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From the great significance that concept of spinbas was introduced by Pauli and
Dirac has taken on in molecular physics, it can stitllve asserted that the mathematical
analysis of this concept up to now satisfies all ofjtiséifiable demands. That is why P.
Ehrenfest has urged one of us with great enthusiasnmkéoota the task of filling this
lacuna. Our endeavors have led to a derivation thatnnnterpretation, corresponds to
all requirements of clarity and naturality, and comgyetesoid non-intuitive artifices.
Therefore, as will be shown in what follows, the aguction of new quantities — viz.,
“semi-vectors” — will prove to be necessary; these qtiastinclude the spinors, but
possess an essentially more intuitive charactertti@spinors under transformations. In
the present paper, we have deliberately restricted oassévthe representation of the
purely formal connection, in order for the mathematicatmalism to emerge in full
clarity.

The essence of the train of thought that is pursued irpdpsr may be outlined as
follows: Any real Lorentz transformatid® can be decomposed uniquely into two special

Lorentz transformation® and ¢, whose transformation coefficients, and c¢', are
complex conjugate to each other, where the transfans® and¢ define groups that
are isomorphic to the grou@] of Lorentz transformations. Semi-vectors are qtiasti

with four complex components that, by assumption, under@®-transformation -

transformation, resp.) when a Lorentz transformat®operformed. There are special
semi-vectors that are characterized by certain symneeinditions and have only two
(instead of four) mutually independent (complex) componefitss situation gives rise

to the introduction of quantities with only two (comple@gmponents, namely, the Dirac
spinors.

8 1. Rotation and L orentz transfor mation.

We think of the spac®&, of special relativity as being referred to Cartesiart (no
necessarily rectangular) coordinates. The metricotefgs) has well-defined constant
components that are numerically invariant under theesplent transformations that we
will have in mind (Lorentz transformations in a broaskense).

In the chosen coordinate system, we consider a ve&pr



Einstein and Mayer — Semi-vectors and spinors. 2

A =a A (1)
which we refer to as a “rotation,” when it is length-gresg; i.e., when one always has:
g A AN =gy AT A%
For thed, this yields the condition:

Jik alip akq = Opq - (2)
On the other hand, let: _
X = aly X (3)

be a coordinate transformation (with constap)t the following transformation laws are
valid for the componentd (g, resp.):

A'=a A (4)
J'ik ai|o akq: Opq - (5)

We call the transformations (3) that leave thenumerically invariant dik = gi)
“Lorentz transformations.” From (5), the matrig\) of a Lorentz transformation
satisfies the equations (2), which we shall derive lfer ‘vrotation.” This allows us to
associate Lorentz transformations that have the saraion matrix, and study the
rotations, instead of the former. The preference forgrosedure rests in the fact that
the rotation matrix has a tensor character.

Any statement about the “rotationd)) is equivalent to a statement about the
“Lorentz transformation”d) with the same matrix.

Let us make a remark about the meaning of the raisingoaverihg of indices (a
tensorial operation) for the transformation mateix)( We would like to represent this in
the general example of Riemanni&n.

Let:
Xi': Xi' (X1, -+ey Xn) (6)
be a point transformation. For the componehtsf a contravariant vectors at a point one
then has:
K=d I ["—‘J )
28

The index () in a\ thus refers to the system a&f with the metric componentgi., and

the index k) to the system of with the metric tensor componemgjg. If we observe this
then we can raise and lower the indices in (7), ans Write:

A=ax A (ax=g,aW), (7a)
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Ai,:aik Ak (aik: glr kS rs) (7b)
A'=ak A (@ =d°ay); (7c)

i.e., all transformations laws for the componentshef vector 4) are included in (7) if
one observes the rule for the raising and loweringdi€é@s foraly .
Naturally, one thus hagik = gik for the Lorentz transformation.

8 2. Thedecomposition of second-rank anti-symmetric tensorsin Ry .

Although the reasoning of this paragraph is valid for theegd Riemanniaf, we
shall essentially restrict ourselves to the pseudo-Hanlidpace of special relativity,
which we refer to rectangular coordinates. The metigicsor @) then has the
components:

1000
0100
001 O

000-

(8)

As is known, there is the fourth-rank covariant tenedr, that is anti-symmetric in
all indices™

tiim = JE Mikim s 9

in which 71234= 1,9 | gik |, or, in contravariant representation:

|kIm ,7|klm (,7iklm — /7iklm)- (10)

“ o

Thus, for the special choice of coordinates, orleset, in agreement with (8):

1 Proof: From the transformation formula fgy, it is known that it follows for the determinant that:

(- a(xl XZ!X3’X4)
\/E a(xl X’Z!X3’ 4 \/7
On the other hand, one has:

. 00x,) 9(%y) a(x) 9(x) _ 0(X,ye-1X,)
Vikm = , ] rs — im AT -
A%y a(%) a(ma(mf Tos = N9 (%1 Xs)

The equation to be proved follows from both equatitpg; = \/E Nium- One further has:

rs i rlsm — 1 —_ 1
"= Jg 0" g% 9" o™ um= @Egnpqrs— 75 s
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Jg =i (11)

(i.e., one restricts to pure rotations).
Now, if hi is a second-rank anti-symmetric tensor (which doeseetl to be real)
then we can associate it with the likewise anti-sytmim tensor lfi"):

hkx = %\/a”iklmhlm’

. . 12
hIkX - 1 ,7|klmhm, resp ( )
29
Written out more completely, this is:
hio* = Jg h*, has*= \Jg h'3, (12a)
h'2* = /g has, h*** = \[ghu,. (12b)
From this, it follows that:
(hikx)x = hik . (13)

Now, there is now a special anti-symmetric tergpsuch thahy = a hy ; according to
(13), for such a tensog? = 1.
We call a tensor gpecial tensor of thefirst kind and denote it by if:

Uik = Uik.. (14)
Likewise, should one have:
ViK' = = Vi, (15)

then this would define a&pecial anti-symmetric tensor of the second kind. In the
following quantities, we would like to always deadtis symmetry character by the
symbolsu andv. This means, in more complete notation:

w2 =g u*, Usa = /g U™ (14a)

viz= g V¥, vaa =g V2, (15a)
or, for our special choice of coordinates:

Up =—iu Uss =i U™ (14b)

Vio =i V4 Vas = —i V=2 (15b)

From (14), (15), and (12), or also from (14b), (1 5bfollows that the complex conjugate
of aui IS avi .
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The arbitrary anti-symmetric tensbfi may then be decomposed according to the
following schema:
hik = 3 (i + hi”) + 2 (hik = hi). (16)

Sincehix + hi* is auix andhi, — hi* is avik, we have in (16) the uniqdfedecomposition of
the general second-rank anti-symmetric tensor intoemsor and & tensor'.

If hix is real therhy( is pure imaginary anl + hi* is the complex conjugate b —
hi'. The special anti-symmetric tensors the first (sdcaasp.) kind define a linear
space: Along withuy, Uik, a Uk + d' Uk also belongs to the totality of ail .

Any uyi can be linearly represented by three suitably chagen in our special
coordinates, one can employ thethus defined for the representation (naturally, relative
to the chosen coordinate system):

u,: onlyu,,=-iu,,=1lis different from zero (naturgJu ,,,u ,; are also non - zera)
1 1 1 1 1
Uy onlyu ,,=-iu,,=1is different from zero, (14c)

u,:. onlyu,, =-iu,,=1isdifferent from zero.
3 3 3

Since thex in this representation:

WK:q?m+ggm+%%m

can be complex, the space is 6-dimensional; natueallygnalogous statement is true for
the space ofi.. Relative to our coordinate system, we can define:

Vi = U, (a=1,2,3) (15c)

and thus linearly represent the most geneyal

8 3. Thedecomposition of the Lorentz group.
As in 8 1, we again consider the length-preserving map i(ro}at

A =di A
According to (2), for it one has: _ _
5Ik = a.lp akp. (17)

From this, it follows that the determinang} | is different from zero; there is thus an
inverse to any rotation. If further follows from the idéfon that the composition of two
rotations is again a rotation. We can therefore spé#iearoup P) of rotations — viz.,

1 The proof of uniqgueness may be based upon the fact thedrishing ofu;, andv, follows from u;y

+Vvig=0.
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the Lorentz group. The individual rotations of the group can also be deryg

complex).
If we set:
acP = (@) (18)
then it follows from (17) that: _ _
ap,@)k=0%. (17a)

Thus,ay is the inverse toy .
We now consider an infinitesimal rotation:

ay= O+ &'y,
or
aik = Oik + &k , (29)

which differs from the identity rotatiorgi) only by infinitely small quantities, so the
product of two¢ is neglected. If one substitutes this into (17) then alotains the
condition:

Ek =~ &k - (20)

(19), (20) characterize the general infinitesimal romatio
From 8 2, we can now decompose the anti-symmetric tgagpaccording to the
equation:
&k = Uik + Vik , (21)

where (i) and (i) are special (infinitesimal) anti-symmetric tensofshe first (second,
resp.) kind, in the sense of § 2. If theare real themix andvix are complex conjugate
(Vik = Ty )-
The representation (21) corresponds to the decomposttitie infinitesimal rotation
(29):
Ok + &k = (@ip + Uip) (0% + U%Y) (22)

into two rotations of well-defined type, in whigf is written for & .

Does this decomposition of the infinitesimal elersesitthe rotation (Lorentz, resp.)
group also correspond to a well-defined decomposition offitlite elements of this
group?

We would like to temporarily assume this. Thusaif)(is a rotation then there might
be two rotationslfyx) and €ix) that are given by&) such that:

aik = bip ¢ . @

Therefore,bik (Cik , resp.) might define yet-to-be-determined subgroups ofdtation
(Lorentz, resp.) group that are isomorphic, on the lzdgise association that is given by
(a). The association difx with ai that is given by ) will be described symbolically by
aik — bik.

Analogously, a second Lorentz transformation:
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ik =bip ¢ %)
corresponds to the association:
ik - bik.
The condition for isomorphism then requires that tlmenmonents of the Lorentz
transformation are associated with the correspondingponents of the-transformation
according to the schema:
ar &'k - bir b'k.

(An analogous statement is true for the subgroup dfthe
Thus, on the basis offf and {3), the decomposition:

air @'k = (b ™) (C'q C'%) ()
shall also exist, and indeed, along with:

ara'k= (b ) (0 g %), ©
() and ©) are naturally fulfilled when and only when:

b Pcs=c’b’s; ©

i.e., when anyb-rotation commutes with any-rotation. In the event that a
decomposition ) of the desired kind exists, the conditiaa ust also be satisfied. In
addition, it shall correspond to a decomposition of tiimitesimal rotation of the type
(22).

Accordingly, we seek to determink,f such that £) is fulfiled when we substitute
the infinitesimal rotation:

Cik = Jik * Vik,
for ci , according to (22).
bip(3°k + VP) = (@ip + Vip) b (23)
or
bip Vi = vip b, (23a)

and indeed for the most general choice of tensor of ¢ensl kindvik , which is
established by (15) [(15b), resp.].

The solutions of (23a) for whictbk | # O define a group; then, along wiify andb'ip,
bip b’k also commutes witkix and has a non-zero determinant. Moreover, the totality
all these solutions includes the identity, and along withbi, the inverse elemenb®)i
exists, which is likewise a solution of (23a)

Our problem is the determination of the structure oflkenents of this group, which
we would like to denote byg'). We again carry out the calculations that this leader

a coordinate system in which thg are given by (8). Due to the tensorial character of
(23a), however, the result is independent of the spele@te of coordinates.

