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 This presentation constitutes only an introduction to the study of infinitesimal 
structures that I would like to develop, along with its applications.  Since 1951, I have 
presented these notions and their applications in my course at Strasbourg and Rio de 
Janeiro, as well as in a series of conferences that were given, for example, in Bologna, 
Pisa, Southampton, Leeds, Manchester, and Louvain, but I have published only very brief 
summaries on this subject. (*) 
 At the International Colloquium on Differential Geometry in Strasbourg, I briefly 
indicated the following applications (which will be developed in another article): 
 The notion of a system of partial differential equations is generalized by the given of 
a subset φ in Jr(Vn, Vm) or a manifold that is embedded in or extracted from Jr(Vn, Vm).  
One may define the prolongation of such a system.  One is then led to the notion of a 
complete pseudogroup of transformations of order r, which, in the analytic case, gives the 
notion of Lie pseudogroup: Its associated groupoid is then an analytic submanifold of 
Πr(Vn).  One has the definition of a pure infinitesimal structure (a notion that generalizes 
that of geometric object) and a regular infinitesimal structure.  The pseudogroup of local 
automorphisms of such a structure is complete of order r.  Its determination leads to the 
problem of generalized Cartan equivalence.  Any complete Lie pseudogroup of order r 
has a prolongation that forms a complete Lie pseudogroup of first order.  One can define 
Lie pseudogroups of finite type k: The associated groupoid of order k is isomorphic to the 
associated groupoid of order k – 1.  The LIE GROUPS are of finite type.  One can define 
infinitesimal transformations.  A pseudogroup of transformations of finite type on a 
simply-connected, compact manifold is deduced, by localization, from a Lie GROUP of 
transformations that is defined on Vn . 
 
 1.  The notion of local jet. – Let one be given a map f from a set U onto a set f(U), 
and call U the source of f, while f(U) is the target of f.  Let one be given three sets E, E′, 

                                                
 (*) References: 

1.  “Les prolongements d’une variété différentiable” (Atti del IV Congresso I. M. I., Taormina, 1951). 
2.  “Les prolongements d’une variété différentiable” (Comtpes rendus Acad. Sciences 233 (1951), 

598, 777, 1081; ibid. 234 (1952), 1028, 1424. 
3.  “Structures locales et structures infinitésimales” (Comptes rendus 234 (1952), pp. 587). 
4. “Structures locales” (Conference polycopies from Rome, 1952, to appear in the Annali di 

Matematica, 1953). 
5.  Polycopied notes from a course in Rio de Janeiro, 1952). 
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E″, and let f be a map with source A ⊂ E and target B ⊂ E′, while f′ is a map with source 
B′ ⊂ E′ and target C ⊂ E″.  We let f′f denote the map x → f′((x)) whose source is the set 
A′ of elements x such that f′(f(x)) is defined. 
 Let E and E′ be two topological spaces, and consider the continuous maps that have a 
subspace of E for their source and a subspace of E′ for their target.  Let Cx(E, E′) be the 
set of pointed continuous maps (f, x) where f is a continuous map that has an arbitrary 
neighborhood of x for its source and a subspace of E′ for its target.  Two elements (f, x) 
and (f′, x) of Cx(E, E′) are said to have the same local class at x when the restrictions of f 
and f′ to a neighborhood if x are identical.  The relation thus defined is an equivalence 
relation in Cx(E, E′).  An equivalence class for that relation will be called a local jet of E 
into E′ with source x and target f(x), where (f, y) is an arbitrary element of the class.  The 
local jet of (f, x) will be denoted by xj fλ .  Let Jλ(E, E′) be the set of local jets of E into 

E′. The source of X ∈ Jλ(E, E′) will be denoted by α(X) and its target, by β(X).  The 
symbol jλ will also denote the map (f, x) → xj fλ  of C(E, E′) onto Jλ(E, E′), where C(E, 

E′) = ( , )x
X E

C E E
∈

′∪ . 

 If f is a continuous map that has an open set U of E for its source and a subspace of E 
for its target then the map x → xj fλ  of U into Jλ(E, E′) may be denoted by jλf.  One may 

consider jλf  as a local chart of E in Jλ(E, E′).  The set of these local charts is an atlas A 

for E in Jλ(E, E′) that is compatible with the pseudogroup of transformations that is 
composed of the set of identity maps of the open sets of E.  Indeed, xj fλ = xj fλ

′ ′  is 

equivalent to x = x′ for x that belongs to an open set of E.  This atlas A induces a 

topology on Jλ(E, E′) that is generated by the targets of the charts jλf, which are called the 
ELEMENTARY OPEN SETS of Jλ(E, E′), and THE SPACE Jλ(E, E′) IS AN ÉTALÉ 
SPACE OVER E UNDER THE MAP α, whose restriction to the target of jλf is the 
inverse homeomorphism of jλf.  The map β is a continuous map of Jλ(E, E′) into E.  The 
map f admits the CANONICAL COMPOSITION f = β(jλf).  The space Jλ(E, E′) is not 
separable.  A separable open set of Jλ(E, E′), or furthermore, the restriction of β to such a 
set, is the notion that one may call a MULTIFORM CONTINUOUS MAP of E into E′. 
 Let E″ be a third topological space.  If one is given X ∈ Jλ(E, E′) and X′ ∈ Jλ(E′, E″) 
then one may compose X′X when β(X) = α(X′).  If (f, x) ∈ X and (f′, x′) ∈ X′, where x′ = 
f(x) then the pointed space (f′f, x) belongs to Cx(E, E″).  The jet ( )xj f fλ ′  depends only 

upon X and X′ and will be, by definition, the composition X′X.  One may also consider it 
to be the composition of f′ with xj fλ : 
 

( )xj f fλ ′ = ( )( )x xj f j fλ λ
′  = ( )xf j fλ′ ,  where x′ = f(x). 

