find the ones that are associated with a greatest or 

smallest value of the function y0 at the location x = x1 (
**).” 

 

 

§ 1. 

 

 If the values of the functions yi for x = x0 and x = x1 are denoted by yi0 and yi1, resp., then one 

deals with determining the extremum of y01 for prescribed values of: 

 

y00 , y10 , …, yn0  and y01 , y11 , …, yn1 . 

 

 
 (*) Cf., Leipziger Berichte, 1903. 

 (**) A. Mayer, “Die Lagrangesche Multiplicatorenmethode,” Leipziger Berichte (1895). 
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If one sets: 

(2)       = 
0

r

k k

k

 
=

  

 

then the n + 1 functions yi and the r + 1 multipliers k will be determined by equations (1) and (*): 

 

(3)      
i

d

dx y




 = 

iy




  (i = 0, 1, …, n). 

We call the manifolds: 

y1 = y1 (x) , y2 = y2 (x) , …, yn = yn (x) 

 

that are obtained in that way extremals. The points (x0, y10 , y20 , …, yn0) and (x1, y11 , y21 , …, yn1), 

which might be referred to as 0 and 1, resp., together with the prescribed initial value y00 of the 

function y0, determine an extremal C that yields a well-defined final value y01 for that function. 

 We now consider the comparison curves C : 

 

(4)  y1 = 1( )y x  ,      y2 = 2 ( )y x  ,      …,      yn = ( )ny x  , 

 

which all go through the points 0 and 1 and are subject to the following restriction, in addition: 

The substitution of the values (4) in equations (1) will not imply a contradiction and will yield a 

well-defined function y0 = 0 ( )y x  for prescribed initial values y00 . For x = x1, we will then get a 

well-defined final value 10y  on every comparison curve C , and we must then deal with 

ascertaining the conditions under which the difference: 

 

y01 = 01 01y y−  = 01 00 01 00( ) ( )y y y y− − −  

 

will possess a constant sign for all comparison curves under consideration. It is easy to see that we 

further have: 

 

(5)  y01 = 0 0
C C

y dx y dx


 −   , 

 

in which the integrals extend over the arc 01 of the comparison curve C  and the extremal C, resp., 

and the initial value of y0 is assumed to be equal to y00 . 

 We now consider any q-parameter family (q  n) of extremals that all correspond to the initial 

value y00 and include the extremal C. By eliminating the q parameters upon which the functions yi 

(x) their derivatives ( )iy x  depend, we will get (among other things) the equations: 

 

 
 (*) A. Mayer, loc. cit. 
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(6)     
0 1 2

1 2

( , , , , ) ,

( , , , , )

q

i i q

y Y x y y y

y p x y y y

=

 =
 (i = 0, 1, …, n), 

 

which are fulfilled identically for all extremals of the family. When we differentiate the first of 

those equations, we will get: 

(7)     0y  = 
dY

dx
 = 

1

q

h

h h

F Y
y

x y=

 
+

 
  

for every extremal of the family, and as a result: 

 

0
C

y dx  = 
C

dY
dx

dx  = Y (x1, y11, …, yq1) − Y (x0, y10, …, yq0) , 

 

or since the last integral is obviously independent of the path of integration: 

 

(8)  0
C

y dx  = 
1

q

h
C

h

Y Y
y dx

x x=

  
+ 

  
 . 

 

 If the values of the derivatives iy  in equations (6) are substituted in equation (7) then, as one 

will easily see, one will get an identity: 

(9)      p0 = 
1

q

h

h

Y Y
y

x x=

 
+

 
 . 

 

 If one substitutes the value Y / x from that into equation (8) and substitutes the value of the 

integral thus-obtained into equation (5) then one will ultimately get: 

 

(10)     y01 = 
C

E dx
 , 

 

in which the expression E is defined by the equation: 

 

(11) E = 
0 0

1

( )
q

h h

h h

Y
y p y p

y=


 − − −


 . 

 

With an appropriate choice of the family of extremals, and therefore the function Y, formulas (10) 

and (11) will allow one to immediately extend the theories of Weierstrass and Hilbert to the 

problem in question (*). 

 

 

 

 
 (*) Cf., the presentation of Kneser, Lehrbuch, §§ 59-61. 
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§ 2. 

 

 If we now return to the differential equations (1) and (3) of the Mayer problem then we should 

point out that the number of arbitrary constants that the complete integration of those equations 

entails is equal to 2 (n + 1), but one of those constants is inessential for the problem, such that the 

functions yi and the ratios k : 0 will include only 2n + 1 constants (*). 