! One proves this by multiplying (23a) Hy ), (b™)" .
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The most generadx that enters into (23a) can be linearly representeddy ththat

were defined in (15c¢) in the coordinate system that is eragdlo Therefore, if (23a) is
fulfilled for each of these three tensors then talation is true for anyi .

We then first substitut?ik into (23a) §’ =1 Vau= 1). We arrange the results fok

=1, ..., 4 into the following tables:

i 1k i |k i |k

1|1 1|2 2|3| b, =-ib,,
=—Dbh , =b , .

2 2} by, 21 2 ]} b, =b,, 3 2} b, = —iby,

33 b, = b 1{3| by, =iby, 2|4| by, =iby,

alaf T e 3|1] b, =ib,,, 4|2] b, =ib,,

Since the relations that defingik arise from the ones that defirrfeik by cyclic
permutation of 1, 2, 3, when th2e,k are substituted in (23a) this produces relations that

arise from the tables above by cyclic permutation efitidices 1, 2, 3. Then, to any
relation (e.g.,blp\l/plz Vi bPh) for Vi there exists a cyclically associated one ‘29;!

(here,bzp\z/ P2 \z/zpbpz), which yields the relation fdsy that arises from the first one by

cyclic permutation of 1, 2, 3.
We thus obtain the relations:

bos=—Dbsz2, boo2=Dgs, bsp =ibys, b4z =—ib12,
Dia=—ba1, Dboa=ibs, D3gs=—ibp1, b11=—bas.

Vi correspondingly yields:

D31 =-b1z, Dbsz=bi, b4z =iby1, bs1 = —ibps,
Dos=—Daz, Dza=ibzy, bia=—ibgz, boo=—bys.

If we setb;1= b, = bs3 = — byy = b then we obtain the following results as the sumnoéry
all these relations, with hindsight of (14b):

bik = b gk + Uik . (24)
In (24), we thus have the structure of the most genenabtbi that commutes withy .

Since the most genenak (= ‘l"tl‘ikJ’%'%ik*ag'%ik) includes three complex parametdssg,

includes four.
We would like to establish the form of the inverse elemntd (24) o )i . U also
belongs to the tensobg (for b = 0); thereforey;, U’y is also included in the totality of the
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bik , which indeed defines a grou’). However, sincei, U’y is symmetric in andk,
one must have:
U Uk = a ik - (24a)

Therefore, as one recognizes by contracting, one has:
a= ;U u'k. (24b)
We now assume that the inverse element is:

(b™ik=b' g + € U .
From:
gi = b (079 = b g + ui) (b’ g5 + ¢ u)
= @b’ +c'a) i+ (bC' +b') Ui ,
it then follows that:

__ b a1
-2 K -T2 K
b®+Zu,u b® +Zu,u

U

One thus obtains for the inverse element:

1
T (b gik —ui) = T by . (25)

-1
(b= m7T—= I
b” + U, u b+ u

The mapbik is not a “rotation,” in general. Namely, multigdtion byb"i, while
recalling the definition of the inverse, yields:

b bY = g'(b® + L uy u").

According to (2) ik then determines rotation (i.e., Lorentz transfarom only when
the parameter that appears in (24) correspondetoandition:

b” + Lu u* = 1. (26)

The totality of rotations in the groufB() will be defined by the “intersection” of the
two groups ') and ©) (viz., the group of rotations). Let this intecden, which is
itself a group, be denoted b%J.

From (24), the infinitesimal element of the gro@®') reads, in a self-explanatory

notation:
Oik(l + D) + A . 27)

From (26), the infinitesimal element dB] fulfills the additional condition that (1 db)?
+ 1K A =1ordb=0. Ittherefore reads:
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Oik + ik , (28)

in agreement with (22), an equation that indeed defined tdmting point for the
decomposition of the infinitesimal rotation (except thatwas written in place oduik
there).

Precisely as (23a) led to the gro®y), the relation:

Gip UPk = Uip C% (29)

leads to a group() with the elementsy . Since everyw®, is au’, such that both of

them can be associated with the other one by meahs oélationv®, =u’, (29) can be

regarded as the complex conjugate equation to (23a), whosgosslck are thus
complex conjugates to thosg of (23a). From (24), it then emerges that (29) will be
solved by:

Cik = C Ok * Vik. (30)

In place of (26), here, the additional (necessary affetient) condition for the map
to be a rotation is the condition: _
C+1vvi=1. (31)

(30), (31) represent the element of the rotation gr@ypwhich is the intersection of the
groups €') and (®) (viz., the rotation group). The infinitesimal elemaexit (€) is,
according to (28):

Oik + Wik (32)

We restrict ourselves to any (proper) real Lorentnsfamationa’y that can be
decomposed into real infinitesimal transformations.
This obviously defines a true subgroup of the Lorentz group/fioise elements (8 4)

the decompositiosly = b' b, is true".

This subgroup, which we shall be concerned with exclusinelvhat follows, always
contains only one of the two Lorentz transformatia\g &and ¢ a\).

When we speak of the Lorentz groap) (in what follows, we intend this to mean this

subgroup of the group of all real Lorentz transformations
8 4. Relations between the groupsthat we defined.

We first show that any element of the grot§d)(commutes with any element of the
group €'). In fact, one has:

! Areal Lorentz transformatiora() has either the decompositidi,(b® ) or (- b, b®). From (8§ 4),

it follows thata, = b, ¢* , namely, ¢’ = b' €} = € b}, hence, one has (§ &), =+ T, moreover.
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bik ¢ = bik (c g + V) = c by + b V¥ = c by + vi b = (C gi + Vi) b = ci b .
Since the “product” of a rotation @ with a rotation irs:
aj = bik Ck| . (33)

includes 3 + 3 = 6 complex parameters, which is just as mariie most general (not
real) rotation, one might conjecture that any rotattam be represented as such a
product; this was shown for the infinitesimal rotatiom§i3. However, any rotation can
be represented as the composition of a sequence of isiiingkrotations, each of which
is again a product of an infinitesimal rotati®nand such &.

