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Unified Theory of Gravitation and Electricity 
 

By A. EINSTEIN and W. MAYER †. 
 
 

Up till now, the general theory of relativity was first and foremost a rational theory 
of gravitation and the metric properties of space.  However, for the treatment of 
electromagnetic phenomena, one must be satisfied with a largely superficial 
incorporation of MAXWELL’s theory into the relativistic schema.  In addition to the 
quadratic metric form of gravitation one must introduce a linear form that is logically 
independent of it, one whose coefficients represent the potentials of the electromagnetic 
field.  In the tensor equations of the gravitational field one finds, in addition to the 
curvature tensor, the covariantly written MAXWELL tensor of the electromagnetic field, 
which is linked to the latter only superficially and in a logically arbitrary way by a plus 
sign.  This is quite painful, since MAXWELL’s theory, as a field theory in the first 
approximation, is founded on empirical facts that are generally quite rich.  It is not 
presently known whether the linearity of MAXWELL’s actually does not correspond 
with reality, but only that the true equations of electromagnetism diverge from 
MAXWELL’s for strong fields. 

For that reason, the theoretician must take the trouble to formulate a presentation of 
general relativity in a logically unified theory of both fields.  However, one cannot 
maintain that the appreciable efforts that have been applied to the problem heretofore 
have produced a satisfactory result.  Since the onset of quantum mechanics, physics has 
generally turned away from these problems, as if it is assumed that the problems are, in a 
certain sense of the word, completely unsolvable within the framework of a field theory.  
In contrast to this opinion, we shall give a theory here that we believe represents a 
completely satisfactory and definitive solution, aside from quantum considerations.  One 
arrives at the old formulas of gravitation and electricity in a new and thoroughly unified 
way.  It shows that MAXWELL’s equations, as they were introduced at the onset of 
general relativity, can be regarded as rigorous equations in the same sense as the 
gravitational equations in empty space. 

The theory to be presented here connects psychologically with the well-known 
theory of KALUZA, but it avoids extending the physical continuum to one of five 
dimensions.  KALUZA described the total field in a five-dimensional space by means of 
a five-dimensional metric tensor gµν, in which g11, …, g44 played the physical role of 
gravitational potentials, whereas g15, …, g45 were interpreted as the electromagnetic 
potential, and the meaning of g55 was left open.  In order to properly extend the four-
dimensionality of the spacetime continuum the continuum was assumed to be 

“cylindrical” with respect to the coordinate x5 
∂gik

∂x 5 = 0
 
 

 
 .  KALUZA then succeeded in 

obtaining equations in an uncontrived way that agreed with the known gravitational 
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equations (MAXWELL equations for the electromagnetic field, resp.) in the first 
approximation by proposing equations for the five-dimensional space that were 
completely analogous to the pure gravitational field equations of general relativity.  The 
equations of geodetic lines in a five-dimensional space then represent the equations of 
motion for an electrically charged mass point. 

The unsatisfactory aspect of KALUZA’s theory resides in the assumption of a five-
dimensional continuum, since the world of our experience seems to be four-dimensional.  
Furthermore, a cylindricality conditions seems hardly natural from the standpoint of a 
relativistic five-dimensional theory.  Also, this theory does not correctly arrive at the 
constancy of the ratio of the electrical to the ponderable mass of a moving mass point.  
Finally, as we have already pointed out, it does not suggest a physical meaning for the 
component g55 of the metric tensor. 

All of these difficulties will be avoided in the theory to be presented here, since one 
still remains in the four-dimensional continuum, but one introduces vectors that have five 
components and correspondingly, tensors whose indices range from 1 to 5.  How this is 
possible will be explained in what follows.  If this formal difficulty is overcome then one 
obtains the complete theory in a way that is entirely analogous to the path that was 
originally embarked upon in general relativity for the statement of the laws of a pure 
gravitational field or the statement of the general field laws in KALUZA’s theory. 

 
 

§1.  Four-vectors and five-vectors. 
 

At each point of a four-dimensional RIEMANNIAN space one is not only given a 
four-dimensional vector space V4 that is composed of covariant and contravariant vectors, 
but also a five-dimensional linear vector space V5.  Let the components of a contravariant 
vector in the latter space be denoted by, e.g.: 

 
ai   (i = 1, …, 5). 

 
Greek indices shall denote the components of a five-vector, and Latin ones, a four-vector.  
We denote the coordinates of a RIEMANNIAN space by xi (i = 1, …, 4). 

By a five-dimensional (linear) vector space, we mean that each of its (contravariant) 
vectors is determined by five numbers aι, and that in a neighborhood of ai, first, addition 
and, second, multiplication by a pure number (scalar) is defined in the usual way, but not 
outside that domain.  Therefore, αaι + βbι (α and β are pure numbers) are the 
components of a vector in the vector space V5 when this is true for aι and bι.  The vector 
whose components are all zero is called the null vector. 

