
“Das Prinzip von Le Chatelier-Braun und die Reciprocitätssätze der Thermodynamik,” Zeit. phys. Chem. 77 (1911), 

227-244. 

 

 

The Le Chatelier-Braun principle and the reciprocity laws of 

thermodynamics 
 

By 

 

P. Ehrenfest 

 

Translated by D. H. Delphenich 

 

(Received on 1-5-11) 

______ 

 

 

Contents 

 
  Page 

§ 1. The usual formulation of the principle…………………………………………………     2 

§ 2. Proof of the invalidity of the usual formulation on the basis of examples………………    3 

§ 3. The proof of the principle that Braun gave……………………………………………    4 

§ 4. The necessity of a precise restriction on the choice of parameters…………………….    5 

§ 5. The usual choice of parameters and their relationship to the Le Chatelier-Braun 

principle……………………………………………………………………………….. 

 

  7 

 

§ 6. The parameter system S, x1, …, xn …………………………………………………….   9 

§ 7. The parameter system T, y1, …, yn …………………………………………………….   9 

§ 8. Introducing the concepts of intensity and quantity parameters………………………… 10 

§ 9. Systematic analysis of the Le Chatelier-Braun principle on the basis of 

thermodynamic reciprocity laws……………………………………………………… 

 

11 

 

§10. Continuation…………………………………………………………………………… 13 

§ 11. Remarks concerning the practical application of the principle, on the one hand, and its 

formulation in lectures, on the other…………………………………………………... 

 

15 

 

 Appendix………………………………………………………………………………. 17 

 

________ 

 



Ehrenfest – The Le Chatelier-Braun principle and the reciprocity laws of thermodynamics. 2 

 

 The following arguments (1) arose from the desire to find a criterion for how one must apply 

the Le Chatelier-Braun principle in each special case in order to arrive at the expected effect with 

the correct sign, and not the opposite one (2). The results that were thus obtained are summarized 

at the conclusion of the present article. 

 

 

 § 1. The usual formulation of the principle (3). –Ordinarily, one puts forth the formulation 

of the principle as something that is illustrated by perhaps the following example: A given quantity 

of an ideal gas is compressed: 

 

 I. Isothermally (i.e., at constant T) while one raises the external pressure by p ; that will 

produce a change in volume of Iv . 

 

 II. Adiabatically (i.e., “T will be left alone”) while one raises the external pressure by p ; that 

will produce a change in volume of IIv . 

 

 The absolute values of the changes | Iv | and | IIv | satisfy the following inequality: 

 

| IIv | < | Iv | .       (1) 

 

 Therefore, the directly-affected parameter exhibits a greater capacity to resist the increase in 

pressure in the second case than it does in the first one. In the second case, the other state parameter 

(T) is, in a sense, an “auxiliary” to the directly-affected one (v). 

 Le Chatelier and Braun have proposed the following general principle as an abstraction of a 

series of concrete examples that all have the same type as the example that was just cited: Let the 

stable equilibrium of a thermal system be determined by arbitrary parameters a, b, c, … One 

further assumes that none of the parameters can change, except for two of them (say,  and ). An 

external cause (the pressure increase p, in the example) influences the parameter  directly (v, in 

the example). The other parameter  (T, in the example) will be fixed in one case (Experiment I), 

while it is free in the other, i.e., “it is left alone” (Experiment II). 

 
 (1) The present treatise appeared in Russian in Autumn 1909: Jour. d. russ. physic. Ges. 41 (1909), 347. At the 

time of its writing (Summer 1909), I was unaware of the paper by C. Raveau [“Les lois du déplacement de l’équilibre 

et le principe de Le Chatelier,” Jour. d. phys. 8 (1909), 572] that had appeared shortly before. That paper has some 

points in common with § 4 of the present paper, but only there. Some other papers have appeared on the Le Chatelier-

Braun principle in recent times, namely: F. Braun, “Über das sogennante Le Chatelier-Braun Prinzip,” Ann. Phy. 

(Leipzig) (4) 32 (1910), 1102; A. Leduc, “Application du principe de Lenz aux phénomènes qui accompagnent la 

charge des condensateurs,” C. R. Acad. Sci. Paris 152 (1911), 313. None of those papers led to a resolution of the 

question. 

 (2) I was led to address that question when V. R. Bursian (a student at the University of St.  

Petersburg, at the time) drew my attention to the fact that the examples that one ordinarily cites as evidence for the Le 

Chatelier-Braun principle exhibit contradictory behavior. 