 If we now demand that the initial conditions: 

 

yi = yi0  for x = x0  (i = 0, 1, …, n) 

 

are satisfied then only n arbitrary constants will remain, and we will get an n-parameter family of 

extremals that includes the extremal C. If we then set: 

 

(12)     
0

s


 = − s  (s = 1, 2, …, r) 

 

then the following equations will exist for the aforementioned family of extremals: 

 

(13)  
1 1 1 2 2 2 1 2 1 2

0 0 1 2 1 2 1 2

( , , , , ) , ( , , , , ) , ( , , , , ) ,

( , , , , ) , ( , , , , ) , ( , , , , )

n n n n n

n i i n s s n

y y x a a a y y x a a a y y x a a a

y y x a a a y y x a a a x a a a 

= = =

 = = =
 

 

(i = 0, 1, …, n ; s = 1, 2, …, r), 

 

and the parameters a1, a2, …, an can be determined as functions of x, y1, y2, …, yn from the first n 

of those equations for all values of the variables in question for which the Jacobian determinant: 

 

(14)     1 2

1 2

( , , , )

( , , , )

n

n

y y y

a a a




 

 

does not vanish. When one substitutes the values of the parameters a1, a2, …, an thus-obtained into 

the remaining equations (13), one will arrive at the relations: 

 

(15) y0 = Y (x, y1, y2, …, yn) , iy  = pi (x, y1, y2, …, yn) , s = s (x, y1, y2, …, yn) , 

 

(i = 0, 1, …, n ; s = 1, 2, …, r) , 

 

which are fulfilled identically for all extremals of the family. 

 As is known, (**) the function Y satisfies a first-order partial differential equation whose 

characteristics coincide with the extremals, and the following identities will then exist: 

 
 (*) A. Mayer, loc. cit. 

 (**) A. Mayer, loc. cit. § 2. 
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(16)    
h

Y

y




 = − 

0

hp

p









  (h = 1, 2, …, n) , 

 

in which the y0, iy , s on the right-hand side are replaced with their values Y, pi , s , resp., in 

equations (15); that replacement is suggested by an overbar on . If we apply the general 

developments of § 1 to the extremal family that was just considered, while employing the identities 

(16) in so doing, then the expression E that is defined by equation (11) will assume the following 

form: 

(17) E = 
0

0

1
( )

n

i i

i h

y p
p

p

=


 −

 



  . 

 If we now assume that one of equations (1) has been solved for 0y  and the value thus-obtained 

is substituted in the remaining equations, by which the system (1) will assume the form: 

 

(1*) 
0 0 0 1 1

0 1 1

( , , , , , , , ) 0,

( , , , , , , , ) 0 ( 1,2, , ),

n n

s n n

y x y y y y y

x y y y y y s r

 



  = − =

  = =
 

 

then, as is easy to see, we will get: 

  
0y




 = 0 , 

and as a result, when we set: 

(18) 0 1 1( , , , , , , , )n nx y y y y y    = 
1

r

s s

s

  
=

+  , 

we will get: 

0

hp

p









 = − 1 1( , , , , , , , )n n

n

x Y y y p p

p




 (h = 1, 2, …, n) . 

 

 If we further consider the fact that the equation 0 = 0 is, on the one hand, true for every 

comparison curve C , but on the other hand, it is also true for every extremal of our family, from 

which the identity will follow that: 

 

p0 =  (x, Y, y1, …, yn, p1, …, pn) , 

 

then we will ultimately arrive at the formula: 
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(19)   

0 1 1 1 1

1 1

1

( , , , , , , , ) ( , , , , , , , )

( , , , , , , , )
( ) .

n n n n

n
n n

h h

h h

E x y y y y y x Y y y p p

x Y y y p p
y p

p

 



=

 = −


− −




  

 

 Since the equations s = 0 are true for all comparison curves C , as well as for all extremals 

of the family, the expression E can also be put into the equivalent form: 

 

(19*)   

0 1 1 1 1

1 1

1

( , , , , , , , ) ( , , , , , , , )

( , , , , , , , )
( ) .

n n n n

n
n n

h h

h h

E x y y y y y x Y y y p p

x Y y y p p
y p

p

 



=

 = −


− −




 

 

 Now, it is clear from the developments in §§ 1 and 2, with no further discussion, that the arc 

