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 Almost simultaneously, H. Wieleitner (1) and myself (2) generalized the concept of 
the Mannheim curve [as is known (3), that refers to the locus of curvature centers for the 
respective contact points of a curve Γ that rolls along a line] by allowing Γ to roll along a 
circle (4). 
 A closely-related consideration would be curves M that are described by the curvature 
centers m of the respective contact points of a curve Γ while it rolls along an arbitrary 
curve K. 
 Let Γ be referred to as the base curve, while K is called the curvilinear axis.  Since 
the name of generalized Mannheim curve was employed by Wieleitner for the case in 
which Γ rolls along a circle, M will be called the generalized Mannheim curve of Γ 
relative to K. 
 

I.  
 

 One obtains the point m of the general Mannheim curve M when one measures out 
the arc length s of the curve Γ from a fixed starting point a on K and measures out the 
corresponding curvature radius ρ of Γ along the associated normal to K.  A point p of Γ 
with the natural coordinates ρ, s always corresponds to a point m on M then for which ρ 
means the perpendicular distance from the curvilinear axis and s means the arc length 
from a fixed starting point a on it to the foot k of the perpendicular.  For the sake of 
uniqueness, a positive sense will be established for the arc length measurement.  The 
positive directions of the normals can then be determined in such a way that the positive 
directions of the tangent and normals at the curve point considered coincide with the 
positions of the positive half-axes of a rectangular coordinate system. 
 These two givens, namely, the arc length s and the distance to the associated curve 
normals, which might be denoted by n, can be regarded as the coordinates of the point m.  
According to G. Loria (5), their introduction as coordinates goes back to G. Mannheim 
                                                
 (1) “Über eine Verallgemeinerung des Begriffes der Mannheimschen Kurve,” Math.-nat. Mitt. 
Württemberg (2) 9 (1907), 1-9. 
 (2) “Ein Analogon zur Mannheimschen Kurve,” this journal 18 (1907), 315/6.  
 (3) E. Wölffing , “Über Pseudotrochoiden,” Zeit. Math. Phys. 44 (1899). 
 (4) Cf., Wieleitner, Spezielle ebene Kurven, (Sammlung Schubert 56), Göschen, Leipzig, 1908, pp. 320, 
et seq. 
 (5) Spezielle algebraische und transzendentale ebene Kurven, (Sammlung Teubner 5), Teubner, 
Leipzig, 1902, pp. 606.  
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(1).  This coordinate system, which represents, as G. de Longchamps (2) has remarked 
already, merely a special case of the curvilinear coordinates that Aoust (3) treated, was 
addressed by M. Petrovich (4).  In connection with that work, Longchamps published a 
construction of the tangent to a given curve in Mannfred  or inverse normal coordinates, 
like the coordinates that were called s, n by F. Ondraček (5). 
 That then implies the theorem: 
 
 If one replaces the natural coordinate ρ, s in the natural equation f (ρ, s) = 0 for a 
curve Γ with the inverse normal coordinates n, s relative to a curve K as their axis then 
the equation f (n, s) = 0 will represent the general Mannheim curve M of Γ relative to K. 
 
 If K is a line, in particular, then the inverse normal coordinates will clearly go over to 
the Cartesian coordinates, and M will become the usual Mannheim curve of Γ.  If K is a 
circle then that will yield the generalized Mannheim curve.  On the other hand, when Γ 
is a circle, one will get the parallel curve of K.  If K and Γ are congruent for 
corresponding positions of the curvature radius then M will become the evolute of K. 
 Naturally, one can also conversely replace the normal coordinates of a curve with the 
natural coordinates.  One will then get the natural equation of that curve whose general 
Mannheim curve is the given one.  If one switches the inverse normal coordinates with 
the Cartesian ones then the so-called image curve (6) to the given one will arise, which is 
the usual Mannheim curve to that curve Γ whose general Mannheim curve is the given 
one. 
 Let B be the usual Mannheim curve of Γ, let M be its general Mannheim curve, and 
let K be the curvilinear axes.  One will then get M from B by a process that is similar to 
the one that Varignon (7) used in order to convert a curve f (x, y) = 0 into the curve f (ρ, 
lω) = 0.  If one chooses the tangent at a point A of K to be the axis of the abscissa, the 
normal to be axis of the ordinate, and if the abscissa pq points to a point p of the curve B 
and makes the parallel curve K′ to K that goes through q intersect the curve normal that is 

erected at the endpoint of the arc length s = pq  that is measured from a then, as one can 
see immediately, the point of intersection p will be a point of M (8). 
 A spatial consideration will allow one to recognize a simple connection between B 
and M.  If a point p runs along the curve K, while its plane moves parallel to itself in the 
perpendicular direction in such a way that its displacement is equal to the arc length of 
the curve that is described then p will describe a general helix G; i.e., a geodetic line on 
the cylinder that is projected over K.  Any point q that is rigidly coupled to p by a curve 
normal will describe a path under this motion that projects onto its plane like a curve that 
is parallel to K.  If one draws the normal plane ν to the curve K through the starting point 