 (3) Le Chatelier, C. R. Acad. Sci. Paris 99 (1884), 786; ibid., 104 (1887), 679; F. Braun, Zeit. f. phys. Chem. 1 

(1887), 259); Wied. Ann. 33 (1888), 337; W. Nernst, Theoret. Chemie (1898), 611; O. D. Chwolson, Lehrbuch der 

Physik 3, Chap. VIII, § 11, 1905; B. Weinstein, Thermodyn. 1 (1901), 29, “Prinzip der möglichsten Erhaltung des 

Zustands.” 
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 The principle is then stated: 

 

 In the second case, the conjugate parameter  changes in such a way that the (absolute value 

of the) change in the directly-affected parameter  will prove to be smaller than it is in the case 

where  is kept fixed. 

| II | < | I | .       (2) 

 

(I is at constant , while  is “left alone” for II) The “resistance of the system to external 

influences” then increases due to the assistance of the parameter  . 

 Naturally, one recognizes a clear analogy with Lenz’s law of electrodynamics in that principle 

(1). 

 

 

 § 2. Proof of the invalidity of the usual formulation on the basis of examples. – On grounds 

that will be first explained completely later on, it is very easy to give examples in which 

phenomena proceed in strict contradiction to the Le Chatelier-Braun principle. We choose the 

simplest example: Suppose that an elastic rectangular parallelepiped is given: Its state at any time-

point is determined by the following parameters: Temperature T, height x1, width x2, thickness x3. 

Let x3 and T be totally invariable. A force  k strives to increase x1. (x1 is then the directly-affected 

parameter  of the system.) 

 

 Experiment I: The parameter x2 (viz., the width) is kept constant. Let I x1 be the increase in 

height that results from  k . 

 

 Experiment II: The parameter x2 is “left alone.” In that case, k will produce the elongation

II 1x . 

 

 The Le Chatelier-Braun principle states that: 

 

| II x1 | < | I x1 | .       (3) 

 

 In fact, one has precisely the converse: 

 

| II x1 | > | I x1 | .       (4) 

 

 
 (1) While formulating his own principle, Le Chatelier mentioned that G. Lippmann had developed an analogous 

idea in the special case of electrical phenomena. G. Lippmann [“Principe de la conservation de l’électricité,” Ann. 

Chim. Phys. 24 (1881)], in his own right, referred to Lenz in Akad. d. Wiss. zu Petersburg 29.XI.1833, printed in 

Pogg. Ann. 31 (1834), 483. Cf., the almost simultaneous paper of Ritchie, ibidem, pp. 203. The latter got precisely 

the wrong the sign for all cases of induction. Lenz derived his principle in a purely-inductive way, while Ritchie 

deduced his statements from a type of generalized “principle of the equality of action and reaction.” (Ritchie did not 

notice his mistake. It was first pointed out by Poggendorf when he published the papers of Lenz and Ritchie in 

succession.) 
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 This much is known from the elements of the theory of elasticity (1): When the lateral 

dimension x2 is “left alone,” a certain traction will produce a greater elongation of the prism than 

for fixed x2 . Thus, when we apply the terminology that was employed above to the present case, 

we must say: The conjugate parameter x2 will decrease, which will change the “capacity to resist” 

of the directly-affected parameter x1, which is in direct contradiction to the statement of the Le 

Chatelier-Braun principle. 

 Moreover, the majority of examples that Le Chatelier and Braun cited as evidence of their 

principle exhibited basically the same property: In the form that the individual examples were 

presented directly, the principle directly exhibited a contrary behavior, and the examples could be 

made to agree with the principle only by means of a suitable formulation. The reason why virtually 

the majority of examples exhibited that behavior will become understandable later on (end of § 

5)(2). 

 

 

 § 3. The proof of the principle that Braun gave. – Le Chatelier, as well as Braun (in his 

first papers), formulated the principle and applied it with very great success in their experimental 

investigations without seeking to derive that the principle from deeper fundamental laws. It was 

only later that Braun (3) verified that his principle is an immediate consequence of the assumption 

that the equilibrium state in question is stable. 

  One might expect from the outset that a careful analysis of the method of proof must shed some 

light on the question of how the examples that were cited in § 2 can be made to agree with the 

principle. In order to simplify the argument, Braun mainly introduced the following fiction: In 

Experiment II, the new equilibrium state should not be established immediately after the effect of 

the external cause, but by a series of temporally-discrete intermediate states that are also in very 

rapid succession.  The directly-affected parameter  initially changes by itself, i.e., at constant 

parameter . The yields a first change of  : 1 . What then results is a corresponding first change 

in the parameter  : 1 . That change produces a second change in  : 2 , which brings a second 

change in  : 2 , along with it, etc. 

 
 (1) See, e.g., Chwolson, Lehrbuch de Physik 1, Sec. 6. 

