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Unified Theory of Gravitation and Electricity

By A. EINSTEIN and W. MAYER'.

Up till now, the general theory of relativity was fil@nd foremost a rational theory
of gravitation and the metric properties of space. éim@n, for the treatment of
electromagnetic phenomena, one must be satisfiech wit largely superficial
incorporation of MAXWELL'’s theory into the relativistischema. In addition to the
guadratic metric form of gravitation one must introducénaar form that is logically
independent of it, one whose coefficients represenpobentials of the electromagnetic
field. In the tensor equations of the gravitationaldfieine finds, in addition to the
curvature tensor, the covariantly written MAXWELL sem of the electromagnetic field,
which is linked to the latter only superficially and irogically arbitrary way by a plus
sign. This is quite painful, since MAXWELL'’s theorys a field theory in the first
approximation, is founded on empirical facts that are mdlgequite rich. It is not
presently known whether the linearity of MAXWELL's taally does not correspond
with reality, but only that the true equations of electagnetism diverge from
MAXWELL'’s for strong fields.

For that reason, the theoretician must take the troobigriulate a presentation of
general relativity in a logically unified theory of boflelds. However, one cannot
maintain that the appreciable efforts that have beenemppdi the problem heretofore
have produced a satisfactory result. Since the onsgpiaritum mechanics, physics has
generally turned away from these problems, as if isssimed that the problems are, in a
certain sense of the word, completely unsolvable wittenframework of a field theory.
In contrast to this opinion, we shall give a theoryehthat we believe represents a
completely satisfactory and definitive solution, asidemrquantum considerations. One
arrives at the old formulas of gravitation and elediriom a new and thoroughly unified
way. It shows that MAXWELL’s equations, as they wangoduced at the onset of
general relativity, can be regarded as rigorous equationdeinsame sense as the
gravitational equations in empty space.

The theory to be presented here connects psychologiseth the well-known
theory of KALUZA, but it avoids extending the physicalniouum to one of five
dimensions. KALUZA described the total field in a fivenginsional space by means of
a five-dimensional metric tensa@y,, in which gi1, ..., g4 played the physical role of
gravitational potentials, whereags, ..., gs were interpreted as the electromagnetic
potential, and the meaning gis was left open. In order to properly extend the four-

dimensionality of the spacetime continuum the contimuwas assumed to be
L : . 0g, .
“cylindrical” with respect to the coordinaté (a—x"; = ) . KALUZA then succeeded in

obtaining equations in an uncontrived way that agreed waghknown gravitational
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equations (MAXWELL equations for the electromagneticldfieresp.) in the first
approximation by proposing equations for the five-dimensios@dce that were
completely analogous to the pure gravitational field equstidrgeneral relativity. The
equations of geodetic lines in a five-dimensional space rigresent the equations of
motion for an electrically charged mass point.

The unsatisfactory aspect of KALUZA's theory resideshe assumption of a five-
dimensional continuum, since the world of our experiesgzams to be four-dimensional.
Furthermore, a cylindricality conditions seems hardliure from the standpoint of a
relativistic five-dimensional theory. Also, this thgadoes not correctly arrive at the
constancy of the ratio of the electrical to the gemable mass of a moving mass point.
Finally, as we have already pointed out, it does not stigg@hysical meaning for the
componengss of the metric tensor.

All of these difficulties will be avoided in the thgoto be presented here, since one
still remains in the four-dimensional continuum, but ortieotiuces vectors that have five
components and correspondingly, tensors whose indicggerfrom 1 to 5. How this is
possible will be explained in what follows. If this faahdifficulty is overcome then one
obtains the complete theory in a way that is entiglplogous to the path that was
originally embarked upon in general relativity for the estagnt of the laws of a pure
gravitational field or the statement of the generadi fiaws in KALUZA's theory.