                                                
 (1) De constructione aequationum differentialum primi gradus,  Bononiae, 1707. 
 (2) “Le courbes images et les courbes symétriques,”  Nouv. Ann. math. (3) 14, 373-278. 
 (3) Analyse infinitésimale des courbes planes, Gauthier-Villars, Paris, 1873. 
 (4) Sur une système de coordonées sémi-curvilignes, Prager, Berlin, 1898. 
 (5) Analytische Geometrie ebener Kurven in Büschelkoordinaten, Vienna, 1903.  
 (6) Petrovich, loc. cit.  
 (7) “Nouvelles formation de spirales, etc.,” Mém. de Paris Année 1704, Paris, 1722.  Cf., Loria , loc. 
cit., pp. 595. 
 (8) The drawing of the very simple figure shall be left to the reader.  
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a for the measurement of arc length, and q makes a screwing motion in the plane ν then a 
point qν will come about whose Cartesian coordinates in n are clearly x = n, z = − s.  If 
one performs this generalized screwing motion with an entire curve M ≡ f (n, s) = 0 then a 
generalized helicoid Φ will arise that intersects n along the curve f (x, − z) = 0, and thus, 
along the curve that is symmetric to the image curve of M with respect to the x-axis (1).  
If one draws the normal plane µ through a point b of K that is at a distance from a of s0 
along the curve then one will get the same curve of intersection with Φ as in ν, except 
that it is displaced parallel to itself along the z-direction through a distance of s0 .  If one 
refers to the intersections with µ, ν, … as the meridians that correspond to the helicoid 
and the intersections with normal planes to the axis of the cylinder as normal sections 
then that will yield: 
 
 The generalized helicoid Φ that has the general Mannheim curve M to Γ as its 
normal section will be intersected by the meridian planes along the usual Mannheim 
curve B of Γ. 
 
 All meridian sections of Φ are congruent.  The normal sections of Φ are different 
from each other, but they can be regarded as general Mannheim curves to the same curve 
Γ relative to K when the starting point of the rolling motion is thought of as being located 
at the respective point of intersection of G with the normal section plane in question. 
 
 

II.  
 

 The Cartesian equation of the general Mannheim curve shall now be presented.  Let 
the equation for the curvilinear axis: 
  K be y = f (x), 
and let that of the rolling curve: 
  Γ be ρ = ϕ (s) . 
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 (1) I propose to treat these surfaces thoroughly next from the descriptive-geometric standpoint. 
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If M has the running coordinates ξ, η then one will get n from (Fig. 1) the distance 
formula: 

n2 = (η – y)2 + (ξ – x)2,    (1) 
 
and since m and k lie on a normal to K: 

y

x

η
ξ

−
−

= − 1

y′
.     (2) 

 
One calculates the desired coordinates from that: 
 

2 2
, ,

1 1

n n
x y

y y y
ξ η= − = +

′ ′ ′+ +
   (3) 

 
from which n = ϕ (s) can be eliminated by way of (1): 
 

s = 
0

21
x

x

y dx′+∫ . 

  
 It is just as easy to represent the general Mannheim curve in polar coordinates.  If: 
 
  K… r = ψ (ω), 
 
  Γ… ρ = ϕ (s) 
 
are the given coordinates then m (r, r) will follow from the cosine law: 
 

2 2 2 2 cos( ).n r r τ ω= + − −r r     (5) 

One further has: 

1 1 1
cos( ) sin( ) 0.

r r
τ ω τ ω− − − − =

′r
   (6) 

If one then uses: 

s = 
0

2 2r r d
ω

ω

ω′+∫       (7) 

 
then the problem that was posed can be solved by one quadrature and one elimination. 

                                                
 (1) In the cited paper by Petrovich, the formulas in question should correctly read: 
 

y1 = ϕ (t) = 
2 2

( ) ( )

( ) ( )

f t

f t t

η λ
ϕ

′
′ ′+

, instead of y1 = f′ (t) +
2 2

( ) ( )

( ) ( )

t

f t t

ϕ η λ
ϕ

′
′ ′+

. 
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 The results are in harmony with the ones in the paper of Petrovich that was 
mentioned, where one can also find the conditions for the curves to be rational and 
unicursal in inverse normal coordinates. 
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Figure 2. 