01 of the extremal C certainly yields an extremum when, on the one hand, the Jacobian determinant 

(14) is continually non-zero, and on the other hand, the expression E (19) possess a constant sign 

for all comparison curves that come under consideration. Moreover, if equations (1) are assumed 

to be analytic and infinite values of the iy  are excluded, such that the only comparison curves that 

come under consideration are the ones for which the | |iy  all remain below a certain limit then 

continuity considerations will imply, in a known way, that the foregoing sufficient conditions for 

the extremum can also be replaced with the following one: The point on the extremal C that is 

“conjugate” to 0 shall lie beyond 1, and at every point of the arc 01 of the extremal, the expression 

E shall be continually positive or negative without vanishing for arbitrary values of the iy , except 

for the case of “orderly” vanishing (i.e., iy  = pi). For the weak extremum, it is sufficient that the 

latter condition should be fulfilled for only those values of the iy  that deviate from the pi 

sufficiently little. 

 

 

§ 3. 

 

 We now ask about the extent to which the sufficient conditions that were just given are also 

necessary for the presence of an extremum. Since we shall restrict ourselves to the case of n = 1 in 

what follows, we would like to show that, just as is true for the usual problem of the calculus of 

variations, the following conditions are necessary for the presence of a minimum (maximum): 

 

 1. The point that is conjugate to 0 shall not lie in the interior of the arc 01 of the extremal. 

 

 2. One must have E  0 (E  0) at all points of the arc. 

 

 Since we have taken n = 1, only two functions y0, y1 are present here, which we will denote by 

u and y, resp., and they satisfy the equation: 
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(1**)     u  = ( , , , )x u y y   . 

 

The set of all extremals that go through the point 0 and correspond to the initial value u0 define a 

one-parameter family, and we will have: 

 

(15*) u = Y (x, y) , y  = p (x, y) 

 

for every extremal of that family. 

 Formulas (10) and (19) of §§ 1 and 2 assume the form: 

 

(10*)     u1 = 
C

E dx


 , 

(19**)   E = 
( , , , )

( , , , ) ( , , , ) ( )
x Y y p

x u y y x Y y p y p
p


 


 − − −


 , 

 

in which u1 denotes the final value of the function u, and the Jacobian determinant (14) will be 

equal to the derivative of y with respect to the parameter a of the extremal family, which 

immediately explains the fact that the point that is conjugate to 0 is the contact point of the extremal 

C with the envelope of the family of extremals. 

 The proof of the necessity of the first of the conditions that were given 

above will be achieved when one shows that one will arrive at the same 

final value u1 at the point 1 when one employs a path that consists of the 

arc 02 (Fig. 1) of any extremal of the aforementioned family and the path 

21 of the envelope, instead of the extremal C. The validity of that 

assertion will be clear with no further analysis when one imagines that 

one can set: 

u = Y (x, y) 

 

on the arc 21, because under that assumption, on the one hand, the function u will take the same 

value at the point 2 that is does on the extremal 02, but on the other hand, equation (1**) will be 

satisfied. Namely, the replacement of: 

u = Y (x, y) 

in that equation will yield (*): 

(20)     
Y Y

p
x y

 
+

 
 =  (x, Y, y, p) , 

 

and one will see with no further analysis that (20) will be an identity when one writes down 

equation (1**) for the extremal family that was considered above. 

 We now turn to a consideration of the conditions that were given at the beginning of this 

section, and we would like to restrict ourselves to the case of the minimum. (The case of the 

 
 (*) Obviously, the second of equations (15*) will be true on the envelope. 

0 

2 

1 

Figure 1. 
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maximum is resolved analogously.) The usual proof of the necessity of that condition is not 

immediately applicable here, since the extremal family that the foregoing developments are based 

upon depends essentially upon the initial value of the function u. However, if we assume that not 

only the arc 01 of the extremal, but also every segment 03 of that arc, will yield a minimum for 

the value of the function u at its endpoint 3 then it will obviously suffice to carry out the proof for 

the endpoint of the arc 01, and that can proceed as usual. Namely, let E < 0 at the point 1 for any 

value of y , that is, for any line element at the point 1. We then consider a curve that goes through 

the point 1 and whose tangent at that point coincides with the line of the 

line element. Let 2 be a point on that curve (Fig. 2) that is at a 

sufficiently-small distance from the point 1 and whose abscissa is less 

than the abscissa x1 of 1. If we connect that point with the point 0 by an 

extremal of the family that was considered above and employ the line-

path 021 as a comparison curve then E = 0 on 02 and E < on 21, as long 

as the point 2 is chosen to be sufficiently close to the point 1. We accordingly get u1 < 0 from 

formula (10*), which is contrary to the assumption that the extremal 01 should give a minimum. 