 
 In particular, if one denotes the local jet of the identity map on E whose source is x  
by xj fλ then one has: xj fλ = xf jλ .  The law of composition (X′, X) → X′ X is continuous 
with respect to the topology considered. 
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 The associativity of the composition of maps implies the associativity of the 
composition of local jets: If X′X and X″X′ exist then the compositions (X″ X′) X and X″(X′ 
X) exist and are equal. 
 xj fλ  is a left unity and a right unity; i.e.: 

 
     ( )x xj j fλ λ

′  = xj fλ , where x′ = f(x), 

     ( )x xj f jλ λ
′  = xj fλ

′ , 

     xj fλ
xj fλ  = xj fλ . 

 
 The jet X ∈ Jλ(E, E′) is invertible when there exists X′ ∈ Jλ(E′, E) such that X′ X = xj

λ  

and XX′ = xj
λ
′ , where x = α(X), x′ = β(X); this condition is equivalent to the existence of a 

pointed map (f, x) that belongs to X, such that f is a homeomorphism of a neighborhood 
of x onto a neighborhood of f(x). 
 The set of the invertible elements of Jλ(E′, E) is a groupoid Πλ(E).  The subset of 
invertible jets with source and target x is a group ( )x EλΠ  that one may call the LOCAL 

ISOTROPY GROUP of E at x, relative to the topological structure T of E. 

 Let Γ be a pseudogroup of transformations that is defined in E and is contained in the 
pseudogroup Γ* of local automorphisms of E; the subjacent topology to Γ may be coarser 
than T.  The set of local jets xj

λϕ  , where ϕ ∈ Γ, is a SUBGROUPOID Jλ(Γ) of Πλ(E) = 

Jλ(Γ*).  The intersection of Jλ(Γ) and ( )x EλΠ  is a group ( )xJ λ Γ  that is called the LOCAL 

ISOTROPY GROUP at x of the local structure that is defined by Γ.  We remark that that 
Jλ(Γ) is an open set of Πλ(E), which is itself open in  Jλ(E, E′). 
 If we are given a subset Φ of Jλ(E, E′) then a SOLUTION or INTEGRAL of Φ is a 
continuous map of f with source U, which is an open set of E, such that xj fλ ∈ Φ for any 

x ∈ U.  The solutions of Φ correspond to elementary open sets that are contained in Φ in 
a bijective fashion. 
 Let Φ be an open subgroupoid of Πλ(E) such that the projection of Φ by α is E; i.e., it 
contains the set of units of Πλ(E).  The set of solutions of Φ is then a pseudogroup of 
transformations Γ that is defined in E and admits T as its subjacent topology; one has f = 

Jλ(Γ).  However, Γ may contain a sub-pseudogroup Γ′ whose subjacent topology is 
coarser that T and is such that Jλ(Γ′) = Jλ(Γ) = Φ.  We say that Γ is deduced from Γ′ by 

localization.  In particular, Γ′ may be a group of automorphisms of E. 
 Let Γ be a pseudogroup of local automorphisms of E let Γ′ be a pseudogroup of local 
automorphisms of E′.  THE GROUPOID Jλ(Γ) × Jλ(Γ′) IS A GROUPOID OF 
OPERATORS ON Jλ(E, E′) ACCORDING TO THE LAW OF COMPOSITION: 
 

(s, s′, X)  → s′ X s−1, where X ∈ Jλ(E, E′), s ∈ Jλ(Γ), s′ ∈ Jλ(Γ). 
 
LIKEWISE, Jλ(Γ) AND Jλ(Γ′) ARE GROUPOIDS OF OPERATORS ON Jλ(E, E′). 
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 If Φ is an open set of Jλ(E, E′) that is invariant under Jλ(Γ) × Jλ(Γ′) then the set of 
solutions of Φ is invariant Γ × Γ. 
 Suppose, to simplify, that T is the subjacent topology to Γ.  Let Eɶ  be a topological 

space and let A be a complete atlas for E on Eɶ  that is compatible with Γ and is such that 

any g ∈ A is a homeomorphism of an open set of E onto an open set of Eɶ .  Let Jλ(A) be 

the set of jets xj
λ  where g ∈ A.  An element of h in Jλ(A) will be called a LOCAL 

FRAME at the point β(h) of Eɶ  relative to the structure that is defined by A. 

 The set Jλ(A) is an open set of ( , )J E Eλ ɶ  that has the following characteristic 

properties: 
 1. Any element of Jλ(A) is invertible. 

 2. If h ∈ Jλ(A), h′ ∈ Jλ(A), and β(h) = β(h′) then one has h−1h′ ∈ Jλ(Γ). 

 3. Jλ(A) is invariant under Jλ(Γ). 

 
 The set of elements h−1h′, where h ∈ Jλ(A), h′ ∈ Jλ(A), and α(h) = α(h′) is the open 

subgroupoid ( )J λ Γɶ  of ( )EλΠ ɶ  whose solutions for the pseudogroup of local 

automorphisms of Eɶ  relative to the structure that is defined by A. 

 Conversely, if one is given an open set of ( , )J E Eλ ɶ  that verifies the preceding three 

properties then the set of its solutions is a complete atlas A of E on Eɶ  that is compatible 

with Γ. 
 If A is an incomplete atlas then Jλ(A) is an open set of ( , )J E Eλ ɶ  that is characterized 

by properties 1) and 2). 
 An intransitivity class of an invertible element X of ( , )J E Eλ ɶ  relative to Jλ(Γ) (i.e., 

the set of elements X s−1, where s ∈ Jλ(Γ)) may be called the STRUCTURE GERM ON 
Eɶ  THAT IS ASSOCIATED WITH Γ.  By passing to the quotient, one deduces the space 
of structure germs that are associated with Γ from ( , )J E Eλ ɶ .  It is an étalé space ( , )G E Γɶ  

overEɶ .  A structure on Eɶ  that is associated with Γ corresponds to a lift of Eɶ  in ( , )G E Γɶ . 