 (2) Here, we would like to mention two more examples of other types of applications: 

  a)  The dissociation of iodine vapor. – The temperature is kept constant unconditionally. External influence: 

raising the external pressure by p . Directly-affected parameter (): the volume v. Conjugate parameter (): degree 

of dissociation  . Here, the Le Chatelier-Braun principle then asserts:  changes in such a way that | v | will prove 

to be smaller than the | v | that would occur in the event that one could keep the degree of dissociation  unchanged 

(by some sort of fictitious mechanism). That is because, from the principle, the induced change in the conjugate 

parameter a should indeed raise the “capacity to resist” of the directly-affected parameter v. The principle the demands 

that iodine vapor should react to an increase in the external pressure with an increase in the dissociation (when T is 

kept constant!). Naturally, a decrease in the dissociation occurs in reality (van’t Hoff, 1885). 

  b) The behavior of a two-phase system. – Mass-unit of water: x in its fluid phase, 1 – x in the vapor phase. T is 

kept unconditionally constant. External influence: Raising the external pressure by p :  = v,  = x . The principle 

demands that: x changes in such a way that | v | proves to be smaller than the | v | that would occur in the event that 

one could keep x unchanged (by a fictitious mechanism), because… The principle then demands that the system must 

react to a raising of the external pressure (when the temperature T is kept constant!) with a further evaporation of the 

fluid. Naturally, the opposite thing happens in reality: viz., condensation. For further examples, see Chwolson, 

Lerhbuch der Physik, 3, 476-480. 

 (3) Wied. Ann. 33 (1888), 337.  
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 The gist of the entire proof is then the statement that 2 always has the opposite sign to 1 . 

That is coupled with the following argument: If 2 had the same sign as 1 then the original 

change would increase to the higher value 1 + 2 . Furthermore, 1 would then cause the 

change 3 to again have the same sign as 1 and 2 . In that way, the changes in the variables 

would grow to finite values by themselves, but that would contradict the assumption of a stable 

equilibrium. 

 When we test that argument in the example of the elastic prism, we see immediately that the 

successive changes in the directly-affected parameter x1 all have the same sign, without sacrificing 

stability (1). The proof of the principle that Braun gave is therefore inconclusive. 

 

 

 § 4. The necessity of a precise restriction on the choice of parameter. – When one next 

seeks a new consistent formulation of the principle by a purely-inductive method, one will soon 

feel the lack of a precise statement of it that would infer  and  as state parameters from the 

physical quantities when the principle is applied. In order to explain that remark, we appeal to the 

example that we started with in § 1. 

 Thermal system: an ideal gas. Conjugate phenomena: Expansion by heat, cooling by 

contraction. Initially, four physical state quantities will serve as possible parameters  and  : 

volume v, temperature T, pressure p, entropy S. It is not necessary for our purposes to consider 

other parameters. Eight combinations (, ) are summarized in the following table: 

 

Table 1. 

 

(, ) (v, T) (v, S) (p, T) (p, S) (T, v) (T, p) (S, v) (S, p) 

Given change p p v v S S T T 

Experiment I T = 0 S = 0 T = 0 S = 0 v = 0 p = 0 v = 0 p = 0 

Experiment II S = 0 T = 0 S = 0 T = 0 p = 0 v = 0 p = 0 v = 0 

Resulting 

inequality 

 II v |  

< | I v | 

 II v |  

> | I v | 

 II p |  

> | I p | 

 II p |  

< | I p | 

 II T |  

< | I T | 

 II T |  

> | I T | 

 II S |  

> | I S | 

 II T |  

> | I T | 

 

 Remarks: 

 

 1. One convinces oneself of the validity of the resulting inequalities immediately on the basis 

of the known properties of ideal gases. 

 

 
 (1) Here, one can proceed as follows: First, an elongation x at fixed x2 ; x1 might then experience an increment 

1 1x  = +  . We then fix x1 and leave x2 to itself. x2 will be reduced a little by that: 1 x2 = − q  . If we now again fix 

x2 and leave x1 to itself then x1 will lengthen by 2 x1 = + q2  , etc. All of the successive changes h x1 will have the 

same sign. However, they will define a convergent geometric progression, and as a result one will not get any sort of 

growth to a finite value. 
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 2. “Given change.” As soon as one establishes which of the quantities should serve as the 

directly-affected parameter , it is also clear what sort of “influence” one is speaking of. For 

example, if  is p then the immediate influence on p consists of prescribing the change v in the 

volume. When  = T, the immediate influence on T consists of the addition of a quantity of heat 

Q, or what amounts to the same thing for all reversible changes (and we shall consider only such 

things here), the addition of a quantity of entropy S, etc. 

 

 3. “ kept constant,” “ left alone.” The first expression clearly means:  = 0 . Once we 

have first agreed upon which state quantity should be the one “with a variable parameter ,” it will 

obviously be also established what we would like to regard as Experiment I. – By its very nature, 

the expression “ is left alone” is much less well-defined. In some cases, one can generally use it 

in the sense that is ordinarily implied, e.g., T is left alone means an adiabatic change: S = 0. v is 

left alone means isopiestic change p = 0. In other cases (e.g.,  = S,  = p), all that remains is to 

proceed by analogy with the foregoing cases: S is left alone means T = 0 . p is left alone means 

v = 0 . In any case, the arbitrariness in those interpretations shows how ill-defined that expression 

is, which plays such an essential role in the formulation of the Le Chatelier-Braun principle. 