A coordinate transformation in V5 corresponds to equations of the form: 
 

aι  =M ι
τ a τ ,     (1) 

in which: 
| M ι

τ | ≠ 0.      (2) 
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The Mι
τ are generally functions of the xi.  Due to the homogeneous form of this 

transformation, the operations of forming the sum of five-vectors or multiplication by a 
scalar are independent of any special choice of coordinates. 

We shall call quantities bι that are changed by a transformation (1) in such a way that 
for each aι: 

bι a
ι     (3) 

 
is invariant the components of a covariant five-vector.  The operations of forming the 
sum and multiplication by a scalar are also meaningful for covariant vectors. 

Just as the vectors of V4 were measured by means of the metric tensor of R4: 
 

gik ,  resp., gik  (gi 
k = δi 

k), 
 
similarly, there is also a metric tensor (a non-degenerate symmetric tensor) for the five-
vectors aι, bι : 

gικ ,  resp., gικ  (gι 
κ = δι 

k), 
 
and we would now like to say, imprecisely, that a five-vector a has a contravariant (aι) 
and a covariant (aι) notation for which one has: 
 

aι = gικ ak

aι = gικ aκ

 
 
 

.     (4) 

 
Up to this point, no relation exists between the five-vectors (aι) in V5 and the four-

vectors ai in V4.  For that reason, we now introduce a “mixed” tensor: 
 

γι 
k,     (5) 

 
that takes a vector in V5 to a vector in V4, and conversely: 
 

ak = γι 
k aι     (6) 

bι = γι 
k bk .     (7) 

 
By means of the metric tensor for V4 and V5, we can write the projection tensor in the 
following equivalent ways: 

 γι 
k, γι k, γ  ιk, γ  ιk,             (8) 

in which, e.g.: 
γ ι k = gισgkl γσ 

l . 
 
We will now consider the association that was established in (6) and (7) more closely.  
We make the assumption that the rank of the matrix: 
 

|| γι 
k || 
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is equal to four.  A four-dimensional vector space in V5 is then given by  γι   
kvk (vk 

arbitrary), which we call the “distinguished plane A.” 
The relation: 

 γι
kvk = 0      (9) 

has only the solution vk = 0, whereas: 
 γι

k Aι = 0      (10) 
 
has only the solution (up to a given factor) of the normal vector Aι of the distinguished 
plane A ((10) then implies that  γ ι k vkA

ι  vanishes for any vk ).  We will call Aι the 
“distinguished direction in V5,” and we normalize it by setting (1): 
 

 gικ A
ι Aκ = 1.           (11) 

 
From (10) and (6), the distinguished direction Aι is associated with the null vector in V4, 
whereas (7) associated each vector (bk ) of V4 with a vector of the distinguished plane in 
V5. 

The five-tensor (gικ), along with the mixed tensor (γ ι k ), determines the four-tensor 
(gικ γ ι i γ κk ); from this fact, we shall assume that it is identical with the metric tensor gik 
on V4.  It thus satisfies the relation (2): 

gικ γ ι i γ κk = gik .     (12)  
 
The following relations are equivalent to (12): 
 

γ �κp γ κq = gpq     (12a) 
γ �κp γ κq = δp

q     (12b) 


ικγ �ι p γ κq = gpq ,    (12c) 
etc.  We next compute the quantities: 

γ �κ 
p γ ιp = Σκ

ι.     (13) 
 

Upon multiplying by γ κq and taking (12b) into account, we obtain: 
 

                                                
 (1) However, this association also implies an assumption about the character of the metric on V5. 
 (2) If gικ  is non-degenerate and || γ ιp || has rank four then gpq is also non-degenerate. 

Proof:  We show that from gpqx
p = 0, …, (α), it follows that xp = 0.  From (a), it follows as a result of 

(12) that: 
0 = gικ γ κqσι  = σκ γ κq, 

in which we have set: 
σι = γ ιpσ . 

 
From this, it follows that σκ   = ρAκ, thus, also that σι = ρAι. 

By setting both expressions for σι equal to each other, it follows that: 
 

ρAι = γ ιpσ, 
 

from which, upon multiplying by Aι (10) gives us that ρ = 0, and furthermore, the vanishing of σ follows 
from (9). 
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γ ιq =  γ κq Σ κ
ι, 

or: 
γ κq (δ ικ  − Σκ

ι ) = 0. 
From this, it follows that: 

δ ικ  − Σκ
ι = ρι Aκ.    (14) 

 
Moreover, it follows from (13) upon multiplying by Aκ that: 
 

Σκ
ι Aκ = 0. 

 
Thus, if we multiply (14) by Aκ, we obtain: 
 

Aι = ρι, 
from which, (14) becomes: 

Σκ
ι = δ ικ  − Aι Aκ. 