 Suppose that the topology T′ of E′ is also the topology subjacent to the pseudogroup 

Γ′.  Let E′ɶ  be a topological space and let A′ be a complete atlas for E′ on E′ɶ  that is 

compatible with Γ′ and is such that any g′ ∈ A′ is a homeomorphism of an open set of E′ 
onto an open set of E′ɶ .  ANY OPEN SET Φ OF Jλ(E, E′) THAT IS INVARIANT 
UNDER Jλ(Γ) × Jλ(Γ) THEN CORRESPONDS TO AN OPEN SET Φ′ OF ( , )J E Eλ ɶ  

THAT IS INVARIANT UNDER ( ) ( )J Jλ λ ′Γ × Γɶ ɶ .  The set Φ′ is the set of elements h′ X 

h−1, where X, h ∈ Jλ(A), h′ ∈ Jλ(A′). 
 For example, let r

nΛ  be the pseudogroup of r-times continuously differentiable local 

automorphisms of the numerical space Rn that are everywhere of rank n.  Let f be a 
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continuous map that a neighborhood of x ∈ Rn for its source and a subspace of R
m for its 

target.  One will say that f is an r-times continuously differentiable map (or r-MAP) at the 
point x when f has continuous partial derivatives of each type up to order r with respect to 

the canonical coordinates that are defined in R
n in a neighborhood of x.  If f is an r-map at 

the point x then the local jet xj fλ  will be called r-times differentiable.  Let Jλ,r(Rn, Rm) be 

the set of r-times differentiable local jets of Rn to Rm.  It is an open set of Jλ(Rn, Rm) that 

invariant under ( ) ( )r r
n mJ Jλ λΛ × Λ . 

 Let Vn be an r-times differentiable manifold (or r-manifold) whose structure is 

defined by a complete atlas A in Rn on Vn that is compatible with r
nΛ .  Likewise, let Vm 

be an r-manifold whose structure is defined by a complete atlas A′ that is compatible 

with r
mΛ .  Let Jλ,r(Vn, Vm) be the set of local jets h′ Xh−1, where h ∈ Jλ(A), h′ ∈ Jλ(A′), X 

∈ Jλ,r(Rn, Rm); i.e., h is a local frame of Vn at the source of X and h′ is a local frame of Vm 

at the target of X.  A local jet that belongs to Jλ,r(Vn, Vm) will be called r-times 
differentiable.  In order for Y ∈ Jλ(Vn, Vm) to be r-times differentiable, it is necessary and 

sufficient that h′−1 Y h be an r-times differentiable element of Jλ(Rn, Rm).  If xj fλ  is r-

times differentiable then the map f will be called an r-MAP AT THE POINT x. 
 The set Jλ,r(Vn, Vm) is an open set in Jλ(Vn, Vm) that is invariant under Πλ,r(Vn) × 
Πλ,r(Vm), where Πλ,r(Vn) is the groupoid that is associated with ( )r

nJ λ Λ  by A; i.e., 

Πλ,r(Vn) is the set of elements h1 h
−1, where h ∈ Jλ(A) and h1 ∈ Jλ(A).  A solution to 

Jλ,r(Vn, Vm) wil be called an r-MAP of Vn into Vm .  The solutions of Πλ,r(Vn) are r-maps 
and form the pseudogroup ( )r

n nVΛ  of local automorphisms of Vn . 

 One easily proves that THE COMPOSITION OF TWO LOCAL r-TIMES 
DIFFERENTIABLE JETS IS r-TIMES DIFFERENTIABLE: The composition of X ∈ 
Jλ,r(Vn, Vm) and X′ ∈ Jλ,r(Vm, Vp) is an element of ∈ Jλ,r(Vn, Vp), where Vp is also an r-
manifold. 
 Suppose that Vn is endowed simply with the structure of a topological manifold of n 
dimensions; i.e., it is associated with a pseudogroup Λn of all the local automorphisms of 

R
n.  One then obtains the notions that relate to indefinitely differentiable manifolds (the 

case of r = ∞), real or complex analytical manifolds, real or complex locally algebraic 
manifolds (1), and real or complex locally rational manifolds. 
 It is important to remark that in the analytic case the space Jω(Vn, Vm) of analytic jets 
of Vn into Vm is an open, SEPARABLE subspace of Jλ(Vn, Vm).  The connected 
component of X ∈ Jλ(Vn, Vm) is the COMPLETE ANALYTIC PROLONGATION of the 
analytic jet X. 
 



Ehresmann – Introduction to the theory of infinitesimal structures.                  6 

 2.  The notion of infinitesimal jet. – Let ( , )r n m
xC R R  be the set of pointed r-maps (f, 

x), where f is an r-map at the point x ∈ Rn into Rm.  Two elements (f, x) and (f′, x) of 

( , )r n m
xC R R  are said to have the same r-class when the partial derivatives of the same 

type of f and f′ admit the same values at the point x for all the partial derivatives of order 
≤ r.  One thus defines an equivalence relation in ( , )r n m

xC R R .  An equivalence class for 

that relation will called an INFINITESIMAL JET OF ORDER r − or r-JET − from Rn to 

R
m.  The r-jet of (f, x) will be denoted by r

xj f .  The point x will be called the source of 

the jet and the point f(x), the target of the jet.  Let Jr(Rn, Rm) be the set of infinitesimal 

jets of order r from Rn to Rm.  The source of X ∈ Jr(Rn, Rm) will be denoted by α(X) and 

it target, by β(X).  This defines two canonical maps α and β of Jr(Rn, Rm) onto Rn and 

R
m. 