81. Four-vectorsand five-vectors.

At each point of a four-dimensional RIEMANNIAN space asenot only given a
four-dimensional vector spad& that is composed of covariant and contravariant vector
but also a five-dimensional linear vector sp¥ge Let the components of a contravariant
vector in the latter space be denoted by, e.g.:

a (i=1,..,5).

Greek indices shall denote the components of a fiveskeand Latin ones, a four-vector.
We denote the coordinates of a RIEMANNIAN spacesly=1, ..., 4).

By a five-dimensional (linear) vector space, we meah ¢ach of its (contravariant)
vectors is determined by five numbe@fsand that in a neighborhood af first, addition
and, second, multiplication by a pure number (scalaigimed in the usual way, but not
outside that domain. Therefore@’ + A’ (o and B are pure numbers) are the
components of a vector in the vector sp¥gavhen this is true foa’ andb’. The vector
whose components are all zero is called the null vecto

A coordinate transformation s corresponds to equations of the form:

al =|\/|'r§T, (1)
in which:
M7 |#0. (2)
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The M’; are generally functions of the. Due to the homogeneous form of this
transformation, the operations of forming the sum wé-frectors or multiplication by a
scalar are independent of any special choice of codedina
We shall call quantitiel, that are changed by a transformation (1) in such atkaty
for eacha”:
b,a’ ()

is invariant the components of a covariant five-vectdhe operations of forming the
sum and multiplication by a scalar are also meanirfgfutovariant vectors.
Just as the vectors ¥f were measured by means of the metric tensey;.of

Ok resp.g* @ =4a",

similarly, there is also a metric tensor (a non-degatie symmetric tensor) for the five-
vectorsa’, b, :
e » resp.g” (9= 3",

and we would now like to say, imprecisely, that a fiegtera has a contravariangj
and a covarianta() notation for which one has:

a,=9,Ka}_ @

al - glKak

Up to this point, no relation exists between the fivetoes @) in Vs and the four-
vectorsa' in V4. For that reason, we now introduce a “mixed” tensor:

k
Vi (5)
that takes a vector s to a vector irV,, and conversely:

a=

b,

/k a/ (6)
b . (7)

RN

By means of the metric tensor fo% andVs, we can write the projection tensor in the
following equivalent ways:

V/k, y/k, y /k, y Ik, (8)
in which, e.qg.:

ylk — glagkl yal .

We will now consider the association that was eistadtl in (6) and (7) more closely.
We make the assumption that the rank of the matrix:

IVl
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is equal to four. A four-dimensional vector spaceVinis then given by “vi (v«
arbitrary), which we call the “distinguished plafé
The relation:
Y= 0 9
has only the solutiow = 0, whereas:
VKA =0 (10)

has only the solution (up to a given factor) of the norvegtor A’ of the distinguished
plane A ((10) then implies thaty,* wA’' vanishes for any, ). We will call A’ the
“distinguished direction ivs,” and we normalize it by setting)(

g A A =1, (11)

From (10) and (6), the distinguished directidris associated with the null vector\i,
whereas (7) associated each vechpr) (0f V4 with a vector of the distinguished plane in
Vs.

The five-tensord,), along with the mixed tensoy{x ), determines the four-tensor
(g V'i V*); from this fact, we shall assume that it is ideaitizith the metric tensag
onV.. It thus satisfies the relatiof)

Ui V'i ka = Oik - (12)

The following relations are equivalent to (12):

Yip V4= Opq (12a)
Wy q=Jq (12b)
0"y yd =g, (12¢)
etc. We next compute the quantities:
WP Vo =24 (13)

Upon multiplying byy*; and taking (12b) into account, we obtain:

(l) However, this association also implies an assumption abewthiaracter of the metric &f.
() If g, is non-degenerate ang/f} || has rank four theg, is also non-degenerate.

Proof: We show that fromg,x” = 0, ..., @), it follows thatx” = 0. From 4), it follows as a result of
(12) that:

0=0u V40 =y’
in which we have set:
ag=yLo .