 

 4. If we understand  to mean the same parameter twice, but while choosing the co-varying 

parameter  to be T in one case and S in the other or v in one case and p in the other then that 

would imply a permutation of the physical senses of Experiments I and II. Naturally (as Table I 

shows), that inversion corresponds to an inversion of the inequality signs for the transitions (v, T) 

→ (v, S), (p, T) → (p, S), (T, v) → (T, p), (S, v) → (S, p) . 

 

 5. If we choose  to mean the same parameter twice but let  go from  = v to  = p or from 

 = T to  = S, respectively, then we will confirm the formal inversion of the inequality sign in 

each case. However, as far as the physical sense of the inequalities that are obtained is concerned, 

we must consider the following: 

 

 a) The inequalities: 

 

| II v | < | I v |  and  | II p | < | I p |     (5) 

 

mean the same thing physically as saying that the “elastic capacity” in Experiment II (if we may 

speak of such a thing) is smaller than it is in Experiment I. 

 

 b) The inequalities: 

 

| II T | < | I T |  and  | II S | < | I S |    (5) 

 

mean one and the same thing physically, namely, that the thermal capacity is greater in Experiment 

II than it is in Experiment I. 
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 6. “Increase in the resistance.” The first of inequalities (5) exhibits the same inequality sign 

as the inequality (a) in § 1, but the second one exhibits the opposite one. If one disregards that then 

one will be forced to interpret both inequalities in the same way, namely: The system in 

Experiment II exhibits a greater resistance than the one on Experiment I. Otherwise, the word 

“resistance” would forfeit any physical sense whatsoever. However, it would then be clear that the 

inequality: 

| II  | < | I  | , 

 

which should, in fact, be always true, from the Le Chatelier-Braun principle, would demand the 

opposite behavior for the system according to whether one had chosen  = v or  = p . Ultimately, 

as far as the inequalities (6) are concerned, it is already entirely arbitrary here what one would like 

to regard as an increased or diminished capacity to resist. 

 

 To recapitulate, one then sees that: When one goes from one choice of parameter (, ) to 

another, one can invert: 

 

 1. The physical sense of what one would like to call Experiment I and Experiment II. 

 

 2. The physical interpretation of the resulting inequality sign in the sense of increasing or 

decreasing “capacity to resist” in Experiment II. Thus, if a generally-valid formulation of the Le 

Chatelier-Braun principle is to be possible at all then it would not be possible without a precise 

choice of the system of parameters. Since Braun did not impose such a restriction on the choice 

of parameters in his proof, that would exclude the possibility that his proof could lead to that 

objective. 

 

 

 § 5. The usual choice of parameter and its relationship to the Le Chatelier-Braun 

principle. – For the sake of convenience of measurement, the following quantities will first serve 

as the state parameters for the elastic prism that was considered in § 2: T, x1, x2, x3 . From an 

energetic standpoint, the quantities x1, x2, x3 possess the following peculiarity: If all of the 

quantities x remain constant (for an arbitrarily-varying T) then no exchange of work between the 

given system and external world will result. 

 Let y1, y2, y3 be the forces that seek to increase the dimensions x1, x2, x3 of the elastic prism (for 

a certain state of compression). The system of parameters T, y1, y2, y3 would already no longer 

obey the energy constraint: When T varies at constant y1, y2, y3, the dimensions x1, x2, x3 will vary 

as a result, and the principle will then imply that work is done. One can also define the quantities 

y1, y2, y3 to be the coefficients of x1, x2, x3 in the expression for the infinitely-small amount of 

work that is done by the system: 

A = y1 x1 + y2 x2 + y3 x3 . 

 

 According to experiments (!), in order to characterize the equilibrium state of any thermal 

system, one can choose the T, along with those state parameters x1, …, xn that possess the 
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aforementioned energetic property (1). in what follows, we will apply the notation x1, x2, …, xn to 

those parameters with that character exclusively. The infinitely-small amount of work that the 

system performs when one goes from the state T, x1, …, xn to the state T + dT, x1 + dx1, …, xn + 

dxn will then be expressed by the formula: 

 

dA = 
h hy dx , 

 

which includes no term of the form  dT . The quantities y1, …, yn are the generalization of the 

forces y1, y2, y3 in the case of the elastic prism (and the pressure in the case of gases). One can 

probably say that, in general, thermodynamic investigations will employ precisely the system of 

parameters T, x1, …, xn most often, but in each case they will serve as the initial system. 

 The resulting inequalities are summarized in the following table for the three typical 

combinations (, ) that are possible for the aforementioned choice of parameters. 

 

Table 2. 