 Set Cr(Rn, Rm) = ( , )
n

r n m
x

x

C
∈
∪
R

R R , which is the set of pointed r-maps of Rn into Rm.  

In Cr(Rn, Rm), consider the two equivalence relations whose equivalence classes are: 1. 

The local jets.  2.  The r-jets.  The first of these relations implies the second one.  On thus 

has a canonical map jr of Jλ,r(Rn, Rm) onto Jr(Rn, Rm): ( )r
xj j fλ  = r

xj f .  This permits us 

to canonically identify an r-jet with a class of local jets.  One may set jr = jr jλ, which 

amounts to considering jr as an operator that operates on Jr(Rn, Rm) and on Cr(Rn, Rm): 

jr(f, x) = r
xj f . 

 If one is given (f, x) ∈ ( , )r n m
xC R R  and (f′, x′) ∈ ( , )r n m

xC R R  then if x′ = f(x), set (f′, 
x′) (f, x) = (f′ f, x).  This law of composition is compatible with not only the first one, but 
also with the second of the preceding equivalence relations.  Indeed, the partial 
derivatives of f′ f of order ≤ r at the point x can be expressed in the form of a polynomial 
as a function of the partial derivatives of order ≤ r of the canonical components of f and f′ 
at the points x and x′.  By passing to the quotient, one defines the law of composition that 
is expressed by the formulas: 
     ( )( )x xj f j fλ λ

′ ′ = ( )xj f fλ ′ , 

     ( )( )r r
x xj f j f′ ′  = ( )r

xj f f′ , 

( )( )r
x xj f j fλ
′ ′  = ( )( )r

x xj f j fλ
′ ′  = ( )r

xf j f′ = ( )( , )r
xj f f x′ ′ = ( )r

xj f f′ . 

 

 In order for the composition of X ∈ Jr(Rn, Rm) and X′ ∈ Jr(Rm, Rp) to be defined, it is 

necessary and sufficient that β(X) = α(X′).  These laws of composition are associative, 
and the operator jr is compatible with them: 
 

jr(ξ′, ξ) = jr(ξ′) jr(ξ) = ξ′ jr(ξ) = jr(ξ′) ξ, 
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where: 

ξ ∈ Jλ,r(Rn, Rm) and ξ′ ∈ Jλ,r(Rm, Rp). 

 

 The groupoid Πλ, r(Rn) × Πλ, r(Rm) is a groupoid of operators on Jλ,r(Rn, Rm) and 

Jλ,r(Rn, Rm), and the map jr is invariant with respect to this groupoid: 

 
     (s, s′, ξ) → s′ ξ s−1, 
     (s, s′, X) → s′ X s−1, 
     jr(s′ ξ s−1) = s′ jr(ξ) s−1, 
where: 

s ∈ Πλ, r(Rn), s′ ∈ Πλ, r(Rm), ξ ∈ Jλ,r(Rn, Rm), X ∈ Jλ(Rn, Rm). 

 

 This amounts to saying that the groupoid of operators Πλ, r(Rn) × Πλ, r(Rm) leaves 

invariant the equivalence relation that is associated with jr in Jλ,r(Rn, Rm), and whose 

equivalence classes are canonically identified with elements Jλ(Rn, Rm). 

 This equivalence relation is associated with an equivalence relation in Jλ,r(Vn, Vm) that 
is invariant under the groupoid Πλ, r(Vn) × Πλ, r(Vm), where Vn and Vm are two r-
manifolds.  This equivalence relation is defined in the following manner: Two elements ξ 
and ξ1 in Jλ,r(Vn, Vm) will be said to have the same r-class when they have the same 
source and the same target, and when: 
 

jr(h′−1 f h) = jr(h′−1 f′ h), 
 
where h is a local frame on Vn at the point x, and h′ is a local frame on Vm at the point 
f(x).  AN EQUIVALENCE CLASS OF Cr(Vn, Vm) FOR THIS RELATIONS WILL BE 
CALLED AN INFINITESIMAL JET OF ORDER r – OR r-JET – OF Vn TO Vm . 
 The r-jet of (f, x) is denoted r

xj f .  The set of r-jets of Vn to Vm is denoted by Jr(Vn, 

Vm).  If X = r
xj f  then the point x is called the source of X and the point f(x) is the target 

of X.  The source of X is denoted by α(X), the target, by β(X); this defines two canonical 
maps α and β of Jr(Vn, Vm) onto Vn and Vm . 
 The map (f, x) → r

xj f  admits a canonical decomposition (f, x) → xj fλ → r
xj f .  We 

consider jr to be an operator that operates on Cr(Vn, Vm) and Jλ(Vn, Vm): 
 

(f, x) → xj fλ → r
xj f → k

xj f , 

 
Cr(Vn, Vm) → Jλ,r(Vn, Vm) → Jr(Vn, Vm) → Jk(Vn, Vm) . 
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 The k-jet that is canonically associated to the r-jet X will be further denoted by jkX; 
i.e., we consider jk to operate on Cr(Vn, Vm), Jλ,r(Vn, Vm) and Jr(Vn, Vm), where k ≤ r.  One 
has: 

jk jr = jr, jk jλ = jk, jr jr = jr. 
 

 In particular, j0X is identified with the pair (α(X), β(X)) and j0 defines the canonical 
map of Jr(Vn, Vm) onto Vn × Vm . 
 Let Vp be a third r-manifold.  Let: 
 

(f, x) ∈ Cr(Vn, Vm), (f′, x′) ∈ Cr(Vn, Vm). 
 