However, since we know that a8/ commutes with ang, we can now assume that
the permutations in the rotation that is represented éynfinitesimal’d and¢ are such
that first all®B-rotations, and then all-rotations follow in sequence. If one unites®aH
rotations in this representation into a single one, &eavise for all¢-rotations then this
yields the splitting of the arbitrarily given rotati@ninto:

D =‘BC.

If the given (proper) Lorentz transformation is reart each of the infinitesimal
rotations that define it can be chosen to be reaéirBplitting product®3 and¢ are then
complex conjugate, and likewise the finite rotationsr@inbdz transformationslp and &
that arise from their composition are, as well.

As a result of the commutability of thg andci , the association that is induced by
(33):

a - b, a - Ci,

of the elements of the groupB) and €) to those of the group®)) is required to be an

isomorphism. The proof is obtained from the derivatiothefprevious paragraphs.
Along with a decomposition:
ai =hi c’,
there is always a decomposition:
ai = (- bir)(= ).

Are their more decompositions of the type consideredfder We assert that this is not
the case, and indeed we first show thisafpr gj .
From:
g = bic ¥, (33a)

it follows upon multiplying byc', (becausdi bY = gi) that:

b = ¢y
or
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bgr+ur=bgy+wvi.

From this, it follows immediately thas = c¢; uy = v, = 0. It further follows, by
substitution in (33a), that® = 1; thusp = ¢ =+ 1. Therefore, our assertion is proved for
ai =g ; the single decomposition of the type consideredferg; is, in fact:

g1 = & g £ g").
Now, letai be an arbitrary Lorentz rotation and let:
bik ¢ = b &

be two representations fa . Multiplication by b', ¢, yields, if one recalls the
fundamental property of rotations:

Opg = 'k ')€" q) = [(07) Blell 4 (€7)'dl.

This is precisely a decomposition @f; into a‘B-rotation and &-rotation. From the
theorem that we just proved, one then has:

(™) bp=Ccu (€™ p== gop-
From this, it follows, upon multiplication by (c*, resp.), that:

b =+b
ke "’} both equations have the same sign.

!

Ce =%Ge

With that, the assertion is proved.
Aside from this double-valuedness of the sign, theaason if B (&, resp.) with the
D is unique.

Remark: The decomposition of the Lorentz rotation that wadopered is true only
for pure rotationsd'x | = + 1, so it is not true for reflections; therefarely pure rotations
may be composed from infinitesimal ones. The elent®n{g, resp.) are likewise pure

rotations.
8 5. The semi-vector and itsinvariants.

We refer the space of special relativity to rectang@artesian coordinates. The
coordinate transformations that take these systemsatth ether are the Lorentz
transformations:

X = alk X (aip 8iq = Opq)-

The contravariant (covariant, resp.) vectdr (A, resp.) is then defined by its
transformation law:
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At =d A
or
Ai=a" A (@ =0p0q ),
resp.
Now, however, the Lorentz transformations that tileesystem ox to the system of
X' can be written as the product of a transformati@nd a transformatio®:

aik = b ¢k,

whereb andc, are determined completely, up to a (common) changgof si
The totality of allbik (cik) define a subgroup of the Lorentz group that is isomorphic t
the Lorentz group relative to the association:

ax — b .

This puts us in a position to define new tensorial strast(of rank one and higher)
that are defined by the transformatiomg (ci, resp.) of the group®) [(&), resp.].

Indeed, the contravariant semi-vector of the first kimdich we write asp®, might have
the components:

p' =0 p0 (34)

in thex' system. Analogously, for the contravariant semi-ameof the second kindr®,
one has:

o =cso°. (35)

Sinceay is a real Lorentz transformation, one has:

From this, it emerges that the complex conjugate ofrdraeariant semi-vector of the
first kind is a contravariant vector of the second kamj conversely.

Since b's) and €' are themselves Lorentz transformations, the metrisorg is
also a semi-tensor of the first kind (and second kindh wiansformation-invariant
components. We can thus also employ it for the oreasent of semi-vectors, as well as
the raising and lowering of indices for semi- (and mixedsors.

We are then in a position to derive the transformation covariant semi-vectors.
(o-, resp.) from (34) and (35):
p-=b’p;  (B°=gug"’bY), (36)

! S

o =¢’0,  (b°=gug"cl). (37)

We must indeed observe that a two-valuedness appedns irahsformation law for the
semi-tensors because of the free choice of signh®bit and cik (for a givenay). It



Einstein and Mayer — Semi-vectors and spinors. 14

therefore has no meaning for the covariance of the iegqsain which semi-tensors
appear, as one easily recognizes.

Sincebik corresponds to a special Lorentz transformation,t ise expected that, in
addition to g4 , there are still more (semi-) tensors of the fkisd that are numerically

invariant under transformations. Which are the simplest
In order to find them, we need only to go back to tihetioms (23a), which define the

group €B8"):
biP vk = Vip b,

wherevi, is the most general anti-symmetric tensor of thersg@dind. Sincedi, as a
rotation, satisfies the relation:
bP b = &4,
it follows that:
Vig = b bqk Vpic - (38)

However, this means that, is a numerically invariant semi-tensor of the firstci

The numerical invariance ofcgg +vg characterizes the®B-transformations
completely, since (23a) and (38) are equivalent for rotatiBns
For two semi-vectors of the first kindl , 4, there are, along with the invariants:

ggf/]rluf ; (39)
also the characteristic invariants for these quartities

VAT (40)

st

If one substitutes (in a rectangular Cartesian coaisgstem)v (=1, 2, 3), in
a

sequence, into (40) then one obtains the invariants:

VAT = (A AP (A= A ),
Vo A = (AP =A%) =i (A = A ), (41)
VAT = (Pt = A ) - (A= A ),
which, along with:
A = A AT AP A (41a)

characterize the semi-vector of the first kind.
It follows in a completely analogous way (alreddym the fact that semi-tensors of
the first and second kind are conjugates) thatHertransformationg the semi-tensors

of the second kindy; and the must general tensgg remain numerically invariant, a
property that characterizes the subgrotipof the rotation group).
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Between the semi-vectors of the first kipg and @), there exists the relation:
ou, =v A" (o, ascalar), (42)

so, due to the numerical invariance @f, it is a numerical relation between the

components that is independent of the coordinate systEmerefore, in a rectangular
coordinate system, for example (witlset '[O\l/, v, VY, in sequence), one of the following

relations can sensibly (i.e., invariantly) exist:

pz= A, p=-AY,  pus=-iAt, p= A%, (42a)
p,= A%, puy=-A, pu=-iAt, pu=iAt, (42b)
pu= A, p==A°, pu,=-iAt,  pu,=iA’. (42c)

Analogously, one obtains sensible relations for the seatiors of the second kind when
one replaces with ug in a relation that is analogous to (42) (when one oegslawith

—1i in relations that are analogous to (42a), (42b), (42q),)xes

§6. Thetensor E__.
In this paragraph, we seek to find the mixed tensorsettiabit numerical invariance
relative to the transformations that correspond éa tihdices.
There are no numerically-invariant mixed tensors obsd rank (., t<, t..). The

simplest mixed numerically-invariant tensor has thecstire E _; it is of rank three.
(Relative to the first index, it is an ordinary tensetative to the second one, it is a semi-
tensor of the first kind, and relative to the third omds a semi-tensor of the second
kind.)

For its derivation, we again employ a rectangular coatdi system. As a result of
the required numerical invariance, one has for the arpitrorentz transformation:

Eg =a' b By (43)
Since
a' =b’ ¢,
one also has:
E. =bPbi"c)' ¢ Ep (43a)

The numerical invariance & is also true for the inverse transformation, soase has:

E_.-= a.lr bmSCnt E

TSt Imn -

(43b)
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The fact thabs™, ¢" can be replaced with bs", — ¢" has no influence on the validity of
(43).

We would now like to determine the form & - from (43). For the sake of
calculation, we will omit the bars that characterthe semi-indices, since the type of
index inE is recognized from its position.

If &' is itself chosen to befB-transformation then one hag = b/, ¢, = ", such that

one obtains from (43):
Es =b'b"E ;. (44)

Likewise, fora,' =¢', bs" = &™, one gets from (43):
Eg =0 &' Eg. (44a)
If one multiples (44) by, then it follows that:

E.bu=Db'E

rst

- brs E%t - (44b)
Conversely, (44), (44a) have (43a) as a consequence, analsbuél3), so they are
equivalent to (43).
From (44Db), it follows thak,y necessarily has the following form relative to the
indicesr ands™:
Ers =0Orsag + Vigy) - (45)

Analogously, it follows from (44a) that:
Ers = 0Ors b(t) + Urgt) - (45a)

Conversely, these two relations have (44) and (44a)cassequence, and thus together,
also (43), so they are equivalent to (43). If onesets=tin (45) and (45a) (naturally,
without summation) then it follows thag) = b . It further follows that (always without
summation):
Errr =0 ar , Errs = O As), Ers =0 As), (46)
and furthermore:
Ers + Bt = 20s a), Ers + Ets = 201t ds) -

From each of these equations, it followsrfers, s=t:
Ers=-0Osar r#s). (46a)

All that is left for us are th& g with unequal indices. If, s, t are unequal, and is a
fourth index that is different from all three theratiows from (45) that:

1 Cf., (38) and the following remarks.
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Ers = Visty = =/0 s V" = FO EY = #/g & =—Jg nswad™,  (47)
where
a(w) — gwa a(a) )

(45a) yielded just this relation. In summary, one obtains

Ers = Ors & * Ort &9 ~ O &0 =~ /0 raw @, (48)

This E -, which is numerically invariant, actually satisfiee #quations (45) and (45a),

as will be shown forthwith.a,) are four arbitrarily chosen constants; if they @& then
E .« andE;s are complex conjugate.
We show that — as (45) demands:

Ers — Ors &y = (Ors Ow — Ost Grw = /0 Fraw )a™

has the symmetry property ofvg relative to the indices, s. Namely, ifas is an
arbitrary anti-symmetric tensor then, from &g2,- a5 is av;s ; one then has:

\/a aW ,

Vis = Qs — 7 My stw

or, when one sets = (Grs Gow — st Grw) &

Vis = (Ors Ow — Ost Orw _\/a Nrstw )a(W).

A comparison yields thaE(s — ors @) IS avis , Which was to be proved. The verification
that (48) satisfies the condition (45a) is caroed analogously.

8 7. Thesmplest system of differential equationsfor semi-vectors.

The significance of the mixed tensBr. resides in the fact that with its help tensors

of various types can be related to each other. thfe consider some examples, which
we temporarily base upon the, of special relativity, when referred to Cartesian
coordinates.

