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The prolongations of a differentiable manifold 
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This Note continues a previous Note (1) and summarizes a conference talk that was given at 
Oberwolfach on 19 August 1951.  The jet as fundamental element of differential geometry.  
Prolongations of order r of a differentiable manifold.  Study of the fiber structure of prolongations.  
The ones that depend only upon the fiber structure of the principal prolongation of first order. 

 
 We call any r times continuously differentiable homeomorphism of an open subset of 

R
n into Rn that is everywhere of rank n a local automorphism of order r of the numerical 

space Rn; let r
nΛ  be the pseudogroup composed of these automorphisms.  An r-manifold 

structure on Vn is defined by an atlas A on Vn with values in Rn that is compatible (1) with 
r
nΛ .  If Vn and Vm are two r-manifolds then a map f from a neighborhood of x ∈ Vn into 

Vm is called an r-map at the point x if, with the aid of admissible local coordinates in 
neighborhoods of x and f(x), it is expressed by functions fi that admit continuous partial 
derivatives of each type up to order r.  Let ( , )k

x n mC V V  be the set of pointed functions (f, 

x), where f is an r-map at the point x ∈ Vn ; let Cr(Vn, Vm) be the union ( , )
n

k
x n m

x V

C V V
∈
∪ .  

Two elements (f, x) and (g, x) of ( , )k
x n mC V V are said to have the same r-class when f(x) = 

g(x) and when the partial derivatives of the same type and order for the functions f and g 
take the same value at x. 
 
 DEFINITIONS (2). – We call an r-class X in ( , )k

x n mC V V  an r-jet with source x, and the 

image of x under one of the elements of X the target of X. 

                                                
 (1 ) Comptes Rendus, 216 (1943), pp. 268.  See also: C. EHRESMANN, Sur la théorie des espaces fibrés 
(Colloque de Topologie algébrique, C. N. R. S., Paris, 1947). 
 
 (2 ) The definitions also apply to the case of r = ∞ and to the real or complex analytic case, as well as the 

algebraic case ( r
nΛ  must then be replaced by the pseudogroup of birational transformations of the real or 

complex projective space to itself, f being an algebraic map of one algebraic variety without singularities Vn 
to another one.) 
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 Let ( , )r
x n mJ V V be the set of r-jets with source x and let Jr(Vn, Vm) be the union 

( , )
n

r
x n m

x V

J V V
∈
∪ .  The r-jet that is determined by (f, x) ∈ Cr(Vn, Vm) will be denoted by 

r
xj f . 

 The function x → r
xj f , which is defined in a neighborhood of x and which will be 

denoted jrf, is the r-flow of f. 
 
 The elements (f, x) ∈ Cr(Vn, Vm) and (g, f(x)) ∈ Cr(Vm, Vp) admit the composition (gf, 
x) ∈ Cr(Vn, Vp).  Upon passing to the quotients, this composition implies one law of 
composition for r-jets, a second one for r-maps and r-jets, and a third one between r-jets 
and pointed maps: 

( )r
xj gf = ( )( )( )r r

f x g xj g j f = ( )r
xg j f = ( )( )( , )r

f x gj f x . 

 
 The r-jet of the pointed identity map on Vn at x ∈ Vn is the neutral r-jet at x; one may 
identify it with x.  A stable r-jet at x is an r-jet of Vn into Vm with source and target x.  An 
isotropy r-jet at x is a stable, invertible r-jet at x – i.e., one of rank n, which is the usual 
rank of an element of the r-jet at x.  (We also define a rank of order k ≤ r.)  The isotropy 
r-jets at x define a group ( , )r

n nL V x , namely, the infinitesimal isotropy group at x, which is 

isomorphic to the group ( ,0)r n
nL ℝ that we denote by rnL .  The group 1

nL  is canonically 

identified with the homogeneous linear group Ln of Rn.  The group r
nL  is an inessential 

extension of Ln by a solvable group that is homeomorphic to a numerical space.  r
nL is an 

extension of 1r
nL −  by a group that is isomorphic to the additive group Rr. 

 We call an r-jet of Rp into Vn with source 0 and target x a pr-velocity in Vn; let 

( )r
p nT V be the set of pr-velocities in Vn .  We call an r-jet of Vn into Rp with source x and 

target 0 a pr-covelocity in Vn with origin x; let ( )r
p nT V∗ be the set of pr-covelocities in Vn .  

For p = r = 1, one thus defines velocities and covelocities in Vn, which are also called 

vectors and covectors.  Let ,
r
n pL be the space of pr-velocities in Rn at 0 or nr-covelocities 

in Rp at 0.  r
nL  is a group of operators that acts on ,

r
n pL on the left and acts on ,

r
p nL on the 

right.  Let tx be the translation of Rn that takes x ∈ Rn to 0.  The set ( )r n
pT R is canonically 

identified ,
n r

n pL×ℝ by means of X → (x, txX), where X is a pr-velocity with origin x, and 

( )r n
pT ∗
R is canonically identified with ,

n r
p nL×ℝ .  We call an nr-velocity in Vn of rank n an 

r-frame.  The set Hr(Vn) of these r-frames is the principal prolongation of order r in Vn ; 
there are analogous definitions for r-coframes and Hr*(Vn). 