 The law of composition: 
 

(f′, x′) (f, x) = (f′ f, x),  if x′ = f(x) 
 

is compatible with the equivalence relations considered.  The laws of composition that 
one deduces from them by passing to the quotients are thus compatible with the 
preceding canonical projections.  One has: 
 

( ) ( )r r
x xj f j f′ ′  = ( )( )r

x xj f j fλ
′ ′  = ( )( )r

x xj f j fλ
′ ′  = ( )r

xf j f′  = ( ) ( , )r
xj f f x′ = ( )r

xj f f′ , 

 
jk(X′ X) = (jk X′ ) (jk X) = (jk X′ ) X = X′ (jkX), 

where: 
X ∈ Jr(Vn, Vm),  X′ ∈ Jr(Vm, Vp). 

 
 Let r

xj  denote the r-jet with source x of the identity map on Vn .  One then has rxj f  = 

f r
xj , and r

xj  is a unity on the left and right for the composition of r-jets.  The jet X ∈ 

Jr(Vn, Vm) is invertible when there exists X′ ∈ Jr(Vm, Vn) such that X′X = r
xj  and XX′ = 

r
xj ′ , where x = α(X), x′ = β(X).  In order for X to be invertible, it is necessary and 

sufficient that n = m and that the rank of X be equal to n.  The rank of the jet rxj f  is equal 

to the rank of the jet 1( )r
xh j f h−
′′ , where h is a local frame on Vn at the point x and h′ is a 

local frame on Vm at the point f(x).  Now, 1( )r
xh j f h−
′′  is the jet of the first order of a linear 

map whose rank is the desired invariant. 

 We call any invertible r-jet of Rn into Vn whose target is x a frame of order r on Vn at 

the point x.  Unless indicated to the contrary, it will be assumed that the frames 
considered will all have source 0.  The set Hr(Vn) of frames of order r on Vn with source 0 
will be called the principal prolongation of order r of the manifold Vn .  The inverse of a 
frame of order r at the point x will be called a coframe of order r at the point x.  The set 
of coframes of order r and target 0 on Vn will be denoted by Hr*(Vn). 
 The set of invertible elements of Jr(Vn, Vm) is a groupoid Πr(Vn).  The subset of 
elements of Πr(Vn) whose source and target is the given x is a group ( , )r

n nL V x  that is 

called the infinitesimal isotropy group of order r on Vn at the point x. In particular, the 
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group ( ,0)r n
nL R  will be denoted by r

nL .  If h is a frame of order r on Vn at the point x 

(with source 0) then the map y → hyh−1, where y ∈ r
nL  is an isomorphism of r

nL  onto 

( , )r
n nL V x ; the set of isomorphisms that one thus obtains is a class modulo the group of 

interior automorphisms of rnL . 

 Let ,
r
m nL  be the set of elements of Jr(Rn, Rm) that have their source and target at the 

common origin 0 of Rn and Rm.  Any y ∈ ,
r
m nL  is the r-jet with source 0 of a well-defined 

map of the form: 
 

ui = 
1 2 1 2 1 2 1 2, , r rij j ij j j j ij j j j j ja x a x x a x x x+ + +∑ ∑ ∑ ⋯

⋯ ⋯ , 

 

where the xj are the canonical coordinates in Rn and the ui are the canonical coordinates 

in Rm , while the coefficients 
1 2, kij j ja
⋯

 are symmetric with respect to the indices j1, j2, …, 

jk ; this map will be called the representative polynomial of y.  Upon considering 
1 2, kij j ja
⋯

, 

where j1 ≤ j2 ≤ … ≤ jk , to be the canonical coordinates of y, we endow ,
r
m nL  with the 

structure of a real analytic manifold that is isomorphic to a numerical space.  In 
particular, 1

,m nL  may be canonically identified with the space Lm,n of homogeneous linear 

maps of Rn to Rm, and in turn, also to the space of sequences of n vectors with origin 0 in 

R
m.  Therefore, 1

,1mL  is canonically identified with Rm: The element y of 1
,1mL  first 

corresponds to its linear representative and then to the transformed vector of the unit 

vector in R by that linear transformation.  The rank of y ∈ ,
r
m nL  is the rank of the matrix 

(aij).  The group r
nL  is an analytic submanifold of ,

r
m nL  and 1

nL  that is canonically 

identified with the homogeneous linear group Ln .  In the case r = ∞, the representative 
polynomial becomes a formal series with vectorial values (or a sequence of m ordinary 
formal series).  ,m nL∞  may be identified with the set (1) of these formal series. 

 The operator jk defines a homomorphism of rnL  onto r
nL ′  whose kernel is a solvable 

group that is homeomorphic to a numerical space; if k = r – 1, this kernel is isomorphic to 

an additive group Rd.  The group r
nL  is an inessential extension of the group Ln, since it 

may be identified with a subgroup of r
nL ′ .  This subgroup is the set of elements r

nL  whose 

representative polynomial is linear; it is not invariant under r
nL ′ . 

 Denote the representative polynomial of y ∈ ,
r
m nL  by y .  The representative 

polynomial of jky is obtained upon suppressing the terms of degree > k in y .  If y′ ∈ ,
r
p nL  

then the representative polynomial of y′y is obtained by suppressing the terms of degree > 
k in y y′  if r > k.  In certain cases, one may define a composition of y and y′ that belongs 

to ,
l
p nL  , where l > k.  Let r and k be the largest integers such that jn′−1y = 0 and jk′−1y′ = 0 
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(i.e., the canonical coordinates of these jets are zero).  If l is the smallest of the numbers 
k′r and r′k then the jet 0( )lj y y′  depends only upon y′ and y and defines a composition 

that we again denote by y′y.  Its representative polynomial is obtained by suppressing the 
terms of degree > l in y y′ . 