As a result (13) takes the form: 
γ �κ 

p γ ιp = δ ικ  − Aι Aκ  ,    (13a) 
or, if we lower the index ι: 

gpqγ�κ 
p γ ι 

q + Aκ Aι = gκι.        (13b) 
 

In equations (12) and (13b), we have arrived at the relations that link the metric in V4 
with the one in V5. 

The coupling between vectors (bk) in V4 and vectors bι in V5 that is expressed by (7) 
is one-to-one.  If we multiply (7) by γ ιp and take (12b) into account then we obtain: 

 
br = γ ιr bι ,     (14) 

 
which therefore completely determines the vector br in V4. 

On the other hand, if we multiply (6) by γ σk then (13a) gives: 
 

γ σk a
k = (δ ισ  − Aι A

σ ) aι = aσ – ρ Aσ, (ρ = Aι a
ι ), 

thus: 
aσ = γ σk a

k + ρ Aσ. 
 

The five-vector (aσ) is therefore determined from the four-vector (ak) only up to the 
addition of a vector that is proportional to (Aσ). 

Tensors of arbitrary rank may be defined relative to V5 in a manner that is completely 
analogous to the way they are defined relative to V4, except that they are covariantly 
related by transformations of type (1).  Likewise, one may construct mixed tensors, which 
are characterized by Latin and Greek indices; the projection tensor γ ιk is an example of 
this.  An explicit statement for the construction of tensors from other tensors by 
summation, multiplication, and “reduction” (i.e., contraction) is not needed; the latter 
operation can only be naturally performed on two indices of the same type (i.e., two Latin 
indices or two Greek ones). 
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§ 2.  Absolute Differential Calculus. 
 
Absolute differential and absolute derivative of a five-vector:  The transformation 

(1): 
     Aι = Mι

τ a ι , 
 
is no longer true at a point daι (= aι (xi + dxi) – aι (xi)) away from aι, since the Mι

τ are 
generally functions of xi.  We then introduce the absolute differential by applying the 
three-index quantitiesΓπq

ι (ι and π range from 1 to 5, and q ranges from 1 to 4): 

 
daι = daι +Γπq

ι aπdxq ,      (15) 

in which we have: 
     daι = Mι

τ da
τ, 

     daι =da τ + Γπq
τ aπdxq . 

 
From this, we obtain the following transformation law for the Γ’s: 
 

Mπ
σΓπq

ι =M ι
τ Γπq

τ − M ι
σ ,q  (Mι

σ,q =
∂

∂xq Mι
σ,).   (16) 

 
Likewise, we define the absolute differential of a covariant vector by: 
 

dbι = dbι −Γιq
π bπ dxq,      (17) 

 
in which this definition is chosen such that: 
 

d(bι a
ι ) = dbι a

ι + bι daι.    (18) 

 
The absolute differential of a five-tensor of arbitrary rank is then defined in the usual 

way.  The absolute differential of a five-tensor is a five tensor of the same type. 
We now denote the coefficients of dxq in daι by aι

;q , such that we have: 

 
aι

; q = aι
, q + Γπq

ι aπ;       (15a) 

 
aι

;q behaves like a covariant four-vector under coordinate transformations (of xi).  aι
;q is 

therefore a mixed tensor, like γ ιq, for instance.  Therefore, mixed tensors arise from five-
tensors under differentiation. 

Absolute differentiation of four-vectors:  If (τi) is a vector in V4 then we define the 
absolute derivative as in RIEMANNIAN geometry through the equation: 

 

τi
; q = τi

, q +
i

pq

 
 
 

 
 
 

 τ p,    (19) 
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in which the
i

pq

 
 
 

 
 
 

 are the CHRISTOFFEL symbols that one constructs from the metric 

tensor gik on V4.  Therefore, letT
•;q

•• denote the corresponding RICCI derivative whenever 

T
•

••  has only Latin indices. 
On the other hand, ifS

•

••  is a mixed tensor then we define: 
 

S
•;q
•• = S

•,q
•• + Σ (•),     (20) 

 
in which the sum has exactly as many summands as tensor indices, and, in fact: 
 
 a Greek index S

••

••τ corresponds to a summand +Γσq
τ S

• •

••σ  

  “ S
••π
••  “ “  −Γπq

σ S
• •σ
••  

 a Latin index S
••

•• i  “ “  +
i

pq

 
 
 

 
 
 
S

••

•• p  

  “ S
•• p
•• •  “ “  −

r

pq

 
 
 

 
 
 
S

•• r
•• • . 

