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 Why does our space have exactly three dimensions? (1), or in other words: “What singular (2) 

phenomena distinguish the physics of R3 from the ones in the other Rn?” When posed in that way, 

the questions are perhaps meaningless, but in any event they need to be critiqued. What “is” space? 

“Is” it three-dimensional? Finally, there is the question of “why,” as well as what must one 

understand the concept of “the” physics of R4 or Rn to mean? 

  I will not attempt to give those questions a less-objectionable form. If I can only succeed in 

discovering more and more singular properties of R3 then it will ultimately become intrinsically 

clear what “reasonable” question will lead to the answer that was found already. 

 

 

§ 1. – Gravity and planetary motion. 

 

 As far as the motion of a planet around a central body is concerned, one can establish that a 

characteristic difference between R3 and R2, on the one hand, and all higher Rn, on the other, 

consists of the stability of the circular orbit. Whereas the motion in R3 remains finite under a 

perturbation when the energy is not too big (and that is the case in R2 even for arbitrary finite 

amounts of energy), in R4, R5, R6, etc., it is natural that the circular orbits will also still be possible, 

but under any ever-so-small perturbation, the planet will follow a spiral that goes into the central 

body or out to infinity. 

 We let the law of attraction in Rn take the form 
1n

M m

r


−
. For n > 2, that will belong to a potential 

energy: 

 
 (1) Abstracted from the treatise of the same name in Versl. d. Akad. van Wetensch. te Amsterdam 26 (1910), pp. 

105. (Session on 26. V. 1917) = Proceedings 20, pp. 200. – The interesting remark that H. Weyl made briefly about 

the four-dimensionality of the spacetime manifold [“Gravitation und Elektrizität,” Sitz. preuss. Akad. 26 (1918), pp. 

474, top. “Neue Erweitung der Relativitätstheorie,” Ann. Phys. 59 (1919), pp. 133, middle.] prompted me to 

summarize my own remarks here once more, although I an aware that they are very elementary and when taken 

individually, they are mostly well-known. However, I still hope that perhaps others will be inspired to contribute richer 

and better material to this fascinating question. 

 (2) Cf., on this, “Concluding remark 1.”  
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(1)     V (r) = − 
2( 2) n

M m

n r


−−
. 

 

Naturally, that corresponds to the assumptions that: 

 

 a) The force points towards the center and is a function of only r. 

 

 b) Gauss’s theorem on the flux of the lines of force shall also be true for gravity in Rn . 

 

 One will then get the equations of motion: 

 

  
2

2

hd x
m

dt
 = − 

1

h

n

xM m

r r


−
 = − 

h

V

x




  (h = 1, …, n). 

 

The path is planar. Introducing the polar coordinates r,  will give the laws of energy and areas: 

 
2 2 21

2
( ) ( )m r r V r+ +  = E , 

2m r   =  . 

Eliminating   gives: 

(2)    r  = 
2

2 2

2 2E V

m m m r


− −  = 2 4 21 nAr B r C

r

−+ − , 

 

in which A, B, C are constants, the first and last of which depend upon the initial data of the motion, 

to the extent that they include the total energy E and the constant  in the law of areas. In order 

for r to oscillate back and forth between two positive values during the motion, it is necessary that 

r  must be real and alternately assume positive and negative values, so the quantity under the 

radical must be positive between two values of r for which it is zero. The geometric discussion of 

the case in which that happens will be easy when one draws the curves y = 2Ar  and y = 4 nB r − , 

sketches out the total curve, and checks whether it can be cut out from y = 2c  (1). The case of n = 

2 can also be treated analogously, but (1) must be replaced with: 

 

(1)      V =  M m ln r , 

 

so (2) is replaced with: 

(2)     r  = 2 2 21
lnr r r

r
  − − , 

in which: 

 = 
2 E

m
,  = 2k M , 

2  = 
2

2m


. 