 The product r r
m nL L×  is a group of analytic operators on ,

r
m nL : 

 
(s′, s) y = s′ y s−1, where s ∈ r

nL , s′ ∈ r
mL , y ∈ ,

r
m nL . 

 
Likewise, r

nL  and r
mL  are groups of operators on ,

r
m nL : 

 
(s, y) → y s−1,  (s′, y) → s′ y. 

 
Let h ∈ Hr(Vn) and h′ ∈ Hr(Vm). 
 The map y → h′ y h−1 is a bijective map of ,

r
m nL  onto the set , ( , )r

x x n mJ V V′ , which 

consists of the elements of Jr(Vn, Vm) with source β(h) and target x′ = β(h′).  Upon 
supposing that (x, x′) is given, one then obtains a class of bijective maps of ,

r
m nL  onto 

, ( , )r
x x n mJ V V′ ; this will be an equivalence class with respect to the group of operators 
r r
m nL L×  (If G is a group operators on the set F then it is also a group of operators on the 

set of maps of F into F′ and an intransitivity class in that set will be called an equivalence 
class with respect to G.)  Any structure on ,

r
m nL  that is invariant under r r

m nL L×  is then 

transported canonically onto , ( , )r
x x n mJ V V′ .  For example, if r = 1 then one obtains a vector 

space structure. 

 We call any element of Jr(Rp, Vn) with source 0 and target x′ a pr-VELOCITY (or 

velocity of dimension p and order r) on Vn with origin x; let ( )r
p nT V be the set of these pr-

vectors in Vn .  We call any element of Jr(Vn, R
p) with source x and target 0 a pr-

COVELOCITY on Vn with origin x; let ( )r
p nT V∗  be the set of pr-covelocities of Vn .  For p 

= r = 1, one then calls the VELOCITIES and COVELOCITIES on Vn, VECTORS and 
COVECTORS, resp. 
 Let , ( )r

p x nT V  be the set of pr-velocities with origin x, let , ( )r
p x nT V∗  be the set of pr-

covelocities with origin x, and let ( )r
p nH V  be the set of frames with origin x.  The frame h 

∈ ( )r
p nH V  corresponds to the bijective map y → hy of ,

r
n pL  onto , ( )r

p x nT V , where y ∈ ,
r
n pL .  

For a given x, one then obtains a set of bijective maps of ,
r
n pL  onto , ( )r

p x nT V , which forms 

an equivalence class with respect to the group r
nL  that operates (on the left) on ,

r
n pL .  Any 

structure on ,
r
n pL  that is invariant under rnL  is then transported to , ( )r

p x nT V  in a canonical 

way.  Likewise, the set of bijective maps y → yh−1 of ,
r
p nL  onto , ( )r

p x nT V∗ , where y ∈ ,
r
p nL  

and h ∈ ( )r
x nH V , forms an equivalence class with respect to the group r

nL  that operates 
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(on the left) on ,
r
p nL ; thus, structures on ,

r
p nL  that are invariant under rnL  are canonically 

transported to , ( )r
p x nT V∗ .  In particular, 1

, ( )p x nT V  and 1
, ( )p x mT V∗  are endowed with vector 

space structures. 
 Any jet Z ∈ Jr(Vn, Vm) defines the following map of , ( )r

p x nT V  into , ( )r
p x mT V : 

 
X → ZX, where X ∈ , ( )r

p x nT V . 

 
 It likewise defines the following map of , ( )r

p x mT V∗  into , ( )r
p x nT V∗ : 

 
Y → YZ, where Y ∈ , ( )r

p x mT V∗ . 

 
 Upon choosing two frames h and h′ at the source and target of Z, resp., the former 
map comes down to a representation y → zy of ,

r
n pL  in ,

r
m pL , where y ∈ ,

r
n pL  and z ∈ 

,
r
m pL ; the latter map likewise comes down to a representation y′ → y′z of ,

r
p mL  in ,

r
p nL , 

where y′ ∈ ,
r
p mL .  In the case r = 1, the maps considered are all homogeneous linear ones. 

 Any r-map f of Vn into Vm has a PROLONGATION X → fX that maps ( )r
p nT V  into 

( )r
p mT V .  In the case r = 1, the restriction of that map to 1, ( )p x nT V is linear. 

 The group r
pL  operates on ( )r

p mT V : 

 
(s, X) → Xs−1,  where s ∈ r

pL , X ∈ ( )r
p mT V . 

 
 The intransitivity class r

pXL  will be called a pr-contact element of Vn with origin x. 

 The group r
pL  also operates on ( )r

p nT V∗ : 

 
(s, Y) → sY,  where s ∈ r

pL , Y ∈ ( )r
p nT V∗ . 

 
 The class r

pL Y  will be called an enveloping pr-element. 