 

(, ) (xh, T) (T, xk) (xh, xk) 

Given change 

Experiment I 

Experiment II 

Resulting inequality 

yh 

T = 0 

S = 0 

| II xh |  | I xh | 

S 

xk = 0 

yk = 0 

| II T |  | I T | 

yh 

xk = 0 

yk = 0 

| II xh |  | I xh | 

 

 Remarks: 

 

 1. Later on, we will show that the cited inequalities can prove to be entirely general. For the 

moment, it will suffice to test them in the individual examples, e.g., in the case of an elastic prism. 

 

 2. The third inequality has the opposite sign to the inequality () in § 1 (†). When we let h 

and k run through all values from 1 to n, we will get n (n – 1) different cases of that inequality. 

 

 3. The first and second inequalities agree with the inequality () in § 1, as far as their senses 

of direction are concerned. They represent 2n cases. 

 

 4. As far as the interpretation of the various inequalities in the sense of “increased resistance” 

is concerned, one can confer Remark 6 concerning Table 1. 

 

 
 (1) Helmholtz: “Die Thermodynamische-chemische Vorgänge,” (1882) (Ostwalds Klassiker, no. 124, or Ges. 

Abh. III, pp. 958.) in “Nachträgliche Zusatz.” – H. A. Lorentz (Ges. Abh.) “Über den II. Hd S,” § 11. 

 (†) Translator: I did not find the inequality () in the original; I suspect it refers to equation (1). 
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 We can then say that for the most common choice of parameter, namely, the choice T, x1, …, 

xn, the inequality (a) in § 1 will be fulfilled in only 2n cases, whereas the opposite inequality sign 

will obtain in n (n – 1) cases. Agreement is always present only for n = 1. 

 

 

 § 6. The parameter system S, x1, …, xn . – If we recall the remarks concerning Tables 1 and 

2 then we will, with no further discussion, be in a position to select system of parameters such that 

all of the resulting inequalities already exhibit one and the same sense of direction. We would first 

like to consider the parameter system S, x1, x2, …, xn . The corresponding Table looks like: 

 

Table 3. 

 

(, ) (xh, S) (S, xk) (xh, xk) 

Given change 

Experiment I 

Experiment II 

Resulting inequality 

yh 

S = 0 

T = 0 

| II xh |  | I xh | 

T 

xk = 0 

yk = 0 

| II S |  | I S | 

yh 

xk = 0 

yk = 0 

| II xh |  | I xh | 

 

 Remarks: 

 

 1. Those three types of inequalities collectively represent 2n + n (n – 1) cases. They all have 

the opposite sense of direction to the inequality () in § 1. 

 

 2. If we recall the example of the elastic prism [n = 3, 2n + n (n – 1) = 12] then we can 

formulate the physical sense of the twelve inequalities that are obtained as follows: For the choice 

of parameter system S, x1, x2, …, xn, Experiment II corresponds to a greater thermal (elastic, resp.) 

capacity than Experiment I in all twelve cases. 

 

 

 § 7. The parameter system T, y1, y2, …, yn . – One finds the resulting inequalities for that 

choice of parameters in the following table: 
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Table 4. 

 

(, ) (yh, T) (S, yk) (yh, yk) 

Given change 

Experiment I 

Experiment II 

Resulting inequality 

xh 

T = 0 

S = 0 

| II yh |  | I yh | 

S 

yk = 0 

xk = 0 

| II T |  | I T | 

xh 

yk = 0 

xk = 0 

| II yh |  | I yh | 

 

 Remarks: 

 

 1. Just as in Table 3, all inequalities have the opposite signs to the inequality (a) in § 1. 

 

 2. If we recall the example of the elastic prism then we can formulate the physical content of 

the resulting twelve inequalities as follows: For a choice of the parameter system T, y1, …, yn , 

Experiment II will correspond to a smaller thermal (elastic, resp.) capacity then in Experiment I 

in all twelve cases. 

 

 The apparent contradiction between that result and the result of § 6 will disappear when one 

observes that Experiment I will go to Experiment II and Experiment II will go to Experiment I 

under the transition from S, x1, …, xn to T, y1, …, yn . 

 

 

 § 8. Introducing the concepts of intensity and quantity parameters. – The results of the 

last three paragraphs can be easily summarized with the help of the Mach-Helm-Ostwald 

distinction between “intensity” and “quantity” parameters (1). I could not find any satisfactory 

definitions of those concepts in the literature, nor could I come up with ones. For that reason, we 

must perhaps restrict ourselves to characterizing those concepts by examples in the usual way. 

Examples of intensity parameters are pressure, elastic forces (viz., stress), the capillarity constant, 

the potential in a conductor, the electromotive force in an element, and osmotic pressure. Examples 

of quantity parameters are volume, deformation (strain), surface area, quantity of electricity, the 

time integral of current, concentration. 