 For a map f of Vn into Rp, one calls the pr-covelocity r
xd f = ( )( )r

x f xj t f its differential 

of order r at x ∈ Vn , tx always denoting the translation of Rp that takes u to 0.  In 
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particular, if f is the identity map of Rn then r
xd f is denoted by drx.  The function x → 

r
xd f is denoted by drf.  It corresponds to a map of ( )r

q nT V into ,
r
p qL  that is defined by X → 

( )r
xd f X , where X is a qr-velocity of origin x. 

 Let f be an r-map of Vn into Vn .  By composition, f defines a map of ( )r
p nT V  to 

( )r
p mT V that is called the prolongation of f and is again denoted by f; the pseudogroup 
r
nΛ thus prolongs to both ( )r n

pT R and ( )r n
pT ∗
R .  The prolongation of ϕ ∈ r

nΛ  is written: 

 
(x, y) → ( ( ), )r

xx yϕ ϕ , 

where x ∈ Rn,  y ∈ ,
r
n pL , and: 

r
xϕ = 1

0 ( )( )r
x xj t tϕ ϕ − = 1( )r

x xd tϕ − . 

 
 The element r

xϕ  of r
nL  is the derivative of order r of ϕ at x.  The atlas A admits a 

prolongation that defines an atlas on ( )r
p nT V  with values in ( )r n

pT R = ,
n r

n pL×ℝ that is 

compatible with the prolongation of rnΛ .  It determines a fiber structure on ( )r
p nT V  with 

symbol r
pT (Vn, ,

r
n pM , r

nL , Hr(Vn)).  For h ∈ Hr(Vn), the map y → hy is an isomorphism of 

,
r
n pL onto a fiber of that fiber structure.  The associated principal fiber bundle is Hr(Vn), 

and its structure group isrnL .  It is an extension (1) of H1(Vn) that is associated with the 

canonical homomorphism of rnL onto Ln .  Since its kernel is homeomorphic to Rk, its 

fiber structure is determined up to an isomorphism by that of H1(Vn). 
 
 DEFINITION. – A prolongation of order r of Vn is a fiber bundle that is associated to 
the principal prolongation Hr(Vn). 
 
 The preceding shows: 
 
 THEOREM. – The fiber structures that are defined on the prolongations of order r of 
Vn are determined, up to isomorphism, by the fiber structure of the principal 
prolongation of first order. 
 

                                                
 (1 ) C. EHRESMANN, Les connexions infinitésimales (Colloque de Topologique, C. B. R. M., Brussels, 
1950). 
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The prolongations of a differentiable manifold 
II.  The space of jets of order r of Vn into Vm  

 
By CHARLES EHRESMANN 

 
Translated by D. H. Delphenich 

 
This Note continues a previous Note (1).  Being given two r-manifolds Vn and Vm , we shall define 

three fiber structures on the space Jr(Vn , Vm) of r-jets of Vn into Vm :  The first one has base Vn ×Vm , the 
second one has base Vn , and the third one has base Vm .  The fibers are isomorphic to ,

r
m nL , ( )r

n mT V , 

( )r
n mT V∗ , respectively, endowed with the structure groups r r

n mL L× , r
nL , r

mL . 

 

 For X ∈ Jr(Vn, Vm), let α(X) be the source of X and let β(X) be the target of X;  α is the 
canonical map of Jr(Vn, Vm) onto Vn , β is the canonical map onto Vm , and γ = (α, β) is 
the canonical map onto Vn × Vm . 

 For X ∈ Jr(Rp, Vm), set ∂rX = X ∂rx, where x = α(X), ∂rx = 1
0 ( )r

xj t − .  For (f, x) ∈ Cr(Rp, 

Vm), set r
x f∂ = f ∂rx.  The pr-velocity of Vn with origin x′ = β(X) [f(x), resp.] that is 

defined by ∂rX ( r
x f∂ , resp.) is called the velocity of order r of X (f, resp.) at x, or at the 

instant x. 

 For X ∈ Jr(Vm, Rp), the differential of order r of X is: 

 
drX = (drx′)X, 

 
where x′ = β(X), drx′ = ( )r

x xj t′ ′ .  If X is invertible (of rank n = p) then drX ∈ Hr*(Vn) is the 

inverse of ∂r(X−1); drx is the inverse of ∂rx, where x ∈ Rp.  Recall the notation: 

 
r
xd f = (drx′)(f, x), 

where (f, x) ∈ Cr(Vn , R
p), x′ = f(x). 