 
This is an extension of the absolute differential calculus that was introduced by 
WAERDEN and BARTOLOTTI in a formally analogous case, and is chosen such that 
the following rules of calculation are valid: 
 

(A
•

•• B•);q = A
•;q
•• B• + B•

;qA
••

•

(A
•

•• + B
•

••);q = A
•;q
•• + B

•

••

;q

ρ;q = ρ,q (ρ = scalar)

 

 
 

 
 

 .   (21) 

 
Naturally, just as in the ordinary RICCI calculus, we have here that: 
 

0 = gik; q = gik
; q = δi

k
; q.    (22) 

 
If a five-vector aι satisfies the relations: 
 

daι = 0 = daι +Γπq
ι aπdxq , 

 
along a curve segment in the space of xi then we say that the vector is parallel displaced 
along the curve segment.  The five-vector changes along the curve according to the 
equation: 

daι = − Γπq
ι aπdxq .    (23) 

Furthermore, the equation: 

daι = − 
i

pq

 
 
 

 
 
 

aπdxq     (24) 

 



Unified Theory of Gravitation and Electricity                                    8 

defines the parallel displacement of a four-vector (ai) along a curve. 
 
 

§ 3.  Determination of the three-index symbolΓπq
ι . 

 
A manifold of the type that we have in mind here is now given when the tensors 

(gικ ) and (γι
k�) are given, which then determine the four-dimensional metric tensor gpq 

according to (12c).  However, for a given GAUSSIAN coordinate system the tensors 
(gικ ) and (γι

k ) are not entirely arbitrary, since the choice of coordinates in V5 can be made 
arbitrarily.  For that reason, (1) implies that of the 15 + 20 components of these tensors, 
only 25 can be chosen arbitrarily, such that for a given GAUSSIAN coordinate system, as 
in the case of the old gravitation theory, only 10 of them actually remain to characterize 
the manifold.  The latter is therefore regarded as completely characterized when the 
quantitiesΓπq

ι are defined, which we shall now do.  For that purpose, we introduce three 

axioms. 
If (aι ), resp. (aι ), is a five-vector then one has the relation: 
 

aι = gικ aι. 
 

If we construct the absolute differential then we obtain: 
 

daι = gικ da
κ + aκ dgικ. 

 
From daι = 0, it then follows that daκ = 0 (and conversely) only when one has assumed 

that dgικ  = 0, or that: 

dgικ; j = 0.     (I) 

 
Axiom I implies that the statement that the absolute differential of a five-vector (in a 
particular direction) vanishes has a well-defined meaning.   This axiom can also be stated 
in the equivalent form that under a parallel displacement of two five-vectors (aι) and (bκ), 
the form: 

gικ a
ι bκ 

 
remains unchanged.  Axiom (I) gives 60 equations for the 100 quantitiesΓπq

ι . 

There is a one-to-one correspondence between a vector (aι  ) in the distinguished 
plane and a vector (ak) in V4: 

aι = γ ιk aj. 
 
When (ak) is displaced (not parallel) arbitrarily along a curve segement C in the four-

dimensional space these equations imply that the vector aι in the distinguished plane A 
will be displaced along with it in a completely determined way, which implies the 
equation: 

daι = γ ιj daj + aj dγ ιj .    (25) 
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Our second axiom is the following one: under parallel displacement of (ak ) (i.e., daj  

= 0) the absolute differential of the vectors that are displaced by it lies in the 
distinguished direction Aι.  This means that in (25) when daj = 0 the daι must be 

proportional to Aι, or that (for arbitrary ak, dxq): 
 

ak dxq γ ιj ; q 
 
must be proportional to Aι.  It must then be true that: 
 

γ ιj ; q = Aι Fkq,            (II) 
 

in which Fkq is a four-tensor of rank two. 
Our third axiom is a specialization of the following one: If the parallel displacement 

of the vector (ak ) proceeds in its proper direction (dxq = ρaq) then so will the vector (aι  ) 
in the distinguished plane that is associated with it (daι   = 0).  This implies the condition: 

 
0 = γ ιj ; q ak aq = Aι Fkq a

k aq, 
 
or, since ak is an arbitrary vector: 

Fkq = − Fqk  .     (III) 
 
The consistency of axioms I, II, and III will be proved later. 

If one multiplies (II) by Aι then from (11) and (10) one obtains: 
 

Fkq = Aι γ ιj ; q = −γ ι q Aι ; j .    (26) 
 

Upon multiplying by γσ 
q, (13a) further yields: 

 
γσ 

q Fkq = − (δσ
ι – Aσ  A

ι ) Aι ; q = − Aσ; q + Aσ Aι Aι ; q 
 
or, due to the vanishing of Aι Aι ; q ( =1

2  (Aι Aι
  ); q ): 

 
Aσ ; q = γσ 

k
 Fqk .     (27) 

 
The ultimate conclusion of this section is the following one: If one subjects the Γ’s to 

the simple and reasonable conditions I, II, III then they are not determined completely for 
given gik and γι 

k, but only up to an anti-symmetric tensor Fkq that one is free to choose.  It 
will be shown that this, together with the RIEMANNIAN metric tensor gik , completely 
determines the properties of manifold in question. 