From this, it follows that, = pA,, thus, also that' = pA'.
By setting both expressions fof equal to each other, it follows that:

PN = Yo,

from which, upon multiplying by, (10) gives us thagb = 0, and furthermore, the vanishingaf follows
from (9).
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qu — qu Z /(I,
or:
qu (511( - Z/(I) = 0
From this, it follows that:
511( - ZKI = d AK. (14)

Moreover, it follows from (13) upon multiplying By that:
> A =0.

Thus, if we multiply (14) byA", we obtain:

A=/,
from which, (14) becomes:
(=0 —A A
As a result (13) takes the form:
W ye=0" —A' A, (13a)
or, if we lower the index
Opaki” V9 + A A = Qe (13b)

In equations (12) and (13b), we have arrived at the rafatlmat link the metric iV,
with the one invs.

The coupling between vectorsY in V4, and vectord, in Vs that is expressed by (7)
is one-to-one. If we multiply (7) by’, and take (12b) into account then we obtain:

b=y’ by, (14)

which therefore completely determines the vebtan V,.
On the other hand, if we multiply (6) by« then (13a) gives:

y%a=0, -AA)ad =a’-pA° (p=Ad),
thus:
al= yak ak +,0AU.

The five-vector 4&°) is therefore determined from the four-vectah) ©nly up to the
addition of a vector that is proportional #®°.

Tensors of arbitrary rank may be defined relativ€san a manner that is completely
analogous to the way they are defined relativd/toexcept that they are covariantly
related by transformations of type (1). Likewise, oragy monstruct mixed tensors, which
are characterized by Latin and Greek indices; the piofeténsory’x is an example of
this. An explicit statement for the construction tehsors from other tensors by
summation, multiplication, and “reduction” (i.e., cattion) is not needed; the latter
operation can only be naturally performed on two indafebe same type (i.e., two Latin
indices or two Greek ones).
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8 2. Absolute Differential Calculus.

Absolute differential and absolute derivative of a five-vectdhe transformation
(1):
A=M,3,

is no longer true at a poidg (= a' (X + dX) —a’ (X)) away froma’, since theM’; are
generally functions ok'. We then introduce the absolute differential by ampgjlyihe
three-index quantitid‘sgq(l andrsrrange from 1 to 5, anglranges from 1 to 4):

va =da +Ia"dxX, (15)
in which we have:
va' =M’ 0d’,
dd=da" + F,jq a’dx“.

From this, we obtain the following transformation lewthel’s:

not | T / 0
M er: M rrnq -M g,q (Mlaq :a? Mla). (16)

Likewise, we define the absolute differential of a c@rrvector by:
ob, =db, T [bdX, (17)
in which this definition is chosen such that:
d(b,a’) =ob,a + b, da’. (18)
The absolute differential of a five-tensor of arbitreapk is then defined in the usual

way. The absolute differential of a five-tensor isva tensor of the same type.
We now denote the coefficientsdf in 0a’ by d.q , such that we have:

a\g=a g+l ,a" (15a)

a'.q behaves like a covariant four-vector under coordinatiesformations (oK). aqis
therefore a mixed tensor, likeq, for instance. Therefore, mixed tensors arise frives f
tensors under differentiation.

Absolute differentiation of four-vectorsif (7) is a vector inV4 then we define the
absolute derivative as in RIEMANNIAN geometry through ¢élgiation:

Ti;q = z‘i’q +{ FI)Q} Z'p, (19)
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[
in which the[ pq} are the CHRISTOFFEL symbols that one constructs ttmanmetric

tensorgi onVs. Therefore, I€t denote the corresponding RICCI derivative whenever
T has only Latin indices.
On the other hand, 8 is a mixed tensor then we define:

S,= S+ 2 (%), (20)
in which the sum has exactly as many summands as tedsms, and, in fact:

a Greek indexS " corresponds to a summan@’3S °

‘ s, “ TS
_ [
alatinindex S'  “ “ +{ }3 i
Pqg

r
% _{ pq}s“'" |

This is an extension of the absolute differential calsuthat was introduced by
WAERDEN and BARTOLOTTI in a formally analogous casedas chosen such that
the following rules of calculation are valid:

(A'B), =A B +BaA
(A +B), =A, +B . (21)
Py =P, (p=scalar
Naturally, just as in the ordinary RICCI calculuse have here that:
0=0kq=0%q= 3% (22)
If a five-vectora’ satisfies the relations:
va' =0 =da +I adx,

along a curve segment in the space @dhen we say that the vector is parallel displaced
along the curve segment. The five-vector chandesgathe curve according to the
equation:
da' =-TadxX. (23)
Furthermore, the equation:

da =- { pl)q} a’dx (24)
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defines the parallel displacement of a four-vec#ralong a curve.

§ 3. Determination of thethree-index symboal F,;q.

A manifold of the type that we have in mind here is nowegiwhen the tensors
(9.) and ¢/ are given, which then determine the four-dimensionatrionéensorgyg
according to (12c). However, for a given GAUSSIAN cooatk system the tensors
(9. ) and /) are not entirely arbitrary, since the choice ofrdirates invs can be made
arbitrarily. For that reason, (1) implies that o# th5 + 20 components of these tensors,
only 25 can be chosen arbitrarily, such that for a giw@&SSIAN coordinate system, as
in the case of the old gravitation theory, only 10 ofitlectually remain to characterize
the manifold. The latter is therefore regarded as cetelyl characterized when the
quantitieﬂ',;qare defined, which we shall now do. For that purpose, weduce three

axioms.
If ('), resp. & ), is a five-vector then one has the relation:

a =guxa.
If we construct the absolute differential then we obta

da, =g, 0a“ +a“ g

Fromda, = 0, it then follows thaba” = 0 (and conversely) only when one has assumed
thatog,,x = 0, or that:
09ij = 0. (N

Axiom | implies that the statement that the absollifeerential of a five-vector (in a
particular direction) vanishes has a well-defined meaniffis axiom can also be stated
in the equivalent form that under a parallel displaceraétwo five-vectors&’) and p"),
the form:

g/K a/ b/(

remains unchanged. Axiom (I) gives 60 equations for the 100 tjesl'r;g.

There is a one-to-one correspondence between a V@&tpin the distinguished
plane and a vectogl) in V.: |
a'=y\a.

When @ is displaced (not parallel) arbitrarily along a cusegemen€ in the four-
dimensional space these equations imply that the vatfa the distinguished plang
will be displaced along with it in a completely detemed way, which implies the
equation: o

va' = yjod +d oy. (25)
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Our second axiom is the following one: under parallelldegment of &) (i.e., 0d

= 0) the absolute differential of the vectors that areplated by it lies in the
distinguished directiom®d’. This means that in (25) whex@ = 0 theda’ must be

proportional toA’, or that (for arbitrarg, dx):
a“dd g
must be proportional t&’. It must then be true that:
V'iiq=A Fy, (I1)

in which Fq is a four-tensor of rank two.

Our third axiom is a specialization of the following oifehe parallel displacement
of the vector &) proceeds in its proper directiodx{ = ca®% then so will the vectora( )
in the distinguished plane that is associated withait & 0). This implies the condition:

0=y, qaa =A Fqaa,

or, sincea® is an arbitrary vector:
Frg=—Fak - (1

The consistency of axioms I, I, and Il will be provedielr.
If one multiplies (I1) byA, then from (11) and (10) one obtains:

Fa=AViq==VqA. (26)
Upon multiplying byy,9, (13a) further yields:
Vol Fig== (0 —AcA ) A . q==Asq +A-A' A
or, due to the vanishing & A,.q (=5 (A"A ).q):
Aviq= Vo Fo. (27)

The ultimate conclusion of this section is the foliogvone: If one subjects thés to
the simple and reasonable conditions I, II, Il theeytare not determined completely for
givengi andy; ¥, but only up to an anti-symmetric ten$qy that one is free to choose. It
will be shown that this, together with the RIEMANNIANetric tensogik , completely
determines the properties of manifold in question.