 Let X ∈ Jr(Rn, Rp), x = α(X), x′ = β(X).  Call the element: 

 
(drx′) X ∂rx = (drX) ∂rx = (drx′) ∂rX 

 

                                                
 (1 ) Comptes rendus 233 (1951), pp. 598. 
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the derivative of order r of X; it is an element of ,
r
m nL that one may also denote by drX / 

drx.  For (f, x) ∈ Cr(Rn, Rp), the derivative of order r of f at x is the element r
xf  of 

,
r
m nL that is defined by: 

r
xf = (drx′) f ∂rx, 

where x′ = f(x).  One has: 
 

r
xd f = r r

xf d x ,  r
x f∂ = ( )r r

xx f′∂ , 

 
which justifies the notation: 

r
xf =

r
x
r

d f

d x
, 

 

 If X ∈ Jr(Rn, Rm) and X′ ∈ Jr(Rn, Rp) admit the composition X′X ∈ Jr(Rn, Rp) then the 

associativity of the composition of the jets implies that: 
 

( )r

r

d X X

d x

′
= 

r r

r r

d X d X

d x d x

′  
  ′  

,  x = α(X), x′ = β(X) = α(X′). 

 

For (f, x) ∈ Cr(Rn, Rm) and (g, x′) ∈ Cr(Rm, Rp), where x′ = f(x), one has: 

 
( )r

xgf = r r
x xg f′ ,  ( )r

xd gf = r r
x xg d f′ , ( )r

x gf∂ = r
xg f∂ = ( )r r

x xg f′∂ . 
 

 Jr(Rn, Rm) is canonically identified with Rn × Rm × ,
r
m nL by the map X → (x, x′, y), 

where X ∈ Jr(Rn, Rm), x = α(X), x′ = β(X), y = drX / drx ∈ ,
r
m nL .  Let r r

n mΛ × Λ be the 

pseudogroup of transformations in Rn × Rm defined by the set of transformations (ϕ, ψ): 

(x, x′) → (ϕ(x), ψ(x′)), where ϕ ∈ r
nΛ , ψ ∈ r

mΛ , (x, x′) ∈ Rn × Rm, such that ϕ(x) and ψ(x′) 

are defined.  The pseudogroup r r
n mΛ × Λ  prolongs to Jr(Rn, Rm): 

 
(ϕ, ψ) X = ( r

xj ′ , ψ) 1
( )( )r
xX jϕ ϕ − ϕ−1). 

 

The transformation X → (ϕ, ψ)X corresponds in Rn × Rm × ,
r
m nL  to the transformation: 

 
(x, x′, y) → (ϕ(x), ψ(x′), 1( ) )r r

x xyψ ϕ −
′ ,  or r

xϕ ∈ r
nL , r

xψ ′ ∈
r
mL . 
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 Let Vn and Vm be two r-manifolds, A, an atlas for Vn with values in Rn, and let A′ be 

an atlas for Vm with values in Rm; g ∈ A is an r-isomorphism of an open set of Rn onto a 

open set of Vn .  The set of pairs (g, g′), where g ∈ A, g′ ∈ A′, defines an atlas A × A′ for 

Vn × Vm with values in Rn × Rm.  The chart (g, g′) admits the following prolongation, 

which defines a local chart of Jr(Vn , Vm) with values in Jr(Rn, Rm): 

 
X → 1

( )( ) ( )r r
x g xj g X j g−
′ ′ = 1

x xh yh−
′ ∈ Jr(Vn , Vm), 

 

where X ∈ Jr(Rn, Rm), x = α(X), x′ = β(X), y = drX / drx = (drx′) X ∂rx, 

 
hx = r

xg∂ = g∂rx ∈ Hr(Vn),  xh ′ = g′∂rx ∈ Hr(Vm). 

 

Upon identifying Jr(Rn, Rm) with Rn × Rm × ,
r
m nL , this prolongation of (g, g′) may also be 

written: (x, x′, y) → 1
x xh yh−
′ .  The chart (gϕ−1, g′ψ−1), where (ϕ, ψ) ∈ r r

n mΛ × Λ , admits the 

prolongation (ϕ(x), ψ(x′), ψ) → 1 1( )r r
x x x xh y hψ ϕ− −
′ ′ , upon taking into account the equality: 

 
1

( ) ( )r
x gϕ ϕ −∂ = 1( )r

x nh ϕ − . 

 
 These two charts of Jr(Vn , Vm) correspond to the following change of chart: 
 

(x, x′, y) → 1( ( ), ( ), ( ) )r r
x xx x yϕ ψ ψ ϕ −

′′ . 

 
 The following theorem results from this: 
 
 THEOREM 1. – The prolongation of the atlas A×A′ determines a fiber structure on 
the space Jr(Vn , Vm) with base Vn × Vm , projection γ, fibers isomorphic to ,

r
m nL , structure 

group r r
n mL L× , and admitting Hr(Vn) × Hr(Vm) as associated principal fiber bundle. 

 The element (h, h′) of Hr(Vn) × Hr(Vm) determines the isomorphism y → h′yh−1 of 

,
r
m nL onto a fiber of that fiber structure. 

 
 One must also remark that (g, g′) admits the following prolongation, which defines a 
local chart for Hr(Vn) × Hr(Vm) in r r

n n m mV L V L× × × : (x, s, x′, s′) → (hxs, hx′s′), where s 

∈ r
nL , s′ ∈ r

mL . 