 
 (1) Cf., the figures in Konikl. Akad. van Wetensch. Amsterdam, loc. cit., “Aanhangsel I.”  
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 The result of the discussion is: 

 

 

n 

 

Circular orbits 

 

Motions between two 

positive values of r 

 

 

Motion to infinity 

 

4, 5, … 

 

3 

2 

 

unstable 

stable 

 

stable 

 

impossible! 

possible 

[closed orbit] 
 

possible 

[open orbit] 

 

possible 

 

possible 

 

possible! 

 

 Remarks: 

 

 1. Let us take this opportunity to recall the theorem of J. Bertrand (1873) (1): The orbits of 

a material point that are described under the influence of a central force that is a function of only 

distance will be closed only when the force is either proportional to the distance or inversely 

proportional to the square of the distance. 

 

 2. It is remarkable that the motions of planets correspond to elliptic ones that are also closed 

in non-Euclidian R3 as long as one simultaneously adapts only the equations of mechanics and the 

law of attraction to that space (2). 

 

 3. Naturally, one can also ask what the Bohr atomic model will become in Rn for n  3. If one 

modifies the law of electrical attraction in the same way that one did for gravity and preserves: 

 

 a) The quantization of angular momenta, 

 

 b) The Ansatz  = ( ) /E E h −  

 

then one will soon see how sharply the Bohr model is suited to R3 precisely: For n = 4, one will 

get a very bad degeneracy (3). For n = 2, one gets a spectral series with an accumulation point at 

infinity, since infinite energy is indeed necessary in order to move the electron to infinity in R2 . 

Naturally, for n > 4, one needs at most the circular orbits, above all. In contrast to R3, the orbits of 

increasing quantum numbers will always lie denser and denser around the nucleus, and as a result, 

the spectral series will again have its accumulation point at infinity (4). 

 

 
 (1) J. Bertrand, C. R. Acad. Sci. 77 (1873), pp. 846. 

 (2) H. Liebmann, Nichteukl. Geometrie, (Sammlung Schubert, 2nd ed., 1912, pp. 207)  

 (3) Loc. cit., “Aanhangsel II.” 

 (4) Loc. cit., ibidem.  
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§ 2. – Duality between electric and magnetic fields in R3 . 

 

 In Rn, the electric field is determined by n components, while the magnetic is characterized by 

( 1) / 2n n−  of them. It is only for n = 3 that those two numbers coincide, and that is why the far-

reaching duality exists between the two fields. 

 In fact, let x1, …, xn, and x0 = i c t be the n + 1 coordinates of the spacetime manifold, and let 

0, 1, …, n be the components of the retarded potential (which corresponds to the four-potential 

in the theory of relativity that corresponds to R3). The n (n – 1) / 2 components of the rotation: 

 

  h k

k hx x

  
−

 
  (h, k = 1, …, n) 

 

correspond to the magnetic field, and the n components: 

 

  0

0

h

hx x

  
−

 
  (h = 1, …, n) 

correspond to the electric field. 

 It is known that the force-rotational moment is analogous to the translational-angular velocity. 
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§ 2. – The propagation of waves in Rn . 

 

 The solutions of the differential equation: 

 
2 2

2 2 2
1

1 n

h hc t x

 

=

 
−

 
  = 0 

 

have the following property in x for n = 3: If one has  = 0 and  / t = 0 everywhere outside of 

a small region  at the moment t = 0 then one will still have  = 0 and  / t = 0 everywhere 

outside of a thin shell between two surfaces (cf., Figure) at every later moment t (but only when it 

is not taken to be too small), and in the event that  is sufficiently small, that shell will approach 

two concentric spheres around . 

 It is known (1) that things are different in R2 : For the propagation of waves on a membrane, 

one has not only a perturbation in the ring that corresponds to II, but also a (weaker) perturbation 

in the entire interior region III. 

 All R2n+1 behave like R3 in that regard, while all R2n behave analogously to R2. (One therefore 

cannot apply Huygens’s principle in the latter case.) (2 and 3) However, among the R2n+1, R3 is 

distinguished by a peculiarity that will become obvious when one calculates the retarded potential 

(4), i.e., the integral of the differential equation: 

 
2 2

2 2 2
1

1 n

h hc t x

 

=

 
−

 
  =  . 