It is instructive to recast the problem that is treateck ha the context of a
RIEMANN spaceR,, that is embedded in a RIEMANN spaBg of higher dimension.
Then there would be two metrics defined in this probleme @f them belongs tR,, and
the other one belongs ®,. R, corresponds to the four-dimensional space, whereas, in
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our case, instead &1, we are given only a vector space of dimensids 5) at every
point of Ry,

X =x (' ...,¥" (/ = 1, ...,n) is the analytical representation of the subspace. A
pomt of Ry is assouated with the metidgq dy’ dy in Ry and the metrlg,K dx dx‘in R,.

ay” = y'p is the projection tensor herd\, which is defined bg—A, = 0, is the normal
to Ry at the point in question. Relations | and Il are absad in this case. Howevefyq

is symmetric for this problem, and in the case m + 1 it is known as the “second
fundamental form.” It is then ultimately axiom Ihdt distinguishes the spatial structure
that we consider here from the one in the problem oéthkedded manifold. Thus, we
also find the difference between the momentum th&ivicl from our theory and the one
that follows from KALUZA's theory.

8§ 4. Concerningthestraightest linesin Vs.

If we parallel displace a vectos'() in Vs in the directiora® = ; ¥ & that is associated
with it in V4 then a curve will be determined in coordinate spacese/keguation we will
now derive.

k
For an appropriate choice of parametese can se& = y; © & 2%. From:
ak =y k a/,
it then follows by differentiation that sino@’ = 0:
=y k. aa dt
or, from Il:
d’x* [ k] dx” dx° dx
+ =A a F\—. 2
dt? {pq dt dt dt (28)
However, one now has:
d(Aa) o da’
= . + A, —
a . Aeedar A

in which the second term on the right-hand side vanishedadtiee fact thaba’ = 0.
However, the first term on the right-hand side alspishes. (27) then implies that:

A pda =y Fyaa =Fya’ad=0.

Thus,A, @ =zis constant along the curve, such that (28) can be wiittthe form:
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d’* [KkldxPdx? _  dX _
7 +{pq} 5 ar 2 F o (@=const). (28a)
What the parametdrentails is that along the curv€g,, a’ a“) = 0, henceg,, @ a =

const., or, from (13b):
dx” dx*

Ohigr g * z® = const.
or:
dx” dx! _
gpqu = const.

By restriction, we can therefore introduce the agtlenwhich is defined by:

as a parameter for the timelike curves in (28a), from vthe constanpthat appears in
(28a) is also fixed.

Equation (28a) corresponds precisely to the relativigjicaBon of motion for an
electrically charged mass point, not merely approximassyin KALUZA'’s theory. In
particular, it is noteworthy that in our theory thaaat of the electrical to the ponderable
mass must be strictly constant.

8 5. Curvatureand Vs.

The integrability conditions for parallel displacement

pa’=0,
or:
da’=-T a dx¥
resp., take the form:
Pgpa =0, (29)
in which:
Pogpd = —r,‘;p + r,‘;yq + r;;r; - r;;r,;. (30)

From (29), it follows that the vanishing of (30) has an irardrcharacter. The proof
that P?,qp is @ mixed tensor of the type that is expressed by theemis achieved in the
following way: We consider the two-dimensional manifafd= x® (u, V), which defines

the two direction% %—XV at each of its points. If the point in question egi, along

with the five-vector’ in a neighborhood of it, then we construct:
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afc) ac)
dvidu/ du\dv/

da’_aa’+ . L 0x°

du_ou ™ Ty

We have:

and furthermore:

i(d—a[j _(6_811 +I, a”a_xqj +T, (aaﬂ +r”a”a_xqjaip
dvidu/ \gu ™ ou) ~®Lou 7 ou)ov

From this, it follows that:

d(da') d(da')_ _, _,ox" ox*
d—v(mj ‘a(mj-%a YT (31)

from which the tensor characterfff,q emerges.