It is instructive to recast the problem that is treated here in the context of a 
RIEMANN space Rm that is embedded in a RIEMANN space Rn of higher dimension.  
Then there would be two metrics defined in this problem: one of them belongs to Rm and 
the other one belongs to Rn.  Rm corresponds to the four-dimensional space, whereas, in 
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our case, instead of Rn, we are given only a vector space of dimension n (= 5) at every 
point of Rm. 

xι = xι (y1, …, ym) (ι = 1, …, n) is the analytical representation of the subspace.  A 
point of Rm is associated with the metric gpq dyp dyq in Rm and the metric gικ dxι dxκ in Rn.  
∂xι

∂y p  = γ ιp is the projection tensor here.  Aι, which is defined by
∂xι

∂y p Aι = 0, is the normal 

to Rm at the point in question.  Relations I and II are also valid in this case.  However, Fpq 
is symmetric for this problem, and in the case n = m + 1 it is known as the “second 
fundamental form.”  It is then ultimately axiom III that distinguishes the spatial structure 
that we consider here from the one in the problem of the embedded manifold.  Thus, we 
also find the difference between the momentum that follows from our theory and the one 
that follows from KALUZA’s theory. 

 
 

§ 4.  Concerning the straightest lines in V5. 
 
 
If we parallel displace a vector (aι  ) in V5 in the direction ak = γι  

k aι that is associated 
with it in V4 then a curve will be determined in coordinate space, whose equation we will 
now derive. 

For an appropriate choice of parameter t we can set ak = γι  
k aι =

dxk

dt
.  From: 

 
ak = γι  

k aι, 
 
it then follows by differentiation that since daι = 0: 

 
dak = γι  

k ; r a
ι ar dt 

or, from II: 
d2x k

dt2 +
k

pq

 
 
 

 
 
 

dx p

dt
dxq

dt
 = Aι  a

ι  Fk
r
dxr

dt
 .  (28) 

However, one now has: 

  

d(Aιa
ι)

dt
 = Aι ; p a

p aι + Aι
  

daι

dt
, 

 
in which the second term on the right-hand side vanishes due to the fact that daι = 0.  

However, the first term on the right-hand side also vanishes.  (27) then implies that: 
 

Aι ; p a
p aι = γι 

k Fpk a
p aι = Fpk a

p ak = 0. 
 
Thus, Aι  a

ι = z is constant along the curve, such that (28) can be written in the form: 
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d2x k

dt2 +
k

pq

 
 
 

 
 
 

dx p

dt
dxq

dt
 = z Fk

r
dxr

dt
 (z = const.).  (28a) 

 
What the parameter t entails is that along the curve d(gικ a

ι aκ ) = 0, hence, gικ a
ι aκ = 

const., or, from (13b): 

gpq
dxp

dt
dxq

dt
 + z 2 = const. 

or: 

gpq
dxp

dt
dxq

dt
 = const. 

 
By restriction, we can therefore introduce the arclength, which is defined by: 
 

ds2 = − gpq dxp dxq , 
 
as a parameter for the timelike curves in (28a), from which the constant ρ that appears in 
(28a) is also fixed. 

Equation (28a) corresponds precisely to the relativistic equation of motion for an 
electrically charged mass point, not merely approximately, as in KALUZA’s theory.  In 
particular, it is noteworthy that in our theory the ratio ρ of the electrical to the ponderable 
mass must be strictly constant. 

 
 

§ 5.  Curvature and V5. 
 
The integrability conditions for parallel displacement: 
 

daq = 0, 

or: 
daσ = −Γιp

σ aι dxp 

resp., take the form: 
Pσ

ιqp a
ι = 0,     (29) 

in which: 
Pσ

ιqp a
ι = −Γιq, p

σ + Γιp,q
σ + Γτ q

σ Γιp
τ − Γτp

σΓιq
τ .   (30) 

 
From (29), it follows that the vanishing of (30) has an invariant character.  The proof 

that Pσ
ιqp is a mixed tensor of the type that is expressed by the indices is achieved in the 

following way: We consider the two-dimensional manifold xq = xq (u, v), which defines 

the two directions 
∂xi

∂u
,
∂xi

∂v
 at each of its points.  If the point in question is given, along 

with the five-vector aι in a neighborhood of it, then we construct: 
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d
dv

daι

du

 
  

 
  

−
d
du

daι

dv

 
  

 
  

. 

We have: 

  

daι

du
=

∂aι

∂u
+ Γπq

ι aπ ∂xq

∂u
 , 

and furthermore: 
 

  

d
dv

daι

du

 
  

 
  

 =
∂aι

∂u
+ Γπq

ι aπ ∂xq

∂u

 
  

 
  

,v

+ Γσp
ι ∂aσ

∂u
+ Γπq

σ aπ ∂xq

∂u

 
  

 
  

∂x p

∂v
. 

 
From this, it follows that: 

  

d
dv

daι

du

 
  

 
  

−
d
du

daι

dv

 
  

 
  

= Pσ
ιpq a

π 
∂x p

∂v
 
∂xq

∂u
 ,   (31) 

 
from which the tensor character of Pσ

ιpq emerges. 
Naturally, in a space with the sort of structure that we are examining there also exists 

the usual RIEMANN curvature that one constructs from the gik, just as one also has 
geodetic lines that are constructed from the gik.  However, the newly acquired knowledge 
resides precisely in the fact that the definitive structures for the physical laws are the 
same as the ones that are obtained from parallel displacement of five-vectors by means of 
the Γ’s.   