One may construct the ordinary vector:

A=E Xy (49)

from a semi-vectory® of the first kind and a semi-vecta;f of the second kind. In
particular, one can choose the semi-tensor of ¢kkersl kind to be the conjugate pf

(@' =Xx"):
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A=Egxx". (49a)

The choice of numerical parametgy, in E is therefore entirely free (as it also is on the
following constructions). One can, moreover, form tbdowing linear system of
covariant differential equations for two such semi-vex{oe., fields of such vectors):

E'r§f ai =ay.,
; * (50)
/.
E st axr _ﬁXf’

wherea andf are constants. It can be shown that by eliminaiimg of the semi-vectors
in (50) a system of equations arises that is analogate ®chrodinger equatidn

We can further specialize the system (50), again et@ral way, such that we choose
(1o be the complex conjugate semi-vectoyia (50). We thus obtain the system:

E.——=ax:. (51)

We can, in a certain sense, speak of (50) as an inexattingpbf a “Schrodinger
equation,” and (51) as a true dne

The raising and lowering of indices in all of these equatmmes about by means of
the metric tensorgy, d¢, O -

The first peculiarity of this system of equationshe appearance of four arbitrary
constantsa) in E, such that the structure of the system of equationsndspepon a
choice of them. It will be shown later that thesk of elegance goes away upon the
introduction of the Dirac spin quantities.

8 8. Theincorporation of the semi-quantitiesinto the R, of general relativity.

From now on, the semi-quantities that are defined apamy ofR, are referred to an
arbitrary, oriented, orthogonal, normed vierbein thaescribed by the “mixed” tensor:

hai . (52)

! This rests on the easily proven relation:

EM E®S+ EN B = 2 g Orp 8 a°.
2 This equation — which is completed by electromagnisims — seems, for that reason, to be
inapplicable to the theory of electrons, becauseahgks under the addition of a gradient of the electrical
potential.
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If A'is a contravariant vector then:
Ay =hg A (53)

is the same vector, when referred to the frame. Irddlt@wving, the Greek indices will
always refer to the vierbein, while Latin indices wiifer to the general coordinate
system. One then has:

ik = hai hag® = hyi hye + hyi hoy + hgi ha — g hyg . (54)

For the magnitude of the vectd)( one then has:

gk A A =g A, Az,
where
1000

0100

ap — = .
9= 101 0
000-

g

A rotation (i.e., a change) of vierbeil{ = a% h”) thus corresponds to a local
transformation of the local vector according to theation:

AT=a% A (55)

Along with the local vectors, we introduce the senutues x,, ¢, referred to the

vierbein, which, like the local vectors, only transfdogna vierbein rotation, and indeed
according to the laws:

X» =bF x,, (55a)

W, =c’ Y, (55b)
where

a” =b/b,” (56)

is the decomposition of the Lorentz transformationoadiog to 8 3. Like the local
vector, the semi-vector will be measured with the llouetric tensorgas (g5, gﬁﬁ),

which is indeed also numerically invariant under thesfiammationsb,” andcs” .
The introduction of:

E'_ =h, E (57)

or !

with the help of ouE-tensor (8 6), admits a conversion of the differem@lations (50),
(51) into the schema of general relativity:
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ErﬁXﬁ;r :awf’ (58)
ErﬁXT;r :ﬁwﬁ’
E' X7 = ax, . (59)

The invariant derivation of the semi-vectors that is ati@rized by a semi-colon in these
equations shall next be established in such a way that:

97, = 0, (60)

0.-.=0. (60a)

Qi
al

Then and only then can the indices under the diffexgoti sign be raised and lowered.

Naturally, the introduction of the theory of semigers into the schema of general
relativity will be complete when the rules for abseldifferentiation of all quantities are
established. This shall now come about by means of tleviog postulatesA) to (D),
where we avail ourselves of the notations:

Aa;r :Aa,r _A,Bpﬂm’
Wyo =W, _wﬁrﬂar’ (61)
a;r :Xir _Xﬁflgr'

The T are chosen to be complex conjugate tolthie order for complex conjugate semi-
vectors to remain complex conjugate under differentiation.

(A) Naturally, the relation (53) between coordinate vectnd local vectors will not
be perturbed by differentiation, from which, it follotet:

0 =hai;k (= hai,k—har{irk}_hﬂ P, (62)
or
Pyeic = hy/(Naise —har {5}). (62a)

From (62) and)gz = h,' ha (orthonormal vierbein), it follows thaj,z« = 0, and
from this, the anti-symmetry &f in the first two indices:

Pyak = - Payk- (62b)

! The fact that this system of equations is invariaith wespect to the Greek indices (vierbein

rotation) and the Latin indices (coordinate transformgsmnit possesses a tensor character) is easy to
confirm when one observes the numerical invariafdbeE relative to the vierbein rotations, as well as
the tensor character bf; .
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(B) This postulate was already established in (60), (60a)giaead, analogous to (62),
the condition:
rmr :_rrg'r. (620)

(C) The absolute derivative of the numerically invarigemi-tensors of the first
(second, resp.) kind,; (u,, , resp.) shall vanish
0 =Vork=—Var Mok = Vao T 7k -
This yields:
Voa I "k =T 6% Var,
or
Vg'a rark = rgak Vaz-. (62d)

Comparing (62d) with (23a) shows that théave the structure of &) with respect to
the Greek indices, and furthermore, due to their antirsgtry (62c) and due to (24),
they must possess the structure afig (cf., (14), (14a), (14b)).
This then yields the fact that tHe must possess the structure of the corresponding
(complex conjugateyik relative to the first two indices.
In order to make this come out better, in the sequel,weeald like to write
temporarily:
U%w instead of 7,
V7 instead ofl % .
(D) The absolute derivative of the numerically invariatl tensoE shall vanish:
Now, however, due to (45), (45a), the tenBohas the structure of &) with
respect to its first two indices and the structura @) with respect to the first and
third indices. By means of the commutation rules (23a)(28y one then has the
transformation equations:
Eopr TPok = Eapr M09 = Uasy EPor = = Ear TPk,
Eaop [y = Eaaﬁvﬁr(k) =Vask Ef,r=- Egor 7.
When this is substituted into (62a), it gives:
Eﬁm (Pﬁak - Fﬁgk - F'Brk) =0. (62f)

However, this then gives

1 Wherever the clarity does not suffer, we have @uithe bars on the indices, in order to ease the

printing.
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Ppak = T pakc + T g (629)

With that, we have achieved the assimilation ofd¢émi-vectors into the schema of
general relativity.