Naturally, in a space with the sort of structure thaavweeexamining there also exists
the usual RIEMANN curvature that one constructs fromghk just as one also has
geodetic lines that are constructed fromdhke However, the newly acquired knowledge
resides precisely in the fact that the definitive stmeguor the physical laws are the
same as the ones that are obtained from paralldad&pent of five-vectors by means of
thel’s.

On the other hand, it is clear that the mathematoadiel thus defined can only
relate to physical laws in the context of the four-din@med space (the tangent spate
resp.) Thus, the fact that the latter definitive expo@ssare ultimately expressible in
terms of only the four-tensoms andFi, is connected with the fact that, andg,, no
longer appear explicitly in these expressions (cf. eq. J28agse facts will be more
clearly distinguished from each other in the next sacti

To that end, it is appropriate to look for the relatioat texists between the five-
curvature (30) and the (RIEMANNIAN) four-curvature. Wersteith equations (II) and
27) ():

Vikia = A Fig (1
Asp = Vi Fpk- (27)

By repeated absolute differentiation, one obtains:

Viiaip = FraipA + Fig Fp' Vi (lla)
Aipia =Fig P Wi + i Fp¥ g (27a)

and thus:
Vic:q:p = Vikipiq = A (Frq:p = Frpiq) + Vir (Fiq F|or ~F qu) (llb)
A/;p;q_A/;q;p:V/r(Fpk;q_kaFqk;p)- (27b)

(l) Thel’s are uniquely computable from equations () and (27)F,4f+ Fq, = O then, as one easily
sees, axioms | and Il are satisfied, which shows tt@sistency. Now, only the validity of | remais t
be proved, but this follows easily from an applicatiofl&b).
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By explicit evaluation of the left-hand side of thespiations one obtains from a single
computation:

Vic:aip~ Viipia = Pliap Yok = R'ipq Vir (32)

Aipia=Asgip=PlugpAs, (33)
in whichR refers to the RIEMANNIAN four-curvature:

r ) r r r t r t
R"jpq = —{kq} p * {kp}q " {tqup} B {tkaq} 9

From (lIb), (27b), (32), and (33) one obtains the desiredioals:
P aqp Yok = A (Feg:p — Fipig) + Ve {R"pg+ FigFp' —Fip Fq' } (35)
P%ap A = ¥ (Fq";p = Fp' ) (36)

Multiplying (35) by y™® and taking into account the fact that y™ = y* y’% = o —
A A", along with (36), yields:

P ap = — Vi ArrﬁFpr;rq_qu;p)*;VTkA/ (Fl:q;p_':kp;q)
+yir YV (Rpg+FuaFp —FipFq ) - (37)

It must be remarked that the (BIANCHI) identity is alsdid for the five-curvature
tensor:
P'pgr +Plgrp+Plipq: 0. (38)

It is simplest to prove this by considering a transfoionanf the coordinates (thd)
r
that makes th 0g vanish, and a the transformation (1) of the five-cowmtdis the

[, vanish, as well, which is possible, according to (16).
Furthermore, we use (37) to construct the contractions:

P/p = J/Tq PT/qp = A/ Fp k; k + J//r (R rr - ka Fkr) (39)

P=yPPp=R-Fip F, (40)
and {): ) ) )
Up=Pp—2p(P+R) =A Fo i+ {(Rr =39pR) — Fie F =2 Fip F)}:
(41)

(l) The RIEMANNIAN R is introduced into definition (41), even though it is noiws&t from algebraic
operations on the five-curvature tensor. The justificafor this is given by the identity (45), in whicheth
derivation ofR is (implicitly) expressed in terms of five-tensors.
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Finally, if we multiply (37) by -A; Ji, cyclically permute the indicés ¢, add, and
divide by two, then this yields the anti-symmetric tensor:

Nipg = Fpi;q * Fig;p + Fap;i = Fpi,q * Fig,p + Fap.i- (42)

8 6. Thefield equations.
In the following, we shall address both of the well-knadentities:
(R°=33°R);p; 0 (43)
(Fie F? =% 8 Fi F);p 5 Fie F%p +3(Fok;r + Firp + Fip 1) F®, (44)
the first of which is most comfortably derived by twi@ntracting the BIANCHI identity
for the usual curvature tensor, whereas the secondsoeasily verified directly. With
the help of (43), (44), (Il) and (27), one obtains, by takiregdivergence in the indgxin
“ UP.p =3y N F®; 0. (45)
If one thus proposes the following field equations:
Up=0, (46)
N = 0 =Fpi:r + Fip:r + Fpr ok 47)

then the identity (45) exists between them. If onetiplids (41) byy’, on one side and
by A’ on the other then one recognizes that (46) splits g@¢uations:

(Rip—309p R) = (Fig Fp =2 gap Fa F) = 0, (46a)
1 0
= :EW oF™ =0, (46Db)

which no longer includes thg andFi, just as one could also say about (47). Thus, we
have arrived at the same equations that have alre&ayrbgarded as the field equations
of gravitation and electricity in general relativity up tibw, except that equation (46)
subsumes the gravitational equations and the first MAXWIEQuation in a single
system of equations and all three systems of equatieed to be connected with the
“curvature.” There are no corpuscles in this theory ahat amounts to the same thing
— they are included as singularities.
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8 7. Introduction of special coordinatesin Vs.

Among all of the possible choices for a coordinate systeVs, one of them seems
most natural: the one that make's equal tod', andA’ equald’s (d'p equals 1, resp., 0,
whenever =por/#p, resp.d’s equals 1, resp., 0, whenever 5 or/ # 5, resp.).

If:

d=M;3a’

is a transformation to new five-coordinates then areh

le:erZTp
I: MIT AT,

Thus, if we would like to havig’, = d'p, A"= J7 then we only need to choose:

M'o =¥’

MI5 = AI .
From the equation:

BK = |\/llk b/ y
it then also follows that:

v =al (=1fork=p; =0 fork+np)
A =0 (=1fork=5; =0 fork#5) .

When we omit the bar by an appropriate transformatierth&n have:
ye=0%, yP=a°  A=0%, A=0. (48)

If we now perform a transformation on the space coatdsx’' then since (48) continues
to be true we must transform the five-coordinates alwitly them, in order that the,
resp.,a, (+ =1, ..., 4) behave like the components of a contrangri@sp., covariant
four-vector, whereas’, resp. as, transform as an invariant.

However, it would be false to conclude that a five-vectn be regarded as a sort of
“sum” of a four-vector and a scalar. Two quantitieseayeal only when there is no well-
defined operation that produces differing results from thdétar instance, the absolute
differential of a five-vector is different from aater that “equals” one of the form: four-
vector + scalar.

In the new coordinate system one encounters the iowadt difficulty of
distinguishing the first four components of the five-vecabifrom the corresponding
components of the four-vectaf = y X &, which are numerically equal to them. We shall
writea® for the first four components of the five-vecaft We then have the numerical
relation:

a=a (49)
in place of the relation:
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V/k a/ :ak.

Analogously, we shall writ€’, when we mean one of the first four index valueg pf

In our coordinate system the distinguished plats the equatioa” = as = 0.
From the fact thaf, a’ =g, & a = 0 for vectors in the plan& we conclude that:

Os«=0, (50)
and, from the fact thay,, A’ A“= 1:

Os5 = 1. (51)
Here, equation (12) takes the form:

9x= Gik - (52)

We regard the parallel displacement of five-vectoriseasg characterized by tlies.
Axiom | (9. q = 0), with the help of (52), (50), (51), gives:

Oiq ~ 4%k~ M9 =0
—I50 T =0;. (53)
15 =0

Axiom Il said that under parallel displacement bé tfour-vectora' the invariant
incrementa’ of the vector' = ' a that is associated with it in the plafgoints in the

directionA’ in order thapa' should vanish for our choice of coordinate system.
From the fact that:

. i
dd +{ }ap d¥'=0
Pqg

it thus follows that: _ _
da +afdx* =0 @ =0),

r;q:{;q} . (54)

Axiom Il says: If we parallel displace the vec@tin its proper direction then the
invariant increasea of the vector’ = y/, a that is associated with it in the plaA&lso

vanishes. Along witha, 9a> must also vanish:

or, sinced = a':

0a’ =da’ +I,a%dx’= 0,
which, sincea® = 0 (andda® = 0) anda® = a” has the consequence that:

ro=-re (55)

5
M ap ’
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and indeed F,fq is the expression for the quantity that we denotedFhy (the

electromagnetic field strength). (53), (54), (55) shdwt tthe 's are completely
determined by thgi andFi (for a fixed coordinate system\f).

The use of special coordinates has the advantagehthaguations that result from
the elimination of the superfluous field variables canwigéten simply. However, one
must distinguish the index 5 in order to do this, from whiod number of equations
increases, which complicates one’s understanding onh#terally formal connection.
For this reason, we have employed general coordinat®g from the outset in our
presentation; however, it should be remarked that we ¥irsteled to this theory by
considerations that were thoroughly similar to the dnethis section. We therefore
dispense with them in order for the usual previously-gis@msiderations and results to
carry over into the special coordinate system.

8 8. Fidld equationsand the law of motion.

It will now be shown that the field equations that pestulated in 8 6 have a natural
relationship with the law of motion that was presentetependently of them in § 4.
Thus, one must observe that the nature of materiatlesris not defined in this theory,
such that they must be treated as singular points. abhstkthis, it is simpler to add a
fictitious term to the equations that expresses the geoisihatter; thus, one can concern
oneself with continuous functions, which is computatlnsimpler.

We assume that equation (47) is exactly valid everywlemen where “matter” is
present (excluding magnetic matter). It then follovesrf (45) that the equation:

UPp=0 (56)

is satisfied exactly everywhere. By contrast, wetnmeert the mixed tensor of matter
density into the right-hand side of (46). By analogy wité primitive Ansatz for this,
which represents irrotational (dust-like) matter in tiek gravitation theory, in place of
(46), we set:

UP=ug &, (57)

(&) is a five-vector that is associated with the fourtee¢y; ® &), or (&). From (56),
one obtains:

WUE)pE+uép &£=0. (58)

From (57), it follows thaj is then determined once one normalizes the “magnitude”
of &, i.e., when one sets:
& & = const. (59)

Then, since; &, =3(& & ).p = 0 multiplying (58) byé, gives:

(1é&)p=0, (60)
from which (58) becomes:
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&p &=0. (61)

We now turn our attention to curves in the coordinpges that are “tangent” to the
&-field; thus, for a suitable choice of parameter:

de =& X0 (62)

is the system of differential equations that defines¢hcurves.
Equation (61) then states that along such a curve, oneéhaso, i.e., that& is
parallel displaced in the direction that is assodiavéh it (& = )’y &' ).

The curves (62) that result from this displacement weseged in 8 4, and satisfy the
system of equations:

2k Kk P Ayl !
d’ +{ }did_x_ 2 poconst.  (69)

dt2  |pg| dt dt BLARArTIE

From equation (60) one can further show that these suemesent the “trajectories
of matter.” If we consider a filament formed of onels curve then (60) (the equation of
continuity) states that the vanishing, resp., non-vanisidihghe density function is
propagated along the filament, or, more precisely, tl@trmass” is constant along such
a filament, which is, however, equivalent in conterthassertion.

The theory that was presented here gives the equatidhe gfavitational field and
the electromagnetic field informally in a unified wdoy, contrast, they presently give us
no understanding of the structure of particles that woelddmparable to that which is
summarized in the facts of quantum theory.
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