On the other hand, it is clear that the mathematical model thus defined can only 
relate to physical laws in the context of the four-dimensional space (the tangent space V4, 
resp.)  Thus, the fact that the latter definitive expressions are ultimately expressible in 
terms of only the four-tensors gik and Fik, is connected with the fact that γ ικ and gικ no 
longer appear explicitly in these expressions (cf. eq. (28a)); these facts will be more 
clearly distinguished from each other in the next section. 

To that end, it is appropriate to look for the relation that exists between the five-
curvature (30) and the (RIEMANNIAN) four-curvature.  We start with equations (II) and 
(27) (1): 

γιk ; q = Aι Fkq     (II) 
Aι; p = γιk Fp 

k .     (27) 
 

By repeated absolute differentiation, one obtains: 
 

γιk ; q ; p = Fkq ; p Aι + Fkq Fp 
r γι r    (IIa) 

Aι ; p ; q  = Fkq Fp 
r γι r + γιk Fp 

k
; q    (27a) 

and thus: 
γιk ; q ; p − γιk ; p ; q = Aι (Fkq ; p − Fkp ; q ) + γι r  (Fkq Fp 

r − Fkp Fq
r )  (IIb) 

Aι ; p ; q − Aι ; q ; p = γι r (Fp 
k
; q − Fkp Fq

k
; p ).     (27b) 

                                                
 (1) The Γ’s are uniquely computable from equations (II) and (27).  If Fpq + Fqp = 0 then, as one easily 
sees, axioms I and III are satisfied, which shows their consistency.  Now, only the validity of I remains to 
be proved, but this follows easily from an application of (13b). 
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By explicit evaluation of the left-hand side of these equations one obtains from a single 
computation: 

γιk ; q ; p − γιk ; p ; q = Pσ
ιqp γσk − R rιpq γι r     (32) 

 
Aι ; p ; q − Aι ; q ; p = Pσ

ιqp Aσ ,    (33) 
 
in which R refers to the RIEMANNIAN four-curvature: 
 

R rιpq = −
r

kq

 
 
 

 
 
 , p

+
r

kp

 
 
 

 
 
 ,q

+
r

tq

 
 
 

 
 
 

t

kp

 
 
 

 
 
 

−
r

tp

 
 
 

 
 
 

t

kq

 
 
 

 
 
 
.  (34) 

 
From (IIb), (27b), (32), and (33) one obtains the desired relations: 
 

Pσ
ιqp γσk = Aι (Fkq ; p − Fkp ; q ) + γιr {R rιpq + Fkq Fp 

r
  − Fkp Fq 

r }   (35) 
 

Pσ
ιqp Aσ  = γιr (Fq 

r
; p − Fp 

r
; q).      (36) 

 
Multiplying (35) by γ τk, and taking into account the fact that γσk γ τk = γσ

k γ τk = δσ
τ – 

Aσ A
τ, along with (36), yields: 

 
Pτ

ιqp = −γιr A
τ (Fp 

r
; q − Fq 

r
; p ) + γ τk Aι (Fkq ; p − Fkp ; q ) 

+γι r γ τk (R rιpq + Fkq Fp 
r
  − Fkp Fq 

r ) .    (37) 
 

It must be remarked that the (BIANCHI) identity is also valid for the five-curvature 
tensor: 

Pτ
ιpq; r  + Pτ

ιqr; p + Pτ
ιrp; q ; 0.   (38) 

 
It is simplest to prove this by considering a transformation of the coordinates (the xi) 

that makes the 
r

pq

 
 
 

 
 
 

 vanish, and a the transformation (1) of the five-coordinates the 

Γσq
τ vanish, as well, which is possible, according to (16). 

Furthermore, we use (37) to construct the contractions: 
 

Pιp = γτ 
q Pτ

ιqp = Aι Fp 
k
; k + γιr (R rr − Fkp F

kr
 )  (39) 

 
P = γ ιp Pιp = R − Fkp F

kp,      (40) 
and (1): 

Uιp = Pιp – 1
4 γιp (P + R) = Aι Fp 

k
; k +γι 

r
 {( Rrr − 1

2grpR) – (Fkr F
k
p − 1

4 Fkp F
kr )}. 
 (41) 

 

                                                
 (1) The RIEMANNIAN R is introduced into definition (41), even though it is not derived from algebraic 
operations on the five-curvature tensor.  The justification for this is given by the identity (45), in which the 
derivation of R is (implicitly) expressed in terms of five-tensors. 
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Finally, if we multiply (37) by – Aτ γι
i , cyclically permute the indices i p q, add, and 

divide by two, then this yields the anti-symmetric tensor: 
 

Nipq = Fpi ; q + Fiq ; p + Fqp ; i = Fpi , q + Fiq , p + Fqp , i .   (42) 
 
 

§ 6.  The field equations. 
 