 To the extent that the concepts of intensity and quantity parameters are defined by those 

examples at all, one can also classify the parameters x1, …, xn and y1, …, yn that were mentioned 

in 5, the former as quantity parameters and the latter as intensity parameters. In addition, T 

naturally belongs to the intensities, while S belongs to the quantities. In that way, the three 

parameter systems that were considered up to now can be characterized as follows: 

 

  S, x1, …, xn system of pure quantities, 

 
 (1) G. Helm, Energetik, Leipzig, 1898, pp. 266.  
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  T, y1, …, yn system of pure intensities, 

  T, x1, …, xn mixed system. 

 

The resulting inequalities always have one and the same sense of direction for the two pure 

systems. For the mixed parameter system, the combinations (T, xk) and (xh, T) will yield one sense 

of direction and the combinations (xh, xk) will yield the opposite one. 

 

 

 § 9. Systematic analysis of the Le Chatelier-Braun principle on the grounds of the 

thermodynamic reciprocity laws. – Whereas we have proceeded inductively up to now, we 

would now like to prove the statements that were achieved on the basis of the first two laws of 

thermodynamics and generalize them. Our path will first lead us to the reciprocity laws of 

thermodynamics (1). 

 Let: 

A = 
1

n

h h

h

y x
=

       (7) 

 

be the work that thermal system performs under an infinitely-small change of state and let Q be 

the amount of heat that it receives in so doing. If U is the energy and S is the entropy of the system 

then: 

(First fundamental law) U = Q – A,    (8) 

 

(Second fundamental law) Q = T S .    (9) 

Hence, from (7), (8), (9): 

U = T S − 
1

n

h h

h

y x
=

 .     (10) 

 

The aforementioned reciprocity laws will be derived from the requirement that U must be a 

complete differential: 

h

T

x




 = − hy

S




,  h

k

y

x




 = k

h

y

x




.      (11) 

 

For the sake of what follows, we likewise add the inequalities: 

 

T

S




  0, k

h

y

x




 0,      (12) 

 

 
 (1) See, e.g., Enzykl. d. math. Wiss., v. 3, Bryan, Thermodynamik. 
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which one obtains (1) when one imposes the demand that the equilibrium in question should not 

be labile (so it will be stable, or at least indifferent). The relations (11), (12) then take on a much 

clearer appearance when one sets (2): 

x0 = − S ,      (13) 

y0 = + T .      (14) 

 

(10), (11), (12) can then be written as follows: 

 

0

0 1

,

Parameter
,

, , ,

0 .

n

h h

h

h k

n k h

h

h

U y x

y y

x x x x x

y

x

 
=


= −


  

=
 

 






     

(A)

(B)

(C)

 

 

It will then be easy to go over to the other parameters. One first takes the parameters to be y0 (= 

T), y1, …, yn (
3): 

0 0

0 1

,

Parameter
,

, , ,

0 .

n n

h h h h

h h

h k

n k h

h

h

U y x x y

y y

y y y x x

y

x

 
= =

  
+ =  

 
  

=
 

 




 

   

(A )

(B )

(C )







 

 

Finally, we would also like to consider the most general case of a mixed system: The case in which 

the parameter is taken to be any t of the quantities y and those (n + 1 – t) quantities x for which the 

remaining sy  are coefficients in the expression for A. We would like to denote the former of 

those quantities by 1, 2, …, t and the latter by xt+1 , …, xn+1 , in which the indices might have 

an entirely different meaning from what they had in the previously-considered cases. We then get: 

 
 (1) The first inequality says that the temperature does not drop in any case when one adds heat to the body while 

sx   is held constant. The second inequality says that the force y that seeks to increase x will decrease, or at least remain 

constant when x increases. 

 (2) The generally-accepted method for defining heat lost and work done by the body is inconsistent and is probably 

explained historically only by the origins of thermodynamics in mechanical engineering. The conventions (13), (14) 

compensate for that inconsistency and, at the same time, allow it to emerge that entropy is a quantity, while temperature 

is an intensity. 

 (3) The transition from (A) to (A) and then to (A) is the same as the (Legendre) contact transformation by which 

one goes from the Lagrangian to the Hamiltonian equations in mechanics. 
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( )
1

1 1

Parameter ,

, ,
, , ,

, ,

0; 0,

r r h h

r r r r h h

t
s h h kr r

t n s r h r k h

hr

r h

A y x

U y x

y y y

x x x x x

y

x

   

     

   

  





+ +

 = +


 + = −

     

= = − =
     

 
 

 

 

  
   

(4 )

(A )

(B )

(C )









 

 

 Remarks: 

 

 1. Depending upon one’s choice of parameters, the thermodynamic potential will be replaced 

with one of the following functions: 

 

U,      U + 
0

n

h h

h

y x
=

 ,      U + 
0

t

r r

r

 
=

 . 

 

The reciprocity laws (B), (B), (B) are the necessary and sufficient conditions for their existence. 