Remark: In quantum theory, the operatora(i+ i£¢,) plays an important role, where
@ is interpreted as an electric potential. In orderdgustice to this, we temporarily
introduce a “slash derivative” (/), along with semialderivative that has been
employed up to now, which comes down to the derivativie(;prdinary (i.e., coordinate
and local) vectors. We introduce the notation for segutors:

Yok =Wsi _waé::ak’} (63)
51k = X7k _XaAUk’
where
Aaak:raak'|'i 55ﬂa¢k- (63a)
One then has:
Vope =Wz —?€$5¢k, w;:/k =¢/Z;k +_i£¢’;¢k’ (63b)
c:r/k:)(ﬁ;k+|£)(ﬁ¢k’ X =X 71X ¢k'

In place of equations (58), the same equations agpear, in which the only change is
that the “;” derivative has been replaced by thel&rivative.

As one does for the “;” derivative, one also hlas following relation for the “/”
derivative:

Eaﬁ/k =0, Emﬁ/k =0.

If one introduces a real “current vector,” in amrmer that is analogous to that of
Infeld and Van der Waerdén

3(7 — EHUTXJXT + Eamwawr ,

and one define3“. , (= 3%) then this divergence vanishes onlyifr S = 0. (Thea
are then assumed to be real.)

' Namely, by multiplying (62f) byE;,’, while considering the formula that emerge from (48)

(Footnote 1, page 18):
EkrS Eips + EkpS Eirs =2 gik grp a(t) a(t)_
2 The authors were friendly enough to send us a copy aif flaper “Die Wellengleichung des
Elektrons in der allgemeinen Relatitatstheorie,” whidt be published in a few months. In it, the general
relativistic form of the Dirac equations is preseitéthout semi-vectors in a way that is similar to tme
that we have pursued.
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8 9. Special semi-vectors (spinors).

We are still not finished with the theory of semetges, since, as we will now show,
there are special semi-vectors that have only twopiedéent components. (We thus
employ rectangular local coordinates in what follows.)

We first show this for semi-vectors of the firshéj and for the construction of the
special semi-vectors, we employ the often-used invarigsor’:

Var (Vi =1V = 1)

With its help, we can associate any semi-vedtowith the star vectod, *according to:

ﬁ'TAT = Aﬁ'x'

\"
1

In more detail, one has:

AX= A, AM=-AL AM=iA, AM=iA,

1 2 2 1

which again has the consequence that:
A7) =-A.. (64)

There are now semi-vectors, whose star vectod,” is proportional to thel.. In A *=
p A, from (64), one must haye=*i. We call a semi-vectod, ana-semi-vector, and
write it asA , if one has:

a

X —
A,=+A,,
a a

and correspondingly, one calls a semi-vect@rsami-vector when one has:

A,=iA,, A, =-iA,, resp
a a a a (648_)
A=A5 A=A

One immediately sees that the absolute “;”, like t#i differential, leaves the character

of ana-semi-vector fsemi-vector, resp.) unchanged.

! If one were to choose, e.g,, then that would only correspond to another numberirigeofectors of
2

the vierbein.
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Any semi-vector of the first kind can be decomposedtaedy into ana-semi-vector
and a-semi-vector of the first kind.
In an analogous way, one can, by means of the nurhegiicaariant tensor(Lll)

introduce semi-vectors of the second kind that satighctimditions:

a-semi-v.of the?' kind:A_ =-iA. B- semi-v.of th&’kind:

= A_

:31

A
A

EN]

The notation is chosen in such a way that the cexnpbnjugate quantity to amsemi-
vector (3-semi-vector, resp.) of the one kind is @semi-vector semi-vector, resp.) of
the other kind.

The a-semi-vectors ang-semi-vectors are indeed two different symmetryesyfor
the semi-vectors (as the symmetric and anti-symaowetnsors are for ordinary tensors of
second rank, for example); however, they can (imtrest to the latter) be taken to each
other by a simple algebraic operation, so, in d#ageisense, they represent a single type
(like, e.g., the usual covariant and contravarniemators)".

In fact, if one constructs the semi-vector:

with the help of the tensor (\[5, resp.) that is defined in (14c), (15c) then #msar-semi-
vector (which we would like to call,). Conversely, whew acts on am-semi-vector

it gives af-semi-vector. Due to the fact that (see (24a)b R4

g

yﬁf\[{ 2~ 9rpo
the latter is derivable from the relation:
Xo=V 0", (66)
a a ¥¢j

The proof of (66) follows from the equation thafides v :
Vo, = ivia=+1

when one recalls the symmetry properties offtsemi-vectors.
Analogously, thea-vectors ang3-vectors of the second kind can be associated with
each other with the help of the of thethat are conjugate to.
a a

1 As we will show later, in the Dirac schema, thiatien between the-semi-vectors and th&semi-
vectors will actually represent the spin quantitiedia way.
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From what we said up to now, it emerges that any seoibr equation can be
decomposed uniquely into amequation and g*-equation. It is therefore natural to
consider, instead of general semi-quantities (equatiesp,)r those of the symmetry type
a (B, resp.) that represent both types, although from wlejust showed, essentially
only one special type.

For the construction of differential equations, wedhegpressions of the type:

Eo¢.r, h¥Eaor .1, resp.