In the following, we shall address both of the well-known identities: 
 

(Rr
p – 1

2δr
p R); p ; 0    (43) 

 
(Fkr F

kp − 1
4 δr

p Fkl F
kl ); p ; Fkr F

kp
; p + 1

2(Fpk ; r + Fkr ; p + Frp ; k ) F
kp ,  (44) 

 
the first of which is most comfortably derived by twice contracting the BIANCHI identity 
for the usual curvature tensor, whereas the second one is easily verified directly.  With 
the help of (43), (44), (II) and (27), one obtains, by taking the divergence in the index p in 
(41): 

Uι
p
; p − 1

4 γι 
r Nrkp F

kp ; 0 .    (45) 
 

If one thus proposes the following field equations: 
 

Uip = 0 ,      (46) 
 

Nrkp = 0 = Fpk ; r + Fkp ; r + Fpr ; k  ,    (47) 
 
then the identity (45) exists between them.  If one multiplies (41) by γ ιq on one side and 
by Aι on the other then one recognizes that (46) splits into the equations: 
 

(Rqp – 1
2gqp R) − (Fkq F

k
p − 1

4 gqp Fkl F
kl ) = 0 ,   (46a) 

 

Fpk
; k =

1

g

∂
∂xk ( gF pk)  = 0 ,    (46b) 

 
which no longer includes the gik and Fik, just as one could also say about (47).  Thus, we 
have arrived at the same equations that have already been regarded as the field equations 
of gravitation and electricity in general relativity up till now, except that equation (46) 
subsumes the gravitational equations and the first MAXWELL equation in a single 
system of equations and all three systems of equations need to be connected with the 
“curvature.”  There are no corpuscles in this theory, or – what amounts to the same thing 
– they are included as singularities. 
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§ 7.  Introduction of special coordinates in V5. 
 

Among all of the possible choices for a coordinate system in V5, one of them seems 
most natural: the one that makes γ ιp equal to δ ιp and Aι equal δ ι5 (δ ιp equals 1, resp., 0, 
whenever ι = p or ι ≠ p, resp. δ ι5 equals 1, resp., 0, whenever ι = 5 or ι ≠ 5, resp.). 

If: 
     aι = Mι

τ a τ  
 
is a transformation to new five-coordinates then we have: 
 
      γ ιp = Mι

τ γ τp 
       Aι = Mι

τ A τ . 
 
Thus, if we would like to haveγ τ

p = δ ιp , A τ = δ τ5 then we only need to choose: 
 
     Mι

p = γ ιp 
     Mι

5 = Aι . 
From the equation: 

     b κ  = Mι
k bι , 

it then also follows that: 
 

   γ κ
p = δκ

p ( = 1 for κ = p;  = 0 for κ ≠ p) 

    A κ = δκ
5 ( = 1 for κ = 5;  = 0 for κ ≠ 5) . 

 
When we omit the bar by an appropriate transformation we then have: 
 

γ ιp = δ ιp , γι  
p = δι  

p , Aι =δ ι5 , Aι = δι
5 .  (48) 

 
If we now perform a transformation on the space coordinates xι then since (48) continues 
to be true we must transform the five-coordinates along with them, in order that the aι, 
resp., aι (ι = 1, …, 4) behave like the components of a contravariant, resp., covariant 
four-vector, whereas a5, resp., a5, transform as an invariant. 

However, it would be false to conclude that a five-vector can be regarded as a sort of 
“sum” of a four-vector and a scalar.  Two quantities are equal only when there is no well-
defined operation that produces differing results from them.  For instance, the absolute 
differential of a five-vector is different from a vector that “equals” one of the form: four-
vector + scalar. 

In the new coordinate system one encounters the notational difficulty of 
distinguishing the first four components of the five-vector aι from the corresponding 
components of the four-vector ak = γ ιk aι, which are numerically equal to them.  We shall 
writeak  for the first four components of the five-vector aκ.  We then have the numerical 
relation: 

ak = ak,     (49) 
in place of the relation: 
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γ ιk aι = ak . 
 
Analogously, we shall writeT

• • k
•  when we mean one of the first four index values ofT

• •κ
• . 

In our coordinate system the distinguished plane A has the equation a5 = a5 = 0.  
From the fact that Aι a

ι = gικ a
ι aκ = 0 for vectors in the plane A, we conclude that: 

 
g5κ = 0 ,           (50) 

and, from the fact that gικ A
ι Aκ = 1: 

g55 = 1.           (51) 
Here, equation (12) takes the form: 

gi k = gik .     (52) 

 
We regard the parallel displacement of five-vectors as being characterized by the Γ’s. 