 For R3, one gets: 

  = 
3

1 [ ]
d

c r




+

−

   . 

 For R5 : 

   = 
3 2

5

1

1 [ ]

3

c t
d

c r r






+

−

   
    + 
 
  

     . 

 For R7 : 

 
 (1) Cf., e.g., Rayleigh, Theory of Sound, Chap. XIV, § 275.  

 (2) Cf., Duhem, Hydrodynamique, T. I, Paris, Hermann. Volterra, Acta Math. (1894). Hadamard, Bull. soc. 

Franç. de phys. (1906). (Other literature is found there, including the older work of Hadamard.) Acta math. 31 (1908), 

pp. 333. Leç. sur la prop. des Ondes, Paris, Hermann, 1903, Chap. VII, § 3. 

 (3) That fact is related to the following computational fact: The formula for the volume of a ball in Rp includes the 

number  to the same power n for p = 2n and p = 2n + 1. The analytical relationship between the two facts will become 

clear when one integrates the wave equation, e.g., with the help of Fourier integrals. One ultimately comes to an 

integral over the (p – 1)th power of an expression in a square root. The integrand will then be rational when p = 2n + 

1 and irrational when p = 2n. The same thing happens when one calculates the volume of the sphere. 

 (4) Cf., loc. cit., Aanhangsel IV, for a simple derivation of the solutions for R2n+1 .  
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 = 

2

2

5 4 2 3

7

1 [ ] 1 1

5

tt
d

c r c r c r






+

−

   
        + + 
 
  

  . 

 In that: 

c3 = 4  , c5 = 28

3
 , c7 = 311

15
   

 

are the areas of the unit spheres in R3, R5, R7, resp., and the symbols: 

 

[],       
t

 
  

,      
2

2t

 
 
 

 

 

mean that one must take the values at time t – v / c (the “retarded” value). One sees that: In contrast 

to R3, the retarded potentials in R5 and R7, etc., will be determined by not only , but also by its 

differential quotients with respect to time. Therefore, one must note that for large values of r, so 

for actual radiation, one will arrive at just the highest differential quotient of , since it is divided 

by the smallest power of r. An “electron” with a sharply-bounded charge would then radiate fields 

with higher singularities in R5, R7, … as a result of its motion! 

 

 Concluding remarks: 

 

 1. Here, we have considered only those relationships for which the R3 will assume a singular 

position in comparison to the other Rn . Above and beyond that, it is naturally quite often instructive 

to clarify how it is that the triple of dimensions can affect so many things in physics without the 

transition from Rn to R3 exhibiting any definitive singular behavior: For example, one has to replace 

the 4 in the radiation law of Stefan-Boltzmann and the 3 in the displacement law of W. Wien: 
3 ( / )f T  =  with (n + 1) and n, resp., in Rn . The ratio of specific heats of monoatomic gases 

cp / cv = 2
3

1  must be replaced with 1 + 2/n, etc. 

 

 2. One might be compelled to ask tentatively about whether connection to the three-

dimensionality of space (or the four-dimensionality of spacetime) exists for any universal constant 

that appears in physics and is independent of the units of measurement. One might ponder, e.g., 

the role of the number 8 (and 10?) in the periodic table of the elements [cf., Born’s “cubic atomic 

model” (1)] and the exponent 2 in the Balmer formula. 

 

 3. However, yet another whole number intervenes in any triangle in physics: viz., the 

exponent “two” in the Pythagorean theorem. In other words: The homogeneous quadratic metric: 
 

 
 (1) Verh. d. Deutsch. phys. Ges. 20 (1918), pp. 230.  
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2ds  = hk h k

h k

g dx dx  

 

has an overarching significance compared to all other homogeneous forms. Can one not say 

anything further about the fact that one uses two? 

 

 Leiden, August 1919. 

 
(Received 31 august 1919) 
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