 

 2. It is worth noticing that the right-hand and left-hand sides in the middle of equations (B) 

have opposite signs. 

 

 

 § 10. Continuation. – With the help of the notations (13), (14), the entirely of Table 3 can be 

reduced to its last column, except that h must run from 0 to n + 1. In that way, the resulting 

inequalities in Table 3 will take on a unified appearance, namely: 

 

| II xh |  | I xh |  (h = 0, 1, …, u) .   [xh , xk] 

 

In a completely analogous way, the inequalities in Table 4 can be represented in the unified form: 

 

| II yh |  | I yh |  (h = 0, 1, …, u) .   [yh , yk] 

 

We would like to derive the inequalities that are given in the tables from the relations (A), (B) 

[(A), (B), resp.] in that formulation. 

 

Parameters x0 , x1 , …, xn .  

 

 Set: 

h

k

y

x




 = phk ,      (15) 
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to abbreviate. One will then have: 

 

 For Experiment I: yh = phh I xh , (16) 

 

 For Experiment II: 
II II

II II

,

0 .

h hh h hk k

kh h kk k

y p x p x

p x p x

  

 

= +


= +
 

(17)

(18)
 

 

 In that way, yh is the “given change” in (16) and (17), and equation (18) formulates the 

requirement that one should have yh = 0 in Experiment II (i.e., xk should be “left alone”). 

 We will obtain the following relations between I xh and II xh from (16), (17), (18) when we 

eliminate yh and II xk from them: 

 

II xh  (phh pkk – pkh phk) = phh pkk  I xh .    (19) 

 

 With the use of (B) and (C): 

phh pkk > 0 ,      (20) 

 

phh pkk = 2

hkp  = 2

khp  > 0 .     (21) 

 It will follow that: 

| phh pkk – pkh phk |  | phh pkk | ,     (22) 

moreover. 

 If we take the absolute values of both sides of equation (19) then that will imply the validity 

of the inequality [xh, xk], when we consider the relation (22). 

 

Parameters y0 , y1 , …, yn .  

 

 In a completely analogous way, when one employs the abbreviation: 

 

h

k

x

y




= qhk ,      (15) 

one will have: 

 

 For Experiment I: xh = qhh I yh ,  (16) 

 

 For Experiment II: 
II II

II II

,

0 ,

h hh h hk k

kh h kk k

x q y q y

q y q y

  

 

= +


= +
 

(17 )

(18 )




 

 

II yh  (qhh qkk – qkh qhk) = I yh   qhh qkk .    (19) 

 

 From (A) and (B), one has: 
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qhh qkk > 0 ,      (20) 

 

qhh qkk = 2

hkq  = 2

khq  > 0 ,     (21) 

and therefore: 

| qhh qkk – qkh qhk |  | qhh qkk | .     (22) 

 

 If we take the absolute values of both sides of equation (19) and consider (22) then we will 

verify the inequalities [yh, yk] . 

 

Parameters 1, …, t , xt+1 , … xn+1 . 

 

 Four combinations of (, ) are possible here: [r , s] , [r , xk] , [xh , s] , [xh , xk] . If we 

proceed here in precisely the same way that we did in the other two cases then we will easily obtain 

the desired inequalities from (A) and (B). However, we must now consider the fact that the right-

hand and left-hand sides of the middle inequality in (B) possess opposite signs. In that way, we 

will get the following inequalities for the four typical cases: 

 

  | II r |  | I r | ,  [r , s] , 

  | II r |  | I r | ,  [r , xk] , 

  | II xh |  | I xh | ,  [xh , r] , 

  | II xh |  | I xh | ,  [xh , xk] . 

 

 The inequalities that belong to one of the “mixed” types (y, x), (x, y) have the same signs as 

the inequality () in § 1. 

 However, the inequalities that belong to one of the “pure” types (y, y), (x, x) have the opposite 

sign to the inequality () in § 1. 

 In the cases (y, y) and (x, y), the directly-affected parameter will show a higher capacity to 

resist in Experiment II, while in the cases (y, x) and (x, x), it will show a reduced capacity to resist 

(cf., the remarks following Table 2). 

 

 

 § 11. Remarks concerning the practical application of the principle, on the one hand, and 

its formulation in lectures, on the other. – The results to which we arrived in §§ 2-5 seem to 

contradict the largely-undisputed fact that the Le Chatelier-Braun principle has quite often 

proved to be a useful guide for the teaching of reciprocity effects: Since the direction of the 

resulting inequality depends upon the random choice of the (, ) type and both directions of the 

inequalities already enter into the most common parameter system (T, x1, …, xn), one might often 

obtain the wrong sign in practical applications of the principle. 