Axiom I (gικ ; q = 0), with the help of (52), (50), (51), gives: 
 

g jk, q − Γ jq
s gsk − Γkq

s g js = 0

−Γ jq
s gsk − Γkq

5 = 0

−Γ5q
5 = 0

 

 
 

 
 

.    (53) 

 
Axiom II said that under parallel displacement of the four-vector ai the invariant 

increment dai of the vector aι = γ ιk ak that is associated with it in the plane A points in the 

direction Aι in order that dai should vanish for our choice of coordinate system. 

From the fact that: 

dai +
i

pq

 
 
 

 
 
 

ap dxq = 0 

it thus follows that: 
dai + Γpq

i a
p
dxq  = 0  (a5 = 0) , 

or, sinceai  = ai: 

Γpq
i =

i

pq

 
 
 

 
 
 

 .     (54) 

 
Axiom III says: If we parallel displace the vector ak in its proper direction then the 

invariant increase dai of the vector aι = γ ιk ak that is associated with it in the plane A also 

vanishes.  Along with dai, da5 must also vanish: 

 
da5 = da5 +Γpq

i a
p
dxq= 0 , 

 
which, since a5 = 0 (and da5 = 0) and a

p
 = ap has the consequence that: 

 
Γpq

5  = −Γq p
5  ,     (55) 
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and indeed Γpq
5  is the expression for the quantity that we denoted by Fpq (the 

electromagnetic field strength).  (53), (54), (55) show that the Γ’s are completely 
determined by the gik and Fik (for a fixed coordinate system in V5). 

The use of special coordinates has the advantage that the equations that result from 
the elimination of the superfluous field variables can be written simply.  However, one 
must distinguish the index 5 in order to do this, from which the number of equations 
increases, which complicates one’s understanding of the naturally formal connection.  
For this reason, we have employed general coordinates in V5 from the outset in our 
presentation; however, it should be remarked that we were first led to this theory by 
considerations that were thoroughly similar to the ones in this section.  We therefore 
dispense with them in order for the usual previously-given considerations and results to 
carry over into the special coordinate system. 

 
 

§ 8.  Field equations and the law of motion. 
 
It will now be shown that the field equations that we postulated in § 6 have a natural 

relationship with the law of motion that was presented independently of them in § 4.  
Thus, one must observe that the nature of material particles is not defined in this theory, 
such that they must be treated as singular points.  Instead of this, it is simpler to add a 
fictitious term to the equations that expresses the density of matter; thus, one can concern 
oneself with continuous functions, which is computationally simpler. 

We assume that equation (47) is exactly valid everywhere, even where “matter” is 
present (excluding magnetic matter).  It then follows from (45) that the equation: 

 
Uι 

p
; p = 0      (56) 

 
is satisfied exactly everywhere.  By contrast, we must insert the mixed tensor of matter 
density into the right-hand side of (46).  By analogy with the primitive Ansatz for this, 
which represents irrotational (dust-like) matter in the old gravitation theory, in place of 
(46), we set: 

Uιp = µ ξι ξp .           (57) 
 
(ξι ) is a five-vector that is associated with the four-vector (γι  

p ξι ), or (ξp ).  From (56), 
one obtains: 

(µ ξp ); p ξι + µ ξι
; p  ξp = 0 .         (58) 

 
From (57), it follows that µ is then determined once one normalizes the “magnitude” 

of ξι, i.e., when one sets: 
ξι ξι = const.     (59) 

 
Then, since ξι ξι

; p  = 1
2(ξι  ξι  ); p = 0 multiplying (58) by ξι   gives: 

 
(µ ξp ); p = 0 ,     (60) 

from which (58) becomes: 
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ξι
; p  ξp = 0.          (61) 

 
We now turn our attention to curves in the coordinate space that are “tangent” to the 

ξp-field; thus, for a suitable choice of parameter: 
 

dxp

dt
 = ξp (x1, …, x4)    (62) 

 
is the system of differential equations that defines these curves. 

Equation (61) then states that along such a curve, one has dξι = 0, i.e., that ξι is 

parallel displaced in the direction that is associated with it (ξp = γ ιp ξι ). 
The curves (62) that result from this displacement were treated in § 4, and satisfy the 

system of equations: 
d2x k

dt2 +
k

pq

 
 
 

 
 
 

dx p

dt
dxq

dt
 = ρ Fk

r 
dxr

dt
 , ρ = const. (63) 

 
From equation (60) one can further show that these curves represent the “trajectories 

of matter.”  If we consider a filament formed of one such curve then (60) (the equation of 
continuity) states that the vanishing, resp., non-vanishing, of the density function µ is 
propagated along the filament, or, more precisely, that the “mass” is constant along such 
a filament, which is, however, equivalent in content to the assertion. 

The theory that was presented here gives the equations of the gravitational field and 
the electromagnetic field informally in a unified way; by contrast, they presently give us 
no understanding of the structure of particles that would be comparable to that which is 
summarized in the facts of quantum theory. 
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