 All that remains now is to justify the assumption that we just made about all internal points of 

the extremal arc 01. That will be accomplished as soon as the proof is provided that every internal 

point 3 of the arc 01 will be a “minimal point” when that is the case for the endpoint 1. We call 

the point 3 a minimal point when the extremal arc 03 yields a minimum for the value u0 of the 

function u at the point 3. The validity of the assertion that was made is clear with no further 

discussion for the ordinary problem of the calculus of variations. The proof can be carried out for 

the case of the Mayer problem when one restricts oneself to a weak minimum in perhaps the 

following way: 

 Let 3 (Fig. 3) not be a minimal point. One can then draw a “comparison curve” C in an 

arbitrarily-small neighborhood of the extremal curve 03 such that u3 proves to be negative. The 

absolute value of u3 can then be chosen to be arbitrarily small, 

because u is determined from equation (1**), and according to 

our assumption, the values of y and y  along the curve C deviate 

arbitrarily little from the values of those quantities along the 

extremal arc 03. We now consider any point to the right of 3 

along the extremal arc 01. In order to introduce no new notations, we assume that this point 

coincides with the point 1 in Fig. 3. If we introduce a comparison curve that takes the form of the 

line-path that consists of the curve C and the extremal arc 31 then we can calculate the value of 

the function u that is associated with the point 1 in the following way: Set y and y  equal to their 

values along the extremal 01 in equation (1**) and integrate the differential equation that is 

obtained in that way for a prescribed value 3u  of the function u at the point 3. We will ultimately 

get: 

 

(21) u = 3( , )x u  , 

 

0 

2 

1 

Figure 2. 

C 

0 3 
1 

Figure 3. 
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and the value of u at the point 1 is equal to 1 3( , )x u . If the curve C coincides with the extremal 

arc 03 then 3u  = u3 and  (x1, u3) = u1 . From our assumption,  (x3, u3) equals u3, so the derivative: 

 

3

3

( , )x u

u




 

 

will equal 1 at the point 3. When the point 1 is chosen to be sufficiently close to the point 3, we 

can see with no further analysis that from continuity considerations, that same derivative will be 

positive at that point in any case, and as a result that 1u  = 1 3( , )x u  will increase and decrease 

along with 3u  in the neighborhood of 3u  = u3 . Moreover, since u3 < 0 for the comparison curve 

C, we will also have u1 < 0, and as a result, the point 1 cannot be a minimal point. We have thus 

proved that all points of a certain region to the right of a point that is not a minimal point will 

likewise not be minimal points. When we start from the point 3, such that any point of the 

aforementioned region is employed and the same construction is applied, etc., we will always get 

closer and closer to the endpoint of the extremal arc 01. Now, two cases are conceivable a priori: 

Either we ultimately attain the endpoint of the arc, or we do not go beyond a certain limiting point 

in the interior of the arc. In the first case, the endpoint 1 would not be a minimal point, which 

would be contrary to our assumption, and that would prove the impossibility of the existence of a 

point in the interior of the arc 01 that is not a minimal point. In the second case, the aforementioned 

limiting point would certainly be a minimal point, while none of the points of a certain 

neighborhood to the left of that point would be minimal points. However, such a distribution of 

points is impossible, as will be shown by the following: In fact, let 1 (Fig. 3) be a minimal point 

and let 3 be a point that is not a minimal point, but is chosen to be arbitrarily close to 1. Now 

consider an arbitrary curve C that runs sufficiently close to the extremal and employ a comparison 

curve that takes the form of the line-path that consists of C and the extremal arc 31. From our 

assumption, u1 will certainly prove to be positive for that comparison curve. In order to calculate 

u3 = 3 3u u− , we can proceed as we did above in order to calculate 1u  from 3u , and in that way, 

we will arrive at the result that u3 is positive for every comparison C at the same time as u1, 

which contradicts our assumption that 3 is not a minimal point. 

 The desired proof is complete with that, and the question that was raised at the beginning of 

the section has been resolved, at least for the case of a weak extremum. 

 

 Moscow, 22 May 1905. 

 

_____________ 

 

 