How does one decompose such an expression intetansor and gF-tensor when we
construct ana-vector (3-vector, resp.) for it? Obviously, in order to do thie anly
needs to examin&.; ¢ (= E, ) relative to the index ! Naturally, we can now

decompose the-tensor (uniquely) relative to the indicesand 7 in the following way:

Eer = E,,tE,, (decomposition relative to the index
a F

= (E,,*tE.,,)+(E,, +E.,) (decomposition of each relative tp
aa o pa BB

We now perform the decompositién

E=E+E,
1 2
El = Esa'r+ Emr’ (67)
af Pa
E2 = Esa'r+ Esar'
aa BB

One easily proves that the inner product of tasemi-vectors (twgB-semi-vectors,
resp.) vanishes. From this, one infers that relative tkl‘amz//” has ana-character £

character, resp.) whapiis ana-semi-vector ~semi-vector, resp.). Converseg,mz//”

produces g3quantity from ana-quantity ¢/ relative to r and ana-quantity from as

quantityy. How does one express this decomposition in termseoédnstants, that

enter intoE linearly? In order to do this, we would like to caltaleéE,,, ¢ ° and
B

E..¢ ‘. since, from our definitions o% and I; the following association exists:
a

! A tensor with a semi-index can naturally be decomposladive to that index into one attype and
one of 5-type, in any case.

2 The four speciaE-tensors that arise from the decomposition of the gefferensor are numerically
invariant, since they are composed of the invafiaahdv. They therefore have the general form (48) with

(naturally) speciady .
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)(HforE:IlE,

E T —

f"”f;' X fOrE=E,
: (68)
)(HforE:IlE,

E,,@’=1"

gm'l)f’/ XgrforEZE

For our purpose, it suffices to examine the aforemeaticassociation foe = 1. The
left-hand side of the first system in (68) yields, bigekting withr=1, ..., 4:

(al_iaz)lé’l'*' (a3+a4)lé’ 13
(a2+iai)lé/l+(_ia4_ia3)lé/3,

P (682)
(@ +a )+ (-a+ia)y’

(a4 + 6\3)[// 1+ (_iaz + al)l/l °
B B

In order for this to be g .., from (65), one must hawe + a, = 0. This is therefore a
B

necessary condition fdlz :

One obtains the corresponding expressionsgfoerl, r= 1, ..., 4) for the left-hand
side of the second system in (68) from (68a) by changmgitn of the second term in
all of the parentheses. The argument that is analogpouke above then gives the
addition conditioras —as = O for IlE :

Therefore,IlE Is characterized bwys = a, = 0. Analogously, the corresponding
reasoning forl; from (68), (68a), ..., givea; =a, = 0.
We can now extend the decompositionl;of(l;, resp.) according to the second and

third equations in (67).

Namely, E,, is anIlE (i.e.,a3 =a4 = 0) of the particular nature:
apB

E,W7=0.

£0T

aﬂ”

If one denotes the constants B, that correspond tey, a; by A;, A; then it follows
ap

from the (unwritten) system that corresponds to (68&t)Ah+iA; = 0.
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Analogously, one obtains the four constaBis B,, 0, 0 for the second term in
E (viz., Em ), whereB; — B, = 0. Fromay = A; + By anda; = A, + By, one obtaing\; =

a ~ia, B.= atia, 'az
2 2
An analogous argument gives the splittinggof One thus obtains for the folr

£0T

E =27% g aio00)
af 2

£m=q2%ﬁm@4£ﬁ)
p (69)

ﬁm:%;%ﬁm@QL&
:ﬁéﬁammﬁlrm

£0T

BB

whereE(ay, ay, as, as) shall characterize the dependenc¥an the constanty, .

From (69), the most genealmay be linearly represented in terms of the faacsl
E (69), which are determined completely by theirs-character (up to a trivial factor).
These four completely determined speédakensors can, as in (66), take theSsemi-
vectors to each othér so they play a role of a single tensor relativéheir applications
(like the way that the contravariant tensor is oalgifferent way of writing a covariant
tensor in the usual tensor analysis). We can noie \down equations (58) for special
(a, P semi-vectors, perhaps with the useif, , E,, :

af Pa
" - (70)
ﬁ l/l T ﬁX T
pa B B
where
— K

E-=h"E_. (71)

ap ap
! One may determine quantiti€s_, ..., which are equal to the quantities that are gine(69), up to a

ap
constant factor, in such a way that they go to edlbralirectly upon performing the correspondipg

operations ¥ -operations, resp., that are analogous to (66)). It ferafge to employ th&-tensors, thus
2

normed, for the presentation of equations.
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§ 10. Connection with spinors.

Since the special semi-vectors, (3 have only two independent components, it is
possible to associate any such semi-vedtgrwith a new sort of quantity with only two
a
components, namely, anspinor of thefirst kind, when we set its components equal to:
A(=-iA)=p',
a a a
(72)
A(=4,)=p".
a a

a

Correspondingly, we associate fesemi-vector of the first kind, with the F-spinor of
B

the first kind q according to:
B

vi(=iv,) =0,

s s s (72a)
V;(=-Vv,) =d,.

g g g

The placement of the indicesprandq will be justified shortly. We introduce-spinors
and spinors of the second kind in a completely analogous WWaom the definition, it
then follows that the conjugate of anspinor (3-spinor, resp.) of the first kind is an
spinor (-spinor, resp.) of the second kind.
If one defines:
QETA

Q
~

=2(p'q+ p°a,) (73)
a g a g

Q

B

then the justification for our choice of placemdmt the indices lies in this equation.
With that, it becomes possible to drop the notatmandpS.
For twoa-quantitiesA and x, we now define the invariant:
a a

\zﬁf A A =2 (ptrP-p*rh, (74)
B

wherer is the spinor that corresponds to the semi-vegtdt follows from (74) that:

10
/75T_ ‘_1 j (75)

is a (covariant) spin tensor that one cares toagsthe “metric tensor” in the theory of
spinors. From (74), it further follows that tharisformation of all spinors is unimodular.



Einstein and Mayer — Semi-vectors and spinors. 29

One sees that the theory of spinors comes frorthéw@y of semi-vectors. However,
it seems that the semi-vector is preferable to thaospas a result of its simpler
transformation law.
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