 
 THEOREM 2. – The atlas A admits a prolongation that defines an atlas on Jr(Vn, Vm) 

in Jr(Rn, Vm) and determines a fiber structure on Jr(Vn , Vm) with base Vn , projection α, 
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fibers isomorphic to ( )r
n mT V , structure group r

nL , and admitting Hr(Vn) as associated 

principal fiber bundle. 
 The element h of Hr(Vn) determines the isomorphism z → zh−1 of ( )r

n mT V  onto a fiber 

of that fiber structure when z ∈ ( )r
n mT V . 

 
 THEOREM 2′. – The atlas A′ admits a prolongation that defines an atlas on Jr(Vn, 

Vm) in Jr(Vn, R
m) and determines a fiber structure on Jr(Vn, Vm) with base Vm , projection 

β, fibers isomorphic to ( )r
m nT V∗ , structure group r

mL , and admitting Hr(Vm) as its 

associated principal fiber bundle. 
 The element h′ of Hr(Vm) determines the isomorphism z → h′z′ of ( )r

m nT V∗  onto a fiber 

of that fiber structure when z′ ∈ ( )r
m nT V∗ . 

 

 To prove theorem 2, one canonically identifies the space Jr(Rn, Vm) with ( )n r
n mT V×ℝ  

by the map X → (x, ∂rX), where X ∈ Jr(Rn, Vm), x = α(X).  The chart g ∈ A admits the 

prolongation X → 1( )r
xX h−∂ , which is equivalent to (x, z) → 1

xzh− , z = ∂rX ∈ ( )r
n mT V , 

1
xzh− ∈ Jr(Vn, Vm), which defines a local chart on Jr(Vn, Vm) with values in ( )n r

n mT V×ℝ .  

The change of chart ϕ ∈ r
nΛ admits the prolongation (x, z) → 1( ( ), ( ) )r

xx zϕ ϕ − . 

 
 Definitions. 
 A section of the fiber structure on Jr(Vn, Vm) with base Vn will be called an r-flow of 
Vn in Vm . 
 A section of the fiber structure on Jr(Vn, Vm) with base Vm will be called an r-field of 
Vn in Vm . 
 A flow whose elements are pr-covelocities will be called a differential form (1) of 
order r on Vn . 
 
 In another Note, we will study the singularities of a flow or a field.

                                                
 (1 ) One must not confuse this notion with that of exterior form of degree p, which is derived from it in 
the case of r = 1. 



“Les prolongements d’une variété differentiable.  III. Transitivité des prolongements.” Comptes rendus 233 
(1951), 1081-1083. 
 

The prolongation of a differentiable manifold 
III.  Transitivity of prolongations 

 
By CHARLES EHRESMANN 

 
Translated by D. H. Delphenich 

 
 

This Note continues two previous Notes (1).  The transitivity of prolongations is expressed by 
Theorem 1.  A regular prolongation admits a certain infinitesimal structure (2) with a property that is 
given in Theorem 2. 

 
 
 Let Vn and Vm be two r-manifolds whose structures are defined by two atlases A and 

A′ with values in Rn and Rm.  Any r-jet X ∈ Jr(Vn, Vm) determines a k-jet γk(X) ∈ Jk(Vn, 

Vm), where 0 ≤ k ≤ r.  The map γk of ∈ Jr(Vn, Vm) onto ∈ Jk(Vn, Vm) is continuous.  In 
particular, γ0 is the projection γ of Jr(Vn, Vm), if one identifies J0(Vn, Vm) with Vn × Vm ; 
i.e., γ0(X) is identified with the pair (α(X), β(X)). 

 The prolongation to Jk(Rn, Rm) = Rn × Rm × ,
r
m nL of the pseudogroup r r

n mΛ × Λ  is a 

pseudogroup of l-times differentiable transformations upon setting r = k + l.  The 
prolongation to Jr(Vn, Vm) of the atlas A×A′ is compatible with the pseudogroup and thus 
defines an l-times differentiable fiber structure on Jr(Vn, Vm) with base Vn × Vm . 
 Let f ∈ ( , )r

x n mC V V , X = r
xj f .  The k-flow jkf is an l-map of a neighborhood of x ∈ Vn 

in Jr(Vn, Vm), where the l-jet at x depends only upon X; set ( )r
k Xγ = ( )l k

xj j f .  The map l
kγ  

is a canonical isomorphism of Jr(Vn, Vm) onto a subspace of Jl(Vn, J
k(Vn, Vm)).  In 

particular, one thus obtains an isomorphism of ( )r
n mT V onto a subspace of ( ( ))l k

n n mT T V and 

an isomorphism of ( )r
n mT V∗ onto a subspace of Jl(Vn, ( )k

m nT V∗ ); this permits us 

identify r
x f∂ with ( )l k

x f∂ ∂ when f ∈ ( , )r n
x mC Vℝ and r

xd f  with ( )l k
xj d f when f 

∈ ( , )r m
x nC V ℝ .  One likewise defines a canonical isomorphism of ,

r
m nL  onto a subspace of 

,( )l k
n m nT L , which permits us identify r

xf  with ( )l k
x f∂ , where f ∈ Cr(Rn, Rm) and fk is the 

function x → r
xf . 