 A remarkable observation will give us the solution to that apparent paradox: In the cases of 

practical applications, one never uses the principle in its abstract formulation, but one can only 

infer a certain type of comparison from it. One solves the new cases by analogy with the old and 

well-known ones. In that way, one instinctively juxtaposes the type (, ) in the new case being 
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investigated with the analogous type (, ) of an already-known case, e.g. the type (T, x) with the 

same type (T, x). One never considers the intuitive conflict between y and x . In that way, one will 

get the correct sense of direction for the resulting inequality in the new case without fail and not 

once remark that it will change when one goes from one type (, ) to another. That is, in 

Experiment II, the old case, as well as the new one, will exhibit an increased “capacity to resist” 

in one case and an increased “adaptability” in the other, and both types of behavior cannot be given 

a common abstract formulation with no further analysis. 

 Things are completely different when it is precisely the abstract formulation that is at the 

forefront of interest, such as, e.g., in the theoretical treatment of the principle in a textbook or 

lecture: It will then seem that none of the known formulations of the principle really work. Neither 

the proof of the principle of action and reaction (Nernst), nor the plausibility of a “principle of the 

most possible conservation of the state” (Weinstein), nor the “accommodation capacity” 

(Chwolson) that are generally observed in nature will achieve that goal. 

 But is it even necessary to bother with a flawless formulation of that principle? In any event, 

one can achieve that only with great complexity when one, above all, separates intensity 

parameters from quantity parameters (1). However, when one has already made that decision, one 

can immediately introduce the reciprocity laws (2), which indeed express quantitatively what the 

Le Chatelier-Braun principle describes only qualitatively in the best of cases. 

 However, the meaning of this principle as the guiding principle for the experimental 

investigations of reciprocal effects and the corresponding education of our imagination perhaps 

lies, at least in part, in the flexibility of its formulation: If we are to make a concrete, and for that 

reason fruitful, comparison of each new case with a suitably-chosen old case then it will be 

necessary for us to resort to it, which could not happen with a consistent formulation of the 

principle. The true gist of the principle lies in the fact that each new (, ) case must actually 

always behave like the older (, ) case of the same type. For a long time now, the Le Chatelier-

Braun principle has not been a rule that is applied like a template, but still leaves one thing to be 

discovered in each case: the true sign of the inequality! 

 

  

 
 (1) In order to do that, one would, above all, allow only (y, y) or (x, x) types consistently. However, since x0 

(entropy, taken negatively) can hardly be chosen to be a state parameter, instead of y0 (= T), as a rule, that would 

already recommend that one should consistently base (, ) upon the (y, y) type. One would thus come to the following 

formulation: Let a stable or indifferent equilibrium of a thermal system be established by the value of the (n + 1)-

intensity parameter y0 (= T). All y except yh and yk might be kept unconditionally constant. The quantity xh that belongs 

to the intensity yh is given a certain change xh . yh is then the directly-affected intensity. In that way, the intensity yk 

will be fixed the one time (Experiment I: yk = 0) and left alone the other time (Experiment II: xh = 0). The principle 

then states that one has, without exception: 

| II yh |  | I yh | . 

 

The physical sense of that inequality is a raised capacity to resist in the hth degree of freedom in Experiment II. I 

mention that formulation only to show how complicated it proves to be. 

 (2) One notes how simple the form is that they assume when one introduces the notations (13), (14); cf., (B) with 

(11).  
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Appendix 

 

 1. The distinction between intensity and quantity parameters yh (xh , resp.) that is so 

fundamental in thermodynamics requires an axiomatic treatment, perhaps in the way that C. 

Caratheodory (1) has recently contributed for the definition of other thermodynamic concepts. 

 

 2. The calculations that were developed in § 9 and § 10 can be adapted directly to the 

electrodynamics of quasi-stationary currents. The electromagnetic energy will then enter in place 

of u. The current strengths ih are to be treated as intensities yh , while the role of the xh will be taken 

on by the corresponding “electro-kinetic moments” sh . One will arrive at an analysis of Lenz’s 

law in that way. – In just the same way, one can go over to the reciprocity laws that Helmholtz 

defined for cyclic systems (2). 

 

 3. All of those developments rest upon the existence of corresponding potential functions. 

However, there also seem to exist reciprocity effects that are essentially coupled with irreversible 

processes (cf., some examples of them in the C. R. note of Le Chatelier). They can hardly be 

required by the existence of corresponding potential functions. For that reason, I have emphasized 

the fact that our methods of investigation are in no position to classify such reciprocity effects and 

give them a foundation with no further analysis. 

 

 St. Petersburg, the 8-21 April 1911. 

 

__________ 

 
 (1) Math. Ann. 67 (1909), 355-386, “Untersuchungen über die Grundlagen der Thermodynamik.”  

 (2) Helmholtz, “The physikalische Bedeutung des Prinzips der kleinsten Wirkung,” § 4 in Ges. Abh. III, pp. 231. 

Hertz, Mechanik, § 568, et seq. (includes an error). J. J. Thomson, Anwendung der Dynamik auf Physik und Chemie, 

pp. 98, et seq. 