 Let Z be an element of Jr(Vn, Vm), let h be a frame at the source of Z, and let h′ a 
frame at the target of Z.  The element Z is canonically associated with an nr-contact 
element with origin β(Z) and an mr-enveloping element with origin α(Z): They are the 
classes r

nZ h L  and r
mL h′−1 Z.  The set of frames of order r at the point x ∈ Vn is the 

fundamental contact element of order r – or the infinitesimal structure element of order r 
– to Vn at the point x.  If f is an r-map of Vn to Vm then the pair (f, Vp) may be called an 
embedded manifold in Vn.  The map f also prolongs to the set of contact elements to Vn; 
the images of these elements are the contact elements of the embedded manifolds.  The 
theory of contact for embedded manifolds is the study of the incidence relation between 
contact elements that is defined in the following manner: If one is given X ∈ ( )r

p nT V  and 
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X′ ∈ ( )r
q nT V  then one will say that X is contained in X′ when X = X′y, or y ∈ ,

r
q pL ; in this 

case, the contact element XL will be said to be contained in X′L.  One likewise defines an 
incidence relation between covelocities or enveloping elements. 
 One is also led to consider classes of local jets that are analogous to contact elements 

and enveloping elements.  A class 0 ( )r
nXJ λ Λ , where X ∈ Jλ,r(Rp, Vn) and a(X) = 0, may be 

called a GERM OF THE EMBEDDED r-MANIFOLD.  In the set of these germs, one 
may introduce a topology that is analogous to the one on the space of structure germs 
considered in paragraph 1.  An embedded r-manifold corresponds to a separable open set 
in that space of germs of the embedded r-manifold.  The class 0 ( )r

mJ Yλ Λ , where Y ∈ 

Jλ,r(Vn, R
m) and β(Y) = 0, may be called a GERM OF THE FOLIATION in Vn .  The 

space of these germs, which is again defined as above, will be an étalé space over Vn .  A 
lifting of Vn into that space is an r-TIMES DIFFERENTIABLE FOLIATION with 
singularities admitted into it.  One easily deduces a stronger equivalence relation: Y ~ Y′ 
when the intersection of 1(0)f  and 1(0)f ′  is a neighborhood of x relative to the 

subspaces 1(0)f  and 1(0)f ′ , where Y and Y′ are elements of Jλ,r(Vn, R
m) with the same 

source x and target 0, xj fλ = Y, xj fλ ′ = Y′.  the equivalence classes thus defined may be 

called GERMS OF THE EXTRACTED MANIFOLD.  One further defines the 
topological space of these germs: the separable open sets of that space are the extracted r-
manifolds of Vn .  An r-times differentiable foliation of Vn defines a set of extracted r-
manifolds on Vn that are called the leaves of the foliation. 
 The intransitivity class of y ∈ ,

r
m nL  with respect to r r

m nL L×  will be called the 

equivalence class of y.  A fundamental problem of local differential geometry consists in 
finding a canonical representation in each equivalence class, and more generally, finding 
the invariants and covariants of y with respect to r r

m nL L×  or certain subgroups. 

 The element y of ,
r
m nL  is called REGULAR when the rank of the matrix (aij) is equal 

to the smaller of the numbers m and n.  The set of regular elements forms just one 
equivalence class that has a canonical representative in the map ix′  = xi for i ≤ m if m ≤ n, 

or the map ix′  = xi for i ≤ n and jx′  = 0 for j > n if  n ≤ m. 

 If one is given y ∈ ,
r
m nL  then let p and q be the smallest integers such that y admits the 

decompositions: y = y1z = xy2, where z is a REGULAR element of ,
r
p nL , and z′ is a 

REGULAR element of ,
r
m qL , with y1 ∈ ,

r
m pL , y2 ∈ ,

r
q nL .  One then has p ≤ n, q ≤ m, and y 

admits the decomposition y = z′y′z, where y′ ∈ ,
r
q pL .  If z0 denotes the r-jet of the 

canonical map of Rn onto Rp and 0z′  denotes the r-jet of the canonical map of Rq into Rm 

then y is equivalent to 0z′ y′ z0 ; one may say that y is equivalent to y′ ∈ ,
r
q pL  in the larger 

sense.  Call p the rank of order r at the source and q, the rank of order r at the target of y.  
For k < r, the ranks of order k at the source and target of y are those of jky.  These 
numbers are increasing functions of k. 
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 Consider k elements y1, y2, …, yk of ,
r
m nL .  One may identify the sequence of y1, y2, 

…, yk  with an element of ,
r
km nL .  Let z be an element of ,

r
m knL .  The composition z(y1, y2, 

…, yk) will be an element of ,
r
m nL  , and may be called the composition of y1, y2, …, yk 

along z; this notion generalizes the notion of linear combination of vectors.  In particular, 
the element y of ,

r
m nL  is identified with a sequence of m elements (y1, y2, …, yk) of 1,

r
nL . 

(They are the components of y, but that notion is not invariant with respect to r
mL .)   Any 

element z of 1,
r

nL  determines a composition z(y1, y2, …, yk).  One is then led to the notion 

of a subspace of 1,
r

nL that is generated by a given set of elements of 1,
r

nL .  The rank of 

order r at the source of y is the minimum number of regular elements of 1,
r

nL  that generate 

a subspace that contains y1, y2, …, ym . 
 The same considerations lead to the notion of the prolongation of a law of 
composition.  An r-times differentiable law of composition (x, x′) → xx′ that is defined in 
Vm prolongs to Jr(Vn, Vm).  If one is given two elements X and X′ such that α(X) = α(X′) = 
u then one sets: 

XX′ = ( )r
uj ff ′ ,  where X = r

uj f , X′ = r
uj f ′ , 

 
upon denoting the map x → f(u) f′(u) by ff′ here.  In particular, if G is an r-times 
differentiable group then ( )r

pT G  will be a group.  If G operates on an r-manifold Vn then 

since the law of exterior multiplication is r-times differentiable, the group ( )r
pT G  

operates on ( )r
p nT V . 