 Let F be a space that admits k
nL  as a group of operators, the law of composition (s, y) 

→ sy being continuous when s ∈ k
nL , y ∈ F.  The canonical homomorphism of r

nL onto k
nL , 

                                                
 (1 ) Comptes rendus 233 (1951), pp. 598 and 773.  Correction: pp. 599 (2), the algebraic case 
corresponds to a pseudogroup of local algebraic automorphisms of the real or complex numerical space. 
 
 (2 ) A notion that will be defined in a general fashion in a later Note. 
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when composed with (s, y) → sy, also definesr
kL  as a group of operators on F.  Let E(Vn, 

F) be the prolongation of order k of Vn whose fibers are isomorphic to F.  The 

prolongation to Rn × F of the pseudogroup rnΛ  is the set of transformations: 

 

(1)   (x, y) → (ϕ(x), k
x yϕ ),  x ∈ Rn,  y ∈ F, ϕ ∈ r

nΛ . 

 

 The atlas A of Vn with values in Rn admits a prolongation A(E) that define an atlas on 

E with values in Rn × F, which is compatible with the prolongation of rkΛ .  We say that 

E(Vn, F) is a regular prolongation of order k of Vn if the map (s, y) → sy is l-times 
differentiable.  Since x → r

xϕ  is l-times differentiable, the transformations (1) are then l-

times differentiable and the atlas A(E) defines an l-times differentiable fiber structure on 
E with base Vn . 
 
 THEOREM 1. – If E(Vn, F) is a regular prolongation of order k of Vn then any 
prolongation of order l of E is a prolongation of order r of Vn, upon setting r = k + l. 
 
 This theorem is first proved for the prolongation ( )l

pT E .  The atlas A admits a 

prolongation that defines an atlas of ( )l
pT E  with values in ( )l n

pT F×ℝ that is compatible 

with the prolongation of r
nΛ  to ( )l n

pT F×ℝ .  Upon identifying ( )l n
pT F×ℝ  with 

( )l n
pT ℝ × ( )l

pT F  = Rn × ,
l
n pL × ( )l

pT F  = Rn × F′, where F′ = , ( )l l
n p pL T F× , the prolongation 

of ϕ ∈ r
nΛ  − or of the transformation in (1) − is written: 

 
(2)     (x, u, Y) → (ϕ(x), l

xuϕ , Y′), 
 

where x ∈ Rn, u ∈ ,
l
n pL , Y ∈ ( )l

pT F , Y′ = ( ( )( )l k l
x xg j uϕ ∂ , Y), upon letting g denote the 

map (s, y) → sy, as well as its prolongation to ( )l k
p nT L F× .  Set z = (u, Y) ∈ F′.  The 

element z′ = ( l
xuϕ , Y′) depends uniquely upon ( , )r

x zϕ , and one may denote it by rx zϕ ⋅ .  

For ψ ∈ r
nΛ , one has ( )r r

x x zψ ϕ′ ⋅ ⋅ = ( ( ), )r
xx zϕ ϕ ⋅ .  The prolongation of A thus defines the 

fiber structure on ( )l
pT E that is associated with the principal prolongation Hr(Vn) with 

fibers isomorphic to F′. 
 For a fiber space associated with Tp(E) the theorem gives the following results: 

 1. A fiber space that is associated with Tp(E) is of the form Rn × F". 

 2. Being given two fiber spaces E and E′ with fibers that are isomorphic to F and two 

associated fiber space E1 and 1′E  with fibers that are isomorphic to F1, any representation 
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(isomorphism, resp.) of E in E′ is associated with a representation  (isomorphism, resp.) 

of E1 in 1′E . 

 The prolongation of r
nΛ  to Rn × F defines a local structure on Rn × F whose 

infinitesimal isotropy group of order l at the point (x, y) is isomorphic to the subgroup of 
r
nL  that leaves y invariant.  The atlas A(E) determines a local structure on E that is 

subordinate to its l-times differentiable fiber structure.  At ξ ∈ E the infinitesimal 

isotropy group of order l of that local structure is isomorphic to that of Rn × F at the point 

(x, y) that corresponds to x in a local chart of A(E).  If k
nL  operates transitively on F then 

these isotropy groups are isomorphic to the subgroup ofk
nL  that leaves y0 ∈ F invariant.  

From this, one deduces: 
 
 THEOREM 2. – If E(Vn, F) is a regular prolongation of order k of Vn such that k

nL  

operates transitively on F then any prolongation of order l of E admits a subordinate 
fiber structure with base E whose structure group is the subgroup of r

nL that leaves y0 ∈ F 

invariant; this group may likewise be reduced to its projection on Ln (which is identified 
with a subgroup of rnL ). 

 
 It results from this, for example, that the principal prolongation Hk(Vn) is 
parallelizable. 
 