 
 Finally, the natural equation of the general Mannheim curve can be derived in 
parameter form.  As Fig. 2 shows, ∆S is given by (1): 
 

∆S = 
2

2 2K

K

s
ρ ρ ρ

ρ
Γ

Γ

 + ∆ + ∆ 
 

    (8) 

or in the limit by: 

dS =
2 2

K

K

d
ds

ds

ρ ρ ρ
ρ

Γ Γ +  +   
  

,     (8′) 

 

                                                
 (1) If the rolling motion takes place around the inner circumference then ρΓ must be taken to be 
negative.  (Cf., pp. 1) 
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tan ϕ =
K

K

d

ds

ρ
ρ ρ

ρ

Γ

Γ +
 
 

.     (9) 

or since: 
d

ds

ρρ = ρ1 ,     (10) 

by: 

tan ϕ = 1

( )
K

K

ρ ρ
ρ ρ ρ

Γ

Γ Γ+
.     (9′) 

 
 Now, the contingency angle of M is clearly: 
 

dµ = dϕ + da     (11) 
so 

R = 
dS

da dϕ+
,     (12) 

or, from (8′): 
2 2

1

.
1

arctan
( )

d

ds
R

d

ds

κ

κ

κ

κ

ρ ρ ρ
ρ

ρ ρ
ρ ρ ρ ρ

Γ Γ

Γ

Γ Γ Γ

 +  +   
  =

+
+

   (12′) 

(12′) and: 
2 2

d
S ds

ds
κ

κ

ρ ρ ρ
ρ

Γ Γ +  = +   
  

∫    (12*) 

 
define the natural equation for µ in parameter form. 
 
 

III.  
 

 If one observes that the angle ϕ between corresponding tangents at M and K is equal 
to the angle between the associated normals then the use of equation (9′) will yield the 
following simple normal construction (1) for the general Mannheim curve. 
 One raises a perpendicular at p′ on M to the normal P at the corresponding point of K, 
sets pn = ρ1Γ, and makes the second curvature radius of K intersect the connecting line of 
n with p.  The connecting line between the point of intersection m that one obtains and p′ 
will be the desired normal. 

                                                
 (1) I would like to thank Herrn Dr. L.  Braude in Bierstadt for communicating this construction to me in 
a letter. 



Ernst – The general Mannheim curve 7 

 Naturally, as one can see in the figure, it defines an angle with the normal to K whose 
tangent is equal to tan ϕ. 
 One can also draw the tangents to the general Mannheim curve in a way that is 
similar to how Longchamps (1) could construct tangents to the curve when it is 
expressed in inverse normal coordinates, assuming that the tangent can be constructed at 
K and the curvature center of K and second curvature radius of Γ is known. 
 Let (cf., Fig. 2) p and q be neighboring points on K, while p′ and q′, resp., are the 
corresponding points of Γ, P and Q are the associated normals to ϑ, and k is their point of 

intersection.  If one lays out the line segment 0k p = p p′  along P in opposite directions, 

and likewise  0k q = q q′  along Q then the lines p′ q′ and p0 q0 the line p q at the points r 

and s in such a way that r p = s q (2).  Now, if k is associated with the angle α and p0 is 

associated with the angle ψ then the triangle k p0 q0 will yield: 
 

0

sin ( )

k p

ψ α−
= 

0

sin

k q

ψ
= 

0 0

sin sin ( )

k q k p

ψ ψ α
−

− −
,   (13) 

or 

( )

sin ( )

f s

ψ α−
= 

( )

sin

f s ds

ψ
+

= 

( ) ( )

sin / 2
cos

/ 2 2

f s ds f s ds

ds α
α αψ

α

+ −

 − 
 

.   (13′) 

 
 If one now shifts p towards q such that pq will be tangent then k will be the curvature 
center of K, lim α = 0, ds / α = ρκ , and (13′) will imply that: 
 

( )

sin

f s

ψ
=

( )

cos

f s
κρ

ψ
′

      (13*) 

or 

cot ψ =
( )

( )

f s

f sκρ ′
,      (13** ) 

which implies that: 

                                                
 (1) Loc. cit.  

 (2) An entirely elementary consideration will show that this implies: Let p0 t || q′ u || p q || q0 v,  0p t = a, 

q u′ = b, so since 0k q = qq′ , one also have k v = pu  and  0v p = q u′ .  pr  = 
b p p

p u

′⋅
′

, qs= 
0

0

a q q

q t

⋅
, a = 

b t k

k q

⋅
′

, so qs=
0

0

b t k q q

q t k q

⋅ ⋅
′⋅

.  Since 0q q = k q′ and 
0

k

q t

t
= 

0

0

p k

p v
, one will have qs= 

0

0

b k

p v

p⋅
= 

b p p

p u

′⋅
′

; hence, 

.p r q s= . 
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1
2

cot .κ
ρψ ρ
ρ

Γ

Γ

= ⋅     (13*** ) 

 
Moreover, the tangent construction can be performed as follows: 
 
 One proceeds until one has ascertained the point m in precisely the same way that 
one does with the construction of the normal (pp. 6), ∢m p0 k = 90 – ψ.  One now sets 
∢ s1 p0 p = ψ in order to ascertain the point r1 that is symmetric to s1 relative to p, and to 
connect it with p′.  r1 p′ will then be the desired tangent. 
 
 However, it is simpler to find r1 when one raises the perpendicular to m p0 and 
intersects it with T, which is immediately clear on the grounds of symmetry. 
 

_____________ 
 


