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 In the study of curves, the method of coordinate conversion has proved to be a fruitful 
principle for the discovery of new curves and the exhibition of connections between 
entire families of curves (1).  One of the most useful conversions is the one that takes 
natural coordinates to rectangular.  For any curve, it will produce the so-called Mannheim 
curve (2), which is the locus of the curvature centers that belong to the respective contact 
points when the base curve rolls on a line without slipping. 
 In what follows, the concept of Mannheim curve shall be carried over to space curves. 
 The form of a space curve is known to be determined completely by the values of the 
radii of its first and second curvatures ρ and T, when expressed as functions of the arc 
length s.  One refers to the givens: 
 

ρ = ϕ (s), T = F (s)    (1) 
 
as the natural equations for the space curve K.  The search for the equations of K in 
rectangular coordinates can come down to the integration of a differential equation of 
Ricatti type (3). 
 Let the curve with the equations: 
 

y = ϕ (x), z = F (x)    (2) 
 
be referred to the Mannheim curve M of the curve M. 
 The validity of the following theorem can be seen immediately moreover: 
 
 If a space curve K rolls along the x-axis of a rectangular coordinate system without 
slipping in such a way that the x-axis always coincides with the curve tangent and the xy-
plane always coincides with the osculating plane then the curvature center that belongs 
to the respective contact point will describe the orthogonal projection M′ of M onto the 
xy-plane, and the torsion center that belongs to the respective contact point will describe 

                                                
 (1) Cf., e.g., B. Wieleitner, Spezielle ebene Kurven, Göschen, Leipzig, 1908. (Sammlung Schubert 56), 
pp. 313, et seq. 
 (2) Wölffing , Zeit. Math. 44 (1899), 140; Mannheim, J. math. pure appl. (2) 4 (1859), 93-104.  
 (3) See, perhaps, Bianchi, Vorlesung über Differenzialgeometrie, (German translation by Lukat ), 2nd 
ed., Teubner, Leipzig, 1903. 



Ernst – The Mannheim curve of a space curve 2 

the orthogonal projection M″ of M onto the xz-plane, where M means the Mannheim 
curve of K. 
 The simplest example is defined by the ordinary helix: 
 

ρ = γ, T = C.      (3) 
 Its Mannheim curve reads: 

y = γ, z = C,      (3′) 
 
so it is therefore a line that is parallel to the x-axis. 
 The equations: 

ρ = as,  T = bs     (4) 
 
represent the loxodrome of the circular cone.  Its Mannheim curve: 
 

y = ax,  z = bx     (4′) 
is also a line. 
 The general helix (v.z, the cylindrical loxodrome) the characterized by the fact that its 
curvatures have a constant ratio.  Its equation is: 
 

T

ρ
 = a,      (5) 

and a curve: 
y

z
 = a       (6) 

 
that lies in a plane that is perpendicular to the yz-plane (so it is a plane curve) will be its 
Mannheim curve. 
 The skew circles, which are characterized by constant flexure, also produce plane 
curves as their Mannheim curves. 
 One also finds the asymptotic lines of the pseudo-sphere:  
 

ρ = / /( )
4

s a s aa
e e T−+  = a     (7) 

 
amongst the lines of constant torsion. 
 Their Mannheim curves are planar and are closely related to the catenary: 
 

y = / /1
( )

2 2
x a x aa

e e z−⋅ + = a ,    (7′) 

 
and they bear the name of  vault lines (Ger. Gewölbelinie) (4). 
 As a final example, let the asymptotic lines to the catenoids be cited.  Their natural 
equations are: 

                                                
 (4) Schlömilch, Übungsbuch zum Studium höheren Analysis, I. T., 3rd ed., Leipzig, 1879, pp. 101.  
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ρ = s +
22a

s
,  T = a +

2

2

s

a
,    (8) 

 
which implies the equations: 
 

y = x +
22a

x
,  z = a +

2

2

s

a
    (8′) 

 
for the Mannheim curve, or more simply: 
 

x2 – xy + 2a2 = 0, x2 = 2a (z – a).    (8″) 
 
It is then a space curve of order four and type one that is defined by the intersection of a 
hyperbolic cylinder that is perpendicular to the xy-plane and a parabolic one that is 
perpendicular to the xz-plane.  As the elimination of x will show, its perpendicular 
projection onto the yz-plane is: 

y2 (x – a) – 2a x2 = 0,     (8*) 
 
which is a special tangent curve to the parabola (5). 
 The number of examples can be expanded arbitrarily (6). 
 In the same way as one does for plane curves (7), one can also examine space curves 
that arise from the Mannheim curve when the base curve rolls without slipping along an 
arbitrary curve, instead of a line, in such a way that the moving triad covers the fixed and 
moving curves.  However, that shall remain a further topic to pursue. 
 

__________ 
 

  

                                                

 (5) L. Henkel, Über die aus einer Kurve y = f (x) abgleitete Kurve y1 = 
dy

x
dx

 = x f′ (x), etc.  Dissertation 

Marburg 1882. 
 (6) In regard to the examples that were cited here, see: Cesàro, Natürliche Geometrie (German 
translation by Kowalewski), Teubner, Leipzig, 1901. 
 (7) L. Braude, Über einige Verallgemeinerungen des Begriffes der Mannheimschen Kurve, 
Dissertation, Neumann, Pirmasens, 1911. 