 Let E(B, F, G, H) be a fiber space, ρ an equivalence relation in F that is invariant under G, and let K be 
the subgroup of G that leaves each class mod ρ invariant.  By the isomorphisms of F onto the fibers of E, ρ 
determines an equivalence relation ρ  in E.  If ρ is an open equivalence relation then /E ρ  is endowed 

with a fiber structure that is associated with E(B, F, G, H) with fibers that are isomorphic F/ρ and 
structure group G/K.  We say that the fiber space E is an extension of the fiber space /E ρ  that is 
associated with the canonical homomorphism of G onto G/K. 
 A prolongation of order r of Vn is not always a prolongation of order l of a prolongation of order k of 

Vn, but it is always an extension of order k that is associated the canonical homomorphism of r
n

L onto k

n
L .  

To each prolongation of Vn there corresponds an extension of the same type of an arbitrary fiber space with 
structure group Ln , a remark that permits one to extend to these extensions the study that is made in these 
Notes. 



“Les prolongements d’une variété differentiable.  IV. Éléments de contact et éléments d’enveloppe.” 
Comptes rendus 234 (1952), 1028-1030. 
 
 

The prolongation of a differentiable manifold 
IV.  Contact elements and enveloping elements 

 
By CHARLES EHRESMANN 

 
Translated by D. H. Delphenich 

 
This Note continues four previous Notes (1).  Groupoid associated with a fiber space, intransitivity 

classes, covariant maps.  These notions, which we put at the basis for the theory of covariant 
differentials of an infinitesimal structure, are applied to define the contact elements and enveloping 
elements of order r and to indicate the fiber structure that is defined by these elements. 

 
 
 1. Let E(B, F, G, H) be a fiber space with topological structure group G.  We call the 
groupoid Π = HH−1 of isomorphisms of a fiber onto a fiber the associated groupoid.  It is 
endowed with a fiber structure with base B×B, fiber G, and structure group G×G that 
operates on G in the following manner: 
 

(s′, s)t = s′ts−1, 
 
where s, s′, t ∈ G.  Let p be the projection of E onto B, p̂ , the projection of H onto B, α 
and β, the projections of Π onto B that are defined by: 
 

α(h′h−1) = ˆ ( )p h , β(h′h−1) = ˆ ( )p h′ , 
 
where h, h′ ∈ H.  Π is a groupoid of operators for E: The composition θz of θ ∈ Π and z 
∈ E is defined when p(z) = α(θ); one then has p(θz) = β(θ).  One has θ′(θz) = (θ′θ)z when 
one of these compositions is defined.  The left and right neutral elements of Π are the 
identity automorphisms of the fibers. 
 We call the set of compositions θz, where θ ∈ Π the intransitivity class of z ∈ E.  
Two points z ∈ E and y ∈ F will be called equivalent when there exists an h ∈ H such 
that z = hy.  The intransitivity class of z is the set of points that are equivalent to a point y 
∈ F.  The set of points of F that are equivalent to z is an intransitivity class of F relative 
to G. 
 A subspace E′ of E will be called invariant (under Π) when it is the union of 
intransitivity classes.  E′ is then the set of points that are equivalent to an arbitrary point 
of a subspace F′ of F that are invariant under G.  It is endowed with a fiber structure 
E′[B, F′, G/N, H/N] where N is the subgroup of G which leaves each point of F′ invariant. 
 Let ϕ be a representation of G on a group of automorphism G  of a space F  and let 

( , , , )E B F G H be the fiber space associated with E(B, F, G, H) by ϕ.  We also let ϕ 

                                                
 (1 ) Comptes rendus 233 (1951), pp. 598, 777, and 1081, 234 (1952), pp. 587. 
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denote the associated representation of H onH , as well as that of Π on Π , which is 
defined by: 

ϕ(h′h−1) = ϕ(h′)ϕ(h)−1, 
 
where h, h′ ∈ H.  A map ψ of E in E  will be called the covariant map (invariant, if G  
reduces to the neutral element, resp.) when ψθ = ϕ(θ)ψ  for any θ ∈ Π.  The covariant 
map ψ projects to the identity map on B; it corresponds to a covariant map ψ0 of F in F ; 
i.e., such that ψ0s = ϕ(s)ψ0, where s ∈ G.  An intransitivity class is mapped under ψ to an 
intransitivity class. Let ρ be the equivalence relation in F that is associated with ψ0 and 
let ρ  be the equivalence relation in E that is associated with ψ, and suppose that ρ is an 

open equivalence relation.  ψ then admits the canonical decomposition: 
 