 In that fashion, one defines algebraic structures on ,
r
m nL  that are invariant under rnL , 

but not r
mL .  An algebraic structure over Rn thus prolongs to an algebraic structure on 

,
r
m nL  that is invariant under rnL .  We remark that the product yy′ of two elements of 2

,m nL  

is zero in 1
,m nL ; however, one may define yy′ as an element of 2 ,m nL .  One likewise defines 

the product of k elements of 1
,m nL as an element of ,

k
m nL .  More generally, one may 

substitute elements of 1 ,m nL  for the variables in a homogeneous polynomial of degree k, 

with coefficients that are taken from the base field of the algebra considered over Rn, and 

one thus obtains an element of ,
k
m nL .  Its polynomial representative is obtained by 

composing the linear representatives of the given elements. 
 Local differential geometry essentially amounts to the study of the space ,

r
m nL , when 

it is endowed with the group of operators r r
m nL L×  or groups of operators that are 

subgroups of it.  The subgroups of r
nL  and r

mL  intervene when one replaces rnΛ  and r
mΛ  

by the sub-pseudogroups Γ and Γ′.  Let Jr(Γ) denote the groupoid that is formed by the 
set of jets r

xj ϕ , where ϕ ∈ Γ.  The group 0 ( )rJ Γ , which is the intersection of Jr(Γ) and 
r
nL , will be called the infinitesimal isotropy group of order r at the point 0 relative to Γ, 
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which we assume to be transitive, in order to simply matters.  One will then have to study 
the structures on ,

r
m nL  that are invariant under0 0( ) ( )r rJ JΓ × Γ ; these structures transport 

canonically onto , ( , )r
x x n mJ V V′  if Vn and Vm are endowed with structures that are associated 

with Γ and Γ′, respectively.  In particular, 1
,m nL  may have an invariant subspace 

under 0 0( ) ( )r rJ J ′Γ × Γ .  This will determine a class of distinguished r-jets in Jr(Vn, Vm).  

More generally, this class of distinguished r-jets will be defined in Jr(Vn, Vm) when Vn 
and Vm are endowed with structures that call regular infinitesimal structures (4) with 
structure groups 0 ( )rJ Γ  and 0 ( )rJ ′Γ , respectively.  For example, in the case of complex 

analytic manifolds (Γ = c
nΛ , Γ′ = c

mΛ ) one obtains the class of complex analytic r-jets 

that are contained in Jr(Vn, Vm).  This notion also applies to almost-complex manifolds of 
order r (manifolds that are endowed with a regular infinitesimal structure with structure 
group 0 ( )r c

nJ Λ ; they are equivalent to complex analytic manifolds at each point up to 

order r ).  Having distinguished a subspace that is invariant under ,
r
m nL , one is led to also 

consider the equivalent relations that are invariant under this subspace, as well as the 
corresponding quotient spaces.  The general notion of differential covariants of 
infinitesimal structure comes down to that of covariants with respect the representations 
of 0 0( ) ( )r rJ J ′Γ × Γ  are groups of operators.  In the geometries that one call non-holonomic, 

the subgroups of r
nL  and r

mL  that intervene are not associated with pseudogroups of 

transformations Γ and Γ′. 
 We remark that ,

k
m nL  also admits r r

m nL L ′×  as a group of operators when k ≤ r and k ≤ 

r′.  In particular, m nL L∞ ∞×  is a group of operators on ,
r
m nL ; the same is true for 

0 0( ) ( )n mJ Jλ λ∞ ∞Λ × Λ .  The operator jr is invariant under the group of operators m nL L∞ ∞×  and 

,
r
m nL = ,( )r

m nj L∞ . 

 In a general fashion, one is led to consider the subspaces of ,m nL∞ that are invariant 

under m nL L∞ ∞×  or one of its subgroups.  On such a distinguished subspace, one will have 

to consider the invariant structures – in particular, the invariant equivalence relations and 
the corresponding quotient spaces.  The latter spaces may be considered as 
generalizations of the spaces of jets.  We confirm this by examples in the study of 
foliated structures, product manifold structures, or structures that are prolongation of an 
r-manifold. 

 For example, in Rp+q, which is identified with Rp × Rq, the product k l
p qΛ × Λ  generates 

a pseudogroup that may likewise denote by k l
p qΛ × Λ .  Consider the pointed maps (f, x) of 

R
p × Rq into Rm, where x = (u, v) ∈ Rp × Rq, such that f admits continuous partial 

derivatives of every type and that satisfy the following conditions: They are of order ≤ k 
with respect to the coordinates ui of u, of order ≤ l with respect to the coordinates vj of v, 
of order ≤ r with respect to the set of these coordinates.  In the set of these pointed maps, 
one has the equivalence relation whose classes each correspond to a given system of 
values of the derivatives considered at the point x.  This relation is invariant under 
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k l
p qΛ × Λ .  The equivalence classes are generalized jets that one may denote by , ,k l r

xj f .  

As in the preceding, one defines jets of this type on Vp+q in Vm, where Vm is an r-manifold 

and Vp+q is endowed with a local product structure that is locally isomorphic to Rp × Rq 

(i.e., it is defined by an atlas of Rp × Rq on Vp+q that is compatible with k l
p qΛ × Λ ).  The 

set of jets of this type on Rp × Rq in Rm with source and target 0 is a quotient space of 

1,p qL∞
+ .  For m = 1, it is the quotient algebra of 1,p qL∞

+  by the ideal that is generated by the 

products of the coordinates that are of degree > k with respect to the ui, of degree > l with 
respect to the vj, and of degree r with respect to the set of ui and vj .  This rejoins the 
viewpoint that was presented by A. Weil.  However, the spaces of jets with a given 
source are not always endowed with algebraic structures. (*) 

                                                
 (*) For the notions of pseudogroup of transformations and structure associated with a pseudogroup, see 
(4).  The notion of the germ of a structure is defined for all types of local structures.  The notion of the 
germ of a subspace also extends to arbitrary local structures (See P. Dedecker, Comptes rendus, Paris 233 
(1953) pp. 771).  One will find the general definition of prolongation structures and infinitesimal structures 
in (1), (2), and (3). 