ψ = ψ"ψ′, 
 

where ψ′ is the canonical covariant map of E onto /E ρ , which is endowed (1) with an 

associated fiber structure /E ρ [B, F/ρ, G/K, H/K], K being the kernel of ϕ, and ψ" being 

an isomorphism of /E ρ  onto an invariant subspace of E .  In order for the classes mod 
ρ  on E to be the fibers of a fiber structure whose pseudogroup of local automorphisms 
includes the local automorphisms of the structure E(B, F, G, H), it is necessary and 
sufficient that the classes mod ρ in F are the fibers of a fiber structure that is invariant 
under G (a condition that is verified, in particular, when G is a transitive Lie group in F 
and a class mod ρ is closed). 
 2. Consider two r-manifolds Vn and Vm .  Let Πr(Vn) be the groupoid associated with 
Hr(Vn); it is the set of invertible elements of Jr(Vn, Vn).  Consider Jr(Vn, Vm), endowed 
with its fiber structure (1) that has base Vn×Vm , fibers isomorphic to ,

r
m nL , structure group 

r r
m nL L× , and associated with the principal fiber space Hr(Vn) × Hr(Vm); its associated 

groupoid is Πr(Vn) × Πr(Vm).  The intransitivity class of z ∈ Jr(Vn, Vm) is the set of 
elements h′yh−1, where h ∈ Hr(Vn), h′ ∈ Hr(Vm), y being an element of ,

r
m nL that is 

equivalent to z.  We call the intransitivity classes of y and z the equivalence elements of y 
and z. 
 Also, consider the fiber structure on Jr(Vn, Vm) that has base Vn, fibers isomorphic to 

( )r
n mT V , structure group rnL , and associated with Hr(Vn).  The composition of s ∈ r

nL and Y 

∈ ( )r
n mT V is Ys−1.  The associated groupoid is Πr(Vn), the composition of z ∈ Jr(Vn, Vm) 

and θ ∈ Πr(Vn) being zθ−1.  The intransitivity class of z relative to Πr(Vn) corresponds to 
the class r

nYL  in ( )r
n mT V , where Y = zh.  This class r

nYL  is called the contact element of Y 

or of z; we also say that it is an contact nr-element in Vm . 
 Upon considering the fiber structure on ( )r

n mT V that has base Vm, fibers isomorphic 

to ,
r
m nL , and structure group rnL , the equivalence relation Y ~ Ys−1 corresponds in ,

r
m nL  to 

the equivalence relation y ~ ys−1, which is invariant under rnL . 
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 Let ,
r

m nP  be the quotient space of ,
r
m nL  under this equivalence relation; it is the space 

of contact nr-elements with origin O in Rm.  This space, upon whichrnL operates, is not 

separable, but each of its intransitivity classes is a Lie homogeneous space.  The space 
( )r

n mP V  of contact nr-elements on Vm is the prolongation of order r of Vm with fibers that 

are isomorphic to ,
r

m nP .  The map Y → r
nYL  is a covariant map ψr of ( )r

n mT V onto ( )r
n mP V .  

The reciprocal image under ψr of an intransitivity class of ( )r
n mP V is endowed with a fiber 

structure that is associated with that projection.  For k ≤ r, the intransitivity classes of 
P(Vm) are the regular prolongations (1) of Vn and canonical map ψk of ( )r

n mT V onto 

( )r
n mP V reduces for each of them to an l-map, where k + l = r.  If f is an r-map of Vn into 

Vm then the pair (f, Vn) is called an embedded r-manifold in Vm, f(Vn), its support, 
( )k k

xj fψ  is its contact element of order k at x.  The map ψk(jkf) of Vn into ( )r
n mP V defines 

the prolongation of order k of an embedded manifold.  If the equivalence element 
of k

xj f is fixed then this prolongation will be an embedded l-manifold in an intransitivity 

class of ( )r
n mP V ; the contact element ( )r r

xj fψ  is canonically identified with the contact 

element of order l at x of the prolongation ψk(jkf). 
 Upon likewise considering the fiber structure on Jr(Vn, Vm) with base Vm, one defines 
the enveloping element of z ∈ Jr(Vn, Vm) or an equivalence element Z of ( )r

n mT V ; it is the 

class ( )r
m nT V∗  that we also call the enveloping mr-element in Vn .  The set ( )r

m nP V∗ of these 

elements is the prolongation of order r of Vn with fibers isomorphic to ,
r

m nP ∗ , the set of 

classes r
mL y (viz., the enveloping element of y ∈ ,

r
m nL ).



“Les prolongements d’une variété différentielle.  V. Covariants différentiels et prolongements d’une 
structure infinitésimale,” Comptes rendus (1952), 1424-1425. 
 
 

The prolongations of a differentiable manifold 
V.  Differential covariant and prolongations  

of an infinitesimal structure 
 

By CHARLES EHRESMANN 
 

Translated by D. H. Delphenich 
 

This Note continues five previous Notes (1).  Definition of the notion of differential covariant with 
respect to a pure infinitesimal structure.  Prolongations of an infinitesimal structure.  The successive 
prolongations of a general affine connection of order r. 

 
 
 1. Let Vn be an r-manifold, Hr(Vn), its principal prolongation of order r, and Πr(Vn), 
its associated groupoid.  Consider two prolongation E and E  of Vn of order k and k , 
where k ≤ r, k ≤ r.  Πr(Vn) is a groupoid of operators on E and E .  Let ψ be a covariant 
map of E intoE ; i.e., ψθ = θψ, where θ ∈ Πr(Vn).  We say that ψ(z) is a differential 
covariant of z ∈ E.  Such a ψ corresponds to a covariant map ψ0 of F into F , which are 
the fiber types of E and E : ψ0s = sψ0, where s ∈ r

nL . 

 Let s be a pure infinitesimal structure that is defined by a section σ of E.  If z = s(x), 

where x ∈ Vn, then the element y(z) is a differential covariant of s at the point x; the 

section ψσ of E is a differential covariant of s. 

 Suppose that σ is l-times differentiable, where k + l = r.  Let σ′(x) be the contact 
element of l

xj σ .  We say that σ′, the prolongation of order l of the section σ, defines the 

prolongation s′ of order l of s.  s′ is a pure infinitesimal structure of order k + l, and its 

differential covariants will again be called differential covariants of s. 

 If (f, Vp) is an embedded r-manifold in Vn then its differential covariants are those of 
its contact elements. 
 2. A groupoid Π(s) is associated with the pure infinitesimal structure s: viz., the 

groupoid of infinitesimal automorphisms of s.  It is a subgroup of Πk(Vn), and its 

solutions are the local automorphisms of s.  A covariant map with respect to s is defined 

by the condition ψθ = θψ, where θ ∈ Π(s), ψ being a map of a prolongation of order k of 
Vn to a prolongation of order k2 ; k1 ≤  k, k2 ≤  k.  If s is l-times differentiable then 

consider the prolongation s′ of order l of s and its associated groupoid Π(s′).  The 

covariant maps with respect to s′ are again called covariant with respect to s and one thus 

has the notion of differential covariant of order ≤ k + l with respect to s. 

                                                
 (1) Comptes rendus 233 (1951), pp. 598, 777, and 1081; 234 (1952), pp. 587 and 1028.  
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 One must, above all, consider the covariant maps in a tensorial prolongation of Vn (a 
prolongation of first order that is associated with a linear representation of 1nL ). 

 Let s be a regular infinitesimal structure of order k on Vn .  It corresponds to a fiber 

subspace ( )nH V of Hk(Vn), with structure group G that is a subgroup of knL .  A fiber 

subspace E that is associated with ( )nH V  that corresponds to a representation ϕ of G on a 

group of automorphisms of F will be called a prolongation of Vn relative to s.  In order 

for E to also be a prolongation relative to the r-manifold structure on Vn , it is necessary 
and sufficient that ϕ  prolongs to k

nL . The notion of covariant map relative to s is defined 

for the prolongations relative to s. 

 3. The groupoid Πk(Vn) is endowed with an l-manifold structure, where r = k + l.  
The three fiber structures on Πk(Vn) that correspond to the projection γ into Vn×Vn and the 
two projections α and β onto Vn are l-times differentiable.  Let E be a regular 
prolongation of order k of Vn and let p be the projection of E of Vn .  The law of 
composition (θ, z) → θz, where θ ∈ Πk(Vn) and z ∈ E prolongs to the set of pairs (Θ, Z), 
where Θ ∈ [ ( )]l k

p nT VΠ  and Z ∈ ( )l
pT E  such that pZ = αΘ. 

 If G is a Lie group that operates in an r-differentiable manner on F then ( )k
pT G is a 

group that operates in an l-fold differentiable manner on ( )k
pT F .  The group ( )k

pT G  is l-

times differentiable, and in general it is a non-trivial extension of G. 
 In particular, set [ ]r

nL = 1 [ 1]( )r
n nT L − , [1]

nL = 1
nL = Ln .  The group r

nL  is canonically 

isomorphic to a subgroup of [ ]r
nL .  Also, set ,k l

nL  = ( )l k
n nT L . 

 Upon setting l ≤ k let Πk,l(Vn) be the set of X ∈ Jl[Vn, Πk(Vn)], such that αX is the 

neutral l-jet and βX be the canonical l-jet that is deduced from the target k-jet of X, 
Πk,l(Vn) is a groupoid that operates on ( )l

pT E . 

 Let Πk,l(Vn) be the set of Y ∈ [ ( )]l k
p nT VΠ  such that the projection of Y onto Vn is the 

canonical nl-velocity that is deduced from the nk-velocity at the origin of Y.  Hr(Vn) is 
canonically identified with a subspace of Hk,l(Vn), which is the associated principal fiber 
space to Hr(Vn) by enlarging r

nL  to ,k l
nL .  The groupoid associated to Hk,l(Vn) is Πk,l(Vn). 

 We call an infinitesimal connection in Hk(Vn) a special affine connection of order k.  
It is a regular infinitesimal structure of order k + 1 that is defined (1) by a certain field 

Cɶ of contact n1-elements in Πk(Vn).  The prolongation of order 1 of that structure is an 
infinitesimal connection in Hk,1(Vn).  We call an infinitesimal connection in H[r](Vn), 
which is the principal fiber space associated with Hr(Vn) by enlarging r

nL  to [ ]r
nL , a 

general affine connection of order r.  By successive prolongations of a special affine 
connection one obtains a general affine connection of order r; however, one does not 
obtain all connections of this type in this manner. 
 

                                                
 (1) See the precise definition in: C. EHRESMANN, Les connexions infinitésimales (Colloque 
Topologie, Bruxelles, 5-8 June 1950). 
 A general study of the infinitesimal connections of order r will be made in another article.  


